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ABSTRACT

In the present study, a system of partial differential equations for observing epidemic models
is investigated. Using tools of classical approach we are enabled to obtain the solution of the
several system of partial differential equations for observing epidemic models. Furthermore,
difference schemes for the numerical solution of the system of partial differential equations
for observing epidemic models are presented. Then, these difference schemes are tested on

an example and some numerical results are presented.

Keywords: System of partial differential equations; Fourier series method; Laplace

transform method; Fourier transform method; difference schemes; epidemic models



OZET

Bu ¢aligmada, epidemik modelleri gozlemlemek i¢in bir kismi diferansiyel denklem sistemi
arastirtlmistir. Klasik yaklasim araglarini kullanarak epidemik modelleri gdzlemlemek igin
birka¢ kismi diferansiyel denklem sisteminin ¢oziimiinii elde etmeyi basardik. Ayrica,
epidemik modelleri goézlemlemek igin kismi diferansiyel denklemler sisteminin sayisal
¢Ozlimii i¢in fark semalar1 sunulmustur. Daha sonra, bu fark semalar1 bir 6rnek tizerinde test

edilipve bazi niimerik sonuglar Verilmistir.

Anahtar Kelimeler: Kismi diferansiyel denklem sistemleri; Fourier serileri yontemi;

Laplace doniistimii yontemi; Fourier dontisiimii yontemi; fark semalari; salgin modeller
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CHAPTER 1
INTRODUCTION

System of partial differential equations take an important place in applied sciences and

engineering applications and have been studied by many authors.

Direct and inverse boundary value problems for system of partial differential equations for
observing epidemic models have been a major research area in many branches of science

and engineering particularly in applied mathematics.

The mechanism of transmission is usually qualitatively known for most diseases from
epidemiological point of view. For modeling the spread process of infectious diseases
mathematically and quantitatively, many classical epidemic models have been proposed and
studied, such as SIR, SIS, SEIR, and SIRS models (Li & liu, 2014; Samarskii, 2001; Lotfi
et al., 2014; Chalub & Souza, 2011; Elkadry, 2013). Modeling infectious diseases can be
classified as some basic deterministic models, simple stochastic models and spatial models.
An important role of modelling is that they can inform us to the disadvantages in our present
consideration of the epidemiology of different infectious diseases, and advise compelling
questions for research and data that need to be collected. The rate at which susceptible
individuals become infected is called the transmission rate. It is important to know this rate
in order to study the spread and the effect of an infectious disease in a population. This study
aims at providing an understanding of estimating the transmission rate from mathematical
models representing the population dynamics of an infectious diseases using solution of

these models.

An important advantage of using models is that the mathematical representation of biological
processes enables transparency and accuracy regarding the epidemiological assumptions,
thus enabling us to test our understanding of the disease epidemiology by comparing model
results and observed patterns (Jun-Jie et al., 2010). A model can also assist in decision-
making by making projections regarding important issues such as intervention-induced
changes in the spread of disease. A point that deserves emphasis is that transmission models
are based on the current understanding of the natural history of infection and immunity. In
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cases where such knowledge is lacking, assumptions can be made regarding these processes.
However, in such cases there can be several possible mechanisms, and therefore several
different models, which can lead to similar observed patterns, so that it is not always possible
to learn about underlying mechanisms by comparing model outcomes. One must then be
very cautious regarding model predictions, because different models that lead to similar
outcomes in one context may fail to do so in another. In such instances, it is best to conduct
further epidemiological and experimental studies in order to discriminate among the
different possible mechanisms. Thus, an important role of modelling enterprises is that they
can alert us to the deficiencies in our current understanding of the epidemiology of various
infectious diseases, and suggest crucial questions for investigation and data that need to be
collected. Therefore, when models fail to predict, this failure can provide us with important
clues for further research. Our aim is first to understand the causes of a biological problem
or epidemics, then to predict its course, and finally to develop ways of controlling it,
including comparisons of different possible approaches. The first step is obtaining and
analyzing observed data (Lotfi et al, 2014; Elkadry, 2013).

Various initial-boundary-value problems for the system of partial differential equations can

be reduced to the initial-value problem for the system of ordinary differential equations

(
WO 4 gt (t) + Au' () = F (D),

WO L BuE(t) - Buu (1) + cAUT(H) = F(D),

< B0 L (1) - yrut () + oAU’ (D) = (D), (1.1)
d”d—i(” +du’(t) - dyu’ (1) - dau?() + IAU" () = £ (1),

0<t<T,um(0) = o™ m=1,234

\
In a Hilbert space H with a self-adjoint positive definite operator A. In the paper
Ashyralyev et al, (2018) stability of initial-boundary value problem (1.1) for the system of
2



partial differential equations for observing HIV mother to child transmission epidemic
models is studied. Applying operator approach, theorems on stability of this problem and of
difference schemes for approximate solutions of this problem are established. The generality
of the approach considered in this paper, however, allows for treating a wider class of

multidimensional problems. Numerical results are provided.

In the present thesis, we will consider the application of classical methods of solution of
problem (1.1) and of difference scheme for the approximate solution of problem (1.1).

This thesis is organized as follows. Chapter 1 is introduction. In chapter 2, the solution of
system of partial differential equations for observing epidemic models is obtained by using
tools of classical approach. In chapter3, numerical results are provided by using finite
difference method for the solution of system of partial differential equations. In appendix

matlab programming that is used for finding numerical results is given.



CHAPTER 2
METHODS FOR SOLUTION OF SYSTEM OF PARTIAL
DIFFERENTIAL EQUATIONS

It is known that system of partial differential equations can be solved analytically by Fourier

series, Laplace transform and Fourier transform methods. Now, let us illustrate these three

different analytical methods by examples.

2.1. Fourier Series Method

Example 1: Obtain the Fourier series solution of the initial-boundary-value problem

N

ou(t,x)

Au(t,x)
ot

o = a e sin2x,

+ o u(t,x) —

P PV X) — Bructx) - T = (B fu)esin 2x,

PR S W(LX) — S1U(tx) - TR = (8 - 81)esin 2x,

% +dz(t,x) —d; w(t,x) —d, v(t,x) — %
(2.1)
= (d-d; —dy)e*tsin 2x,
O0<t<T,0<Xx<m,
u(0,x) = v(0,x) = w(0,x) = z(0,x) = sin2x,0 < x < x,

u(t,0) = v(t,0) = w(t,0) = z(t,0) = 0,0 <t < T,

uct,z) = v(t,7) =w(t,7) = z(t,7) = 0,0 <t < T

for the system of parabolic equations.



Solution: In order to solve this problem, we consider the Sturm-Liouville problem

—u"(x)—Aux) = 0,0 < x < ,u(0) = u(r) =0
Generated by the space operator of problem (2.1). It is easy to see that the solution of this
Sturm- Liouville problem is
Ak = —kZu(x) = sinkx,k =1,2,....
Then, we will obtain the Fourier series solution of problem (2.1) by formula
-

uct,x) = iAk(t)sinkx,

k=1

v(t,x) = in(t)sinkx,
k=1 (2.2)

w(t,x) = ick(t)sinkx,

k=1

z(t,x) = i Dy (t) sinkx.

k=1

N

Here A (t), B,(t),C,(t) and D, (t) are unknown functions. Applying these formula to

the system of equations and initial conditions, we get



S AL sinkx + a D Ag(t) sinkx + D" kZA(t) sinkx = a e~*tsin2x,
k=1 k=1 k=1

> B, (t)sinkx + B By (t) sinkx — B1 D Ag(t) sinkx
k=1 k=1 k=1

+>_k2By(t)sinkx = (B — B1)e *'sin2x,
k1

> C, (t)sinkx + & D> Cy(t) sinkx — 51 D Ay (t) sinkx

k=1 k=1 k=1

+>_k2C(t)sinkx = (6 — 51)e *tsin2x,
k=1

> D, (t)sinkx +d >_ Dy (t) sinkx — d; >_ Cy(t) sinkx
k=1 k=1 k=1

—dy D Bk (t) sinkx + D" k?Dy(t) sinkx = (d — d; — dp)e~*tsin2x,

k=1 k=1

0<t<T,0<X <,

u(0,x) = D>_Ax(0)sinkx = sin2x,
k=1

v(0,x) = >_By(0)sinkx = sin2x,
k=1

w(0,x) = > C(0)sinkx = sin2x,
k=1

2(0,x) = D> _ Dy(0)sinkx = sin2x,
k=1



Equating coefficients sinkx,k =1,... to zero, we get

(A —4t
AL () + aAz (1) + 4Ax(t) = ae ™,

B, (t) + BB2(t) — B1Az(t) + 4B, (1) = (B— Br)e™,

A

Co(t) +8C,(t) — 61A2(t) +4C,(t) = (6—51)e™,

D5 (1) +dD2(t) — d1Co (1) — d2B(t) + 4D, (t) = (d - d; —d2)e ™™,

| 0 <t<TA0) = By(0) = C,(0) = D,(0) = 1

And for k#2

(AL + aAK(t) + K2AL(t) = O,

B, (t) + BBk(t) — B1Ak(t) + k2B (t) = 0,

C, (D) + 5C (1) — 51A (1) + k2Cy (1) = 0,

D, (t) + d Dy (t) — d1 Ck(t) — d2By(t) + k?Dy(t) = 0,

0<t<T,

Ak(0) = Bx(0) = C(0) = Dy(0) = 0.
We will obtain A (t), B,(t), C,(t) and D,(t) for k=2. Firstly, we consider the

problem

A () + (@ +k?)Ac(t) =0,0 <t < T,A(0) = 0.

