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ABSTRACT

The Dirichlet problem for the Laplace equation is carefully weighed in a rectangle and a
rectangular parallelepiped. In the case of a rectangle domain, the boundary functions of the
Dirichlet problem are supposed to have seventh derivatives satisfying the Holder condition on
the sides of the rectangle IT1. Moreover, it is assumed that on the vertices the continuity
conditions as well as compatibility conditions, which result from Laplace equation, for even
order derivatives up to sixth order are satisfied. Under these conditions the error u — u;, of the
9-point solution wu,, at each grid point (x, y) a pointwise estimation 0 (ph®) is obtained, where
p = p(x,y) is the distance from the current grid point to the boundary of rectangle I1, w is the
exact solution and h is the grid step. The solution of difference problems constructed for the
approximate values of the first derivatives converge with orders 0(h®) and for pure second
derivatives converge with orders 0(h>*4),0 < A < 1. In a rectangular parallelepiped domain,
the seventh derivatives for the boundary functions of the Dirichlet problem on the faces of the
parallelepiped R are supposed to satisfy the Holder condition. While, their even order
derivatives up to sixth satisfy the compatibility conditions on the edges. For the error u — u;, of
the 27-point solution u,, at each grid point (x;,x,,x3), a pointwise estimation O(ph®) is
obtained, where p = p(x4, x5, x3) is the distance from the current grid point to the boundary of
the parallelepiped R. The solution of the constructed 27- point difference problems for the
approximate values of the first converge with orders 0 (h® In h) and for pure second derivatives
converge with orders O(h5”). In the constructed three-stage difference method for solving
Dirichlet problem for Laplace's equation on a rectangular parallelepiped under some smoothness
conditions for the boundary functions the difference solution obtained by 15+7+7- scheme

converges uniformly as 0(h®), as the 27-point scheme.

Keywords: Approximation of the derivatives; pointwise error estimations; finite difference
method; uniform error estimations; 2D and 3D Laplace's equation; numerical solution of the

Laplace equation



OZET

Bir dikddrtgen icindeki Laplace denklemi ve dikdértgenler prizmasi igin Dirichlet problem
diistinilmiistir. Tanim bolgesinin dikdortgen oldugu durumda dikdortgenin IT kenarlarinda
verilen smir fonksiyonlarmin yedinci tirevlerinin Hoélder sartim1 sagladigi Kabul edildi.
Koselerde sureklilik sartinin yaninda Laplace denkleminden sonuglanan koselerin komsu
kenarlarinda verilen sinir deger fonksiyonlarinin ikinci, dordunclve altinci tlrevleri igin
uyumluluk sartlar1 da saglandi. Bu sartlar altinda Dirichlet probleminin kare 1zgara (izerinde
¢OzUmU igin u — uy, yaklasimi O(ph®) olarak diizgiin yakimsadigi bulunmustur, burada uy, 9-
nokta yaklasimi kullanildiginda elde elinen yaklasik ¢oziim, problem saglayan kesin ¢6zim,
p = p(x,y), dikdortgen sinirini isaret eden mevcut izgara uzunligu ve h, i1zgara adimidir.
COzUmun birinci ve par tirevleri icin olusturulan fark problemlerinin sirasiyla ¢ozimleri, 0 (h®)
ve 0(h°**), 0 <1 <1 mertebesi ile yakinsar. Tamm bolgesinin dikdrtgenler prizmasi
oldugu durumda prizmanin yiizeylerinde verilensinir fonksiyonlarinin yedinci tirevlerinin
Holder sartini sagladigi Kabul edildi. Koselerde streklilik sartinin yaninda Laplace
denkleminden sonuglanan kenarlarinin komsu kenarlarinda verilen sinir deger fonksiyonlarinin
ikinci, dordinct ve altinct tirevleri igin uyumluluk sartlarinida saglar. Bu sartlar altinda
Dirichlet probleminin kip 1zgaralar Gzerindeki ¢ozimi icin u — u,, yaklasimi O (ph®) olarak
bulunmustur, burada u, 27-nokta yaklasimi kullanildiginda elde edilen yaklagik ¢6zlm,
problem saglayan kesin ¢6ziim ve p = p(x4, x5, X3) prizmanin sinirin1 isaret edenmevcut 1zgara
ve h, 1zgara adimidir. CozUmin birinci ve plr tlrevleri igin olusturulan fark problemlerinin
sirastyla ¢oztmleri O(h®Inh), ve O(h®), 0 <A1 <1 mertebeleri ile yakmsar. Laplace
denkleminin smir fonksiyonlari i¢in bazi piiriizsiizlik kosullar1 altinda Dirichlet problemi
¢ozmek icin insa edilmis iic asamali fark yontemi, 15 + 7 + 7 - semasi ile elde edilen fark ¢oziimii

0(h®) olarak yakisar 27 noktali sema yontemiyle elde edilen sonug gibi.

Anahtar Kelimeler: Sonlu fark metodu; noktasal hata tahminleri; tiirev yaklagimlari; diizgiin

hata tahminleri; 2D ve 3D Laplace denklemleri; Laplace denkleminin sayisal ¢oziimii
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CHAPTER 1
INTRODUCTION

The partial differential equations are highly used in many topics of applied sciences in order to
solve equilibrium or steady state problem. Laplace equation is one of the most important elliptic
equations, which has been used, to model many problems in real life situations.
Further it can be used in the formulation of problems relevant to theory of electrostatics,
gravitation and problems arising in the field of interest to mathematical physics. In addition, it
is applied in engineering, when dealing with many problems such as analysis of steady heat
condition in solid bodies, the irrotational flow of incompressible fluid, and so on.
In many applied problems not only the calculation of the solution of the differential equation
but also the calculation of the derivatives are very important to provide information about some
physical phenomenas. For example, by the theory of Saint-Venant, the problem of the torsion
of any prismatic body whose section is the region D bounded by the contour L reduces to the
following boundary- value problem: to find, the solution of the Poisson equation

Au = -2,
that reduces to zero on the contour L:

u=20 onlL.
Here the basis quantities required from the calculation are expressed in terms of the function u

the components of the tangential stress

sz = GS—, sz = _Gﬁaﬁ

and the torsional moment

M =GI ff udxdy.
D

Here 9 is the angle of twist per unit length, and G is the modulus of shear.
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The construction and justification of highly accurate approximate methods for the solution and
its derivatives of PDEs in a rectangle or in a rectangular parallelepiped are important not only
for the development of theory of these methods, but also to improve some version of domain
decomposition methods for more complicated domains, (Smith et al., 2004; Kantorovich and
Krylov, 1958; Volkov, 1976; Volkov, 1979; Volkov, 2003; VVolkov, 2006).

Since the operation of differentiation is ill-conditioned, to find a highly accurate approximation
for the derivatives of the solution of a differential equation becomes problematic, especially
when smoothness is restricted.

It is obvious that the accuracy of the approximate derivatives depends on the accuracy of the
approximate solution. As is proved in (Lebedev, 1960), the high order difference derivatives
uniformly converge to the corresponding derivatives of the solution for the 2D Laplace equation
in any strictly interior subdomain with the same order h, (h is the grid step), with which the
difference solution converges on the given domain. In (Volkov, 1999), 0(h?) order difference
derivatives uniform convergence of the solution of the difference equation, and its first and pure
second difference derivatives over the whole grid domain to the solution, and corresponding
derivatives of solution for the 2D Laplace equation was proved. In (Dosiyev and Sadeghi, 2015)
three difference schemes were constructed to approximate the solution and its first and pure
second derivatives of 2D Laplace’s equation with order of O (h*), when the sixth derivatives of
the boundary functions on the sides of a rectangle satisfy the Holder condition, and on the
vertices their second and fourth derivatives satisfy the compatibility condition that is implied by
the Laplace equation.

In (Volkov, 2004), for the 3D Laplace equation in a rectangular parallelepiped the constructed
difference schemes converge with order of 0(h?) to the first and pure second derivatives of the
exact solution of the Dirichlet problem. It is assumed that the fourth derivatives of the boundary
functions on the faces of a parallelepiped satisfy the Holder condition, and on the edges their
second derivatives satisfy the compatibility condition that is implied by the Laplace equation.
Whereas in (Volkov, 2005), the convergence with order 0 (h?) of the difference derivatives to
the corresponding first order derivatives was proved, when the third derivatives of the boundary

functions on the faces satisfy the Holder condition. Further, in (Dosiyev and Sadeghi, 2016) by
2



assuming that the boundary functions on the faces have the sixth order derivatives satisfying the
Holder condition, and the second and fourth derivatives satisfy the compatibility conditions on
the edges, for the uniform error of the approximate solution 0 (h®|In h|) order, and for the first
and pure second derivatives 0 (h*) order was obtained.

We mention one more problem when we use the high order accurate finite- difference schemes
for the approximation of the solution and its derivatives Since in the finite- difference
approximations the obtained system of difference equations, in general, are banded matrices. To
get a highly accurate results in the most of approximations, difference operators with the high
number of pattern are used which increase the number of bandwidth of the difference equations.
It is obvious that the complexity of the realization methods for the difference equations increases
depending on the number of bandwidth of the matrices of these equations. As it was shown in
(Tarjan, 1976) that in case of Gaussian elimination method the bandwidth elimination for n X n
matrices with the bandwidth b the computational cost is of order O(b?n). Therefore, the
construction of multistage finite difference methods with the use of low number of bandwidth
matrix in each of stages becomes important.

In (Volkov, 2009) a new two-stage difference method for solving the Dirichlet problem for
Laplace's equation on a rectangular parallelepiped was proposed. It was assumed that the given
boundary values are six times differentiable at the faces of the parallelepiped, those derivatives
satisfy a Holder condition, and the boundary values are continuous at the edges and their second
derivatives satisfy a compatibility condition implied by the Laplace equation. Under these
conditions it was proved that by using the 7-point scheme on a cubic grid in each stage the order
of uniform error is improved from 0(h?) up to O(h*Inh~1), where h is the mesh size. It is
known that, to get O(h*) order of accurate results by the existing one-stage methods for the
approximation 3D Laplace's equation we have to use at least 15-point scheme, (Volkov, 2010).
In this thesis, a highly accurate schemes for the solution and its the first and pure second
derivatives of the Laplace equation on a rectangle and on a rectangular parallelepiped are
constructed and justified. Two-dimensional case (Chapter 2) consider the classical 9-point, and
in three-dimensional case (Chapter 3) the 27-point finite- difference approximation of Laplace

equation are used. In Chapter 4, in the three-stage difference method at the first stage, the
3



difference equations are formulated using the 14-point averaging operator, and the difference
equations at the second and third stages are formulated using the simplest six point averaging
operator.

The numerical experiments to justify the obtained theoretical results are presented in Chapter 5.
Now, we formulated all results more explicitly.

In Chapter 2, we consider the Dirichlet problem for the Laplace equation on a rectangle, when
the boundary values belong to €74, 0 < A < 1, on the sides of the rectangle, and as whole are
continuous on the vertices. Also, the 2q, q = 1,2,3, order derivatives satisfy the compatibility
conditions on the vertices which result from the Laplace equation. Under these conditions, we
present and justify difference schemes on a square grid for obtaining the solution of the Dirichlet
problem, its first and pure second derivatives. For the approximate solution a pointwise
estimation for the error of order 0(ph®), where p = p(x, y) is the distance from the current grid
point (x, y) to the boundary of the rectangle, is obtained. This estimation is used to approximate
the first derivatives with uniform error of order 0 (h®). The approximation of the pure second
derivatives are obtained with uniform accuracy 0(h°*%), 0 < 1 < 1.

In Chapter 3, we consider the Dirichlet problem for the Laplace equation on a rectangular
parallelepiped. The boundary functions on the faces of a parallelepiped are supposed to have the
seventh order derivatives satisfying the Holder condition, and on the edges the second, fourth
and sixth order derivatives satisfy the compatibility conditions. We present and justify
difference schemes on a cubic grid for obtaining the solution of the Dirichlet problem, its first
and pure second derivatives. For the approximate solution a pointwise estimation for the error
of order 0(ph®) with the weight function p, where p = p(x;, x,, x3) is the distance from the
current grid point (x4, x,, x3) to the boundary of the parallelepiped, is obtained. This estimation
gives an additional accuracy of the finite difference solution near the boundary of the
parallelepiped, which is used to approximate the first derivatives with uniform error of order

O(h®Inh). The approximation of the pure second derivatives are obtained with uniform

accuracy 0(h°*%), 0 <1< 1.



In Chapter 4, A three-stage difference method is proposed for solving the Dirichlet problem for
the Laplace equation on a rectangular parallelepiped, at the first stage, approximate values of
the sum of the pure fourth derivatives of the desired solution are sought on a cubic grid. At the
second stage, approximate values of the sum of the pure sixth derivatives of the desired solution
are sought on a cubic grid. At the third stage, the system of difference equations approximating
the Dirichlet problem corrected by introducing the quantities determined at the first and second
stages. The difference equations at the first stage is formulated using the 14-point averaging
operator, and the difference equations at the second and third stages are formulated using the
simplest six-point averaging operator. Under the assumptions that the given boundary functions
on the faces of a parallelepiped have the eighth derivatives satisfying the Holder condition, and
on the edges the second, fourth, and sixth order derivatives satisfy the compatibility conditions,
it is proved that the difference solution to the Dirichlet problem converges uniformly as O (h®).
In Chapter 5, the numerical experiments to justify the theoretical results obtained in each

Chapters are demonstrated.



