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ABSTRACT 

 

In the present study, a Schrödinger type involutory differential equation is investigated. 

Using tools of classical approach we are enabled to obtain the solution of the Schrödinger 

type involutory differential equations. Furthermore, the first order of accuracy difference 

scheme for the numerical solution of the  Schrödinger type involutory differential 

equations is presented. Then, this difference scheme is tested on an example and some 

numerical results are presented. 
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ÖZET 

 

Bu çalışmada Schrödinger tipi  involüsyon diferansiyel denklemi incelenmiştir. Klasik 

yaklaşım araçlarını kullanmak Schrödinger tipi involüsyon diferansiyel denklemlerin 

çözümünü elde etmemize olanak tanır. Ayrıca, Schrödinger tipi involüsyon diferansiyel 

denklemlerin nümerik çözümü için birinci basamaktan doğruluklu  fark şeması 

sunulmuştur. Daha sonra, bu fark şeması bir örnek üzerinde test edilip  bazı sayısal 

sonuçlar verilmiştir. 

 

Anahtar Kelimeler: Involüsyon diferansiyel denklemler; Fourier serisi yöntemi; Laplace 

dönüşümü çözümü; Fourier dönüşümü çözümü; Fark şeması; Modifiye Gauss eleminasyon 

yöntemi 
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CHAPTER 1

INTRODUCTION

Time delay is a universal phenomenon existing in almost every practical engineering

systems (Bhalekar and Patade 2016; Kuralay, 2017; Vlasov and Rautian 2016; Sriram and

Gopinathan 2004; Srividhya and Gopinathan 2006). In an experiment measuring the

population growth of a species of water fleas, Nesbit (1997), used a DDE model in his

study. In simplified form his population equation was

N′(t) = aN(t – d) + bN(t).

He got into a difficulty with this model because he did not have a reasonable history function

to carry out the solution of this equation. To overcome this roadblock he proposed to solve

a ”time reversal” problem in which he sought the solution to an FDE that is neither a DDE,

nor a FDE. He used a ”time reversal” equation to get the juvenile population prior to the

beginning time t = 0. The time reversal problem is a special case of a type of equation called

an involutory differential equation. These are defined as equations of the form

y′(t) = f(t;y(t);y(u(t))),y(t0) = y0. (1.1)

Here u(t) is involutory function, that is u(u(t)) = t, and t0 is a fixed point of u. For the

”time reversal” problem, we have the simplest IDE, one in which the deviating argument is

u(t) = –t. This function is involutory since

u(u(t)) = u(–t) = –(–t) = t.

We consider the simplest IDE, one in which the deviating argument is u(t) = d – t.This

function is involutory since u(u(t)) = u(d – t),which is d – (d – t) = t. Note d – t is not the

”delay” function as t – d.

The theory and applications of delay Schrödinger differential equations have been studied in

various papers ( Agirseven, 2018; Guo and Yang, 2010; Gordeziani and Avalishvili, 2005;

Han and Xu, 2016; Chen and Zhou, 2010; Guo and Shao, 2005; Sun and Wang, 2018;

1



Nicaise and Rebiai, 2011; Zhao and Ge, 2011; Kun and Cui-Zhen, 2013; and the references

given therein).

The discussions of time delay issues are significant due to the presence of delay that normally

makes systems less effective and less stable. Especially, for hyperbolic systems, only a small

time delay may cause the energy of the controlled systems increasing exponentially. The

stabilization problem of one dimensional Schrödinger equation subject to boundary control

is concerned in the paper of Gordeziani and Avalishvili, 2005 .

The control input is suffered from time delay. A partial state predictor is designed for the

system and undelayed system is deduced. Based on the undelayed system, a feedback control

strategy is designed to stabilize the original system. The exact observability of the dual one

of the undelayed system is checked. Then it is shown that the system can be stabilized

exponentially under the feedback control.

It is known that various problems in physics lead to the Schrödinger equation. Methods of

solutions of the problems for Schrödinger equation without delay have been studied

extensively by many researchers (Antoine and Mouysset, 2004; Ashyralyev and Hicdurmaz,

2011; Ashyralyev and Hicdurmaz, 2012; Ashyralyev and Sirma, 2008;Ashyralyev and

Sirma, 2009; Eskin and Ralston, 1995; Gordeziani and Avalishvili, 2005; Han and Wu,

2005; Mayfield 1989-Serov and Päivärinta, 2006; Smagin and Shepilova, 2008, and the

references given therein).

In this study, Schrödinger type involutory partial differential equations is studied. Using

tools of the classical approach we are enabled to obtain the solution of the Schrödinger

type involutory differential problem. Furthermore, the first order of accuracy difference

scheme for the numerical solution of the initial boundary value problem for Schrödinger

type involutory partial differential equations is presented. Then, this difference scheme is

tested on an example and some numerical results are presented.

The thesis is organized as follows. Chapter 1 is introduction. In Chapter 2, a Schrödinger

type involutory ordinary differential equations is studied and Schrödinger type involutory

partial differential equations are investigated. Using tools of the classical approach we are

enabled to obtain the solution of the several Schrödinger type involutory differential

2



problems. In Chapter 3, numerical analysis and discussions are presented. Finally, Chapter

4 is conclusion.
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CHAPTER 2

METHODS OF SOLUTION FOR SCHRÖDINGER TYPE INVOLUTORY

PARTIAL DIFFERETIAL EQUATIONS

2.1 Schrödinger Type Involutory Ordinary Differential Equations

In this section we consider the Schrödinger type involutory ordinary differential equations

iy′(t) = f(t;y(t);y(u(t))),y(t0) = y0. (2.1)

Here u(t) is involutory function, that is u(u(t)) = t, and t0 is a fixed point of u.

Example 2.1.1. Solve the problem

iy′(t) = 5y(π– t) + 4y(t) on I = (–∞,∞), y(
π

2
) = 0.

Solution. We will obtain the initial value problem for the second order differential equation

equivalent to given problem. Differentiating this equation, we get

iy
′′
(t) = –5y

′
(π– t) + 4y′(t).

Substituting π– t for t into this equation, we get

iy
′
(π– t) = 5y(t) + 4y(π– t).

Using these equations, we can eliminate the terms of y(π – t) and y
′
(π – t). Really, using

formulas

y
′
(π– t) =

1
i
{5y(t) + 4y(π– t)} ,

y(π– t) =
1
5

(iy
′
(t) – 4y(t)),

we get

iy
′′
(t) =

{
1
i
25y(t) +

4
i

(
iy
′
(t) – 4y(t)

)}
(–1) + 4y(t)

or

y
′′
(t) = 9y(t).

4



Using initial condition y(π2 ) = 0 and equation, we get

iy′(
π

2
) = 5y(

π

2
) + 4y(

π

2
) = 0

or

y′(
π

2
) = 0.

Therefore, we have the following initial value problem for the second order differential

equation

y
′′
(t) – 9y(t) = 0, t ∈ I,y(

π

2
) = 0,y′(

π

2
) = 0.

The auxiliary equation is

m2 – 9 = 0.

There are two roots m1 = 3 and m2 = –3. Therefore, the general solution is

y(t) = c1e3t + c2e–3t.

Differentiating this equation, we get

y′(t) = 3c1e3t – 3c2e–3t

Using initial conditions y(π2 ) = 0 and y′(π2 ) = 0, we get

c1e
3π
2 + c2e– 3π

2 = 0,

3c1e
3π
2 – 3c2e– 3π

2 = 0.

Since

Δ =

∣∣∣∣∣∣ e
3π
2 e– 3π

2

3e
3π
2 –3e– 3π

2

∣∣∣∣∣∣ = –3 – 3 = –6 6= 0,

we have that c1 = c2 = 0. Therefore, the exact solution of this problem is

y(t) = 0.

Example 2.1.2. Obtain the solution of the problem

iy′(t) = by(π– t) + ay(t) + f(t) on I = (–∞,∞),y(
π

2
) = 1. (2.2)

5



Solution. We will obtain the initial value(2.2) problem for the second order differential

equation equivalent to given problem. Differentiating this equation, we get

iy
′′
(t) = –by′(π– t) + ay′(t) + f′(t). (2.3)

Substituting π– t for t into equation (2.2), we get

iy′(π– t) = by(t) + ay(π– t) + f(π– t).

Using these equations, we can eliminate the y(π–t) and y
′
(π–t) terms. Really, using formulas

y′(π– t) =
1
i
{by(t) + ay(π– t) + f(π– t)} ,

y(π– t) =
iy′(t) – ay(t) – f(t)

b
,

we get

iy
′′
(t) = bi

{
by(t) + a

[
iy′(t) – ay(t) – f(t)

b

]
+ f(π– t)

}
+ ay′(t) + f′(t)

or

iy
′′
(t) = ib2y(t) – ay′(t) – a2iy(t) – aif(t) + bif(π– t) + ay′(t) + f′(t).

From that it follows

y
′′
(t) – (b2 – a2)y(t) = –af(t) + bf(π– t) – if′(t). (2.4)

Putting initial condition y(π2 ) = 1 into equation (2.2), we get

iy′(
π

2
) = a + b + f(

π

2
)

or

y′(
π

2
) = –i

{
a + b + f(

π

2
)
}

.

We denote

F(t) = –af(t) + bf(π– t) – if′(t). (2.5)

Then, we have the following initial value problem for the second order ordinary differential

equation

y
′′
(t) – (b2 – a2)y(t) = F(t), t ∈ I,y(

π

2
) = 1,y′(

π

2
) = –i

{
a + b + f(

π

2
)
}

. (2.6a)

6



Now, we obtain the solution of equation (2.6a). There are three cases: a2 – b2 > 0,a2 – b2 =

0,a2 – b2 < 0.

In the first case a2 – b2 = m2 > 0. Substituting m2 for a2 – b2 into equation (2.6a), we get

y
′′
(t) + m2y(t) = F(t).

We will obtain Laplace transform solution of equation (2.6a), we get

s2y(s) – sy(0) – y′(0) + m2y(s) = F(s)

or

(s2 + m2)y(s) = sy(0) + y′(0) + F(s).

Here and in future

F(s) = L{F(t)} .

Then,

y(s) =
s

s2 + m2 y(0) +
1

s2 + m2 y′(0) +
1

s2 + m2 F(s). (2.7)

Applying formulas

s
s2 + m2 =

1
2

[
1

s + im
+

1
s – im

]
,

1
s2 + m2 =

1
2im

[
1

s – im
–

1
s + im

]
,

we get

y(s) =
1
2

[
1

s + im
+

1
s – im

]
y(0) +

1
2im

[
1

s – im
–

1
s + im

]
y′(0)

+
1

2im

[
1

s – im
–

1
s + im

]
F(s).

Applying formulas

L
{

e±imt
}

=
1

s∓ im
,L


t∫

0

e±im(t–y)F(y)dy

 =
1

s∓ im
F(s)

and taking the inverse Laplace transform, we get

y(t) =
1
2

[
e–imt + eimt

]
y(0) +

1
2im

[
eimt – e–imt

]
y′(0)

+
1

2im

t∫
0

[
eim(t–y) – e–im(t–y)

]
F(y)dy.

