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ABSTRACT

DOA estimation methods seem to be very useful in the reconstruction of the original re-

ceived signals and help on the estimation of its location which is highly applicable in radars,

sonars, seismic exploration, and military surveillance. DOA estimation methods try to fig-

ure out the parameters hidden in the sensors data using different mathematical techniques

and physical properties of the geometry of the array of antennas and the impinging signals

themselves.

In this thesis, the DOA estimation methodology of wideband signals is studied and its com-

putational cost and execution time are investigated. Further, recent well-known wideband

algorithms are also investigated and simulated. Finally, The simulation results show the

main factors that affect the computational costs of DOA methods and how to control it to

reduce the complexity of the algorithms while maintaining a high resolution.

Keyword: Array Signal Processing; Direction-Of-Arrival; DOA; IMUSIC; CSS; WAVES;

TOPS
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ÖZET

DOA kestirim yöntemleri, asıl alınan sinyallerin yeniden yapılandırılmasında çok faydalı

görünmektedir ve radarlarda, sonarlarda, sismik keşiflerde ve askeri gözetimde yüksek oranda

geçerli olan yeri tahmin etmede yardımcı olmaktadır. DOA kestirim yöntemleri, farklı

matematiksel teknikleri ve anten dizisinin geometrisinin fiziksel özelliklerini ve çarpışma

sinyallerini kullanarak sensörler verilerinde saklı parametreleri belirlemeye çalışır.

Bu tezde, geniş bantlı sinyallerin DOA kestirim metodolojisi çalışılmış, hesaplama maliyeti

ve yürütme süresi incelenmiştir. Ayrıca, son zamanlarda bilinen geniş bantlı algoritmalar da

incelenmekte ve simüle edilmektedir. Son olarak, simülasyon sonuçları DOA yöntemlerinin

hesaplama maliyetlerini etkileyen ana faktörleri ve yüksek çözünürlüğü korurken algorit-

maların karmaşıklığını azaltmak için nasıl kontrol edileceğini göstermektedir.

Anahtar Kelimeler: Dizi Sinyal İşleme; Varış Yönü; DOA; IMUSIC; CSS; WAVES; TOPS
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CHAPTER 1

INTRODUCTION

Radio frequency (RF) signals are the electromagnetic waves that carry the information through

the wireless medium on many wireless communication systems between its two side, the

transmitter, and the receiver. The RF spectrum has a wide range of frequencies which di-

vided into sub-bands for different applications e.g. mobile communication, satellite, emer-

gency, police and military use. The main purpose of the communication system is to transfer

the maximum amount of information with minimum errors (Monzingo, Haupt, & Miller,

2011).

Recently, modern communication systems have increased rapidly on its capacity and on the

number of served users. Some cell phone infrastructures have reached its capacity of more

than 100 % of the number of served users. More intelligent solutions are required for the

communication system to be capable of handling this growing demands. One of the most

interesting technology today is using multiple antennas for transmitting and receiving. The

antenna is the device that transfers the electromagnetic signal from the transmitter into the

medium e.g. air, then the signal propagates through the medium and finally another antenna

transfer the signal from the air into the receiver. Using one antenna is already deployed in

many communication systems and it has reached its limitations on size and overall gain.

On the other hand, using multiple antennas increases the capability of design to meet the

requirements and improve the characteristics of transmission e.g. higher gain and more

directivity (Balanis, 2007).

In this thesis, an array of antennas or radioactive sensor elements on the receiving side are

investigated which have significant benefits in both communication and radar systems. The

array processing field studies array of sensor elements and its Recent developments on the

computational processors and digital signal process make it possible to carry many processes

on the data received. Array processing gained a lot of interests and have been deployed on

many applications e.g. radars, mobile communication, acoustics, aerospace, and satellite
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communication. On top of the array process topics, arises the direction of arrival (DOA)

estimation and its application in many fields (Monzingo et al., 2011).

DOA estimation methods try to extract the true angles of the exact number of the received

noisy signals which impinging on the array of sensors. This estimation is very useful in

recovering the signal of interest and suppressing the noise and other interfering signals. Also

estimating the signal sources angles helps on the estimation of its location which is highly

applicable in radars, sonars, seismic exploration, and military surveillance (Krim & Viberg,

1996). The idea of DOA estimation is to come up with the arrived signals true angles using

the received data collected from the sensors which have the power of the signals mixed with

noise (Balanis, 2007).

This thesis is arranged as follows: Chapter 1 introduces the array signal processing; the

DOA estimation, and its applications; the difference between the narrowband and wideband

signals; the computational cost and the complexity of each algorithm and how to calculate it

as it an important factor on rating the efficiency of the algorithms. Chapter 2 shows the signal

model for both narrowband and wideband signals and explains the idea of orthogonality

of subspaces and finally reviews the well-known DOA estimation methods and the latest

improvements on it. Chapter 3 is the core of this thesis which shows different methods of

DOA estimation of the wideband signal. Chapter 4 previews the simulation environment

and the analysis metrics used on it and the assumptions that have been taken within the

simulation. Chapter 5 shows the results of the simulation and discuss the computational cost

of each wideband methods and how to improve it. Finally, chapter 6 concludes the thesis

and view the future work that can be done to improve and develop a better DOA estimation

method.

1.1Array Signal Processing

Signal processing is about forming the signals into the most suitable mold for transmission

through different kind of medium e.g. free space, air, water, metals, and optic materials

without losing its assets. It’s also about receiving signals from the surrounding medium and

getting several types of information from it e.g. the information that carried by the signal, the

direction of arrival. Array signal process is the field that focuses on manipulation of signals

2



induced or impinging by an array of radiative sensors (Johnson & Dudgeon, 1993; Godara,

1997). The Array of sensors are used to measure the propagating wavefield and transferring

the field energy to electrical energy. The wavefield is assumed to have information about

the signal sources and so its sampled into a data set to be processed to extract as much

as possible information form it. Multiple snapshots are taken to get a high resolution of

the signals, though the signal processing using different kind of algorithms can determine

the number of sources, locate them and reconstruct the signals itself (Johnson & Dudgeon,

1993).

Array signal processing is a detection and estimation problem. The detection of multiple

signals using an array of sensor elements has been an attractive research topic for decades

due to its ability to overcome the limitation on diversity, beam width and beamforming of

single antenna (Krim & Viberg, 1996; Er, Cantoni, & Lee, 1990). The estimation problem

is in the core of the array signal process and in the signal process in general which tries to

figure out the values of some parameters which is estimated to be the most possible values

closed to the true values e.g. angles of arrivals, number of signals (Kay, 1993).

1.2Motivations

1.2.1DOA estimation problem

Several plane waves (Narrowband or wideband) impinging on an array of sensor elements

from different locations which we will assume they are emission points on the far-field space.

The Array of sensors are arranged in a linear uniform way called uniform linear array (ULA)

as in Figure 1.1. The sensor elements are equally spaced and the important parameter in

array processing is the manfield of the array of sensors. The estimation methods try to use

the characteristics parameters of both the incident signals and the geometry of the array to

estimate these parameters. One of the important parameters is the angle of arrival of the

signal and its components which shown in Figure 1.1 as 𝜃𝑖. Each indecent signal on each

element will be shifted in time by the array geometry related parameters which we can easily

relate it to the angle of arrival (Satish & L. Kashyap, 2018). This will be discussed in details

in chapter 2.
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Figure 1.1: The direction of arrival DOA problem
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DOA estimation has been investigated for decades and many researches explored the na-

ture of exploiting the sampled data so as to estimate the true angles of the incident signals,

however, in this thesis we are more concerned about the estimation of direction of arrival

of wideband signals due its difficulty to figure out its components and also we focus on the

computational cost of the recent methods due to its importance in the estimation in the real

application and how to improve it without losing the resolution of the DOA method.

1.2.2Application of DOA estimation

In this section, we will get a deep sight about the importance of the DOA estimation by

reviewing some applications in real life. These applications have different phenomenology

and related parameters to estimate and extract from the signals impinging on the array of

sensors. This section gives a hint about every field and the considerable position of DOA

estimation within it.

Radar

The elementary job of the radar system is to detect and locate objects depending on a simple

electromagnetic system. A signal emitted at a pre-specified frequency which hit the objects

and scattered into many directions. One of this reflected rays come back in the direction of

the radar to be detected by a receiving antenna which delivers it to the receiver. The most

important parameter extracted from it is the range between the radar and the object locations.

Other parameters include the presence of the target object, the exact location (the direction

of arrival and the range), relative velocity and other target related characteristics (Skolnik,

2001).

Radar using one antenna in the traditional radar systems can detect multiple targets with

large angular spacing between them. Once the sources are too close or the noise is spatially

colored, the radar cannot detect and process the received signals in an optimum way. On

the other hand, using array signal processing provides more flexibility and higher capacity

to overcome the limitations of the conventional radar system (Haykin, Litva, & Shepherd,

1993).

Phased array radar is one of the most recent developments which attracts many researches
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because of its ability to control the beam position which gives more angle of freedom to

direct the beam over the whole possible search area (Pell, 1988). Recent advances in the

technology of communication systems and digital signal processing (DSP) make it possible

to implement a digital phased array radar and provide more advanced architectures for the

beamformer and the processing of the sampled data of the received signals. In the digital

phased array, the weights of the array may be altered to the signal related parameters to

overcome the interference. (Talisa, O’Haver, Comberiate, Sharp, & Somerlock, 2016).

Sonar

Acoustics waves propagate better on water than on air with higher speed and less attenu-

ation over long distances. Sonar technology is similar to radar technology which used in

detection and location of objects and determination of objects characteristics. The different

between sonar and radar is that sonar is used underwater and use acoustic waves instead of

electromagnetic waves which used in radar systems (Lurton, 2002).

Array signal processing is applied to the sonar systems and provide many benefits where

the resolution of the sonar array can be improved to estimate the DOA of the targets. Sev-

eral array geometries are designed to meet the tough underwater environment characteristics

(Zhang, Gao, Chen, & Fu, 2013). Another improvement is the integration of DSP into the

array sonar technology which introduces various methods and techniques which has a high

impact on estimating a very precise value of the angle of arrival of the present targets (Li,

2012).

Seismology

Earthquakes usually accompanied with radiation of waves called seismic waves which prop-

agate through the earth. Studying this waves can improve our knowledge about the tectonics

of the earth and the underlying physics of earthquakes which help on expecting and avoiding

the destructive influences on populated areas. Seismology also involves the improvements

on the instruments and the physics of estimating and detecting the seismic waves which pro-

vide information about the inner layers of the earth and the beginning geographical locations

and the center of the earthquakes. Many researches have been made through the last century
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and nowadays many seismic stations are located all over the affected areas which help on

discovering the earthquakes early and warming the surrounded cities and populated areas

(Shearer, 2009; Udı́as & Vallina, 1999).

