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ABSTRACT 

 

In the present study, a system of partial differential equations for observing epidemic models 

is investigated. Using tools of classical approach we are enabled to obtain the solution of the 

several system of partial differential equations for observing epidemic models. Furthermore, 

difference schemes for the numerical solution of the system of partial differential equations 

for observing epidemic models are presented. Then, these difference schemes are tested on 

an example and some numerical results are presented. 

 

Keywords: System of partial differential equations; Fourier series method; Laplace 

transform method; Fourier transform method; difference schemes; epidemic models 
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ÖZET 

 
Bu çalışmada, epidemik modelleri gözlemlemek için bir kısmi diferansiyel denklem sistemi 

araştırılmıştır. Klasik yaklaşım araçlarını kullanarak epidemik modelleri gözlemlemek için 

birkaç kısmi diferansiyel denklem sisteminin çözümünü elde etmeyi başardık. Ayrıca, 

epidemik modelleri gözlemlemek için kısmi diferansiyel denklemler sisteminin sayısal 

çözümü için fark şemaları sunulmuştur. Daha sonra, bu fark şemaları bir örnek üzerinde test 

edilipve bazı nümerik sonuçlar Verilmiştir. 

 

Anahtar Kelimeler: Kısmi diferansiyel denklem sistemleri; Fourier serileri yöntemi; 

Laplace dönüşümü yöntemi; Fourier dönüşümü yöntemi; fark şemaları; salgın modeller 
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CHAPTER 1 

INTRODUCTION 

 

 

 
System of partial differential equations take an important place in applied sciences and 

engineering applications and have been studied by many authors. 

Direct and inverse boundary value problems for system of partial differential equations for 

observing epidemic models have been a major research area in many branches of science 

and engineering particularly in applied mathematics. 

The mechanism of transmission is usually qualitatively known for most diseases from 

epidemiological point of view. For modeling the spread process of infectious diseases 

mathematically and quantitatively, many classical epidemic models have been proposed and 

studied, such as SIR, SIS, SEIR, and SIRS models (Li & liu, 2014; Samarskii, 2001; Lotfi 

et al., 2014; Chalub & Souza, 2011; Elkadry, 2013). Modeling infectious diseases can be 

classified as some basic deterministic models, simple stochastic models and spatial models. 

An important role of modelling is that they can inform us to the disadvantages in our present 

consideration of the epidemiology of different infectious diseases, and advise compelling 

questions for research and data that need to be collected. The rate at which susceptible 

individuals become infected is called the transmission rate. It is important to know this rate 

in order to study the spread and the effect of an infectious disease in a population. This study 

aims at providing an understanding of estimating the transmission rate from mathematical 

models representing the population dynamics of an infectious diseases using solution of 

these models. 

An important advantage of using models is that the mathematical representation of biological 

processes enables transparency and accuracy regarding the epidemiological assumptions, 

thus enabling us to test our understanding of the disease epidemiology by comparing model 

results and observed patterns (Jun-Jie et al., 2010). A model can also assist in decision- 

making by making projections regarding important issues such as intervention-induced 

changes in the spread of disease. A point that deserves emphasis is that transmission models 

are based on the current understanding of the natural history of infection and immunity. In 
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cases where such knowledge is lacking, assumptions can be made regarding these processes. 

However, in such cases there can be several possible mechanisms, and therefore several 

different models, which can lead to similar observed patterns, so that it is not always possible 

to learn about underlying mechanisms by comparing model outcomes. One must then be 

very cautious regarding model predictions, because different models that lead to similar 

outcomes in one context may fail to do so in another. In such instances, it is best to conduct 

further epidemiological and experimental studies in order to discriminate among the 

different possible mechanisms. Thus, an important role of modelling enterprises is that they 

can alert us to the deficiencies in our current understanding of the epidemiology of various 

infectious diseases, and suggest crucial questions for investigation and data that need to be 

collected. Therefore, when models fail to predict, this failure can provide us with important 

clues for further research. Our aim is first to understand the causes of a biological problem 

or epidemics, then to predict its course, and finally to develop ways of controlling it, 

including comparisons of different possible approaches. The first step is obtaining and 

analyzing observed data (Lotfi et al, 2014; Elkadry, 2013). 

Various initial-boundary-value problems for the system of partial differential equations can 

be reduced to the initial-value problem for the system of ordinary differential equations  

du
1 t

dt
 u 1 t  Au 1 t  f 1 t,

du
2 t

dt
 u 2 t  1u 1 t  cAu 2 t  f 2 t,

du
3
t

dt
 u

3

t  1u 1 t  eAu
3

t  f
3

t,

du
4
t

dt
 du

4

t  d1u
3

t  d2u 2 t  lAu
4

t  f
4

t,

0  t  T,um 0  m ,m  1,2,3,4

    (1.1)

   

In a Hilbert space H  with a self-adjoint positive definite operator A . In the paper 

Ashyralyev et al, (2018) stability of initial-boundary value problem (1.1) for the system of 

(1.1) 
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partial differential equations for observing HIV mother to child transmission epidemic 

models is studied. Applying operator approach, theorems on stability of this problem and of 

difference schemes for approximate solutions of this problem are established. The generality 

of the approach considered in this paper, however, allows for treating a wider class of 

multidimensional problems. Numerical results are provided. 

 

In the present thesis, we will consider the application of classical methods of solution of 

problem (1.1) and of difference scheme for the approximate solution of problem (1.1). 

This thesis is organized as follows. Chapter 1 is introduction. In chapter 2, the solution of 

system of partial differential equations for observing epidemic models is obtained by using 

tools of classical approach. In chapter3, numerical results are provided by using finite 

difference method for the solution of system of partial differential equations. In appendix 

matlab programming that is used for finding numerical results is given.  
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CHAPTER 2 

METHODS FOR SOLUTION OF SYSTEM OF PARTIAL 

DIFFERENTIAL EQUATIONS 

 

 

 
It is known that system of partial differential equations can be solved analytically by Fourier 

series, Laplace transform and Fourier transform methods. Now, let us illustrate these three 

different analytical methods by examples. 

2.1. Fourier Series Method 

Example 1: Obtain the Fourier series solution of the initial-boundary-value problem 

ut,x
t

  ut,x  ²ut,x
x²

  e4t sin2x,

vt,x
t

  vt,x  1ut,x  ²vt,x
x²

   1e4t sin 2x,

wt,x
t

  wt,x  1ut,x  ²wt,x
x²

   1e4t sin 2x,

zt,x
t

 d zt,x  d1 wt,x  d2 vt,x  ²zt,x
x²

 d  d1  d2e4t sin 2x,

0  t  T, 0  x  ,

u0,x  v0,x  w0,x  z0,x  sin2x, 0  x  ,

ut, 0  vt, 0  wt, 0  zt, 0  0,0  t  T,

ut,  vt,  wt,  zt,  0, 0  t  T

    (2.1)

 
 

for the system of parabolic equations. 

(2.1) 
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Solution: In order to solve this problem, we consider the Sturm-Liouville problem 

 ux  ux  0,0  x  ,u0  u  0
 

Generated by the space operator of problem (2.1). It is easy to see that the solution of this 

Sturm- Liouville problem is 

k  k²,ukx  sinkx,k  1,2, . . . .
 

Then, we will obtain the Fourier series solution of problem (2.1) by formula 

ut,x  
k1


Aktsinkx,

vt,x  
k1


Bktsinkx,

wt,x  
k1


Cktsinkx,

zt,x  
k1


Dktsinkx.

    (2.2)

 

Here  ),(tAk
   )(),( tCtB kk

  and  )(tDk
  are unknown functions. Applying these formula to 

the system of equations and initial conditions, we get 

(2.2) 
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k1


Ak
 tsinkx  

k1


Aktsinkx 

k1


k 2Aktsinkx   e4t sin2x,


k1


Bk
 tsinkx  

k1


Bktsinkx  1 

k1


Aktsinkx


k1


k 2Bktsinkx    1e4t sin2x,


k1


Ck
 tsinkx  

k1


Cktsinkx  1 

k1


Aktsinkx


k1


k 2Cktsinkx    1e4t sin2x,


k1


Dk
 tsinkx  d

k1


Dktsinkx  d1 

k1


Cktsinkx

d2 
k1


Bktsinkx 

k1


k 2Dktsinkx  d  d1  d2e4t sin2x,

0  t  T, 0  x  ,
 

u0,x  
k1


Ak0sinkx  sin2x,

v0,x  
k1


Bk0sinkx  sin2x,

w0,x  
k1


Ck0sinkx  sin2x,

z0,x  
k1


Dk0sinkx  sin2x,

0  x  .
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Equating coefficients ,...1,sin kkx   to zero, we get 

A2
 t  A2t  4A2t  e4t,

B2
 t  B2t  1A2t  4B2t    1e4t,

C2
 t  C2t  1A2t  4C2t    1e4t,

D2
 t  dD2t  d1C2t  d2B2t  4D2t  d  d1  d2e4t,

0  t  T,A20  B20  C20  D20  1
 

And for k≠2 

 

Ak
 t  Akt  k 2Akt  0,

Bk
 t  Bkt  1Akt  k 2Bkt  0,

Ck
 t  Ckt  1Akt  k 2Ckt  0,

Dk
 t  d Dkt  d1Ckt  d2Bkt  k 2Dkt  0,

0  t  T,

Ak0  Bk0  Ck0  Dk0  0.
 