7



Using formulas

cos(mt) =
1
2

[
e–imt + eimt

]
, sin (mt )=

1
2i

[
eimt – e–imt

]
,

we get

y(t) = cos(mt )y(0) +
1
m

sin(mt )y′(0) +
1
m

t∫
0

sin(m(t – y))F(y)dy.

Now, we obtain y(0) and y′(0). Taking the derivative, we get

y′(t) = –msin(mt )y(0) + cos(mt) y′(0) +
t∫

0

cos(m(t – y))F(y)dy.

Putting F(y) = –af(y) + bf(π– y) – if′(y), we get

y(t) = cos(mt)y(0) +
1
m

sin(mt)y′(0)

+
1
m

t∫
0

sin(m(t – y))
[
–af(y) + bf(π– y) – if′(y)

]
dy, (2.8)

y′(t) = –msin(mt) y(0) + cos(mt) y′(0)

+
t∫

0

cos(m(t – y))
[
–af(y) + bf(π– y) – if′(y)

]
dy. (2.9)

Substituting π2 for t into equations (2.8)and (2.9) gives us

y(
π

2
) = cosm

π

2
y(0) +

1
m

sinm
π

2
y′(0)

+
1
m

π

2∫
0

sinm(
π

2
– y)
[
–af(y) + bf(π– y) – if′(y)

]
dy,

y′(
π

2
) = –msinm

π

2
y(0) + cosm

π

2
y′(0)

+

π

2∫
0

cosm(
π

2
– y)
[
–af(y) + bf(π– y) – if′(y)

]
dy.

Applying initial conditions y(π2 ) = 1,y′(π2 ) = –i
{

a + b + f(π2 )
}

, we obtain
cos
(mπ

2
)

y(0) + 1
m sin

(mπ
2
)

y′(0) = 1 –α1,

–msin
(mπ

2
)

y(0) + cos
(mπ

2
)

y′(0) = –i
{

a + b + f(π2 )
}

–α2.

8



Here

α1 =
1
m

π

2∫
0

sin
(

m(
π

2
– y)
)[

–af(y) + bf(π– y) – if′(y)
]

dy,

α2 =

π

2∫
0

cos
(

m(
π

2
– y)
)[

–af(y) + bf(π– y) – if′(y)
]

dy.

Since

Δ =

∣∣∣∣∣∣ cos
(mπ

2
) 1

m sin
(mπ

2
)

–msin
(mπ

2
)

cos
(mπ

2
)
∣∣∣∣∣∣ = cos2 m

π

2
+sin2 m

π

2
= 1 6= 0,

we have that

y(0) =
Δ0
Δ

=

∣∣∣∣∣∣ 1 –α1
1
m sin

(mπ
2
)

–i{a + b + f(π2 )}–α2 cos
(mπ

2
)
∣∣∣∣∣∣

y(0) = cos
(mπ

2

)[
1 –α1

]
+

1
m

sin
(mπ

2

)[
–i
{

a + b + f(
π

2
)
}

–α2
]

,

y′(0) =
Δ1
Δ

=

∣∣∣∣∣∣ cos
(mπ

2
)

1 –α1

–msin
(mπ

2
)

–i
{

a + b + f(π2 )
}

–α2

∣∣∣∣∣∣
y′(0) = –cos

(mπ
2

)[
i
{

a + b + f(
π

2
)
}

+α2
]

+ msin
(mπ

2

)[
1 –α1

]
.

Putting y(0) and y′(0) into equation (2.8), we get

y(t) = cos(mt)
{

cos
(mπ

2

)
1 –

1
m

π

2∫
0

sin
(

m(
π

2
– y)
)[

–af(y) + bf(π– y) – if′(y)
]

dy


+

1
m

sin
(mπ

2

){
–i
{

a + b + f(
π

2
)
}

–

π

2∫
0

cos
(

m(
π

2
– y)
)[

–af(y) + bf(π– y) – if′(y)
]

dy




–
1
m

sin(mt)
{

cos
(mπ

2

)[
i
{

a + b + f(
π

2
)
}

+

π

2∫
0

cos
(

m(
π

2
– y)
)[

–af(y) + bf(π– y) – if′(y)
]

dy
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+msin
(mπ

2

)1 –
1
m

π

2∫
0

sin
(

m(
π

2
– y)
)[

–af(y) + bf(π– y) – if′(y)
]

dy




+
1
m

t∫
0

sin(m(t – y))
[
–af(y) + bf(π– y) – if′(y)

]
dy

= cosmtcos
mπ
2

+
1
m

cosmtsin
mπ
2

[
i{a + b + f(

π

2
)
]

–
1
m

sinmtcos
mπ
2

[
i{a + b + f(

π

2
)
]

+ sinmtsin
mπ
2

–cosmtcos
mπ
2

π

2∫
0

sin
mπ
2

(
π

2
– y)
[
–af(y) + bf(π– y) – if′(y)

]
dy

+
1
m

cosmtsin
mπ
2

π

2∫
0

cosm(
π

2
– y)
[
–af(y) + bf(π– y) – if′(y)

]
dy

–
1
m

sinmtcos
mπ
2

π

2∫
0

cosm(
π

2
– y)
[
–af(y) + bf(π– y) – if′(y)

]
dy

–sinmtsin
mπ
2

π

2∫
0

sinm(
π

2
– y)
[
–af(y) + bf(π– y) – if′(y)

]
dy

+
1
m

t∫
0

sinm(t – y)
[
–af(y) + bf(π– y) – if′(y)

]
dy

= cosm(t –
π

2
) +

1
m

sinm(
π

2
– t)
[
i{a + b + f(

π

2
)
]

–
1
m

cosm(t –
π

2
)

π

2∫
0

sinm(
π

2
– y)
[
–af(y) + bf(π– y) – if′(y)

]
dy

+
1
m

sinm(
π

2
– t)

π

2∫
0

cosm(
π

2
– y)
[
–af(y) + bf(π– y) – if′(y)

]
dy

+
1
m

t∫
0

sinm(t – y)
[
–af(y) + bf(π– y) – if′(y)

]
dy
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= cosm(t –
π

2
) +

1
m

sinm(
π

2
– t)
[
i{a + b + f(

π

2
)
]

–
1
m

π

2∫
0

sinm(t – y)
[
–af(y) + bf(π– y) – if′(y)

]
dy

+
1
m

t∫
0

sinm(t – y)
[
–af(y) + bf(π– y) – if′(y)

]
dy.

Therefore, the exact solution of this problem is

y(t) = cosm(t –
π

2
) +

1
m

sinm(
π

2
– t)
[
i{a + b + f(

π

2
)
]

–
1
m

π

2∫
t

sinm(t – y)
[
–af(y) + bf(π– y) – if′(y)

]
dy. (2.10)

In the second case a2 – b2 = 0. Then,

y
′′
(t) = F(t). (2.11)

Applying the Laplace transform, we get

s2y(s) – sy(0) – y′(0) = F(s).

Then

y(s) =
1
s

y(0) +
1
s2 y′(0) +

1
s2 F(s).

y(s) = y(0)L{1}+ y′(0)L{t}+ L{t}F(s)

Taking the inverse Laplace transform, we get

y(t) = y(0) + ty′(0) +
t∫

0

(t – y)F(y)dy. (2.12)

From that it follows

y′(t) = y′(0) +
t∫

0

F(y)dy.

Applying initial conditions y(π2 ) = 1,y′(π2 ) = –i
{

a + b + f(π2 )
}

, we obtain

1 = y(
π

2
) = y(0) +

π

2
y′(0) +

π

2∫
0

(
π

2
– y
)

F(y)dy,
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–i
{

a + b + f(
π

2
)
}

= y′(
π

2
) = y′(0) +

π

2∫
0

F(y)dy.

Therefore,

y′(0) = –i
{

a + b + f(
π

2
)
}

–

π

2∫
0

F(y)dy,

y(0) = 1 –
π

2

–i
{

a + b + f(
π

2
)
}

–

π

2∫
0

F(y)dy

–

π

2∫
0

(
π

2
– y
)

F(y)dy

= 1 +
π

2
i
{

a + b + f(
π

2
)
}

+

π

2∫
0

yF(y)dy.

Putting y(0) and y′(0) into equation (2.12), we get

y(t) = 1 +
π

2
i
{

a + b + f(
π

2
)
}

+

π

2∫
0

yF(y)dy

+t

–i
{

a + b + f(
π

2
)
}

–

π

2∫
0

F(y)dy

+
t∫

0

(t – y)F(y)dy

= 1 +
(
π

2
– t
)

i
{

a + b + f(
π

2
)
}

–

π

2∫
0

(t – y)F(y)dy +
t∫

0

(t – y)F(y)dy

= 1 +
(
π

2
– t
)

i
{

a + b + f(
π

2
)
}

–

π

2∫
t

(t – y)F(y)dy.

In the third case a2 – b2 = m2 < 0. Substituting –m2 for a2 – b2 into equation (2.6a), we get

y
′′
(t) – m2y(t) = F(t).

Applying Laplace transform, we get

s2y(s) – sy(0) – y′(0) – m2y(s) = F(s)

or

y(s) =
s

s2 – m2 y(0) +
1

s2 – m2 y′(0) +
1

s2 – m2 F(s).

12



Applying formulas
s

s2 – m2 =
1
2

[
1

s + m
+

1
s – m

]
,

1
s2 – m2

=
1

2m

[
1

s – m
–

1
s + m

]
,

we get

y(s) =
1
2

[
1

s + m
+

1
s – m

]
y(0)

+
1

2m

[
1

s – m
–

1
s + m

]
y′(0) +

1
2m

[
1

s – m
–

1
s + m

]
F(s).

Applying formulas

L
{

e±mt} =
1

s∓m
,L


t∫

0

e±m(t–y)F(y)dy

 =
1

s∓m
F(s)

and taking the inverse Laplace transform, we get

y(t) =
1
2
[
e–mt + emt]y(0) +

1
2im

[
emt – e–mt]y′(0)

+
1

2m

t∫
0

[
em(t–y) – e–m(t–y)

]
F(y)dy.

Using formulas

cosh(mt) =
1
2
[
e–mt + emt] , sinh(mt )=

1
2i
[
emt – e–mt] ,

we get

y(t) = cosh(mt )y(0) +
1
m

sinh(mt )y′(0) +
1
m

t∫
0

sinh(m(t – y))F(y)dy.

Now, we obtain y(0) and y′(0). Taking the derivative, we get

y′(t) = –msinh(mt )y(0) + cosh(mt) y′(0) +
t∫

0

cosh(m(t – y))F(y)dy.