DOA estimation also used to detect and locate the earth reservoirs e.g. oil and natural gas

by receiving elastic waves caused naturally or by explosions and extract the related parame-

ters of the underlying layers and the concentration of several reservoirs (Miron, Le Bihan, &

Mars, 2005). Different aspects are affecting DOA estimation using seismic array including

the geometry of the sensors itself and the nature of the seismic waves which may results

on estimation errors (Maranò, Fäh, & Lu, 2014). The earthquakes are often in a sequence

of events which demand a highly sensitive and quick detection so several seismic stations

are used and the cooperation of this sites to get closely analogous waveforms requires more

effective estimation techniques. As the different results of regional sites are assumed to be

insignificant where a small difference between neighbors sites led to ambiguity on the detec-

tion and estimation of the earthquakes DOAs (Gibbons, Ringdal, & Kværna, 2008).

The different properties of each field where the DOA estimation presents led to several spec-

ified and deep studies to fit these characteristics and come up with an improved and may be

unique solutions for each different application.

Astronomy

Astronomy includes the studying of objects beyond the planet Earth and the investigation

of underlying physics of this objects and the interaction between them to gain a better un-

derstanding about our universe and the nature of elementary physics and other galaxies and

stars origin which contribute to our knowledge of the history of the humanity and the whole

universe (Fraknoi, Morrison, & Wolff, 2016). This investigation is done by the observations

of the aerospace electromagnetic spectrum from the terrestrial stations and adjacent areas

e.g. satellites and space shuttle missions (Vogt, 2001).

A telescope is an instrument that receives the incoming signals and extracts the information

from it. The telescope is the elementary resource for almost all the knowledge of astro-

physics. Several frequency bands e.g. radio and x-ray are analyzed using a different kind
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of foci systems. The impinging signals are suffering from low energy and different kind

of noise though there is a huge research interest on developing better instruments that are

more sensitive and very low noisy techniques and algorithms to extract stellar objects related

properties e.g. the rate of impinging, the direction of arrival and the polarization (Bradt,

2004).

Mobile Communication

The remote connection between users at different locations including voice conversation, text

and multimedia massaging and Internet data exchange using mobile equipment are called

mobile communication. Mobile communication systems have been subjected to many sig-

nificant developments from analog to digital and from serving a few users with speech con-

versation and text messaging only to crowded areas with more services e.g. Internet and

video gaming and still attracting researchers interests. Several kinds of cellular systems are

introduced depending on the coverage areas and the bit rate e.g. ground mobile networks,

mobile satellite. The fundamental job of any mobile communication system is to keep the

connection with mobile stations (MSs) both active and inactive ones and provide the ser-

vices upon demand and satisfying the minimum requirements for different type of services

(Stüber, 2000; Arokiamary, 2009).

The highly growing demands for mobile communications services e.g. more capacity, higher

data rate, and low latency increase the needs for new developments. Array signal processing

is used by mobile communication systems which help on locating and tracking of the MSs

which signals strength vary in power and signal to noise ratio (SNR). Adaptive beamformer

techniques depend on array processing are used to strengthen the downlink signal power

and maximize the SNR in the direction of the served users while canceling the surrounding

interference and jamming by nulling the beam in the direction of their sources (Godara,

1997; A. Al-Nuaimi, Shubair, & O. Al-Midfa, 2005). The DOA estimation also used in the

satellite communication systems to determine the attitude of the communication satellites to

adjust the beamforming toward the desired direction and so maximizing the signal power

and keeping a good data link between the satellite and the ground stations. Different kind

of sensors is used to determine the direction of arrival of the signal that contains the attitude
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information (Yang, He, Jin, Xiong, & Xu, 2014).

Military Surveillance

Locating and tracking both moving and standing multiple targets in real time are the most

uses of DOA estimation techniques in military reconnaissance and surveillance. Radar and

sonar systems are among these systems which have been previously mentioned in this sec-

tion. The radio frequency interferences (RFI) in such systems are caused inadvertently

from surrounding communication systems and intentionally induced by military jammer

(Xiaohong, Xue, & Liu, 2014). Not just estimate the DOA of the targets repeatedly but

also identify and associate the DOA information with their sources which led to various data

association techniques (Cai, Shi, & Zhu, 2017). The surveillance and reconnaissance system

includes various information gathering and processing subsystems e.g. wireless sensors net-

work and manned surveillance system which help on the final evaluation of the situation and

decision making. These systems help also on the coverage of larger area using unmanned

systems e.g. drones, motion detectors (Astapov, Preden, Ehala, & Riid, 2014).

All the above applications illustrate the importance of the DOA estimation on real life and

provide a clear motivation for our work on the array processing field.

1.3Narrowband and Wideband Signals

The band of frequencies that is between the lowest and highest frequencies determined at

10 dB below the highest radiation power of the radio frequency signal is called bandwidth

(Sabath, Mokole, & Samaddar, 2005). These frequency bands are a fundamental parameter

in the communication system and it’s affecting the design and operation of almost all the

communication devices, algorithms, and systems due to the limitation of handling very few

bands in the same efficient and economic system. In this section, the simple difference

between narrowband and wideband RF signals are previewed which affect the estimation of

DOA information as we will see later (Yoon, Kaplan, & McClellan, 2006).

1.3.1Narrowband signals

The very small portion of frequencies that is proportional to the center frequency of the sig-

nal (≤ 0.01) is called narrowband signal which is generated by merging the information
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Figure 1.2: The narrowband and wideband and ultra-wideband signals

into one sinusoidal carrier using different modulation techniques and is small enough to be

treated as one frequency on the detection side. Due to the difficulty of generating a true sinu-

soidal wave, the bandwidth of the signal is spreading lightly over the two sides of the central

frequency. In general, narrowband signals occupy small portions of the frequency spectrum,

affected by less noise and need less transmission power which make it very effective for

many applications where the available spectrum is limited and the served users is too many

(Barras, Ellinger, & Jäckel, 2002; Sabath et al., 2005).

1.3.2Wideband signals

Figure 1.2 clarifies the difference between narrowband and wideband signals which mainly

in bandwidth. Any signal spreads over a large portion of the frequency spectrum that is

proportional to its center frequency (0.01 ≤ ... ≤ 0.25) is called wideband signal. The wider

bandwidth means higher data rate which is also effective for many applications. For example,

the radar system uses wideband signals to achieve high resolution and better detection of

targets (Barras et al., 2002; Yoon, Kaplan, & H. McClellan, 2006).

In the next chapter, the difference between narrowband and wideband in the estimation of
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DOA will be investigated and a signal model for each type will be reviewed.

1.4Computational Costs and The Complexity of An Algorithm (O)

Computational complexity is simply about the determination of needed resources for a given

algorithm from the available resources which are limited in many applications. It’s a key

metric of how efficient an algorithm does where computational processing is the main con-

sumer of time, storage and capacity for a specific algorithm. It’s also a sign of negative

results on an efficiency metric if the computational costs of an algorithm are too high to be

considered in real applications (Gács & Lovász, 2000).

The calculation of complexity is often an approximation of the exact number of operations

per algorithm due to the complex mathematical expressions of the algorithms. Though higher

order terms of the expressions are only considered for the running time of the algorithm

(Sipser, 2012). This done when the inputs are very large which is the case in DOA estimation

methods.

For example, the function 𝑓(𝑛) = 9𝑛4 + 2𝑛3 + 10𝑛 includes three terms where the highest

order term is 9𝑛4 which computational cost can be approximated as 𝑛4. The multiplication

and addition are of the same order of complexity 𝑂(1). The notation 𝑂(1) is called asymp-

totic notation or big-O notation which used to illustrate the complexity of a function or an

algorithm (Sipser, 2012). Another example illustrates the complexity of the matrix. If we

have a matrix 𝐴 of size [𝑚× 𝑛] multiplied by matrix 𝐵 of size [𝑛× 𝑘] then the complexity

is 𝑂(𝑚𝑘(2𝑛− 1)) which is approximately 𝑂(2𝑚𝑛𝑘).

In this thesis, the complexity of well known wideband DOA estimation methods is investi-

gated to show that the reduction of complexity will be a great improvement which would be

vital for many applications.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, the basics of DOA estimation for both narrowband and wideband signals will

be reviewed then the most well-known estimation methods will be previewed which applied

to narrowband signals directly. Also, we will review the main idea behind these estimation

methods which is the orthogonality of signal and noise subspaces.

2.1The Signal Model

In Figure 1.1, an array of 𝑀 radioactive elements are linearly arranged. This array geometry

is called uniform linear array (ULA) which we will assume through this dissertation. The

array elements are equally spaced by a distance 𝑑 between every two successive elements that

is not larger than half the wavelength 𝜆 of the highest frequency of the impinging signals. A

𝐷 signals are emitted far away from the array that each wavefront impinges on all elements

from the same direction of emission with the same angle of arrival 𝜃.

As the first element of the array is assumed to be the reference for the array, each wave

impinges on the following elements will travel a longer distance than the wave impinge on

the first element with an additional distance equal to

(𝑚− 1) · 𝑑 · sin(𝜃𝑘), (2.1)

where 𝑚 = 1, 2, 3 . . .𝑀 is the index of array elements. The signal received by 𝑚th array

element without noise is

𝑥𝑚(𝑡) = 𝑠𝑘(𝑡) · exp(
−𝑗2𝜋(𝑚− 1)𝑑 sin(𝜃𝑘)

𝜆
), (2.2)

𝑥𝑚(𝑡) = 𝑎𝑚(𝜃𝑘) · 𝑠𝑘(𝑡), (2.3)

where 𝑠𝑘(𝑡) is the 𝑘th received wavefront. The exponential term multiplied by the wavefront
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is the steering vector 𝑎(𝜃𝑘) which has the DOA information for the 𝑘th signal.

𝛷𝑘 =
−2𝜋(𝑚− 1)𝑑 sin(𝜃𝑘)

𝜆
, (2.4)

called the spatial frequency that is related to the source of the 𝑘th received wavefront im-

pinging on the array with 𝜃𝑘 angle. (Chen, Gokeda, & Yu, 2010).

The signal model in (Schmidt, 1986) assumes 𝐷 signals with noise which could be merged

to the signal on the air or on the receiving equipment. Though the signal model is⎡⎢⎢⎢⎢⎢⎢⎣
𝑥1

𝑥2

...

