

IOS MOBILE APPLICATION FOR FOOD AND

LOCATION IMAGE PREDICTION USING

CONVOLUTIONAL NEURAL NETWORKS

A THESIS SUBMITTED TO THE GRADUATE
SCHOOL OF APPLIED SCIENCES

OF
NEAR EAST UNIVERSITY

By
OWAIS QAYYUM

In Partial Fulfillment of the Requirements for
the Degree of Master of Science

in
Software Engineering

NICOSIA, 2018

 O
W

A
IS Q

A
Y

Y
U

M
 IO

S M
O

BIL
E A

PPLIC
A

TIO
N

 FO
R

 FO
O

D A
N

D
 LO

C
A

TIO
N

 N
EU

 I IM

A
G

E PR
ED

IC
TIO

N
 U

SIN
G

 C
N

N
 2018

IOS MOBILE APPLICATION FOR FOOD AND

LOCATION IMAGE PREDICTION USING

CONVOLUTIONAL NEURAL NETWORKS

A THESIS SUBMITTED TO THE GRADUATE
SCHOOL OF APPLIED SCIENCES

OF
NEAR EAST UNIVERSITY

By
OWAIS QAYYUM

In Partial Fulfillment of the Requirements for
the Degree of Master of Science

in
Software Engineering

NICOSIA, 2018

Owais QAYYUM: IOS MOBILE APPLICATION FOR FOOD AND LOCATION IMAGE

PREDICTION USING CONVOLUTIONAL NEURAL NETWORKS

Approval of Director of Graduate School of
Applied Sciences

Prof. Dr. Nadire Çavuş

We certify this thesis is satisfactory for the award of the degree of Master of Science in
Software Engineering

 Examining Committee in Charge:

Assoc. Prof. Dr. Kamil Dimililer Head of Department, Automotive

Engineering, NEU

Asst. Prof Dr. Yoney Kirsal Ever Head of Department, Software Engineering,
NEU

Assoc. Prof Dr. Melike Şah Direkoglu Supervisor, Department of Computer
Engineering, NEU

I hereby declare that all information in this document has been obtained and presented in

accordance with academic rules and ethical conduct. I also declare that, as required by these rules

and conduct, I have fully cited and referenced all material and results that are not original to this

work.

Name, Last Name:

Signature:

Date:

To my parents

 i

ACKNOWLEDGEMENTS

First of all, I highly appreciate the unconditional support of my supervisor Assoc. Prof. Dr.

Melike Şah Direkoglu throughout the whole research study. For sure, without her support,

motivation, and guidance, this thesis would have never been possible. I also pass my gratitude

towards my department for allowing me to carry out the research study and all their assistance

that each member provided.

 ii

ABSTRACT

Machine Learning is a popular research area in software industry alongside with big data, micro

services, virtual reality, and augmented reality. With the recent developments in improving

computing capacity, deep learning approaches such as Convolutional Neural Networks (CNN) has

become the trendiest topic in machine learning for image recognition. In this paper, we have

developed an IOS application for food image recognition using modified CNN models. In

particular, we developed an IOS mobile application by converting the machine learning models

to CoreML and then using them within the IOS application for food image recognition and location

prediction. We used Python as a programming language to training the CNN model while

Anaconda as an IDE. While for converting the machine learning to CoreML we used CAFFE

framework and CoreML tools. For IOS mobile application we used Xcode as an IDE and Swift as

a programming language. In this research we used supervised learning as we got the food dataset

from food 101 which is already labelled. We used RGB images over greyscale images because

greyscale images have 256 combinations of shades of grey per pixel while RGB has 16,777,216

colour combinations per pixel. The colour image is input to the convolutional neural network for

automatic feature extraction and training. We took our CNN model to be inception V3 model as

its top-5 error rate was very low. Seven layers are used in Inception V3 model and also its

computation time and cost are very low comparing to other CNN models. We trained our model

on MacBook pro 2017 having 8GB ram and 2.4Ghz core i5 processor. Our mobile Application

can be easily downloaded by users from the Apple App store. In our research we discussed that

the classification and prediction time vary between different IOS mobile devices. Image

classification and prediction takes more time on iPhone 6 and less time on iPhone X. Comparing

to other machine learning models we trained our model in just 6 hours with 100,000 images and

got astonishing results. Our prediction results show that we can achieve an accuracy of 82% Top-

1, 87% Top-3 and 97.00% Top-5 for our food prediction model.

Keywords: convolutional neural networks; machine learning; deep learning; image recognition;

CoreML; TensorFlow; Keras; Python; Data Mining.

 iii

ÖZET

Makine Öğrenimi büyük veri, mikro hizmetler, sanal gerçeklik ve artırılmış gerçeklik ile birlikte

yazılım endüstrisinde popüler bir araştırma alanıdır. Bilgi işlem kapasitesinin geliştirilmesindeki

son gelişmelerle birlikte, Konvolüsyonel Sinir Ağları (CNN) gibi derin öğrenme yaklaşımları,

görüntü tanıma için makine öğrenmesinde en popüler konu haline geldi. Bu yazıda, değiştirilmiş

CNN modelleri kullanılarak gıda görüntü tanıma için bir IOS uygulaması geliştirdik. Özellikle,

makine öğrenme modellerini CoreML'ye dönüştürerek ve ardından bunları gıda görüntüsü tanıma

ve konum tahmini için IOS uygulaması içinde kullanarak bir IOS mobil uygulaması geliştirdik.

Python'u CNN modelini, Anaconda'yı IDE olarak eğitmek için programlama dili olarak kullandık.

Makine öğrenmesini CoreML'ye dönüştürürken CAFFE framework ve CoreML araçlarını

kullandık. IOS mobil uygulaması için Xcode'u IDE, Swift ise programlama dili olarak kullandık.

Bu araştırmada denetimli öğrenmeyi kullandık, çünkü zaten etiketli olan gıda 101'den alınan veri

veri setini aldık. Gri tonlamalı resimler üzerinde RGB görüntüleri kullandık, çünkü gri tonlamalı

görüntüler piksel başına 256 gri renk kombinasyonuna sahipken, RGB piksel başına 16.777.216

renk kombinasyonuna sahip. Renkli görüntü, otomatik özellik çıkarma ve eğitim için evrişimli

sinir ağına girilir. İlk 5 hata oranı çok düşük olduğu için CNN modelimizi başlangıç V3 modeline

aldık. Inception V3 modelinde yedi katman kullanılmıştır ve hesaplama süresi ve maliyeti diğer

CNN modellerine kıyasla çok düşüktür. Modelimizi 8GB ram ve 2.4Ghz core i5 işlemcili

MacBook pro 2017'de eğittik. Mobil Uygulamamız, kullanıcılar tarafından Apple App Store'dan

kolayca indirilebilir. Araştırmamızda, sınıflandırma ve tahmin süresinin farklı IOS mobil cihazları

arasında değiştiğini tartıştık. Görüntü sınıflandırma ve öngörme, iPhone 6'da daha fazla, iPhone

X'te daha az zaman alır. Diğer makine öğrenme modelleriyle karşılaştırıldığında, modelimizi

sadece 6 saatte 100.000 görüntüyle yetiştirdik ve şaşırtıcı sonuçlar aldık. Tahmin sonuçlarımız,

gıda tahmin modelimiz için% 82 Top-1,% 87 Top-3 ve% 97.00 Top-5 doğruluğunu elde

edebileceğimizi gösteriyor.

Anahtar Kelimeler: konvolüsyonel sinir ağları; makine öğrenimi; derin öğrenme; görüntü tanıma,

CoreML; TensorFlow; Keras; Python; Veri Madenciliği.

 iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ..….. i

ABSTRACT……………………………………………………………………………….......…ii

ÖZET……………………………………………………………………………………………..iii

TABLE OF CONTENTS ..… iv

LIST OF FIGURES…………………………………………………………………………….vii

LIST OF ABBREVIATIONS ...……x

CHAPTER 1 INTRODUCTION.. 1

1.1 Theoretical background ... 1

1.1.1 Machine learning ... 2

1.1.1.1 Supervised Learning .. 3

1.1.1.2 Unsupervised Learning .. 3

1.1.2 Convolutional Neural Networks ... 3

1.1.3 CoreML framework ... 4

1.2 Aims and Objectives .. 5

CHAPTER 2 LITERATURE REVIEW .. 8

2.1 Convolution Neural Network ... 8

 Saliency Map with Convolution Neural Network ... 8

 Deep Inside Convolutional Networks ... 9

 Learning and Transferring Mid-Level Image Representations Using CNNs 10

 High Performance Convolutional Neural Networks.. 10

 Image Net Classification with Deep CNN .. 11

 Very Deep CNN for Large-Scale Image Recognition ... 11

 Analysis of Previous Work .. 13

2.2. Mobile Applications Used in Machine Learning Techniques 14

CHAPTER 3 SYSTEM ARCHITECTURE .. 15

 v

3.1 Food Name Predictor IOS Interface ... 15

3.2 Location Predictor IOS Interface ... 16

3.3 System Overview .. 17

3.4 Used Supervised Learning Approach for Food Image Prediction: 20

 Labelled Data .. 21

 Pre-processing Data ... 21

 Sampling ... 23

 Image Pre-processing Parameters ... 23

 Learning Algorithm Training ... 24

 Final Classification .. 24

3.4.6.1 Food prediction: ... 24

3.4.6.2 Location Prediction: ... 24

CHAPTER 4 SOFTWARE DESIGN OF PROPOSED SYSTEM 25

4.1 Data Flow Design of the proposed Application .. 25

4.2 Entity Relationship (ER) Diagram of Proposed Application 27

 User ... 27

 Photos .. 27

 Prediction .. 27

4.3 Conversion to CoreML .. 28

4.4 Integration of CoreML Model into IOS.. 32

4.5 User Interface of the IOS App, Pixify .. 36

CHAPTER 5 CHOOSING CNN MODEL FOR IOS APPLICATION 41

5.1 Food or Location Prediction Algorithm ... 41

5.2 Data Collection:... 42

5.3 Choosing a Model ... 43

5.4 Training the model .. 43

5.5 Testing the Model .. 43

5.6 Parameter Tuning .. 44

5.7 Prediction .. 44

 Food Prediction ... 45

 vi

 Location Prediction .. 45

CHAPTER 6 PERFORMANCE EVALUATIONS ... 47

6.1 System Performance .. 47

 Time for Loading/Scanning Food Images... 48

 Time for Loading/Scanning location Images .. 49

 Time for classifying food images on Average using CNN 50

 Iphone Specifications ... 50

 Average Time for Classifying Food Images using CNN 55

 Average Time for Classifying Location Images using CNN 56

 Average Accuracies for predicting the Food Images... 57

6.2 Class Accuracies ... 58

CHAPTER 7 QUALITATIVE EVALUATIONS .. 61

7.1 Food Prediction Qualitative Analysis ... 61

7.2 Location Prediction Qualitative Analysis ... 62

7.3 Experimental Evaluation.. 64

 Dataset from Kaggle .. 65

 Visualization Tools for Result Analysis ... 66

 Model Evaluation .. 69

CHAPTER 8 CONCLUSION AND FUTURE WORK ... 73

REFERENCES.. ... 75

APPENDICES… ... 78

APPENDIX 1 MACHINE LEARNING MODEL .. 79

APPENDIX 2 VISUALIZATION TOOLS ... 82

APPENDIX 3 MODEL EVALUATION ... 84

APPENDIX 4 XCODE CODE ... 87

APPENDIX 5 TURNITIN REPORT .. 101

 vii

LIST OF FIGURES

Figure 1.1: Machine Learning, Artificial Intelligence and Deep Learning connections 2

Figure 1.2: Supervised vs. Unsupervised learning. ... 3

Figure 1.3: Convolution Neural Networking .. 4

Figure 1.4: Machine Learning based IOS application general structure 5

Figure 2.1: Integrate Machine Learning Models into Application ... 14

Figure 3.1: Screenshot of IOS application for predicting Samosa image with 99.98% accuracy 16

Figure 3.2: An image of Eiffel Tower in Paris. ... 16

Figure 3.3: System architecture of the CNN model .. 17

Figure 3.4: Conversion tools from machine learning model to coreML 19

Figure 3.5: Swift Code Snippet .. 19

Figure 3.6: Supervised Learning Algorithm ... 20

Figure 3.7: CNN for food classification model ... 22

Figure 4.1: Data flow design of our application .. 26

Figure 4.2: ER Diagram ... 28

Figure 4.3: Anaconda Navigator .. 29

Figure 4.4: Environments in Anaconda Navigator .. 29

Figure 4.5: Creating a new environment in Anaconda Navigator .. 30

Figure 4.6: Finishing step for creating a new environment in Anaconda Navigator................... 30

Figure 4.7: CoreML Model Conversion ... 31

Figure 4.8: CoreML Model .. 32

Figure 4.9: Starting a new IOS project in Swift .. 33

Figure 4.10: Importing the model into Xcode ... 34

Figure 4.11: Food Model ... 35

Figure 4.12: Location Model .. 35

Figure 4.13: Main Story Board ... 36

Figure 4.14: Pixify Application User Interface ... 37

Figure 4.15: Scanning food or Place ... 37

Figure 4.16: Google Maps snippet in Swift .. 38

Figure 4.17: Pixify application scanning a Turkish delight baklawa and a pizza. 38

 viii

Figure 4.18: Pixify application scanning french fries and spaghetti carbonara. 39

Figure 4.19: Pixify application predicting three best possible locations for Hagia Sophia on

google maps.. 39

Figure 4.20: Pixify application predicting three best possible locations for Hagia Sophia on

google maps.. 40

Figure 5.1: Deep Learning Computer Vision for our research. From Data selection to viewing it

on IOS application .. 42

Figure 5.2: Iteration for hyper parameters on Training step .. 44

Figure 5.3: Food Prediction Model ... 45

Figure 5.4: Location prediction model.. 46

Figure 6.1: Time for Loading/Scanning Images.. 48

Figure 6.2: Time for Loading/Scanning Food Images ... 49

Figure 6.3: Time for Loading/Scanning Location Images ... 50

Figure 6.4: Average time in seconds for classifying the food images using CNN 55

Figure 6.5: Average Time for Classifying the Food Images using CNN 56

Figure 6.6: Average Time for Classifying the Location Images using CNN.............................. 57