We have that

A1) = e (=**)ta, (0) = 0.



Secondly, applying A, (t) =0, we get the following problem

B (t) + (B+k2)By(t) =0, 0 < t < T,B,(0) = 0.

Therefore,

B, (t) = e-(P¥*)iB, (0) = 0.

Thirdly, applying A, (t) =0, we get the following problem

CL(t) + (8 +k?)C() = 0, 0 < t < T,Cy(0) = 0.
Therefore,
C(t) = e (**)tC, (0) = 0.
Fourthly, using Bk(t) =0 and Ck(t) = 0, we get the following problem

Di.(t) + (d + k2)D(t) = 0, 0 < t < T,D(0) = 0.

Therefore,
Dy (t) = e (¢*)tD, (0) = 0.

Thus, Ax() = By(t) = Cy(t) = Dy(t) =0 forany t € [0,T].

Now, we obtain A, (t), B,(t), C,(t) andD,(t). Firstly, we consider the problem
As() +(@+4)A(t) =ae™, 0<t<T, A0) =1

We have that

t
Aa(t) = e @A, (0) + [ e @9 get5ds
0

t
— e—(a+4)t + e—(a+4)t IaeanS — e—(a+4)t + e—(a+4)t(eat _ 1) — e—4t.

0

Secondly, applying A2(t) = ™', we get the following problem



B,(t) + (B+4)By(t) = Be™,0 <t < T,B,(0) = 1.

We have that

t
By (t) = e #41B,(0) + je—</3+4><t—5> fe*sds
0

t
_ (Bt | g (Bt J.ﬁeﬂsds = g (Bt 4 o= Brilt(eht _ 1) = g4,
0

Thirdly, applying A, (t) =e™, we get the following problem

CL(t) + (5 +4)Ca(t) = 56, 0 < t < T,Co(0) = 1.

We have that

t
C,(t) = e G*C,(0) + J'e—((>‘+4)(t—s)5e—4sdS
0

_ p(ow)t | g-(ova) (eét 3 1)= ot
Fourthly, using B,(t)=e™ and C,(t)=e™, we get

D, (t) + (d +4)Dy(t) = de™, 0 < t < T,D,(0) = 1.

We have that

t
D, () = e @+41D,(0) + J'e—(d+4)(t—s)de—4sds
0

Thus, Az(t) = Ba(t) = Ca(t) = D2(t) =e™*  for any t e [0,T]. Applying formulas
obtained for A (t), B, (t), C,(t) and D,(t),k =1,..., we can obtain the exact solution of

9



problem (2.1) by formulas

(
uct,x) = A, (t)sin2x = e~*tsin2x,
v(t,x) = B, (t)sin2x = e~*tsin2x,

W(t,X) = Cy(t)sin2x = e *sin2x,

L Z2(t,x) = Dy (t)sin2x = e*'sin2x.

Note that using similar procedure one can obtain the solution of the following initial

boundary value problem

10



n
au(t, d2u(t,
A0+ u(t,x) - Zlar_;x(zx) = afy (t,%),

r

20 4 By(t,x) — Brut,x) — Zar”‘”—(ﬁ—ﬁl)fz(t.xx

ALY 1 5 w(t,x) — S1u(t,X) - Z ra!ﬁix) (6 - 61)fs(t,x),
r=1

(2.3)

n 2
0+ d z(t,x) — dg W(t,x) — dz V(t,X) — z;“f - ait)
r=

= (d—dy —dp)fa(t,x),

X =(X1,...,Xn) €, 0<t<T,

u(0,x) = @(x),v(0,x) = w(x),w(0,x) = £(x),2(0,x) = A(x),

X = (X1,...,Xn) € Q,

u(t,x) = v(t,x) =w(t,x) =z(t,x) =0,x e S0<t<T

For the multidimensional system of partial differential equations. Assume that «, >a >0

and f,(t,x)k=123, 4(t c(0,T)xe 5_2), 2(X),p(x),E(X), A(X) (x e g_z) are given smooth

functions. Here and in future €2 is the unit open cube in the N — dimensional Euclidean

space R"(0<x, <1,1<k <n) with the boundary $,Q=QuUS.

However Fourier series method described in solving (2.3) can be used only in the case when

(2.3) has constant coefficients.

11



Example 2: Obtain the Fourier series solution of the initial-boundary-value problem

(" au

ot

2u(t,x)

—o~ = 0 e7'CosX,

+a u(t,x) —

A0+ BV(tX) — Brut,x) — 252 = (8- B1)etcosX,

S 1 S w(t,X) — S1u(t,x) — Z = (5 - 51)et cosx,

ox2

22(t,x)
axz

0+ d 2(t,x) — dy w(t,x) —d V(t,X) -

< (2.4)
= (d-dy —dy)etcosx,

O<t<T,0<x<m,
u(0,x) = v(0,x) = w(0,x) = z(0,x) = cosx,0 < x <,

Ux(t,0) = Vx(t,0) = Wx(t,0) = z¢(t,0) = 0,0 < t < T,

Ux(t,m) = vx(t,m) = wy(t,m) = zx(t,m) = 0,0 <t <T

for the system of parabolic equations.

Solution: In order to solve this problem, we consider the Sturm-Liouville problem

—u"(X) —Au(x) = 0,0 < x < ,ux(0) = ux(7) =0

Generated by the space operator of problem (2.4). It is easy to see that the solution of this

Sturm-Liouville problem is
Ak = —k2u(x) = coskx,k =0,1,....

12



Then, we will obtain the Fourier series solution of problem (2.4) by formula
/

u(t,x) = > Ax(t)coskx,
k=0

v(t,x) = i By (t) coskx,

k=0
<
w(t,X) = ick(t) coskx,
k=0
z(t,x) = i Dy (t) coskx.
q k=0

Here A (t), B, (t),C.(t) and D,(t) are unknown functions. Applying these formula to

the system of equations and initial conditions, we get

13



> AL (t)coskx + a D Ag(t) coskx + D" k2A(t) coskx = a et cosx,
k=0 k=0 k=0

DB, (t)coskx + BD_ By(t)coskx — B1 D Ax(t) coskx
k=0 k=0 k=0

+ik28k(t)coskx = (B - B1)etcosx,

k=0

D> C(t)coskx + 8D Cy(t)coskx — 51 X A (t) coskx
k=0 k=0 k=0

+>_k2Cy(t)coskx = (5 — 51)etcosx,
k=0

> D, (t)coskx +d > Dy(t)coskx —d; D Ck(t) coskx

k=0 k=0 k=0

—d;, D" By(t) coskx + D> k2D (t)coskx = (d —d; —dy)etcosx,

k=0 k=0

\O<t<T,O<x<7r,

14



u(0,x) = >_Ay(0)coskx = cosx,
k=0

v(0,x) = > By(0)coskx = cosx,
k=0

< w(0,x) = D> Cy(0)coskx = cosx,
k=0

2(0,x) = >_Dy(0)coskx = cosx,
k=0

0<x<m.
\

Equating coefficients coskx,k =0,... to zero, we get
(
AL() +aAL(t) + AL(t) = ae™,
By (1) + BB1(t) — B1AL(t) + Ba(t) = (B— Br)e™,
< CL®) +6Ca(t) —81A1(1) + Ca(t) = (6-51)e™,

D} (t) + dD1(t) - d1C1(t) — d2B1 (1) + D1(t) = (d —dy —dp)e,

| 0<t<TAi0) =Bi(0) = C,(0) = D1(0) = 1

And for k#1

15



(AL + aA(t) + K2AL(t) = O,
B, (1) + BB (D) — B1Ak (D) + K?By(t) = 0,
CL(t) + 5C(t) — 51A((E) + K2Cy (1) = O,
D, (t) + d Dy (t) — d1 Ck(t) — d2By(t) + k?Dy(t) = 0,

0<t<T,

[ Ax(0) = B«(0) = C«(0) = D«(0) = 0.

We will obtain A _(t), B, (), C.(t) and D, (t) for k=1

problem

ALt + (@ +Kk2)A(t) = 0, 0 < t < T,A(0) = 0.

We have that

A t) = e (=**)ta, (0) = 0.
Secondly, applying A (t) =0, we get the following problem
B, () + (B+k?)By(t) =0, 0 <t < T,B(0) = 0.

Therefore,

B, (t) = e-(P**)tB, (0) = 0.

Thirdly, applying A, (t) =0, we get the following problem

C () + (6 +k?)C(t) =0,0 <t <T,C0) =0.

Therefore,
Ci(t) = e (¢+)tc, (0) = 0,

16
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Fourthly, using B, (t)=0 and C,(t) =0, we get the following problem

Di.(t) + (d + k2)D(t) = 0, 0 < t < T,D(0) = 0.

Therefore,
Dy (t) = e (@)D, (0) = 0.

Thus, Ax(t) = Bk(t) = Ck(t) = Dk(t) =0 forany te[0,T].

Now, we obtain A (t), B,(t), C,(t) andD,(t). Firstly, we consider the problem

Al +(@+DA) =aet, 0<t < T, A1(0) = 1.
We have that

t
As(t) = e @A, (0) + j e-(@1)(t5) yo-5ds
0

t
— (@)t | g-(a+D)t Iae"‘sds — g (@)t L g-@rlt(gat _ 1) — g1,
0

—t

Secondly, applying Ai(t) =€, we get the following problem

Bi() + (B+1)Bi(t) = Be,0 < t < T,B;(0) = 1.
We have that

t
B1(t) = e #"'By(0) + [ D9 s
0

t

— e~(B+Dt 4 g=(B+L)t I fefsds = eIt 4 g~ (eM _ 1) = e,
0

Thirdly, applying A (t) = e”', we get the following problem
Ci)+ ([ +1)Ci(t) =8, 0<t<T,Cy(0) = 1.

