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ABSTRACT

In the present study, a Schrédinger type involutory differential equation is investigated.
Using tools of classical approach we are enabled to obtain the solution of the Schrodinger
type involutory differential equations. Furthermore, the first order of accuracy difference
scheme for the numerical solution of the Schrodinger type involutory differential
equations is presented. Then, this difference scheme is tested on an example and some

numerical results are presented.

Keywords: Involutory differential equations; Fourier series method; Laplace transform
solution; Fourier transform solution; Difference scheme; Modified Gauss elimination

method



OZET

Bu calismada Schrodinger tipi involiisyon diferansiyel denklemi incelenmistir. Klasik
yaklagim araglarmi kullanmak Schrodinger tipi involiisyon diferansiyel denklemlerin
¢coziimiinli elde etmemize olanak tanir. Ayrica, Schrodinger tipi involiisyon diferansiyel
denklemlerin niimerik ¢Oziimii i¢in birinci basamaktan dogruluklu  fark semasi
sunulmustur. Daha sonra, bu fark semas: bir 6rnek iizerinde test edilip bazi sayisal

sonuclar verilmistir.

Anahtar Kelimeler: Involiisyon diferansiyel denklemler; Fourier serisi yontemi; Laplace
doniisiimii ¢oziimii; Fourier donilisiimii ¢6ziimii; Fark semasi; Modifiye Gauss eleminasyon

yontemi
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CHAPTER 1
INTRODUCTION

Time delay is a universal phenomenon existing in almost every practical engineering
systems (Bhalekar and Patade 2016; Kuralay, 2017; Vlasov and Rautian 2016; Sriram and
Gopinathan 2004; Srividhya and Gopinathan 2006). In an experiment measuring the
population growth of a species of water fleas, Nesbit (1997), used a DDE model in his

study. In simplified form his population equation was
N’(t) = aN(t—d) + bN(0).

He got into a difficulty with this model because he did not have a reasonable history function
to carry out the solution of this equation. To overcome this roadblock he proposed to solve
a ’time reversal” problem in which he sought the solution to an FDE that is neither a DDE,
nor a FDE. He used a "time reversal” equation to get the juvenile population prior to the
beginning time t = 0. The time reversal problem is a special case of a type of equation called

an involutory differential equation. These are defined as equations of the form

y (0 = f(6 y(0: y((©)), y(to) = ¥o. (1.1)

Here u(t) is involutory function, that is u(u(t)) =t, and ty is a fixed point of u. For the
“time reversal” problem, we have the simplest IDE, one in which the deviating argument is

u(t) = —t. This function is involutory since

u(u(t)) =u(-t) =—(-t) =t.

We consider the simplest IDE, one in which the deviating argument is u(t) = d —t.This
function is involutory since u(u(t)) = u(d—t),which is d—(d—t) =t. Note d—t is not the
”delay” function as t—d.

The theory and applications of delay Schrodinger differential equations have been studied in
various papers ( Agirseven, 2018; Guo and Yang, 2010; Gordeziani and Avalishvili, 2005;
Han and Xu, 2016; Chen and Zhou, 2010; Guo and Shao, 2005; Sun and Wang, 2018;



Nicaise and Rebiai, 2011; Zhao and Ge, 2011; Kun and Cui-Zhen, 2013; and the references
given therein).

The discussions of time delay issues are significant due to the presence of delay that normally
makes systems less effective and less stable. Especially, for hyperbolic systems, only a small
time delay may cause the energy of the controlled systems increasing exponentially. The
stabilization problem of one dimensional Schrodinger equation subject to boundary control
is concerned in the paper of Gordeziani and Avalishvili, 2005 .

The control input is suffered from time delay. A partial state predictor is designed for the
system and undelayed system is deduced. Based on the undelayed system, a feedback control
strategy is designed to stabilize the original system. The exact observability of the dual one
of the undelayed system is checked. Then it is shown that the system can be stabilized
exponentially under the feedback control.

It is known that various problems in physics lead to the Schrodinger equation. Methods of
solutions of the problems for Schrodinger equation without delay have been studied
extensively by many researchers (Antoine and Mouysset, 2004; Ashyralyev and Hicdurmaz,
2011; Ashyralyev and Hicdurmaz, 2012; Ashyralyev and Sirma, 2008;Ashyralyev and
Sirma, 2009; Eskin and Ralston, 1995; Gordeziani and Avalishvili, 2005; Han and Wu,
2005; Mayfield 1989-Serov and Piivirinta, 2006; Smagin and Shepilova, 2008, and the
references given therein).

In this study, Schrodinger type involutory partial differential equations is studied. Using
tools of the classical approach we are enabled to obtain the solution of the Schrodinger
type involutory differential problem. Furthermore, the first order of accuracy difference
scheme for the numerical solution of the initial boundary value problem for Schrodinger
type involutory partial differential equations is presented. Then, this difference scheme is
tested on an example and some numerical results are presented.

The thesis is organized as follows. Chapter 1 is introduction. In Chapter 2, a Schrodinger
type involutory ordinary differential equations is studied and Schrodinger type involutory
partial differential equations are investigated. Using tools of the classical approach we are

enabled to obtain the solution of the several Schrodinger type involutory differential



problems. In Chapter 3, numerical analysis and discussions are presented. Finally, Chapter

4 is conclusion.