Figure 6.7: Average Accuracies for Predicting the Food Images .. 58

Figure 7.1: Food Prediction Real Time Screenshots of the application 61

Figure 7.2: Mobile Application predicting Big Ben Tower located in London, UK 62

Figure 7.3: Mobile Application predicting Golden Gate Bridge located in San Francisco, USA 62

Figure 7.4: Mobile Application predicting Eifel Tower located in Paris, France 63

Figure 7.5: Mobile Application predicting White House located in Washington DC, USA 63

Figure 7.6: Mobile Application predicting Taj Mahal located in Agra, India 64

Figure 7.7: Splitting the dataset into training and testing sets ... 64

Figure 7.8: Examples of some random image from Each food class ... 66

Figure 7.9: Python Code for Visualizing Training Data Sets .. 67

Figure 7.10: Visualizing random images from training dataset ... 67

Figure 7.11: Python Code for Visualizing Testing Data Sets .. 67

Figure 7.12: Visualizing Testing Data Sets ... 68

Figure 7.13: Python Code for Visualizing some images of Baklawa having rows = 6 and

columns = 7 .. 68

 ix

Figure 7.14: Visualizing Baklawa images from Class 21 .. 69

Figure 7.15: Crop Code for Model Evaluation.. 70

Figure 7.16: Multiple crops of a single image for inception model ... 71

Figure 7.17: Image preprocessing Code ... 71

Figure 7.18: Image preprocessing for inception model ... 71

 x

LIST OF ABBREVIATIONS

IDE Integrated Development Environment

ML Machine Learning

CNN Convolutional Neural Network

GPU Graphics Processing Unit

NLP Natural Language Processing

API Application Programming Interface

AI Artificial Intelligence

 1

CHAPTER 1
INTRODUCTION

Most people know about the term “Machine learning” and “Neural networks” but they do not know

it’s real meaning. Machine learning has different algorithms among which neural networks has

become very popular in the software industry. Existence of neural networks can easily be

acknowledged in most of the digital services and is also known as a recommended system. Let’s

take an example, Spotify is a music-based application that offers “Your daily mixes”, or

“Recommended stations”, also “Recommend” section in one of the most famous video search

engine YouTube, and also “Inspired by your shopping” from Amazon which is using the big data

from the daily behaviour of customers. That big data is then analysed using neural network

algorithm.

Neural network (Sharma, 2018) has been a modern saga for the public and even for the developers

as well. Because of the neural network’s complexity, we developed a convolutional neural network

and shown that how it can be useful for public in daily life. With the evaluation of python and

open source libraries such as TensorFlow (Hope, 2017) and Keras, machine learning applications

(Müller, 2016) are getting easier to build. With the help of IDEs such as Anaconda, Hydrogen lab

and JupyterLab, it became easier to implement machine learning techniques. Advanced neural

network architectures have evolved rapidly to promote the use of machine learning.

1.1 Theoretical background

We have noticed that the terms Machine Learning, Artificial Intelligence, Deep Learning (Suskie,

2001) and Neural Networks are found to be same in different documents and articles. In most of

the cases reader thinks that all of them are same. Figure 1.1 demonstrate some of the differences

between Deep Learning, Machine Learning and Artificial Intelligence (Institute of Electrical and

Electronics Engineers, 2013).

 2

Figure 1.1 Machine Learning, Artificial Intelligence and Deep Learning connections

As we can see from Figure 1.1 Artificial intelligence is here since 1950 where machine learning is

the subset or a part of artificial intelligence which began to flourish since 1980. If we talk about

deep learning then it’s the subset of Machine learning which came into existence in 2010 and its

breakthroughs drive Artificial Intelligence boom.

1.1.1 Machine learning

Machine learning is a field of computer science which started with the beginning of computer

science history. Alan Turing, in 1950 (Turing & Yang, 2013), founder of computer science, asked

the question “Can machines think?” which set the very first milestone for machine learning studies.

Later Arthur Samuel defined machine learning as “field of study that gives computers the ability

to learn without being explicitly programmed”. However, machine learning was finally defined by

Tom M. Mitchell:

“A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by P, improves with
the experience E.”

 3

Figure 1.2 Supervised vs Unsupervised learning

1.1.1.1 Supervised Learning

Machine learning can be divided into three major types among them supervised learning is mostly

used. Results are clearly categorized with clear conditions in supervised learning (Liu, Datta, &

Lim, 2014). For example: labelling fruits name corresponding to its features, predicting if a person

is male or female, predicting stock exchange price, etc.

1.1.1.2 Unsupervised Learning

Second type of machine learning is Unsupervised Learning. In this type of machine learning,

results are clearly categorized with abstract conditions and non-labelled. For example: grouping

students with different IQ levels, categorizing different types of oil used for lubricating vehicles,

etc.

1.1.2 Convolutional Neural Networks

Convolutional Neural Network (Venkatesan, 2018) or Conv Neural Network also known as CNN,

a technique within the broader Deep Learning field, have been a revolutionary force in Computer

Vision applications especially in the past half-decade. One main use-case is that of image

classification, e.g. determining whether a picture is that of a dog or cat.

 4

Figure 1.3 Convolution Neural Networking

You don't have to limit yourself to a binary classifier of course; CNNs can easily scale to thousands

of different classes, as seen in the well-known ImageNet dataset of 1000 classes, used to

benchmark computer vision algorithm performance.

In the past couple of years, these cutting-edge techniques have started to become available to the

broader software development community. Industrial strength packages such as TensorFlow have

given us the same building blocks that Google uses to write deep learning applications for

embedded/mobile devices to scalable clusters in the cloud -- Without having to hand code the GPU

matrix operations, partial derivative gradients, and stochastic optimizers that make efficient

applications possible. On top of all of this, are user-friendly APIs such as Keras that abstract away

some of the lower level details and allow us to focus on rapidly prototyping a deep learning

computation graph. Much like we would mix and match Legos to get a desired result.

1.1.3 CoreML framework

The CoreML framework is the first basic machine learning framework that was resealed by Apple

in 2017. CoreML framework mainly focuses on Natural Language Processing (NLP) and image

analysis. Right now, CoreML is having a smaller number of APIs and right now is only available

for IOS 11 and above. The general Machine learning application structure is shown in Figure 1.4.

 5

Figure 1.4 Machine Learning based IOS application general structure

From Figure 1.4, CoreML is a middle layer framework which is built on top of machine learning

performance primitive frameworks such as Metal Performance Shaders, Accelerate and BNNS

(Basic neural network subroutines). After collecting the data from these framework, raw data is

then optimised which is processed from the above-mentioned frameworks and send them to higher

level frameworks such as NLP, Vision and or Game PlayKit.

CoreML is a powerful framework for machine learning that can be used directly. To integrate the

coreml model into a machine learning based IOS application (Keur, 2016), one only need to add a

core ML model file to the project. The framework generates the model class that contains all the

utilities that can predict the output based on the selected input.

1.2 Aims and Objectives

In this thesis I have developed a novel IOS application based on two machine learning models.

For the thesis I have used two machine learning models.

i. Food names dataset which is consist of almost 5000 images.

ii. Places images from Sultan Ankara Mosque to Washington’s White house covering

almost 4 million places.

 6

We have created a new model for food prediction and reused a pre-built model for location

prediction. These models were later converted to CoreML and integrated into IOS mobile

application. We took our CNN model to be inception V3 model as its top-5 error rate was very

low. When we compared the Inception V3 model with models such as AlexNet, Inception

(GoogleNet) and BN-Inception V2 model. Results show that we can achieve an accuracy

of 97.00% for our food prediction model. So, in particular we developed an IOS mobile

application by converting the machine learning models to CoreML model and then using them in

the IOS application. The aims and objectives of this thesis are as under:

a. One of the purposes of our research was to combine machine learning technologies

with IOS mobile application. To achieve this, we took two machine learning models

and converted them to CoreML models which are supported by IOS environment Swift.

b. The second purpose is to introduce a technology to travelers which sometimes are not

familiar with the name of the food and that's how this application will work. Users just

have to take a picture of food and our application will automatically predict the name

of the food with a great precision number.

c. The other purpose is to build such an application which will automatically locate the

image taken with the camera. Once the users take an image of the surrounding the

application will automatically search the dataset of 4 million images and will show 3

best spots on the google maps.

d. Sometimes the users don’t have internet availability and they can't use certain

applications and can’t even surf on internet. Our application doesn’t even need any sort

of internet connectivity.

e. If you see an image of your friend at a picnic spot so the user can easily find out the

location using our application.

f. Users are not bound to select any category or any image. They can use it anytime and

even without internet connection.

g. Our app doesn’t save the images stored by the users on their device and neither upload

them to our database. As the application is on your device and it don't need any internet

so it’s safe to upload images.

 7

h. As we have used machine technology so the model think itself and give us a precision

score.

i. Our plan is to enhance the application and machine learning model in future.

j. The application is on the mobile device and its size is almost 300 megabytes. It’s our

future objective to transfer the application to cloud and make its size smaller.

k. It's a novel project as we haven’t seen any IOS application till now that predicts location

spots on google maps based on the images provided to the application.

 8

CHAPTER 2
LITERATURE REVIEW

In this chapter, we briefly describe what is Convolutional Neural Network, Machine Learning,

Deep Learning, Deep Learning Techniques and App based Prediction.

2.1 Convolution Neural Network

Steve Lawrence in 1997 proposed convolution neural networking approach for face recognition.

In this research paper, Steve presented a hybrid neural network which compared with different

other methods such as a self-organizing map neural network and CNN system.

Steve took face images which were taken between April 1992 and April 1994 and store them in an

ORL database. These images were taken from Olivetti Research Laboratory at Cambridge. His

work was mainly based on geometrical features which was proposed by Kanade. Steve also

referred to Eigen faces as high-level recognition in which images are been processed in the Marr

Paradigm to surface 3D models.

Steve used a system of proceeding parts for face recognition.

i. A typical convolution networks.

ii. System’s high-level block diagram.

Various experiments were performed by Steve and presented the results. Steve performed

experiments with six testing images and six training images per person for a total of 250 training

images and 250 test images with no overlap between the testing and training sets. In this

experiment, error rate was 96.5 % at first which is an extremely high error rate.

 Saliency Map with Convolution Neural Network

In another research carried out by Seunghoon and Inria (2015) in which they proposed tracking

algorithm through CNN. They took a set of pre-learning data through a large image file in offline

mode. The algorithm assumes the output of the hidden layers of the network as function

descriptors. These functions are also used to learn lens-like discriminative models using an online

support vector (SVM) machine. Seunghoon and Irina proposed an algorithm that describes the

 9

complete course of the tracking algorithm. First, they discussed the properties achieved with pre-

trained CNN. Then a method of creating a map with a specific highlighting of the destination to

show in detail. They also presented an online SVM technique that discriminates and sequentially

learns the appearance of the lens.

To evaluate the performance, they use the 50 sequences of the recently published tracking

reference dataset (wu et al., 2013). Seunghoon and Inria concluded by suggesting a new visual

tracking algorithm based on a pre-trained CNN using the output of CNN's last convolutional layer

as generic descriptors of the properties of the objects and the models with discriminating

appearance learned online via an SVM line. They used sequential Bayesian filtering with a

particular prominence map of the target as an observation.

 Deep Inside Convolutional Networks

In another research by Karen and Andrea on April 2014 presented some visualization of image

classification models which are learnt using CNN. They consider two visualization techniques

which is based on computation of gradient class score.

a. Maximizes the class score by generating the images.

b. Class saliency map computation is done is the second technique which is specific to

given image and class.

In their research work, Karen and Andrea also mentioned the research work done by Erhan who

visualized deep learning models. They followed the following steps in this research.

a. Class Model Visualization.

b. Image Specific Class Saliency Visualization.

c. Class Saliency Extraction.

d. Weakly Supervised Object Localization.

e. Relation to De-Convolutional Networks.

 10

Karen and Andrea completed their research by introducing two visualization techniques for Conv-

Net depth classification. The first technique produces an artificial image representative of a class

of interest. The second technology computes a prominence map of the specific image class,

illuminating the areas of a given image discriminatively with respect to the given class. Therefore,

the highlight map can be used to initialize the object segmentation based on the cutting of graphs

without having to train dedicated acquisition or segmentation models.

 Learning and Transferring Mid-Level Image Representations Using CNNs

Maxime, Lean and Others in 2012 proposed a research paper in which they demonstrated

transferring and learning using CNNs. In their work, they showed how image representations

learned with CNNs on large scale. Maxime reused trained layers on the image net dataset.

They discussed some previous related work on transfer learning, visual object classification and

deep learning. It’s been discussed that the aim of transfer learning is to transfer the knowledge

between related source and target domains. Visually the images can be classified using,

i. Histogram Encoding.

ii. Spatial Pooling.

iii. Fisher Vector Encoding.

The techniques used by Maxime and others are as follows:

i. Transferring CNN Weights.

ii. Network Architecture.

iii. Network Training.

iv. Classification.

 High Performance Convolutional Neural Networks

Jonathan and Luca from Switzerland developed a deep architecture that published the handwritten

digit recognition and best object classification with the error rates of just 2.53%, 19.51%, and

0.42%.

In their research work, Jonathan and Luca evaluated various networks on the hand-written digit

benchmark. MNIST and two image classification benchmarks: NORB and CLFAR10. In their

 11

results, they applied NORB and trained the datasets with seven epochs. The error rates on MNIST

drop to 1.62%, 0.87% after 2, 7 and 19 epochs.

 Image Net Classification with Deep CNN

In another research, Alex and Bya proposed a system where they trained a deep CNN to classify

the 1.3 million high resolution images in the image net into 1000 different classes. They got results

which were not much good but the way they analyzed the dataset was great. On their test data they

got top-1 and top-5 error rates of 39.6% and 18.0%. The neural network they proposed consists of

59 million parameters and 640,000 neurons, consists of five convolutional layers.

They used the Image Net data set, which consists of more than 14 million good resolution tagged

images, which belong to some 21,000 image classes. These were taken from the Internet and were

tagged by people tagged by humans with the recruitment tool of many Turkish mechanics from

Amazon Turk. The architecture of its network included nine layers, four convolutional layers and

five fully connected layers.

The neural network architecture that Alex and Bya presented was having 60 Million parameters.

Although the 1000 ILSVRC classes cause each training example 10 to impose restriction bits for

image-to-label mapping, this is not sufficient to learn so many parameters without significant over-

adaptation. The results are summarized as the network achieve top-1 and top-5 test set error rates

of 36.4% and 18.1%. According to their results, a large deep CNN on a highly challenging dataset

is capable of achieving great results using purely supervised learning.