17



We have that

t
Cy(t) = e 1C,(0) + j e-(B+1)(t-5) Se-5(is
0

Fourthly, using B,(t)=e™ and C,(t)=e™, we get

Di(t) + (d+1)Ds(t) =de™, 0 <t < T,D;(0) = 1.
We have that

t
D1 (t) = e ¢D; (0) + [ e ¢ D()geds
0

Thus, A (t)=B,(t)=C,(t)=D,(t)=e™" forany te[0,T].
Applying formulas obtained for A (t), B, (t), C,(t) and D, (t),k=0,1.., we can

obtain the exact solution of problem (2.4) by formulas
(

u(t,x) = A (t)cosx = etcosx,
v(t,x) = By (t)cosx = etcosx,

w(t,x) = Cy(t)cosx = etcosx,

L z(t,x) = Dy (t)cosx = etcosx.

Note that using similar procedure one can obtain the solution of the following initial

boundary value problem

18



n 2
S+ aut,x) - a5 = afi (t,%),

r=1 r

(’}v(tx) + BV X) — Bru(t,X) — Z rav(tx) (B— B1)f2(t,x),

6\N('[X) T+ WL X) — 81u(t,X) — Zarav;:EX) = (6 = 61)f3(t,%),
r=1

n
0 1 d z(t,x) — dy w(t,x) —d2 V(E,X) =D ar et
r=1 X (25)
<
= (d—dy —dy)f4(t,x),
X=X1,...,Xn) €, 0<t<T,
u(0,x) = @(x),v(0,x) = y(x),w(0,x) = &(x),2(0,x) = A(x),
X = (X1,...,Xn) € Q,
aou(t,x) _ ov(t,x) _ ow(t,x) _ oz(t,x) _ 0 X e S 0 <t< T
L om om om om

For the multidimensional system of partial differential equations. Assume that «, >a >0

and f,(t,x) k=123, 4(t €(0,T)x eﬁ), (xX),w(x),E(X), A(X) (x = g_)) are given smooth

functions. Here and in future M is the normal vector to S.

However Fourier series method described in solving (2.5) can be used only in the case

when (2.5) has constant coefficients.
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Example 3: Obtain the Fourier series solution of the initial-boundary-value problem

( 5”(”) +au(t,x)— %SX) = (-l+a)e,
2O+ BV(L,X) - Bru(t,x) — 28 = (—1+ - Br)e,
2D+ 5 w(t,x) — Sru(t,x) — 25 = (-1+5-51)e,
20 4 d z(t,x) — dy W(t,x) — dp v(t,x) — T2
=(-1+d-d; —dy)e,

I 0<t<T,0<x<m, (2.6)
u(0,x) = v(0,x) = w(0,x) =2(0,x) =1,0<x <,
u(t,0) = u(t,m),ux(t,0) = ux(t,7),0 <t < T,

V(t,0) = v(t,m),vx(t,0) = vx(t,7),0 <t < T,
w(t,0) = w(t,m),wx(t,0) = wx(t,7),0 <t <T,
L 2(t,0) = z(t, ), zx(t,0) = zx(t,7),0 <t < T

for the system of parabolic equations.
Solution: In order to solve this problem, we consider the Sturm-Liouville problem

—u"(x) — Au(x) = 0,0 < x < m,u(0) = u(r),ux(0) = ux(r)

Generated by the space operator of problem (2.6). It is easy to see that the solution of this

Sturm-Liouville problem is

A = —4k2,u(x) = sin2kx,k = 1,...,ux(x) = cos2kx,k = 0,1,....
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Then, we will obtain the Fourier series solution of problem (2.6) by formula
u(t,x) = i A, (t)sin2kx+ X B, (t) cos2kx,

k=1 k=0
v(t,Xx) = i C, (t)sin2kx + i D, (t) cos2kx,

k=1 k=0

(2.7)
w(t, X) = éEk (t) sin 2kx + é F. (t) cos 2k,

Z(t,x) = éMk(t)sin 2kx + é N, (t) cos2kx.

Here A (t), B, (t),C.(t),D,(t), E, (), F.(t),M.() and N, (t) areunknown

functions. Applying these formulas to the system of equations and initial conditions, we

get

STAL(D)sin2kx + a D" Ag(t) sin2kx + D~ 4k 2 Ay (t) sin2kx
k=1 k=1 k=1

DB, (t)cos2kx + a D_ By (t) cos2kx + D 4k 2By (t) cos 2kx
k=0 k=0 k=0
= (-1+a)™,

S CL(t)sin2kx + B C(t)sin2kx — By 3 Ay (t) sin2kx
k=1 k=1 k=1

+4k2Cy (1) sin2kx + >_ Dy (t) cos2kx + B> Dy (t) cos 2kx
k=1 k=0 k=0

—B1 D By (t) cos2kx + > 4k?Dy(t) cos 2kx
k=0 k=0

= (-1+pB-pre",
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> E,(t)sin2kx + 6 D Ex(t)sin2kx — 51 D_ Ak (t) sin2kx
k1 k=1 k=1

+D4k2E (t) sin2kx + X F, (t) cos2kx + & X Fy(t) cos 2kx
k1 k=0 k=0

—81 > By(t) cos2kx + > 4k?F(t) cos 2kx
k=0 k=0

=(-1+0- 51)94,

> M, (t)sin2kx +d D" M (t)sin2kx — dq D_ Ey(t) sin2kx
k1 k=1 k1

—dp D Cy(t) sin2kx + >~ 4k2 M (t) sin2kx + > N, (t) cos 2kx
k1 k1 k=0

+d DNy (t) cos2kx — dy D Fy(t) cos2kx — d, D Dy (t) cos 2kx
k=0 k=0 k=0

+Y4k?Ny(t)cos2kx = (-1+d—d; —dy)e™,

k=0

O<t<T,0<Xx <m,
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u(0,x) = >_Ax(0)sin2kx + >_ By (0) cos2kx = 1,
k=1 k=0

v(0,x) = >_Cy(0)sin2kx + > Dy(0)cos2kx = 1,
k=1 k=0

9 WO,%) = 3" Ex(0)sin2kx + 3 Fi(0) cos2kx = 1,

k=1 k=0

2(0,x) = X_My(0)sin2kx + D>_ N (0)cos2kx = 1,

k=1 k=0

0<x<m.

N

Equating coefficients sin2kx,k =1,... and cos2kx,k =0,1,... to zero, we get

B
B (t) + aBo(t) = (-1 +a)e™,

Do (1) + Do (1) — B1Bo(t) = (-1 + - Br)e™,

A

Fo(t) + 0Fo(t) — 81Bo(t) = (-1 + 3 —81)e™,

N (t) + dNo(t) —d1Fo(t) — daDo(t) = (-1 +d—d; —dp)e™,

| 0 <t <TBs(0) = Do(0) = Fo(0) = No(0) = 1

and
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(AL + aA(t) + 4k2A () = O,
C (1) + BCi(t) — B1A(t) + 4k2Cy(t) = O,
E, (1) + SE((t) — 51 AK(t) + 4k?E(t) = 0,
M, (t) + d My (t) — d1 Ei(t) — d2Cy (t) + 4k2M,(t) = 0,

0<t<T,

[ Ax(0) = Ci(0) = E«(0) = Mc(0) = 0,

(" BL(t) + aBy(t) + 4By (t) = O,

D, (t) + BDk(t) — B1By(t) + 4k2Di(t) = 0,

Fi (D) + 0F(t) — 1By (t) + 4k2Fi(t) = 0,

N () +d Ny (t) — dyF(t) — daDi(t) + 4k2Ni (t) = 0,

O<t<T,

 Bx(0) = Dx(0) = F«(0) = N¢(0) = 0.

fork=1,2,....
We will obtain A (t),B, (t),C, (t), D, (t),E, (t),F (t),M (t) and N, (t)
Firstly, we consider the problem

A (1) + (a +4k?)A(t) = 0,0 < t < T,A¢(0) = 0.

We have that
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A(t) = e~(@4)A (0) = 0

forany 0<t<T.
Secondly, we consider the problem

B, (t) + (a + 4k?)By(t) = 0,0 < t < T,B(0) = 0.

We have that
B, (t) = e («+4)tB, (0) = 0

for any 0<t<T.

Thirdly, we consider the problem

CL(t) + (B + 4k2)Cy (1) — B1A(t) = 0,0 < t < T,Cy(0) = 0.

Using (2.8), we get

C(t) + (B+4k2)Cy(t) = 0,0 < t < T,Cy(0) = 0.

We have that

C(t) = e (B4)tc, (0) = 0

forany 0<t<T.

Fourthly, we consider the problem

D, (t) + (B + 4k?)Dy(t) — B1B(t) = 0,0 < t < T,D(0) = 0.

Using (2.9), we get

D{((t) + ([3+4k2)Dk(t) =0,0<t<T,D0)=0.
We have that

Dy (1) = e~ (B4*)tD, (0) = 0

forany 0<t<T.

Fifthly, we consider the problem
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E (1) + (5 + 4k?)E(t) — 51Ak(t) = 0,0 < t < T,E4(0) = 0.
Using (2.8), we get
E () + (5 +4k?)E((t) = 0,0 < t < T,E((0) = 0.