CHAPTER 2
ON THE HIGH ORDER CONVERGENCE OF THE DIFFERENCE SOLUTION OF
LAPLACE’S EQUATION IN A RECTANGLE

In this Chapter we consider the Dirichlet problem for the Laplace equation on a rectangle, when
the boundary values on the sides of the rectangle are supposed to have the seventh derivatives
satisfying the Holder condition. On the vertices besides the continuity condition, the
compatibility conditions, which result from the Laplace equation for the second, fourth and sixth
derivatives of the boundary values, given on the adjacent sides are also satisfied. Under these
conditions, we present and justify difference schemes on a square grid for obtaining the solution
of the Dirichlet problem, its first and pure second derivatives. For the approximate solution a
pointwise estimation for the error of order O(ph®) with the weight function p, where p =
p(x,y) is the distance from the current grid point (x,y) to the boundary of the rectangle is
obtained. This estimation gives an additional accuracy of the finite difference solution near the
boundary of the rectangle, which is used to approximate the first derivatives with uniform error
of order O(h®). The approximation of the pure second derivatives are obtained with uniform

accuracy 0(h5*4), 0 < 1< 1.

2.1 The Dirichlet Problem for Laplace’s Equation on Rectangle and Some Differential
Properties of Its Solution

LetIT={(x,¥):0<x <a,0<y< b}be an open rectangle and a/b is a rational number.
The sides are denoted by y;, j = 1,2,3,4, including the ends. These sides are enumerated
counterclockwise where y; is the left side of IT, (Yo = v4, ¥s = y1)- Also let the boundary of Il
be defined by y = Uj_, v;.

The arclength along y is denoted by s, and s; is the value of s at the beginning of y;. We denote
by f € C**(D) if f has k — th deravatives on D satisfying Holder condition, where exponent
A€ (0,1).



We consider the following boundary value problem
Au=0 onll, u=g@;(s) ony;, j=1234 (2.2)

where A= 0%/0x* 4+ 0%/3dy?, ¢; are given functions of s.

Assume that

@; €CTMy)), 0<A<1, j=1234, (2.2)
<pj(.ZQ)(sj) = (—1)q(p](i‘i)(sj), q =0,1,2,3. (2.3)

Lemma 2.1 The solution u of problem (2.1) is from C7*(IT).
The proof of Lemma 2.1 follows from Theorem 3.1 by (Volkov, 1969).

Lemma 2.2 Let p(x,y) be the distance from the current point of open rectangle IT to its
boundary and let 3/9l = a d/0x + § 8/dy, a® + B? = 1. Then the next inequality holds

%u(x,y)

S| St y), ey el (2.4)

where c is a constant independent of the direction of differentiation d/dl, and u is a solution of
problem (2.1).
Proof. We choose an arbitrary point (x,, y,) € II. Let py = p(x0,yo), and &, < II be the closed

circle of radius p, centered at (x,, yo). Consider the harmonic function on II

o’u(x,y) 97u(xy, yo)
v(x,y) = — 5 - —— (2.5)




By Lemma 2.1, u € C7*(10), for 0 < A < 1. Then for the function (2.5) we have

max |v(x, <c ’1,
omax |v(x y)| < copp (2.6)

where ¢, is a constant independent of the point (x,, yo) € II or the direction of d/dl. Since u is

harmonic in II, by using estimation (2.6) and applying Lemma 3 from (Mikhailov, 1978) we

have
i 67u(x,y)_07u(x0,yo) c ﬁ
al\ ar al’ = o
or
0°%u(x, y) _
55 < ¢1p3 " (%0, Yo),

where c;is a constant independent of the point (x,, y,) € II or the direction of d/dl. Since the

point (x,, yo) € Il is arbitrary, inequality (2.4) holds true. m
2.2 Difference Equations for the Dirichlet Problem and a Pointwise Estimation
Let h > 0, and min{a/h,b/h} = 6 where a/h and b/h are integers. A square net on II is

assigned by IT"*, with step h, obtained by the lines x,y = 0, h, 2h, ...

The set of nodes on y;is denoted by yjh, and let
Yt = Uty I, = 0h uyh

Let the averaging operator B be defined as following



Bu(x,y) = % [4(u(x+ h,y)+ulx—h,y)+ulx,y+h)

+u(x,y —h))+u(x+hy+h)+ulx+hy—nh)
+u(x —h,y +h)+ulx—h,y—h)]. 2.7)

Let c, ¢y, c4, ... be constants which are independent of h and the nearest factor, and for simplicity
identical notation will be used for various constants.

Consider the finite difference approximation of problem (2.1) as follows:
up = Buy, on ", up, = @; onyf', j=1,234 (2.8)
By the maximum principle system (2.8) has a unique solution (Samarskii, 2001).

Let IT*" be the set of nodes of grid IT"* whose distance from y is kh. It is obvious that 1 < k <
N(h), where

1 (2.9)
N(h) = |=—mi
(1) = |5 mina, b}
[d] is the integer part of d.
We define for 1 < k < N(h) the function
fle = {1, p(x,y) = kh, (2.10)
0, p(x,y) # kh.
Consider the following systems
qn = Bqn + g, on11", g, =0 ony", (2.11)
C_Ih = BC_Ih + g_h on Hh, C_Ih =0 on }/h, (212)

where g, and g, are given function, and |g,| < g, on IT".
9



Lemma 2.3 The solution g, and g, of systems (2.11) and (2.12) satisfy the inequality

lqnl < @n onTI".
The proof of Lemma 2.3 follows from comparison Theorem see Chapter 4 (Samarskii, 2001).
Lemma 2.4 The solution of the system

vk = Bvk + fF onTl®, v¥ =0 ony” (2.13)
satisfies the inequality

vR(,y) <QF, 1<k <N, (2.14)
where QF is defined as follows

6p
—_, 0< ,y) < kh,
0k = Qkey) =1 peoy)

6k, p(x,y) > kh.

(2.15)

Proof. By virtue of (2.7) and (2.15) and in consider of Fig. (2.1), we have for 0 < p = kh,

BQk = % [4(6k + 6(k— 1) + 6(k — 1) + 6k)

+6(k — 1) + 6k + 6(k — 1) + 6(k — 1)]
66

= 6k ——,
20

which leads to

66
ke _ k = — = ke

10



Figure 2.1: The selected regionin Il is p = kh

In consider of Fig. (2.2) for p > kh, then

1
BQF = %[4(6k + 6k + 6k + 6k) + 6k

+6k + 6k + 6k = 6k,

which leads to

BQF = QF.

11



Figure 2.2: The selected region inITis p > kh

In consider of Fig. (2.3) for p < kh, then

BQk = % [4(6k + 6(k—2)+6(k—1) +6(k — 1))
+6(k — 1) + 6k + 6(k — 2) + 6(k — 2)]

= 6k ——
20

which leads to

126
Qr —BOh =5 >1=f"

12



Figure 2.3: The selected region inIlis p < kh

In consider of Fig. (2.1) for p < kh, then

BQF =%= [4(6(k—1)+6(k—1)+6(k—2)+ 6k)

+6k + 6k + 6(k — 2) + 6(k — 2)]
=6k—6=06(k—1),

which leads to

Qf = BQF.

13



Figure 2.4: The selected region inITis p < kh
From the above calculations we have
Q¥ =BQf +qf onI", QF =0 ony", k=1,..,N(h), (2.16)

where |gf| = 1. On the basis of (2.10), (2.13), (2.16) and the Comparison Theorem from
(Samarskii, 2001), we obtain

[vk| < QF forallk, 1<k <N(h). m
Lemma 2.5 The following equality is true

Bp;(x0,¥0) = u(x0,¥o)

where p is the seventh order Taylor’s polynomial at (x,, ¥,), u is a harmonic function.

14



Proof. The seventh order Taylor’s polynomial at (x,, y,) has the form

Ju Jdu

ey = u( )+h< N )+h2 82u+282u+62u h3 (03u
PrX, Y] = w5y ox dy/) 2!\0x?2 " oxdy 0dy>2 dx3

+ 3!
d23u d03u 63u> h* (64u 0*u 0*u

3 3 —
* dx?dy * 0x0y? * ay3 * 41\ dx* * 46x36y * 66x26y2

2*u 64u> h® (65u 2°u 2°u 2°u

4 - J—
* dxdy3 * dy* x> i dx*dy + 20 d0x30y? +20 0x20dy3

T
i d°u N 9°u\ h® (0% p 0%u P 9%u 20 9%u
dxdy*  0dy> dx° x50y dx*dy? d0x30y3

0%u iy 0%u +66u h? 67u+7 o’u o1 o’u
dx20y* dxdyS5 = 0y°® ox7 0x60y 0x50y?

+6!

+15

+ 7!
07u 07u 0’u 07u 67u>

35————+35 21 7
+ + + 0x20y5+ 6x6y6+6y7

dx*dy3 dx30y* (2.17)

Then according to (2.7) and (2.17) we have

1
Bp;(x0,¥0) = 50 [4(p;(xo + h, o) + p7(x0 — h,yo) + p7(x0, Y0 + 1)

+p7 (X0, Y0 — h)) +p7(x0 + h,yo + h) + p;(xo + h,yo — h)
+p7(x9g — h,yo + h) + p;(xo — h,yo — h)]

h* 92 OZU(X();}’O) azu(xo'y0)>

= wxo, o) + 40 9x? ( d0x? y?

h* 9% (0%u(xo,yo) = 0%ulxo, o) 3h® 0* (0%u(xo,¥0) = 9*u(xo,o)
40 dy? d0x? dy? 5% 6!dx* 0x? dy?

n 3h® 0% [(0%u(xe,y0)  0*u(xo,¥o) 2h° a* 0%u(xo,¥0) | 0%u(xo,¥o)
5% 6!dy* dx?2 dy? 5% 5! 0x20y2 dx?2 dy? '

Since u is harmonic, we obtain

15



BP;(x0,y0) = u(xp,¥0) ™
Lemma 2.6 The inequality holds

R7+2 (2.18)

max |[Bu—u|<c k=12,..,N(h),

(x,y)€Mkh k-2
where u is a solution of problem (2.1).
Proof. Let (xo, Vo) be a point of IT**, and let
Mo = {6, y):|x — x| <h, [y —yol <h} (2.19)
be an elementary square, some sides of which lie on the boundary of the rectangle I1. On the
vertices of I1,, and on the mid points of its sides lie the nodes of which the function values are

used to evaluate Bu(x,, yy). We represent a solution of problem (2.1) in some neighborhood of

(x0, Vo) € M" by Taylor’s formula

u(x' y) = p7(x,y) + TS(x' y)' (220)

where p,(x,y) is the seventh order Taylor’s polynomial, rg(x,y) is the remainder term, by

Lemma 2.5 we have

Bp;(xo,y0) = u(xo, o). (2.21)

Now, we estimate rg at the nodes of the operator B. We take node (x, + h, yo + h) which is

one of the eight nodes of B, and consider the function

16



~ S S 2.22)
t(s) =ulxy +—, +—), —V2h <s <+2h (
( ) ( 0 \/E Yo \/E
of one variable s. By virtue of Lemma 2.2, we have
281i(s) -1
R c;(V2h—5)" 7, 0<s<V2h. (2.23)
We represent function (2.22) around the point s = 0 by Taylor’s formula
u(s) = py(s) + 7s(s), (2.24)
where
b7 (s) ( o+ — ) 2.25
s)= Xo +—7=, — :
p7 | % 0 \/E Yo \/E ( )
is the seventh order Taylor’s polynomial of the variable s, and
73 () ( + +S) 0<|s| <V2h 2.26
rg(S) =71g| X -, —, SIS S .
8 8 | Xo N Yo N ( )

is the remainder term. On the basis of continuity of 7(s) on the interval [—v2h, v2h], it follows
from (2.26) that

S

( + +—) lim 7g(V/2h — €) 2.27
g | X ) = 11m 7; — €). .
s\Yo+ = Yo 5) = e, (2.27)

Applying an integral representation for 75 we have

17



V2h—¢€

fg(\/ih—e)z% f (VZh — e —t) @8 (t)dt, 0<es%.
0

Using estimation (2.23), we have

V2h-€
I#5(VZh — €)] < ¢ f (VZh — e —t) (VZh — )" " at

" VZh-€
A
<z j (VZh—t)"at
0

<ch*7, 0<e< % (2.28)
From (2.26)-(2.28) yields
rg(xo + h,yo + h| < c;h**7, (2.29)
where ¢, is a constant independent of the taken point (x,, o) on I1*". Proceeding in a similar

manner, we can find the same estimates of ry at the other vertices of square (2.19) and at the

centers of its sides. Since the norm of B in the uniform metric is equal to unity, we have
|Brg(x0, ¥o)| < csh**7. (2.30)

where cs is a constant independent of the taken point (x,,y,) on IT**. From (2.20), (2.21),

(2.30) and linearity of the operator B, we obtain

|Bu(xo, Vo) — u(xo, o)l < ch**7, (2.31)

for any (x,,y,) € M.
18



Now let (xq,y,) € IT*", 2 < k < N(h) and r(x, y) be the Lagrange remainder corresponding
to this point in Taylor’s formula (2.20). Then Brg(x,, yo) can be expressed linearly in terms of
a fixed number of eighth derivatives of u at some point of the open square II,, which is a
distance of kh/2 away from the boundary of II. The sum of the coefficients multiplying the
eighth derivatives does not exceed ch®, which is independent of k (2 < k < N(h)). By using

Lemma 2.2, we have

h8 h)L+7

= 2.32
(kh)l—/l ¢ kl—/l’ ( )

|Brg(x0,¥o)| < ¢

where c is a constant independent of k (2 < k < N(h)). On the basis of (2.20), (2.21), (2.31),
and (2.32) follows estimation (2.18) at any point (x,,v,) € T**, 1 <k < N(h). m

Theorem 2.1 The next estimation holds

lup, — ul < cph®,

where c is a constant independent of p and h, u is the exact solution of problem (2.1), u, is the
solution of the finite difference problem (2.8) and p = p(x, y) is the distance from the current
point (x,y) € I1" to the boundary of rectangle I1.