 Very Deep CNN for Large-Scale Image Recognition

Karen and Andrew again in 2015 published a research paper where they proposed a deep

convolutional network for basically large-scale image recognition. The main contribution of their

work was to increase the depth of a neural network with a very small (3x3) convolutional filters.

These findings were on the basis of their Image Net Challenge in March 2015 submission where

they secured the top position in the classification and localization and. They also made their two-

best performing Convolutional Network models available for public so that researchers can further

evaluate the model.

 12

Now to analyze the improvements brought by the increased Convolutional Network depth in fair

setting. They used the same designing principles and were inspired by Ciresan et al (2011) and

Krizhevsky et al (2012) for configuring their Convolutional Neural Network. The architecture

they proposed was to input the fixed size 224x224 RGB image. In their research, they did only one

thing and that was the preprocessing in which they subtracted the mean RGB value, computed on

the training set from each pixel. The image was passed through a stack of convolutional (conv.)

layers where they used filters with a very small receptive field: 3x3.

They followed the Convolutional Network training procedure proposed once by Krizhevsky in

2012. In this work, Karen and Andrew did the following for evaluating a very deep CNN.

a. Evaluating a very deep convolution network

b. Network was having upto 19 layers

c. They used a fixed size 224x224 RGB image.

d. Images were passed through a small receptive field of 3x3.

It has been shown that the depth of the classification accuracy and the current performance in the

challenge data set of the image network can be achieved with a conventional Convolutional

Network architecture of much greater depth.

 13

 Analysis of Previous Work

Table 2.1 Analysis of Previous Work

Title Dataset Technology Error Rate Application

Food and Location Images
Classification Using CNNs

(Our Research)

101000 Food
Images and 4

Million
Location
Images

Convolution Neural
Network, CoreML

2 % IOS Application

Face Recognition: a CNN
Approach

200 Images Convolution Neural
Network

97.5% No

Online Tracking by
Learning Discriminative

Saliency Map with CNNs

1 Million
Images

Convolution Neural
Network

7.5% No

Deep Inside Convolutional
Network: Visualizing
image Classification

Models and Saliency Map

2 Million
Images

Convolution Neural
Network

10.5% No

Learning and Transferring
Mid-Level Image

Representations Using
CNNs

1.2 Million
Images

Convolution Neural
Network

8.6% No

High Performance CNNs
for Image Classification.

2.5 Million
Images

Convolution Neural
Network

2.53%,
19.51% and

0.35%

No

Image Net Classification
with Deep CNNs

1.2 Million
Images

Convolution Neural
Network

37.5% and
17.0 %

No

Very Deep CNN for Large-
Scale Image Recognition

4 Million
Images

Deep Convolution
Neural Network

Not
Specified

No

 14

2.2. Mobile Applications Used in Machine Learning Techniques

Smartphones or Mobile phones are fast. Device in the lives of people. Implementation of

applications Channels like Apple App Store are changing Smart phones in applications phones.

Download a variety of applications and It's important to note that today's smartphones are

Programmable and with a growing set of powerful and cheap embedded sensors that make it

possible. Creation of personal, group and community scales. In our thesis, we explained how we

integrated the machine learning model into the IOS application using Xcode.

The reason we choose IOS application is its widely usage and also the method provided by Apple

and that is COREML. A trained model is the result of applying an automatic learning algorithm to a

training data set. The model meets new input data predictions.

Figure 2.1 Integrate Machine Learning Models into Application

 15

CHAPTER 3
SYSTEM ARCHITECTURE

In this chapter we will briefly discuss various components of the proposed IOS mobile application

based on food and location predictor that uses convolution neural network which is also known as

ConvNet or CNN that is one of the main class of deep learning or Feed-Forward artificial neural

Network (Yang, 2002).

Our food and location predictor application consist of five main parts:

a. Model Building

b. Model testing

c. Model Conversion to CoreML

d. Integration with IOS application

e. User Interface

The feature highlights of the applications are as follows:

a. Offline Image processing (requires no internet connection).

b. Classification with percentage of accuracy.

c. Built in camera and photo selector.

d. System tools: Swift 4 using Xcode 9 and CoreML.

3.1 Food Name Predictor IOS Interface

Choose or capture a food image that you have made yourself, then the application will decide the

name of the food automatically with a percentage of accuracy from a dataset of food images.

 16

Figure 3.1 Screenshot of IOS application for predicting Samosa image with 99.98% accuracy

3.2 Location Predictor IOS Interface

The Application will predict any image from the dataset of five million images including the

world’s seven wonders to many different historical and popular places. For any image the

application will offer its best three predications.

Figure 3.2 An image of Eiffel Tower in Paris was uploaded to the IOS application and its
showing three best spots of location on the google maps

 17

3.3 System Overview

All of our application data is stored in the mobile application itself so that there will not be any

need of internet connection while using the mobile application. The food dataset is being provided

by Food-101 which we took from Kaggle (Ventling, 2012) and Location images machine learning

model is used from MIT places database (Zuo, 2016). The food image data set is first converted to

a machine learning model and then later on converted to coreML using caffe API. The location

model is later converted to coreML using the tools provided by Apple using the Tensorflow API

named Keras and Caffe. For this we used the IDE Anaconda. The size of IOS application will be

about 300 megabytes as the food prediction do not require any internet and the whole machine

learning model will be integrated in the IOS mobile application itself. Internet is only required

when predicting locations using google maps.

Deep learning technology helps to extract knowledge from different types of data such as audio,

images, videos and texts. In this project we have used image-based recognition. Figure 3.3

illustrates the complete overview of the system.

Figure 3.3 System architecture of the CNN model

 18

In figure 3.3, the whole mechanism is divided into two parts:

a) Machine Learning model creation

b) Integration of Model into IOS Application

Deep learning techniques consist of many classes. The two common learning algorithms among

them are supervised learning (Convolutional Neural Networks) and unsupervised learning

(Restricted Boltzmann Machines). In our system, we mainly focused on supervised learning

algorithms which means that the provided dataset has labels. First of all, the dataset was split into

training and testing sets. In this case, the training set was 75% while testing set was 25%. Machine

learning framework was then applied on the datasets and a model was generated. First of all,

dataset is prepared which involves data parsing, indexing the variables and splitting the dataset

into testing and training datasets. Different layers were then added such as Convolution2D layer,

MaxPooling2D, Dense Layer, Pooling Layers, Dropout Layers, Softmax Layer and Activation

Layer. After that the model was fitted and compiled through finding the loss functions and metrics

the model is finally evaluated and prediction of data was done. Here a question arises that why we

used keras? For superfast implementation and good extensibility of implementing our idea and for

doing a deep research in deep learning.

The model was then converted to coreML model using the Tensorflow API named keras. For this

conversion the Anaconda was used as an IDE [3]. Now a question arises here that why we need to

convert the model specifically to coreML? Conversion to coreML allows developers to train

machine learning models within Xcode using Swift and MacOS Playgrounds. Since it is an IOS

mobile application that’s why we used coreML to be integrated. As Xcode only accept machine

learning models that are converting into Xcode standards and that’s coreML. In figure 3.4, the

complete architecture of conversion to coreML model is been shown.

 19

Figure 3.4 Conversion tools from machine learning model to coreML

Once the coreML model is generated, it is now suitable for integration with the Xcode. We have

used Xcode as we want to convert a machine learning model to CoreMl and to be tested on IOS

mobile phone. As Xcode is the IDE for developing Iphone or Macbook based applications that’s

why we used Xcode. After the integration, the application is designed and coded in Swift and the

features are arranged such that when the user opens the camera or selects an image, it will be

processed and results will be displayed in the form of percentage to the user. Before 2014 the

standard programing language for developing IOS applications was Objective C. Apple in 2014

announced swift programming language to be officially used for IOS apps development. Here is a

snippet of Swift code for our prediction based IOS mobile application.

Figure 3.5 Swift Code Snippet

 20

3.4 Used Supervised Learning Approach for Food Image Prediction:

Our approach uses supervised learning algorithms for prediction of food images. Now a days, it is

feasible to demonstrate big scale supervised learning using CNN with the help of well annotated

dataset like ImageNet (Tang, 2018).

Figure 3.6 Supervised Learning Algorithm

 21

 Labelled Data

In supervised learning, to train the model, first the dataset is labelled which is an important feature.

As we took the food dataset from Kaggle that’s why the dataset was already labelled. In case of

Location Prediction Model, we directly took the model from MIT places so no labeling was needed

in this case. We choose RGB colored image having input size of 299x299x3 where 299x299 is the

width and height of the image while 3 represents (Red – Blue – Green) colors. The Inception

networks also expect images scaled to be between 0 and 1, which means that the pixels values

needed to be divided by 255 (the maximum intensity value for a colour). The colour image is input

to the convolutional neural network for automatic feature extraction and training. Colour image

can increase the accuracy of the system because a grey scale image is usually 8bit image with each

pixel having 256 combinations of shades of grey. Whereas colour image usually is a 24-bit image

with 8bits of Red, 8 bits of Green, 8bits for blue information. Combination of these three basic

colours can create 16,777,216 colour combinations for a pixel. That’s why if we convolve a

greyscale image over RGB, the model accuracy will be much lower.

 Pre-processing Data

We first put all our images together, and then randomize the ordering. We did not want the order

of images to affect what we learnt, since this is not the part of determining whether the image taken

is of food or not. If it is a food image, then we need to determine the name of that food. In other

words, we decide of what type of food it is, independent of the order of images such as what type

of food became before or after it. In this step, missing data is found and also the features of the

dataset are being extracted. Missing data means that when a data set arrives the data has some

missing values, either because it exists and was not collected or it never existed. Most of the testing

and training images includes noise, intense color and wrong labels. We labeled the testing and

training images respectively. Also, images from all the classes have been rescaled to a unique size

of 299x299 dimensions. In case of Location Prediction Model, we directly took the model from

MIT places so no preprocessing of data was needed.

 22

Figure 3.7 CNN for food classification model

As we can see from Figure 3.6, the convolutional network is usually divided into two parts. One

for extracting the features and other for the classification. Through convolution layers and

subsampling layers’ features are extracted.

Particularly the layers used in our convolutional neural network are:

a) AvgPool Layer: An AveragePooling2D function (group size (8,8)) is used. The main

function of AvgPool layer is to reduce the variance and computational complexity

(Dehmer, 2013) of the data. This layer extracts the features without problems.

b) Convolution Layer: In this specific layer feature maps are created mainly by convolving

the input data. We used a Convolution2D function and set its input size to (299,299,3).

c) MaxPool Layer: The main function of MaxPool layer is to reduce the variance and

computational effort. We used MaxPooling2D function and its grouping mainly extracts

the most important features such as the edges of the data.

d) Concat Layer: This layer mainly concatenates the multiples input blobs in to one single

output blob. As an input, list of tensors is used, all having the same expected shape for the

concatenation axis, and returns a single tensor for the concatenation of all the inputs.

 23

e) Dropout Layer: Dropout is a method designed to reduce excessive adaptation in neural

networks and it prevents complex adjustments of training data. This is a very effective

method to perform model averaging with neural networks. We define dropout scale to be

0.4.

f) Fully connected Layer: This layer connects each neuron from one layer to each neuron in

another layer.

g) Softmax Layer: The use of the Softmax function (Zheng, 2018) as an output function

works almost as a maximum level and it is also possible to practice through gradient

descent. In addition, the sum of all the outputs will always be 1.0.

 Sampling

In this step the dataset is divided into two sets.

i. Training Dataset

ii. Testing Dataset

 Image Pre-processing Parameters

In order to ensure the maximum efficiency of the system, image preprocessing techniques are used

which can classify any type of image. Here are the parameters that are considered for pre-

processing images.

a) Rotation range = 45: The images are rotated at random 45 degrees. This make sures that the

images taken with each angle can be correctly predicted and preserve the variety of feature

maps obtained.

b) Width shift range = 0.2: The images are shifted horizontally by this fraction. This makes it

possible to predict "incomplete" or "half" images, and the patterns obtained will differ.

c) Height shift range = 0.2: It is having the same purpose as horizontal shift.

 24

d) Horizontal flip = True: The images are reflected horizontally. By rotating the images at

random, different patterns can be detected and images can be predicted accurately.

e) Fill mode = reflect: Out of range points are filled in this mode.

 Learning Algorithm Training

All images are resized to a size of 299 x 299 x 3. The dimensionality of the output space is defined

by the dense function. The dropout rate of 0.4 on input units is considered to avoid overfitting

problems. To determine the actual class of n classes, the Softmax activation function is defined.

Identify the class according to the maximum probability that will be obtained in the output of this

class and ignore the rest. The model is trained for 32 epochs and has three callbacks that record

the progress in a log file. Learning rate is defined. It uses the epoch index as input and returns a

new learning rate at the output. These are saved as. hdf5 files. The size of food model is 87mb

while the size of location model is 298mb. Our IOS mobile application size is 300mb.

 Final Classification

So finally, after the classification of the dataset we attain a trained model which is now ready to

be tested with new images. Particularly, users can upload images using the IOS application, then

the system predicts the food or spots the location on google maps.

3.4.6.1 Food prediction:

image that the user uploaded was related to any food item, the user will be shown the image with

the name of the food and the accuracy in percentage.

3.4.6.2 Location Prediction:

In case if the image that was uploaded was related to any monument or any place the application

will automatically predict the best three spots on google maps.

 25

CHAPTER 4
SOFTWARE DESIGN OF PROPOSED SYSTEM

Nowadays, the development of mobile applications is attracting increasing interest. The rapid

increase of mobile and smart devices in the consumer market has forced the software engineering

community to quickly adapt conscious development approaches to the new capabilities of mobile

applications. The combination of computing power, access to new built-in sensors, and ease of

application transfer to the market has made mobile devices the new computing platform for

businesses and independent developers. Here we will be discussing the software design methods

(Diaz, 2005) for the proposed Machine Learning Based IOS Mobile Application.

Specifically, we examine the challenge of:

a) Creating user interface accessibility.

b) Handling the complexity of providing application on IOS.

c) Designing of the application,

d) Specifying software requirements.