𝑥𝑀

⎤⎥⎥⎥⎥⎥⎥⎦ =
[︁
𝑎(𝜃1) 𝑎(𝜃2) . . . 𝑎(𝜃𝐷)

]︁
⎡⎢⎢⎢⎢⎢⎢⎣
𝑠1

𝑠2
...

𝑠𝐷

⎤⎥⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎢⎣
𝑛1

𝑛2

...

𝑛𝑀

⎤⎥⎥⎥⎥⎥⎥⎦ (2.5)

or

X = AS + N. (2.6)

The steering matrix A depends on the array elements locations related to the reference ele-

ment coordinates and the angles of arrival of the received signals. Through the next sections,

we will review how to extract this DOA information.

2.1.1Narrowband signals

The steering matrix A for narrowband signal is
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A =
[︁
𝑎(𝜃1) 𝑎(𝜃2) . . . 𝑎(𝜃𝐷)

]︁𝑇
(2.7)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1

𝑒−𝑗𝛷1 𝑒−𝑗𝛷2 . . . 𝑒−𝑗𝛷𝐷

𝑒−𝑗2𝛷1 𝑒−𝑗2𝛷2 . . . 𝑒−𝑗2𝛷𝐷

...
...

...
...

𝑒−𝑗(𝑀−1)𝛷1 𝑒(−𝑗(𝑀−1)𝛷2 . . . 𝑒−𝑗(𝑀−1)𝛷𝐷

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.8)

This matrix is a vandermond matrix where 𝜃𝑖 ̸= 𝜃𝑗 , 𝑖 ̸= 𝑗 which is a kind of centro-symmetric

matrix (Strang, 2009).

To get a high resolution, 𝑁 snapshots are taken over a wide angle of search to estimate an

accurate value for the angles of arrival. The received signals are merged with noise that we

assume it is uncorrelated while the wavefronts received by each array element are correlated

because of arriving from the direction of the same sources. To extract the DOA information,

we calculate the covariance matrix [𝑀 ×𝑀 ] of the data as follows

V𝑥𝑥 = 𝐸{X(𝑡)X𝐻(𝑡)} = AP𝑠𝑠A
𝐻 + 𝜎2I, (2.9)

where 𝐸{.} is the statistical expectation, P𝑠𝑠 is the signal correlation matrix, 𝜎2 is the noises

variance and I is the identity matrix (Chen et al., 2010). Due to difficulty in obtaining the

real correlation matrix, the statistical expectation is estimated as following

V̂𝑥𝑥 =
1

𝑁

𝑁∑︁
𝑖=1

X(𝑡𝑖)X
𝐻(𝑡𝑖). (2.10)

V𝑥𝑥 is a Hermitian matrix that all its eigenvalues are real and all its eigenvectors are orthog-

onal when they are corresponding to different eigenvalues (Strang, 2009).
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(a) (b)

Figure 2.1: Visual illustration of the relation between the spatial and physical frequencies
and the main difference between (a) narrowband signals and (b) wideband signals

2.1.2Wideband signals

In wideband signals, the A steering matrix depends on frequency and not only the angle of

arrival as in narrowband signals where the shift in time is considered as phase shift which

is approximated as constant over the bandwidth. Figure 2.1 illustrates this dependency and

show that narrowband signal is treated as one frequency while the wideband signal is di-

vided to a number of narrowband signals by sampling it using Fourier Transform into 𝐿

frequency bins so the DOA estimation methods for narrowband can be applied (Yoon, Ka-

plan, & H. McClellan, 2006).

Though the signal model for a 𝐷 wideband incident wavefronts on a 𝑀 array elements

is

X(𝑓𝑗) = A(𝑓𝑗, 𝜃)S(𝑓𝑗) + N(𝑓𝑗) =
𝐿∑︁

𝑗=1

S𝑘(𝑓𝑗)𝑒
−𝑗2𝜋𝑓𝑗𝑢𝑚 sin 𝜃𝑘 + N𝑚(𝑓𝑗) (2.11)

where 𝑢𝑚 =
𝑑𝑚
𝑣

and 𝑑𝑚 = (𝑚 − 1)𝑑 is the linearly distance between any array element

and the reference element, 𝑣 is the wave propagation speed, 𝑗 = 1, 2, 3 · · ·𝐿 frequency

bins, 𝑘 = 1, 2, 3 · · ·𝐷 number of incident wavefronts and 𝑚 = 1, 2, 3 · · ·𝑀 number of

array elements. All this data are captured for 𝑛 = 1, 2, 3 · · ·𝑁 number of snapshots. The
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steering vector for frequency bin 𝑓𝑗 of any incident signal at angle 𝜃𝑘 will take the following

form

A𝑚(𝑓𝑗, 𝜃𝑘) =
[︁
a1(𝑓𝑗, 𝜃𝑘) a2(𝑓𝑗, 𝜃𝑘) . . . a𝑀(𝑓𝑗, 𝜃𝑘)

]︁𝑇
(2.12)

=
[︁
1 𝑒−𝑗2𝜋𝑓𝑗𝑢1 sin 𝜃𝑘 𝑒−𝑗2𝜋𝑓𝑗𝑢2 sin 𝜃𝑘 . . . 𝑒−𝑗2𝜋𝑓𝑗𝑢𝑀 sin 𝜃𝑘

]︁𝑇
(2.13)

Equation 2.11 is the fundamental vector matrix for further processing to extract the DOA

information with high resolution at a reasonable time.

2.2The Signal and Noise Subspaces

Any matrix consists of vector columns that span a space of any combination of this columns.

Hermitian matrix is a type of complex matrix that consists of complex vectors that is a

subspace of the complex numbers space C𝑛. Orthogonality of two vectors is that the dot

product of them must equal zero which led to that each subspace of different vectors is

orthogonal to another subspace of vectors. These subspaces are called orthogonal to each

other (Strang, 2009).

The main idea behind the orthogonality is that the covariance matrix [𝑀 × 𝑃 ] declared in

Equation 2.10 is a Hermitian matrix where all its eigenvectors are orthogonal. If the 𝐷

incident wavefronts is less than the 𝑀 array elements such that (𝑘 ≤ 𝑀 ; 𝑘 ≤ 𝑃 ), then the

matrix of rank 𝑘 and if 𝑘 = 𝑀 then its full rank. The rank of the matrix is its dimension.

This matrix can be spanned by any unitary matrix that includes any subset of columns of the

covariance matrix. The covariance matrix eigen decomposition is

V𝑥𝑥𝑤𝑟 = 𝑒𝑟𝑤𝑟 = 𝜎2𝑤𝑟 (2.14)

and its eigenvalues can be sort as following

𝑒1 ≥ 𝑒2 ≥ · · · ≥ 𝑒𝐷 ≥ 𝑒𝐷+1 ≥ · · · ≥ 𝑒𝑀 ≥ 0 (2.15)

which can be distinguished to two sets; the highest eigenvalues corresponding to the signals

and smallest eigenvalues are corresponding to noises. A signal and noise subspaces spanning
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the corresponding eigenvectors of the two eigenvalues sets can be arranged respectively as

following

E𝑠 =
[︁
𝑊1 𝑊2 . . . 𝑊𝐷

]︁
(2.16)

E𝑛 =
[︁
𝑊𝐷+1 𝑊𝐷+2 . . . 𝑊𝑀

]︁
(2.17)

The number of incident signals is critical in determining these subspaces. Signal subspace is

the column subspace and the noise subspace is the null row space of the covariance matrix

(Paulraj et al., 1993). After determining the signal subspace, the DOA information can be

extracted from it (Chen et al., 2010).

For more information about the matrix subspaces, refer to this good reference (Strang, 2009)

in linear algebra written by Prof. Strang Gilbert.

2.3DOA Estimation Methods

Several approaches tried to introduce high-resolution DOA estimation methods. Here we

reviewed the most well-known methods which gain huge interests in the last decades both in

real life application and research developments due to its potential characteristics (Paulraj et

al., 1993).

2.3.1MUSIC

Based on the idea of signal and noise subspaces; the Multiple SIgnal Parameter Estimation

(MUSIC) method claims that when the number of impinging wavefronts on the array is lower

than the number of its elements (𝐷 ≤ 𝑀 ), then the AP𝑠𝑠A
𝐻 is singular and

|AP𝑠𝑠A
𝐻 | = |V𝑥𝑥 − 𝑒I| = 0, (2.18)

where the 𝐷 highest eigenvalues of the covariance matrix should be corresponding to the

incident signals and the rest (𝑀 − 𝑑) eigenvalues is equivalent to zero where 𝑒𝑚𝑖𝑛I = 𝜎2I

but due to the shortage of getting more snapshots of the sampled data in practical, its values
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variance can be in cluster. Its limit goes to zero when the number of data samples goes to

infinity (Schmidt, 1986).

Let the corresponding eigenvectors 𝑤𝑟 of the covariance matrix including the noise eigenval-

ues only which are the minimum as following

V𝑥𝑥𝑤𝑟 = 𝑒𝑟,𝑚𝑖𝑛𝑤𝑟, (2.19)

where 𝑟 = 𝐷 + 1, 𝐷 + 2, · · · ,𝑀 . Substitute Equation 2.9 into 2.19, then the equation will

be

(AP𝑠𝑠A
𝐻 + 𝑒𝑚𝑖𝑛I)𝑤𝑟 = 𝑒𝑟,𝑚𝑖𝑛𝑤𝑟, (2.20)

and since P𝑠𝑠 is non-singular and A is full rank, then

AP𝑠𝑠A
𝐻𝑤𝑟 = 0 (2.21)

or

A𝐻𝑤𝑟 = 0 (2.22)

which indicate that the eigenvectors of noise subspace are orthogonal to the columns of

steering matrix that are in the signal subspace. This means that nulling the corresponding

noise subspace in the steering matrix will declare the DOA of incident signals but due to the

lack in snapshots, some noise will appear. The power spectrum for the MUSIC algorithm

is

F(𝜃) =
1

A𝐻(𝜃)E𝑛E𝐻
𝑛 A(𝜃)

(2.23)

where E𝑛 is a matrix of noise eigenvectors declared in Equation 2.17. When the denominator

in Equation 2.23 goes to zero for the true angles of the signals, the power spectrum will have

peaks indicating this angles.
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2.3.2Root-MUSIC

MUSIC algorithm gives peaks on the true angles of arrival and to find them a human obser-

vation or some sort of searching algorithm is needed which is not too practical. Therefore,

to extract the peaks root-MUSIC was introduced and proposed a final polynomial form as

following

Q(𝜃) =
𝑁+1∑︁

𝑢=−𝑁+1

𝑥𝑢𝑧
−𝑢 (2.24)

and peaks of the MUSIC algorithm are the roots of this polynomial.