Putting F(y) = –af(y) + bf(π– y) – if′(y), we get

y(t) = cosh(mt)y(0) +
1
m

sinh(mt)y′(0)
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+
1
m

t∫
0

sinh(m(t – y))
[
–af(y) + bf(π– y) – if′(y)

]
dy, (2.13)

y′(t) = msinh(mt) y(0) + cosh(mt) y′(0)

+
t∫

0

cosh(m(t – y))
[
–af(y) + bf(π– y) – if′(y)

]
dy. (2.14)

Substituting π2 for t into equations (2.13)and (2.14), we get

y(
π

2
) = coshm

π

2
y(0) +

1
m

sinhm
π

2
y′(0)

+
1
m

π

2∫
0

sinhm(
π

2
– y)
[
–af(y) + bf(π– y) – if′(y)

]
dy,

y′(
π

2
) = msinhm

π

2
y(0) + coshm

π

2
y′(0)

+

π

2∫
0

coshm(
π

2
– y)
[
–af(y) + bf(π– y) – if′(y)

]
dy.

Applying initial conditions y(π2 ) = 1,y′(π2 ) = –i
{

a + b + f(π2 )
}

, we obtain
cosh

(mπ
2
)

y(0) + 1
m sinh

(mπ
2
)

y′(0) = 1 –α1,

msinh
(mπ

2
)

y(0) + cosh
(mπ

2
)

y′(0) = –i
{

a + b + f(π2 )
}

–α2.

Here

α1 =
1
m

π

2∫
0

sinh
(

m(
π

2
– y)
)[

–af(y) + bf(π– y) – if′(y)
]

dy,

α2 =

π

2∫
0

cosh
(

m(
π

2
– y)
)[

–af(y) + bf(π– y) – if′(y)
]

dy.

Since

Δ =

∣∣∣∣∣∣ cosh
(mπ

2
) 1

m sinh
(mπ

2
)

msinh
(mπ

2
)

cosh
(mπ

2
)
∣∣∣∣∣∣ = cosh2 m

π

2
– sinh2 m

π

2
= 1 6= 0,

we have that

y(0) =
Δ0
Δ

=

∣∣∣∣∣∣ 1 –α1
1
m sinh

(mπ
2
)

–i{a + b + f(π2 )}–α2 cosh
(mπ

2
)
∣∣∣∣∣∣
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y(0) = cosh
(mπ

2

)[
1 –α1

]
+

1
m

sinh
(mπ

2

)[
–i
{

a + b + f(
π

2
)
}

–α2
]

,

y′(0) =
Δ1
Δ

=

∣∣∣∣∣∣ cosh
(mπ

2
)

1 –α1

msinh
(mπ

2
)

–i
{

a + b + f(π2 )
}

–α2

∣∣∣∣∣∣
y′(0) = –cosh

(mπ
2

)[
i
{

a + b + f(
π

2
)
}

+α2
]

– msinh
(mπ

2

)[
1 –α1

]
.

Putting y(0) and y′(0) into equation (2.13), we get

y(t) = cosh(mt)
{

cosh
(mπ

2

)
1 –

1
m

π

2∫
0

sinh
(

m(
π

2
– y)
)[

–af(y) + bf(π– y) – if′(y)
]

dy


+

1
m

sinh
(mπ

2

){
–i
{

a + b + f(
π

2
)
}

–

π

2∫
0

cosh
(

m(
π

2
– y)
)[

–af(y) + bf(π– y) – if′(y)
]

dy




+
1
m

sinh(mt)
{

–cosh
(mπ

2

){
i
{

a + b + f(
π

2
)
}

+

π

2∫
0

cosh
(

m(
π

2
– y)
)[

–af(y) + bf(π– y) – if′(y)
]

dy


–msinh

(mπ
2

)1 –
1
m

π

2∫
0

sin
(

m(
π

2
– y)
)[

–af(y) + bf(π– y) – if′(y)
]

dy




+
1
m

t∫
0

sin(m(t – y))
[
–af(y) + bf(π– y) – if′(y)

]
dy

= coshmtcosh
mπ
2

–
1
m

coshmtsinh
mπ
2

[
i{a + b + f(

π

2
)
]

–
1
m

sinhmtcosh
mπ
2

[
i{a + b + f(

π

2
)
]

– sinhmtsinh
mπ
2

–coshmtcosh
mπ
2

π

2∫
0

sinh
mπ
2

(
π

2
– y)
[
–af(y) + bf(π– y) – if′(y)

]
dy
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–
1
m

coshmtsinh
mπ
2

π

2∫
0

coshm(
π

2
– y)
[
–af(y) + bf(π– y) – if′(y)

]
dy

–
1
m

sinhmtcosh
mπ
2

π

2∫
0

coshm(
π

2
– y)
[
–af(y) + bf(π– y) – if′(y)

]
dy

–
1
m

sinhmtsinh
mπ
2

π

2∫
0

sinhm(
π

2
– y)
[
–af(y) + bf(π– y) – if′(y)

]
dy

+
1
m

t∫
0

sinhm(t – y)
[
–af(y) + bf(π– y) – if′(y)

]
dy

= coshm(t –
π

2
) –

1
m

sinhm(
π

2
– t)
[
i{a + b + f(

π

2
)
]

–
1
m

coshm(t –
π

2
)

π

2∫
0

sinhm(
π

2
– y)
[
–af(y) + bf(π– y) – if′(y)

]
dy

–
1
m

sinhm(
π

2
– t)

π

2∫
0

coshm(
π

2
– y)
[
–af(y) + bf(π– y) – if′(y)

]
dy

+
1
m

t∫
0

sinhm(t – y)
[
–af(y) + bf(π– y) – if′(y)

]
dy

= coshm(t –
π

2
) –

1
m

sinhm(
π

2
– t)
[
i{a + b + f(

π

2
)
]

–
1
m

π

2∫
0

sinhm(t – y)
[
–af(y) + bf(π– y) – if′(y)

]
dy

+
1
m

t∫
0

sinhm(t – y)
[
–af(y) + bf(π– y) – if′(y)

]
dy.

Therefore, the exact solution of this problem is

y(t) = coshm(t –
π

2
) –

1
m

sinhm(
π

2
– t)
[
i{a + b + f(

π

2
)
]

–
1
m

π

2∫
t

sinhm(t – y)
[
–af(y) + bf(π– y) – if′(y)

]
dy.
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2.2 Schrödinger Type Involutory Partial Differential Equations

It is known that initial value problems for Schrödinger type involutory partial differential

equations can be solved analytically by Fourier series, Laplace transform and Fourier

transform methods. Now, let us illustrate these three different analytical methods by

examples.

First, we consider Fourier series method for solution of problems for Schrödinger type

involutory partial differential equations.

Example 2.2.1. Obtain the Fourier series solution of the initial boundary value problem

i∂u(t,x)
∂ t – auxx (t,x) – buxx (π– t,x) = (–1 + a)eit sin(x) – be–it sin(x) ,

x ∈ (0,π) ,–∞ < t < ∞,

u(π2 ,x) = isin(x), x ∈ [0,π],

u(t,0) = u(t,π) = 0, t ∈ (–∞,∞)

(2.15)

for one dimensional idempotent Schrödinger’s equation.

Solution. In order to solve this problem, we consider the Sturm-Liouville problem

–u′′(x) –λu(x) = 0, 0 < x < π,u(0) = u(π) = 0.

generated by the space operator of problem (2.15). It is easy to see that the solution of this

Sturm-Liouville problem is

λk = k2, uk(x) = sinkx, k = 1,2, ....

Then, we will obtain the Fourier series solution of problem (2.15) by formula

u(t,x) =
∞

∑
k=1

Ak(t) sinkx,
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Here Ak(t) are unknown functions. Applying this equation and initial condition, we get

i
∞

∑
k=1

A′k(t) sinkx + a
∞

∑
k=1

k2Ak(t) sinkx + b
∞

∑
k=1

k2Ak(π– t)sinkx

= (–1 + a)eit sin(x) – be–it sin(x) .
∞

∑
k=1

Ak

(
π

2

)
sinkx = isin(x),x ∈ [0,π],

u(
π

2
,x) = isin(x), x ∈ [0,π].

Equating coefficients sinkx,k = 1,2, ... to zero, we get
iA′1(t) + aA1(t) + bA1(π– t) = (–1 + a)eit – be–it,

A1
(
π

2
)

= i,

(2.16)


iA′k(t) – ak2Ak(t) – bk2Ak(π– t) = 0,k 6= 1,

Ak
(
π

2
)

= 0.

(2.17)

We will obtain A1(t). Taking the derivative (2.16), we get

iA′′1(t) + aA′1(t) – bA′1(π– t) = i (–1 + a)eit + ibe–it. (2.18)

Putting π– t instead of t, we get

iA′1(π– t) + aA1(π– t) + bA1(t) = (–1 + a)ei(π–t) – be–i(π–t). (2.19)

Multiplying equation (2.18) by i and equation (2.19) by b, we get

–A′′1(t) + aiA′1(t) – biA′1(π– t) = –(–1 + a)eit – be–it,

ibA′1(π– t) + abA1(π– t) + b2A1(t) = b(–1 + a)ei(π–t) – b2e–i(π–t).

Adding last two equations, we get

–A′′1(t) + aiA′1(t) + abA1(π– t) + b2A1(t)

= –(–1 + a)eit – be–it + b(–1 + a)ei(π–t) – b2e–i(π–t).
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Applying formulas

e–i(π–t) = e–iπeit = (cos(–π) + isin(–π))eit = –eit,

ei(π–t) = eiπe–it = (cos(π) + isin(π))e–it = –e–it,

e+iπ2 = cos
(
π

2

)
+ isin

(
π

2

)
= i,

e–iπ2 = cos
(
π

2

)
– isin

(
π

2

)
= –i,

we get

–A′′1(t) + aiA′1(t) + abA1(π– t) + b2A1(t) = (1 – a + b2)eit – abe–it.

Multiplying equation (2.16) by (–a), we get

–aiA′1(t) – a2A1(t) – abA1(π– t) =
(

a – a2
)

eit + abe–it.

Then, adding these equations, we get

–A′′1(t) +
(

b2 – a2
)

A1(t) =
(

b2 – a2 + 1
)

eit

or

A′′1(t) +
(

a2 – b2
)

A1(t) =
(

a2 – b2 – 1
)

eit. (2.20)

Substituting π2 for t into equation (2.16), we get

iA′1
(
π

2

)
+ aA1

(
π

2

)
+ bA1

(
π–
π

2

)
= (–1 + a)ei

(
π

2
)

– be–i
(
π

2
)

or

iA′1
(
π

2

)
+ ai + bi = (–1 + a) i + bi.

Then

A′1
(
π

2

)
= –1.

Therefore, we get the following problem

A′′1(t) +
(

a2 – b2
)

A1(t) =
(

a2 – b2 – 1
)

eit, A1

(
π

2

)
= i,A′1

(
π

2

)
= –1.

There are three cases : a2 – b2 > 0, a2 – b2 = 0, a2 – b2 < 0.
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In the first case a2 – b2 = m2 > 0. Substituting m2 for a2 – b2 into equation (2.20), we get

A′′1(t) + m2A1(t) =
(

a2 – b2 – 1
)

eit. (2.21)

We will obtain Laplace transform solution of problem (2.21), we get

s2A1(s) – sA1(0) – A′1(0) + m2A1(s) =
(

a2 – b2 – 1
)

eis.

or

(s2 + m2)A1(s) = sA1(0) + A′1(0) +
(

a2 – b2 – 1
)

eis.