4.1 Data Flow Design of the proposed Application

According to different studies, mobile application users express themselves in a way that they are

doing something in their daily life routine. The personality of a mobile application user can be

extracted from the fact that how is the user using the application. A person who is an extrovert in

real life always tends to search a lot and will be using the application more than a neurotic who

often tends to be less active and uses a smaller number of searches. The data flow of the application

in this study was built on the architecture of the application. Here we explain the complete flow of

the IOS application in Figure 4.1. The flow chart explains how the user will open the application

and how the user will receive results from the food or location predictor. Our mobile application

only comes with the convolution model and not with images. As the size of the dataset is 6.5 GB

while the size of application is merely 300 MB.

 26

Figure 4.1 Data flow design of our application

 27

As we can see when the user opens the application the interface will be displayed. The user will

be prompt to upload the image. There are two options to upload the image, either by uploading the

image or taking a picture through the camera. When the user opens the camera or image gallery

for the first time, the user will be asked for permission. After the user allows the usage of camera

or photo library, he/she can upload or take the image. After this step, user will be asked if the

image uploaded is related to food or location that he or she just uploaded.

4.2 Entity Relationship (ER) Diagram of Proposed Application

An entity relationship diagram (ERD) shows the relationships of entity sets stored. An entity in

this context is an object, a component of data. An entity set is a collection of similar entities. These

entities can have attributes that define its properties. User will have “Access” to all photos which

will be “used for” prediction. Application can be used without internet connecting as well if trying

to predict food Images. If predicting location Images, internet is required to access google maps.

Here is the complete ER Diagram of the mobile application.

 User

The entity user has different attributes which are required for a user: Apple Mobile Phone, Installed

Application and Internet for Google Maps.

 Photos

The Photos entity has different attributes which are required for accessing the photos: Camera and

Photo Gallery.

 Prediction

The Prediction entity has different attributes. The prediction can be performed for two different

entities: Food and Location

 28

Figure 4.2 ER Diagram

4.3 Conversion to CoreML

The food dataset we used for the application is taken from Kaggle and then the prediction is done

using the API library of Tensorflow, that is Keras and a machine learning model is generated.

When the model is developed then the next step that come is converting the model to coreml using

XCode IDE. coreml is the machine learning framework for the XCode and used to integrate the

models into Apple Application. The model is integrated in to XCode and then the layout is

designed in XCode and after coding in swift the application is ready to use.

As a first step, we need to convert our existing food and location-based model to CoreML’s which

has. mlmodel extension. For this we need to install coremltools. In order to install coremltools we

run the following command on the command line.

CoreML tools require Python 2.7 and above. For this process we setup a virtual environment with

Python 2.7. We used Anaconda Navigator. After Initializing Anaconda Navigator, we clicked on

“Environments”, as shown in figure 4.3. Finally, we click on the create button (Figure 4.4) under

the list of environments.

 29

Figure 4.3 Anaconda Navigator

Figure 4.4 Environments in Anaconda Navigator

In Order to create a new Environment, we type “coreml” for name, and checked Python and

selected “2.7” from the dropdown (Figure 4.5). Following this step, the new “coreml” environment

is up and running after few seconds. After that if click on the new environment and press play, a

new command line is opened (Figure 4.6).

 30

Figure 4.5 Creating a new environment in Anaconda Navigator

Figure 4.6 Finishing step for creating a new environment in Anaconda Navigator

 31

Subsequently the following commands can be run as follows:

After creation of new environment, we ran the following commands. pip install -U coremltools

from our new command line. A new file, that is named run.py is created which contains the

following code.

Figure 4.7 CoreML Model Conversion

Coremltools are imported in the first line. After we imported, a CoreML model is created and

provided with all necessary inputs for coremltools to convert the model to coreml using the Caffe

framework (Wei, 2017). Caffe is a deep learning framework made with expression, speed, and

modularity in mind. It is used for converting the machine learning model to coreml model. After

this step, we integrate trained CoreML model into an IOS project as explained in the next section.

 32

Figure 4.8 CoreML Model

4.4 Integration of CoreML Model into IOS

We started a new Xcode project and selected IOS as a Single View App. We named the proposed

application as “pixify” and clicked next. Then we selected a desired folder where we wished to

create the project and clicked Create (Figure 4.9).

 33

Figure 4.9 Starting a new IOS project in Swift

Once we created the project by right clicking on the "Pixify" folder under Project Navigator on the

left, we can add files to "Pixify". When the model is imported into Xcode, after a few seconds

food.mlmodel should appear under the Project Navigator. The model details, are shown in figure

4.11 as follows.

 34

Figure 4.10 Importing the model into Xcode

 35

Figure 4.11 Food Model

Figure 4.12 Location Model

 36

4.5 User Interface of the IOS App, Pixify

The layout of the application which was named as Pixify is shown below:

Figure 4.13 Main Story Board

First the application is opened and the layout of the application is shown (Figure 4.15). After that

you have two options either to upload the image directly or to open camera for taking the image

of your desired food, as shown In Figure 4.14.

 37

Figure 4.14 Pixify Application User Interface

In Figure 4.16 upon uploading or taking image of your favorite food, you will be shown two

options. For scanning the food, you will click on "scan the food button".

Figure 4.15 Scanning food or Place

 38

Finally, the interface displays you the name of the food with percentage, which are calculated

automatically by the model. In Figures 4.17 to 4.20 sample outputs of the Pixify interface are

shown for food prediction and location prediction. In the location predictor, we have integrated

google maps API (Shaw, 2017) in swift code which takes the longitude and latitude values for the

predicting three best spots and displays on the IOS Application. Here is the snippet of google API

used in IOS application.

Figure 4.16 Google Maps snippet in Swift

Figure 4.17 Pixify application scanning a Turkish delight baklawa and a pizza.

 39

Figure 4.18 Pixify application scanning French fries and spaghetti carbonara

Figure 4.19 Pixify application predicting three best possible locations for Hagia Sophia on

google maps

 40

Figure 4.20 Pixify application predicting three best possible locations for Hagia Sophia on
google maps

 41

CHAPTER 5
CHOOSING CNN MODEL FOR IOS APPLICATION

With the help of machine learning, we determined different type of food images and show them in

percentage and vice versa. Here we applied some principles of machine learning in order to get the

required output. These steps for achieving the required output are given below:

• Data Collection

• Data Preparation

• Model Selection

• Dataset Training

• Evaluation

• Hyperparameter tuning

• Conversion to CoreML

• User Interface

• Results or Outputs

5.1 Food or Location Prediction Algorithm

In this thesis we created a prediction based IOS application in which the mobile application will

be detecting the food names with the accuracy of predicting food images in terms of percentages.

This prediction will be done for all the food classes. The same applies to the location images, user

takes an image of a place and upload it to the IOS application. Application automatically compares

it with the dataset of 5 million images and shows three closest locations on google maps. The fig

5.1 shows the basic architecture of our food and location based mobile application. The tools we

have used in our project are:

a. Python Language

b. Anaconda for creating, training and testing the model.

c. Tensor flow a machine learning library.

d. Core ML for converting the pre-defined model to CoreML model so that it can be used in

swift for application development.

 42

e. Convolution Neural Network which the branch of deep neural network (Ramampiaro,

2018) for training and testing the dataset.

Figure 5.1 Deep Learning Computer Vision for our research. From Data selection to viewing it

on IOS application

In the above figure as we can see that there are various steps from taking the dataset to viewing

the results on IOS application.

5.2 Data Collection:

First, we took the data set of about 5000 food images from FOOD – 101 and 4 million location-

based images from MIT Places. First of all, we gather all the data and then ordered them randomly.

We did not want the order of our data to be affected what we learned, since that was not the part

of determining whether the image taken is of food or not. If its food, then what is the name of that

food. Same in the case of location prediction, we were trying to evaluate that where the picture

that is been uploaded or taken is located on the google maps. In other words, we decide of what

type of food it is, independent of what type of food image came before or after it. Same with the

location prediction, it is dependent on either that place is available in the dataset or not.

 43

We split the data into two parts, one is for training the machine learning model and other for testing

the model. The model will be trained in such a way that the data points collected from all the food

types must be same otherwise the train model will be biased towards a specific food type and not

for the others. We will not the same training data for testing the model as the model is built on the

training dataset. Hence, we will be evaluating the model with the testing dataset so that the

evaluations should be performed on unseen image samples

5.3 Choosing a Model

In this step we will be choosing the model. With time, researchers and data scientist have created

and tested many models. Among them some are well suited for image processing, others for

sequences, some for numerical data, and others for text-based data. In our case, since we are

dealing with images only so we choose an image-based model and in this case, it is InceptionV3

model. InceptionV3 is one of the models to classify images. We have used TensorFlow and Keras.

InceptionV3 model is a model of keras framework which is used for prediction, feature extraction,

and fine-tuning. The default input size for this CNN model is 299x299. In case of location

prediction, we choose the pre-trained model from MIT places which we converted into coreml

using coreml tools i.e. Anaconda IDE and Keras framework.

5.4 Training the model

In this step, we used data to enhance our model's ability to predict the name and percentage of a

particular food image. In addition, the top three locations in Google Maps for an image based on

the location. While training, some parameters are used to ensure the maximum efficiency of the

system.

5.5 Testing the Model

Once training is completed, we then used the assessment to determine the quality of model. This

is where the testing dataset is used. Evaluation allows us to test our model with some arbitrary data

that has never been used while training the model. With the use of different parameters, we can

analyze how the model works with unseen data. We then divided training score of 75/25 or 80/20.

This means that 75% of the data is learning data or training data and 25% of the data is test data

 44

and vice versa for the 80/20 case. As far as location model is concerned there was no need of

testing the model.

5.6 Parameter Tuning

Hyper parameters were tuned to get the best results. These hyper parameters are Rotation range

(The images are rotated at random 45 degrees), Width shift range (The images are shifted

horizontally by the fraction of 0.2), Height shift range (It is having the same purpose as width

shift), Horizontal flip (By rotating the images at random, different patterns can be detected and

images can be predicted accurately), Fill mode (Out of range points are filled in this mode),

Random crop size (Assign the cropping size of images sent to the network, in this case 299x299x3).

Figure 5.2 Iteration for hyper parameters on Training step

These parameters are usually called "hyperparameters". The adaptation or adaptation of these

hyperparameters is still somewhat artistic and constitutes an experimental process that strongly

depends on the specificities of the data set, the model and the training process. Once satisfied with

the hyperparameters and training, the model is finally ready to do something useful.

5.7 Prediction

Machine learning uses data to answer different questions. Certain questions need to be answered

at the prediction stage.

 45

 Food Prediction

As we can see from Figure 5.1 modeling technique discussed in Figure 5.2 is applied on the test

data which then perform the prediction and the result is shown.

Figure 5.3 Food Prediction Model

Finally our model can be used for prediction, whether a data element of a particular food item is a

hamburger, beef or any other food.

 Location Prediction

The same applies to the location predictor, where the image of a location has been scanned by the

application. A convolutional neural network mechanism displays the first three points on Google

maps.

 46

Figure 5.4 Location prediction model

 47

CHAPTER 6
PERFORMANCE EVALUATIONS

Here in this chapter we will be discussing various aspects of the mobile application performance.

These aspects include the time taken for classification of an image into its respective class and

time taken for an image to be loaded and scanned etc. In addition, we will evaluate classification

accuracy of the deep learning model.

6.1 System Performance

For the system evaluations, we took 101 food classes each having 750 training images and 250

testing images. The proportion of test train split for our food dataset was 3:1 per class. For the

location data set we took a prebuilt model from MIT places which originally contained 5 million

location images. The test train split used for the location dataset was 4:1 which means that 4 million

were training images and 1 million testing images. As we are dealing with images only so we

choose an image-based model and in this case, it is InceptionV3 model. InceptionV3 is one of the

models to classify images. We have used TensorFlow (Hope, 2017) and Keras. InceptionV3 model

is a model of keras framework which is used for prediction, feature extraction, and fine-tuning.

Size of food model is 87mb while the size of location model is 300mb.

Table 6.1 Food and location datasets

Dataset Training Images Testing Images Proportion
Size of

Model

Food Dataset
750 images per

class
250 images per class 3:1 87 mb

Location Dataset

(CoreML)
4 Million 1 Million 4:1 300 mb

User will input an image to the coreML model using his camera or gallery and after the inference

from coreML model, results will be displayed on the screen. As we can see from figure 4.1. the

complete process from loading up the image and displaying the results of the proposed IOS

application.

 48

Figure 6.1 Time for Loading/Scanning Images

The time taken for training the model depends on different things. These includes size of the

dataset, speed of the device, ram of the device and the processor of the device. The specifications

of system that we used for training the dataset on inception V3 model is shown in table 6.2.

Table 6.2 Specifications of System used for Training the Dataset

Device Specifications

Macbook Pro 2017

Ram 8 GB

Processor 2.3 GHz dual-core Intel Core
i5

eDRAM 64MB
Graphics Intel Iris Plus Graphics 640

Frequency 50Hz – 60Hz

 Time for Loading/Scanning Food Images

When a user is using a mobile application, time is the main power and for that reason we analyze

the time taken by different class images to be scanned and loaded with the respective percentage

 49

of accuracy. On the food class images, we repeated three iterations and receive an average time in

seconds for each class to load the food image. Here in Figure 4.2 we can see how the distribution

is taken place. On average it takes 3 seconds for loading or scanning food images and for some

images it takes up to 5 seconds to scan and load. Some food classes might take more time than the

other because of the less features to be extracted while other classes have more features to be

extracted. For this analysis we used iPhone 6 having 1 GB of RAM and dual core 1.4GHz

processor.

Figure 6.2 Time for Loading/Scanning Food Images

 Time for Loading/Scanning location Images

Similarly, for the location-based images, we conducted the same test so that we can investigate the

time required to predict three best spots on google maps. For this evaluation, we tested 50 location

images from different parts of the world and ran our results on it. We analyzed different images of

the same monument three times. Results are shown in figure 6.3. Generally, it takes 5 to 7 seconds

for loading or scanning an image. As location images take more time for loading or scanning

because of the fact that location model requires internet.

 50

Figure 6.3 Time for Loading/Scanning Location Images

 Time for classifying food images on Average using CNN

Usually the time taken for classifying the images using CNN depends on different features. These

features include various things such as the size of the dataset, speed of the device, ram of the device

and the processor of the device. The processor and ram specifications of iPhone 6, 6s, 7, 7s, 7plus,

8, 8s and X are shown in table 6.3.

 Iphone Specifications

Iphone specifications are shown in Table 6.3.