 

We will obtain  ),(tAk    ),(tBk    )(tCk   and  )(tDk  for  .2k   Firstly, we consider the 

problem 

Ak
 t    k2 Akt  0, 0  t  T,Ak0  0.

 

We have that 

Akt  e k2 tAk0  0.
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Secondly, applying  ,0)( tAk
  we get the following problem 

Bk
 t    k2 Bkt  0, 0  t  T,Bk0  0.

 

Therefore, 

Bkt  e k2 tBk0  0.
 

Thirdly, applying  ,0)( tAk
 we get the following problem 

Ck
 t    k2 Ckt  0, 0  t  T,Ck0  0.

 

Therefore, 

Ckt  e k2 tCk0  0.
 

Fourthly, using  Bkt  0   and  Ckt  0,   we get the following problem 

Dk
 t  d  k2 Dkt  0, 0  t  T,Dk0  0.

 

Therefore, 

Dkt  e dk2 tDk0  0.
 

Thus,  Akt  Bkt  Ckt  Dkt  0   for any  t  0,T.   

Now, we obtain  ),(2 tA    ),(2 tB    )(2 tC   and )(2 tD . Firstly, we consider the problem 

A2
 t    4A2t  e4t, 0  t  T, A20  1.

 

 We have that 

A2t  e4 tA20  
0

t

e4 tse4sds

 

 e4t  e4t 
0

t

esds  e4t  e4tet  1  e4t.

 

 Secondly, applying  A2t  e4t,   we get the following problem 
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B2
 t    4B2t  e4t, 0  t  T,B20  1.

 

 We have that 

B2t  e4 tB20  
0

t

e4 tse4sds

 

 e4t  e4t 
0

t

esds  e4t  e4tet  1  e4t.

 

 Thirdly, applying  ,)( 4

2

tetA    we get the following problem 

C2
 t    4C2t  e4t, 0  t  T,C20  1.

 

 We have that 

C2t  e4 tC20  
0

t

e4 tse4sds

 

      .1 444 tttt eeee   
 

 Fourthly, using    tetB 4

2

   and    ,4

2

tetC    we get 

D2
 t  d  4D2t  de4t, 0  t  T,D20  1.

 

 We have that 

D2t  ed4 tD20  
0

t

ed4tsde4sds

 

 ed4t  ed4tedt  1  e4t.
 

Thus, A2t  B2t  C2t  D2t  e4t
  for any  t  0,T.  Applying formulas 

obtained for  ),(tAk  ),(tBk  )(tCk   and ,...,1),( ktDk   we can obtain the exact solution of 
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problem (2.1) by formulas 

ut,x  A2tsin2x  e4t sin2x,

vt,x  B2tsin2x  e4t sin2x,

wt,x  C2tsin2x  e4t sin2x,

zt,x  D2tsin2x  e4t sin2x.
 

Note that using similar procedure one can obtain the solution of the following initial 

boundary value problem 
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ut,x
t

  ut,x 
r1

n

r
2ut,x

xr
2

 f1t,x,

vt,x
t

  vt,x  1ut,x 
r1

n

r
2vt,x

xr
2

   1f2t,x,

wt,x
t

  wt,x  1ut,x 
r1

n

r
2wt,x

xr
2

   1f3t,x,

zt,x
t

 d zt,x  d1 wt,x  d2 vt,x 
r1

n

r
2zt,x

xr
2

 d  d1  d2f4t,x,

x  x 1 , . . . ,x n  , 0  t  T,

u0,x  x,v0,x  x,w0,x  x, z0,x  x,

x  x 1 , . . . ,x n  ,

ut,x  vt,x  wt,x  zt,x  0,x  S, 0  t  T

    (2.3)

 

For the multidimensional system of partial differential equations. Assume that  0r
  

and         )(),(,),(,,,04,3,2,1,, xxxxxTtkxtfk    x   are given smooth 

functions. Here and in future     is the unit open cube in the  n   dimensional Euclidean 

space   nkxk

n  1,10R   with the boundary     ., SS   

However Fourier series method described in solving (2.3) can be used only in the case when 

(2.3) has constant coefficients. 

 

(2.3) 
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Example 2: Obtain the Fourier series solution of the initial-boundary-value problem 

ut,x
t

  ut,x  ²ut,x
x²

  et cosx,

vt,x
t

  vt,x  1ut,x  ²vt,x
x²

   1et cosx,

wt,x
t

  wt,x  1ut,x  ²wt,x
x²

   1et cosx,

zt,x
t

 d zt,x  d1 wt,x  d2 vt,x  ²zt,x
x²

 d  d1  d2et cosx,

0  t  T, 0  x  ,

u0,x  v0,x  w0,x  z0,x  cosx, 0  x  ,

uxt, 0  v xt, 0  wxt, 0  zxt, 0  0,0  t  T,

uxt,  v xt,  wxt,  zxt,  0, 0  t  T

    (2.4)

 

for the system of parabolic equations. 

 

 

Solution: In order to solve this problem, we consider the Sturm-Liouville problem 

 ux  ux  0,0  x  ,ux0  ux  0
 

Generated by the space operator of problem (2.4). It is easy to see that the solution of this 

Sturm-Liouville problem is 

  
k  k²,ukx  coskx,k  0,1, . . . .

 

(2.4) 
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Then, we will obtain the Fourier series solution of problem (2.4) by formula 

ut,x  
k0


Aktcoskx,

vt,x  
k0


Bktcoskx,

wt,x  
k0


Cktcoskx,

zt,x  
k0


Dktcoskx.

 

Here  ),(tAk
   )(),( tCtB kk

  and  )(tDk
  are unknown functions. Applying these formula to 

the system of equations and initial conditions, we get 
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k0


Ak
 tcoskx  

k0


Aktcoskx 

k0


k 2Aktcoskx   et cosx,


k0


Bk
 tcoskx  

k0


Bktcoskx  1 

k0


Aktcoskx


k0


k 2Bktcoskx    1et cosx,


k0


Ck

 tcoskx  
k0


Cktcoskx  1 

k0


Aktcoskx


k0


k 2Cktcoskx    1et cosx,


k0


Dk

 tcoskx  d
k0


Dktcoskx  d1 

k0


Cktcoskx

d2 
k0


Bktcoskx 

k0


k 2Dktcoskx  d  d1  d2et cosx,

0  t  T, 0  x  ,
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u0,x  
k0


Ak0coskx  cosx,

v0,x  
k0


Bk0coskx  cosx,

w0,x  
k0


Ck0coskx  cosx,

z0,x  
k0


Dk0coskx  cosx,

0  x  .
 

Equating coefficients  ,...0,cos kkx   to zero, we get 

A1
 t  A1t  A1t  et,

B1
 t  B1t  1A1t  B1t    1et,

C1
 t  C1t  1A1t  C1t    1et,

D1
 t  dD1t  d1C1t  d2B1t  D1t  d  d1  d2et,

0  t  T,A10  B10  C10  D10  1
 

And for k≠1 
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Ak
 t  Akt  k 2Akt  0,

Bk
 t  Bkt  1Akt  k 2Bkt  0,

Ck
 t  Ckt  1Akt  k 2Ckt  0,

Dk
 t  d Dkt  d1Ckt  d2Bkt  k 2Dkt  0,

0  t  T,

Ak0  Bk0  Ck0  Dk0  0.
 

We will obtain  ),(tAk
   ),(tBk

   )(tCk
  and  )(tDk

 for  .1k   Firstly, we consider the 

problem 

Ak
 t    k2 Akt  0, 0  t  T,Ak0  0.

 

We have that 

Akt  e k2 tAk0  0.
 

Secondly, applying  ,0)( tAk
 we get the following problem 

Bk
 t    k2 Bkt  0, 0  t  T,Bk0  0.

 

Therefore, 

Bkt  e k2 tBk0  0.
 

Thirdly, applying  ,0)( tAk  we get the following problem 

Ck
 t    k2 Ckt  0, 0  t  T,Ck0  0.

 

Therefore, 

Ckt  e k2 tCk0  0.
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Fourthly, using  0)( tBk
  and  ,0)( tCk

  we get the following problem 

Dk
 t  d  k2 Dkt  0, 0  t  T,Dk0  0.

 

 Therefore, 

Dkt  e dk2 tDk0  0.
 

 Thus,  Akt  Bkt  Ckt  Dkt  0   for any  ].,0[ Tt    

Now, we obtain  ),(1 tA    ),(1 tB    )(1 tC   and )(1 tD . Firstly, we consider the problem 

A1
 t    1A1t  et, 0  t  T, A10  1.

 

 We have that 

A1t  e1tA10  
0

t

e1tsesds

 

 e1t  e1t 
0

t

esds  e1 t  e1 tet  1  et.

 

 Secondly, applying    ,1

tetA    we get the following problem 

B1
 t    1B1t  et,0  t  T,B10  1.

 

 We have that 

B1t  e1 tB10  
0

t

e1 tsesds

 

 e1t  e1t 
0

t

esds  e1 t  e1 tet  1  et.