Proof. Let

Eh(XJJ’) = uh(x:y) - U(X»J’): (X:y) € ﬁh- (233)

Putting u, = €, + u into (2.8), we have

€n=Bey,+ (Bu—u) onTl*, €, =0 ony". (2.34)

We represent a solution of system (2.34) as follows
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N(R)
€p = Z er, N(h) = [%min{a, b}], (2.35)

k=1

where eF is a solution of the system

€l =Bef +of onTl", €, =0 ony", k=12, ..,N(h); (2.36)
Bu — ny,

gk =)ou—t on h (2.37)
0 on II,/If .

By virtue of (2.36), (2.37) and Lemma 2.4, foreach k, 1 < k < N(h), follows the

inequality
ek (e »)| < @ (%) max, [(Bu—wu)| on mn". (2.39)

On the basis of (2.33), (2.35) and (2.38) we have

N(h) N(h)
€ sz en sz K (x, ax_|(Bu—
lenl < ) ekl < ), QhGoy) max, [(Bu—w)
k=1 k=1
P1
k
= . a Bu —
Qn(x,y) (x,ryrieﬁkhl( u—u
k=1
N(h)
+ QkCoy) max |(Bu—wl, (x,y) € ",
4 (x,y)emnkh
k=L

h

By definition (2.15) of the function QF, we have
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3_1 B—l

h h
k

k — 8y 2.39
Z Qr(x,y) (x’%gékhl(Bu u)| < 6ch 2 T (2.39)
k=1 k=1
N(h) N K

k _ 8
Z Qn(x,y) (x,;gggkhl(Bu u)|6¢ch Z )i (2.40)
k=ﬁ k=2

Then from (2.39)-(2.40) we have

il LN
len(x,y)| < 6ch7+* Z k* + 6¢ch®p z R
k=1 y

p

w1 \ N(R)
pyA-1
<6ch’| 1+ | x*dx | +6ch®*p| (=) + [ x*ldx
h
1 »
h
Y [ ) R W WA (-
<ch +ch - +ch +ch _—
I+1  A+1 p P\"2 "2
< 7+A . n7HA(E T p74A 7 A
< ch7*h 4 om—h (h 1) T+ ehp
2
a
[ () P\ eia
L A(h) h>p
0 A+1
< ch”** 4 ¢, h7+4 (E - 1) — ¢ h7** + ch’ p* + c,h®pa* — c,hoptHt

=ch®p(x,y),  (x,y) €™

Theorem 2.1 is proved. m
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2.3 Approximation of the First Derivatives
Let u be a solution of the boundary value problem (2.1). We put v = g_Z' It is obvious that the

function v is a solution of boundary value problem
Av=0onll,v=1y; ony;, j=1,234, (2.41)
du ,
where ¥; = o onv, J= 1,2,3,4.

Let u;, be a solution of finite difference problem (2.8). We define the following operators y,,,,
v =12,34,

1
Y1n(up) = —=-[-147¢1(y) + 360uy(h, y) — 450u;, (2h, y)

60h
+400u, (3h,y) — 225u;,(4h,y) + 72u, (5h,y)
—10u, (6h,y)] onyl, (2.42)

1
Yan(up) = ——[147¢3(y) — 360u,(a — h,y)

60h

+450uy,(a — 2h,y) — 400u,(a — 3h,y) + 225u,(a — 4h,y)

—72up,(a — 5h,y) + 10u,(a — 6h,y)] on y%, (2.43)
09y b

Ypr(up) = S OV P = 2,4. (2.44)

Lemma 2.7 The next inequality holds

[Yin(up) — Yrn @] < ch®, k=13,

where u,, is the solution of problem (2.8), and u is the solution of problem (2.1).
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Proof. It is obvious that 1, (uy) — Ypp(w) = 0 for p = 2,4.
For k =1, by (2.42) and Theorem 2.1 we have

1
|10 (up) — P1r()| = SOh [(—147¢(y) + 360u,(h,y)

—450u, (2h,y) + 400u, (3h,y) — 225uy,(4h,y) + 72u, (5h,y)
—10up,(6h,y)) — (—147¢,(y) + 360u(h,y) — 450u(2h,y)
+400u(3h,y) — 225u(4h,y) + 72u(5h,y)10u(6h,y))]|

A [lup(h,y) —uCh,y)| + 450[uy (2h, y) — u(2h, y)|
+400|un(3h,y) —u(Bh,y)| + 225|u, (4h,y) — u(4h,y)|
+72|uy (5h,y) — u(5h, y)| + 10|uy (6h,y) — u(6h, y)|]

1
< 257 [360(ch)h® + 450(2ch)h® + 400(3ch)h® + 225(4ch)h®

+72(5ch)h® + 10(6ch)h®].
< c,hS.

The same inequality is true for k = 3. =
Lemma 2.8 The inequality holds

max |Ypn(up) — Pl < cgh®, k=13,
xy)EV]

where Y, k = 1,3 are the functions defined by (2.42) and (2.43), Y, = g—z on yy,

k=1,3.

Proof. From Lemma 2.1 follows that u € C”°(IT). Then at the end points (0,vh) € ¥ and
(a,vh) € y% of each line segment {(x,):0 < x < a,0 < y = vh < b} expressions (2.42) and
(2.43) give the sixth order approximation of Z—Z respectively.

From the truncation error formulae follows that
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7

d0’u
max |Yrp(u) — Y| < max_ —
(x,y)e

oy)eyf n7!|ox’

< coh®, k=1,3. (2.45)

h(2h)(3h)(4h)(5h)(6h)

On the basis of Lemma 2.7 and estimation (2.45)

maxh|¢kh(uh) — Yl < maXhh/th(uh) — Y| + maXh|1/th(u) — Pl
(xy)eyg (x¥)€Yg (.y)EY

< c;h® + cgh® = cgh®, k=13.m
Consider the finite difference problem
vy = By, onTI", v =1y, onyl, j=1,234, (2.46)

where ¥;,, j = 1,2,3,4 are defined by the formulas (2.42)-(2.44).

Since the boundary values vy, for j = 1,3 are defined by the solution of finite-difference

9%j

problem (2.46) which assumed to be known and vy, = o

, j = 2,4 are calculated by the

boundary functions ¢;, j = 2,4 the existence and uniqueness follows from the discrete

maximum principle.

To estimate the convergence order of problem (2.41) we consider the problem
AV =0 onll, V=a; ony;, j=1234,

where @; in the given function, which satisfy the following conditions

;€ Coy;), 0<1<1, (2.47)

24



®(s;) = D% (s1), =012 (2.48)

Let V,, be a solution of the finite—difference problem
Vo = BV, onTl", V, = &, onyl, j=1.234, (2.49)

where 1, is the value of i; on yjh,j = 1,2,3,4. It is clear that the error function ¢, =V, =V

is a solution of the boundary value problem
€n=Bep + (BV,—V) onll*, €, =0 ony/', j=1234 (2.50)
As follows from Theorem 12 in (Dosiyev, 2003) the following estimation

(xglfae)l%hlvh — V| < chS, (2.51)

is true.
Theorem 2.2 The following estimation holds

ou p
v, —=—| < coh®,

max
0x

(x,y)ell

where u is the solution of problem (2.1), and v, is the solution of finite difference problem
(2.46).
Proof. Let

€p, = vy — v onll?, (2.52)
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where v = ‘;—Z. From (2.46) and (2.52), we have

€, = Bep, + (Bv—v) onTl", €, = Prn(uy) —v onyl,

k=13, ¢,=0ony, p=24 (2.53)

We represent

€n = €L + €2 (2.54)
where
er = Bep onTI", e} = Pyp(up) —v onyy, k = 1,3,
er =0 ony), p=24 (2.55)
€r =Bep + (Bv—v) onIl", €5 =0 on y}', j=1234. (2.56)

By Lemma 2.8 and by maximum principle, for the solution of system (2.55), we have

max |e}| < max max w) — v| < ¢ h®.
(x,y)emnh h q=13 (x,y)eyélll/)qh( h) | 1 (257)

From (2.50) follows that €7 in (2.56) is a solution of problem (2.50) with the boundary
value of v satisfy the equations (2.47), (2.48). By the estimation (2.51), we obtain

2 6
(xfl;fae%hlehl < c,h (2.58)

By virtue of (2.54), (2.57) and (2.58) the proof is completed. m
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2.4 Approximation of the Pure Second Derivatives
2
We denote w = ZTZ. The function w is harmonic on I, on the basis of Lemma 2.1 w is

continuous on I1, and it is a solution of the following Dirichlet problem

Aw=0onll, w=yx;ony;, j=1234 (2.59)
where
0%,
Xt = W’ T=24, (260)
%@,
Xv = ~ oy v=13. (2.61)

From the continuity of the function w on II, and from (2.2), (2.3) and (2.60), (2.61) it follows
that
X €C5*y;), 0<a<1, j=1234 (2.62)
A0(s) = (D% (), =012, j=1234 (2.63)
Let w,, be a solution of the finite difference problem

wp = Bwp onM", w, = x; onyl', j=1234, (2.64)

where x; are functions determined by (2.60) and (2.61).
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Lemma 2.9 The next inequality holds true

28w(x,y)

T cip?3(x,y), (x,y) €l (2.65)

where c¢,is a constant independent of the direction of differentiation /dl .
Proof. We choose an arbitrary point (x,, Vo) € II. Let p, = p(xg,y,) and & c II be the closed

circle of radius p, centered at (x,, yo), consider the harmonic function on

w(x,y) 0°w(xy yo) (2.66)
FTE TE |

v(x,y) =
By (2.62), w = ZZTZ € C>*(10), for, 0 < A < 1. Then for the function (2.66) we have
1

max |v(x,y)| < copg, (2.67)
(x)€0%

where c, is a constant independent of the point (x,, y,) € II or the direction of d/dl. Since u
is harmonic in I1, by using estimation (2.67) and applying Lemma 3 from (Mikhailov, 1978)

we have

02 (Pwy) 0°w(xoyo)\| _ Pd
FIEAETE FIE =08
or
08w (x,y)

al8 S Cp(/)1_3(x0’ yO)I

where c is a constant independent of the point (x,, y,) € II or the direction of d/dl. Since the

point (x,, yo) € Il is arbitrary, inequality (2.65) holds true. =
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Lemma 2.10 The inequality holds

h5+l
k=12 ..,N(h), (2.68)

max |Bw—w|<c
(x,y)emnkh k3-47

where u is a solution of problem (2.1).

Proof. Let (xo, V) be a point of [1*"* < 1", and let
Hoz{(x;J’):|x—x0|<h,|y_3’o|<h}, (269)

be an elementary square, some sides of which lie on the boundary of the rectangle I1. On the
vertices of I1,, and on the mid points of its sides lie the nodes of which the function values are
used to evaluate Bw(xy,y,). We represent a solution of problem (2.59) in some neighborhood

of (xo,y,) € I'" by Taylor’s formula

a)(x,y) = p7(x,y) + rg(x,y), (270)

where p,(x,y) is the seventh order Taylor’s polynomial, rg(x, y) is the remainder term, and

Bp;(x0,¥0) = @ (X0, Yo)- (2.71)

Now, we estimate rg at the nodes of the operator B. We take node (x, + h, y, + h) which is

one of the eight nodes of B, and consider the function

S S

= +_
N RN

&(s) = w (xo + ) _VZh<s <+2h 2.72)

of one variable s . By virtue of Lemma 2.9, we have
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<,(VZh—s)"", 0<s<V2h 2.73)

08®(s)
ds8

we represent function (2.72) around the point s = 0 by Taylor’s formula as

®(s) = p7(s) + 7(s), (2.74)
where
- _ S s
p7(s) = py (xo + 7770 + ﬁ) (2.75)

is the seventh order Taylor’s polynomial of the variable s, and

S S
fg(S) - rg (xo + =

Yot ﬁ), 0 < |s| <VZh, (2.76)

is the remainder term. On the basis of continuity of #%(s) on the interval [—v2h, v2h], it follows
from (2.76) that

< +—S +—S ) lim 7g(V2h —€) 277
g\ X B = 11m 7 — €). .
8 0 \/E }’0 \/7 €40 8 ( )

Applying an integral representation for 7z we have

V2Zh-€
fs(V2Zh —€) = % f (VZh—e—t) a8(®)dt, 0<e< % (2.78)
0

Using estimation (2.73), we have
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V2h-€
I#5(VZh — €)] < ¢ f (VZh — e —t) (VZh — )" at

" V2h—¢
A
<z f (VZh—1t) e

0

h
< ch!5, 0<e<—. 2.79
7z (2.79)

From (2.76)-(2.79) yields
lrg(xo + h, Yo + h| < c;h**5,

where ¢, is a constant independent of the taken point (x,,y,) on I1*". Proceeding in a similar
manner, we can find the same estimates of rg at the other vertices of square (2.69) and at the

centers of its sides. Since the norm of B in the uniform metric is equal to unity, we have
|Brg(x0, ¥o)| < csh**3, (2.80)

where cs is a constant independent of the taken point (x,,y,) on IT**. From (2.70), (2.71),

(2.80) and linearity of the operator B, we obtain
|Bw(x0,y0) — @ (%o, Yo)| < ch**®, (2.81)

for any (x,,y,) € M.