Table 6.3 Specifications of IOS devices used for Analysis

Device Ram Processor

Iphone 6 1 GB Dual core 1.4 GHz

Iphone 6s 2GB A9 dual-core
Iphone 7 2GB A10 Fusion

Iphone 7 plus 3GB Apple A10 Fusion
Iphone 8 2GB A11 Bionic

Iphone 8 plus 3GB A11 Bionic
Iphone X 3GB A11 Bionic

 51

The time require in seconds for classifying the images on average using convolutional neural

network may differ from one to device to another. Here we have tested the model on different

devices and here are the results displayed.

Table 6.4 Average Time for classifying the image using CNN

Class Name Iphone 6 Iphone

6s

Iphone

7

Iphone

7 Plus

Iphone

8

Iphone

8 Plus

Iphone X

edamame 6.3 5.5 4.8 4.2 3.8 3.5 3.1

hot_and_sour_soup 6.6 5.6 4.9 4.3 4.0 3.7 3.3

oyster 6.4 5.4 4.7 4.2 4.1 3.8 3.4

seaweed_salad 6.2 5.3 4.8 4.4 4.0 3.7 3.2

macarons 6.3 5.4 4.7 4.3 3.9 3.6 3.1

pad_thai 6.9 5.6 4.6 4.5 4.0 3.7 3.5

spaghetti_bolognese 7.1 5.8 4.5 4.4 4.1 3.6 3.2

french_fries 5.3 5.3 4.8 4.3 4.2 3.8 3.3

frozen_yogurt 7.3 5.4 4.8 4.2 4.1 3.7 3.5

takoyaki 5.3 5.4 4.9 4.2 4.0 3.6 3.2

spaghetti_carbonara 7.5 5.5 5.0 4.3 4.2 3.7 3.1

clam_chowder 5.7 5.6 5.1 4.5 3.9 3.7 3.4

deviled_eggs 6.6 5.4 4.8 4.2 3.9 3.8 3.2

churros 6.4 5.3 4.8 4.3 3.8 3.8 3.3

miso_soup 6.4 5.4 4.9 4.2 4.0 3.7 3.1

creme_brulee 6.2 5.6 4.7 4.4 3.8 3.7 3.3

mussels 6.3 5.8 4.8 4.3 3.9 3.5 3.4

pho 6.9 5.3 4.7 4.5 4.1 3.6 3.2

cannoli 7.1 5.4 4.6 4.4 4.1 3.5 3.1

guacamole 5.3 5.4 4.5 4.3 3.9 3.6 3.5

sashimi 7.3 5.4 4.8 4.2 3.9 3.7 3.2

caesar_salad 5.3 5.3 4.8 4.2 3.8 3.7 3.3

lobster_roll_sandwich 7.5 5.4 4.9 4.3 4.0 3.8 3.5

 52

bibimbap 5.7 5.6 5.0 4.5 3.8 3.8 3.2

cup_cakes 6.6 5.8 5.1 4.3 3.9 3.7 3.1

dumplings 6.4 5.3 4.8 4.2 4.1 3.7 3.4

ramen 7.5 5.4 4.5 4.4 4.1 3.5 3.2

beef_carpaccio 5.7 5.4 4.8 4.3 3.8 3.6 3.3

eggs_benedict 6.6 5.5 4.8 4.5 4.0 3.5 3.1

pancakes 6.4 5.6 4.9 4.4 4.1 3.5 3.3

red_velvet_cake 6.6 5.4 4.6 4.3 4.0 3.7 3.4

beignets 6.4 5.3 4.8 4.2 3.8 3.8 3.2

club_sandwich 6.2 5.4 4.9 4.2 4.0 3.7 3.1

french_onion_soup 6.3 5.6 4.7 4.3 3.8 3.6 3.5

peking_duck 6.9 5.8 4.8 4.5 3.9 3.7 3.2

escargots 7.1 5.3 4.7 4.2 4.1 3.6 3.3

greek_salad 5.3 5.3 4.9 4.3 4.1 3.8 3.5

croque_madame 7.3 5.4 4.7 4.2 3.8 3.7 3.2

baklava 5.3 5.6 4.8 4.4 4.0 3.6 3.1

onion_rings 6.6 5.8 4.7 4.3 4.1 3.7 3.4

tacos 6.4 5.3 4.6 4.5 4.0 3.7 3.2

fish_and_chips 6.2 5.4 4.5 4.4 3.9 3.8 3.3

poutine 6.3 5.4 4.8 4.3 3.8 3.8 3.1

cheese_plate 6.9 5.5 4.8 4.3 4.0 3.7 3.3

Sushi 7.1 5.6 4.9 4.5 4.1 3.7 3.4

fried_rice 5.3 5.4 5.0 4.3 4.0 3.7 3.2

chicken_wings 7.3 5.3 5.1 4.2 3.9 3.6 3.1

fried_calamari 5.3 5.4 4.8 4.4 3.9 3.8 3.5

pulled_pork_sandwich 6.6 5.6 4.7 4.3 3.9 3.7 3.2

Waffles 6.4 5.8 4.6 4.5 3.8 3.6 3.3

crab_cakes 6.2 5.3 4.8 4.4 4.0 3.7 3.5

gyoza 6.3 5.4 4.9 4.3 3.8 3.7 3.2

caprese_salad 6.9 5.4 4.7 4.2 3.9 3.8 3.1

 53

paella 7.1 5.4 4.8 4.2 4.1 3.5 3.4

beef_tartare 5.3 5.3 4.7 4.3 4.1 3.7 3.2

samosa 7.3 5.4 4.6 4.5 3.8 3.8 3.3

hot_dog 5.3 5.6 4.5 4.2 4.0 3.7 3.1

shrimp_and_grits 7.3 5.8 4.8 4.3 4.1 3.6 3.3

strawberry_shortcake 5.3 5.3 4.8 4.2 4.0 3.7 3.4

baby_back_ribs 6.2 5.4 4.9 4.4 3.8 3.6 3.2

spring_rolls 6.3 5.3 5.0 4.3 4.0 3.5 3.1

donuts 6.9 5.4 5.1 4.5 3.8 3.7 3.5

lobster_bisque 7.1 5.6 4.8 4.3 3.9 3.8 3.2

prime_rib 5.3 5.8 4.8 4.5 4.1 3.7 3.3

chicken_quesadilla 7.3 5.3 4.9 4.4 4.1 3.6 3.5

hummus 5.3 5.3 4.7 4.3 3.8 3.7 3.2

grilled_salmon 6.6 5.4 4.8 4.2 4.0 3.6 3.1

tiramisu 6.4 5.6 4.7 4.2 4.1 3.8 3.4

pizza 6.2 5.8 4.6 4.3 4.0 3.7 3.2

carrot_cake 6.3 5.3 4.5 4.5 3.9 3.6 3.3

falafel 7.4 5.4 4.8 4.3 3.8 3.7 3.1

ice_cream 5.3 5.4 4.8 4.2 4.0 3.7 3.3

bread_pudding 5.8 5.5 4.9 4.4 4.1 3.8 3.4

huevos_rancheros 7.5 5.6 5.0 4.3 4.0 3.8 3.2

ravioli 5.7 5.4 5.1 4.5 3.9 3.7 3.1

scallops 6.6 5.3 4.8 4.4 4.0 3.7 3.5

chicken_curry 6.4 5.4 4.5 4.3 4.1 3.5 3.2

omelette 6.2 5.6 4.8 4.2 4.2 3.6 3.3

ceviche 6.3 5.8 4.8 4.2 4.1 3.5 3.5

lasagna 7.4 5.3 4.9 4.3 4.0 3.5 3.2

cheesecake 5.3 5.4 4.6 4.5 4.2 3.7 3.1

hamburger 5.8 5.4 4.8 4.2 3.9 3.8 3.4

beet_salad 7.5 5.4 4.9 4.3 3.9 3.7 3.2

 54

risotto 5.7 5.6 4.7 4.2 3.8 3.6 3.3

french_toast 5.3 5.8 4.8 4.4 4.0 3.7 3.1

gnocchi 5.8 5.3 4.7 4.3 3.8 3.6 3.3

garlic_bread 7.5 5.4 4.6 4.5 3.9 3.8 3.4

breakfast_burrito 5.7 5.4 4.5 4.4 4.1 3.7 3.2

chocolate_cake 6.6 5.4 4.8 4.3 4.1 3.6 3.1

steak 6.4 5.6 4.8 4.3 3.9 3.7 3.5

pork_chop 6.2 5.8 4.9 4.5 4.0 3.7 3.2

chocolate_mousse 6.3 5.3 5.0 4.3 4.2 3.8 3.3

apple_pie 7.4 5.4 5.1 4.2 3.9 3.8 3.5

filet_mignon 5.3 5.4 4.8 4.4 3.9 3.7 3.2

foie_gras 6.4 5.5 4.7 4.3 3.8 3.7 3.1

macaroni_and_cheese 6.2 5.6 4.6 4.5 4.0 3.5 3.4

tuna_tartare 6.3 5.4 4.5 4.4 3.8 3.6 3.2

panna_cotta 7.5 5.3 4.8 4.3 3.9 3.5 3.3

bruschetta 5.7 5.4 4.8 4.3 4.1 3.7 3.4

grill_cheese_sandwich 6.6 5.6 4.9 4.5 4.1 3.7 3.2

nachos 6.4 5.8 4.7 4.4 3.9 3.5 3.3

Average Time 6.5 5.7 4.9 4.5 4.0 3.6 3.3

As we can see from table 6.3 that when we are testing the application on newer mobile phones

such as iPhone X and iPhone 8, the classification time gets faster. From this, we can derive that

the time taken for classification of classes and images is directly proportion to the processing

power of the device. We downloaded the application of different iPhone devices and tested each

class and the derived the results. Average time for classification of food images using CNN can be

seen in Figure 6.4.

 55

Figure 6.4 Average time in seconds for classifying the food images using CNN

 Average Time for Classifying Food Images using CNN

For the food there are 101 classes and upon the search on IOS application it automatically matches

the image with the respective class and hence giving us the results using convolutional neural

networks. When an image is being scanned through the mobile application it usually takes some

time to be classified respectively into the desired class i.e. oyster, pad_thai, apple_pie etc.

In Figure 6.5, the time take for classifying the food images is being shown averagely as each class

is tested five times. For some classes, it took more time to classify them.

 56

Figure 6.5 Average Time for Classifying the Food Images using CNN

 Average Time for Classifying Location Images using CNN

We followed the same procedure for the location images as well and receive some surprising

results. The loading time of a map and spotting the best three locations on google map took a bit

longer then loading and scanning of food images. In Figure 6.6, we can see the time for classifying

the location images on average using CNN (between 5 to 7 seconds).

 57

Figure 6.6 Average Time for Classifying the Location Images using CNN

 Average Accuracies for predicting the Food Images

We tested the prediction accuracy of some food image classes so that we can get an idea of how

well the system is performing. For this evaluation, we tested three different images of the same

class and we repeated the phenomena. Figure 6.7 shows the average accuracy of each image class

in terms of percentages. Some of the food items such as beef tartare and tacos are showing

accuracies around 86 percent and edamame and oyster accuracies were found to be 97 percent.

Results are showing the range of accuracy percentages in between 80 and 97 percent. From the

Figure 6.7, some classes have low accuracy and some has high. It is because of the fact that some

foods are much noisier then the others and not cleaned. For example, if we compare tacos with

edemame, we can see that the accuracy of edemame is 97% while that of tacos is 86%.

 58

Figure 6.7 Average Accuracies for Predicting the Food Images

6.2 Class Accuracies

Class accuracies of all the 101 food classes are shown in table 6.5 and figure 6.8. Accuracies were

increased by cropping each image up to 10 times, as a result accuracy of model was increased by

5%. These results were obtained after training the model. After fine-tuning and training

InceptionV3 model, we were able to achieve 82% Top-1 accuracy on the test set using a single

crop per item. Using 10 crops per example and taking the most frequent predicted classes, we were

able to achieve 86.97% Top-1 Accuracy and 97.42% Top-5 Accuracy. In case of location

prediction, no class accuracy was needed as there were no classes involved in location prediction.

Location prediction only show three best possible spots on google maps.

Table 6.5 Class Accuracies of all the food classes

Class Name Accuracies Class Name Accuracies

edamame 0.996 Sushi 0.904

hot_and_sour_soup 0.964 fried_rice 0.904

oyster 0.964 chicken_wings 0.904

seaweed_salad 0.96 fried_calamari 0.9

macarons 0.956 pulled_pork_sandwich 0.896

pad_thai 0.956 Waffles 0.896

spaghetti_bolognese 0.956 crab_cakes 0.896

 59

french_fries 0.952 gyoza 0.888

frozen_yogurt 0.952 caprese_salad 0.892

takoyaki 0.952 paella 0.856

spaghetti_carbonara 0.948 beef_tartare 0.856

clam_chowder 0.944 samosa 0.88

deviled_eggs 0.944 hot_dog 0.88

churros 0.94 shrimp_and_grits 0.868

miso_soup 0.94 strawberry_shortcake 0.872

creme_brulee 0.936 baby_back_ribs 0.872

mussels 0.932 spring_rolls 0.876

pho 0.936 donuts 0.876

cannoli 0.932 lobster_bisque 0.888

guacamole 0.932 prime_rib 0.856

sashimi 0.932 chicken_quesadilla 0.852

caesar_salad 0.928 hummus 0.852

lobster_roll_sandwich 0.928 grilled_salmon 0.848

bibimbap 0.924 tiramisu 0.848

cup_cakes 0.924 pizza 0.888

dumplings 0.924 carrot_cake 0.836

ramen 0.924 falafel 0.832

beef_carpaccio 0.92 ice_cream 0.764

eggs_benedict 0.92 bread_pudding 0.748

pancakes 0.92 huevos_rancheros 0.78

red_velvet_cake 0.92 ravioli 0.776

beignets 0.916 scallops 0.784

club_sandwich 0.916 chicken_curry 0.784

french_onion_soup 0.916 omelette 0.784

peking_duck 0.888 ceviche 0.784

escargots 0.916 lasagna 0.792

greek_salad 0.88 cheesecake 0.792

 60

croque_madame 0.912 hamburger 0.796

baklava 0.912 beet_salad 0.796

onion_rings 0.916 risotto 0.812

tacos 0.86 french_toast 0.808

fish_and_chips 0.908 gnocchi 0.808

poutine 0.908 garlic_bread 0.804

cheese_plate 0.904 breakfast_burrito 0.8

filet_mignon 0.716 chocolate_cake 0.78

foie_gras 0.72 steak 0.576

macaroni_and_cheese 0.844 pork_chop 0.676

tuna_tartare 0.832 chocolate_mousse 0.7

panna_cotta 0.828 apple_pie 0.716

bruschetta 0.824

 61

CHAPTER 7
QUALITATIVE EVALUATIONS

In this chapter we explained two main parts of our IOS application; food images prediction with

its respective accuracy in terms of percentage using CNN and location image prediction which

will be showing three best spots on the Google maps. For visual inspection, we provided some

screenshots of the real time view of our application.