 

 Thirdly, applying  ,)(1

tetA    we get the following problem 

C1
 t    1C1t  et, 0  t  T,C10  1.
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 We have that 

C1t  e1tC10  
0

t

e1tsesds

 

 e1t  e1tet  1  et.
 

 Fourthly, using    tetB 1
  and    ,1

tetC    we get 

D1
 t  d  1D1t  det, 0  t  T,D10  1.

 

 We have that 

D1t  ed1 tD10  
0

t

ed1 tsdesds

 

 ed1t  ed1tedt  1  et.
 

Thus,  tetDtCtBtA  )()()()( 1111
  for any  ].,0[ Tt    

 Applying formulas obtained for  ),(tAk
   ),(tBk

   )(tCk   and  ,...,1,0),( ktDk
  we can 

obtain the exact solution of problem (2.4) by formulas 

ut,x  A1tcosx  et cosx,

vt,x  B1tcosx  et cosx,

wt,x  C1tcosx  et cosx,

zt,x  D1tcosx  et cosx.
 

Note that using similar procedure one can obtain the solution of the following initial 

boundary value problem 
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ut,x
t

  ut,x 
r1

n

r
2ut,x

xr
2

 f1t,x,

vt,x
t

  vt,x  1ut,x 
r1

n

r
2vt,x

xr
2

   1f2t,x,

wt,x
t

  wt,x  1ut,x 
r1

n

r
2wt,x

xr
2

   1f3t,x,

zt,x
t

 d zt,x  d1 wt,x  d2 vt,x 
r1

n

r
2zt,x

xr
2

 d  d1  d2f4t,x,

x  x 1 , . . . ,x n  , 0  t  T,

u0,x  x,v0,x  x,w0,x  x, z0,x  x,

x  x 1 , . . . ,x n  ,

ut,x
m

 vt,x
m

 wt,x
m

 zt,x
m

 0,x  S, 0  t  T

    (2.5)

 

For the multidimensional system of partial differential equations. Assume that  0r
  

and         )(),(,),(,,,04,3,2,1,, xxxxxTtkxtfk      x   are given smooth 

functions. Here and in future m is the normal vector to .S   

 

However Fourier series method described in solving (2.5) can be used only in the case 

when (2.5) has constant coefficients. 

 

 

 

 

 

(2.5) 
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Example 3: Obtain the Fourier series solution of the initial-boundary-value problem 

ut,x
t

  ut,x  ²ut,x
x²

 1  et,

vt,x
t

  vt,x  1ut,x  ²vt,x
x²

 1    1et,

wt,x
t

  wt,x  1ut,x  ²wt,x
x²

 1    1et,

zt,x
t

 d zt,x  d1 wt,x  d2 vt,x  ²zt,x
x²

 1  d  d1  d2et,

0  t  T, 0  x  ,

u0,x  v0,x  w0,x  z0,x  1,0  x  ,

ut, 0  ut,,uxt, 0  uxt,, 0  t  T,

vt, 0  vt,,v xt, 0  v xt,, 0  t  T,

wt, 0  wt,,wxt, 0  wxt,, 0  t  T,

zt, 0  zt,, zxt, 0  zxt,, 0  t  T

    (2.6)

 

for the system of parabolic equations. 

Solution: In order to solve this problem, we consider the Sturm-Liouville problem 

 ux  ux  0,0  x  ,u0  u,ux0  ux  

Generated by the space operator of problem (2.6). It is easy to see that the solution of this 

Sturm-Liouville problem is 

  
k  4k²,ukx  sin2kx,k  1, . . . ,ukx  cos2kx,k  0,1, . . . .

 

(2.6) 
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Then, we will obtain the Fourier series solution of problem (2.6) by formula 



























































.2cos)(2sin)(),(

,2cos)(2sin)(),(

,2cos)(2sin)(),(

,2cos)(2sin)(),(

01

01

01

01

kxtNkxtMxtz

kxtFkxtExtw

kxtDkxtCxtv

kxtBkxtAxtu

k
k

k
k

k
k

k
k

k
k

k
k

k
k

k
k

 

Here  ),(tAk
   ),(),(),( tDtCtB kkk

   ),(tEk
   )(),( tMtF kk

  and  )(tNk
  are unknown 

functions. Applying these formulas to the system of equations and initial conditions, we 

get 

  


k1


Ak
 tsin2kx  

k1


Aktsin2kx 

k1


4k 2Aktsin2kx


k0


Bk
 tcos2kx  

k0


Bktcos2kx 

k0


4k 2Bktcos2kx

 1  et,


k1


Ck
 tsin2kx  

k1


Cktsin2kx  1 

k1


Aktsin2kx


k1


4k 2Cktsin2kx 

k0


Dk
 tcos2kx  

k0


Dktcos2kx

1 
k0


Bktcos2kx 

k0


4k 2Dktcos2kx

 1    1et,  

 

(2.7) 
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k1


Ek
 tsin2kx  

k1


Ektsin2kx  1 

k1


Aktsin2kx


k1


4k 2Ektsin2kx 

k0


Fk
 tcos2kx  

k0


Fktcos2kx

1 
k0


Bktcos2kx 

k0


4k 2Fktcos2kx

 1    1et,


k1


Mk

 tsin2kx  d
k1


Mktsin2kx  d1 

k1


Ektsin2kx

d2 
k1


Cktsin2kx 

k1


4k 2Mktsin2kx 

k0


Nk

 tcos2kx

d
k0


Nktcos2kx  d1 

k0


Fktcos2kx  d2 

k0


Dktcos2kx


k0


4k 2Nktcos2kx  1  d  d1  d2et,

0  t  T, 0  x  ,  
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u0,x  
k1


Ak0sin2kx 

k0


Bk0cos2kx  1,

v0,x  
k1


Ck0sin2kx 

k0


Dk0cos2kx  1,

w0,x  
k1


Ek0sin2kx 

k0


Fk0cos2kx  1,

z0,x  
k1


Mk0sin2kx 

k0


Nk0cos2kx  1,

0  x  .
 

Equating coefficients  ,...1,2sin kkx   and  ,...1,0,2cos kkx   to zero, we get 

B0
 t  B0t  1  et,

D0
 t  D0t  1B0t  1    1et,

F0
 t  F0t  1B0t  1    1et,

N0
 t  dN0t  d1F0t  d2D0t  1  d  d1  d2et,

0  t  T,B00  D00  F00  N00  1
 

and  
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Ak
 t  Akt  4k 2Akt  0,

Ck
 t  Ckt  1Akt  4k 2Ckt  0,

Ek
 t  Ekt  1Akt  4k 2Ekt  0,

Mk
 t  d Mkt  d1Ekt  d2Ckt  4k 2Mkt  0,

0  t  T,

Ak0  Ck0  Ek0  Mk0  0,

 

Bk
 t  Bkt  4k 2Bkt  0,

Dk
 t  Dkt  1Bkt  4k 2Dkt  0,

Fk
 t  Fkt  1Bkt  4k 2Fkt  0,

Nk
 t  d Nkt  d1Ft  d2Dkt  4k 2Nkt  0,

0  t  T,

Bk0  Dk0  Fk0  Nk0  0.
 

for k=1,2,… .  

We will obtain  )(),(),(),(),(),(),( tMtFtEtDtCtBtA kkkkkkk   and  )(tN k   

Firstly, we consider the problem 

Ak
 t    4k2 Akt  0,0  t  T,Ak0  0.

 

We have that 
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Akt  e 4k2 tAk0  0     (2.8)
 

for any  .0 Tt    

Secondly, we consider the problem 

Bk
 t    4k2 Bkt  0,0  t  T,Bk0  0.

 

We have that 

Bkt  e 4k2 tBk0  0     (2.9)
 

for any  0  t  T.   

Thirdly, we consider the problem 

Ck
 t    4k2 Ckt  1Akt  0,0  t  T,Ck0  0.

 

Using (2.8), we get  

Ck
 t    4k2 Ckt  0,0  t  T,Ck0  0.

 

We have that 

Ckt  e 4k2 tCk0  0     (2.10)
 

for any  .0 Tt    

Fourthly, we consider the problem 

Dk
 t    4k2 Dkt  1Bkt  0,0  t  T,Dk0  0.

 

Using (2.9), we get  

Dk
 t    4k2 Dkt  0,0  t  T,Dk0  0.

 

We have that 

Dkt  e 4k2 tDk0  0     (2.11)
 

for any  .0 Tt    

Fifthly, we consider the problem 

(2.8) 

(2.9) 

(2.10) 

(2.11) 
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Ek
 t    4k2 Ekt  1Akt  0,0  t  T,Ek0  0.

 

Using (2.8), we get  

Ek
 t    4k2 Ekt  0,0  t  T,Ek0  0.

 

We have that 

Ekt  e 4k2 tEk0  0     (2.12)
 

for any  .0 Tt    

Sixthly, we consider the problem 

Fk
 t    4k2 Fkt  1Bkt  0,0  t  T,Fk0  0.

 

Using (2.9), we get 

Fk
 t    4k2 Fkt  0,0  t  T,Fk0  0.

 

We have that 

Fkt  e 4k2 tFk0  0     (2.13)
 

for any  .0 Tt    

Seventhly, we consider the problem 

Mk
 t  d  4k2 Mkt  d1Ekt  d2Ckt  0,0  t  T,Mk0  0.