Then,

A1(s) =
s

s2 + m2 A1(0) +
1

s2 + m2 A′1(0) +
1

s2 + m2

(
a2 – b2 – 1

)
eis.

Applying formulas

s
s2 + m2 =

1
2

[
1

s + im
+

1
s – im

]
,

1
s2 + m2 =

1
2im

[
1

s – im
–

1
s + im

]
,

we get

A1(s) =
1
2

[
1

s + im
+

1
s – im

]
A1(0) +

1
2im

[
1

s – im
–

1
s + im

]
A′1(0)

+
1

2im

[
1

s – im
–

1
s + im

](
a2 – b2 – 1

)
eis.

Taking the inverse Laplace transform, we get

A1(t) =
1
2

[
e–imt + eimt

]
A1(0) +

1
2im

[
eimt – e–imt

]
A′1(0)

+

(
a2 – b2 – 1

)
2im

t∫
0

[
eim(t–y) – e–im(t–y)

]
eiydy.

Applying formulas

cos(mt) =
1
2

[
e–imt + eimt

]
, sin (mt )=

1
2i

[
eimt – e–imt

]
,

we get

A1(t) = cos(mt )A1(0) +
1
m

sin(mt )A′1(0)

+

(
a2 – b2 – 1

)
m

t∫
0

sin(m(t – y))eiydy. (2.22)
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Now, we obtain A1(0) and A′1(0). Taking the derivative, we get

A′1(t) = –msin(mt )A1(0)

+cos(mt) A′1(0) +
(

a2 – b2 – 1
) t∫

0

cos(m(t – y))eiydy. (2.23)

Substituting π2 for t into equations (2.22)and (2.23), we get

A1(
π

2
) = cos

(mπ
2

)
A1(0)

+
1
m

sin
(mπ

2

)
A′1(0) +

(
a2 – b2 – 1

)
m

π

2∫
0

sin
(

m
(
π

2
– y
))

eiydy,

A′1(
π

2
) = –msin

(mπ
2

)
A1(0) + cos

(mπ
2

)
A′1(0)

+
(

a2 – b2 – 1
) π

2∫
0

cos
(

m
(
π

2
– y
))

eiydy.

Applying initial conditions A1
(
π

2
)

= i,A′1
(
π

2
)

= –1, we obtain
cos
(mπ

2
)

A1(0) + 1
m sin

(mπ
2
)

A′1(0) = i –α1,

–msin
(mπ

2
)

A1(0) + cos
(mπ

2
)

A′1(0) = –1 –α2.

Here

α1 =

(
a2 – b2 – 1

)
m

π

2∫
0

sin
(

m
(
π

2
– y
))

eiydy,

α2 =
(

a2 – b2 – 1
) π

2∫
0

cos
(

m
(
π

2
– y
))

eiydy.

Since

Δ =

∣∣∣∣∣∣ cos
(mπ

2
) 1

m sin
(mπ

2
)

–msin
(mπ

2
)

cos
(mπ

2
)
∣∣∣∣∣∣ = cos2 m

π

2
+sin2 m

π

2
= 1 6= 0,

we have that

A1(0) =
Δ0
Δ

=

∣∣∣∣∣∣ i –α1
1
m sin

(mπ
2
)

–1 –α2 cos
(mπ

2
)
∣∣∣∣∣∣
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A1(0) = cos
(mπ

2

)[
i –α1

]
+

1
m

sin
(mπ

2

)[
1 +α2

]
,

A′1(0) =
Δ1
Δ

=

∣∣∣∣∣∣ cos
(mπ

2
)

i –α1

–msin
(mπ

2
)

–1 –α2

∣∣∣∣∣∣
A′1(0) = –cos

(mπ
2

)[
1 +α2

]
+ msin

(mπ
2

)[
i –α1

]
.

Putting A1(0)and A′1(0) into equation (2.22), we get

A1(t) = cos(mt)

cos
(mπ

2

)i –

(
a2 – b2 – 1

)
m

π

2∫
0

sin
(

m
(
π

2
– y
))

eiydy


+

1
m

sin
(mπ

2

)1 +
(

a2 – b2 – 1
) π

2∫
0

cos
(

m
(
π

2
– y
))

eiydy




+
1
m

sin(mt)

–cos
(mπ

2

)1 +
(

a2 – b2 – 1
) π

2∫
0

cos
(

m
(
π

2
– y
))

eiydy


+msin

(mπ
2

)i –

(
a2 – b2 – 1

)
m

π

2∫
0

sin
(

m
(
π

2
– y
))

eiydy




+

(
a2 – b2 – 1

)
m

t∫
0

sin(m(t – y))eiydy

= icosmtcos
mπ
2

–

(
a2 – b2 – 1

)
m

cosmtcos
mπ
2

π

2∫
0

sin
(

m
(
π

2
– y
))

eiydy

+
1
m

cosmtsin
mπ
2

+

(
a2 – b2 – 1

)
m

cosmtsin
mπ
2

π

2∫
0

cos
(

m
(
π

2
– y
))

eiydy

–sinmtcos
mπ
2

–

(
a2 – b2 – 1

)
m

sinmtcos
mπ
2

π

2∫
0

cos
(

m
(
π

2
– y
))

eiydy

–isinmtsin
mπ
2

–
(

a2 – b2 – 1
)

sinmtsin
mπ
2

π

2∫
0

sin
(

m
(
π

2
– y
))

eiydy
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+

(
a2 – b2 – 1

)
m

t∫
0

sin(m(t – y))eiydy

= icosm(t –
π

2
) –

1
m

sinm(t –
π

2
) –

(
a2 – b2 – 1

)
m

cosm(t –
π

2
)

π

2∫
0

sin
(

m
(
π

2
– y
))

eiydy

–

(
a2 – b2 – 1

)
m

sinm(t –
π

2
)

π

2∫
0

cos
(

m
(
π

2
– y
))

eiydy +

(
a2 – b2 – 1

)
m

t∫
0

sin(m(t – y))eiydy

= icosm(t –
π

2
) +

1
m

sinm(
π

2
– t) –

(
a2 – b2 – 1

)
m

π

2∫
0

sin(m(t – y))eiydy

+

(
a2 – b2 – 1

)
m

t∫
0

sin(m(t – y))eiydy

= icosm(t –
π

2
) +

1
m

sinm(
π

2
– t) –

(
a2 – b2 – 1

)
m

π

2∫
t

sin(m(t – y))eiydy.

Therefore, the exact solution of this problem is

A1(t) = icosm(t –
π

2
) +

1
m

sinm(
π

2
– t) –

(
a2 – b2 – 1

)
m

π

2∫
t

sin(m(t – y))eiydy. (2.24)

It is easy to see that

A1(t) = icos
(
±(t –

π

2
)
)

+
1
±1

sin
(
±(
π

2
– t)
)

= icos
(
π

2
– t
)

– sin
(
π

2
– t
)

= i
ei
(
π

2 –t
)
+e–i

(
π

2 –t
)

2
+

ei
(
π

2 –t
)
–e–i

(
π

2 –t
)

2i
= ie–i

(
π

2 –t
)

= eit

for m2 = 1. Now, we obtain A1(t) for m2 6= 1. We denote

I =
∫

sin(m(t – y))eiydy.

We have that

I =
1
i

sin(m(t – y))eiy +
m
i

∫
cos(m(t – y))eiydy

=
1
i

sin(m(t – y))eiy – mcos(m(t – y))eiy + m2
∫

sin(m(t – y))eiydy.
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Therefore,

I
(

1 – m2
)

=
1
i

sin(m(t – y))eiy – mcos(m(t – y))eiy

or

I =
1

1 – m2

{
1
i

sin(m(t – y))eiy – mcos(m(t – y))eiy
}

. (2.25)

Therefore,

π

2∫
t

sin(m(t – y))eiydy =
1

1 – m2

[
1
i

sin
(

m
(

t –
π

2

))
eiπ2 – mcos

(
m
(

t –
π

2

))
eiπ2 + meit

]

=
1

1 – m2

[
1
i
i sin

(
m
(

t –
π

2

))
– micos

(
m
(

t –
π

2

))
+ meit

]
(2.26)

Putting (2.26) into equation (2.24), we get

A1(t) = icosm(t –
π

2
) +

1
m

sinm(
π

2
– t)–(

a2 – b2 – 1
)

m

{
1

1 – m2

[
1
i
i sin

(
m
(

t –
π

2

))
– micos

(
m
(

t –
π

2

))
+ meit

]}
= icosm(t –

π

2
) +

1
m

sinm(
π

2
– t)

–

(
m2 – 1

)
m

{
1

1 – m2

[
sin
(

m
(

t –
π

2

))
– micos

(
m
(

t –
π

2

))
+ meit

]}
= icosm(t –

π

2
) +

1
m

sinm(
π

2
– t)

+
1
m

sin
(

m
(

t –
π

2

))
– icos

(
m
(

t –
π

2

))
+ eit = eit.

Therefore

A1(t) = eit.

It is easy to see that A1(t) = eit for a2 – b2 = 0 and a2 – b2 < 0.

Now, we will obtain Ak(t) for k 6= 1. We consider the problem (2.17). Taking the derivative

(2.17), we get

iA′′k(t) + ak2A′k(t) – bk2A′k(π– t) = 0. (2.27)
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Putting π– t instead of t, we get

iA′k(π– t) + aAk(π– t) + bAk(t) = 0. (2.28)

Multiplying equation (2.27) by i and equation (2.28) by bk2, we get

–A′′k(t) + aik2A′k(t) – ibk2A′k(π– t) = 0,

ibk2A′k(π– t) + abk2Ak(π– t) + b2k2Ak(t) = 0.

Adding last two equations, we get

–A′′k(t) + aik2A′k(t) + abk4Ak(π– t) + b2k4Ak(t) = 0.

Multiplying equation (2.17) by (–ak2), we get

–aik2A′k(t) – a2k4Ak(t) – abk4Ak(π– t) = 0.

Then adding these equations, we get

–A′′k(t) –
(

a2 – b2
)

k4Ak(t) = 0

or

A′′k(t) +
(

a2 – b2
)

k4Ak(t) = 0. (2.29)

Substituting π2 for t into equation (2.17), we get

iA′k
(
π

2

)
+ ak2Ak

(
π

2

)
+ bk2Ak

(
π–
π

2

)
= 0.

Then

A′k
(
π

2

)
= 0.

So, we have the following problem

A′′k(t) +
(

a2 – b2
)

k4Ak(t) = 0, Ak

(
π

2

)
= 0,A′k

(
π

2

)
= 0.

There are three cases : a2 – b2 > 0, a2 – b2 = 0, a2 – b2 < 0. In the first case a2 – b2 =

m2 > 0. Substituting m2 for a2 – b2 into equation (2.29), we get

A′′k(t) + m2k4Ak(t) = 0. (2.30)
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We will obtain Laplace transform solution of problem (2.30), we get

s2Ak(s) – sAk(0) – A′k(0) + m2k4Ak(s) = 0.

or

(s2 + m2k4)Ak(s) = sAk(0) + A′k(0).