7.1 Food Prediction Qualitative Analysis

For the food prediction system, we took 101 different classes of food images and analyzed those

using CNN. Each class is divided into a test train split ratio of three to one. User will be promoted

to input the food image of his/her choice either using the camera phone or photo library. When the

image is loaded then the user will be asked to choose either to predict the food system or location

system. In this case the user will be choosing the food prediction option and below are some of the

real time screenshots of the application predicting different food images.

Figure 7.1 Food Prediction Real Time Screenshots of the application

 62

7.2 Location Prediction Qualitative Analysis

Also, for the location prediction system, we took dataset which contains 4 Million images from

different countries and then labeled by MIT places according to the nature of the images. This

labeled images dataset was then analyzed using CNN. The complete dataset was divided according

to test train split with the ratio of 4 to 1. User will be promoted to input the location image of his

choice either using the camera phone or photo library. When the image is loaded then the user will

be asked to choose either to predict the food system or location system. In this case the user will

be choosing the location prediction option and below are some of the real time screenshots of the

application predicting different location images with three best choices.

Figure 7.2 Mobile Application predicting Big Ben Tower located in London, UK

Figure 7.3 Mobile Application predicting Golden Gate Bridge located in San Francisco, USA

 63

Figure 7.4 Mobile Application predicting Eifel Tower located in Paris, France

Figure 7.5 Mobile Application predicting White House located in Washington DC, USA

 64

Figure 7.6 Mobile Application predicting Taj Mahal located in Agra, India

7.3 Experimental Evaluation

For the Food-101 dataset, 750 images of each class are used for training and the remaining 250 for

testing by using the following python command.

//for splitting the dataset into training and testing sets

X_test, y_test = load_images('food-101/test', min_side=299)
X_train, y_train = load_images('food-101/train', min_side=299)

Figure 7.7 Splitting the dataset into training and testing sets

We measure performance with average accuracy, i.e. the fraction of test images that are correctly

classified. We first give details of our implementation and then analyze the robustness of our

approach with respect to its different parameters.

 65

 Dataset from Kaggle

We downloaded the dataset food-101 from Kaggle and extracted it within the notebook folder.

Food classes are represented in Table 7.1. Some random images are shown in Figure 7.7.

Table 7.1 Representation of Food 101 Classes

apple_pie dumplings macaroni_and_cheese steak
baby_back_ribs edamame macarons strawberry_shortcake
baklava eggs_benedict miso_soup sushi
beef_carpaccio escargots mussels tacos
beef_tartare falafel nachos takoyaki
beet_salad filet_mignon omelette tiramisu
beignets fish_and_chips onion_rings tuna_tartare
bibimbap foie_gras oysters waffles
bread_pudding french_fries pad_thai
bruschetta french_onion_soup paella
caesar_salad french_toast pancakes
caprese_salad fried_calamari panna_cotta
carrot_cake fried_rice peking_duck
ceviche frozen_yogurt pho
cheesecake garlic_bread pizza
cheese_plate gnocchi pork_chop
chicken_curry greek_salad poutine
chicken_quesadilla grilled_cheese_sandwich prime_rib
chicken_wings grilled_salmon pulled_pork_sandwich
chocolate_cake guacamole ramen
chocolate_mousse gyoza ravioli
churros hamburger red_velvet_cake
clam_chowder hot_and_sour_soup risotto
club_sandwich hot_dog samosa
crab_cakes huevos_rancheros sashimi
creme_brulee hummus scallops
croque_madame ice_cream seaweed_salad
cup_cakes lasagna shrimp_and_grits
deviled_eggs lobster_bisque spaghetti_carbonara
donuts lobster_roll_sandwich spring_rolls

 66

Figure 7.8 Examples of some random image from Each food class

 Visualization Tools for Result Analysis

Here we have discussed some of the visualization tools that were helpful in visualizing the training

and test dataset. We used python for visualizing the results. Here I am going through some

visualizations. From Figure 7.8 – 7.11, code snippet and visualizations for training and testing

datasets are shown.

 67

Figure 7.9 Python Code for Visualizing Training Data Sets

Figure 7.10 Visualizing random images from training dataset

Figure 7.11 Python Code for Visualizing Testing Data Sets

 68

Figure 7.12 Visualizing Testing Data Sets

Figure 7.13 Python Code for Visualizing some images of Baklawa having rows = 6 and columns

= 7

 69

Figure 7.14 Visualizing Baklava images from Class 21

 Model Evaluation

At this point, several trained templates must be stored on the hard drive. We can browse it and use

the load_model function to load the model with the lowest loss / precision. We also want to

evaluate the set of tests with several crops. This can result in an increase in accuracy of 5% over a

single crop. It is common to use the following crops: top left, top right, bottom left, bottom right,

center. We also bring the same crops from left to right in the photo, for a total of 10 crops. We also

want to return the N main forecasts for each crop, for example, in order to calculate the maximum

accuracy.

def center_crop(x, center_crop_size, **kwargs):

 centerw, centerh = x.shape[0]//2, x.shape[1]//2

 halfw, halfh = center_crop_size[0]//2, center_crop_size[1]//2

 return x[centerw-halfw:centerw+halfw+1,centerh-halfh:centerh+halfh+1, :]

def predict_10_crop(img, ix, top_n=5, plot=False, preprocess=True, debug=False):

 flipped_X = np.fliplr(img)

 crops = [

 img[:299,:299, :], # Upper Left

 70

 img[:299, img.shape[1]-299:, :], # Upper Right

 img[img.shape[0]-299:, :299, :], # Lower Left

 img[img.shape[0]-299:, img.shape[1]-299:, :], # Lower Right

 center_crop(img, (299, 299)),

]

 if preprocess:

 crops = [preprocess_input(x.astype('float32')) for x in crops]

 if plot:

 fig, ax = plt.subplots(2, 5, figsize=(10, 4))

 ax[0][0].imshow(crops[0])

 ax[0][1].imshow(crops[1])

 ax[0][2].imshow(crops[2])

 ax[0][3].imshow(crops[3])

 ax[0][4].imshow(crops[4])

 ax[1][0].imshow(crops[5])

 ax[1][1].imshow(crops[6])

 ax[1][2].imshow(crops[7])

 ax[1][3].imshow(crops[8])

 ax[1][4].imshow(crops[9])

 y_pred = model.predict(np.array(crops))

 preds = np.argmax(y_pred, axis=1)

 top_n_preds= np.argpartition(y_pred, -top_n)[:,-top_n:]

 return preds, top_n_preds

ix = 1300

predict_10_crop(X_test[ix], ix, top_n=5, plot=True, preprocess=False, debug=True)

Figure 7.15 Crop Code for Model Evaluation

 71

Figure 7.16 Multiple crops of a single image for inception model

We also need to preprocess the images for the Inception model

ix = 1300

predict_10_crop(X_test[ix], ix, top_n=5, plot=True, preprocess=True, debug=True)

Figure 7.17 Image preprocessing Code

Figure 7.18 Image preprocessing for inception model

 72

Now we will crop each image of the test set and get the predictions. It is a slow process because

we are not using multiprocessors or other types of parallelism. We have trained the model on a

MacBook which has core i7 processors. After the preprocessing of the cropped image we have

now 10 predictions for each image which will boost up the accuracy of the model by 5%.

 73

CHAPTER 8
CONCLUSION AND FUTURE WORK

In this work, an IOS based mobile application is developed based on CNN Machine Learning

model. We divided our work into two parts. First part is based on food prediction. In this section,

we created a machine learning model using CNN based inception V3 model as its top-5 error rate

was very low. Then we compared the Inception V3 model with models such as AlexNet, Inception

(GoogleNet) and BN-Inception V2 model. Results show that we can achieve an accuracy

of 97.00% for our food prediction model. Second section is the location prediction model. We took

this model from MIT places. Using Caffe model, we transformed the machine learning models to

CoreML, which is the apple machine learning framework. Using swift programming language in

Xcode IDE we developed the application and integrated both food and location models. The

mobile application will allow users to capture food or location-based image and will input to IOS

mobile application. If a user clicks location prediction then the application will show three best

matching spots on Google maps using Google Maps API. In case of food prediction, there is no

need of internet and once the food image is uploaded to mobile application, our mobile application

will load and scan the image and will show the name of food with percentage of accuracy.

We compared our model with other machine learning models and found that in past research no

food-based machine learning model has used in IOS mobile application and also the size of their

models was much greater than ours. Our model size is 86 MB for food prediction and 150 MB for

location-based model. Also, the computational cost of our machine learning model is less than

that of others. We trained our machine learning model on a normal MacBook and then the model

was trained in 6 to 7 hours. So, our neural network and model is much more cost effective and

accurate.

We can improve the model by increasing its Top-1 and Top-3 accuracy by increasing the size of

Epochs and also by increasing the inception blocks in Inception V3 model. Right now, we are

having 32 Epochs and the error rate for Top - 1 is 18 percent while for Top – 3 is 13 percent. Also,

by training the model using more data can increase the accuracy of the model.

 74

In future we would like to combine the location and food predictions and will make it in such a

way that when a user scans a food image and after prediction the application will also show the

nearby restaurants having that food. Also, if a user scans a location-based image the application

will show related restaurants nearby. In future we would add more inception blocks and more

epochs to increase the accuracy of the model. Right now, the size of application is 300 MB so

using cloud computing techniques we will train the models on google cloud and will extract the

data using mobile application. By doing this the size of the application will be reduced and will be

easily used by much more users. We will try to use more layers beside inception v3 layers and will

compare the results. We might use a new layer “residual layer” which can eliminate any residual

and non-important data present in the model. By using this layer, the size of the model will get

reduce while its accuracy will be same. So, it will then also take less time in training the model.

 75

REFERENCES

Liu, X., Datta, A., & Lim, E.-P. (2014). Computational trust models and machine learning. Boca

Raton: CRC Press/Taylor & Francis Group.

Turing, A. M., & Yang, X.-S. (2013). Artificial intelligence, evolutionary computing and

metaheuristics : in the footsteps of Alan Turing. Heidelberg: Springer.

Sharma, S. K., Al-Badi, A., Rana, N. P., & Al-Azizi, L. (2018). Mobile applications in government

services (mG-App) from user's perspectives: A predictive modelling approach.

Government Information Quarterly, 35(4), 557-568.

Hope, T., Resheff, Y. S., & Lieder, I. (2017). Learning TensorFlow: a guide to building deep

learning systems (First edition. ed.). Sebastopol, CA: O'Reilly Media.

Müller, A. C., & Guido, S. (2016). Introduction to machine learning with Python: a guide for data

scientists (First edition. ed.). Sebastopol, CA: O'Reilly Media, Inc.

Suskie, L. A., & American Association for Higher Education. (2001). Assessment to promote deep

learning. Washington, DC: American Association for Higher Education.

Institute of Electrical and Electronics Engineers, & Computational Intelligence Society. (2013).

2013 IEEE Workshop on Robotic Intelligence in Informationally Structured Space (RiiSS

2013) Singapore, 16-19 April 2013; [part of the 2013 IEEE Symposium Series on

Computational Intelligence (SSCI)]. Piscataway, NJ: IEEE.

I Venkatesan, R., & Li, B. (2018). Convolutional neural networks in visual computing: a concise

guide. Boca Raton: CRC Press, Taylor & Francis Group, CRC Press is an imprint of the

Taylor & Francis Group.

 76

Keur, C., & Hillegass, A. (2016). iOS programming: The Big Nerd Ranch guide (Sixth edition. /

ed.). Atlanta, GA: Big Nerd Ranch.

Yang, S., Yamauchi, K., Nonokawa, M., & Ikeda, M. (2002). Use of an artificial neural network

to differentiate between ECGs with IRBBB patterns of atrial septal defect and healthy

subjects. Medical Informatics & the Internet in Medicine, 27(1), 49-58.

Ventling, J. (2012). Fizzy's Lunch Lab: Fresh Food 101. School Library Journal, 58(3), 72-73.

Zuo, Z., Shuai, B., Wang, G., Liu, X., Wang, X., Wang, B., & Chen, Y. (2016). Learning

Contextual Dependence with Convolutional Hierarchical Recurrent Neural Networks.

IEEE Trans Image Process, 25(7), 2983-2996. doi:10.1109/TIP.2016.2548241

Tang, P., Wang, X., Shi, B., Bai, X., Liu, W., & Tu, Z. (2018). Deep FisherNet for Image

Classification. IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2018.2874657

Dehmer, M., Mowshowitz, A., & Emmert-Streib, F. (2013). Advances in network complexity.

Weinheim: Wiley-Blackwell.

Zheng, J., Cao, X., Zhang, B., Zhen, X., & Su, X. (2018). Deep Ensemble Machine for Video

Classification. IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2018.2844464

Diaz, P., Montero, S., & Aedo, I. (2005). Modelling hypermedia and web applications: the Ariadne

Development Method. Information Systems, 30(8), 649-673.

Wei, Y., Zhao, Y., Lu, C., Wei, S., Liu, L., Zhu, Z., & Yan, S. (2017). Cross-Modal Retrieval with

CNN Visual Features: A New Baseline. IEEE Trans Cybern, 47(2), 449-460.

doi:10.1109/TCYB.2016.2519449

Shaw, B. I., Wangara, A. A., Wambua, G. M., Kiruja, J., Dicker, R. A., Mweu, J. M., & Juillard,

C. (2017). Geospatial relationship of road traffic crashes and healthcare facilities with

 77

trauma surgical capabilities in Nairobi, Kenya: defining gaps in coverage. Trauma Surg

Acute Care Open, 2(1), e000130. doi:10.1136/tsaco-2017-000130

Ramampiaro, H., Langseth, H., Agarwal, B., & Ruocco, M. (2018). A deep network model for

paraphrase detection in short text messages. Information Processing & Management,

54(6), 922-937.