Let’s assume that

G = E𝑛E
𝐻
𝑛 (2.25)

then the MUSIC spectrum will be

F(𝜃)−1 =
𝑁∑︁
𝑣=1

𝑁∑︁
𝑢=1

𝑧𝑢G𝑣𝑢𝑧
−𝑣 (2.26)

=
𝑁∑︁
𝑣=1

𝑁∑︁
𝑢=1

𝑧𝑢−𝑣G𝑣𝑢 (2.27)

where the 𝑧 is the steering vectors. By letting ℎ = 𝑢− 𝑣, the Equation 2.27 can be simplified

to

F(𝜃)−1 =
𝑁−1∑︁

ℎ=−𝑁+1

𝑧ℎGℎ (2.28)

where

Gℎ =
∑︁

ℎ=𝑢−𝑣

G𝑣𝑢 (2.29)

which is the summation of all G diagonal elements. The angles of arrival are corresponding

to the 𝑀 roots close to the unit circle (Barabell, 1983). After determining this roots, the
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angle of arrival will be

𝜃 = sin−1(
𝜆

2𝜋𝑑
)𝑎𝑟𝑔(𝑧1) (2.30)

2.3.3ESPRIT

ESPRIT stands for Estimation of Signal Parameters via Rotational Invariance Technique

which is a well known DOA estimation method depending on subdividing the steering array

to two well-displaced arrays that exploit the DOA information by taking the eigen decom-

position of the estimated data covariance matrix mentioned in Equation 2.10 and this two

sub-arrays (Paulraj, Roy, & Kailath, 1986).

The two sub-arrays will have a signal model given by

X1 = AS + N1 (2.31)

X2 = AΓS + N2, (2.32)

where N1 and N2 are the additive noise vectors added to the two arrays respectively, and

Γ is the rotation [𝑀 × 𝑀 ] matrix expresses the displacement between the two arrays and

defined by

A =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑧1 0 . . . 0

0 𝑧2 . . . 0
...

...
...

...

0 0 . . . 𝑧𝑀

⎤⎥⎥⎥⎥⎥⎥⎦ , (2.33)

where 𝑧𝑚 = 𝑒𝑗𝜆𝑑 cos 𝜃𝑚 and 𝑑 is the distance between the two arrays. The cross covariance

matrix that relates the two arrays is

V𝑥1𝑥2 = 𝐸{X1(𝑡)X
𝐻
2 (𝑡)} = AΓ𝐻P𝑠𝑠A

𝐻 , (2.34)

and according to eigen decomposition of covariance matrix stated in Equation 2.20, we can
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say that

V𝑥𝑥 − 𝑒𝑚𝑖𝑛I = AP𝑠𝑠A
𝐻 = Q𝑥𝑥, (2.35)

which implies

Q𝑥𝑥 − 𝛽V𝑥1𝑥2 = AP𝑠𝑠A
𝐻 − 𝛽AΓ𝐻P𝑠𝑠A

𝐻 = AP𝑠𝑠(I− 𝛽Γ𝐻)A𝐻 (2.36)

where the eigenvalues of the subspace spanned by both Q𝑥𝑥 and V𝑥1𝑥2 and equal to the

diagonal elements of Γ. Other eigenvalues in the null space of this pair are all equal to

zeros.

Though, the ESPRIT method tries to get the eigen decomposition of the covariance matrix,

then calculate the matrices in Equation 2.34 and 2.35 and get the 𝑑 eigenvalues of the matrix

pair {AΓ𝐻P𝑠𝑠A
𝐻 ,AP𝑠𝑠A

𝐻} that within the unit circle which construct the Γ subspace

(Roy, Paulraj, & Kailath, 1986).

2.3.4Latest improvements

In recent decades, DOA estimation got a huge interest in the field of research and develop-

ments to explore further areas and developing the methods to be more efficient and robust.

This areas of interest include different geometry arrays, wideband signals, and correlated sig-

nals. Some of this improvements are discussed in this references (Yoon, Kaplan, & H. Mc-

Clellan, 2006; Chen et al., 2010; Krim & Viberg, 1996; Paulraj et al., 1993; Amin & Zhang,

2009). In this thesis, we are more interesting about the DOA estimation of wideband signals

and its methods.

21



CHAPTER 3

WIDEBAND DOA ESTIMATION METHODOLOGY

In this chapter, we will discuss the various methods of wideband DOA estimation that can be

categorized into two main ways (Incoherent and coherent) of processing the received signal

data that was expressed in Equation 2.10. The basic concept of wideband DOA estimation

illustrated in Figure 3.1 is to use Fast Fourier Transform (FFT) or a filtering technique on

the received data to subdivide the wideband into a number of narrowbands. Then the data

correlation matrix for each sub-band is estimated and then several techniques are proposed

to apply as we will see later. The final result of those methods is to get a matrix that we

can apply one of the narrowband DOA estimation methods on it. Often MUSIC algorithm is

applied (Demmel, 2009).

3.1Incoherent Methods

The incoherent methods apply narrowband estimation methods directly on the correlation

matrices of each sub-band and then stratify some techniques to merge the produced estimates

in a way that results in a high resolution and accurate evaluation of the true angles of the

sources (el Ouargui, Frikel, & Said, 2018).

3.1.1IMUSIC

In incoherent MUSIC; after the correlation matrix for each frequency bin is estimated, the

eigen decomposition is applied for each correlation matrix as in the narrowband signals to

Figure 3.1: The basic concept of the DOA estimation of a wideband signals
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get the signal and noise subspaces. Then the average is taken, for eigenvectors of the noise

subspaces, for all frequency bins to estimate the DOA. IMUSIC spectrum is calculated by

either one of the following

F1(𝜃) =
a𝐻(𝑓𝑗, 𝜃)a(𝑓𝑗, 𝜃)

1

𝐿

∑︀𝐿
𝑗=1

1

𝑀 −𝐷

∑︀𝑀
𝑚=𝐷+1 a

𝐻(𝑓𝑗, 𝜃)E𝑛(𝑓𝑗)E𝐻
𝑛 (𝑓𝑗)a(𝑓𝑗, 𝜃)

, (3.1)

F2(𝜃) =
a𝐻(𝑓𝑗, 𝜃)a(𝑓𝑗, 𝜃)∏︀𝐿

𝑗=1

1

𝑀 −𝐷

∑︀𝑀
𝑚=𝐷+1[a

𝐻(𝑓𝑗, 𝜃)E𝑛(𝑓𝑗)E𝐻
𝑛 (𝑓𝑗)a(𝑓𝑗, 𝜃)]

1
𝐿

. (3.2)

where the 𝑗 = 1, 2, · · ·𝐿 is the number of frequency bins and 𝑚 = 𝐷+1, 𝐷+2, · · ·𝑀 is the

number of eigenvectors corresponding to the noise subspace. The peaks over the produced

spectrum are corresponding to the true angles of the sources. This method called Incoherent

MUSIC due to the use of same narrowband MUSIC method for all frequency bins at once

(Wax, Shan, & Kailath, 1984).

This method is usually effective in high SNR conditions and also when the signals are well

separated from each other while suffering from errors and produce side peaks at wrong an-

gles when the SNR is low which is the case in many situations. Also, the level of noise is

assumed to be flat over the frequency range which is not the usual condition (Yoon, Kaplan,

& H. McClellan, 2006). This drawbacks in incoherent methods led to the proposition of the

coherent methods which overcome this issues.

3.2Coherent Methods

The coherent methods try to apply some focusing and transformation strategies and therefore,

achieving a single universal covariance matrix that corresponding to the wideband signal

which based on the fact that noise subspace vectors are orthogonal to the signal correspond-

ing vectors in the steering matrix. Thus profiting from the assembling of non uniformly

distributed DOA information in different frequencies over the wideband spectrum of the tar-

get signals and also reducing the complexity of calculating the eigen decomposition for each

frequency bin (Yoon, Kaplan, & McClellan, 2006; Wang & Kaveh, 1985).
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3.2.1CSS

Coherent Signal Subspace (CSS) method was the first to propose the coherent scheme which

basically depends on the pre-estimation of the DOA using one of the narrowband methods

and then applying a focusing matrix thus, transforms the correlation matrices for all frequen-

cies into a reference focusing frequency 𝑓0 and it is assumed that a transformation matrix

T(𝑓𝑗) transforms the steering matrix into a new steering matrix at 𝑓0 given by

T(𝑓𝑗)A(𝑓𝑗) = A(𝑓0) (3.3)

Let the correlation matrix of the 𝑗th frequency calculated by

V𝑥𝑥(𝑓𝑗) = A(𝑓𝑗, 𝜃)P𝑠𝑠(𝑓𝑗)A
𝐻(𝑓𝑗, 𝜃) + 𝜎2(𝑓𝑗)I, (3.4)

where P𝑠𝑠 is the signal correlation matrix, 𝜎2 is the noises variance and I is the identity

matrix. The general correlation matrix for all frequency bins which called universal spatial

correlation matrix (USCM) is calculated as follows

V̂𝑓0(𝑓𝑗) =
𝐿∑︁

𝑗=1

T(𝑓𝑗)V𝑥𝑥(𝑓𝑗)T
𝐻(𝑓𝑗) (3.5)

where the T(𝑓𝑗) is the transformation matrix from 𝑓𝑗 to 𝑓0 which is a diagonal and unitary

matrix given by

T(𝑓𝑗) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎1(𝑓0, 𝜃0)

𝑎1(𝑓𝑘, 𝜃0)
0 . . . 0

0
𝑎2(𝑓0, 𝜃0)

𝑎2(𝑓𝑘, 𝜃0)
. . . 0

...
...

...
...