Then,

Ak(s) =
s

s2 + m2k4 Ak(0) +
1

s2 + m2k4 A′k(0).

Applying formulas

s
s2 + m2k4 =

1
2

[
1

s + imk2 +
1

s – imk2

]
,

1
s2 + m2k4

=
1

2imk2

[
1

s – imk2 –
1

s + imk2

]
,

we get

Ak(s) =
1
2

[
1

s + imk2 +
1

s – imk2

]
Ak(0) +

1
2im

[
1

s – imk2 –
1

s + imk2

]
A′k(0).

Taking the inverse Laplace transform, we get

Ak(t) =
1
2

[
e–imk2t + eimk2t

]
Ak(0) +

1
2imk2

[
eimk2t – e–imk2t

]
A′k(0).

Applying formulas

cos
(

mk2t
)

=
1
2

[
e–imk2t + eimk2t

]
, sin

(
mk2t

)
=

1
2i

[
eimk2t – e–imk2t

]
,

we get

Ak(t) = cos
(

mk2t
)

Ak(0) +
1

mk2 sin
(

mk2t
)

A′k(0). (2.31)

Now, we obtain Ak(0) and A′k(0). Taking the derivative, we get

A′k(t) = –mk2 sin
(

mk2t
)

Ak(0) + cos
(

mk2t
)

A′k(0). (2.32)

Substituting π2 for t into equations (2.31) and (2.32), we get

Ak(
π

2
) = cos

(
mk2
π

2

)
Ak(0) +

1
mk2 sin

(
mk2
π

2

)
A′k(0),
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A′k(
π

2
) = –mk2 sin

(
mk2
π

2

)
Ak(0) + cos

(
mk2
π

2

)
A′k(0).

Applying initial conditions Ak
(
π

2
)

= 0,A′k
(
π

2
)

= 0, we obtain
cos
(

mk2
π

2

)
Ak(0) + 1

m sin
(

mk2
π

2

)
A′k(0) = 0,

–msin
(

mk2
π

2

)
Ak(0) + cos

(
mk2
π

2

)
A′k(0) = 0.

Since

Δ =

∣∣∣∣∣∣ cos
(

mk2
π

2

)
1
m sin

(
mk2
π

2

)
–msin

(
mk2
π

2

)
cos
(

mk2
π

2

)
∣∣∣∣∣∣ = cos2 mk2π

2
+sin2 mk2π

2
= 1 6= 0,

we have that

Ak(0) =
Δ0
Δ

=

∣∣∣∣∣∣ 0 1
mk2 sin

(
mk2
π

2

)
0 cos

(
mk2
π

2

)
∣∣∣∣∣∣ = 0,

A′k(0) =
Δ1
Δ

=

∣∣∣∣∣∣ cos
(

mk2
π

2

)
0

–mk2 sin
(

mk2
π

2

)
0

∣∣∣∣∣∣ = 0.

Putting Ak(0)and A′k(0) into equation (2.31), we get

Ak(t) = cos
(

mk2t
)

(0) +
1

mk2 sin
(

mk2t
)

(0) = 0.

It is easy to see that Ak(t) = 0,k 6= 1 for a2 – b2 = 0 and a2 – b2 < 0.

Therefore,

u(t,x) = A1(t) sinx = eit sinx

is the exact solution of problem (2.15).

Note that using similar procedure one can obtain the solution of the following initial
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boundary value problem

i∂u(t,x)
∂ t – a

n
∑

r=1
αr

∂ 2u(t,x)
∂x2

r
– b

n
∑

r=1
αr

∂ 2u(d–t,x)
∂x2

r
= f(t,x),

x = (x1, ...,xn) ∈ Ω, –∞ < t < ∞,

u(d
2 ,x) = ϕ(x),x ∈ Ω,d≥ 0,

u(t,x) = 0,x ∈ S, t ∈ (–∞,∞)

(2.33)

for the multidimensional involutory Schrödinger type equation. Assume that αr > α> 0 and

f(t,x)
(
t ∈ (–∞,∞),x ∈ Ω

)
,ϕ(x)

(
t ∈ (–∞,∞),x ∈ Ω

)
are given smooth functions. Here and

in future Ω is the unit open cube in the n–dimensional Euclidean space

Rn (0 < xk < 1,1≤ k≤ n) with the boundary

S,Ω = Ω∪S.

However Fourier series method described in solving (2.33) can be used only in the case

when (2.33) has constant coefficients.

Example 2.2.2. Obtain the Fourier series solution of the initial boundary value problem

i∂u(t,x)
∂ t – auxx (t,x) – buxx (–t,x) = (–1 + a)eit cos(x) + be–it cos(x) ,

x ∈ (0,π) ,–∞ < t < ∞,

u(0,x) = cos(x), x ∈ [0,π],

ux(t,0) = ux(t,π) = 0, t ∈ (–∞,∞)

(2.34)

for one dimensional involutory Schrödinger’s equation.

Solution. In order to solve this problem, we consider the Sturm-Liouville problem

–u′′(x) –λu(x) = 0, 0 < x < π, ux(0) = ux(π) = 0
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generated by the space operator of problem (2.34). It is easy to see that the solution of this

Sturm-Liouville problem is

λk = k2, uk(x) = coskx, k = 0,1,2, ....

Then, we will obtain the Fourier series solution of problem (2.34) by formula

u(t,x) =
∞

∑
k=0

Ak(t)coskx,

Here Ak(t) are unknown functions. Applying this equation and initial condition, we get

i
∞

∑
k=1

A′k(t)coskx + a
∞

∑
k=1

k2Ak(t)coskx + b
∞

∑
k=1

k2Ak(–t)coskx

= (–1 + a)eit cos(x) + be–it cos(x) ,
∞

∑
k=1

Ak (0)coskx = cos(x),x ∈ [0,π].

Equating coefficients coskx,k = 0,1,2, ...to zero, we get
iA′1(t) + aA1(t) + bA1(–t) = (–1 + a)eit + be–it,

A1 (0) = 1,

(2.35)


iA′k(t) + ak2Ak(t) + bk2Ak(–t) = 0,k 6= 1,

Ak (0) = 0.

(2.36)

We will obtain A1(t). Taking the derivative of (2.35), we get

iA′′1(t) + aA′1(t) – bA′1(–t) = i (–1 + a)eit – ibe–it. (2.37)

Putting –t instead of t, we get

iA′1(–t) + aA1(–t) + bA1(t) = (–1 + a)ei(–t) – be–i(–t). (2.38)

Multiplying equation (2.37) by i and equation (2.38) by b, we get

–A′′1(t) + aiA′1(t) – biA′1(–t) = –(–1 + a)eit + be–it,
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ibA′1(–t) + abA1(–t) + b2A1(t) = b(–1 + a)e–it + b2eit.

Adding last two equations, we get

–A′′1(t) + aiA′1(t) + abA1(–t) + b2A1(t) = (1 – a + b2)eit + abe–it.

Multiplying equation (2.35) by (–a), we get

–aiA′1(t) – a2A1(t) – abA1(–t) =
(

a – a2
)

eit – abe–it.

Then from these equations, we get

–A′′1(t) +
(

b2 – a2
)

A1(t) =
(

b2 – a2 + 1
)

eit

or

A′′1(t) +
(

a2 – b2
)

A1(t) =
(

a2 – b2 – 1
)

eit. (2.39)

Substituting (0) for t into (2.16) equation, we get

iA′1 (0) + aA1 (0) + bA1 (0) = (–1 + a)ei(0) + be–i(0)

iA′1 (0) + a + b = (–1 + a) + b.

or

A′1 (0) = i.

So, we have the following problem

A′′1(t) +
(

a2 – b2
)

A1(t) =
(

a2 – b2 – 1
)

eit, A1 (0) = 1,A′1 (0) = i.

There are three cases : a2 – b2 > 0, a2 – b2 = 0, a2 – b2 < 0.

In the first case a2 – b2 = m2 > 0. Substituting m2 for a2 – b2 into equation (2.39), we get

A′′1(t) + m2A1(t) =
(

a2 – b2 – 1
)

eit. (2.40)

We will obtain Laplace transform solution of problem (2.40). We have that

s2A1(s) – sA1(0) – A′1(0) + m2A1(s) =
(

a2 – b2 – 1
)

eis.
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or

(s2 + m2)A(s) = sA1(0) + A′1(0) +
(

a2 – b2 – 1
)

eis.

Then,

A(s) =
s

s2 + m2 A1(0) +
1

s2 + m2 A′1(0) +
1

s2 + m2

(
a2 – b2 – 1

)
eis.

Applying formulas

s
s2 + m2 =

1
2

[
1

s + im
+

1
s – im

]
,

1
s2 + m2 =

1
2im

[
1

s – im
–

1
s + im

]
,

we get

A(s) =
1
2

[
1

s + im
+

1
s – im

]
A1(0) +

1
2im

[
1

s – im
–

1
s + im

]
A′1(0)

+
1

2im

[
1

s – im
–

1
s + im

](
a2 – b2 – 1

)
eis.

Applying formulas

L
{

e±imt
}

=
1

s∓ im
,L


t∫

0

e±im(t–y)F(y)dy

 =
1

s∓ im
F(s)

Taking the inverse Laplace transform, we get

A1(t) =
1
2

[
e–imt + eimt

]
A1(0) +

1
2im

[
eimt – e=imt

]
A′1(0)

+

(
a2 – b2 – 1

)
2im

t∫
0

[
eim(t–y) – e=im(t–y)

]
eiydy.

Applying formulas

cos(mt) =
1
2

[
e–imt + eimt

]
, sin (mt )=

1
2i

[
eimt – e=imt

]
,

we get

A1(t) = cos(mt )A1(0) +
1
m

sin(mt )A′1(0) +

(
a2 – b2 – 1

)
m

t∫
0

sin(m(t – y))eiydy. (2.41)

Applying initial conditions A1 (0) = 1,A′1 (0) = i, we obtain

A1(t) = cos(mt ) + i
1
m

sin(mt ) +

(
a2 – b2 – 1

)
m

t∫
0

sin(m(t – y))eiydy.

31



It is easy to see that

A1(t) = cos(±t) + i
1
±1

sin(±t) = cos(t) + isin(t)

=
eit + e–it

2
+ i

eit – e–it

2i
= eit

for m2 = 1. Now, we obtain A1(t) for m2 6= 1. Applying (2.25), we get

A1(t) = cos(mt ) + i
1
m

sin(mt ) – cos(mt ) – i
1
m

sin(mt ) + eit = eit.

So, A1(t) = eit. It is easy to see that A1(t) = eit for a2 – b2 = 0, a2 – b2 < 0.

Now, we will obtain Ak(t) for k 6= 1. We consider the problem (2.36), we get

iA′′k(t) + ak2A′k(t) – bk2A′k(–t) = 0. (2.42)

Putting –t instead of t, we get

iA′k(–t) + ak2Ak(–t) + bk2Ak(t) = 0. (2.43)

Multiplying equation (2.42) by i and equation (2.43) by bk2, we get

–A′′k(t) + aik2A′k(t) – bik2A′k(–t) = 0,

ibk2A′k(–t) + abk4Ak(–t) + b2k4Ak(t) = 0.