We have that

E(t) = e (%" )E,(0) = 0 2.12)

forany 0<t<T.

Sixthly, we consider the problem
Fr () + (5 + 4k?)F(t) — 61By(t) = 0,0 < t < T,F,(0) = 0.
Using (2.9), we get

Fi(t) + (5 +4k2)F,(t) = 0,0 < t < T,F(0) = 0.

We have that

Fo (1) = e (3*4)tF, 0) = 0 2.13)

forany O0<t<T.

Seventhly, we consider the problem
M, (1) + (d + 4k? )M (t) — d1 Ex(t) — dCk(t) = 0,0 < t < T,M(0) = 0.
Using (2.10) and (2.12), we get
M (t) + (d + 4k2)M(t) = 0,0 < t < T,M,(0) = 0.
We have that
M, (t) = ef(d+4k2)t|v|k(0) -0 (2.14)

forany 0<t<T.
Eighthly, we consider the problem

N/k(t) + (d +4k2)Nk(t) - lek(t) - dsz(t) =0,0<t< T,Nk(O) =0.
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Using (2.11) and (2.13), we get
N, (1) + (d + 4k?)N(t) = 0,0 < t < T,Nk(0) = 0.

We have that

Ny (1) = e (¢+4)IN(0) = 0
forany O<t<T. Therefore,
Ax(t) = By(t) = Cy(t) = Dy(t) = Ex(t) = Fy(t) = My(t) = Ni(t) =0 for any
0<t<T.

Now, we obtain Bo(t), Do(t), Fo(t) and No(t). Firstly, we consider the problem

By(t) +aBo(t) = (-1+a)e,0 <t < T,Bo(0) = 1.

We have that

t
By (t) = e B (0) + je—a<t—5>(—1 +a)eSds
0

t
—e e j(—l +a)et T sds = e,
0

Therefore,

Bo(t) = e™. (2.15)

Secondly, we consider the problem

Do (1) + BDo(t) = B1Bo(t) = (-1 +f—B1)e™,0 <t < T,Dp(0) = 1
Using (2.15), we get

Dy(t) + BDo(t) = (-1 + B)e 1,0 <t < T,De(0) = 1

We have that
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t
Do(t) = e Dy (0) + j e A9 (_1 + B)e>ds
0

t
=ePyre I(—l + B)eCHhids = et
0

Therefore,

Do(t) =e™. (2.16)
Thirdly, we consider the problem

Fo(t) +6Fo(t) —51Bo(t) = (-1+5—-351)et,0 <t < T,Fo(0) = 1.
Using (2.15), we get

Fo(t) +0Fo(t) = (-1+8)e,0 <t < T,Fo(0) = 1.

We have that

t
Fo(t) = eFo(0) + j 9t (_1 4+ §)eds
0

t
=g 4t j(—l +6)eC+osdgs = e,
0
Therefore,

Fo(t) = e (2.17)
Fourthly, we consider the problem

Ng(t) +dNo(t) —diFo(t) —dzDo(t) = (—1+d —d; —dz)e‘t,O <t <T,No(0) =1.

Using (2.16) and (2.17), we get

Ng(t) +dNg(t) = (-1 +d)et,0 <t < T,No(0) = 1.
We have that
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t
No(t) = e¥™Ny(0) + j e 9t (_1 4 d)e-ds
0

t
=e e I (-1 +d)eCtsds = e,
0
Therefore,

No(t) = e . (2.18)

Applying formulas (2.8)-(2.18) and (2.7), we get

u(t,x) = Bo(t) = e,
V(t,x) = Do(t) = e,
w(t,x) = Fo(t) = e,

z(t,x) = No(t) = e,

Note that using similar procedure one can obtain the solution of the following initial

boundary value problem
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n
au(t, a2u(t,
A+ u(t,x) - ar ;XW = afy(t,X),

2
r=1 r

ox

MU 4 Bytx) — Bru(tx) - e L = (B By)f(t.x),
r=1

y 4 2w(t,x
ST HEWEX) ~ 61Ut X) ~ Do = (6 - 80)fs(t.X),

r=1 r

n
o, ot
z(attX) +d z(t,x) — dg w(t,x) —da v(t,X) = > ar ;((tzx)

r=1 r

= (d - d; —d)f4(t,),

_ (2.19)
X=(Xg,...,Xn) € Q0<t<T,

u(0,x) = @(x),v(0,x) = w(x),w(0,x) = £(x),2(0,x) = A(x),

X = (X1,...,Xn) € Q,

Ut X)L, = utX)ls, S| =SR] 0<t<T,
V(EX)]s, = V(EX)]g,, T . B G 0StsT
W(t, X)s, = Wt X)]g,, 252 - . i 0St=sT
2(t,X)]g, = 2(t,X)]g,, Z2 . = X o 0StsT
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for the multidimensional system of partial differential equations. Assume that «, >a >0

and f,(t,x).k=12,3, 4(t €(0,T)xe 5_)_) P(X),(x), £(x), A(X) (x e g_l) are given smooth
functions. Here S=S,US,,?=S5, NS, .

However Fourier series method described in solving (2.19) can be used only in the case when

(2.19) has constant coefficients.
2.2. Laplace Transform Method

Now, we consider Laplace transform solution of problems for the system of partial

differential equations.

Example 1: Obtain the Laplace transform solution of the initial-boundary-value problem

LD 1 g ut,x) — L2 = (-2 + g)et,

Ox?

FEL BVX) - faultx) - S = -2+ - fre

WO 4 §w(t,x) — S1u(t,x) — L = (246 - 61)e,
%+dz(t,x)—dl w(t,x) —d, V(t,X)—%
Y = (2+d—d; - dy)et

1 2 ' (220)
0<t<T,0<X < oo,

u(0,x) = v(0,x) = w(0,x) = z(0,x) = e7*,0 < X < oo,

u(t,0) = v(t,0) = w(t,0) = z(t,0) = e 1,0 <t < T,

Ux(t,0) = Vx(t,0) = wy(t,0) = z4(t,0) = e 1,0 <t <T
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for the system of parabolic equations.

Solution: Here and in future we denote
/

L{u(t,x)} = u(t,s),
L{v(t, X)) = v(t,s),

L{w(t,x)} = w(t,s),

L L{z(t,x)} = z(t,s).

Using formula

I@*}=Sil (2.21)

and taking the Laplace transform of both sides of the system of partial differential equations

and conditions

u(t,0) = v(t,0) = w(t,0) = z(t,0) = e, ux(t,0) = vx(t,0) = wy(t,0) = z«(t,0) = —e7,

we can write
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or

Ji{a”(”)}+a£{u(t )y - L{ELY = £{(-2+a)e ™},
L{FLLY + BLV 0} — BrL{u(t, )} — L {2

= L{(=2+ B- Pr)e™ ™},

{M”)}+5£ {w(t, )} — 81L{u(t,x)} — ;e{azv“m

= L{(-2+35-56,)e ™},

L FEOY 4 dL {210} - drL{ w(t, )} — dp LV ()} — £ { F

= L{(-2+d-d; —dy)e™},0<t<T,

L{u0,x)} = LV(0,x)} = LW(0,x)} = £L42(0,x)} = L&}

Ue(t,s) + au(t,s) — {s?u(t,s) —se™ + e} = (-2 +a)e L,
Vi(t,s) + pv(t,s) — Bru(t,s) — {s®v(t,s) —se™" + e}

= (=2+p-petoy

we(t,s) + ow(t,s) — S1u(t,s) — {s?w(t,s) —set + et}

= (-2+5-681)et L,

z¢(t,s) + dz(t,s) — diw(t,s) — dov(t,s) — {s?z(t,s) —se ' + e'}
—(2+d—-d; —dy)etLl0<t<T,

u(0,s) = v(0,s) = w(0,s) = z(0,s) = -
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Now, we taking the Laplace transform with respectto t , we get

/
1 Q2 _ 1 (=%e-1
‘LLU(‘LL,S) T s + ((Z S )U(,u,S) - ,u+1< S+Z )’

s+1 s+l

w(w,s) — L+ (B—s?)v(w,s) — Bru(,s) = ﬁ(-szw—ﬁl—l )

—s246-61-1
s+1 !

(i 8) = 2+ (6 - 8 )w(n, ) - 51u(s) = = (

s+1 s+1

N

Firstly, applying equation

1 2 _ 1 —82+a—1)
pu(p,s) = == + (@ =s)uus) u+1( —) :

we get

S+1+y+1 s+1

or

u(ps) = (2.22)

1
(u+1)(s+1)

Secondly, applying formula (2.22) and equation

2L BB —
wv(g,s) — — +(ﬂ—sz)v(u,s)—ﬁ1u(u,s)=uil( S“+B- P 1),

s+1 s+1
we get
1,1 (SHp-pi-d b
(ﬁ—sz+u)V(u,S)—S+1+u+1( s+1l )+(H+1)ts+1)
or
1
Vs = e D (2.23)

34
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Thirdly, applying formula (2.22) and equation

_q2 _ _
HWWA)—;%I+®—SQWW5)_&UW5)= 1 ( 2 +3 -5 1)

u+1 s+1
we get
(6 - + p)w(u,s) = sil + uil(_sz +55+_151 _1> " (u+ 16)1(s+ 1)
or
w(,s) = WTl(Hl) (224

Fourthly, applying formulas (2.23), (2.24) and equation

H2(u,5) = g + (5 - 5921, 5) — diw(u,5) = dav(,9)

1 (—sz+d—d1—d2—1)

N u+1 s+1

we get
2
o5 sdlag)= Lo L[S rd-diodi1)  dsg,
s+1 u+l s+1 (u+1)(s+1)

or

2(1,8) = 1 . 2.25

T (u+ D+ 1) (2.25)

Applying formulas (2.22) - (2.25) and taking the inverse Laplace transforms with respect

to t and X , we obtain

ut,x) = v(t,x) = w(t,x) = z(t,x) = e t*,
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Example 2: Obtain the Laplace transform solution of the initial-boundary-value problem

/
MO | gu(t,x) - 20— (L2 4 g)et,

ot Ox?