Now let (xq,yo) € TT*", 2 < k < N(h) and rg(x, y) be the Lagrange remainder corresponding
to this point in Taylor’s formula (2.70). Then Brg(x,, ¥o) can be expressed linearly in terms of
a fixed number of eighth derivatives ofu at some point of the open square I1,, which is a distance

of kh/2 away from the boundary of II. The sum of the coefficients multiplying the eighth
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derivatives does not exceed ch®, which is independent of k, (2 < k < N(h)). By Lemma 2.9,

we have

8 hl+5

(kh)3—% =c k34 (2.82)

|Brg(x0, ¥0)| <

where c is a constant independent of k, (2 < k < N(h)). On the basis of (2.70), (2.71), (2.81)
and (2.82) follows estimation (2.68) at any point (x,,y,) € 1", 1<k < N(h). m

Theorem 2.3 The estimation holds

max_ |w, — w| < ¢q, K45,
(xo'J/o)Eﬁhl h | 12 (283)

2
where w =22, u is the solution of problem (2.1), and wy, is the solution of the finite

ax2’
difference problem (2.64).
Proof. Let
€p = Wy — W, (284)

where w;,, and w is a solution of problem (2.64) and (2.59) respectively. Then for ¢;, we have
€n=Be,+ (Bow—w)onTl*, €,=0 ony" (2.85)

We represent a solution of system (2.85) as follows

N(h)
€, = z el N(h) = [%min{a, b}], (2.86)

k=1
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where eF is a solution of the system

€l =Bef + fF onll", ef=0ony", k=1.2,..,N(h) (2.87)
Bw—w on ne,

fi = " (2.88)
0 on I,/ .

By virtue of (2.87), (2.88) and Lemma 2.4 for each k, 1 < k < N(h), follows the inequality
k K _ Th
lek (e, y)| < QK (x, ) (xgr/l)aE%hI(Bw w)|, onTI". (2.89)

On the basis of (2.84), (2.86) and (2.89) we have

N(R)
max |e,| < Z 6k max |(Bw — w)|
(x,y)ent (x,y)€EMh
k=1
N(h) . N(h)
< Z 6kC13F < 6¢ch>** |1 + j x* 2 dx
k=1 1
5+ x* g
< 6¢cy4h 1
S 0Cqg +A— 1
1
[ a1 1 1
=6 h5+/1 1 - -
‘14 +(7) 13 A—J

= 6Cl4h5+l + 6Clh6al_1 - 6C1h,5+/1

< ¢, h5+A,

Theorem 2.3 is proved. m
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CHAPTER 3
ON THE HIGH ORDER CONVERGENCE OF THE DIFFERENCE SOLUTION OF
LAPLACE’S EQUATION IN A RECTANGULAR PARALLELEPIPED

In this Chapter, we consider the Dirichlet problem for the Laplace equation on a rectangular
parallelepiped. The boundary functions on the faces of a parallelepiped are supposed to have the
seventh order derivatives satisfying the Holder condition, and on the edges the second, fourth
and sixth order derivatives satisfy the compatibility conditions. We present and justify
difference schemes on a cubic grid for obtaining the solution of the Dirichlet problem, its first
and pure second derivatives. For the approximate solution a pointwise estimation for the error
of order 0(ph®) with the weight function p, where p = p(x4, x,, x3) is the distance from the
current grid point (x4, x5, x3) to the boundary of the parallelepiped, is obtained. This estimation
gives an additional accuracy of the finite difference solution near the boundary of the
parallelepiped, which is used to approximate the first derivatives with uniform error of order
O(h®|Inh|). The approximation of the pure second derivatives are obtained with uniform

accuracy O(h°*),0< 1< 1.

3.1 The Dirichlet Problem in a Rectangular Parallelepiped

Let R = {(x1,%2,%3):0 < x; <a;,i =1,2,3} be an open rectangular parallelepiped; I (j =
1,2, ...,6) be its faces including the edges; I} for j = 1,2,3 (for j = 4,5,6) belongs to the plane
x; = 0 (to the plane x;_; = a;_3), letT = Ulel“,- be the boundary of the parallelepiped, let y
be the union of the edges of R, and let T, =T, UT,. We say that f € ck*(D), if f has

continuous k — th deravatives on D satisfying Holder condition with exponent 1 € (0,1).
We consider the following boundary value problem

Au=0 onR, u=¢; onl;, j=12,..,6, (3.1)
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a2 92 92 . :
where A= — +—+ ooz P aregiven functions.
3

oxi | ox3

Assume that
p; €CTMI), 0<A<1, j=12,..6 (3.2)
Op =Py ONYy,, (3.3)

0? 0? 0?
Pu N Py n Dy
atz oty Jti,

- 0 on Yuv; (34)

0'pu, 00y ¢y ¢y (3.5)
ott ' atzoty,  oti | atzotz, M |

a0° a0° 9° a° 0° 0°
(p#+ Pu + Pu = Pu ¢6V Pu ony,,. (3.6)
atp ~ otpots, Otioty  0tioty  dty  Otyoth,

Where 1 < u<v <6,v—u+3,t, is an element iny,,, t, and t, is an element of the
normal to y,,,, on the face I, and I,,, respectively. The boundary function as hole are continuous
on the edges and satisfy second, fourth, and sixth compatibility conditions which result from
Laplace equations. Indeed, (3.3) is differentiated twice with respect to t, . Then, it is

differentiated twice with respect to t,.. We have

¢, _9%p,

atz ots

62 <62(pu>_ 02 (azwv)
atz \ ot? otz \ ot:
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oo, 3o,
ot20t2  9tzots

(3.4) is differentiated twice with respect to t,,

L
atz \ otz ~ 0ty = Oth,

We have

(34([)# 64(/)1, a4§0u _
ot} ~ 9tzat:  Otk,0tF

(3.4) is differentiated twice with respect to t,,

0% 62(/)# az¢v+az¢u —0
otz \ atz otz oty )

We have

g,  0%*¢, 0%q, _ 0
dtzotz oty Otz 0t} '

From (3.7), (3.8) and (3.9) follows

o0*p,  0*¢p, d'e, ',

ot} ~ dczack, Oty - 0tZoty,

(3.7) is differentiated twice with respect to t,,,
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62 a4§0” B 62 04(01;
ot2, \dt2atz,) 0tz \dtzot}

¢y _ 9%y
atzotzots, atﬁat,%atﬁv'

(3.10)

(3.5) is differentiated twice with respect to t,, follows

0_2<6“<vu o9, ):£<04¢v+ ! )
otz \ ot} ~ otZotr,) otZ\ oty  0tidtl,)

66<p#+ °0, 0%, 2°¢,
otg  otiotZ, 0tzoty  0tZotiotZ,

(3.11)

(3.5) is differentiated twice with respect to t,, follows

62 64(/)# 649011 _62 64(Pv+ 649011
otz \ dtt  otzotz,) otz \ dtp  otZaty,

0°¢, 0°0, =66%+ 0°p,
atrotz ~ otzotzotl, ot otpotl,

(3.12)

From (3.10), (3.11) and (3.12) follows

0°¢u, 0P 0% _ 00y 0%, 0°¢,
ot otpotr, otiot  otZoty a9t ototd,

Lemma 3.1 The solution u of the problem (3.1) is from C7*(R),
The proof of Lemma 3.1 follows from Theorem 2.1 (Volkov, 1969).
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Lemma 3.2 Let p = (xq,x2,x3) be the distance from the current point of the open
parallelepiped R to its boundary and let /0l = a; —— + @y — + a3 —, a? + a? + a2 = 1.
Bxl sz 8x3

Then the next inequality holds

asu(xl, Xg,X3)
018

< cp (o1, X2, %3), (x1,%2,%3) ER, (3.13)

where c is a constant independent of the direction of differentiation d/dl, u is a solution of
problem (3.1).
Proof. We choose an arbitrary point (x;4, x50, X30) € R. Let py = p(x10, X20, X30), and 5 € R

be the closed ball of radius p, centred at (x;¢, X209, X30). Consider the harmonic function on R

07u(xy, x2, x3) _ 07 u(x10, %20, X30) (3.14)
al7 al’

v(x1, X2, X3) =

As it follows from Theorem 2.1 in (Volkov, 1969) the solution u of problem (3.1) which
satisfies the conditions (3.3)-(3.6) belongs to the class C7*(R), for 0 < A < 1. Then for the

function (3.14) we have

max _ |v(xy, X3, x3)| < copd, (3.15)
(x1,%2,%3)€T0

where ¢ is a constant independent of the point (x;9, X29, X30) € R or the direction of 9/dl.

By using estimation (3.15) and applying Lemma 3 from (Mikeladze, 1978) we have

2 67u(x1,x2,x3) _ 67u(x10,x20,x30) < cﬁ
al al7 al’ = po

or
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asu(xl,xz,x3)
018

< Cp(/}_l(xl; X2, X3),

where c is a constant independent of the point (x;, x50, x30) € R or the direction of d/dl. Since

the point (x;19, X290, X30) € R is arbitrary, inequality (3.13) holds true. =
Let v be a solution of the problem

Av=0onR, v=%¥ onl;, j=12..,6, (3.16)
where ¥}, j = 1,2, ...,6 are given functions and

Y, ec5M(I;), 0<A<1, j=12,..6 ¥, =%, o0ny,, (3.17)

0¥, N 0%¥, N 0¥,
atz oty Ot}

=0 onyy,, (3.18)

0", | 0", _ o, o', 619
ot: | otzatz,  oti | otzaty, MV '
Lemma 3.3 The next inequality is true
08v(xq, x5, x3)
EIE < €1p773 (1, %2, X3), (x1,%2,x3) ER, (3.20)

where c; is a constant independent of the direction of differentiation d/dl.
Proof. We choose an arbitrary point (x;q, X20,X30) € R. Let py = p(x10, X20, X30) and & € R

be the closed ball of radius p, centred at (x;¢, X209, X30). Consider the harmonic function on R
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asv(xl’ X2,X3) _ a5v(x10, X205 X30)

PTE e (3.21)

V(X1 Xz, X3) =

As it follows from Theorem 2.1 in (Volkov, 1969) the solution u of problem (3.1), which
satisfies the conditions (3.17)-(3.19) belongs to the class C>*(R), 0 < A < 1. Then for

the function (3.21) we have

max __ [v(xy, %z, %3)| < copf, (3.22)
(x1,%2,X3)€ET

where ¢, is a constant independent of the point (x, X29, X30) € R or the direction of d/dl.
Since u is harmonic in R, by using estimation (3.22) and applying Lemma 3 in (Mikeladze,
1978) we have

03 asv(xl,xz,x3) 05v(x10,x20,x30) < P(/)1
FIE FIE FIE =53

or

agv(xl,xz,x3)
al8

< cpg3(xy, x5, x3),

where c is a constant independent of the point (x4, x50, X30) € R or the direction of d/dl.

Since the point (x5, X520, X30) € R is arbitrary, inequality (3.20) holds true. m

3.2 27-Point Finite Difference Method for the Dirichlet Problem

Leth > 0, and a;/h > 6 where i = 1,2,3, ...,6 integers. We assign R™ a cubic grid on R, with
step h, obtained by the planes x; = 0,h, 2h, ...,i = 1,2,3. Let D" be a set of nodes of this grid,
R*=RnD"T!=T;nD" andIM" =T/ U} U..UTL

Let the operator R be defined as follows by (Mikeladze, 1938).
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6

1 18 26
‘J%u(xl,xz,xg,):m 14 z u, +3 Z ug + Z u, |,
p=11) q=72 r=1903)

(xll x21x3) € R; (323)

where the sum ¥, is taken over the grid nodes that are at a distance of Vkh from the point

(x4, X2, x3), and u,, u, and u,. are the values of u at the corresponding grid points.

/,/’C,./;.,o"'
c/ =Y
e e =

The red points have distance h from the center point, the white points have

N
a

distance v/2h from the center point and the blue points have distance v3h
from center point.

Figure 3.1: 26 points around center point using

operator R

Let c, ¢y, 4, ... be constants which are independent of h and the nearest factor, and for simplicity
identical notation will be used for various constants.