Adding last two equations, we get

–A′′k(t) + aik2A′k(t) + abk4Ak(–t) + b2k4Ak(t) = 0.

Multiplying equation (2.36) by (–ak2), we get

–aik2A′k(t) – a2k4Ak(t) – abk4Ak(–t) = 0.

Then from these equations, we get

–A′′k(t) –
(

a2 – b2
)

Ak(t) = 0

or

A′′k(t) +
(

a2 – b2
)

Ak(t) = 0. (2.44)
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Substituting (0) for t into equation (2.36), we get

iA′k (0) + ak2Ak (0) + bk2Ak (π– 0) = 0

or

A′k (0) = 0.

We have the following problem

A′′k(t) +
(

a2 – b2
)

k2Ak(t) = 0, Ak (0) = 0,A′k (0) = 0.

From that it follows Ak(t) = 0,k 6= 1. In the same manner Ak(t) = 0,k 6= 1 for a2 – b2 = 0 and

a2 – b2 < 0.

Therefore,

u(t,x) = A1(t)cosx = eit cosx

is the exact solution of problem (2.34).

Note that using similar procedure one can obtain the solution of the following initial

boundary value problem

i∂u(t,x)
∂ t – a

n
∑

r=1
αr

∂ 2u(t,x)
∂x2

r
– b

n
∑

r=1
αr

∂ 2u(d–t,x)
∂x2

r
= f(t,x),

x = (x1, ...,xn) ∈ Ω, –∞ < t < ∞,

u(d
2 ,x) = ϕ(x),x ∈ Ω,d≥ 0,

∂u(t,x)
∂m = 0,x ∈ S, t ∈ (–∞,∞)

(2.45)

for the multidimensional involutory Schrödinger type equation. Assume that αr > α> 0 and

f(t,x)
(
t ∈ (–∞,∞),x ∈ Ω

)
,ϕ(x)

(
t ∈ (–∞,∞),x ∈ Ω

)
are given smooth functions. Here and

in future m is the normal vector to S. However Fourier series method described in solving

(2.45) can be used only in the case when (2.45) has constant coefficients.
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Example 2.2.3. Obtain the Fourier series solution of the initial-boundary value problem

iut(t,x) – auxx(t,x) – buxx(–t,x) = –e–it,–∞ < t < ∞,0 < x < π,

u(0,x) = 1, 0≤ x≤ π,

u(t,0) = u(t,π), ux(t,0) = ux(t,π), t ∈ I

(2.46)

for one dimensional involutory Schrödinger’s equation.

Solution. In order to solve this problem, we consider the Sturm-Liouville problem

–u′′(x) –λu(x) = 0, 0 < x < π, u(0) = u(π), ux(0) = ux(π)

generated by the space operator of problem (2.46). It is easy to see that the solution of this

Sturm-Liouville problem is

λk = 4k2, uk(x) = cos2kx, k = 0,1,2, ..., uk(x) = sin2kx, k = 1,2, ....

Then, we will obtain the Fourier series solution of problem (2.46) by formula

u(t,x) =
∞

∑
k=0

Ak(t)cos2kx +
∞

∑
k=1

Bk(t) sin2kx, (2.47)

where Ak(t), k = 0,1,2, ...., and Bk(t), k = 1,2, .... are unknown functions. Putting formula

(2.46) into the main problem and using given initial condition, we obtain

i
∞

∑
k=0

A′k(t)cos2kx + i
∞

∑
k=1

B′k(t) sin2kx – a
∞

∑
k=0

4k2Ak(t)cos2kx

–a
∞

∑
k=1

4k2Bk(t) sin2kx – b
∞

∑
k=0

4k2Ak(–t)cos2kx – b
∞

∑
k=1

4k2Bk(–t) sin2kx

= –e–it, tεI, xε(0,π),
∞

∑
k=0

Ak(0)cos2kx +
∞

∑
k=1

Bk(0)sin2kx = 1, 0≤ x≤ π,

Equating the coefficients of coskx, k = 0,1,2, ..., and sinkx, k = 1,2, ... to zero, we get
iB′k(t) – 4ak2Bk(t) – 4bk2Bk(–t) = 0, t εI,

Bk(0) = 0, k = 1,2, ...,

(2.48)
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iA′0(0) = –e–it, t εI,

A0(0) = 1,

(2.49)


iA′k(t) – 4ak2Ak(t) – 4bk2Ak(–t) = 0, tεI,

Ak(0) = 0, k = 1,2, ....

(2.50)

First, we obtain A0(t). Using (2.49), we get

A′0(t) = ieit.

Taking the integral, we get

A0(t) = A0(0) + eit – 1.

From that it follows

A0(t) = eit.

Second, we obtain Ak(t) for k 6= 0. Using (2.50), we get

iA′k(–t) – 4ak2Ak(–t) – 4bk2Ak(t) = 0,

iA′′k(t) – 4ak2A′k(t) + 4bk2A′k(–t) = 0.

From first equation it follows that

–4k2bA′k(–t) – 16k4iabAk(–t) – 16k4biAk(t) = 0.

Therefore,

iA′′k(t) – 4ak2A′k(t) – 4bk2A′k(–t) + 4bk2A′k(–t) – 16k4iabAk(–t) – 16k4biAk(t) = 0.

or

iA′′k(t) – 4ak2A′k(t) – 16k4iabAk(–t) – 16k4biAk(t) = 0.

Using (2.50), we get

4ak2A′k(t) + 16k4iabAk(–t) + 16k4biAk(t) = 0.
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From last two equations it follows

iA′′k(t) + 16k4(a2 – b2)iAk(t) = 0, tεI.

Applying equation (2.50) and initial condition, we get

A′k(0) = 0.

Therefore, we get the following Cauchy problem

A′′k(t) + 16k4(a2 – b2)Ak(t) = 0, t ∈ I,Ak(0) = 0, A′k(0) = 0.

The auxiliary equation is

q2 + 16k4(a2 – b2) = 0.

There are three cases: a2 –b2 > 0, a2 –b2 = 0, a2 –b2 < 0. In the first case 16k4(a2 –b2) = m2.

Then

Ak(t) = cos(mt)Ak(0) +
1
m

sin(mt)A′k(0) = 0.

In the second case 16k4(a2 – b2) = 0. Then

Ak(t) = Ak(0) + A′k(0)t = 0.

In the third case 16k4(a2 – b2) = –m2. Then

Ak(t) = cosh(mt)Ak(0) +
1
m

sinh(mt)A′k(0) = 0.

So, Ak(t) = 0 for any t ∈ I. In the same manner, we can obtain Bk(t) = 0 for any t ∈ I.

Therefore,

u(t,x) = A0(t) = eit.

is the exact solution of problem (2.46).
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Note that using similar procedure one can obtain the solution of the following initial

boundary value problem

i∂u(t,x)
∂ t – a

n
∑

r=1
αr

∂ 2u(t,x)
∂x2

r
– b

n
∑

r=1
αr

∂ 2u(d–t,x)
∂x2

r
= f(t,x),

x = (x1, ...,xn) ∈ Ω, –∞ < t < ∞,

u(d
2 ,x) = ϕ(x),x ∈ Ω,d≥ 0,

u(t,x)|S1
= u(t,x)|S2

, ∂u(t,x)
∂m

∣∣∣
S1

= ∂u(t,x)
∂m

∣∣∣
S2

, t ∈ (–∞,∞)

(2.51)

for the multidimensional involutory Schrödinger type equation. Assume that αr > α> 0 and

f(t,x)
(
t ∈ (–∞,∞),x ∈ Ω

)
,ϕ(x)

(
t ∈ (–∞,∞),x ∈ Ω

)
are given smooth functions. Here

S = S1∪S2,∅ = S1∩S2. However Fourier series method described in solving (2.51) can be

used only in the case when (2.51) has constant coefficients.

Second, we consider Laplace transform solution of problems for Schrödinger type

involutory partial differential equations.

Example 2.2.4. Obtain the Laplace transform solution of the initial boundary value problem

i∂u(t,x)
∂ t – auxx (t,x) – buxx (–t,x) = (–1 – a)eite–x – be–ite–x,

x ∈ (0,∞) ,–∞ < t < ∞,

u(0,x) = e–x, x ∈ [0,∞),

u(t,0) = eit,ux(t,0) = –eit, t ∈ (–∞,∞)

(2.52)

for one dimensional involutory Schrödinger’s equation.

Solution. We will obtain Laplace transform solution of problem (2.52). We denote that

u(t, s) = L{u(t,x)} .
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Taking the Laplace transform, we get

iut (t, s) – a
{

s2u(t, s) – seit –
(

–eit
)}

– b
{

s2u(–t, s) – se–it –
(

–e–it
)}

= –(1 + a)eit 1
1 + s

– be–it 1
1 + s

,u(0, s) =
1

1 + s

or

iut (t, s) – as2u(t, s) – bs2u(–t, s) = a(s)eit – b(s)e–it,u (0, s) =
1

1 + s
. (2.53)

Here

a(s) = –
as2 + 1
1 + s

,b(s) =
bs2

1 + s
. (2.54)

Taking the derivative (2.53), we get

iutt (t, s) – as2ut (t, s) + bs2ut (–t, s) = ia (s)eit + ib(s)e–it. (2.55)

Putting –t instead of t into equation (2.53), we get

iut (–t, s) – as2u(–t, s) – bs2u(t, s) = a(s)e–it – b(s)eit. (2.56)

Multiplying equation (2.55) by (–i) and equation (2.56) by
(

bs2
)

, we get

utt (t, s) + ias2ut (t, s) – ibs2ut (–t, s) = a(s)eit + b(s)e–it,

ibs2ut (–t, s) – abs4u(–t, s) – b2s4u(t, s) = bs2a(s)e–it – bs2b(s)eit.

Adding last two equations, we get

utt (t, s) + ias2ut (t, s) – abs4u(–t, s) – b2s4u(t, s)

=
(

a(s) – bs2b(s)
)

eit +
(

b(s) + bs2a(s)
)

e–it.

Multiplying equation (2.53) by
(

–as2
)

, we get

–as2iut (t, s) + a2s4u(t, s) + abs4u(–t, s) = –as2a(s)eit + as2b(s)e–it.

Adding last two equations, we get

utt (t, s) – b2s4u(t, s) + a2s4u(t, s)
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=
(

a(s) – as2a(s) – bs2b(s)
)

eit +
(

b(s) + as2b(s) + bs2a(s)
)

e–it.

Using notations (2.54), we get

utt (t, s) +
(

a2s4 – b2s4
)

u(t, s) =

(
–

as2 + 1
1 + s

+ as2 as2 + 1
1 + s

– bs2 bs2

1 + s

)
eit

+

(
bs2

1 + s
+ as2 bs2

1 + s
– bs2 as2 + 1

1 + s

)
e–it

or

utt (t, s) +
(

a2s4 – b2s4
)

u(t, s) =

(
a2 – b2

)
s4 – 1

1 + s
eit.