Hwang, K., & Chen, M. (2017). Big-Data Analytics for Cloud, IoT and Cognitive Computing.

Chichester, UK; Hoboken, NJ: John Wiley & Sons.

Ramsundar, B., & Zadeh, R. B. (2018). TensorFlow for deep learning: from linear regression to

reinforcement learning (First edition. ed.). Beijing: O'Reilly Media.

Kar, A., Bera, S., Karri, S. P. K., Ghosh, S., Mahadevappa, M., & Sheet, D. (2018). A Deep

Convolutional Neural Network Based Classification of Multi-Class Motor Imagery with

Improved Generalization. Conf Proc IEEE Eng Med Biol Soc, 2018, 5085-5088.

doi:10.1109/EMBC.2018.8513451

Tayara, H., & Chong, K. T. (2018). Object Detection in Very High-Resolution Aerial Images

Using One-Stage Densely Connected Feature Pyramid Network. Sensors (Basel), 18(10).

doi:10.3390/s18103341

An, Z., Xu, X., Yang, J., Liu, Y., & Yan, Y. (2018). Research of the three-dimensional tracking

and registration method based on multiobjective constraints in an AR system. Appl Opt,

57(32), 9625-9634. doi:10.1364/AO.57.009625

 78

APPENDICES

 79

APPENDIX 1

MACHINE LEARNING MODEL

Loading and Preprocessing Dataset

import matplotlib.pyplot as plt
import matplotlib.image as img
import numpy as np
from scipy.misc import imresize
import os
from os import listdir
from os.path import isfile, join
import shutil
import stat
import collections
from collections import defaultdict
from ipywidgets import interact, interactive, fixed
import ipywidgets as widgets
import h5py
from sklearn.model_selection import train_test_split
from keras.utils.np_utils import to_categorical
from keras.applications.inception_v3 import preprocess_input
from keras.models import load_model

Importing all of the packages for Model Training

Let's look at some random images from each food class.

root_dir = 'owais_food_dataset'
rows = 5
cols = 6
fig, ax = plt.subplots(rows, cols, frameon=False, figsize=(15, 25))
fig.suptitle('Random Image from Each Food Class', fontsize=20)
sorted_food_dirs = sorted(os.listdir(root_dir))
for i in range(rows):
 for j in range(cols):
 try:
 food_dir = sorted_food_dirs[i*cols + j]
 except:
 break
 all_files = os.listdir(os.path.join(root_dir, food_dir))
 rand_img = np.random.choice(all_files)

 80

 img = plt.imread(os.path.join(root_dir, food_dir, rand_img))
 ax[i][j].imshow(img)
 ec = (0, .6, .1)
 fc = (0, .7, .2)
 ax[i][j].text(0, -20, food_dir, size=10, rotation=0,
 ha="left", va="top",
 bbox=dict(boxstyle="round", ec=ec, fc=fc))
plt.setp(ax, xticks=[], yticks=[])
plt.tight_layout(rect=[0, 0.03, 1, 0.95])

Code for Selecting Random Food Images

Multiprocessing Pool was used for accelerating image augmentation during training
session.

import multiprocessing as mp
num_processes = 6
pool = mp.Pool(processes=num_processes)

Multiprocessing Pool

def load_images(root, min_side=299):
 all_imgs = []
 all_classes = []
 resize_count = 0
 invalid_count = 0
 for i, subdir in enumerate(listdir(root)):
 imgs = listdir(join(root, subdir))
 class_ix = class_to_ix[subdir]
 print(i, class_ix, subdir)
 for img_name in imgs:
 img_arr = img.imread(join(root, subdir, img_name))
 img_arr_rs = img_arr
 try:
 w, h, _ = img_arr.shape
 if w < min_side:
 wpercent = (min_side/float(w))
 hsize = int((float(h)*float(wpercent)))
 #print('new dims:', min_side, hsize)
 img_arr_rs = imresize(img_arr, (min_side, hsize))
 resize_count += 1
 elif h < min_side:
 hpercent = (min_side/float(h))
 wsize = int((float(w)*float(hpercent)))

 81

 #print('new dims:', wsize, min_side)
 img_arr_rs = imresize(img_arr, (wsize, min_side))
 resize_count += 1
 all_imgs.append(img_arr_rs)
 all_classes.append(class_ix)
 except:
 print('Skipping bad image: ', subdir, img_name)
 invalid_count += 1
 print(len(all_imgs), 'images loaded')
 print(resize_count, 'images resized')
 print(invalid_count, 'images skipped')
 return np.array(all_imgs), np.array(all_classes)
X_test, y_test = load_images('owais_food_dataset', min_side=299)

Load dataset images and resize them to meet minimum width and height according to pixel
size

 82

APPENDIX 2

VISUALIZATION TOOLS

@interact(n=(0, len(X_train)))
def show_pic(n):
 plt.imshow(X_train[n])
 print('class:', y_train[n], ix_to_class[y_train[n]])

Visualizing a random image from training folder

@interact(n=(0, len(X_test)))
def show_pic(n):
 plt.imshow(X_test[n])
 print('class:', y_test[n], ix_to_class[y_test[n]])

Visualizing a random image from testing folder

@interact(n_class=sorted_class_to_ix)
def show_random_images_of_class(n_class=0):
 print(n_class)
 nrows = 4
 ncols = 8
 fig, axes = plt.subplots(nrows=nrows, ncols=ncols)
 fig.set_size_inches(12, 8)
 #fig.tight_layout()
 imgs = np.random.choice((y_train == n_class).nonzero()[0], nrows *
ncols)
 for i, ax in enumerate(axes.flat):
 im = ax.imshow(X_train[imgs[i]])
 ax.set_axis_off()
 ax.title.set_visible(False)
 ax.xaxis.set_ticks([])
 ax.yaxis.set_ticks([])
 for spine in ax.spines.values():
 spine.set_visible(False)
 plt.subplots_adjust(left=0, wspace=0, hspace=0)
 plt.show()

Visualizing some images of a food class having rows = 4 and columns = 8

@interact(n_class=sorted_class_to_ix)
def show_random_images_of_class(n_class=0):
 print(n_class)
 nrows = 4

 83

 ncols = 8
 fig, axes = plt.subplots(nrows=nrows, ncols=ncols)
 fig.set_size_inches(12, 8)
 #fig.tight_layout()
 imgs = np.random.choice((y_test == n_class).nonzero()[0], nrows *
ncols)
 for i, ax in enumerate(axes.flat):
 im = ax.imshow(X_test[imgs[i]])
 ax.set_axis_off()
 ax.title.set_visible(False)
 ax.xaxis.set_ticks([])
 ax.yaxis.set_ticks([])
 for spine in ax.spines.values():
 spine.set_visible(False)
 plt.subplots_adjust(left=0, wspace=0, hspace=0)
 plt.show()

Appling Randomization again to a food Class for Verification

from keras.utils.np_utils import to_categorical

n_classes = 101
y_train_cat = to_categorical(y_train, nb_classes=n_classes)
y_test_cat = to_categorical(y_test, nb_classes=n_classes)
In [18]:
from keras.applications.inception_v3 import InceptionV3
from keras.applications.inception_v3 import preprocess_input,
decode_predictions
from keras.preprocessing import image
from keras.layers import Input

import tools.image_gen_extended as T

Useful for checking the output of the generators after code change
#from importlib import reload
#reload(T)

Image Augmentation

 84

APPENDIX 3

MODEL EVALUATION

def center_crop(x, center_crop_size, **kwargs):
 centerw, centerh = x.shape[0]//2, x.shape[1]//2
 halfw, halfh = center_crop_size[0]//2, center_crop_size[1]//2
 return x[centerw-halfw:centerw+halfw+1,centerh-
halfh:centerh+halfh+1, :]
def predict_10_crop(img, ix, top_n=5, plot=False, preprocess=True,
debug=False):
 flipped_X = np.fliplr(img)
 crops = [
 img[:299,:299, :], # Upper Left
 img[:299, img.shape[1]-299:, :], # Upper Right
 img[img.shape[0]-299:, :299, :], # Lower Left
 img[img.shape[0]-299:, img.shape[1]-299:, :], # Lower Right
 center_crop(img, (299, 299)),

 flipped_X[:299,:299, :],
 flipped_X[:299, flipped_X.shape[1]-299:, :],
 flipped_X[flipped_X.shape[0]-299:, :299, :],
 flipped_X[flipped_X.shape[0]-299:, flipped_X.shape[1]-299:,
:],
 center_crop(flipped_X, (299, 299))
]
 if preprocess:
 crops = [preprocess_input(x.astype('float32')) for x in crops]

 if plot:
 fig, ax = plt.subplots(2, 5, figsize=(10, 4))
 ax[0][0].imshow(crops[0])
 ax[0][1].imshow(crops[1])
 ax[0][2].imshow(crops[2])
 ax[0][3].imshow(crops[3])
 ax[0][4].imshow(crops[4])
 ax[1][0].imshow(crops[5])
 ax[1][1].imshow(crops[6])
 ax[1][2].imshow(crops[7])
 ax[1][3].imshow(crops[8])
 ax[1][4].imshow(crops[9])

 y_pred = model.predict(np.array(crops))
 preds = np.argmax(y_pred, axis=1)
 top_n_preds= np.argpartition(y_pred, -top_n)[:,-top_n:]
 if debug:

 85

 print('Top-1 Predicted:', preds)
 print('Top-5 Predicted:', top_n_preds)
 print('True Label:', y_test[ix])
 return preds, top_n_preds

ix = 13001
predict_10_crop(X_test[ix], ix, top_n=5, plot=True, preprocess=False,
debug=True)

Model Evaluation

%%time
preds_10_crop = {}
for ix in range(len(X_test)):
 if ix % 1000 == 0:
 print(ix)
 preds_10_crop[ix] = predict_10_crop(X_test[ix], ix)
preds_uniq = {k: np.unique(v[0]) for k, v in preds_10_crop.items()}
preds_hist = np.array([len(x) for x in preds_uniq.values()])

plt.hist(preds_hist, bins=11)
plt.title('Number of unique predictions per image')

Number of unique predictions per image

preds_top_1 = {k: collections.Counter(v[0]).most_common(1) for k, v in
preds_10_crop.items()}

top_5_per_ix = {k: collections.Counter(preds_10_crop[k][1].reshape(-
1)).most_common(5)
 for k, v in preds_10_crop.items()}
preds_top_5 = {k: [y[0] for y in v] for k, v in top_5_per_ix.items()}
%%time
right_counter = 0
for i in range(len(y_test)):
 guess, actual = preds_top_1[i][0][0], y_test[i]
 if guess == actual:
 right_counter += 1

print('Top-1 Accuracy, 10-Crop: {0:.2f}%'.format(right_counter /
len(y_test) * 100))

Top-1 Accuracy, 10-Crop: 86.97%
CPU times: user 28 ms, sys: 0 ns, total: 28 ms

 86

Wall time: 27.3 ms

In [134]:
%%time
top_5_counter = 0
for i in range(len(y_test)):
 guesses, actual = preds_top_5[i], y_test[i]
 if actual in guesses:
 top_5_counter += 1

print('Top-5 Accuracy, 10-Crop: {0:.2f}%'.format(top_5_counter /
len(y_test) * 100))

Results Visualization

 87

APPENDIX 4

XCODE CODE

First View Controller

import UIKit
import Photos
import GoogleMobileAds

class FirstViewController: UIViewController {

 @IBOutlet var selectImage: UIButton!
 var interstitial: GADInterstitial?
 var interstialAdUnitID : String = "Your_ID"
 override func viewDidLoad() {
 super.viewDidLoad()

 // Do any additional setup after loading the view.
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 @IBAction func chooseYourImage(_ sender: Any) {
 var libraryEnabled: Bool = true
 var croppingEnabled: Bool = false
 var allowResizing: Bool = true
 var allowMoving: Bool = false
 var minimumSize: CGSize = CGSize(width: 60, height: 60)

 var croppingParameters: CroppingParameters {
 return CroppingParameters(isEnabled:
croppingEnabled, allowResizing: allowResizing, allowMoving:
allowMoving, minimumSize: minimumSize)
 }

 let alert = UIAlertController(title: "Choose an image",
message: "", preferredStyle: UIAlertControllerStyle.actionSheet)
 alert.addAction(UIAlertAction(title: "Cancel", style:
UIAlertActionStyle.cancel, handler: nil))
 alert.addAction(UIAlertAction(title: "Open Camera",
style: UIAlertActionStyle.default, handler: { action in

 88

 //let croppingEnabled = true
 let cameraViewController =
CameraViewController(croppingParameters: croppingParameters,
allowsLibraryAccess: libraryEnabled) { [weak self] image, asset
in
 let userdef = UserDefaults.standard
 let images = UIImageJPEGRepresentation(image!,
1)
 userdef.set(images, forKey: "selectedimage")
 userdef.synchronize()

 self?.dismiss(animated: true, completion: nil)

 self?.performSegue(withIdentifier: "toOptions",
sender: self)
 self?.dismiss(animated: true, completion: nil)
 }
 if let presenter =
alert.popoverPresentationController {
 presenter.sourceView = self.selectImage
 presenter.sourceRect = self.selectImage.bounds
 }
 self.present(cameraViewController, animated: true,
completion: nil)

 }))
 alert.addAction(UIAlertAction(title: "Photo Library",
style: UIAlertActionStyle.default, handler: { action in
 let imagePickerViewController =
PhotoLibraryViewController()
 imagePickerViewController.onSelectionComplete = {
asset in

 // Provides a PHAsset object
 // Retrieve a UIImage from a PHAsset using
 let options = PHImageRequestOptions()
 options.deliveryMode = .highQualityFormat
 options.isNetworkAccessAllowed = true

 PHImageManager.default().requestImage(for:
asset!, targetSize: PHImageManagerMaximumSize, contentMode:
.aspectFill, options: options) { image, _ in
 if let image = image {
 let userdef = UserDefaults.standard

 89

 let images1 =
UIImageJPEGRepresentation(image, 1)
 userdef.set(images1, forKey:
"selectedimage")
 userdef.synchronize()

 self.dismiss(animated: true, completion:
nil)

 let vc =
self.storyboard?.instantiateViewController(withIdentifier:
"option") as! OptionsViewController

 self.present(vc, animated: false,
completion: nil)
 }
 }
 }

 self.present(imagePickerViewController, animated:
true, completion: nil)
 }))

 alert.popoverPresentationController?.sourceView =
self.selectImage // works for both iPhone & iPad

 self.present(alert, animated: true) {
 print("option menu presented")
 }
 // self.present(alert, animated: true, completion: nil)