SEEH PVEX) - frultx) - T = (<24 f - fr)e

Wt | s w(t, X) — S1u(t,x) — awx) (-2+6—-61)e X,
a ox2

2z(t,x)
ox?

20 1 d z(t,x) — dg W(t,x) — da V(t,X) -
- 2+d-ds—daet

(2.26)
O0<t<T,0<X< oo,

u(0,x) = v(0,x) = w(0,x) =z(0,x) =e*,0 <X < o,

u(t,0) = v(t,0) = w(t,0) = z(t,0) = e 1,0 <t < T,

L u(t,o0) = v(t,0) = w(t,0) = z(t,0) =0,0<t<T
for the system of parabolic equations.

Solution: Applying formula (2.21) and taking the Laplace transform of both sides of the

system of partial differential equations and conditions u(t,0) =v(t,0) = w(t,0) =

z(t,0)=e™", we can write
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or

;E{au(tx)} +a ;E{u(t X)} I{Ozu(tx)} ;6{( 24 a)e N X}

:E{av(tx)} + B LV, X))} — BrL{u(t,x)} — ;E{azv(tx)

= £{(-2+p - e},

{aw(tx)} + 6L {w(t,x)} — o1 L{u(t,x)} — cf{azw(tx)
= £{(-2+8-81)e™},

:E{az(tx)} +dL {z(t,x)} —d I{ w(t, X)} dy LX)} — cf{@ez(tx)

= i{(_z +d - dl — dZ)e_t_X},O < t < T’

[ £{u0)} = L{VO0.X)} = L{W(O,X)} = £{2(0,%)} = L{e™}
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Ue(t,8) + au(t,s) —su(t,s) +se™ +y1(t) = (-2 +a)e'=r,

vi(t,s) + Bv(t,s) — Biu(t,s) — s2v(t,s) +set + v, (t)

— (-2+p- e L

s+1’
wi(t,s) + ow(t,s) — d1u(t,s) — s2w(t,s) +se™t + y3(t)

= (-2+6-81)e L

s+l
z¢(t,s) + dz(t,s) — dyw(t,s) — dov(t,s) — s?z(t,s) + set + y4(t)

_ -t 1
=(-2+d-d; —dy)e ta,O<t<T,

u(0,s) = v(0,s) = w(0,s) = z(0,s) = .

s+l

Here

71(t) = ux(t,0),

y2(t) = vx(t,0),

ys(t) = wx(t,0),

72 = Z(t,0).

Now, taking the Laplace transform with respectto t , we get
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( pu18) — & + (= 5)uGus) = 245 (-5 + 2) ~ 71,

s+1

w(,8) = 2+ (B— 52,8 - fru(s) = L (=s+ ZEL) —yy (),

s+1

<
W (,8) = 25 + (6= S, ) = 81u(p,8) = A5 (=s+ 252 ) —y5 (),
\ pz(u,8) — 7 + (d = s%)z(w,8) — daw(p,s) — dav(u,s) = ﬁ(‘“ ) - v
or
(,u+a—82)u(,u,s) s+1 ﬁ(—sﬁL%)—h(ﬂ),
(u+ B —s?)v(u,s) - fru(u,s) = - + ﬁ(—SJr %) —v2(u),
<
(u+6—s?)w(w,s) —d1u(u,s) = 3+1 #+1 ( —S+ 2+5 51 ) y3(u),
| (uvd- $2)2(1,8) = daW(p, ) — dov(,s) = 2 + L5 (—s+ LI )~y (),

Moreover, taking the Laplace transform from conditions

U(t,OO) = V(t,OO) = W(t,OO) = Z(t,OO) =0, we get

u(u, ) = 0,v(y, ) = 0,w(y, o) = 0,z(y,0) = 0. (2.27)

Firstly, applying equation

H+a—S 1
m—h(u)—qul,

(n+a—s?)u(u,s) =

we get

1 1 1
WS = DG D (“(““ M+1)u+a—sz'

Using the formula
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1 11 1
U+ a—s? m+a—-s Juta+s)2/u+a’
we get

1

T W DED

- (nw-—17)52 .
u+l)2/m+a \ s+ fuva s— fu+ta

Taking the inverse Laplace transform with respect to x , we get

1
e
(u+1)

U(,LL,X) =

1 1 —JEtax _ 4 fpfax
+(71(u)+u+1)2‘/u+_a(e eVFF),

Passing to limit in (2.29) when X — oo and using (2.27), we get

_ 1 1 : Tax
u0) = (10+ b1 ) s Ime P -0

From that it follows

1
u+1l

yi(u) =—

Applying (2.28), (2.29) and (2.30), we get

u+a—§

(u+a—-s*)u(y,s) = (w+1)G+1)

or

1
(u+1)

Secondly, applying (2.31) and equation

1
(u+1D)(s+1)

U(‘LL,X) = e_X,U([.l,S) =
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(2.28)

(2.29)

(2.30)

(2.31)



(u+ B—s*)v(u,s) — Pru(u,s)

_ HL:L n L(—s+ M) ~ (),

u+1 s+1
we get
__u+p-¢? 1
(u+p—s?)v(y,s) = m—?’z(ﬂ)— e
or
-1 1 1
VW) = perp - (W u+1)u+ﬁ_32'

Applying the formula

1 1

- 1 1
p+p—s° ( /u+ﬁ—s+ /u+ﬁ+s>2/y+ﬁ’

we get
_ 1
VS = I DeT D
1 1 1 1
(o) - ) + 2.32
(e 25ir B\ s+ JuiB  s-Juip (232
Taking the inverse Laplace transform with respect to X , we get
1 X
v(u,x) = e
(1, %) G+ D)
1 1 = JurBx _ o JutBx
+ + e e . 2.33
(720 u+1)zm( ) (2.39)

Passing the limit in (2.33) when X — oo and using (2.27), we get
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V(/,t,oo):(yz(/,t)+ 1 )2 1 lime/#Px = 0.

‘u+1 ‘/mx—mo

From that it follows

1
w+1l’

y2(u) = -

Applying (2.32), (2.33) and (2.34), we get

__u+p-st
(u+p—s*)(ys) = (u+1)Gs+1)
or
\' 1X = e—X’V ’S (s 1)
(ue%) (u+1) ) (e +1)(s +1)

Thirdly, applying (2.31) and equation

(1 +6—s*)w(u,s) — 61u(w,S)

-1 .1 (_5+M>_y3(‘u),

s+1 pu+1 s+1
we get
2 __p+dé-s* __1
(u+06—s)w(p,s) WrDE+ D) y3 () )
or
1 1 1
w(y,s) = —————— — + :
W) = oD+ D (7o u+1)u+5—52

Applying the formula

1 1

1 1
+ '
p+8—s? (/y+5—s /u+5+s>2/y+5

we get
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(2.35)



1

W) = LD D)

- (73 (u) - —= (2.36)

1 1 1)
l~l+1)2/u+5 <s+ [u+6 s-— /u+5>

Taking the inverse Laplace transform with respect to X , we get

1 o

wnx) = (u+1)

1 1 = Jurdx o furdx
+(y3(u)+u+1)2m(e g i), (2.37)

Passing the limit in (2.37) when x — o and using (2.27), we get

_ 1 ) 1 el
w(u,0) = + lime =0.
(1, 0) (73(#) 1) o

From that it follows

-1
n+1 (2.38)

ys(u) =
Applying (2.36), (2.37) and (2.38), we get

U+ —s?

(u+06-s*)w(y,s) = (w+1)(s+1)

or

1
(u+1)

Fourthly, applying (2.35), (2.39) and equation

1
(u+1)(s+1)

w(i, X) = e*,w(u,s) = (2.39)

(u+d—5°)z(w,8) — daw(,s) — dav (1, )

1 1 (_ —2+d—d1—d2)_
_s+1+y+1(s+ s+1 valp),
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we get

__p+d-s’ 1
(n+d—s*)z(u,s) = DG D) —ya(n) - P
or
T 1 1
As) = D+ D) (“(““ml)wd_sf

Applying the formula

1 —

1 1 1
+ ,
p+d—s? (/;Hds /y+d+s>2/y+d

we get
_ 1
WY = G DE D
1 1 1 1
—(va(w) - ) + : 2.40
( p+l 2/y+d<s+/u+d s—/y+d> (2.40)
Taking the inverse Laplace transform with respect to X , we get
1 X
Z(u,x) = e
(1, X) )
1 ) 1 — [p+d x Jurd x
+ + e -e . 2.41
(n(u) )5 H+d( ) (2.41)
Passing the limit in (2.41) when X — oo and using (2.27), we get
_ 1 ) 1 poadmdx _
zZ(u,0) = + lime = 0.
(t2) (“(“) p+1)2 furd "
From that it follows
ya(u) = —=—. (2.42)
u+1 '
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Applying (2.40), (2.41) and (2.42), we get

 u+d-s?
or
_ 1 x _ 1
2(p,X) = WD 2(1,8) = DD (2.43)