Using u(0,s) = 1
1+s and equation (2.56), we get

ut (0, s) = –
i

1 + s
.

Then, we have the following initial value problem for the second order ordinary differential

equation 
utt (t, s) +

(
a2 – b2

)
s4u(t, s) =

(
a2–b2

)
s4–1

1+s eit, t ∈ I,

u (0, s) = 1
1+s ,ut (0, s) = – i

1+s .

(2.57)

Now, we obtain the solution of problem (2.57).There are three cases: a2 – b2 > 0,a2 – b2 =

0,a2 – b2 < 0.

In the first case a2 – b2 > 0. Substituting m2 for
(

a2 – b2
)

s4 into equation (2.57), we get

utt (t, s) + m2u(t, s) =
m2 – 1
1 + s

eit, t ∈ I,u (0, s) =
1

1 + s
,ut (0, s) = –

i
1 + s

.

We have that

u(t, s) = uc (t, s) + up (t, s) ,

up (t, s) = w(s)eit.

where uc (t, s) is general solution of equation

utt (t, s) + m2u(t, s) = 0
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and up (t, s) is partucally solution of given equation. Then,

up (t, s) = w(s)eit.

It is easy to see that

w(s) =
1

1 + s

and

uc (t, s) = c1et + c2e–t.

Therefore,

u(t, s) = c1et + c2e–t +
1

1 + s
eit.

Using initial conditions, we get

u(0, s) =
1

1 + s
= c1 + c2 +

1
1 + s

,

ut (0, s) = –
i

1 + s
= c1 – c2 –

i
1 + s

.

From that it follows c1 = c2 = 0 and

u(t, s) =
1

1 + s
eit.

In the same manner u(t, s) = 1
1+seit for a2 – b2 = 0 and a2 – b2 < 0.Therefore, taking the

inverse Laplace transform, we get

u(t,x) = eitL–1
{

1
1 + s

}
,

u (t,x) = eite–x.

is the exact solution of problem (2.52).
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Example 2.2.5. Obtain the Laplace transform solution of the initial boundary value problem

i∂u(t,x)
∂ t – auxx (t,x) – buxx (–t,x) = (–b – a)e–x,

x ∈ (0,∞) ,–∞ < t < ∞,

u(0,x) = e–x, x ∈ [0,∞),

u(t,0) = 1,u(t,∞) = 0, t ∈ (–∞,∞)

(2.58)

for one dimensional involutory Schrödinger’s equation.

Solution. We will obtain Laplace transform solution of problem (2.58). Taking the Laplace

transform, we get



iut (t, s) – a
[
s2u(t, s) – s –β (t)

]
– b
[
s2u(–t, s) – s –β (–t)

]

= –a+b
1+s ,–∞ < t < ∞,

u(0, s) = 1
1+s

or 

iut (t, s) – as2u(t, s) – bs2u(–t, s)

= –(a + b)s – aβ (t) – bβ (–t) – a+b
1+s ,–∞ < t < ∞,

u(0, s) = 1
1+s .

(2.59)

From (2.59) it follows that

iut (0, s) =
(a + b)s2

1 + s
– (a + b)s – (a + b)β (0) –

a + b
1 + s

or

ut (0, s) = i (a + b)
[
1 +β (0)

]
.
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Taking the derivative (2.59), we get

iutt (t, s) – as2ut (t, s) + bs2ut (–t, s) = –aβ′ (t) + bβ′ (–t) . (2.60)

Putting –t instead of t into equation (2.59), we get

iut (–t, s) – as2u(–t, s) – bs2u(t, s) = –(a + b)s – aβ (–t) – bβ (t) –
a + b
1 + s

. (2.61)

Multiplying equation (2.60) by (–i) and equation (2.61) by
(

bs2
)

, we get

utt (t, s) + ias2ut (t, s) – ibs2ut (–t, s) = iaβ′ (t) – ibβ′ (–t) .

ibs2ut (–t, s) – abs4u(–t, s) + b2s4u(t, s)

= –(a + b)bs3 – abs2
β (–t) + b2s2

β (t) –
(

a + b
1 + s

)
bs2.

Adding last two equations, we get

utt (t, s) + ias2ut (t, s) – abs4u(–t, s) – b2s4u(t, s)

= iaβ′ (t) – ibβ′ (–t) – (a + b)bs3 – abs2
β (–t) + b2s2

β (t) –
(

a + b
1 + s

)
bs2.

Multiplying equation (2.59) by
(

–as2
)

, we get

–ias2ut (t, s) + a2s4u(t, s) + abs4u(–t, s)

= (a + b)as3 + a2s2
β (t) + as2bβ (–t) + as2 a + b

1 + s
.

Adding last two equations, we get

utt (t, s) +
(

a2 – b2
)

u(t, s) = iaβ′ (t) – ibβ′ (–t) – (a + b)bs3 + b2s2
β (t)

+(a + b)as3 + a2s2
β (t) + as2 a + b

1 + s
–
(

a + b
1 + s

)
bs2

or

utt (t, s) +
(

a2 – b2
)

u(t, s) = iaβ′ (t) – ibβ′ (–t)

+
(

a2 – b2
)

s3 +

(
a2 – b2

)
1 + s

s2 +
(

a2 – b2
)

s2
β (t) .
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There are three cases: a2 – b2 = 0, a2 – b2 > 0, a2 – b2 < 0. In the first case a2 – b2 = 0. Then
utt (t, s) = iaβ′ (t) – ibβ′ (–t)

u(0, s) = 1
1+s ,ut (0, s) = i (a + b)

[
1 +β (0)

]
.

Applying formula

y(t) = y0 + t y′0 +
t∫

0

(t – s)y′′(s)ds,

we get

u(t, s) =
1

1 + s
+ t
{

i (a + b)
[
1 +β (0)

]}
+

t∫
0

(t – y)
{

iaβ′ (y) – ibβ′ (–y)
}

dy

=
1

1 + s
+ t
{

i (a + b)
[
1 +β (0)

]}
+ i(t – y)

[
aβ (t) – bβ (–t)

]t
0 +

t∫
0

i
(
aβ (y) – ibβ (–y)

)
dy

=
1

1 + s
+ t
{

i (a + b)
[
1 +β (0)

]}
– it (a + b)β (0) +

t∫
0

i
(
aβ (y) – ibβ (–y)

)
dy

=
1

1 + s
+ it (a + b) + i

t∫
0

(
aβ (y) – ibβ (–y)

)
dy.

Therefore,

u(t, s) –
1

1 + s
= it (a + b) + i

t∫
0

(
aβ (y) – ibβ (–y)

)
dy.

Putting

A(t) = it (a + b) + i
t∫

0

(
aβ (y) – ibβ (–y)

)
dy,

we get

u(t, s) –
1

1 + s
= A(t).

Taking inverse the Laplace transform, we get

u(t,x) – e–x = L–1 {A(t)} . (2.62)
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Applying x→ ∞, we get

0 = L–1 {A(t)} .

Then,

LL–1 {A(t)} = 0

or

A(t) = 0.

Putting A(t) into (2.62), we get

u(t,x) – e–x = 0.

u(t,x) = e–x.

In the same manner we can obtain

u(t,x) = e–x

for a2 – b2 > 0 and a2 – b2 < 0.Therefore,

u(t,x) = e–x

is the exact solution of problem (2.58).

Note that using similar procedure one can obtain the solution of the following problem

i∂u(t,x)
∂ t – a

n
∑

r=1
ar

∂ 2u(t,x)
∂x2

r
– b

n
∑

r=1
αr

∂ 2u(d–t,x)
∂x2

r
= f(t,x),

x = (x1, ...,xn) ∈ Ω+, –∞ < t < ∞,

u(d
2 ,x) = ϕ(x),x ∈ Ω+,

u(t,x) = α (t,x) , uxr(t,x) = βr (t,x) ,1≤ r≤ n, t ∈ I,x ∈ S+

(2.63)

for the multidimensional Schrödinger type involutory partial differential equations. Assume

that ar > a > 0 and f(t,x)
(

t ∈ I,x ∈ Ω+
)

,
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ϕ(x)
(

x ∈ Ω+
)

, α (t,x) ,βr (t,x)
(
t ∈ I,x ∈ S+) are given smooth functions. Here and in future

Ω
+ is the open cube in the n-dimensional Euclidean space Rn (0 < xk < ∞,1≤ k≤ n) with

the boundary S+ and Ω+ = Ω+∪S+.

However Laplace transform method described in solving (2.63) can be used only in the case

when (2.63) has constant coefficients.

Third, we consider Fourier transform solution of the problem for Schrödinger type

involutory partial differential equations.

Example 2.2.6. Obtain the Fourier transform solution of the initial value problem

i∂u(t,x)
∂ t – auxx (t,x) – buxx (–t,x)

=
(

–1 – a(4x2 – 2)
)

eite–x2
– b(4x2 – 2)e–ite–x2

,

x ∈ (0,∞) ,–∞ < t < ∞,

u(0,x) = e–x2
, x ∈ [0,∞)

(2.64)

for one dimensional involutory Schrödinger’s equation.

Solution.We will obtain Fourier transform solution of problem (2.64). Taking the Fourier

transform, we get 

iut (t, s) + as2u(t, s) + bs2u(–t, s)

= –eitq(s) + as2eitq(s) + bs2e–itq(s),

u (0, s) = q(s).

(2.65)

Here

u(t, s) = F{u(t,x)} ,q(s) = F
{

e–x2}
.

From (2.65) it follows that

iut (0, s) = –as2q(s) – bs2q(s) – q(s) + asq(s) + bs2q(s) = –q(s)
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or

ut (0, s) = iq(s).

Taking the derivative (2.65), we get

iutt (t, s) + s2 (aut (t, s) – but (–t, s)) = –ieitq(s) + s2
(

iaeit – ibe–it
)

q(s). (2.66)

Putting –t instead of t into equation (2.65), we get

iut (–t, s) + s2 (au(–t, s) + bu(t, s)) = –e–itq(s) + s2
(

ae–it + beit
)

q(s). (2.67)

Multiplying equation (2.66) by (–i) and equation (2.67) by
(

–bs2
)

, we get

utt (t, s) – s2aiut (t, s) + is2but (–t, s) = –eitq(s) + s2aeitq(s) – s2be–itq(s).

–is2but (–t, s) – s4b(au(–t, s) + bu(t, s)) = s2be–itq(s) + s4b
(

ae–it + beit
)

q(s).

Adding last two equations, we get

utt (t, s) – s2aiut (t, s) – s4bau(–t, s) – s4b2u(t, s)

= –eitq(s) + s2aeitq(s) + bas4e–itq(s) – s4b2eitq(s).

Multiplying equation (2.65) by
(

as2
)

, we get

ias2ut (t, s) + a2s4u(t, s) + abs4u(–t, s) = –as2eitq(s) + a2s4eitq(s) + abs4e–itq(s).

Adding last two equations, we get the following problem
utt (t, s) +

(
a2 – b2

)
s4u(t, s) = eitq(s)

{
–1 +

(
a2 – b2

)
s4
}

,

u (0, s) = q(s), ut (0, s) = iq(s).