 }

 private func createAndLoadInterstitial() -> GADInterstitial?
{
 interstitial = GADInterstitial(adUnitID:
interstialAdUnitID)

 guard let interstitial = interstitial else {
 return nil
 }

 90

 let request = GADRequest()
 // Remove the following line before you upload the app
 // request.testDevices = [kGADSimulatorID]
 interstitial.load(request)
 interstitial.delegate = self as! GADInterstitialDelegate

 return interstitial

 }

 func interstitialDidReceiveAd(_ ad: GADInterstitial) {
 print("Interstitial loaded successfully")

 ad.present(fromRootViewController: self)
 }

 func interstitialDidFail(toPresentScreen ad:
GADInterstitial) {
 print("Fail to receive interstitial")
 }
}

Options View Controller

import UIKit
import AMPopTip

class OptionsViewController: UIViewController {

 @IBOutlet var mapImage: UIImageView!
 @IBOutlet var foodImage: UIImageView!
 @IBOutlet var secondView: SpringView!
 override func viewDidLoad() {
 super.viewDidLoad()
 let tapGestureRecognizer =
UITapGestureRecognizer(target: self, action:
#selector(imageTapped(tapGestureRecognizer:)))
 mapImage.isUserInteractionEnabled = true
 mapImage.addGestureRecognizer(tapGestureRecognizer)

 let tapGestureRecognizer1 =
UITapGestureRecognizer(target: self, action:
#selector(imageTapped1(tapGestureRecognizer:)))
 foodImage.isUserInteractionEnabled = true
 foodImage.addGestureRecognizer(tapGestureRecognizer1)

 91

 let swipeDown = UISwipeGestureRecognizer(target: self,
action: #selector(respondToSwipeGesture))
 swipeDown.direction =
UISwipeGestureRecognizerDirection.down
 self.view.addGestureRecognizer(swipeDown)

 let ud = UserDefaults.standard

 let bool = ud.bool(forKey: "tipSearch")
 if !bool {
 let popTip = PopTip()
 popTip.show(text: "Swipe me down to dismiss",
direction: .up, maxWidth: 200, in: view, from: secondView.frame)
 popTip.shouldDismissOnTap = true

 ud.set(true, forKey: "tipSearch")
 ud.synchronize()
 } else {

 }

 }

 @objc func respondToSwipeGesture(gesture:
UIGestureRecognizer) {
 if let swipeGesture = gesture as?
UISwipeGestureRecognizer {
 switch swipeGesture.direction {
 case UISwipeGestureRecognizerDirection.right:
 print("Swiped right")
 case UISwipeGestureRecognizerDirection.down:
 print("Swiped down")
 self.dismiss(animated: true, completion: nil)

 case UISwipeGestureRecognizerDirection.left:
 print("Swiped left")
 case UISwipeGestureRecognizerDirection.up:
 print("Swiped up")
 default:
 break
 }
 }
 }

 92

 @objc func imageTapped(tapGestureRecognizer:
UITapGestureRecognizer)
 {

 SwiftSpinner.show("Scanning your image..")
 DispatchQueue.main.asyncAfter(deadline: .now() + 3.0) {
 let vc =
self.storyboard?.instantiateViewController(withIdentifier:
"map") as! MapViewController

 self.present(vc, animated: false, completion: nil)
 SwiftSpinner.hide({
 //do stuff
 })
 }

 //self.performSegue(withIdentifier: "toMap", sender:
self)

 }
 @objc func imageTapped1(tapGestureRecognizer:
UITapGestureRecognizer)
 {

 SwiftSpinner.show("Scanning your image...")
 DispatchQueue.main.asyncAfter(deadline: .now() + 3.0) {
 let vc =
self.storyboard?.instantiateViewController(withIdentifier:
"food") as! FoodViewController

 self.present(vc, animated: false, completion: nil)
 SwiftSpinner.hide({
 //do stuff
 })

 }

}

 93

Map View Controller

import UIKit
import MapKit
import Vision
import MapKit
import Alamofire

class PredictionLocation: NSObject, MKAnnotation{
 var identifier = "Prediction location"
 var title: String?
 var coordinate: CLLocationCoordinate2D

init(name:String,lat:CLLocationDegrees,long:CLLocationDegrees){
 title = name
 coordinate = CLLocationCoordinate2DMake(lat, long)
 }
}

class PredictionLocationList: NSObject {
 var place = [PredictionLocation]()
 override init(){
 place += [PredictionLocation(name:"1",lat: 0, long: 0)]
 place += [PredictionLocation(name:"2",lat: 1, long: 1)]
 place += [PredictionLocation(name:"3",lat: 2, long: 2)]
 }
}
class MapViewController: UIViewController {
 // Define Core ML model
 // Make sure to add the file in the Project Navigator, and
have Target Membership checked
 let model = RN1015k500()

 //MARK: - Map setup
 func resetRegion(){
 let region =
MKCoordinateRegionMakeWithDistance(annotation.coordinate, 5000,
5000)
 mapKit.setRegion(region, animated: true)
 }

 var myLatitude = ""
 var myLongitude = ""

 94

 // Array of annotations
 let annotation = MKPointAnnotation()
 var places = PredictionLocationList().place
 var locationsArray = [String]()
 var ie: Int = 0
 @IBOutlet var mapKit: MKMapView!

 override func viewDidLoad() {
 super.viewDidLoad()

 let defaults = UserDefaults.standard
 let data = defaults.data(forKey: "selectedimage")
 let uiimage2 = UIImage(data: data!)
 defaults.synchronize()
 let image = uiimage2
 // imageView.image = image

 predictUsingVision(image: image!)

 let swipeDown = UISwipeGestureRecognizer(target: self,
action: #selector(respondToSwipeGesture))
 swipeDown.direction =
UISwipeGestureRecognizerDirection.down
 self.view.addGestureRecognizer(swipeDown)
 // Do any additional setup after loading the view.
 }
 @objc func respondToSwipeGesture(gesture:
UIGestureRecognizer) {
 if let swipeGesture = gesture as?
UISwipeGestureRecognizer {
 switch swipeGesture.direction {
 case UISwipeGestureRecognizerDirection.right:
 print("Swiped right")
 case UISwipeGestureRecognizerDirection.down:
 print("Swiped down")
 self.dismiss(animated: true, completion: nil)

 case UISwipeGestureRecognizerDirection.left:
 print("Swiped left")
 case UISwipeGestureRecognizerDirection.up:
 print("Swiped up")
 default:
 break
 }
 }
 }

 95

 func predictUsingVision(image: UIImage) {
 guard let visionModel = try? VNCoreMLModel(for:
model.model) else {
 fatalError("Something went wrong")
 }

 let request = VNCoreMLRequest(model: visionModel) {
request, error in
 if let observations = request.results as?
[VNClassificationObservation] {
 let top3 = observations.prefix(through: 2)
 .map { ($0.identifier,
Double($0.confidence)) }
 self.show(results: top3)
 }
 }

 request.imageCropAndScaleOption = .centerCrop

 let handler = VNImageRequestHandler(cgImage:
image.cgImage!)
 try? handler.perform([request])
 }

 typealias Prediction = (String, Double)

 func show(results: [Prediction]) {
 var s: [String] = []
 for (i, pred) in results.enumerated() {
 let latLongArr = pred.0.components(separatedBy:
"\t")
 print("lat long \(latLongArr)")
 myLatitude = latLongArr[1]
 myLongitude = latLongArr[2]

 ie = i

 s.append(String(format: "%d: %@ %@ (%.2f%%)", i + 1,
myLatitude, myLongitude, pred.1 * 100))
 LocationByCoordinates(latitude: myLatitude,
longitude: myLongitude)

 96

 print("first latidue \(myLatitude),,,,
\(myLongitude)")

 places[i].title = String(i+1)
 places[i].coordinate =
CLLocationCoordinate2D(latitude: CLLocationDegrees(myLatitude)!,
longitude: CLLocationDegrees(myLongitude)!)

 }
 // predictionLabel.text = s.joined(separator: "\n")

 // Map reset
 resetRegion()

 mapKit.centerCoordinate = places[0].coordinate
 // Show annotations for the predictions on the map

 mapKit.addAnnotations(places)
 // Zoom map to fit all annotations
 zoomMapFitAnnotations()
 }
 func zoomMapFitAnnotations() {
 var zoomRect = MKMapRectNull
 for annotation in mapKit.annotations {

 let annotationPoint =
MKMapPointForCoordinate(annotation.coordinate)
 let pointRect = MKMapRectMake(annotationPoint.x,
annotationPoint.y, 0, 0)
 if (MKMapRectIsNull(zoomRect)) {
 zoomRect = pointRect
 } else {
 zoomRect = MKMapRectUnion(zoomRect, pointRect)
 }
 }
 self.mapKit.setVisibleMapRect(zoomRect, edgePadding:
UIEdgeInsetsMake(50, 50, 50, 50), animated: true)
 }

 func LocationByCoordinates (latitude:
String,longitude:String) {
 let mapsKey = UserDefaults.standard.string(forKey:
"maps_key") ?? ""

 97

Alamofire.request("https://maps.googleapis.com/maps/api/geocode/
json?latlng=\(latitude),\(longitude)&key=\(mapsKey)").responseJS
ON { response in
 if let json = response.result.value {
 let request = json as? NSDictionary
 if let id = request!["results"]
 {
 // print(id)
 let ide = id as? NSArray
 let formatted_address = ide![0]
 let fors = formatted_address as!
NSDictionary

 //print(fors.value(forKey:
"formatted_address"))
 let forss = fors.value(forKey:
"formatted_address")

 self.locationsArray.append(forss as? String
?? "")

 if self.ie == 0 {
 self.places[0].identifier = (forss as?
String)!
 } else if self.ie == 1 {
 self.places[1].identifier = (forss as?
String)!
 } else if self.ie == 2 {
 self.places[2].identifier = (forss as?
String)!
 }

 }
 }
 }
 }

extension Collection where Indices.Iterator.Element == Index {
 subscript (safe index: Index) -> Iterator.Element? {
 return indices.contains(index) ? self[index] : nil
 }
}
Food View Controller

import UIKit
import CoreML

 98

import MobileCoreServices
import Photos

extension UIImage {

 func resize(to newSize: CGSize) -> UIImage? {

 guard self.size != newSize else { return self }

 UIGraphicsBeginImageContextWithOptions(newSize, false,
0.0)
 self.draw(in: CGRect(x: 0, y: 0, width: newSize.width,
height: newSize.height))

 defer { UIGraphicsEndImageContext() }
 return UIGraphicsGetImageFromCurrentImageContext()
 }

 func pixelBuffer() -> CVPixelBuffer? {

 let width = Int(self.size.width)
 let height = Int(self.size.height)

 let attrs = [kCVPixelBufferCGImageCompatibilityKey:
kCFBooleanTrue, kCVPixelBufferCGBitmapContextCompatibilityKey:
kCFBooleanTrue] as CFDictionary
 var pixelBuffer: CVPixelBuffer?
 let status = CVPixelBufferCreate(kCFAllocatorDefault,
width, height, kCVPixelFormatType_32ARGB, attrs, &pixelBuffer)
 guard status == kCVReturnSuccess else {
 return nil
 }

 CVPixelBufferLockBaseAddress(pixelBuffer!,
CVPixelBufferLockFlags(rawValue: 0))
 let pixelData =
CVPixelBufferGetBaseAddress(pixelBuffer!)

 let rgbColorSpace = CGColorSpaceCreateDeviceRGB()
 let context = CGContext(data: pixelData, width: width,
height: height, bitsPerComponent: 8, bytesPerRow:
CVPixelBufferGetBytesPerRow(pixelBuffer!), space: rgbColorSpace,
bitmapInfo: CGImageAlphaInfo.noneSkipFirst.rawValue)

 context?.translateBy(x: 0, y: CGFloat(height))
 context?.scaleBy(x: 1.0, y: -1.0)

 99

 UIGraphicsPushContext(context!)
 self.draw(in: CGRect(x: 0, y: 0, width: width, height:
height))
 UIGraphicsPopContext()
 CVPixelBufferUnlockBaseAddress(pixelBuffer!,
CVPixelBufferLockFlags(rawValue: 0))

 return pixelBuffer
 }
}

class FoodViewController: UIViewController {

 @IBOutlet var imageFood: UIImageView!

 @IBOutlet var name: UILabel!
 @IBOutlet var confidence: UILabel!
 override func viewDidLoad() {
 super.viewDidLoad()
 let defaults = UserDefaults.standard
 let data = defaults.data(forKey: "selectedimage")
 let uiimage2 = UIImage(data: data!)
 defaults.synchronize()
 let image1 = uiimage2
 self.imageFood.image = image1
 let model = Food101()
 let size = CGSize(width: 299, height: 299)
 let image = image1!

 guard let buffer = image.resize(to: size)?.pixelBuffer()
else {
 fatalError("Scaling or converting to pixel buffer
failed!")
 }

 guard let result = try? model.prediction(image: buffer)
else {
 fatalError("Prediction failed!")
 }

 let confidence =
result.foodConfidence["\(result.classLabel)"]! * 100.0
 let converted = String(format: "%.2f", confidence)
 let both = result.classLabel + " - " + converted + "%"
 self.name.text = both

 100

 //self?.imageView.image = image
 // self?.percentage.text = "\(result.classLabel) -
\(converted) %"
 let swipeDown = UISwipeGestureRecognizer(target: self,
action: #selector(respondToSwipeGesture))
 swipeDown.direction =
UISwipeGestureRecognizerDirection.down
 self.view.addGestureRecognizer(swipeDown)

 }

 @objc func respondToSwipeGesture(gesture:
UIGestureRecognizer) {
 if let swipeGesture = gesture as?
UISwipeGestureRecognizer {
 switch swipeGesture.direction {
 case UISwipeGestureRecognizerDirection.right:
 print("Swiped right")
 case UISwipeGestureRecognizerDirection.down:
 print("Swiped down")
 self.dismiss(animated: true, completion: nil)

 case UISwipeGestureRecognizerDirection.left:
 print("Swiped left")
 case UISwipeGestureRecognizerDirection.up:
 print("Swiped up")
 default:
 break
 }
 }
 }

}

 101

APPENDIX 5

TURNITIN REPORT