Applying formulas (2.31), (2.35), (2.39), (2.43) and taking the inverse Laplace transform

with respect to t , we obtain

ut,x) = v(t,x) = w(t,x) = z(t,x) = e,

Note that using similar procedure one can obtain the solution of the following initial

boundary value problem
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n

ou(t,x) utx)

= +ocu(t,x)—zlozr ~ = af,(t,x),
r=

0 4 By(t,x) - Frut,x) ~ LD (B Bty (t)
r=1 r

n
20 4 5 W(EX) = S1U(t0) — X ar T = (56— 61)fa(t,%),

r=1 r

n

6zgt,x) +d Z(t,X) - d1 W(t,X) — d2 V(t,X) . Zar azi((tz,x)
r=1 Ar
= (d = dy —da)fa(t,x),
X=(X1,....xn) €', 0 <t <T,
) (2.44)

u(0,x) = (x),v(0,x) = w(x),w(0,x) = &(x),z(0,x) = A(x),

X = (X1,...,Xn) € Q7

uct,x) = a1 (t,x), Ux(t,x) = B1(t,x),
V(t,x) = az(t,x), Vx(t,x) = Ba(t,X),
w(t,x) = as(t,x),  wx(t,x) = Bs(t,x),
2(t,X) = as(t,X), Uy (t,X) = Ba(t,X),

\1§r§n,0§t§T,xeS+

for the multidimensional system of partial differential equations. Assume that ar > a > 0

and f,(t,x)k =1,2,3,4l € (0.T),x <" Jp(),1(x),£00, 200 [xe Q) at, (6. %), 5, (1. %),
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k=1234 (t e[O,T],XES+)are given smooth functions. Here S=S1US;,3=S5:1NS; .
Here and in future QF is the open cube in the n -dimensional Euclidean space
R"(0< x, <o0,1<k <n) with the boundary S* and Q" =Q* US".

However Laplace transform method described in solving (2.44) can be used only in the case

when (2.44) has a,(x) polynomials coefficients.

2.3. Fourier Transform Method

Now, we consider the Fourier transform solution of the initial value problem for the system

of partial differential equations.

Example 1: Obtain the Fourier transform solution of the initial-value problem

(
ou(t,x) Au(tx) Ay 2 —t—x?
S rau(tx) - S22 = (42 + 1+a e,

L 4+ B(t,x) - fru(t,x) - Z = (ax2+ 1+ B— By Ye

% + o W(t,X) — 1u(t,x) — % = (~4X2 +1+68-5)e X,

9 29 4 d 2t x) — dg w(t,x) - dy vt x) - 24 (2:45)

— (4x2+1+d—d; —dj)e ™,

O0<t<T,—o0< X < o0,

L u(0,x) = v(0,x) = w(0,x) = z(0,x) = e, —0 < X <o

for the system of parabolic equations.

Solution: We denote

F{ut,x)} = u(t,s),F{e™ } = q(s).
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Then, we have that

F{%u(t,x)} = u(t,s),

1

0% _ 2
e u(t,x)} scu(t,s).

Taking the Fourier transform of both sides of the system equation and using initial

conditions, we get

or

'

F{29 4 oF {u(t X)) — F {20
N F{<_4X2 +1l+a )e—t—xz},

F{ a/gt,x) } + BF {v(t,x)} — B1F{u(t,x)} — F{azéx(t;x)

= F{(-4x2+1+B-p1 )e™>},

F{EEEY + 6F{w(t 0} - 81F{u(t 0} — F {25

= F{(-4x2+1+5-81)e},

F{ 289 % 4 dF {2(t,0)) - di FW(LX)} — doF {u(t,x)) - F{ 242
= F{(—4x2 +1+d-d; — dz)e‘t‘xz},

O0<t<T,

u(0,s) = v(0,s) = w(0,s) = z(0,s) = q(s)
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Ue(t,s) + (a + s?)u(t,s) = (1 + a +s?)e'q(s),

Vi(t,s) + (B+s?)v(t,s) — Bru(t,s) = (1+ B— B +s2)eq(s),

< W(t,s) + (8 +s?)w(t,s) — S1u(t,s) = (1+6 — 81 +5?)etq(s),

z:(t,s) + (d + s?)z(t,s) — dyw(t,s) — dpv(t,s)

=(l+d-d;—dy +s?)e'q(s),0 <t < T,
.
Firstly, we consider the problem
Ue(t,s) + (a +s?)u(t,s)
= (1+a+s?)eq(s),0 <t < T,u0,s) = q(s).

We have that

t
ut,s) = e~ (@s)ty(,s) + Ie‘(“+52)(t‘y)(1 +a+s?)e7vq(s)dy
0

_ e—(a+sz)tq(s) n e—(a+sz)tq(s) J'e(—1+a+sz)y(l ta+s? )dy
0

= e (" )iq(s) + e (== )ig(s) (e(Frer') - 1) = etq(s).
Therefore,

u(t,s) = e*F{e*}
and

ut,x) = F*l{e*tF{e*"z}} = g,

Secondly, we consider the problem
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vi(t,s) + (B +s?)v(t,s)
= 1+ B- By +s?)eq(s) + B1u(t,s),0 < t < T,v(0,s) = q(s).

Applying u(t,s) = e™'q(s), we get

vi(t,s) + (B+s?)v(t,s) = (1 + B+s?)eq(s),0 < t < T,v(0,s) = q(s).

We have that

t
v(t,s) = e (P (0,s) + .fe‘([’+52)(t‘y)(1 + B +s?)evq(s)dy
0

= e (B Ng(s) + e (As7)tq(s) (e (st _ 1) = e7'q(s).

Therefore,

v(t,s) = e*‘F{e*"z}

and

vtx) = F1{etF{e )} —etr

Thirdly, we consider the problem

wi(t,s) + (8 + s?)w(t,s)

=(1+6-51 +s?)e'q(s) +51u(t,s),0 < t < T,w(0,s) = q(s).

Applying u(t,s) = e™q(s), we get

wi(t,s) + (6 +s?)w(t,s) = (1+6+s?)e'q(s),0 < t < T,w(0,s) = q(s).

We have that
t
w(t,s) = e (s )tw(0,s) + Ie‘@“z)“‘y)(l +6 +5s2)eYq(s)dy
0
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_ e’(‘mz)tq(s) + ef(o#sz)tq(s)(e(fl+5+sz>t _ 1) = eq(s).
Therefore,

w(t,s) = e'q(s) = e‘tF{e‘Xz}

and
w(t,x) = F1{eF{eX}} = e,
Fourthly, we consider the problem

z¢(t,8) + (d + s?)z(t,s)
= (@A +d-d; —d, +s?)etq(s) + dyw(t,s) + dav(t,s),0 <t < T,w(0,s) = q(s).

Applying w(t,s) = e™q(s),v(t,s) = e™'q(s), we get

z¢(t,8) + (d +s?)z(t,s) = (1 +d+s?)eq(s),0 < t < T,w(0,s) = q(s).

We have that

t
2(t,s) = e~ (@)17(0,5) + Ie‘(d+sz>(t‘y)(l +d+s?)eYq(s)dy
0

_ ef(d+sz)tq(s) n ef(d+sz)tq(s) (e(fl+d+sz)t _ 1) = eq(s).
Therefore,

2(t,s) = etq(s) = e‘tF{e‘Xz}

and
2(t,x) = F1 {e‘tF{e‘Xz}} =g,
Thus,

u(t,x) = v(t,x) = w(t,x) = z(t,x) = e,
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Note that using similar procedure one can obtain the solution of the following initial value

problem
(
W | g u(t,x) - z r““”—afl(t,x),
20 1 B(t,x) — Bru(t,x) - Z r““” (B = P)f2(t,%),
n
QD 1 S w(t,Xx) — S1u(t, X) —Zar% = (0-060)f3(tx),
r=1 r
J 0 4 dz(t,x) — dy w(t,x) — dz V(t,X) - Z raffzx)

(2.46)
= (d — d1 - dZ)f4(t!X)1

X=(Xg...,.Xn) RN 0<t<T,

U(0,%) = 90, V(0,X) = w(x),W(0,X) = £(x),2(0,%) = A(X),

X =(Xg,...,Xn) € R"

N

for the multidimensional system of partial differential equations. Assume that «, >« >0

and fi(t,x),k =1,2,3,4(t € (0,T),x € R"),p(x),w(x),E(X),A(x) (x € R") are given
smooth functions. However Fourier transform method described in solving (2.46) can be

used only in the case when (2.46) has constant coefficients.