0 0 . . .
𝑎𝑀(𝑓0, 𝜃0)

𝑎𝑀(𝑓𝑘, 𝜃0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.6)

where the steering vector 𝑎𝑚(𝑓0, 𝜃0) is 𝑚th element at the estimated 𝜃0 angle using Capon

or Periodogram method on the preliminary step (Wang & Kaveh, 1985). This is the simplest

way to estimate the transformation matrix. Another higher resolution and more accurate
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method is the signal subspace transformation (SST) matrix proposed in (Doron & Weiss,

1992). From equations 3.5 and 3.6 and using the assumption in 3.3, the general correlation

matrix can be calculated as following

V̂𝑓0(𝑓𝑗) =
𝐿∑︁

𝑗=1

[T(𝑓𝑗)A(𝑓𝑗, 𝜃)P𝑠𝑠(𝑓𝑗)T
𝐻(𝑓𝑗)A

𝐻(𝑓𝑗, 𝜃) + 𝜎2(𝑓𝑗)T(𝑓𝑗)T
𝐻(𝑓𝑗)] (3.7)

=
𝐿∑︁

𝑗=1

[A(𝑓0, 𝜃)P𝑠𝑠(𝑓𝑗)A
𝐻(𝑓0, 𝜃) + 𝜎2(𝑓𝑗)T(𝑓𝑗)T

𝐻(𝑓𝑗)] (3.8)

= A(𝑓0, 𝜃0)
𝐿∑︁

𝑗=1

[P𝑠𝑠(𝑓𝑗)]A
𝐻(𝑓0, 𝜃0) + 𝐵

𝐿∑︁
𝑗=1

𝜎2(𝑓𝑗)I (3.9)

it’s can be further simplified to

V̂𝑓0(𝑓𝑗) = A(𝑓0, 𝜃0)P𝑠𝑠(𝑓0)A
𝐻(𝑓0, 𝜃0) + 𝜎2(𝑓0)I (3.10)

where

P𝑠𝑠(𝑓0) =
𝐿∑︁

𝑗=1

P𝑠𝑠(𝑓𝑗) (3.11)

and

𝜎2(𝑓0) = 𝐵

𝐿∑︁
𝑗=1

𝜎2(𝑓𝑗) (3.12)

Equation 3.10 is approximately the same as in narrowband method and MUSIC can be used

to estimate the DOA information. It can be easily shown that the matrix in 3.10 has a smallest

𝑀 −𝑑 eigenvalues corresponding to the noise subspace and therefore MUSIC algorithm can

be applied (Wang & Kaveh, 1985).

CSS estimation method is depending in the first place on the initial estimation of the focus-

ing angles and how it close to the true DOA angles which may dominate the results of the

algorithm and led to the wrong estimation in case of poor evaluation of the focusing angles

(Pal & Vaidyanathan, 2009). Also, CSS is an iterative method and each iterate is evaluated

in only one direction, thus, if there are multiple well-separated sources, then the iterations
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will increase. Also, the successive iterates help in improving the following estimation. De-

spite the multiple iterations of CSS method, it takes less computational costs compared with

the IMUSIC because it is applying the eigen decomposition once on the general correlation

matrix while IMUSIC applies the eigen decomposition to all frequency bins correlation ma-

trices. CSS method acts well in the low SNR due to the taking the average estimation of the

coherent frequencies. It is also more robust to the noise than IMUSIC which act better in

high SNR (Wang & Kaveh, 1985; Yoon, Kaplan, & McClellan, 2006).

3.2.2WAVES

Weighted Average of Signal Subspace (WAVES) method is a modified algorithm that based

on Weighted subspace fitting (WSF) method (Viberg, Ottersten, & Kailath, 1991). WSF

method exploits the DOA parameters using the signal subspaces for frequency bin as follow-

ing

𝜃𝑘 = arg min
𝑘=1,2,··· ,𝐷

{
𝐿∑︁

𝑗=1

|A(𝑓𝑗, 𝜃)Y(𝑓𝑗) − E𝑠(𝑓𝑗)G(𝑓𝑗)|2𝐹} (3.13)

where G(𝑓𝑗) is a diagonal matrix acting as a weighting matrix which diagonal elements

calculated by

G(𝑓𝑗)𝑘𝑘 =
𝑒𝑘(𝑓𝑗) − 𝜎2

(𝑒𝑘(𝑓𝑗)𝜎2)
1
2

(3.14)

where 𝑒𝑘(𝑓𝑗) is the largest eigenvalue corresponding to the 𝑘th signal at the 𝑗th frequency

and

Y(𝑓𝑗) = G(𝑓𝑗)E𝑠(𝑓𝑗)A
†(𝑓𝑗, 𝜃𝑗) (3.15)

where E𝑠(𝑓𝑗) is the signal subspace at the 𝑗th frequency and A†(𝑓𝑗, 𝜃𝑗) is the pseudo-inverse

matrix of the steering matrix calculated by

A†(𝑓𝑗, 𝜃) = (A𝑇 (𝑓𝑗, 𝜃)A(𝑓𝑗, 𝜃))−1A𝑇 (𝑓𝑗, 𝜃) (3.16)
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WAVES method uses the idea of transformation matrix in Equation 3.6 that used by CSS

method to transform the weighted signal subspaces into a universal one and applies this

transformation matrix to the WSF (di Claudio & Parisi, 2001). Though Equation 3.13 will

be

𝜃𝑘 = arg min
𝑘=1,2,··· ,𝐷

{
𝐿∑︁

𝑗=1

|A(𝑓0, 𝜃)Y(𝑓𝑗) −T(𝑓𝑗)E𝑠(𝑓𝑗)G(𝑓𝑗)|2𝐹} (3.17)

WAVES method suggests a new matrix Ẑ(𝑓𝑗) with rank 𝐷 to get the signal subspace as

following

Ẑ(𝑓𝑗) =
[︁
T(𝑓1)E𝑠(𝑓1)G(𝑓1) T(𝑓2)E𝑠(𝑓2)G(𝑓2) · · · T(𝑓𝐿)E𝑠(𝑓𝐿)G(𝑓𝐿)

]︁
(3.18)

but due to noise, its rank will be a full rank and after applying the SVD on Ẑ(𝑓𝑗) matrix as

following

𝑆𝑉 𝐷{Ẑ(𝑓𝑗)} =
[︁
E𝑠 E𝑛

]︁⎡⎣𝑒𝑠 0

0 𝑒𝑛

⎤⎦⎡⎣𝑊𝑠

𝑊𝑛

⎤⎦ (3.19)

the universal signal and noise subspaces can be obtained. The left singular vectors E𝑛 cor-

responding to the 𝑀 −𝐷 universal noise subspace which can be used in MUSIC algorithm

to get the DOA angles (di Claudio & Parisi, 2001).

WAVES method performs better than CSS method due to the use of the signal subspaces

instead of the correlation matrices itself but suffering from complexity which is much more

than CSS method due to the calculation of eigen decomposition for all frequency bins of the

signal. Also, WAVES method depends on the initial estimation of focusing angles to get the

transformation matrix which affects the accuracy of the whole algorithm DOA estimation (di

Claudio & Parisi, 2001; Yoon, 2004).
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3.2.3TOPS

In (Yoon, Kaplan, & McClellan, 2006; Yoon, 2004), a new DOA method called Test of

Orthogonality of Projected Subspaces (TOPS) is proposed to overcome the main drawback

of CSS and WAVES methods which is the dependency on the initial focusing estimation.

TOPS method depends on the transformation of the steering matrix at 𝑗th frequency to an-

other focusing frequency called reference frequency. Unlike the CSS and WAVES methods,

in which the transformation matrix is applied once, the transformation applied to all fre-

quencies in TOPS method. The transformation matrix is diagonal and given by Equation

3.6. Applying this matrix Ψ at the 𝑙th frequency and 𝑙th angle to the array steering matrix

a𝑚(𝑓𝑗, 𝜃𝑗) at 𝑗th frequency and 𝑗th angle gives

Ψ𝑚,𝑚(𝑓𝑙, 𝜃𝑙)a𝑚(𝑓𝑗, 𝜃𝑗) = 𝑒−𝑗2𝜋𝑓𝑙𝑣𝑚 sin(𝜃𝑙)𝑒−𝑗2𝜋𝑓𝑗𝑣𝑚 sin(𝜃𝑗) (3.20)

= 𝑒
−𝑗2𝜋𝑣𝑚(𝑓𝑙+𝑓𝑗)(

𝑓𝑙 sin(𝜃𝑙)

𝑓𝑙 + 𝑓𝑗
+
𝑓𝑗 sin(𝜃𝑗)

𝑓𝑙 + 𝑓𝑗
)

(3.21)

= 𝑒−𝑗2𝜋𝑣𝑚𝑓ℎ sin(𝜃ℎ) (3.22)

= a𝑚(𝑓ℎ, 𝜃ℎ) (3.23)

where 𝑓ℎ = 𝑓𝑙 + 𝑓𝑗 and

sin(𝜃ℎ) =
𝑓𝑙 sin(𝜃𝑙)

𝑓𝑙 + 𝑓𝑗
+

𝑓𝑗 sin(𝜃𝑗)

𝑓𝑙 + 𝑓𝑗
(3.24)

this transforms the steering matrix from frequency 𝑗 and angle 𝜃𝑗 to frequency ℎ and angle

ℎ which is the aim of the TOPS to superimpose all frequencies into one frequency bin using

the idea of transformation. Note that, sin(𝜃ℎ) = sin(𝜃𝑗) when 𝜃𝑗 = 𝜃𝑙.

Then the eigen decomposition of all frequencies bins correlation matrices is calculated to

obtain the signal subspaces E𝑠(𝑓𝑗). This E𝑠(𝑓𝑗) is the signal subspace that spans the same

range spanned by the steering matrix. Though it can be assumed that

E𝑠(𝑓𝑗) = A𝑚(𝑓𝑗, 𝜃)C𝑗 (3.25)
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where C𝑗 is a full rank matrix. Now, applying the transformation matrix to Equation 3.25

will give

Ψ𝑚,𝑚(∆𝑓, 𝜗)E𝑠(𝑓𝑗) = Ψ𝑚,𝑚(∆𝑓, 𝜗)A𝑚(𝑓𝑗, 𝜃)C𝑗 (3.26)

= A𝑚(𝑓ℎ, 𝜃)C𝑗 (3.27)

where ∆𝑓 = 𝑓𝑖 − 𝑓𝑗 and

sin(𝜃ℎ) =
∆𝑓 sin(𝜗)

𝑓𝑖
+

𝑓𝑗 sin(𝜃𝑗)

𝑓𝑖
. (3.28)

Here the transformation is using this matrix Ψ𝑚,𝑚(∆𝑓, 𝜗) to transform from the 𝑗th fre-

quency to the 𝑟th frequency. The transformation led to the elementary idea underlying TOPS

method which is the range space spanned by the transformed signal subspace is the same as

of the original steering matrix A𝑚(𝑓𝑗, 𝜃) as follows

𝑟𝑎𝑛𝑔𝑒{Ψ𝑚,𝑚(∆𝑓, 𝜗)E𝑠(𝑓𝑗)} = 𝑟𝑎𝑛𝑔𝑒{A𝑚(𝑓𝑗, 𝜃)} (3.29)

.