 

Using (2.10) and (2.12), we get 

Mk
 t  d  4k2 Mkt  0,0  t  T,Mk0  0.

 

We have that 

Mkt  e d4k2 tMk0  0     (2.14)
 

for any  .0 Tt    

Eighthly, we consider the problem 

Nk
 t  d  4k2 Nkt  d1Fkt  d2Dkt  0,0  t  T,Nk0  0.

 

(2.12) 

(2.13) 

(2.14) 
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Using (2.11) and (2.13), we get 

Nk
 t  d  4k2 Nkt  0,0  t  T,Nk0  0.

 

We have that 

Nkt  e d4k2 tNk0  0
 

 for any  .0 Tt    Therefore,  

Akt  Bkt  Ckt  Dkt  Ekt  Fkt  Mkt  Nkt  0   for any  

0  t  T.   

Now, we obtain  B0t,    D0t,    F0t   and  N0t.   Firstly, we consider the problem 

B0
 t  B0t  1  et, 0  t  T,B00  1.

 

 We have that 

B0t  etB00  
0

t

ets1  esds

 

 et  et 
0

t

1  e1sds  et.

 

 Therefore, 

B0t  et.     (2.15)
 

Secondly, we consider the problem 

D0
 t  D0t  1B0t  1    1et,0  t  T,D00  1

 

Using (2.15), we get  

D0
 t  D0t  1  et, 0  t  T,D00  1

 

We have that 

(2.15) 
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D0t  etD00  
0

t

ets1  esds

 

 et  et 
0

t

1  e1sds  et.

 

 Therefore, 

D0t  et.     (2.16)
 

Thirdly, we consider the problem 

F0
 t  F0t  1B0t  1    1et, 0  t  T,F00  1.

 

Using (2.15), we get 

F0
 t  F0t  1  et, 0  t  T,F00  1.

 

We have that 

F0t  etF00  
0

t

ets1  esds

 

 et  et 
0

t

1  e1sds  et.

 
 Therefore, 

F0t  et.     (2.17)
 

Fourthly, we consider the problem 

N0
 t  dN0t  d1F0t  d2D0t  1  d  d1  d2et, 0  t  T,N00  1.

 

Using (2.16) and (2.17), we get 

N0
 t  dN0t  1  det, 0  t  T,N00  1.

 
 We have that 

(2.16) 

(2.17) 
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N0t  edtN00  
0

t

edts1  desds

 

 edt  edt 
0

t

1  de1dsds  et.

 
 Therefore, 

N0t  et.     (2.18)
 

Applying formulas (2.8)-(2.18) and (2.7), we get  

ut,x  B0t  et,
 

vt,x  D0t  et,
 

wt,x  F0t  et,
 

zt,x  N0t  et.
 

Note that using similar procedure one can obtain the solution of the following initial 

boundary value problem 

(2.18) 
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ut,x
t

  ut,x 
r1

n

r
2ut,x

xr
2

 f1t,x,

vt,x
t

  vt,x  1ut,x 
r1

n

r
2vt,x

xr
2

   1f2t,x,

wt,x
t

  wt,x  1ut,x 
r1

n

r
2wt,x

xr
2

   1f3t,x,

zt,x
t

 d zt,x  d1 wt,x  d2 vt,x 
r1

n

r
2zt,x

xr
2

 d  d1  d2f4t,x,

x  x 1 , . . . ,x n  , 0  t  T,

u0,x  x,v0,x  x,w0,x  x, z0,x  x,

x  x 1 , . . . ,x n  ,

ut,x|S 1
 ut,x|S 2

,
ut,x
m S 1

 ut,x
m S 2

, 0  t  T,

vt,x|S 1
 vt,x|S 2

,
vt,x
m S 1

 vt,x
m S 2

, 0  t  T,

wt,x|S 1
 wt,x|S 2

,
wt,x
m S 1

 wt,x
m S 2

, 0  t  T,

zt,x|S 1
 zt,x|S 2

,
zt,x
m S 1

 zt,x
m S 2

, 0  t  T

    (2.19)

 

(2.19) 
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for the multidimensional system of partial differential equations. Assume that  0r
  

and         )(),(,),(,,,04,3,2,1,, xxxxxTtkxtfk      x   are given smooth 

functions. Here  
2121 ?, SSSSS   . 

However Fourier series method described in solving (2.19) can be used only in the case when 

(2.19) has constant coefficients. 

2.2. Laplace Transform Method  

Now, we consider Laplace transform solution of problems for the system of partial 

differential equations. 

Example 1: Obtain the Laplace transform solution of the initial-boundary-value problem 

 

ut,x
t

  ut,x  ²ut,x
x²

 2  etx,

vt,x
t

  vt,x  1ut,x  ²vt,x
x²

 2    1etx,

wt,x
t

  wt,x  1ut,x  ²wt,x
x²

 2    1etx,

zt,x
t

 d zt,x  d1 wt,x  d2 vt,x  ²zt,x
x²

 2  d  d1  d2etx,

0  t  T, 0  x  ,

u0,x  v0,x  w0,x  z0,x  ex, 0  x  ,

ut, 0  vt, 0  wt, 0  zt, 0  et, 0  t  T,

uxt, 0  v xt, 0  wxt, 0  zxt, 0  et, 0  t  T

    (2.20)

 

(2.20) 
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for the system of parabolic equations. 

Solution: Here and in future we denote 

ut,x  ut, s,

vt,x  vt, s,

wt,x  wt, s,

zt,x  zt, s.
 

Using formula  

ex  1
s  1

    (2.21)
 

and taking the Laplace transform of both sides of the system of partial differential equations 

and conditions 

ut,0  vt,0  wt,0  zt,0  et,uxt,0  v xt,0  wxt,0  zxt,0  et,   

we can write 

(2.21) 
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 ut,x
t

  ut,x   ²ut,x
x²

 2  etx,

 vt,x
t

  vt,x  1ut,x   ²vt,x
x²

 2    1etx,

 wt,x
t

  wt,x  1ut,x   ²wt,x
x²

 2    1etx,

 zt,x
t

 d zt,x  d1 wt,x  d2 vt,x   ²zt,x
x²

 2  d  d1  d2etx, 0  t  T,

u0,x  v0,x  w0,x  z0,x  ex
 

or 

utt, s  ut, s  s2ut, s  set  et  2  et 1

s1
,

v tt, s  vt, s  1ut, s  s2vt, s  set  et

 2    1 et 1

s1
,

w tt, s  wt, s  1ut, s  s2wt, s  set  et

 2    1 et 1

s1
,

ztt, s  dzt, s  d1wt, s  d2vt, s  s2zt, s  set  et

 2  d  d1  d2 et 1

s1
, 0  t  T,

u0, s  v0, s  w0, s  z0, s  1

s1  



 

34 
 

Now, we taking the Laplace transform with respect to  t  , we get 

u, s  1

s1
   s2 u, s  1

1

s21

s1
,

v, s  1

s1
   s2 v, s  1u, s  1

1

s211

s1
,

w, s  1

s1
   s2 w, s  1u, s  1

1

s211

s1
,

z, s  1

s1
 d  s2 z, s  d1w, s  d2v, s  1

1

s2dd 1d 21

s1

 

Firstly, applying equation 

u,s  1
s  1

   s2 u,s  1
  1

s2    1
s  1

,
 

we get 

  s2  u,s  1
s  1

 1
  1

s2    1
s  1

 

 or 

u,s  1
  1s  1

.     (2.22)

 

Secondly, applying formula (2.22) and equation 

v,s  1
s  1

   s2 v,s  1u,s  1
  1

s2    1  1

s  1
,

 
we get 

  s2  v,s  1
s  1

 1
  1

s2    1  1

s  1


1

  1s  1
 

 or 

v,s  1
  1s  1

.     (2.23)

 

(2.22) 

(2.23) 
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Thirdly, applying formula (2.22) and equation 

w,s  1
s  1

   s2 w,s  1u,s  1
  1

s2    1  1

s  1
 

we get 

  s2  w,s  1
s  1

 1
  1

s2    1  1

s  1
 1

  1s  1
 

or 

w,s  1
  1s  1

.     (2.24)

 

Fourthly, applying formulas (2.23), (2.24) and equation 

z,s  1
s  1

   s2 z,s  d1w,s  d2v,s
 

 1
  1

s2  d  d1  d2  1

s  1
,

 

we get 

   
  111

1

1

1

1

1
, 2121

2
2
























s

dd

s

ddds

s
szsd


  

 or 

z,s  1
  1s  1

.     (2.25)

 

Applying formulas (2.22) - (2.25) and taking the inverse Laplace transforms with respect 

to  t   and  x  , we obtain 

ut,x  vt,x  wt,x  zt,x  etx.
 

 

 

 

 

(2.24) 

(2.25) 
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Example 2: Obtain the Laplace transform solution of the initial-boundary-value problem 

ut,x
t

  ut,x  ²ut,x
x²

 2  etx,

vt,x
t

  vt,x  1ut,x  ²vt,x
x²

 2    1etx,

wt,x
t

  wt,x  1ut,x  ²wt,x
x²

 2    1etx,

zt,x
t

 d zt,x  d1 wt,x  d2 vt,x  ²zt,x
x²

 2  d  d1  d2etx,

0  t  T, 0  x  ,

u0,x  v0,x  w0,x  z0,x  ex, 0  x  ,

ut, 0  vt, 0  wt, 0  zt, 0  et, 0  t  T,

ut,  vt,  wt,  zt,  0,0  t  T

    (2.26)

 

for the system of parabolic equations. 