So, all analytical methods described above, namely the Fourier series method, Laplace
transform method and the Fourier transform method can be used only in the case when the
system of differential equations has constant coefficients or polynomial coefficients. It is
well-known that the most general method for solving system of partial differential equations

with dependent in tand in the space variables is finite difference method.
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In final section, we consider the initial-boundary value problem for the one-dimensional
system of partial differential equations. The first order of accuracy difference scheme for the
numerical solution of this problem is presented. Numerical analysis and discussions are

presented.
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CHAPTER 3
FINITE DIFFERENCE METHOD FOR THE SOLUTION OF
SYSTEM OF PARTIAL DIFFERENTIAL EQUATION

When the analytical methods do not work properly, the numerical methods for obtaining

approximate solutions of the local and nonlocal problems for the system of partial

differential equations play an important role in applied mathematics. We can say that there

are many considerable works in the literature. In this section, we study the numerical solution

of the initial-boundary value problem

(

ou (t X)

+au(t,x) - = ae'cosx,

Au(tx)
axz

20 1 bv(t,x) - bru(t,x) - 282 = (b—by)etcosx,

6w(t X) Pw(tx)

= (- ci)etcosx,

+cw(t,x)—cyu(t,x) —
0+ d 7(t,x) — dy w(t,x) — d v(t,x) - 522

= (d—d; —dy)etcosx, (3.1)
O0<t<10<x<m,

u(0,x) = v(0,x) = w(0,x) = z(0,x) = cosx,0 < x <,

Uy (t,0) = Vy(t,0) = wy(t,0) = z((t,0) = 0,0 < t < 1,

Ux(t,7) = vx(t,m) = Wx(t,7) = 2x(t,7) = 0,0 <t <1

for the system of parabolic equations. The exact solution of this problem

u(t,x) = v(t,

X) = w(t,x) = z(t,x) = e"tcosx.
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For the numerical solution of the problem (3.1), we present first order of accuracy difference

scheme. We will apply a procedure of modified Gauss elimination method to solve the

problem. Finally, the error analysis of first order of accuracy difference schemes is given.

For the numerical solution of the problem (3.1), we present the following first order of

accuracy difference scheme Algorithm

/

k_ k-1 k k., k
Un—Un k _ Yna—2Untlng

= = ae " coSXy,

k kK
_ Vi —2Vn+Vo_g

= = (b—by)e % cosxn,

k K K
Wn+1_2Wn+Wn—1

Tt 4 oowK — cquk > = (c—cq)e % cosxn,
zK_zk1 K K K zhg-2zkezd
-_— +dZn —dlwn —d2Vn — %
= (d-d; —d,)e*cosx
( 1 2) ns (32)

tk =k, xn =nh,1 <k <N, 1<n<M-1,N7r=1Mh=r,
ud =v2 =wl =2% = cosx,,0 < n<M,
k

k k _ yk k — \wk k _ k _

K K _ K _ ok K _ ok kKo _
Uy — Uy =Vyu—Vyg =Wy —Wy, =2y -2y, =0,

for obtaining the solution of difference scheme (3.2)

{{ulr(‘}ltLO} :/I:o’ {{VE}LO}nM:o’ {{Wh}LO}nM:o’ {{ZE}LO} nM=0

contains four stages. In the first stage, we consider the problem
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k_y k-1 k ko k
Up—Up _ Uppg—2Up+u

= 1 — ae~k coSXp,

1<k<N1l<n<M-1,
ud = cosxn,0 < n<M,

k k _ [k k —

We will write it in the following boundary value problem for the second order difference

equation with respectto n

AiUpa +Biun +Ciupg = 9n, 1 <n<M-1,
(3.3)

Up = Ug,Um = Um-1.

Here, A,B,,C, are (N +1)x(N +1) square matricesand u_,s=n,n+1,¢, are (N +1)x1

column matrices and

0000 00O0O
0a00--0000O0
00a0--0000O0
000a--0000O0
Ar=Co=| 1 ¢ @ o :
0000 - a000O0
0000 - 0a00
0000 --00a@O
0000 000O0a

(N+1)x(N+1)
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o o -
O T (@)
! O o
o o o
o o o
o o o
o o o
o o o

By—| ©oiiiooiiid |
0000 b o0OO
0000 - CboO
0000 --0¢bhO
0000 --00¢CHh
- — (N+1)x(N+1)
COSXp u?
ae 1 cosxy u?
¢n = . y uS =
ae ™1 cosxp uft
ae ™ cosx, ud-t
L — (N+1)x1 — — (N+1)x1

M

~ N
- F__1 1 2 a1 ini k
for s=nn+l1, wherea=-3%,b=2+a+2,c=—1.For obtaining {{un}ko}n , We have

the following algorithm

Un = an+lun+l +ﬂn+l: n= M - 1 llll OluM = (I - aM)_1BM1 (34)
O = —(By +Cran) A, 00 =1,

Bni1 = Br +Cran) H(¢pn —C1Bn),fr =0n=1,....M—1.

In the second stage, we consider the problem
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= k k, k
Vh—Vh ! Vo =2VntVong

S 4 vk - — (b — by )ekcosxn + byuk,

1<k<N,1<n<M-1,
vl = cosx,,0 < n <M,

kK _yk —yk _yk
Vi—Vg =Vy—Vyy =0,0<k<N.

We will write it in the following boundary value problem for the second order difference

equation with respect to n

AzVna +Bovn +Covpg = wn, 1 <n<M-1,
(3.5)
Vo =V1,VM = VM-1.
Here, A,,B,,C, are (N+1)x(N+1) square matrices and v,,s=n,n+ly, are

(N +1)x1 column matrices and

i 00 0O 0 00O i
0a 00 0 00O
0 0a o 0 00O
0 0 0 a 0 00O
A, =Cy = : ,
00 0O a 0 00
00 0O 0a 00
00 0O 0 0a o
i 00 0O 0 0 0 & J v
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(1000 0000
¢ b 00 - 0000
0c b 0--000 0
00cb --000 0
B, = S S S S T '
0000 b 000
0000 --¢c b o
0000 ¢’ b’
| 0000 0 0c b (Nt )x(N11)
i COSXp ] R
(b — by )e cosxy + byu} Vs
Yn = ' T
(b—by)e ™ cosx, +byupt v
i (b—by)e™cosxn + byulf Jniaya L v —(N+1)x1

for s=n,n+1, where a’z—#,b':%+b+h%,c’:—%. We have the following algorithm

kyN M
for obtaining {{V”}kzo}n:()
Vn = an+an+1 +ﬁn+ln n= M_ 11'--1O|VM = (I _aM)_lﬁM1 (36)

Oni1 = —(Ba + Coan) tAz, 01 =1,

ﬁn+1 = (BZ +C2an)_l(l//n _CZﬁn)lﬁl = Oln = 11'--1M_1-

In the third stage, we consider the problem
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k
L — (c—Cq)e % cosxn + cruk,

w? = cosxn,0 <n<M,

k k _ \wk k —

We will write it in the following boundary value problem for the second order difference

equation with respect to n

AzWny +Bawp + C3Wypg =y, 1 <n<M-1,
(3.7)

Wo = W1,Wm = Wp-1.

Here, A,,B,,C, are (N+1)x(N +1) square matricesand w,,s=n,n+1,p, are

(N +1)x1 column matrices and

00 0 0 000 0 |
0a 0 0 00 0 0
00a 0 00 0 0
00 0a - 00 0 0

A; =C3 = :
00 00 -~a 0 0 0
00 00 - 0a 0 0
00 00 -0 0 a 0
0000 .--00 0 a
L N+ )x(N+1)
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1 0 O 0O 0 0 O
c* b -0 0 0 O
0 ¢ b .0 0 0 0
0O 0 ¢c* b* -~ 0 O 0 O
B; = : !
0O 0 0 0 ---b* O
O 0 0 0 -+ c* b*
0 0 0 0 - c* b~
L 0 O O 0 O ¢* b* —J (N+1)x(N+1)
i COSXp 1 i wg |
(c—cq1)ecosXn + C U W
pn = » We =
(C—cq)e™icosXn + CruN? s
| (c—cy)e™cosxs +C1Up Jovna L ws iyt

for s=n,n+1, where a* =—%,b" =

{wi},
. +C+-%,¢" =—1. For obtaining NSk=0 J no

h

N e

We have the following algorithm

Wn = an+1Wn+1 +Bn+1a n= M_ 11"'101WM = (I —(XM)_lBM, (38)
ans = —(Bs + Csan)_lAs,al =1,

ﬂn+l = (BS +C3an)_l(Pn —Csﬁn),ﬁl =0,n=1,... M-1.

In the fourth stage, we consider the problem
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K7k

k k., ok
K Zni—2Zn+2n 4
e + dZn - = =

~ (d—d; —dy)e ™ cosxny +dywk +dyvk,

1<k<N1<n<M-1,
2% = cosxn,0 < n <M,

X —z8 =28 -2, =0,0<k <N,
We will write it in the following boundary value problem for the second order difference
equation with respect to n
AsZnig +Bszn +Cuzhy = €n,1 <n<M-1,
(3.9

Lo = 11,Im = ZMm-1-

Here, A,,B,,C, are (N +1)x(N+1) square matricesand z,,S=n,n+l¢, are

(N +1)x1 column matrices and

00 0 O 0 0 0 O
0Oa 0 O 0 0 0 O
0 0 a o 0 0 0 O
00 0a -0 0 0 O
Ay =Cy = : ,
00 0 0 - a 0 0 0
00 0 O 0 a 0 0
00 0 O 0 0 a O
00 0 O 0 0 0 a

(N+1)x(N+1)
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1 0 0 O 0 0 0 O
ccb0O0 - 0 0 0 O
O ¢cb0 - 0 O0O0DO0
0O 0O0cb -0 O0O0DO0
B4 - : ’
0O 0 0 O b- 0 0 O
0O 000 «-c b 0O
0O 0 0 O 0O ¢c b O
0O 0 0 O 0 0 ¢ b
L —(N+1)x(N+1)
COSXn zq
(d—d; —dy)etcosxy + dywi +dovi 2%
€n = . ] ZS =
(d-d; —dy)e ™ cosxy + dywh?t +dyvh? AN
(d—d; —dy)e™cosxp +dywh +dyvN AN
L (N+1)yx1 L — (N+1)x1
kayNV UM
for s=n,n+l where a" =-=,b"=2+d+3%,c =—7. forobtaining {{Z“}kzo}nzo
we have the following algorithm
Zn = On41lnsl +ﬁn+ly n= M_11---1OaZM = (I_aM)_lﬂMa (310)
ane1 = —(Bs + C405n)_1A41051 = |,

Brir = (Ba+Caan) (€0 —CapBn), 1 =0n=1,...,M-1.