Though, TOPS method constructs the following matrix

Q(𝜗) =
[︁
Y𝐻(𝑓1)E𝑛(𝑓1) Y𝐻(𝑓2)E𝑛(𝑓2) · · · Y𝐻(𝑓𝐿)E𝑛(𝑓𝐿)

]︁
(3.30)

which used to estimated the true angles by applying the SVD and taking the least singular

values and where

Y(𝑓𝑗) = P(𝑓𝑗)Ψ𝑚,𝑚(∆𝑓𝑗, 𝜗)E𝑠(𝑓0) (3.31)

where ∆𝑓𝑗 = 𝑓𝑗 − 𝑓0 and P(𝑓𝑗) is the projection matrix used to reduce the errors occur on

the calculation of Q matrix and calculated by

P(𝑓𝑗) = I− (a𝐻
𝑚(𝑓𝑗, 𝜗)a𝑚(𝑓𝑗, 𝜗))−1a𝑚(𝑓𝑗, 𝜗)a𝐻

𝑚(𝑓𝑗, 𝜗). (3.32)
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which is a projection in the null space of a𝑚(𝑓𝑗, 𝜗). Finally the TOPS spectrum will be

𝐹 (𝜃) = arg min(
1

𝑙𝑚𝑖𝑛(𝜃)
) (3.33)

where the 𝑙𝑚𝑖𝑛(𝜃) is the minimum signaler values of the 𝑄 matrix and the true angles occur

when 𝑄 matrix losses its rank (Yoon, Kaplan, & McClellan, 2006).

The reference frequency 𝑓0 is a key factor in TOPS method and selected for the highest

difference between the least eigenvalue corresponding to signals and the highest eigenval-

ues corresponding to noises, therefore, achieving the highest resolution by selecting lowest

interference with noise.

TOPS method compared to CSS and WAVES methods outperforms their performance in

high SNR conditions and overcomes their drawbacks of initial estimation and the wrong

estimation when on noise exists. TOPS method is very complex due to the calculation of

eigen decomposition for all frequency bins and the estimation of the transformation matrix

for all hypothesized search angles which add more computational costs (Yoon, 2004).

3.2.4Other significant methods and improvements

A lot of research still have interests in wideband DOA estimation subject due to its wide

range of applications and although because there are a lot of points still not satisfied properly

e.g. a low computational cost, higher robust to noise and very low SNR condition.

In (Wei & Jun, 2009), a new method called Source Line Fitting Method (SLFM) proposed

which exploit the time delay information to estimate the DOA information. It is assuming

that the distance between array elements to be larger than half the wavelength, and therefore,

it does not use the phase information in the steering vectors. SLFM applies a ADC to the

sensors data and uses a line fitting method on the output. The plotted result shows lines that

refer to each wideband signals and SLFM uses its slop to estimate the true angle of each

source. SLFM uses a developed algorithm for the line fitting to estimate the DOA angles

which based on Matrix Pencil (MP) algorithm (Abed-Meraim & Hua, 1997). SLFM method

does not use a filter of FFT to subdivide the wideband signal to multiple narrowbands and

also it has the advantage of lower computational costs than other coherent methods.
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Another significant method called Test of Orthogonality of Frequency Subspaces (TOFES)

proposed based on TOPS method. TOFES basically modifies the Equation of 𝑄 matrix in

3.30 to have the ordinary MUSIC denominator as the elements of the matrix calculated using

SVD instead of EVD for each frequency bin as following

Q(𝜃) =
[︁
A𝐻(𝑓1, 𝜃)E𝑛(𝑓1)E𝑛(𝑓1)

𝐻A(𝑓1, 𝜃) · · · A𝐻(𝑓𝐿, 𝜃)E𝑛(𝑓𝐿)E𝑛(𝑓𝐿)𝐻A(𝑓𝐿, 𝜃)
]︁

(3.34)

then the SVD is applied as in 3.33 and the DOAs can be obtained by searching for the peaks.

The results show that TOFES outperforms other coherent methods in high and moderate

SNR condition. The main advantage of TOFES is that it does not need any initial focus-

ing estimation and also the transformation not used so it stands amidst the incoherent and

coherent methods (Yu, Liu, Huang, Zhou, & Xu, 2007).

Other significant DOA methods include the use of a non-uniform array of sensors e.g. L-

shaped and sparse arrays. Some of this developments are mentioned in this references (Shen

et al., 2014; Ioushua, Yair, Cohen, & Eldar, 2017; El Ouargui, Safi, & Frikel, 2018).
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CHAPTER 4

SIMULATION

On this thesis, we build up a simulation model to demonstrate the DOA problem and im-

plement the wideband DOA methods on it. Many published papers and dissertations have

studied the resolution, accuracy, and efficiency of this algorithms (Amin & Zhang, 2009;

Yoon, 2004). Though, we focus on the investigation of various aspects that directly affect

the computational costs of running these algorithms. In this chapter, the simulation environ-

ment, parameters and assumptions are presented.

4.1Simulation Environment

Simply, simulation is a way of testing the performance of various techniques and algorithms

in real-like environments under certain conditions and circumstances before deploying the

most effective and realizable among these algorithms in a real-life application. Monte Carlo

Simulation is the most well-known kind of imitation that uses random choices and decisions

in the simulation stages to provide a full examination of the maximum possible number

of various conditions that might happen in the real-life applications (Raychaudhuri, 2008).

we use MATLAB program version (R2014a) to create a whole simulation environment for

several wideband DOA estimation cases. The aim is to test the distinct aspects affecting the

computational costs of DOA estimation techniques (Traat, n.d.).

4.2Simulation Parameters and Assumptions

An array of sensors in a (ULA) geometry are assumed. The number of array elements 𝑀 =

10 which equally spaced by a distance 𝑑 = 0.5 with a value normalized to half the wavelength

of the indecent waves. This normalization help on testing several kinds of signals with

different frequencies without changing the element location. The first array element is the

elementary element and all calculations of delay shift caused by the array of sensors are

related to its location.

A number of wideband signals 𝐷 = 3 are emitted from far-field sources that the wavefronts
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Figure 4.1: Power spectrum of the generated signals

impinging on the array elements are in parallel. This assumption removes any additional

calculation related to the near-field radioactive sources. The signals bandwidth are within

the same range of frequencies where 𝑓𝑙 = 250, 𝑓ℎ = 450, 𝑓0 = 350 and 𝐹𝑠 = 1200;

the lowest frequency, the highest frequency, the center frequency, and the Nyquist sampling

frequency respectively. The bandwidth is 𝑏𝑤 = 𝑓ℎ− 𝑓𝑙 = 450 − 250 = 200. These values

are all used in a normalized way to the center frequency in the calculation of all algorithms,

though it’s easy to change it in the simulation script to different frequency bands and get the

results. The power of the signals is 10 times the power of the noise. The signal demonstrated

as a wideband signal which spreads over 𝐿 frequencies, expressed by

𝑠𝑖(𝑡) =
𝐿∑︁

𝑗=1

𝑔𝑖(𝑡) exp(𝑗2𝜋𝑓𝑗𝑡) + 𝑛𝑖(𝑡) (4.1)

where 𝑔𝑖(𝑡) is a Gaussian random variable represents the magnitude of the signal and 𝑛𝑖(𝑡)

is a random variable represents the Additive White Gaussian noise. A one-dimensional case

is assumed where the sources are located at 20°, 40°and 65°.

33



Figure 4.2: Power spectrum of the generated signals after Butterworth filter

The sensors’ data are generated for 20 snapshots and the Fast Fourier Transform (FFT) is

applied at a 𝑟𝑎𝑡𝑒 = 128. The random generation of the signal spread it on a wider frequency

spectrum than the selected bandwidth as shown in figure 4.1. Though a Butterworth filter

is used to sharply determine the incoming signal frequency band only as shown in figure

4.2.

The selection of reference frequency for coherent DOA methods are assumed for simplicity

of the simulation to be the signal center frequency 𝑓𝑐. However, it should be noticed that the

selection of reference frequency takes an important role in the determination of the resolution

of the DOA methods. In this thesis, the main focus is on the complexity of the algorithms

not the accuracy of it. Though such an assumption is made.

4.3Performance Metrics

A four well-known performance and analysis metrics are used in this simulation; spatial

spectrum, Root Mean Square Estimate (RMSE), mean time elapsed and the complexity of

each algorithm.
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Table 4.1: The symbols of complexity factors

Factor Symbol
Number of Search angles 𝜑𝑘

Number of Sensors M
Number of Signals D
Number of freq. bins L
Number of snapshots N
Number of FFT taps T

Spatial Spectrum

Spatial spectrum shows the estimated angles as peaks among a wide search angles −90 <

𝜑𝑘 < 90. The peaks appear where the power spectrum in MUSIC algorithm loses its rank.

In some methods, the spatial spectrum uses the normalized inverse of the smallest singular

values e.g. TOPS to show the estimated angles as peaks.

RMSE

RMSEs of estimated DOA show the accuracy of an algorithm and how closely the estimated

angles to the true angles of the signals sources. RMSE calculated by

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1

200

200∑︁
𝑟=1

(𝜃𝑟 − 𝜃)2, (4.2)

where 𝜃𝑟 is the estimated DOA angle at the 𝑟th simulation round. For more than one DOA

sources, an average is taken over the number of indecent signals (Baig & Malik, 2013).

Mean Time Elapsed

The time elapsed by each algorithm to estimate the DOA is averaged by the number of

simulation rounds so as to get a comparative overview of different algorithms on a time

consuming metric. The simulation rounds are calculated for each SNR value which varies

from -5 dB to 30 dB.
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Table 4.2: The complexity of common mathematical multiplications and stages used within
DOA algorithms

Stage Complexity
FFT Subband extraction 𝑇 · log(𝑇 )
Correlation matrix 𝐿 ·𝑁 ·𝑂(𝑀2)
EVD 𝑂(𝑀3)
SVD 𝑂(𝑀3)
Matrix multiplication 𝑂(𝑚𝑛𝑝)

Complexity of an Algorithm

The computational cost of each algorithm is divided into multiple additive stages from the

FFT process to the finding of peaks. Tables 4.1 and 4.2 summarizes the essential factors that

play a role in the calculation of complexity and the common stages used in several DOA

methods, respectively (Baig & Malik, 2013; Golub, Van Loan, & of Mathematical Sciences,

2013; Talagala, Zhang, & Abhayapala, 2013). In this thesis, the complexity of an algorithm

is varied against variation in the number of Sensors, the number of signals and number of

frequency bins.
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CHAPTER 5

RESULTS AND DISCUSSION

The simulation results of wideband DOA estimation methods with the parameters specified

and under the assumptions mentioned in chapter 4 are presented in this chapter. Then a

discussion about that results and various observations and notes are presented.