We consider the finite difference approximations of problem (3.1):

up = Ruy, oNRY, up =@; onTl, j=12,..6. (3.24)
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By the maximum principle system (3.24) has a unique solution.
Let R*" be the set of the grid nodes R* whose distance from I is kh. It is obvious that 1 < k <
N(h), where

N(h) = [i min{a,, a,, a3}], (3.25)

[d] is the integer part of d.

We define for 1 < k < N(h) the function

=l ey = @29
Consider two systems of grid equations

vy, = Avp, + gn, on Ry, vy =0on I}, (3.27)

Uy =AUp 4+ Gp, on Ry, U, =0 onTy, (3.28)

where g, and g, are given functions and |g,| < g, on R,.

Lemma 3.4 The solution v, and 7, to systems (3.23) and (3.31) satisfy the inequality

|17h| < 7, OnRy.

Proof. The proof of Lemma 3.4 follows from the comparison theorem (Samarskii, 2001).
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Lemma 3.5 The solution of the system

vl =Rk + fF onRP, vE =0 onT" (3.29)
satisfies the inequality

v (x1,%,%3) < QF, 1<k <N(h), (3.30)

where QF is defined as follows

6p
—, 0= p(xq,x5,x3) < kh,

Qf = Qh (x1,x2,x3) = {h p (21,2, %3) (3.31)
6k' p(x11x21x3) > kh.

Proof. By virtue of (3.23) and (3.31), and in consider of Fig 3.2, we have for 0 < p = kh

1
iRQ,’f=ﬁ[14(2x6(k—1)+4><6k)+3(7><6(k—1)+5><6k)

1
+6 X 6(k — 1) +2 x 6k] = = [504k — 168

1
+216k — 126 + 48k — 36] = - [768k — 330]

330
=6k — —,

which leads to

330

kK _qnk — 227 _ fk
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Figure 3.2:  The selected regionin R is p = kh

In consider of Fig 3.3 for p > kh, then

1 768
k _ = —Fk =
ROy =158 [14(6 X 6k) + 3(12 X 6k) + 8 X 6k] 128k 6k,

which leads to

QF —RQf = 0.
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Figure 3.3:  The selected regionin R is p > kh

In consider of Fig 3.4 for p < kh, then

8@5=f%ﬁ4®%—2)+4x6%—1)+&0+M4xﬂk—@

+4x6(k—1)+4%x6k)+4x6(k—2)+4x6k]
=504k — 504 + 216k — 216 + 48k — 48

768 768

= —k——=6k—6=6(k—1),
128"° " 128 (k=1

which leads to

Qi —RQ; = 0.
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Figure 3.4: The selected regionin R is p < kh

From the above calculations we have
QF =RQK +qF onR™®, Q¥ =0 onT", k=1,..,N(h), (3.32)

where |gf| = 1.

On the basis of (3.26), (3.31), (3.32) and Lemma 3.4, we obtain

vl < QF forallk, 1<k < N(h).
[ |
Introducing the notation x, = (X109, X20, X30), We used Taylor’s formulate to represent the

solution of Dirichlet problem around some point x, € Ry,
u(xy, X2, x3) = p7(x1, X2, X35 X0) + 15(%1, X2, X35 Xo), (3.33)

where p- is the seventh order Taylor’s polynomial and rg (x4, X5, X3; Xo) IS the remainder term.
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Here,

P7(X10, X20, X305 Xo) = U(X10, X20, X30; Xo) + g (X10, X20, X30; X9) = O.

Lemma 3.6 It is true that

Ru(x10, X20, X30) = U(X10, X20, X30) + Rrs(X10, X20, X305 X0), (X10, X20, X30) €

Ry,

Proof. Let p; (X1, X209, X30; Xo) be a Taylor’s polynomial.
By Direct calculations we have

2 2
Rp7(x10, %20, X30) = U(X10, X20,X30) + 128 [aaxf (6 u(X1g;:i220’X30)
0%u(x10, X20,X30)  0%u(X19, X20,X30) 0% (0%u(x10, X290, X30)
0x3 0x3 > a_xzz( Ox{
0%u(x19, X20, X30) azu(xlo:xzo'xm)) <6 u(x10, X20, X30)
dx3 dx3 0x3 ox?
0%u(x10, X20, X30) azu(x10'x20'x3o)>] " 1 [ <62u(x10,x20,x30)
0x2 0x2 1536 [dx; dx?
0%u(x19, X20, X30) azu(xlo,xzo,x30)>+ <6 (x40, X20, X30)
dx3 0x2 x5 ox?
0%u(x10, X20, X30) azu(x1o'x20'x3o)> <6 u(x10, X20, X30)
0x2 0x2 axt dx?
+62u(x10,x20,x30)+62u(x10,x20,x30)> 14 a* (62u(x10,x20,x30)
dx3 0x2 dx?0x3 dx?
0%u(x10, X20, X30) azu(x1o'x20'x3o)> 44 a* (62u(x10,x20,x30)
0x2 0x2 0x?0x3 dx?
azu(xlo;xzoixe.o) azu(xm:xzo;xs:o)) 44 a* (62u(x10,x20,x30)
0x2 0x2 dx20x3 dx?
0%u(x10, X20, X30) azu(xlo,xzo,x30)>]
dx3 dx3

= u(X10, X20, X30)-
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Since u is harmonic function, all terms on the right-hand side of this equality vanished except

the first term. Thus

Rp7 (X410, X20, X30) = U(X10, X20, X30)-

Combining this with (3.33) and recalling the linearity of R, Lemma 3.6. is proved. =

Lemma 3.7 Let u be a solution of problem (3.1) The inequality holds

7+1

max |[Ru—-u|<c——, k=1,..,N(h). (3.34)

(xl,xz,x3)ERkh kl_l ’
Proof. Let (xo1, Xo2, Xo3) b€ a point of R, and let
RO = {(xl,xZ,X3): |xl' - xiol < h, i = 1,2,3} (335)
be an elementary cube, some faces of which lie on the boundary of the rectangular parallelepiped
R.
On the vertices of R, and on the center of its faces and edges lie the nodes of which the function

values are used to evaluate R(x; g, X209, X30). We represent a solution of problem (3.1) in some

neighborhood of x, = (x19, X20, X30) € R by Taylor’s formula

u(xy, Xz, X3) = p7 (X1, X2, X35 X)) + 15 (X1, X2, X3 Xo), (3.36)

where p;(xq, x5, x3; xo) is the seventh order Taylor’s polynomial, 1g5(x;, X5, X3; Xo) iS the

remainder term. Taking into account the function u is harmonic, hence by Lemma 3.6 we have

Rp7 (X410, X20, X305 X0) = U(X10, X20, X30)- (3.37)
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Now, we estimate rg at the nodes of the operator R. We take node (x;o + h, x50, X3¢ + h; Xg)

which is one of the twenty six nodes of ‘R, and consider the function

_ s s
i(s)=u (x10 + —, x50, X30 + —>,

V2 V2
—V2h <s <+2h (3.38)

of a single variable s, which is the arclength along the straight line through the points

(xlo - h, xZo, X30 - h) and (xlo + h, xzo, x30 + h) By Vlrtue Of Lemma 32 we have

81i(s)

<c,(V2h-s)", 0<s<V2h (3.39)

we represent function (3.38) around the point s = 0 by Taylor’s formula

u(s) = p;(s) + 75(s), (3.40)
where

_ S S

p7(s) =p; <x1o + ﬁ'xzo'xw + ﬁ) (3.41)

is the seventh order Taylor’s polynomial of the variable s, and

S S
Tg(s) = 15| x10 + —=, %20, % +—;x>, s| <V2h 3.42
o) =7a (10 + 0t + %), (342

is the remainder term.

On the basis of continuity of 73 (s) on the interval [—\/?h, \/Eh] and estimation (3.42), we obtain
15(X10 + h, X320, X390 + h) = el—iHlo fa(V2h — €). (3.43)

Applying an integral representation for 7g we have
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V2h—e€
7o(VZh - €) = % f (VZh—e—t)' (V2h—1t)" "at

h
<ch*’, 0<e<—. 3.44
7z (3.44)
From (3.42)-(3.44) yields

75 (10 + R, X0, X350 + R)| < ch?*7, (3.45)

where ¢ is a constant independent of the taken point (x;o, X0, X30) € R Proceeding in a
similar manner, we can find the same estimates of r at the other sides of cube (3.35) and at the
centers of its faces.

Since the norm of R in the uniform metric is equal to unity, we have
|Rrg(x10 + h, Xp0, X30 + B)| < c;hM7, 0< A< 1. (3.46)

where ¢, is a constant independent of the taken point (x;, x50, X30) € R*. From
(3.36), (3.37), (3.46) and linearity of the operator R, we obtain

|§Ru(x10, xZo, X30) - u(xlo, Xzo, X30)| S Chl+7, (347)

for any (x40, X20, X30) € R

Now let (x;q, X20, X30), be a point of R¥* 2 < k < N(h), and rg(xy, x5, x3) be the Lagrange
remainder corresponding to this point in Taylor’s formula (3.36). Then r5(x;, X0, X30) Can be
expressed linearly in terms of a fixed number of the twenty sixth derivatives of u at some point
of the open cube R,, which is a distance of kh/2 away from the boundary of R. The sum of the
coefficients multiplying the twenty sixth derivatives does not exceed ch®, which is independent
of k, (2 < k < N(h)). By Lemma 3.2, we have
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h8 hl+7
¢ (kh)1— = O

|R75 (10, X20, X30) | < (3.48)

where c is a constant independent of k, (2 < k < N(h)). On the basis of (3.36), (3.37), (3.47),
and (3.48) follows estimation (3.34) at any point (x;, X20, X30) € R**, 1 < k < N(h).

Theorem 3.1 Assume that the boundary function ¢; satisfy the conditions (3.2)-(3.6).Then at

each point(xy, x,, x3) € R"
lup, — u| < cph®,

where c is a constant independent of p and h, uis the solution of the finite difference problem
(3.24), u is the exact solution of problem (3.1), and p = p(x, x5, x3) is the distance from the
current point (x;, x,, x3) € R" to the boundary of rectangular parallelepiped R.

Proof. Let

€n (X1, X2, X3) = Up (X, X2, X3) — U(Xq, X2, X3), (X1, %2,%3) ON R™. (3.49)
By (3.24) and (3.49) the error function €, satisfies the system of equations
€n=Rep, + (Ru—u) onR™®, e=0 onTh (3.50)

We represent a solution of system (3.50) as follows
N(h)

1
Eh = z 6;:! N(h) = ﬁmin{ali aZI a3} ) (351)
k=1

where € is a solution of the system

€f = Ref + 1% onR™, €, =0 onT", k=12, ..,N(h); (3.52)
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k _ ERU —Uu on (.xl,xz,X3) E Rkh,
0 on (xq,x,,x3) € R"/R*I,

By virtue of (3.52), (3.53) for each k, 1 < k < N(h), follows the inequality

|€’;f(x1,x2,x3)| < Qf (x4, X2, x3) . xmxa>)(€Rkh|(93u —u)| on R".
14243

On the basis of (3.49), (3.51) and (3.54), we have

N(h) N(h)

lenl < D Jekl < D QFCra o xs) max [t —w)
k=1 k=1

xl,xz,xg)ER
p_
h 1

k
= X1, X5, X max Ru—u
Qp (x1, X2, 3)(x1,x2,x3)eRkh|( )

k=1
N(h)
+ QF (x,x5,x3)  max khl(‘Ru —w)|, (xq,x,, x3) € IMFA,
) (x1,x2,x3)ER
k=L

h

By definition (3.31) of the function QF, we have

p_
hl

D Q0kCauxxe) | max ((ORu =)

1,X2,X3)ERkh
k=1

p_
hl

< 6Ch8 Z #,
k=1
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N(h)
z QF(xy,x2,x3)  max  |(Ru—u)]
k=P

(xl,xz,x3)ERkh

N(h)

<6ch® _k (3.57)
s (kh)l—/l
k=2
h

Then from (3.55)-(3.57), we obtain

——1 N(R)
ek (xeq, x5, x3)| < 6¢h7*2 Z k* + 6ch6”p

kl

[

| N(h)
742 2. era [(PY A-1
< 6ch 1+ x de + 6¢ch®™p (E) + x* " dx

1 £
h

+1 A+1 R7t2 A-1
1G-) e @) @)

—ch7+’1+c)L
+Ch6+/1'0( ) h6+)L'D( )

p A+1
= ch”** + ¢, A7 (E — 1) —c;h7** + ch7p? + c,h®pat
_C2h6p)l+1 < Ch6p
p A+1
= ch”** + ¢, A7+ (E — 1) —c;h7** + ch7p? + c,h®pat
—c,h®p**t < ch®p.

3.3 Approximation of the First Derivatives

Let u be a solution of the boundary value problem (3.1). We put v = :7”. It is obvious that the
1

function v is a solution of boundary value problem
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Av=0 onR,v="F; onl;, j=1234. (3.58)

ou ,
Where F; = s, ON I, j=12,..6.