We have that

u(t, s) = uc (t, s) + up (t, s) ,

where uc (t, s) is the general solution of homogenous equation

utt (t, s) +
(

a2 – b2
)

s4u(t, s) = 0
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and up (t, s) is the particular solution of nonhomogenous equation. The auxillary equation is

p2 +
(

a2 – b2
)

s4 = 0.

There are three cases: a2 – b2 > 0, a2 – b2 = 0, a2 – b2 < 0. In the first case a2 – b2 = 0. Then

p1,2 = 0,0.

uc (t, s) = c1 + c2t.

In the second case p1,2 =±i
√

a2 – b2s2. Then

uc (t, s) = c1 cos
√

a2 – b2s2t + c2 sin
√

a2 – b2s2t.

In the third case p1,2 =±
√

b2 – a2s2. Then

uc (t, s) = c1e
√

b2–a2s2t + c2e–
√

b2–a2s2t.

Now, we will obtain the particular solution up (t, s) by formula

up (t, s) = A(s)eit.

Putting it into nonhomogenous equation, we get

–A(s)eit +
(

a2 – b2
)

s4A(s)eit = eitq(s)
{

–1 +
(

a2 – b2
)

s4
}

or {
–1 +

(
a2 – b2

)
s4
}

A(s) = q
{

–1 +
(

a2 – b2
)

s4
}

.

Therefore

A(s) = q(s)

and

up (t, s) = q(s)eit.

In the first case, we have

u(t, s) = c1 + c2t + q(s)eit.

Applying initial conditions, we get

u(0, s) = c1 + q(s) = q(s),
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ut (0, s) = c2 + iq(s) = iq(s).

From that it follows c1 = c2 = 0 and

u(t, s) = q(s)eit.

In the second case, we have

u(t, s) = c1 cos
√

a2 – b2s2t + c2 sin
√

a2 – b2s2t + q(s)eit.

Applying initial conditions, we get

u(0, s) = c1 + q(s) = q(s),

ut (0, s) = c2

√
a2 – b2 + iq(s) = iq(s).

From that it follows c1 = c2 = 0 and

u(t, s) = q(s)eit.

In the third case, we have

u(t, s) = c1e
√

b2–a2s2t + c2e–
√

b2–a2s2t + q(s)eit.

Applying initial conditions, we get

u(0, s) = c1 + c2 + q(s) = q(s),

ut (0, s) =
√

b2 – a2 (c1 – c2) + iq(s) = iq(s).

From that it follows c1 = c2 = 0 and

u(t, s) = q(s)eit.

Therefore,

u(t, s) = q(s)eit = eitF
{

e–x2}
and

u(t,x) = F–1
{

eitF
{

e–x2}}
= eite–x2

.
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Therefore,

u(t,x) = eite–x2
.

is the exact solution of problem (2.64).

Note that using similar procedure one can obtain the solution of the following problem

i∂u(t,x)
∂ t – a

n
∑

r=1
ar

∂ 2u(t,x)
∂x2

r
– b

n
∑

r=1
αr

∂ 2u(d–t,x)
∂x2

r
= f(t,x),

x = (x1, ...,xn) ∈ Rn, –∞ < t < ∞,

u(d
2 ,x) = ϕ(x),x ∈ Rn

(2.68)

for the multidimensional Schrödinger type involutory partial differential equations. Assume

that ar > a > 0 and f(t,x)
(
t ∈ I,x ∈ Rn) , ϕ(x)

(
x ∈ Rn) are given smooth functions.

However Fourier transform method described in solving (2.68) can be used only in the case

when (2.68) has constant coefficients.

49



CHAPTER 3

DIFFERENCE METHOD FOR THE SOLUTION OF SCHRÖDINGER TYPE

INVOLUTORY PARTIAL DIFFERENTIAL EQUATIONS

When the analytical methods do not work properly, the numerical methods for obtaining

approximate solutions of the local and nonlocal problems for the Schrödinger type involutory

partial differential equations play an important role in applied mathematics. In this chapter,

we study the numerical solution of the initial boundary value problem

i∂u(t,x)
∂ t – uxx(t,x) – uxx(–t,x) = e–it sinx,

0 < x < π, –π< t < π,

u(0,x) = sinx, 0≤ x≤ π,

u(t,0) = u(t,π) = 0,–π≤ t≤ π

(3.1)

for the Schrödinger type involutory partial differential equation. The exact solution of this

problem is u(t,x) = eit sinx. For the numerical solution of the problem (3.1), we present

first order of accuracy difference scheme. We will apply a procedure of modified Gauss

elimination method to solve the problem. Finally, the error analysis of first order of accuracy

difference scheme is given.

For the numerical solution of the problem (3.1), we present the following first order of

accuracy difference scheme
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uk
n–uk–1

n
τ

– uk
n+1–2uk

n+uk
n–1

h2 – u–k
n+1–2u–k

n +u–k
n–1

h2

= e–itk sinxn, tk = kτ,xn = nh,Nτ = π,Mh = π,

–N + 1≤ k≤ N, 1≤ n≤M – 1,

u0
n = sinxn, 0≤ n≤M,

uk
0 = uk

M = 0, – N≤ k≤ N.

(3.2)

We will write it in the following boundary value problem for the second order difference

equation with respect to n
Aun–1 + Bun + Cun+1 = φn, 1≤ n≤M – 1,

u0 = 0, uM = 0.

(3.3)

Here, A,B,C are (2N + 1)× (2N + 1) square matrices and us, s = n,n± 1,φn are (2N + 1)× 1

column matrices and

A = C =



0 0 0 · 0 0 0 · 0 0 0

0 a 0 · 0 0 0 · 0 a 0

0 0 a · 0 0 0 · a 0 0

· · · · · · · · · · ·

0 0 0 · a 0 a · 0 0 0

0 0 0 · 0 2a 0 · 0 0 0

0 0 0 · a 0 a · 0 0 0

· · · · · · · · · · ·

0 0 a · 0 0 0 · a 0 0

0 a 0 · 0 0 0 · 0 a 0

a 0 0 · 0 0 0 · 0 0 a


(2N+1)×(2N+1)

,
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B =



0 0 0 · 0 0 0 · 0 0 0

b d 0 · 0 0 0 · 0 c 0

0 b d · 0 0 0 · c 0 0

· · · · · · · · · · ·

0 0 0 · d 0 c · 0 0 0

0 0 0 · b d + c 0 · 0 0 0

0 0 0 · c b d · 0 0 0

· · · · · · · · · · ·

0 0 c · 0 0 0 · d 0 0

0 c 0 · 0 0 0 · b d 0

c 0 0 · 0 0 0 · 0 b d


(2N+1)×(2N+1)

,

φn =



sinxn

e–it–N+1 sinxn

·

e–itN–1 sinxn

e–itN sinxn


(2N+1)×1

, us =



u–N
s

u–N+1
s

.

uN–1
s

uN
s


(2N+1)×1

,

where a = – 1
h2 , b = – i

τ
, c = 2

h2 and d = 2
h2 + i

τ
. For obtainig {un}Mn=0we have the following

algorithm

un = αn+1un+1 +βn+1, n = M – 1, ...,0,uM = 0, (3.4)

αn+1 = –(B + Cαn)–1 A,α1 = 0,

βn+1 = (B + Cαn)–1 (
φn – Cβn

)
, β1 = 0,n = 1, ...,M – 1.

of the numerical solutions, where u(tk,xn) represents the exact solution and uk
n represents

the numerical solution at (tk,xn) and the results are given in the following table

Table 3.1: Error analysis

Difference Scheme 20,20 40,40 80,80 160,160

EuN
M 0.5088 0.2578 0.1293 0.0647
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As it is seen in Table 3.1, we get some numerical results. If N and M are doubled, the

value of errors between the exact solution and approximate solution decreases by a factor of

approximately 1/2 for first order difference scheme.
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CHAPTER 4

CONCLUSION

This thesis is devoted to initial boundary value problem for Schrödinger type involutory

differential equations:The following results are obtained:

• The history of involutory differential equations is given.

• Fourier series, Laplace transform and Fourier transform methods are applied for the

solution of six Schrödinger type involutory partial differential equations.

• The first order of accuracy difference scheme is considered for the approximate

solution of the one dimensional Schrödinger type involutory partial differential

equation with Dirichlet condition.

• The Matlab implementation of the numerical solution is presented.
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APPENDIX  

MATLAB PROGRAMMING 
 

Matlab programs are presented for the first order of approximation two-step difference 

scheme for M=N. 

function mmmmm(N,M) 

if nargin;1;end; 

close;close; 

%first order 

N=20; 

M=20; 

tau=pi/N; 

h=pi/M; 

a=-1/(h^2); 

b=-i/tau; 

c=2/h^2; 

d=i/tau+2/h^2; 

A=zeros(2*N+1,2*N+1); 

for k=2:N; 

A(N+1,N+1)=2*a; 

A(k,k)=a; 

A(k,2*N+2-k)=a; 

end; 

for k=N+2:2*N+1; 
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A(k,k)=a; 

A(k,2*N+2-k)=a; 

end; 

A; 

C=A; 

B=zeros(2*N+1,2*N+1); 

B(1,N+1)=1; 

for k=2:N; 

B(k,k-1)=b; 

B(N+1,N+1)=c+d; 

B(N+1,N)=b; 

B(k,k)=d; 

B(k,2*N+2-k)=c; 

end; 

for k=N+2:2*N+1; 

B(k,k)=d; 

B(k,2*N+2-k)=c; 

B(k,k-1)=b; 

end; 

B; 

D=eye(2*N+1,2*N+1); 

for j=1:M+1; 

for k=2:2*N+1; 

fii(k,j)=exp(-(k-1-N)*tau*i)*sin((j-1)*h); 
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end; 

fii(1,j)=sin((j-1)*h); 

end; 

alpha{1}=zeros(2*N+1,2*N+1); 

betha{1}=zeros(2*N+1,1); 

for j=2:M; 

Q=inv(B+C*alpha{j-1}); 

alpha{j}=-Q*A; 

betha{j}=Q*(D*(fii(:,j))-C*betha{j-1}); 

end; 

U=zeros(2*N+1,M+1); 

for j=M:-1:1; 

U(:,j)=alpha{j}*U(:,j+1)+betha{j}; 

end 

'EXACT SOLUTION OF THIS PROBLEM'; 

for j=1:M+1; 

for k=1:2*N+1; 

es(k,j)=exp((k-1-N)*tau*i)*sin((j-1)*h); 

end; 

end; 

%.ERROR ANALYSIS.; 

maxes=max(max(abs(es))); 

maxerror=max(max(abs(es-U))) 

relativeerror=maxerror/maxes; 
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cevap1=[maxerror,relativeerror] ; 

%figure; 

%m(1,1)=min(min(abs(U)))-0.01; 

%m(2,2)=nan; 

%surf(m); 

%hold; 

%surf(es);rotate3d;axis tight; 

%title('Exact Solution'); 

%figure; 

%surf(m); 

%hold; 

%surf(U);rotate3d;axis tight; 

%title('FIRST ORDER'); 