5.1Results

Four cases are being investigated through this simulation. The first case is the default case

where M=10, D=3, and L=22; M is the number of sensors, D is the number of incident

signals and L is the number of frequency bins, respectively. The second case with a change

in the number of sensors where M=8, D=3, and L=22. The third case with a change in the

number of incident signals where M=10, D=5, and L=22. Finally, the fourth case with a

change in the number of frequency bins where M=10, D=3, and L=12.

5.1.1Spatial spectrum

For each case, two spatial spectrums are presented. For low SNR condition (10 dB) and high

SNR condition (25 dB). Figures 5.1 and 5.2 show the spatial spectrum for the first case. All

the wideband DOA methods estimate the true angles with minimum errors. For low SNR,

TOPS method shows a little bias in the third source but in high SNR, it estimated all the

DOA accurately.

Figures 5.3 and 5.4 show the spatial spectrum for the second case where the number of

sensors is degraded to 8 elements instead of 10 in the first case. It’s showing that all methods

estimate the DOA correctly while IMUSIC method stead has side fluctuations around -60

degree.

Figures 5.5 and 5.6 shows the spatial spectrum for the third case where the number of im-

pinging signals is increased to 5 while the number of sensors still 10 elements. All the DOA

methods have got the true angles correctly except for TOPS method which encounters many

peaks between the estimated DOAs. In high SNR, TOPS acts better than low SNR.
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Figure 5.1: Spatial Spectrum at SNR = 10 dB (M=10, D=3, L=22)

Figure 5.2: Spatial Spectrum at SNR = 25 dB (M=10, D=3, L=22)
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Figure 5.3: Spatial Spectrum at SNR = 10 dB (M=8, D=3, L=22)

Figure 5.4: Spatial Spectrum at SNR = 25 dB (M=8, D=3, L=22)
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Figure 5.5: Spatial Spectrum at SNR = 10 dB (M=10, D=5, L=22)

Figure 5.6: Spatial Spectrum at SNR = 25 dB (M=10, D=5, L=22)
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Figure 5.7: Spatial Spectrum at SNR = 10 dB (M=10, D=3, L=12)

Figures 5.7 and 5.8 show the spatial spectrum for the fourth case where the number of fre-

quency bins is degraded to 12 bins. At low SNR, the fluctuations of IMUSIC method are at

high dB which are comparable with the true estimations. TOPS method failed to estimate

the true DOAs and show high fluctuations at wrong DOAs. At high SNR, the power of the

estimation is better for WAVES and CSS. IMUSIC fluctuations degraded but not vanished.

TOPS still affected by the low number of frequency bins.
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Figure 5.8: Spatial Spectrum at SNR = 25 dB (M=10, D=3, L=12)

5.1.2RMSEs

RMSEs figures show the degree of errors in DOA estimation in the four cases. In Figure 5.9,

the CSS shows better results than the rest of methods. IMUSIC was the worst especially in

high SNR where coherent methods act better than it due to the exploitation of all frequency

bins spatial information. All methods act better in high SNR than low SNR. Figure 5.10

shows a worth case for CSS method than in the first case due to degradation in sensors

number which also affects all methods both in low and high SNR. Figure 5.11 shows a

decrease in the performance of WAVES method which is outperformed by TOPS and CSS

methods performance. IMUSIC acts better than WAVES in low SNR but after 20 dB WAVES

achieves better resolution. Finally, Figure 5.12 shows that TOPS method is highly affected

by the number of frequency bins while other methods performance is not affected too much

from the first case.
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Figure 5.9: RMSE where (M=10, D=3, L=22)

Figure 5.10: RMSE where (M=8, D=3, L=22)
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Figure 5.11: RMSE where (M=10, D=5, L=22)

Figure 5.12: RMSE where (M=10, D=3, L=12)
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5.1.3Computational costs

In this section, the complexity of each DOA method is calculated and varied against three

main factors to see how much it is being affected by each factor. These factors are the

number of sensors (M), the number of signals (D) and the number of frequency bins (L). The

calculations are made according to the Tables 4.2 and 4.1 and are approximated and rounded,

though the most effective factors on each stage of each algorithm are only evaluated.

IMUSIC

IMUSIC algorithm takes the sensors data and applies the FFT to convert it to an L narrow-

bands. Then the correlation matrix for each subband is calculated. IMUSIC take the average

of all correlation matrices. The EVD is applied to get the noise subspace which used in MU-

SIC algorithm to find the peaks. Table 5.1 illustrates the complexity of IMUSIC algorithm

stages expressed in Big-O notation.

CSS

The stages of CSS algorithm differ from the stages of IMUSIC that it does not take the

average of all correlation matrices. Instead, an initial estimation of DOA is performed using

a low-resolution method e.g. Capon to estimate the DOAs in every correlation matrix related

to each subband. Then a focusing method is used e.g. RSS method. Finally, the EVD is

applied to get the noise subspace which used in MUSIC algorithm to find the peaks. Table

5.2 illustrates the complexity of each stage of CSS algorithm and shows more stages and so

more complexity than IMUSIC method.

Table 5.1: The complexity of IMUSIC method mathematical multiplications and stages

Stage Complexity
FFT Subband extraction 𝑂(𝑇 · log(𝑇 ))
Correlation matrix 𝐿 ·𝑁 ·𝑂(𝑀2)
EVD 𝑂(𝑀3)
Narrowband MUSIC 𝑂(𝑀2 · (𝑀 −𝐷) + 𝜑𝑘 · (𝑀2 + 𝑀))
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Table 5.2: The complexity of CSS method mathematical multiplications and stages

Stage Complexity
FFT Subband extraction 𝑂(𝑇 · log(𝑇 ))
Correlation matrix 𝐿 ·𝑁 ·𝑂(𝑀2)
Initial estimation (Capon) 𝑂(𝑀2 · (𝑀 −𝐷) + 𝜑𝑘 · (𝑀2 + 𝑀))
RSS 𝐿 ·𝑂(𝑀2 ·𝐷 + 𝐷2 ·𝑀)
𝐷𝑙 𝐿 ·𝑂(2𝑀3)
EVD 𝑂(𝑀3)
Narrowband MUSIC 𝑂(𝑀2 · (𝑀 −𝐷) + 𝜑𝑘 · (𝑀2 + 𝑀))

Table 5.3: The complexity of WAVES method mathematical multiplications and stages

Stage Complexity
FFT Subband extraction 𝑂(𝑇 · log(𝑇 ))
Correlation matrix 𝐿 ·𝑁 ·𝑂(𝑀2)
Initial estimation (Capon) 𝑂(𝑀2 · (𝑀 −𝐷) + 𝜑𝑘 · (𝑀2 + 𝑀))
EVD 𝐿 ·𝑂(𝑀3)
RSS 𝐿 ·𝑂(𝑀2 ·𝐷 + 𝐷2 ·𝑀)
𝐷𝑙 𝐿 ·𝑂(𝑀2 ·𝐷 + 𝐷2 ·𝑀)
SVD 𝑂(𝑀3)
Narrowband MUSIC 𝑂(𝑀2 · (𝑀 −𝐷) + 𝜑𝑘 · (𝑀2 + 𝑀))

WAVES

Table 5.3 shows that WAVES algorithm uses the same stages as CSS method and adds the

EVD stage related to the transformation matrix. Then the universal matrix 𝐷𝑙 calculated. All

these calculations are done for every frequency bins which add more computational costs to

the overall cost of the algorithm. Finally, the SVD applied to 𝐷𝑙 and the MUSIC algorithm

uses the minimum singular values instead of the eigenvectors of noise subspace.

TOPS

TOPS algorithm calculates the EVD for each correlation matrix and then the 𝐷𝑙 matrix is

calculated for each subband and finally, the minimum singular values are used to find the

estimated DOAs. Table 5.4 illustrates computational costs of each stage.

5.1.4The factors affecting computational costs

Figures 5.13, 5.14 and 5.15 show the computational costs of DOA estimation methods

against sensors, signals and frequency bins, respectively. The figures show that CSS and
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Table 5.4: The complexity of TOPS method mathematical multiplications and stages

Stage Complexity
FFT Subband extraction 𝑂(𝑇 · log(𝑇 ))
Correlation matrix 𝐿 ·𝑁 ·𝑂(𝑀2)
EVD 𝐿 ·𝑂(𝑀3)
𝐷𝑙 𝐿 ·𝑂(𝑀2 ·𝐷 + 𝑀2 ·𝐷 + 𝐷 ·𝑀(𝑀 −𝐷))
SVD 𝜑𝑘 ·𝑂(𝑀3)

Figure 5.13: Computational Costs when varying number of sensors

WAVES methods suffering from high complexity than other methods. TOPS method achieves

the lowest computational cost among DOA methods and only in Figure 5.15, when the num-

ber of frequency bins is low, the TOPS method achieves high costs than other methods.
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Figure 5.14: Computational Costs when varying number of signals

Figure 5.15: Computational Costs when varying number of frequency bins
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5.1.5Mean time elapsed

For the first case where (M = 10, D = 3 and L = 22), Figure 5.16 shows the mean time elapsed

by each algorithm and shows that CSS and WAVES are much higher in execution time than

TOPS and IMUSIC. The mean execution time over all simulation rounds for each algorithm

is for IMUSIC = 3.552917e-02, for CSS = 6.118259e-01, for WAVES = 5.862703e-01 and

for TOPS = 1.848878e-01. For the second case Where (M = 8, D = 3 and L = 22), Figure 5.17

shows that the gap between both WAVES and CSS methods and both TOPS and IMUSIC

are less in time. Also the WAVES took much time to execute than other methods. The mean

execution time over all simulation rounds for each algorithm is for for IMUSIC = 3.184238e-

02, for CSS = 3.986155e-01, for WAVES = 4.810482e-01 and for TOPS = 1.418370e-01.

Figure 5.18 illustrate the execution time for the third case where the change is in the number

of signals and shows same results as for the first case. Mean elapsed time for IMUSIC

= 6.350877e-01, for CSS = 1.116885e+01, for WAVES = 1.034425e+01 and for TOPS =

3.019424e+00. Figure 5.19 shows a slightly different execution times for each simulation

round for both WAVES and CSS but still lower than other cases. Here the fourth case where

the number of frequency bins are reduced to 12 bins. The Mean elapsed time for IMUSIC

= 1.830228e-02, for CSS = 3.149867e-01, for WAVES = 3.030944e-01 and for TOPS =

8.821636e-02.