Let u;, be a solution of finite difference problem (3.24). We define the following operators F,,,

v =1,2,..,6, as follows

1
Finlup) = 5On [—147 ¢, (x3, x3) + 360up(h, x5, x3)

—450u, (2h, x5, x3) + 400u, (3h, x5, x3)
—225uy,(4h, x5, x3) + 72u, (5h, x5, x3)
—10u,(6h, x5, x3)] onTH, (3.59)

1
Fan(up) = @ [147 @3 (x, x3) — 360u,(a; — h, x;, x3)

+4‘50uh(a1 - Zh, xz,X3) - 4‘00uh(a1 - 3h, .XZ, X3)
+225up(ay — 4h, x,, x3) — 72uy(a, — 5h, x4, x3)

+10uy, (a; — 6h,x,,%3)] on TL, (3.60)
F = 2% onrh p=235 3.61
ph(uh) - a_xl on Fp ) p - 213: :6 . ( . )

Consider the finite difference boundary value problem
vy = Ry, oNRM, v, = Fy, on T, j=1.2,...6, (3.62)

where Fjp, j = 1,2, ...,6 are defined by (3.59)—(3.61).
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Lemma 3.8 The inequality is true
|Fan(un) — Fon)| < ch®, q =14,
where uy, is the solution of problem (3.24), and u is the solutionof problem (3.1).

Proof. It is obvious that F,, (up) — Fpp(u) = 0 for p = 2,3,5,6.
For g = 1, by (3.59) and Theorem 3.1, we have

1
|Fin(up) — Frp)| < SOh [360]up (h, x3, x3) — u(h, x2, x3)|

+450 |uh(2h' X2, x3) - U(Zh, X2, x3)| + 400 Iuh(gh' X2, X3)
_u(ShJ X2, x3)| + 225|uh(4h1 X2, x3) - u(4hl X2, x3)|
+72|uh(5h' X2, x3) - U(Sh, X2, x3)| + 10|uh(6h1 X2, x3)

1
—u(6h, x5,x3)|] < “O0h [360(ch)h® + 450(2ch)h® + 400(3ch)h®

+225(4ch)h® + 72(5ch)h® + 10(6¢ch)h®] < cgh®.
The same inequality is true forqg = 4. =
Lemma 3.9 The inequality holds

max thqh(uh) - :F(I| < C9h6, q= 1,4‘

(x1.X2,%3)€lg

where Fqp, ¢ = 1,4 are defined by (3.59), (3.60), and F, = :—; only, q=14.

Proof. Since u € C7*(R) it follows that u € C7°(R). Then at the end points (0, vh, wh) € I}

and (ay, vh, wh) € T} of each line segment {(x,x5,%3):0 < x; < a;,0 <x, =vh < a,,0 <
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x3 = wh < a3} expressions (3.59) and (3.60) give the sixth order approximation of ;7”,
1

respectively.

From the truncation error formulas (Richard; Dougla, 2011) it follows that

max h|th(uh) - ?ql < ci0h® q =14 (3.63)

(x1,x2,x3)€lg
On the basis of Lemma 3.8 and estimation (3.63) follows,

max Fonuy) — F
(xl.xz,x3)6F3| qh( h) ql

< max h|7-"qh(uh) — th(u)| 4+  max h|th(u) — Tq|
(xl,xz,x3)el"q (xl,xz,x3)el"q

S C11h6, q = 1,4‘

||
Theorem 3.2 The estimation is true
u| _ h(1 + |In k) (3.64)

where vy, is the solution of finite difference problem (3.62), and w is the solution of problem
(3.1).
Proof. Let

€, = v, —v onR" (3.65)

ou
where v = —.
6x1

From (3.62) and (3.65), we have
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€, = Rep, + (Rv —v) on R,
en =Funup) —v onT k=14, ¢, =0 onT}, p=2356.

We represent

€ = €} + €7, (3.66)
where

€i = Rep onR", (3.67)

€ = Fan(up) —v onTl, g =14,¢, =0 onT}, p=23546, (3.68)

er =Rep + (Rv—v) onR", 7 =0 on[, j=12,., (3.69)

By Lemma 3.9 and by the maximum principle, for the solution of system (3.67), (3.68), we have

1 6
max €| < max max Fon(up) — vl <ch
(xl'erx3)ERh| hl q=14 (X1,x2,x3)EFZ| qh( h) | (370)

The solution €2 of system (3.69) is the error of the approximate solution obtained by the finite
difference method for problem (3.58), when on the boundary nodes I}, approximate values are
defined as the exact values of the functions F; in (3.58). It is obvious that F;, j = 1,2, ...,6,

satisfy the following conditions
F;eCOMT), 0<A<1, j=12,..6 (3.71)

Fu=F on yu, (3.72)
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9%F, 08°F, 0%F, (3.73)

ot} * P T 0 oY
o*F,  9*F,  9*F, O*F, (3.74)

+ = + on
ott " atzoty,  oti | otzats, YR

Since the function v = ;Tu, is harmonic on R with the boundary values of F;, j = 1,2, ...,6, on
1

the basis of (3.71)-(3.74) and by lemma 2.6 in (Dosiyev and Sadeghi, 2016), we have
max _ |€?] < c,h®(1 + |Inhl). (3.75)

(x1,%2,%3)ERN

By virtue of (3.66), (3.70) and (3.75) we have

(x1,X2,x3)€ER

max__ |ey| < ch®(1 + |Inh)).

Hence, (3.64) follows. m

3.4 Approximation of the Pure Second Derivatives

2
Let u be a solution of the value problem (3.1), we put w = 9% |t is obvious that the function w

ax?
is a solution of boundary value problem
Aw=0o0nR, w=Y onl;, j=12..6, (3.76)
where
9% . _ 9%@q 9% _
LIJp = ax;, p = 2,3,5,6, lpq = _?%q - ax;' q = 1,4 (377)
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We consider the finite difference problem
wp = Rw, ONR", w, =¥ onT, j=12,..6, (3.78)
where the boundary functions ¥; are functions defined by (3.76).

Lemma 3.10 Let u be a solution of problem (3.1) and w be solution of problem (3.76).

The inequality is true

5+1

max |Rw—w|<c——
(xl,xz,x3)ERkh k3_l,

k=1,2,..,N(h). (3.79)
Proof. Let (xo1, Xo2, Xo3) b€ a point of R, and let
RO = {(xl, X7, X3): |xl' - xiol < h, i = 1,2,3 }, (380)
be an elementary cube, some faces of which lie on the boundary of the rectangular parallelepiped
R.
On the vertices of R, and on the center of its faces and edges lie the nodes of which the function

values are used to evaluate Rw (x40, X209, X30). We represent a solution of problem (3.76) in

some neighborhood of x, = (x;¢, X9, X39) € R by Taylor’s formula

(x1, X2, x3) = p7(x1, X2, X35 Xo) + 15(X1, X2, X35 Xp), (3.81)

where p;(xq, x5, x3; x9) is the seventh order Taylor’s polynomial, rg(xy, x5, x3; Xo) iS the

remainder term. Taking into account the function w is harmonic, hence by Lemma 3.6 we have

Rp7 (X410, X20, X305 X0) = W(X10, X20, X30)- (3.82)
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Now, we estimate rg at the nodes of the operator R. We take node (x;o + h, x50, X3¢ + h; xg)

which is one of the twenty six nodes of ‘R, and consider the function

s s
D) =w <x10 + —, x50, X30 + —),

V2 V2
—V2h < s <+2h (3.83)

of a single variable s, which is the arclength along the straight line through the points

(xlo - h, xZo, X30 - h) and (xlo + h, xzo, x30 + h) By Vlrtue Of Lemma 33 we have

383(s)

P c;(V2h—s)*3, 0<s<+2h (3.84)

we represent function (3.83) around the point s = 0 by Taylor’s formula

u(s) = p7(s) + (), (3.85)
where

) = k) k)

p7(s) = py <X1o + ﬁ;xzo;xw + \/7) (3.86)

is the seventh order Taylor’s polynomial of the variable s, and

Tq(S T X , X20, X ;X0 |, S .
8 8 10 /—2 202430 /—2 0 ( )

is the remainder term.

On the basis of continuity of #%(s) on the interval [—v2h, v2h] and estimation (3.87), we obtain
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1a(x10 + h, Xz0,X30 + h) = lim 7(V2h — €). (3.88)

Applying an integral representation for 73 we have
V2h—e€
. 1 7 -3
3(V2h —€) = f (V2h—e—t) (V2h—t)" "dt
0

h (3.89)
<ch*> 0<e<—
V2
From (3.87)-(3.89) yields
|rg(x10 + h, X320, X30 + R)| < ch™*, (3.90)

where ¢ is a constant independent of the taken point (x;4, X20, X30) € R, Proceeding in a
similar manner, we can find the same estimates of g at the other sides of cube (3.80) and at the

centers of its faces.

Since the norm of R in the uniform metric is equal to unity, we have

|Rrg(x10 + R, Xp0, X390 + W) < A5, 0< A< 1, (3.91)

where c; is a constant independent of the taken point (x;o, x50, X30) € R, From
(3.81), (3.82), (3.91) and linearity of the operator R, we obtain

1R (210, X0, X30) — 0(X10, X20, X30)| < ch**5, (3.92)

for any (x0, X209, X30) € R
Now let (x1q, X0, X30), be a point of R¥* 2 < k < N(h), and rg(xy, x5, x3) be the Lagrange

remainder corresponding to this point in Taylor’s formula (3.81). Then r5(x;, X5, X30) Can be
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expressed linearly in terms of a fixed number of the twenty sixth derivatives of u at some point
of the open cube R, which is a distance of kh/2 away from the boundary of R. The sum of the
coefficients multiplying the twenty sixth derivatives does not exceed ch®, which is independent
of k, (2 < k < N(h)). By Lemma 3.3, we have

h8 hl+5

= 3.93
¢ (kh)3—/1 ¢ k3— ( )

|Rrg (x10, X20, X30)| <

where c is a constant independent of k, (2 < k < N(h)). On the basis of (3.81), (3.82), and
(3.93) follows estimation (3.79) at any point (x;4, X20, X30) € R¥*, 1 < k < N(h).

Theorem 3.3 The estimation holds

0%u

max W, ox2

(x1,%2,%3)ERN

< h%*, 0<a<1, (3.94)

where wy, is a solution of finite difference problem (3.78), u is a solution of problem (3.1).
Proof. Let

€Eh = W — W on E (395)
By (3.78) and (3.95) the error function €, satisfies the system of equations
€, = Rep + (Rw —w) onR, €, =0 onT" (3.96)

We represent a solution of system (3.96) as follows
N(h)

e, = 2 ek, (3.97)

k=1
where €, 1 <k < N(h), N(h) defined by (3.25) is a solution of the system
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€f = Ref + ¥ onR, ¢, =0 onT" (3.98)
and

B kh
k_ {iRw w  on (x1,%2,%3) € R™, (3.99)

=
h 0 on  (xq,%,,x3) € R?/R¥",

By virtue of (3.98), (3.99) and Lemma 3.5 for each k, 1 < k < N(h), follows the inequality

|lef (xep, %0, x3)| < QF(xy, %2,%3) max  |(Rw — w)| on R™, (3.100)
(x1,X2,%3)ERKR

On the basis of (3.95), (3.97), (3.100), and Lemma 3.10, we obtain

N(h)

max el < Z e.k
(x1.xz,x3)eRh| nl | hl
k=1
N(h)
S Z Qflf(xlj xZ,X3)( max hl(mw — o))l )
k=1

xl,xz,x3)ERk

N(h) 5+ N(h) N(h)
< Z 6kC3F < 6ch5+A Z k*=2 < 6¢ch>** |1 + f x*2 dx
k=1 k=1 1
xA1 B aA-1 1 1
= 6¢ch5t |1 + 1T-1 = 6ch5*4 [1 + (E) m - m

= 6¢ch®>™* + 6C1h5+/1—/1+1a/1—1 _ 6clh5+l — C2h5+/1 + C3h6a/1—1 _ C3h5+l

< ¢c,h5*,
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CHAPTER 4
A THREE STAGE DIFFERENCE METHOD FOR SOLVING DIRICHLET PROBLEM FOR
LAPLACE’S EQUATION

In this Chapter, we use a three-stage difference method to solve the Dirichlet problem for the
Laplace equation on a rectangular parallelepiped. Under the assumptions that the boundary
functions on the faces have the eighth derivatives satisfying the Holder condition, and on the
edges the second, fourth, and sixth order derivatives satisfy the compatibility conditions. By
using in the first stage the 14-point averaging operator and in the second and third stages 6-point

averaging operator, we get 0 (h®) order of accurate approximation of the solution.

4.1 The Dirichlet Problem on Rectangular Parallelepiped

Let R = {(x1,x2,x3):0 < x; < a;, i =1,2,3} be an open rectangular parallelepiped; I; (j =
1,2,...,6) be its faces including the edges such that I for j = 1,2,3 (for j = 4,5,6) belongs to
the plane x; =0 (to the plane x;_3 =a;_3), let I' = U]-6=11“,- be the boundary of the
parallelepiped, let y be the union of the edges of R, and lety,, =T, UT,. We say that f €
ck*(D), if f has continuous k — th deravatives on D satisfying Holder condition with
exponent A € (0,1).