Solution: Applying formula (2.21) and taking the Laplace transform of both sides of the 

system of partial differential equations and conditions  )0,()0,()0,( twtvtu

,)0,( tetz    we can write 

(2.26) 
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 ut,x
t

  ut,x   ²ut,x
x²

 2  etx,

 vt,x
t

  vt,x  1ut,x   ²vt,x
x²

 2    1etx,

 wt,x
t

  wt,x  1ut,x   ²wt,x
x²

 2    1etx,

 zt,x
t

 d zt,x  d1 wt,x  d2 vt,x   ²zt,x
x²

 2  d  d1  d2etx, 0  t  T,

u0,x  v0,x  w0,x  z0,x  ex

or 
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utt, s  ut, s  s2ut, s  set  1t  2  et 1

s1
,

v tt, s  vt, s  1ut, s  s2vt, s  set  2t

 2    1 et 1

s1
,

w tt, s  wt, s  1ut, s  s2wt, s  set  3t

 2    1 et 1

s1
,

ztt, s  dzt, s  d1wt, s  d2vt, s  s2zt, s  set  4t

 2  d  d1  d2 et 1

s1
, 0  t  T,

u0, s  v0, s  w0, s  z0, s  1

s1
.

 

Here 

1t  uxt, 0,

2t  v xt, 0,

3t  wxt, 0,

4t  zxt, 0.
 

 Now, taking the Laplace transform with respect to  t  , we get 
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u, s  1

s1
   s2 u, s  1

1
s  2

s1
 1,

v, s  1

s1
   s2 v, s  1u, s  1

1
s  21

s1
 2,

w, s  1

s1
   s2 w, s  1u, s  1

1
s  21

s1
 3,

z, s  1

s1
 d  s2 z, s  d1w, s  d2v, s  1

1
s  2dd 1d 2

s1
 4

 

or 

    s2 u, s  1

s1
 1

1
s  2

s1
 1,

    s2 v, s  1u, s  1

s1
 1

1
s  21

s1
 2,

    s2 w, s  1u, s  1

s1
 1

1
s  21

s1
 3,

  d  s2 z, s  d1w, s  d2v, s  1

s1
 1

1
s  2dd 1d 2

s1
 4.

Moreover, taking the Laplace transform from conditions  

ut,  vt,  wt,  zt,  0,   we get 

u,  0,v,  0,w,  0,z,  0.     (2.27)
 

Firstly, applying equation 

    s2 u,s 
    s2

  1s  1
 1  1

  1
,

 

we get 

u,s  1
  1s  1

 1  1
  1

1

    s2
.

 

 Using the formula 

(2.27) 
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1

    s2
 1

    s
 1

    s
1

2   
,

 

 we get 

u,s  1
  1s  1

 

 1  1
  1

1
2   

1
s    

 1
s    

.     (2.28)

 

Taking the inverse Laplace transform with respect to  x  , we get 

u,x  1
  1

ex

 

 1  1
  1

1
2   

e  x  e  x .     (2.29)

 

Passing to limit in (2.29) when  x   and using (2.27), we get 

u,  1  1
  1

1
2   

lim
x

e  x  0.

 

 From that it follows 

1   1
  1

.     (2.30)
 

Applying (2.28), (2.29) and (2.30), we get 

    s2 u,s 
    s2

  1s  1
 

 or 

u,x  1
  1

ex,u,s  1
  1s  1

.     (2.31)

 

Secondly, applying (2.31) and equation 

(2.28) 

(2.29) 

(2.30) 

(2.31) 
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    s2 v,s  1u,s
 

 1
s  1

 1
  1

s 
2    1

s  1
 2,

 

we get 

    s2 v,s 
    s2

  1s  1
 2  1

  1
 

 or 

v,s  1
  1s  1

 2  1
  1

1

    s2
.

 

 Applying the formula 

1

    s2
 1

    s
 1

    s

1

2   
,

 

 we get 

v,s  1
  1s  1

 

 2  1
  1

1

2   
1

s    
 1

s    
    (2.32)

 

Taking the inverse Laplace transform with respect to  x  , we get 

v,x  1
  1

ex

 

 2  1
  1

1

2   
e  x  e  x .     (2.33)

 

Passing the limit in (2.33) when  x   and using (2.27), we get 

(2.32) 

(2.33) 
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v,  2  1
  1

1

2   
lim
x

e  x  0.

 

 From that it follows 

2   1
  1

.     (2.34)
 

Applying (2.32), (2.33) and (2.34), we get 

    s2 v,s 
    s2

  1s  1
 

 or 

 
 

 
  

.
11

1
,,

1

1
,





 

s
svexv x





  

Thirdly, applying (2.31) and equation 

    s2 w,s  1u,s
 

 1
s  1

 1
  1

s  2    1

s  1
 3,

 

we get 

    s2 w,s 
    s2

  1s  1
 3  1

  1
 

 or 

w,s  1
  1s  1

 3  1
  1

1

    s2
.

 

 Applying the formula 

1

    s2
 1

    s
 1

    s

1

2   
,

 

 we get 

(2.34) 

(2.35) 
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w,s  1
  1s  1

 

 3  1
  1

1

2   
1

s    
 1

s    
.     (2.36)

 

Taking the inverse Laplace transform with respect to  x  , we get 

w,x  1
  1

ex

 

 3  1
  1

1

2   
e  x  e  x .     (2.37)

 

Passing the limit in (2.37) when  x   and using (2.27), we get 

w,  3  1
  1

1

2   
lim
x

e  x  0.

 

 From that it follows 

3  1
  1

.     (2.38)
 

Applying (2.36), (2.37) and (2.38), we get 

    s2 w,s 
    s2

  1s  1
 

or 

w,x  1
  1

ex,w,s  1
  1s  1

.     (2.39)

 

Fourthly, applying (2.35), (2.39) and equation 

  d  s2 z,s  d1w,s  d2v,s
 

 1
s  1

 1
  1

s  2  d  d1  d2

s  1
 4,

 

(2.36) 

(2.37) 

(2.38) 

(2.39) 
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we get 

  d  s2 z,s 
  d  s2

  1s  1
 4  1

  1
 

 or 

z,s  1
  1s  1

 4  1
  1

1

  d  s2
.

 

 Applying the formula 

1

  d  s2
 1

  d  s
 1

  d  s

1

2   d
,

 

 we get 

z,s  1
  1s  1

 

 4  1
  1

1

2   d

1

s    d
 1

s    d
.     (2.40)

 

Taking the inverse Laplace transform with respect to  x  , we get 

z,x  1
  1

ex

 

 4  1
  1

1

2   d
e d x  e d x .     (2.41)

 

Passing the limit in (2.41) when  x   and using (2.27), we get 

z,  4  1
  1

1

2   d
lim
x

e d x  0.

 

 From that it follows 

4   1
  1

.     (2.42)
 

(2.40) 

(2.41) 

(2.42) 
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Applying (2.40), (2.41) and (2.42), we get 

  d  s2 z,s 
  d  s2

  1s  1
 

 or 

z,x  1
  1

ex,z,s  1
  1s  1

.     (2.43)
 

Applying formulas (2.31), (2.35), (2.39), (2.43) and taking the inverse Laplace transform 

with respect to  t  , we obtain 

ut,x  vt,x  wt,x  zt,x  etx.
 

Note that using similar procedure one can obtain the solution of the following initial 

boundary value problem  

(2.43) 
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ut,x
t

  ut,x 
r1

n

r
2ut,x

xr
2

 f1t,x,

vt,x
t

  vt,x  1ut,x 
r1

n

r
2vt,x

xr
2

   1f2t,x,

wt,x
t

  wt,x  1ut,x 
r1

n

r
2wt,x

xr
2

   1f3t,x,

zt,x
t

 d zt,x  d1 wt,x  d2 vt,x 
r1

n

r
2zt,x

xr
2

 d  d1  d2f4t,x,

x  x 1 , . . . ,x n  
, 0  t  T, ,

u0,x  x,v0,x  x,w0,x  x, z0,x  x,

x  x 1 , . . . ,x n  
,

ut,x  1t,x, uxrt,x  1t,x,

vt,x  2t,x, v xrt,x  2t,x,

wt,x  3t,x, wxrt,x  3t,x,

zt,x  4t,x, uxrt,x  4t,x,

1  r  n, 0  t  T,x  S

    (2.44)

 

for the multidimensional system of partial differential equations. Assume that  r    0   

and        )(),(,),(,,,04,3,2,1,, xxxxxTtkxtfk 


   ,

x    ,,,, xtxt kk   

(2.44) 
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4,3,2,1k     SxTt ,,0 are given smooth functions. Here  S  S1  S2 ,  S1  S2  . 

Here and in future     is the open cube in the  n  -dimensional Euclidean space  

 nkxk

n  1,0R   with the boundary  S   and .


 S  

However Laplace transform method described in solving (2.44) can be used only in the case 

when (2.44) has  )(xar
  polynomials coefficients. 