The execution time analysis of all algorithms shows that the initial estimations are taking

the most amount of the execution time. Following the creation of the correlation matrix, the

multiplications of focusing matrices and the construction of the main universal matrices 𝐷𝑙

are taking much time of the execution time of each algorithm. CSS and WAVES suffering

from high execution time because of the need for all three time-consuming stages mentioned.

TOPS algorithm on the other side taking much less time to execute because its only need to

calculate the correlation matrices and the universal matrix only. IMUSIC algorithm achiev-

ing the fastest time due to less time-consuming stages involved.
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Figure 5.16: Mean time elapsed where (M=10, D=3, L=22)

Figure 5.17: Mean time elapsed where (M=8, D=3, L=22)
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Figure 5.18: Mean time elapsed where (M=10, D=5, L=22)

Figure 5.19: Mean time elapsed where (M=10, D=3, L=12)
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5.2Discussion

The main questions on this thesis were: what are the elementary aspects that affecting the

computational costs of different wideband DOA methods? and how much does that affect

the execution time of each algorithm? and finally how to improve these algorithms to be less

complex?

The main observation is that each algorithm has some advantages over other methods but

also suffers from different aspects than others which may lead the improvements on it to less

computational technique but may lose its advantages. Though recent research focuses on

the improvements of the method itself to gain better resolution and higher accuracy while

maintaining less complexity (Talagala et al., 2013; Hayashi & Ohtsuki, 2016). Another ob-

servation of the most complex algorithms CSS and WAVES is that their estimations almost

depend on the accuracy of the initial estimation which also the main time-consuming stage.

Though any errors on it mean both wrong DOA estimation and a consumption of a huge

time (0.6-0.7 m sec for every single estimation) which is the worst case might happen. Also,

some advantages might be achieved by reducing the time consumed and maintain the same

resolution at least like in the fourth case for CSS, WAVES and IMUSIC algorithms where

the number of frequency is reduced while still estimating the true DOAs with much less

complexity and execution time. TOPS algorithm resolution highly depends on the selec-

tion of the reference frequency while IMUSIC algorithm suffers from the combining of all

frequency bins including poor ones which led to many fluctuations (Yoon, Kaplan, & Mc-

Clellan, 2006). Poor frequency bins mean that ones with fewer signals and DOA related

information that can contribute to the estimation of the true DOAs or on the reconstruction

of the original signals.

5.2.1Improvements to be made

The main advantage observed of the initial estimation stage is to predict which frequency

bins has most of the DOA information and so the most valuable bins to use in the algorithm.

Though, the development of a good procedure for the selection of reference frequency bin

could help on the reduction of complexity of DOA algorithm and achieving a higher resolu-

tion. The advantage achieved by improving the usage of a few sensors and less number of
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frequency bins could through away the problem of the wrong estimation. Such an improve-

ment could be made using different techniques in the same system to achieve the ultimate

goal of correct estimation of the true DOAs in much less execution time.
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CHAPTER 6

CONCLUSION

6.1Conclusion

DOA estimation methods try to extract the true angles of the exact number of the received

noisy signals which impinging on the array of sensors. This estimation seems very useful in

the reconstruction of the original signal and helps on the estimation of its location which is

highly applicable in radars, sonars, seismic exploration, and military surveillance. In general

DOA problem is an estimation problem which tries to figure out the parameters hidden in

the sensors data using different mathematical techniques and physical properties of the ge-

ometry of the array of antenna and the impinging signals themselves. Matrix multiplication

and manipulation are almost the core of the exploitation of the DOA information e.g. ma-

trix sub-spaces orthogonality, eigen compensation, and singular decomposition. Due to the

natural differences between narrowband and wideband signals, the DOA estimation of both

signals is different and so the methods estimating the DOA in a narrowband are not suffi-

cient for wideband DOA estimation. Wideband DOA methods are classified into two main

categories; incoherent e.g. IMUSIC and coherent methods e.g CSS, WAVES and TOPS. In-

coherent methods took the average of all frequency bins while coherent methods exploit the

underneath characteristics of frequency bins, though to make use of DOA related parameters

in a weighted way and gain better resolution.

One of the most important aspects of this methods is the complexity of an algorithm and

execution time consumed to estimate the true DOAs. Though several wideband DOA esti-

mation methods proposed in the recent research that use different techniques to achieve a

high-resolution estimation while maintaining low computational costs. The finding in this

thesis shows that there are some dominant factors controlling the complexity of each algo-

rithm. Exploring this factors within the well known DOA methods while maintaining a high

resolution is investigated through the results and discussion.
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6.2Future Work

Further studying of different DOA methods to gain a better understanding of its main pa-

rameters underlying these methods. Also investigating the use of different techniques for the

selection of good frequency bins so as to maintain a low profile initial estimation stage and

improve the quality of estimation in the incoherent methods and coherent methods that do

not use initial stage.

In the words of applications, an implementation of a specific system using different algo-

rithms to achieve maximum benefits of DOA estimation in those specific applications with-

out any improvement in the DOA algorithms itself. Also, the investigation of characteristics

of the nature of the application signals and relate it to the implementation and development

of the DOA algorithm would help in a better algorithm.
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Gács, P., & Lovász, L. (2000). Complexity of algorithms lecture notes , spring 1999..

Gibbons, S. J., Ringdal, F., & Kværna, T. (2008). Detection and characterization of seis-
mic phases using continuous spectral estimation on incoherent and partially coherent
arrays. Geophysical Journal International, 172(1), 405-421. doi: 10.1111/j.1365-
246X.2007.03650.x

Godara, L. C. (1997, Aug). Application of antenna arrays to mobile communications. ii.
beam-forming and direction-of-arrival considerations. Proceedings of the IEEE, 85(8),
1195-1245. doi: 10.1109/5.622504

Golub, G. H. G. H., Van Loan, a., Charles F, & of Mathematical Sciences, J. H. U. D. (2013).
Matrix computations (Fourth edition ed.) [Book; Book/Illustrated]. Baltimore : The
Johns Hopkins University Press. (In association with the Department of Mathematical
Sciences, The Johns Hopkins University)

Hayashi, H., & Ohtsuki, T. (2016, Oct 12). Doa estimation for wideband signals based on
weighted squared tops. EURASIP Journal on Wireless Communications and Network-
ing, 2016(1), 243. doi: 10.1186/s13638-016-0743-9

57



Haykin, S. S., Litva, J., & Shepherd, T. J. (1993). Radar array processing. Berlin, Heidel-
berg: Springer-Verlag.

Ioushua, S. S., Yair, O., Cohen, D., & Eldar, Y. C. (2017, May). Cascade: Compressed
carrier and doa estimation. IEEE Transactions on Signal Processing, 65(10), 2645-
2658. doi: 10.1109/TSP.2017.2664054

Johnson, D., & Dudgeon, D. (1993). Array signal processing: Concepts and techniques. P
T R Prentice Hall.

Kay, S. M. (1993). Fundamentals of statistical signal processing: Estimation theory. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc.

Krim, H., & Viberg, M. (1996, July). Two decades of array signal processing research:
the parametric approach. IEEE Signal Processing Magazine, 13(4), 67-94. doi:
10.1109/79.526899

Li, Q. (2012). Digital sonar design in underwater acoustics: Principles and applications.
Springer Berlin Heidelberg.

Lurton, X. (2002). An introduction to underwater acoustics: Principles and applications.
Springer.

Maranò, S., Fäh, D., & Lu, Y. M. (2014). Sensor placement for the analysis of seismic
surface waves: sources of error, design criterion and array design algorithms. Geo-
physical Journal International, 197(3), 1566-1581. doi: 10.1093/gji/ggt489

Miron, S., Le Bihan, N., & Mars, J. (2005, 01). Vector-sensor music for polarized seismic
sources localization. , 2005.

Monzingo, R., Haupt, R., & Miller, T. (2011). Introduction to adaptive arrays. Institution
of Engineering and Technology.

Pal, P., & Vaidyanathan, P. P. (2009, Nov). A novel autofocusing approach for estimat-
ing directions-of-arrival of wideband signals. In 2009 conference record of the forty-
third asilomar conference on signals, systems and computers (p. 1663-1667). doi:
10.1109/ACSSC.2009.5469796

Paulraj, A., Ottersten, B., Roy, R., Swindlehurst, A., Xu, G., & Kailath, T. (1993, jan).
16 Subspace methods for directions-of-arrival estimation (Vol. 10). Elsevier. doi:
10.1016/S0169-7161(05)80082-3

Paulraj, A., Roy, R., & Kailath, T. (1986, July). A subspace rotation approach to
signal parameter estimation. Proceedings of the IEEE, 74(7), 1044-1046. doi:
10.1109/PROC.1986.13583

58



Pell, C. (1988, Oct). Phased-array radars. IEE Review, 34(9), 363-367. doi:
10.1049/ir:19880149

Raychaudhuri, S. (2008). Introduction to monte carlo simulation. In Proceedings of the 40th
conference on winter simulation (pp. 91–100). Winter Simulation Conference.

Roy, R., Paulraj, A., & Kailath, T. (1986, October). Esprit–a subspace rotation approach to
estimation of parameters of cisoids in noise. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 34(5), 1340-1342. doi: 10.1109/TASSP.1986.1164935

Sabath, F., Mokole, E. L., & Samaddar, S. N. (2005, June). Definition and classification of
ultra-wideband signals and devices. URSI Radio Science Bulletin, 2005(313), 12-26.
doi: 10.23919/URSIRSB.2005.7909522

Satish, A., & L. Kashyap, R. (2018, 08). Direction of arrival estimation and tracking of
narrowband and wideband signals.

Schmidt, R. (1986, March). Multiple emitter location and signal parameter estima-
tion. IEEE Transactions on Antennas and Propagation, 34(3), 276-280. doi:
10.1109/TAP.1986.1143830

Shearer, P. (2009). Introduction to seismology. Cambridge University Press.

Shen, Q., Liu, W., Cui, W., Wu, S., Zhang, Y. D., & Amin, M. G. (2014, July). Group
sparsity based wideband doa estimation for co-prime arrays. In 2014 ieee china summit
international conference on signal and information processing (chinasip) (p. 252-256).
doi: 10.1109/ChinaSIP.2014.6889242

Sipser, M. (2012). Introduction to the theory of computation. Cengage Learning.

Skolnik, M. (2001). Introduction to radar systems. McGraw-Hill.

Strang, G. (2009). Introduction to linear algebra (Fourth ed.). Wellesley, MA: Wellesley-
Cambridge Press.
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