We consider the following boundary value problem
Au=0 onR, u=g; onlj, j=12,..,6, 4.1)

92 92 92 ) f -
s+ 5.7 T 5,2 @ e given functions.

where A= —
0xi

Assume that

@ ECOAT), 0<A<1, j=12,..6 (4.2)
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Pu =@y ONYyy
92 0% 02
<,02” Lidd + Pu =0 on Yuv
otz 0ty 0th,
o*p, 0%, 0%, 0%y,
ot: | otzotz,  oti « otzotz, VM
0°, 0%,  0%°p, 0%, 0%, 0°p,
ot otioth, otpot  otioti 9t dtjot,

onyyy

(4.3)

(4.4)

(4.5)

(4.6)

where 1 < u<v<6,v—u#3,t, isan element iny,,, t, and t, is an element of the

normal to y,, on the face I, and I, respectively.

Leto(j) =3 {é} + 1, where {a} is the fractional part of a.

If j = 1. Then a(1)=3{§}+1=2,

if j = 2. Then 0(2)_3{§}+1=3,

if j =3.Then o(3) =3{3} +1=3{3} +
if j =4.Then o(4) =3{3} +1=3{3}+
if j =5.Then o(5) = 3{z} +1=3{3} +
if j = 6.Then o(6) =3{2} +1=3{3} +

—_

U

I Il Il
w \S) -

I
=
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Lemma 4.1 In the open parallelepiped R, it holds that

0" u(xy, %2, x3)  0*u(xy, Xz, %3) | 0*u(xy, %3, X3)

64u(x1,x2,x3)

4 - 4 4
0x; 0%5(j) 0X5(j+1)
where u is the solution to Dirichlet problem (4.1).
Proof. The proof from the Laplace equation as follows:

Incasej =1

0*u(xy, x5, x3)  0° (02u(x1,x2,x3)>

ox; ~ox? dx2
_ 0° 0%u(xy, 23, x3)  0%u(xy, X, X3)
0x? 0x2 dx2

_ 0*u(xq, x2, x3) _ 0*u(xy, x5, x3)

0x20x2 0x}dx3
G ( 0%u(xy, X, x3) 62u(x1.xz,x3)>
dx2 dx2 0x2
o2 <_62u(x1,x2,x3) _62u(x1,x2,x3)>
dx2 0x2 0x2

_64u(x1,x2,x3) 0% u(xy, x3,%3) | 0%uxy, x5, x3) | 0*u(xy, xz, %3)

0x5(j)0%5(j+1)

)

4 23,2 23,2 4
0x5 0x50x3 0x50x5 0x3
4 4 4
_0%u(xg, x5, x3) | 0"u(xy, Xz, x3) 0% u(xq, x5, Xx3)
- 4 4 29,2
0x5 0x3 0x50x3

Similarly, for j = 2,3. This completes proof (4.7). =
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On R, we define the function

04 ux,x,x
v—v(xl'xz'%)—zz (1 = 3), (4.8)

]

where u is the solution to Dirichlet problem (4.1).

Lemma 4.2 The function (4.8) coincides with the unique continuous on R solution to the
boundary value problem

Av=0 onR, v=1; onlj, j=12,..6, (4.9)
where

0@ (Xo(j) Xo(j+1)) N 0* @ (Xo(j) Xo(j+1))
Ox* Ox*

¥j = ¥i(*e(y *o(jtn) =
a(j) o(j+1)
0*p;(Xo(j) Xo(j+1))

0xg (0% 41

(4.10)

Proof. On the basis of (4.2)-(4.6), Theorem 2.1 by (Volkov,1969) and Theorem 3.1 by (Volkov,
1965) it follows that a solution u of problem (4.1) belongs to the class C7*(R), 0 < 1 < 1.
Let us show that v is a solution of problem (4.9).

1] 02 [0*u(xy, x3,x3)  0%u(xy, x5,x3)  0*u(xy, x5, x3)
Av = - > ) + ) + ™
2 |0xf 0x; 0x5 0x3

0% (0*u(xy,x5,x3)  0*u(xy, xp,x3)  0*u(xy, xp,x3)
2 4 + 4 + 4
0x35 0xy 0x; 0x3

0% [(0*u(xq,x5,x3) N 0*u(xy, x5, x3) N 0*u(xy, x5, x3)
0x2 ox; x5 x5
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1[66u(x1,x2,x3) 0%u(xy, x5, x3)  0%u(xy, x5,%3)  0%u(xy, x5, X3)

2 0x? 0x}oxy 0xfoxs 0x20x;
0°u(xy,x2,x3)  0°U(xy, Xz, %3) | 0°u(xy, %2, x3) | 0°uU(Xy, X2, X3)
x5 0x%0x3 0x;0x3 dx50x2
0%u(xy, x2, x3)
0x§
_1[0* [0%u(xy, Xz, x3) N 0%2u(xy, x5, x3) N 0%u(xq, x5, x3)
2 |ox? 0x? dx2 0x2
0% [(0%u(xy,x5,x3)  0%u(xy,x5,x3)  0%2u(xy, x5, x3)
2 2 + 2 + 2
0x; 0xj x5 0x35
0% [(0%u(xy,x5,x3)  0%u(xy,x5,x3)  0%2u(xy, x5, x3)
2 2 + 2 + 2
0x3 0xj 0x;5 0x35

=0.

We show thatv =; onT;, j=1,2,..,6.Since

3 3
1 Z 0% u(xy, x2,x3)  10%u(xy, xz,x3) N 1 Z 0*u(xq, x5, x3)
2 2

X; 2 oxp X;
j*k
1 (64u(x1,x2,x3) N 0*u(xy, xp, x3) 64u(x1,x2,x3)>
2 axﬁ(k) axé(k+1) axczr(k)axzzr(k+1)

| =

3
Z u(xl, Xz; X3)
2

:v»-\

_64u(x1,x2,x3) 0% u(xy, x3,%3) | 0*u(xy, X2, %3)

a9‘§(k) axg(k+1) axczr(k)axczr(k+1)’

we have
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_0*0;(%o (i) Xa(j+1) +a4‘/’j(xo(j)'x0(j+1)) +a4<ﬂj(xo(f)'xo<j+1))
V= ox* ax*t 9x2, - 0x2
Xe(j) Xo(j+1) Xs(H9%a(j+1)

onl;, j=12,..,6.m

Lemma 4.3 In the open parallelepiped R, it holds that

0°u(xy, X3, x3) _ 0°u(xy, X2,%3)  0°u(x1, %3, X3)
6 - 6 - 6
0x; 0%5()) 0X5(j+1)

0%u(xy, x5, x3) 0%u(xq, x5, x3)

— — : (4.12)
0x5(y0%5i1y  0%5(j0Xg¢i41)

where u is the solution to Dirichlet problem (4.1).
Proof. The proof from the Laplace equation as follows:

Incasej =1

0°u(xy,x2,x3) 0% (0*u(xy,xp,X3)
0x% -~ ox? oxy

0% (0*u(xy, %3, X3) N 0*u(xq, x5, x3) ) 0*u(xq, x5, x3)
 0x? 0x; 0x3 0x20x3

6 6 6

_0%u(xy,x,x3) | 0°u(xy, Xz, x3) 0°u(xy, X2, X3)

- 27,4 27,4 29302742
0x;0x; 0x;0x3 0x;0x50x5

_ ot 0%2u(xy, x5, x3)  0%u(xqy, x2, x3)
 ox} dx2 0x2

0% 0%u(xy, x5, x3)  0%u(xqy, x3,%3)
0x3 0x2 dx2

9° 0%2u(xy, x5, x3)  0%u(xy, x5, X3)
0x20x3 0x2 0x2

+

+2

0%u(xy, x5, x3)  0%u(xy, x2, x3) _ 0%u(xy, x5, x3) _ 0%u(xy, x5, x3)
x5 0x;0x2 0x20x3 0x8
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66u(x1, X2, X3) _ aﬁu(xl» X2, X3)

4 2 2 4
0x50x35 0x50x3
6 6 6 6
o 0%u(xy, xz,x3)  0°u(xy, X2, X3) 0°u(xq, x5, x3) 0°u(xq, x5, x3)
x5 dx8 0x;0x3 0x20x3

Similarly, for j = 2,3. This completes proof (4.11). m

On R, we define the function

3
1 z 66u(x1, X2,X3)

0 = w(xy,Xp,x3) = 3 98 ’ (4.12)

j=1
where u is the solution to Dirichlet problem (4.1).

Lemma 4.4 The function (4.12) coincides with the unique continuous on R solution to the

boundary value problem
Aw=0o0nR, w=k; onl;, j=12,..,6, (4.13)

where
Kj = Kj (xcr(j)'xa(jﬂ))

_ 9°0i(%e0y Xo(ian)  9°0;(Xe() Xo(j+n))
0%x5(jy0%g (1) 0x5(j50%g 1)

(4.14)

Proof. On the basis of (4.2)-(4.6), Theorem 2.1 by (Volkov, 1969) and Theorem 3.1 by (Volkov,
1965) it follows that a solution u of problem (4.1) belongs to the class C7*(R), 0 < 1 < 1.

Let us show that w is a solution of problem (4.13).
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1 [ 02 <66u(x1,x2,x3) N 0%u(xq, x5, x3) N 66u(x1,x2,x3)>

Aw = —
“=3 dx? 0x3 0x8 0x§

0% [(0%u(xqy,x5,x3)  0%u(xy,xp,x3)  0%u(xy,x3,x3)
2 6 + 6 + 6
0x5 0x7 0x; 0x3

0% [(0%u(xqy,x5,x3)  0%u(xy,xp,x3)  0%u(xy,x3,x3)
2 6 + 6 + 6
x5 0x3 0x; 0x3

_ 1[0%ulxy, x5, x5) | 0%u(xy, xp,x3)  0%u(xq, Xy, X3)

-3 dx3 Ox?0xs Ox?0xS

08u(xy, x5, x3)  0%u(xy, x5, x3)  0%u(xy, x2,x3)
dxS0x3 x5 0x%0x$

08u(xy, x5, x3)  0%u(xy, xp,x3)  0%u(xy, x2,%3)
dxS0x3 0x50x3 dx3
1

-3

0% (0%u(xy,x5,x3)  0%u(xy,xp,x3)  0%u(xy, x2,x3)
6 2 + 2 + 2
0x; 0x; 0x; 0x35

0% [(0%u(xy,x5,x3)  0%u(xy,xp,x3)  02%u(xy, x2,%3)
6 2 + 2 + 2

0x; 0xi 0x; 0x35

0% (0%u(xy,x5,%3)  0%u(xy, xp,x3)  02%u(xy,x3,x3)
6 2 + 2 + 2

0x3 0x; 0x;5 0x;

=0.

We show that w = x; onT;, j = 1,2,..,6.Since

123: 0°u(xy,x2,x3)  10°%u(xy, X2, X3) N 123: 0%u(xq, x5, x3)
34 9x? - 34 dx?
j=1 j=1

3 dxp :
jek
B 1( 0%u(xy, xp,x3)  0%u(xy, x3, x3) 0%u(xq, x5, x3)
3 05 0X§ (s 1) 0% (1) 0% g e+ 1)
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0%u(xy, x5, x3) N 1 23: 0%u(xy, x2, x3)
3 < d0x?®

axg'(k)axg(k+1) |
j#*k
we have
0% (%00 Xo(sn)  9°0i(Xa (i) Xo(j+1)) o
w=— 7 > - > 7 onl;, j=12,..,6. m
0%5(jy0%5(j+1) 0%5(jy0%5(j+1)
Lemma 4.5 Even order derivatives for each variable in form
2%u
argszar 0SP<4 0<q<4-p, (4.15)
are continuous and bounded on R\y.
o%u
Proof. Let w = —.. We have
0x7
Aw=0o0nR,w=®; onl}, j=12..6, (4.16)
where
2%p;
o =—2L, j=22356, (4.17)
7 0x$
2%0; 2%p; 0%0p; 2%0p;
;= - (ij_ 4(P]2_3 2‘/’14_ <p6]' j=14 (4.18)
0x; 0x50x3 Ox50x;  0x3

From (4.1)-(4.6) follows that the boundary functions ®;, j = 1,2,
(4.18) satisfy the conditions

d; € C*MT}), @, =D, ony,,.
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Then, on the basis of Theorem 3.1 by (Volkov, 1969) the pure second order derivatives of the

function w are bounded in R\y. Then

0%u 0%w -
sup |zl = sup |z <>
(x1,%2,X3)ER\Y axl (x1,%2,%3)ER\Y 0x1
0%u 02w -
sup —| = sup — (%)
(x1,%2,%3)ER\Y axfaxg (x1,%2,X3)ER\Y ax%
0%u 02w -
sup —| = sup —| <
(1,%2,x3)ER\Y 6xf6x§ (x1,22,%3)ER\Y ax%
_— . a%u a%u .
Similarly, by taking w = Pyl and w = Fy the boundedness of the remainder even order
2 3

derivatives in (4.15) are proved. m

4.2 A Sixth Order Accurate Approximate Solution

Consider a cubic mesh with the mesh size h > 0 formed by the planes x; = 0, h, 2h, ... (i =
1,2,3). Assume that a;/h = 6 (i = 1,2,3) are integers. Let D;, be the set of mesh nodes, R, =
RN Dy, Ty =T N Dy, T, =T NDyp,and T = T, U ... U T

For the grid functions on R;,, we consider the 6-point difference operator A as

Au(xy, x5, x3) =

6
Z 1, (4.19)
=1(1)

=
S

and the 14-point difference operator S as
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6 14

1
Su(xl,xz,x3) =% 8 Z up + z uq , (420)
p:l(l) q=7(3)

where the sum Y} is taken over the grid nodes that are at a distance of Vkh from the point

(x4, %2, %3), u, and u, are the values of u at the corresponding grid points.