2.3. Fourier Transform Method  

Now, we consider the Fourier transform solution of the initial value problem for the system 

of partial differential equations. 

Example 1: Obtain the Fourier transform solution of the initial-value problem 

ut,x
t

  ut,x  ²ut,x
x²

 4x 2  1   etx2

,

vt,x
t

  vt,x  1ut,x  ²vt,x
x²

 4x 2  1    1 etx2

,

wt,x
t

  wt,x  1ut,x  ²wt,x
x²

 4x 2  1    1 etx2

,

zt,x
t

 d zt,x  d1 wt,x  d2 vt,x  ²zt,x
x²

 4x 2  1  d  d1  d2 etx2

,

0  t  T,  x  ,

u0,x  v0,x  w0,x  z0,x  ex2

,  x  

    (2.45)

 

for the system of parabolic equations. 

Solution: We denote 

Fut,x  ut,s,F ex2

 qs.

 

(2.45) 
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 Then, we have that 

F 
t

ut,x  utt, s,

 

F 2

x 2
ut,x  s2ut, s.

 
 Taking the Fourier transform of both sides of the system equation and using initial 

conditions, we get 

F
ut,x
t

 F ut,x  F
²ut,x
x²

 F 4x 2  1   etx2

,

F
vt,x
t

 F vt,x  1Fut,x  F
²vt,x
x²

 F 4x 2  1    1 etx2

,

F
wt,x
t

 F wt,x  1Fut,x  F
²wt,x
x²

 F 4x 2  1    1 etx2

,

F
zt,x
t

 dF zt,x  d1 Fwt,x  d2F vt,x  F
²zt,x
x²

 F 4x 2  1  d  d1  d2 etx2

,

0  t  T,

u0, s  v0, s  w0, s  z0, s  qs
 

 or 
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utt, s    s2 ut, s  1    s2 etqs,

v tt, s    s2 vt, s  1ut, s  1    1  s2 etqs,

w tt, s    s2 wt, s  1ut, s  1    1  s2 etqs,

ztt, s  d  s2 zt, s  d1wt, s  d2vt, s

 1  d  d1  d2  s2 etqs, 0  t  T,
 

 Firstly, we consider the problem 

utt,s    s2 ut,s
 

 1    s2 etqs,0  t  T,u0,s  qs.
 

 We have that 

ut,s  e s2 tu0, s  
0

t

e s2 ty1    s2 eyqsdy

 

 e s2 tqs  e s2 tqs 
0

t

e 1s2 y1    s2 dy

 

 e s2 tqs  e s2 tqs e 1s2 t  1  etqs.
 

 Therefore, 

ut,s  etF ex2

 

 and 

ut,x  F1 etF ex2

 etx2

.
 

 Secondly, we consider the problem 
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v tt,s    s2 vt,s
 

 1    1  s2 etqs  1ut,s,0  t  T,v0,s  qs.
 

 Applying  ut,s  etqs,  we get 

v tt,s    s2 vt,s  1    s2 etqs,0  t  T,v0,s  qs.
 

 We have that  

vt,s  e s2 tv0, s  
0

t

e s2 ty1    s2 eyqsdy

 

 e s2 tqs  e s2 tqs e 1s2 t  1  etqs.
 

 Therefore, 

vt,s  etF ex2

 

 and 

vt,x  F1 etF ex2

 etx2

.
 

 Thirdly, we consider the problem 

w tt,s    s2 wt,s
 

 1    1  s2 etqs  1ut,s,0  t  T,w0,s  qs.
 

 Applying  ut,s  etqs,   we get 

wtt,s    s2 wt,s  1    s2 etqs, 0  t  T,w0,s  qs.
 

 We have that  

wt, s  e s2 tw0,s  
0

t

e s2 ty1    s2 eyqsdy
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 e s2 tqs  e s2 tqs e 1s2 t  1  etqs.
 

 Therefore, 

wt,s  etqs  etF ex2

 

 and 

wt,x  F1 etF ex2

 etx2

.
 

 Fourthly, we consider the problem 

ztt,s  d  s2 zt,s
 

 1  d  d1  d2  s2 etqs  d1wt,s  d2vt,s,0  t  T,w0,s  qs.
 

 Applying  wt,s  etqs,vt,s  etqs,  we get 

ztt,s  d  s2 zt,s  1  d  s2 etqs,0  t  T,w0,s  qs.
 

 We have that  

zt,s  e ds2 tz0, s  
0

t

e ds2 ty1  d  s2 eyqsdy

 

 e ds2 tqs  e ds2 tqs e 1ds2 t  1  etqs.
 

 Therefore, 

zt,s  etqs  etF ex2

 

 and 

zt,x  F1 etF ex2

 etx2

.
 

 Thus, 

ut,x  vt,x  wt,x  zt,x  etx2

.
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Note that using similar procedure one can obtain the solution of the following initial value 

problem  

ut,x
t

  ut,x 
r1

n

r
2ut,x

xr
2

 f1t,x,

vt,x
t

  vt,x  1ut,x 
r1

n

r
2vt,x

xr
2

   1f2t,x,

wt,x
t

  wt,x  1ut,x 
r1

n

r
2wt,x

xr
2

   1f3t,x,

zt,x
t

 d zt,x  d1 wt,x  d2 vt,x 
r1

n

r
2zt,x

xr
2

 d  d1  d2f4t,x,

x  x 1 , . . . ,x n  n , 0  t  T,

u0,x  x,v0,x  x,w0,x  x, z0,x  x,

x  x 1 , . . . ,x n  n

    (2.46)

 

for the multidimensional system of partial differential equations. Assume that  0r
  

and  fkt,x,k  1,2,3,4t  0,T,x  n ,x,x,x,x    x  n    are given 

smooth functions. However Fourier transform method described in solving (2.46) can be 

used only in the case when (2.46) has constant coefficients. 

So, all analytical methods described above, namely the Fourier series method, Laplace 

transform method and the Fourier transform method can be used only in the case when the 

system of differential equations has constant coefficients or polynomial coefficients. It is 

well-known that the most general method for solving system of partial differential equations 

with dependent in t and in the space variables is finite difference method. 

(2.46) 
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In final section, we consider the initial-boundary value problem for the one-dimensional 

system of partial differential equations. The first order of accuracy difference scheme for the 

numerical solution of this problem is presented. Numerical analysis and discussions are 

presented.  
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CHAPTER 3 

FINITE DIFFERENCE METHOD FOR THE SOLUTION OF 

SYSTEM OF PARTIAL DIFFERENTIAL EQUATION 

 

 

 
When the analytical methods do not work properly, the numerical methods for obtaining 

approximate solutions of the local and nonlocal problems for the system of partial 

differential equations play an important role in applied mathematics. We can say that there 

are many considerable works in the literature. In this section, we study the numerical solution 

of the initial-boundary value problem   

ut,x
t

 a ut,x  ²ut,x
x²

 a et cosx,

vt,x
t

 b vt,x  b1ut,x  ²vt,x
x²

 b  b1et cosx,

wt,x
t

 c wt,x  c1ut,x  ²wt,x
x²

 c  c1et cosx,

zt,x
t

 d zt,x  d1 wt,x  d2 vt,x  ²zt,x
x²

 d  d1  d2et cosx,

0  t  1,0  x  ,

u0,x  v0,x  w0,x  z0,x  cosx, 0  x  ,

uxt, 0  v xt, 0  wxt, 0  zxt, 0  0,0  t  1,

uxt,  v xt,  wxt,  zxt,  0, 0  t  1

    (3.1)

 

for the system of parabolic equations. The exact solution of this problem is

ut,x  vt,x  wt,x  zt,x  et cosx.   

(3.1) 
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For the numerical solution of the problem (3.1), we present first order of accuracy difference 

scheme. We will apply a procedure of modified Gauss elimination method to solve the 

problem. Finally, the error analysis of first order of accuracy difference schemes is given. 

For the numerical solution of the problem (3.1), we present the following first order of 

accuracy difference scheme Algorithm 

u n
ku n

k1

  aun
k  u n1

k 2u n
ku n1

k

h 2
 aetk cosx n ,

vn
kvn

k1

  bv n
k  b1un

k  vn1
k 2vn

kvn1
k

h 2
 b  b1 etk cosx n ,

wn
kwn

k1

  cwn
k  c1un

k  wn1
k 2wn

kwn1
k

h 2
 c  c1 etk cosx n ,

zn
kzn

k1

  dzn
k  d1wn

k  d2v n
k  zn1

k 2zn
kzn1

k

h 2

 d  d1  d2 etk cosx n ,

t k  k,x n  nh, 1  k  N, 1  n  M  1,N  1,Mh  ,

un
0  v n

0  wn
0  zn

0  cosx n , 0  n  M,

u1
k  u0

k  v 1
k  v 0

k  w1
k  w0

k  z1
k  z0

k  0,

uM
k  uM1

k  v M
k  v M1

k  wM
k  wM1

k  zM
k  zM1

k  0,

0  k  N.