The exact solution of problem (3.1) is u(t, x) = v(t, x) = w(t, x) = z(t, x) = e * cosx. The errors

of the numerical solution are computed by

(Euy = max_|u(t,xa) — uk| (3.11)
1<k<N,1<n<M-1
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Where U(tk,Xn) represents the exact solution and U¥ represents the numerical solution

at (t.,x,) and the results are given in the following table.

Table 3.1: Error analysis

difference scheme

ENINLM 20,20 40,40 80,80 160,160
Euy 0.0349 0.0167 0.0082 0.0041
Ev,) 0.0504 0.0255 0.0128 0.0064
Ewy, 0.0504 0.0255 0.0128 0.0064
Ez,, 0.0880 0.0449 0.0227 0.0114

As it is seen in Table 3.1, we get some numerical results. If N and M are doubled, the value
of errors between the exact solution and approximate solution decreases by a factor of

approximately 1/2 for first order difference scheme.
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CHAPTER 4
CONCLUSION

In the present study, a system of partial differential equations is studied.

Fourier series, Laplace transform and Fourier transform methods are used for the solution

of several system of partial differential equations.

Difference scheme is presented for the numerical solution of the initial-boundary value
problem for the system of one dimensional partial differential equations. Numerical results

are provided.
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APPENDIX 1
MATLAB PROGRAMMING

Matlab programs are presented for the first order of approximation two-step difference

scheme for M=N.

Clear all; clc; close all;delete *.asv'";

N=80; M= N;

aa=1; bb=3; bb1=2; cc=3; cc1=2; dd=4; dd1=2; dd2=1,
h=pi/M;

tau=1/N;

%%%%%%%%%%%%%% solution for u(t,x)%%%%%%%%%%%%% %%
cl=-1/(tau);

al=-1/(h"2);
bl=(1/tau)+aa+(2/(h"2));

for k=2:N;

Al(k,k)=al;

AL(N+1,N+1)=al;

end;Al;

for k=2:N;

B1(k,k)=b1; B1(k,k-1)=c1,;
B1(N+1,N+1)=b1; B1(1,1)=1;
B1(N+1,N)=c1,;
end;B1;,C1=Al1;C1,

for j=1:M-1,;

for k=2:N+1,

t1=(k-1)*tau; x1=(j)*h;
phyl(k,j:j)=aa*exp(-t1)*cos(x1);

end;
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for j=1:M-1;

x1=()*h;

phy1(1,j:j)=cos(x1);

end;phyl;

for i=1:N+1;

D(i,i)=1;

end; D;D;

I=eye(N+1,N+1);
alphal{1}=eye(N+1,N+1);
bethal{1}=zeros(N+1,1);

for j=1:M-1;
alphal{j+1}=inv(B1+C1l*alphal{j})*(-Al);
bethal{j+1}=inv(B1+Cl*alphal{j})*(I*phyl(:,j:j)-C1*bethal{j});

end;
U{M}=inv(l-alphal{M})*bethal{M};
for Z=M-1:-1:1;

U{Z}=alphal{Z+1}*U{Z+1}+bethal{Z+1};
end;

for Z=1:M;
pl(:,Z+1)=U{Z},

end;

p1(:, 1)=U{1};

for j=1:M+1;

for k=1:N+1;

t1=(k-1)*tau;

x1=(j-1)*h;
esl(k,j:))=exp(-t1)*cos(x1);

end;
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end;

abs(esl-pl);
maxesl=max(max(esl)) ;
maxappl=max(max(pl)) ;
maxerrorl=max(max(abs(es1-pl)))
%%%%%%%%%%%%%% solution for v(t,x)%%%%%%%%%%%%%%%
a2=-1/(h"2);
b2=(1/tau)+bb+(2/(h"2));
c2=-1/(tau);

for k=2:N;

A2(k,k)=a2;

A2(N+1,N+1)=a2;

end;A2;

for k=2:N;

B2(k,k)=b2; B2(k,k-1)=c2;
B2(N+1,N+1)=b2; B2(1,1)=1,;
B2(N+1,N)=c2;

end;B2;

C2=A2;C2;

for j=1:M-1,;

for k=2:N+1;

t2=(k-1)*tau; x2=(j)*h;
phy2(k,j:j)=(bb-bb1)*exp(-t2)*cos(x2)+bb1*p1l(k-1,j);
end;

end;

for j=1:M-1,;

x2=(j)*h;

phy2(1,j:j)=cos(x2);
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end;phy2;

alpha2{1}=eye(N+1,N+1);

betha2{1}=zeros(N+1,1);

for j=1:M-1;

alpha2{j+1}=inv(B2+C2*alpha2{j})*(-A2);
betha2{j+1}=inv(B2+C2*alpha2{j})*(1*phy2(:,j:j})-C2*betha2{j});

end;
V{M}=inv(l-alpha2{M})*betha2{M};
for Z=M-1:-1:1;

V{Z}=alpha2{Z+1}*V{Z+1}+betha2{Z+1};
end;

for Z=1:M;

p2(:,Z+1)=V{Z},

end;

p2(;, 1)=V{1};

for j=1:M+1;

for k=1:N+1,;

t2=(k-1)*tau;

x2=(j-1)*h;

es2(k,j:j)=exp(-t2)*cos(x2);

end;

end;

abs(es2-p2);

maxes2=max(max(es2)) ;
maxapp2=max(max(p2)) ;
maxerror2=max(max(abs(es2-p2)))
%9%%%%%%%%%%%%% solution for w(t,x)%%%%%%%%%%%%%%%
a3=-1/(h"2);
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b3=(1/tau)+cc+(2/(h"2));

c3=-1/(tau);

for k=2:N;

A3(k,k)=a3;

A3(N+1,N+1)=a3;

end;A3;

for k=2:N;

B3(k,k)=b3; B3(k,k-1)=c3;
B3(N+1,N+1)=b3; B3(1,1)=1;
B3(N+1,N)=c3;

end;B3;

C3=A3;C3,;

for j=1:M-1,

for k=2:N+1,;

t3=(k-1)*tau; x3=(j)*h;
phy3(k,j:j)=(cc-ccl)*exp(-t3)*cos(x3)+ccl*pl(k-1,j);
end;

end;

for j=1:M-1;

x3=(j)*h;

phy3(1,j:j)=cos(x3);

end;phy3;

alpha3{1}=eye(N+1,N+1);
betha3{1}=zeros(N+1,1);

for j=1:M-1,
alpha3{j+1}=inv(B3+C3*alpha3{j})*(-A3);
betha3{j+1}=inv(B3+C3*alpha3{j})*(I*phy3(:,j:j)-C3*betha3{j});

end;
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w{M}=inv(l-alpha3{M})*betha3{M};
for Z=M-1:-1:1;
w{Z}=alpha3{Z+1}*w{Z+1}+betha3{Z+1};
end;

for Z=1:M;

p3(:,Z+1)=w{Z};

end;

p3(, 1)=w{1};

for j=1:M+1;

for k=1:N+1;

t3=(k-1)*tau;

x3=(j-1)*h;
es3(k,j:j)=exp(-t3)*cos(x3);

end;

end;

abs(es3-p3);

maxes3=max(max(es3)) ;
maxapp3=max(max(p3)) ;
maxerror3=max(max(abs(es3-p3)))
%%%%%%%%%%%%%% solution for z(t,x)%%%%%%%%% %% %% %%
ad=-1/(h"2);

b4=(1/tau)+dd+(2/(h"2));

c4=-1/(tau);

for k=2:N;

Ad(k,k)=a4;

A4(N+1,N+1)=a4;

end;A4;

for k=2:N;
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B4(k,k)=b4; B4(k,k-1)=c4;
B4(N+1,N+1)=b4; B4(1,1)=1;
B4(N+1,N)=c4;

end;B4; C4=A4;C4,

for j=1:M-1,

for k=2:N+1,

t4=(k-1)*tau; x4=(j)*h;
phy4(k.j:j)=(dd-dd1-dd2)*exp(-t4)*cos(x4)+dd1*p3(k-1,j)+dd2*p2(k-1,j);
end;

end;

for j=1:M-1,;

X4=()*h;

phy4(1,j:j)=cos(x4);

end;phy4;

alphad{1}=eye(N+1,N+1);
bethad4{1}=zeros(N+1,1);

I=eye(N+1,N+1);

for j=1:M-1,;
alphad{j+1}=inv(B4+C4*alphad{j})*(-A4);
bethad{j+1}=inv(B4+C4*alphad{j})*(I*phy4(:,j:j)-C4*bethad{j});
end;

z{M}=inv(l-alpha4{M})*bethad{M};

for Z=M-1:-1:1;
z{Z}=alphad{Z+1}*z{Z+1}+bethad{Z+1},
end;

for Z=1:M;

p4(:,Z+1)=z{Z},

end;
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pa(, 1)=z{1};

for j=1:M+1;

for k=1:N+1;
t4=(k-1)*tau;

X4=(j-1)*h;
es4(Kk,j:j)=exp(-t4)*cos(x4);
end;

end;

abs(es4-p4);
maxes4=max(max(es4)) ;
maxapp4=max(max(p4)) ;

maxerrord=max(max(abs(es4-p4)))
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