4.3 The First Stage

Let v be a solution of the following finite difference problem

vp =Svp ONRy, vy =1 onljy, j=1.2,...6. (4.21)
where ;,j = 1,2, ...,6 are functions (4.10).
Lemma 4.6 The following estimation holds

_ < 4
ey A o= vl < b’ (4.22)

where v is the function (4.8), c; is a constant independent of h.

Proof. By Lemma 4.2,

Av=0 onR, v=19y; onl;, j=12,..,6, (4.23)
where functions 1; defined by (4.10), and from (4.2)-(4.6) it follows that

Y, ECYMI),0<A<1, j=12,..6 (4.24)

Yu =1y, onyy,, (4.25)
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02 d 2 02
lpu + 1/)1/ + lpﬂ
otz oty = Oth,

=0 onvyy,. (4.26)

By (4.24)-(4.26) the boundary functions y;, j = 1,2, ...,6, satisfy the conditions of
Theorem 4 by (Volkov, 2010) of which follows the estimation (4.22). m

4.4 The Second Stage

Let w be a solution of the following finite difference problem
wp = Awp, ONRy, w, =k onTj, j=1.2,..6. (4.27)
where k;, j = 1,2, ...,6 are functions defined by (4.14).
Lemma 4.7 On Ry, it holds that,
max _ |w, — w| < c,h?, (4.28)

(x1'x2!x3)€Rh
where w is the function (4.12), w; is a solution to system (4.27), and c, is a constant
independent of h.
Proof. By Lemma 4.4, we have
Aw=0o0onR, w=k; onl;, j=12,..,6, (4.29)
where functions x; defined boundary values in (4.14), and from (4.2)-(4.6) follows

K €CP(IT), 0<A<1, j=12,..6 (4.30)

Ky = Ky ONYy,. (4.31)

75



On the basis of (4.30)-(4.31) that satisfy the conditions of Theorem 1.1 by (Volkov, 2001). This

completes the proof. m

4.5 The Third Stage
Let v, and w; be the solution of the difference problem (4.21) and (4.27) respectively. We
approximate the solution of the given Dirichlet problem (4.1) on the grid R,, as a solution u;, of

the following difference problem

h* h®
u, = Auy, — %Vh - ma)h on Ry (4.32)
up,=@jonly, j=12,..,6 (4.33)

Theorem 4.1 Under the conditions (4.2)-(4.6), the estimation

ma u, —u| < c3h,
e (4.34)

is valid, where u is the solution of the Dirichlet problem (4.1), u,, is the solution of system
(4.32)-(4.33), and c3is a constant independent of h.

Proof. Under the smoothness properties of the boundary values specified in (4.2)-(4.6), the
solution u of the Dirichlet problem (4.1) has eighth-order partial derivatives that continuous on

R, and by using Taylor formula, for each (x4, x5, x3) € Ry, we obtain

h* h®
u(xq, X2, x3) = Au(xy, x5, x3) — %U - mw —1(xq, %3, %3) (4.35)

where v and w are the functions defined by (4.8) and (4.12) respectively,

h®  [0%u(x; + 0.k, x,,x3)
120960 dx3

r= r(lexZJx?;) =
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08u(xy,x, + 6,0, x3) N 08u(xy, x5, x5 + 63h)

x5 x5 ’
16, <1, ©=1,23 (4.36)
We put
€Ep =Up—u 0N ﬁh! (437)

where u,, is the solution of the finite difference problem (4.32), (4.33).
From (4.32), and (4.33) and taking into account that u, = u = ¢; on I},, we obtain the

following system of difference equations for the error €;,:

4 6

eh=A6h+£(v—vh)+ﬁO(w—wh)+r on Ry

en =0 onTj (4.38)
By Lemma 4.5, we have

a X, < c,h8,
a3 NG X2 X3)| < €4 (4.39)

where c, is a constant independent of h. On the basis of Lemma 4.6, and Lemma 4.7, and (4.39),

we obtain

h* h®
%(U —vp) + =0 (w — wp) + 7| < cshd, (4.40)

where ¢ = max{c;/36,c,/720,c,}.
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Define function &, = csh®(l* —r%*) =0 on R, , where [ =./a?+a5+a5, and r =

VX% + x2 + x2. Itis easy to check that the function &, is a solution of problem
éTh = AETh + C5h8 on Rh, éTh =0 on Ff,l (441)

Since,

c
A€h=Esh6[af+a§+a§—(x1+h)2—x§—x§+af+a§+a§

—(x; —h)?—x3—x3+a?+a5+a3—x; — (x; +h)?— x5
+af+a5+a5—x;—(x;—h)?—x3+af+ai+aj—x —x,

—(x3+h)?+a?+as+a5—x; —x, — (x5 — h)?]

c
= €5h6[6(a% + a3 +a?) — (x? + 2x,h + h?) — x2 — x5 — (x? — 2x,h + h?)

—x3 — x5 —x% — (x5 + 2x,h + h?) — x3 — x¥ — (x%2 — 2x,h + h?) — x5
—x; — X3 — (X2 + 2x3h + h?) — x; — x, — (x% — 2x3h + h?)]

Cs

6

= csh®[l? — %2 — h?] = csh®1? — cch®r? — csh® = &, — cch8.

he[612 — 6(x? + x2 + x3) — 6h?]

Therefore,

€n, = A€, + csh® on Ry,

Furthermore, from Lemma 3.4 for the solution €, of problem (4.38) with the solution of problem
(4.41) follows that

|6h| < (:Th. (442)

Since,
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lenl <€, <cs max _ |I?—71?|h®
(xl'erXS)ERh

< cs(a? + ai + a2)h® < c3h,

Therefore, by (4.38) Theorem 4.1 is proved. =
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CHAPTER 5
NUMERICAL EXAMPLES

In this chapter we present the numerical results to support the theoretical results in chapters 2,
3 and 4.

5.1 Domain in the Shape of a Rectangle
II={(x,y):0<x,y<1}, and let y be the boundary of TII. We consider the following
problem:

Au =0 onlIl, u=@(x,y) on v, J=1234, (5.1)

where ¢ is the exact solution of this problem.
Let U denote the exact solution and U,, be its approximate values on IT* (contains the nodes of
the square grid formed in IT) of the Dirichlet problem for Laplace’s equation on the rectangle

domainIl. We denote by

1V = Upemllge
IU = Uplign = max|U = Uy|,  RE = e
n ”U - UZ—(m+1)||ﬁh

The results in the following example are demonstrated in two Tables. The first Table is the

approximate result for the solution of problem (5.1), the second Table shows the approximate

result for the first derivative of the solution v = Z—Z, which convergence as 0 (h®).

The difference step size h is defined by h :zin' n = 4,5,6,7.
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1
Example 5.1 Let ¢ € C"30 ony;, j = 1,2,3,4, where

211

27160 -1
Q= [xz + (y — %) ]60 sin %arctan%), (5.2)

where ¢ is the exact solution of this problem.

We solve the system (2.1) and (2.46) to find the approximate sixth order solution wu;, for u and
approximate first derivative v, for v = Z—Z respectively.

In Table 5.1 the convergence order more than 6 which corresponding to p in Theorem 2.1. Table

5.2 justified estimation in Theorem 2.2, i.e., the sixth order convergence.

Table 5.1: The approximate of solution in problem (5.1)

h [l — u| Ry

1 1.47E — 10 63.91
16

1 2.30E — 12 63.89
32

1 3.60F — 14 64.19
64

1 5.61E — 16

128
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Table 5.2: First derivative approximation results with the sixth-order accurate formulate for
problem (5.1)

h llv — vl Ry
1 1.17E — 06 44.15
16

1 2.65E — 08 56.14
32

1 4.72E — 10 61.22
64

1 7.71E — 12

128

5.2 Domain in the Shape of a Rectangular Parallelepiped
Let R = {(x1,%5,%x3):0 < x; <1, i =1,2,3}, and let T be the boundary of R. We consider the

following boundary value problem
Au=0 onR, u=@(x,%,x3) OnT;, j=1.2,..,6, (5.3)

where ¢ is the exact solution of problem (5.3).
Let U denote the exact solution and U, be its approximate values on R" (contains the nodes of
the cubic grid formed in R) of the Dirichlet problem for Laplace’s equation on the rectangular

parallelepiped domain R. We denote by

U = Uz—mllgn
”U - UZ—(m+1)”§h

U= Upllgn = max|U = Up|,  RG =
R

The approximate results for the solution of the Dirichlet problem are presented in Table (5.3).
Table (5.4), shows the maximum errors and the convergence order of the approximations of the

first derivatives when sixth order accuracy forward backward formula is used, and in Table (5.5)
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the maximum errors and the convergence order of the approximations of the pure second

derivatives of problem (5.3) for different step size h are presented.

The difference step size h is defined by h :zin’ n = 4,5,6,7.

1
Example 5.2 Let ¢ € C"30 onTj, j =1,2,...,6, where

2 2,..2 211
0= (s -3) = (F5%) + G +xbywoos(10)

where © = arctan (%) and ¢ is solution of this problem.
1

(5.4)

In Table 5.3 the convergence order is sixth order accurate. Table 5.4 justified estimation in

Theorem 3.2, the sixth order convergence. Table 5.5 shows the convergence order more than 5

which corresponding to A in Theorem 3.3.

Table 5.3: The approximate of solution in problem (5.3)

h [l — |l Ry
1 2.32E — 10 63.74
16

1 3.64F — 12 63.97
32

1 5.69E — 14 64
64
1 8.89E — 16
128
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Table 5.4: First derivative approximation results with the sixth-order accurate

formulae for problem (5.3)

h [V = vall Ry
1 4.00E — 05 58.91
16
1 6.79E — 07 61.73
32
1 1.10E — 08 62.50
64
1 1.76E — 10
128

Table 5.5: The approximate results for the pure second derivative

h llu — up| Ry

1 9.93E — 09 32.66
16

1 3.04E — 10 32.72
32

1 9.29E — 12 32.83
64

1 2.83E — 13

128

The difference step size h of the following Example is defined by hzzin, n = 2,3,4,5.

Example 5.3 Let R = {(x1,x2,x3):0 < x; <1, i =1,2,3},and let [}, j = 1,2, ...,6,

be its faces. We consider the following problem:

Au=0 onR, u=@(xy,x3x3)onl;,j=12..6, (5.5)

where
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@ (xq,%5,x3) = e3*1 cosh(4x,) cos(5x3)

(5.6)

Table 5.6: The approximate results by using a three stage difference method

h lv—vullgp  EV o —wullgn  EQ lu — uplizn Ey
l 1.71E — 05 13.15 7.84E — 04 2.96 4.37E — 09 52.84
4
l 1.30E — 06 15.24  2.65E — 04 3.71 8.27E — 11 63.62
8
i 8.53F — 08 1594  7.15E - 05 3.93 1.30F — 12 64.01
16
i 5.35E - 09 1.82E — 05 2.03E — 14
32

In Table 5.6 we have used the following notations:

WU = Uzmllq,

U - Uh“Qh = Hsl{;\lX”U — Upll and Ej* =

" Vel

where U is the trace of the exact solution of the continuous problem Q,,, and Uy, is its

approximate values.

The values of EJ* and E} show that the function v (the first stage) and w (the second stage)

are approximated with the order 0(h*) and 0 (h?), respectively.

The values of E]* show that the accuracy of the proposed method (the third stage) is of order

0(h®), where

and u defined in (4.1).

3
10 0*u(xq, x, x3)
j=1 J

» X2, X3)
6 )
%

v 0%u(x;
w = w(xll X2, x3) = §Z a
=1

]
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CHAPTER 6
CONCLUSION

For the approximate solution of the 2D Laplace equation in a rectangle I1 and the 3D Laplace
equation in a rectangular parallelepiped R, a new pointwise error of order O(ph®) is obtained,
where p is the distance from the current point to the boundary of I or R. This estimation shows
the additional downturn of the error near the boundary as p, which is used to get O(h®) order of
accuracy for the approximate value of the first derivatives in 2D and O(h®1Inh) order of
accuracy for the approximate value of the first derivatives in 3D Laplace equation. For the
approximation of the pure second derivatives O (hSM), order is obtained for both cases 2D and
3D.

The obtained results can be applied for the approximation of a solution and its derivatives of
problems in more complicated domains when different version of domain decomposition
methods are used (see for 2D problem (Dosiyev, 1992), (Dosiyev, 1994), (Dosiyev, 2003),
(Dosiyev, 2004), (Dosiyev, 2012), (Dosiyev, 2013), (Dosiyev, 2014) (Volkov, 1976), see for 3D
(Smith et at ., 2004), (Volkov, 1979), (Volkov, 2003)).

Whereas a new three-stage difference method with an accuracy of order 0 (h®), where h is mesh
size, is proposed and justified by using one fourth order and two second order schemes for the
approximate solution of the 3D Laplace's equation. The proposed method can be used to highly

approximate the derivatives of the unknown solution of Laplace's equation.
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