    (3.2)

 

for obtaining the solution of difference scheme (3.2) 

un
k 

k0

N

n0

M
, vn

k 
k0

N

n0

M
, wn

k 
k0

N

n0

M
, zn

k 
k0

N

n0

M

 

contains four stages. In the first stage, we consider the problem 

(3.2) 
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u n
ku n

k1

  aun
k  u n1

k 2u n
ku n1

k

h 2
 aetk cosx n ,

1  k  N, 1  n  M  1,

un
0  cosx n , 0  n  M,

u1
k  u0

k  uM
k  uM1

k  0,0  k  N.
 

We will write it in the following boundary value problem for the second order difference 

equation with respect to  n   

A1un1  B1un  C1un1  n , 1  n  M  1,

u0  u1 ,uM  uM1 .

    (3.3)

 

Here,  
111 ,, CBA   are     11  NN   square matrices and  

ns nnsu ,1,,    are    11 N   

column matrices and 

A1  C1 

0 0 0 0  0 0 0 0

0 ă 0 0  0 0 0 0

0 0 ă 0  0 0 0 0

0 0 0 ă  0 0 0 0

        

0 0 0 0  ă 0 0 0

0 0 0 0  0 ă 0 0

0 0 0 0  0 0 ă 0

0 0 0 0  0 0 0 ă
N1 N1 

,

 

(3.3) 
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B1 

1 0 0 0  0 0 0 0


c


b 0 0  0 0 0 0

0

c


b 0  0 0 0 0

0 0

c


b  0 0 0 0

        

0 0 0 0 

b 0 0 0

0 0 0 0 

c


b 0 0

0 0 0 0  0

c


b 0

0 0 0 0  0 0

c


b

N1 N1 

,

 

n 

cosx n

aet1 cosx n

.

aetN1 cosx n

aetN cosx n
N1 1

, us 

us
0

us
1

.

us
N1

us
N1

N1 1  

for  ,1,  nns   where

1211 ,,~

22 


caba
hh

. For obtaining    M
n

N

k

k

nu
00 
 we have 

the following algorithm  

un  n1un1  n1 , n  M  1, . . . , 0,uM  I  M1M,     (3.4)
 

n1  B1  C1n 1A1 ,1  I,
 

n1  B1  C1n 1n  C1n ,1  0,n  1, . . . ,M  1.
 

In the second stage, we consider the problem 

(3.4) 
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vn
kvn

k1

  bv n
k  vn1

k 2vn
kvn1

k

h 2
 b  b1 etk cosx n  b1un

k ,

1  k  N, 1  n  M  1,

v n
0  cosx n , 0  n  M,

v 1
k  v 0

k  v M
k  v M1

k  0,0  k  N.
 

We will write it in the following boundary value problem for the second order difference 

equation with respect to  n   

A2v n1  B2v n  C2v n1  n , 1  n  M  1,

v 0  v 1 ,v M  vM1 .

    (3.5)

 

Here,  
222 ,, CBA   are     11  NN   square matrices and  

ns nnsv ,1,,    are  

  11 N   column matrices and 

A2  C2 

0 0 0 0  0 0 0 0

0 a  0 0  0 0 0 0

0 0 a 0  0 0 0 0

0 0 0 a   0 0 0 0

        

0 0 0 0  a  0 0 0

0 0 0 0  0 a 0 0

0 0 0 0  0 0 a 0

0 0 0 0  0 0 0 a

N1 N1 

,

 

(3.5) 
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B2 

1 0 0 0  0 0 0 0

c b 0 0  0 0 0 0

0 c b  0  0 0 0 0

0 0 c b  0 0 0 0

        

0 0 0 0  b  0 0 0

0 0 0 0  c b 0 0

0 0 0 0  0 c b 0

0 0 0 0  0 0 c b 

N1 N1 

,

 

n 

cosx n

b  b1 et1 cosx n  b1un
1

.

b  b1 etN1 cosx n  b1un
N1

b  b1 etN cosx n  b1un
N

N1 1

, v s 

v s
0

v s
1

.

v s
N1

v s
N1

N1 1  

for  ,1,  nns   where  .,, 1211
22   cbba

hh
  We have the following algorithm 

for obtaining  
v n

k 
k0

N

n0

M

  

vn  n1vn1  n1 , n  M  1, . . . , 0,vM  I  M1M,     (3.6)
 

n1  B2  C2n 1A2 ,1  I,
 

n1  B2  C2n 1n  C2n ,1  0,n  1, . . . ,M  1.
 

In the third stage, we consider the problem 

(3.6) 
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wn
kwn

k1

  cv n
k  wn1

k 2wn
kwn1

k

h 2
 c  c1 etk cosx n  c1un

k ,

1  k  N, 1  n  M  1,

wn
0  cosx n , 0  n  M,

w1
k  w0

k  wM
k  wM1

k  0,0  k  N.
 

We will write it in the following boundary value problem for the second order difference 

equation with respect to  n   

A3wn1  B3wn  C3wn1  n , 1  n  M  1,

w0  w1 ,wM  wM1 .

    (3.7)

 

Here,  333 ,, CBA   are     11  NN   square matrices and  ns nnsw ,1,,    are  

  11 N   column matrices and 

A3  C3 

0 0 0 0  0 0 0 0

0 a 0 0  0 0 0 0

0 0 a 0  0 0 0 0

0 0 0 a  0 0 0 0

        

0 0 0 0  a 0 0 0

0 0 0 0  0 a 0 0

0 0 0 0  0 0 a 0

0 0 0 0  0 0 0 a

N1 N1 

,

 

(3.7) 
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B3 

1 0 0 0  0 0 0 0

c b 0 0  0 0 0 0

0 c b 0  0 0 0 0

0 0 c b  0 0 0 0

        

0 0 0 0  b 0 0 0

0 0 0 0  c b 0 0

0 0 0 0  0 c b 0

0 0 0 0  0 0 c b

N1 N1 

,

 

n 

cosx n

c  c1 et1 cosx n  c1un
1

.

c  c1 etN1 cosx n  c1un
N1

c  c1 etN cosx n  c1un
N

N1 1

, ws 

ws
0

ws
1

.

ws
N1

ws
N1

N1 1  

for  ,1,  nns   where  .,, 1211
22    ccba

hh
 For obtaining  

wn
k 

k0

N

n0

M

  

We have the following algorithm  

wn  n1wn1  n1 , n  M  1, . . . ,0,wM  I  M1M,     (3.8)
 

n1  B3  C3n 1A3 ,1  I,
 

n1  B3  C3n 1n  C3n ,1  0,n  1, . . . ,M  1.
 

In the fourth stage, we consider the problem 

(3.8) 
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zn
kzn

k1

  dzn
k  zn1

k 2zn
kzn1

k

h 2
 d  d1  d2 etk cosx n  d1wn

k  d2v n
k ,

1  k  N, 1  n  M  1,

zn
0  cosx n , 0  n  M,

z1
k  z0

k  zM
k  zM1

k  0,0  k  N.
 

We will write it in the following boundary value problem for the second order difference 

equation with respect to  n   

A4zn1  B4zn  C4zn1  n , 1  n  M  1,

z0  z1 ,zM  zM1 .

    (3.9)

 

Here,  
444 ,, CBA   are     11  NN   square matrices and  ns nnsz ,1,,    are  

  11 N   column matrices and 

A4  C4 

0 0 0 0  0 0 0 0

0 a 0 0  0 0 0 0

0 0 a 0  0 0 0 0

0 0 0 a  0 0 0 0

        

0 0 0 0  a 0 0 0

0 0 0 0  0 a 0 0

0 0 0 0  0 0 a 0

0 0 0 0  0 0 0 a

N1 N1 

,

 

 

(3.9) 



 

63 
 

B4 

1 0 0 0  0 0 0 0

c b 0 0  0 0 0 0

0 c b 0  0 0 0 0

0 0 c b  0 0 0 0

        

0 0 0 0  b 0 0 0

0 0 0 0  c b 0 0

0 0 0 0  0 c b 0

0 0 0 0  0 0 c b

N1 N1 

,

 

n 

cosx n

d  d1  d2 et1 cosx n  d1wn
1  d2v n

1

.

d  d1  d2 etN1 cosx n  d1wn
N1  d2v n

N1

d  d1  d2 etN cosx n  d1wn
N  d2v n

N

N1 1

, zs 

zs
0

zs
1

.

zs
N1

zs
N1

N1 1

for  ,1,  nns   where  .,, 1211
22    cdba

hh
  for obtaining  

zn
k 

k0

N

n0

M

 

we have the following algorithm 

zn  n1zn1  n1 , n  M  1, . . . ,0,zM  I  M1M,     (3.10)
 

n1  B4  C4n 1A4 ,1  I,
 

n1  B4  C4n 1n  C4n ,1  0,n  1, . . . ,M  1.
 

The exact solution of problem (3.1) is         .cos,,,, xextzxtwxtvxtu t The errors 

of the numerical solution are computed by  

 

Eu
M
N  max

1kN,1nM1
utk,x n  un

k     (3.11) (3.11) 

(3.10) 
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Where  utk,x n   represents the exact solution and   un
k   represents the numerical solution 

at  ),( nk xt   and the results are given in the following table. 

Table 3.1: Error analysis 

difference scheme 
20,20 40,40 80,80 160,160 

MNE N

M ,/  
N

MEu  0.0349 0.0167 0.0082 0.0041 

N

MEv  0.0504 0.0255 0.0128 0.0064 

N

MEw  0.0504 0.0255 0.0128 0.0064 

N

MEz  0.0880 0.0449 0.0227 0.0114 

 

As it is seen in Table 3.1, we get some numerical results. If N and M are doubled, the value 

of errors between the exact solution and approximate solution decreases by a factor of 

approximately 1/2 for first order difference scheme.  
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CHAPTER 4 

CONCLUSION 

 

 

 

In the present study, a system of partial differential equations is studied. 

Fourier series, Laplace transform and Fourier transform methods are used for the solution 

of several system of partial differential equations. 

Difference scheme is presented for the numerical solution of the initial-boundary value 

problem for the system of one dimensional partial differential equations. Numerical results 

are provided.  
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APPENDIX 1 

MATLAB PROGRAMMING 

 

 

 

Matlab programs are presented for the first order of approximation two-step difference 

scheme for M=N. 

Clear all; clc; close all;delete '*.asv'; 

N=80; M= N; 

aa=1; bb=3; bb1=2; cc=3; cc1=2; dd=4; dd1=2; dd2=1; 

h=pi/M; 

tau=1/N; 

%%%%%%%%%%%%%% solution for u(t,x)%%%%%%%%%%%%%%% 

c1=-1/(tau); 

a1=-1/(h^2); 

b1=(1/tau)+aa+(2/(h^2)); 

for k=2:N; 

A1(k,k)=a1; 

A1(N+1,N+1)=a1; 

end;A1; 

for k=2:N; 

B1(k,k)=b1; B1(k,k-1)=c1; 

B1(N+1,N+1)=b1; B1(1,1)=1; 

B1(N+1,N)=c1; 

end;B1;C1=A1;C1; 

for j=1:M-1; 

for k=2:N+1; 

t1=(k-1)*tau; x1=(j)*h; 

phy1(k,j:j)=aa*exp(-t1)*cos(x1); 

end; 
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for j=1:M-1; 

x1=(j)*h; 

phy1(1,j:j)=cos(x1); 

end;phy1; 

for i=1:N+1; 

D(i,i)=1; 

end; D;D; 

I=eye(N+1,N+1); 

alpha1{1}=eye(N+1,N+1); 

betha1{1}=zeros(N+1,1); 

for j=1:M-1; 

alpha1{j+1}=inv(B1+C1*alpha1{j})*(-A1); 

betha1{j+1}=inv(B1+C1*alpha1{j})*(I*phy1(:,j:j)-C1*betha1{j}); 

end; 

U{M}=inv(I-alpha1{M})*betha1{M}; 

for Z=M-1:-1:1; 

U{Z}=alpha1{Z+1}*U{Z+1}+betha1{Z+1}; 

end; 

for Z=1:M; 

p1(:,Z+1)=U{Z}; 

end; 

p1(:, 1)=U{1}; 

for j=1:M+1; 

for k=1:N+1; 

t1=(k-1)*tau; 

x1=(j-1)*h; 

es1(k,j:j)=exp(-t1)*cos(x1); 

end; 
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end; 

abs(es1-p1); 

maxes1=max(max(es1)) ; 

maxapp1=max(max(p1)) ; 

maxerror1=max(max(abs(es1-p1))) 

%%%%%%%%%%%%%% solution for v(t,x)%%%%%%%%%%%%%%% 

a2=-1/(h^2); 

b2=(1/tau)+bb+(2/(h^2)); 

c2=-1/(tau); 

for k=2:N; 

A2(k,k)=a2; 

A2(N+1,N+1)=a2; 

end;A2; 

for k=2:N; 

B2(k,k)=b2; B2(k,k-1)=c2; 

B2(N+1,N+1)=b2; B2(1,1)=1; 

B2(N+1,N)=c2; 

end;B2; 

C2=A2;C2; 

for j=1:M-1; 

for k=2:N+1; 

t2=(k-1)*tau; x2=(j)*h; 

phy2(k,j:j)=(bb-bb1)*exp(-t2)*cos(x2)+bb1*p1(k-1,j); 

end; 

end; 

for j=1:M-1; 

x2=(j)*h; 

phy2(1,j:j)=cos(x2); 
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end;phy2; 

alpha2{1}=eye(N+1,N+1); 

betha2{1}=zeros(N+1,1); 

for j=1:M-1; 

alpha2{j+1}=inv(B2+C2*alpha2{j})*(-A2); 

betha2{j+1}=inv(B2+C2*alpha2{j})*(I*phy2(:,j:j)-C2*betha2{j}); 

end; 

V{M}=inv(I-alpha2{M})*betha2{M}; 

for Z=M-1:-1:1; 

V{Z}=alpha2{Z+1}*V{Z+1}+betha2{Z+1}; 

end; 

for Z=1:M; 

p2(:,Z+1)=V{Z}; 

end; 

p2(:, 1)=V{1}; 

for j=1:M+1; 

for k=1:N+1; 

t2=(k-1)*tau; 

x2=(j-1)*h; 

es2(k,j:j)=exp(-t2)*cos(x2); 

end; 

end; 

abs(es2-p2); 

maxes2=max(max(es2)) ; 

maxapp2=max(max(p2)) ; 

maxerror2=max(max(abs(es2-p2))) 

%%%%%%%%%%%%%% solution for w(t,x)%%%%%%%%%%%%%%% 

a3=-1/(h^2); 
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b3=(1/tau)+cc+(2/(h^2)); 

c3=-1/(tau); 

for k=2:N; 

A3(k,k)=a3; 

A3(N+1,N+1)=a3; 

end;A3; 

for k=2:N; 

B3(k,k)=b3; B3(k,k-1)=c3; 

B3(N+1,N+1)=b3; B3(1,1)=1; 

B3(N+1,N)=c3; 

end;B3; 

C3=A3;C3; 

for j=1:M-1; 

for k=2:N+1; 

t3=(k-1)*tau; x3=(j)*h; 

phy3(k,j:j)=(cc-cc1)*exp(-t3)*cos(x3)+cc1*p1(k-1,j); 

end; 

end; 

for j=1:M-1; 

x3=(j)*h; 

phy3(1,j:j)=cos(x3); 

end;phy3; 

alpha3{1}=eye(N+1,N+1); 

betha3{1}=zeros(N+1,1); 

for j=1:M-1; 

alpha3{j+1}=inv(B3+C3*alpha3{j})*(-A3); 

betha3{j+1}=inv(B3+C3*alpha3{j})*(I*phy3(:,j:j)-C3*betha3{j}); 

end; 
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w{M}=inv(I-alpha3{M})*betha3{M}; 

for Z=M-1:-1:1; 

w{Z}=alpha3{Z+1}*w{Z+1}+betha3{Z+1}; 

end; 

for Z=1:M; 

p3(:,Z+1)=w{Z}; 

end; 

p3(:, 1)=w{1}; 

for j=1:M+1; 

for k=1:N+1; 

t3=(k-1)*tau; 

x3=(j-1)*h; 

es3(k,j:j)=exp(-t3)*cos(x3); 

end; 

end; 

abs(es3-p3); 

maxes3=max(max(es3)) ; 

maxapp3=max(max(p3)) ; 

maxerror3=max(max(abs(es3-p3))) 

%%%%%%%%%%%%%% solution for z(t,x)%%%%%%%%%%%%%%% 

a4=-1/(h^2); 

b4=(1/tau)+dd+(2/(h^2)); 

c4=-1/(tau); 

for k=2:N; 

A4(k,k)=a4; 

A4(N+1,N+1)=a4; 

end;A4; 

for k=2:N; 
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B4(k,k)=b4; B4(k,k-1)=c4; 

B4(N+1,N+1)=b4; B4(1,1)=1; 

B4(N+1,N)=c4; 

end;B4; C4=A4;C4; 

for j=1:M-1; 

for k=2:N+1; 

t4=(k-1)*tau; x4=(j)*h; 

phy4(k,j:j)=(dd-dd1-dd2)*exp(-t4)*cos(x4)+dd1*p3(k-1,j)+dd2*p2(k-1,j); 

end; 

end; 

for j=1:M-1; 

x4=(j)*h; 

phy4(1,j:j)=cos(x4); 

end;phy4; 

alpha4{1}=eye(N+1,N+1); 

betha4{1}=zeros(N+1,1); 

I=eye(N+1,N+1); 

for j=1:M-1; 

alpha4{j+1}=inv(B4+C4*alpha4{j})*(-A4); 

betha4{j+1}=inv(B4+C4*alpha4{j})*(I*phy4(:,j:j)-C4*betha4{j}); 

end; 

z{M}=inv(I-alpha4{M})*betha4{M}; 

for Z=M-1:-1:1; 

z{Z}=alpha4{Z+1}*z{Z+1}+betha4{Z+1}; 

end; 

for Z=1:M; 

p4(:,Z+1)=z{Z}; 

end; 
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p4(:, 1)=z{1}; 

for j=1:M+1; 

for k=1:N+1; 

t4=(k-1)*tau; 

x4=(j-1)*h; 

es4(k,j:j)=exp(-t4)*cos(x4); 

end; 

end; 

abs(es4-p4); 

maxes4=max(max(es4)) ; 

maxapp4=max(max(p4)) ; 

maxerror4=max(max(abs(es4-p4))) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