CHAPTER 2
METHODS OF SOLUTION FOR SCHRODINGER TYPE INVOLUTORY
PARTIAL DIFFERETIAL EQUATIONS
2.1 Schrodinger Type Involutory Ordinary Differential Equations
In this section we consider the Schrodinger type involutory ordinary differential equations
iy'(t) = f(t; y(0; y(u(1))), y(to) = yo- 2.1)

Here u(t) is involutory function, that is u(u(t)) = t, and tg is a fixed point of u.

Example 2.1.1. Solve the problem

iy/(t) = Sy(—)+4y(t) on I=(—co,00), y<g>=o.

Solution. We will obtain the initial value problem for the second order differential equation

equivalent to given problem. Differentiating this equation, we get
o / /
ly () ==5y (n—-t)+4y (0.
Substituting n—t for t into this equation, we get
iy (t—t) = Sy(0) + 4y (n—1).

Using these equations, we can eliminate the terms of y(t—t) and y/(rc—t). Really, using

formulas
! 1
y (n—t)= 1 {5y(t) +4y(n-t)},
1
y(r-t) = g(iy (O -4y(V),
we get
" 1 4 /
iy’ (0= {;25y(t> += (iy O-4y0) } (1) +4y(0

or

y () =9y(1).

4



Using initial condition y(5) = 0 and equation, we get
. T T T
—)=5y(=)+4y(=)=0
1y (5)=3y(5)+4y(5)
or
/ T[
-)=0.
y3)
Therefore, we have the following initial value problem for the second order differential
equation
" T ;T
y 0-9(®)=0.teLy(z)=0.y(5)=0.
The auxiliary equation is
m?-9=0.
There are two roots m; = 3 and mp =—3. Therefore, the general solution is

3 3t

y(t) =cje’t +cret.

Differentiating this equation, we get
y(t) = 30163t—302e_3t

Using initial conditions y(5) = 0 and y'(5) = 0, we get

3 3n

cie2 +cpe” 2 =0,

3n _3n
3cie2 —3cpe 2 =0.

Since
3n _3n
e?2 e 2
A= 5 i =-3-3=-6+#0,

3eTTE —3e 2

we have that ¢| = ¢y =0. Therefore, the exact solution of this problem is
y(t)=0.
Example 2.1.2. Obtain the solution of the problem
iy'(t) =by(n—t) +ay(t)+f(t) onI= (—oo,oo),y(g) =1. (2.2)

5



Solution. We will obtain the initial value(2.2) problem for the second order differential

equation equivalent to given problem. Differentiating this equation, we get
iy" (t) = =by' (=) +ay’(t) + £ (©). (2.3)
Substituting t—t for t into equation (2.2), we get
iy/(n—t) = by(t) + ay(n—t) + f(n—t).
Using these equations, we can eliminate the y(rt—t) and y/(n—t) terms. Really, using formulas

1
y(n-t)= - {by(t) +ay(n—t) +f(n—1)},

iy’ () —ay () —1£(t)
- ,

y(-t)=

we get
iy’ (0 —ay () —f(t)
b

iy (t)=bi {by(t) +a [ } +f(Tc—t)} ray' (0 +£ (1)

or

N / 2. . . /

1y (t) =1b%y(t)—ay'(t)—a“iy(t)—aif(t) + bif(n—t) +ay (t) + f(1).
From that it follows

" 2 2 _ f/
y ()—(b”—a”)y(t) = —af(t) + bf(n—t)—if (t). 2.4)
Putting initial condition y(%) =1 into equation (2.2), we get
iy/(g) = a+b+f(g)
or
y’(g) =i {a+b+f(g)} .

We denote
F(t) = —af(t) + bf(x—t) —if (t). (2.5)

Then, we have the following initial value problem for the second order ordinary differential

equation
y (-2 —ad)y() = F),t € I,y(g) = 1,y’(§) =i {a+b+f(g)} . (2.6a)

6



Now, we obtain the solution of equation (2.6a). There are three cases: a?-b% > 0, a?-b?=
0,a2-b% < 0.

In the first case a2 —b? =m? > 0. Substituting m? for a?—b? into equation (2.6a), we get
" 2
y (©)+m7y(t) = F().
We will obtain Laplace transform solution of equation (2.6a), we get
s2y(s)—~sy(0)-y'(0) +m*y(s) = F(s)

or
(s2 +m?)y(s) = sy(0) +y'(0) + F(s).
Here and in future

F(s) =L{F(®)}.

Then,
1 1
Y9 = 5 5¥0)+ 5y (0)+ 5 F(). 2.7)
Applying formulas
s 1 1 N 1 1 1 1
s2+m2 2 [s+im s—im|’s24+m? 2im |s—im s+im]’
we get
1 1 1 1
= + 0)+ - ‘0
ye) 2 [s+im s—im] y(©) 2im [s—im s+im} y )
1 1 1
+ { ——— }F(S)-
2im [s—im Ss+im
Applying formulas

t
: 1 : 1
L {e:tnnt} _ L / e:l:lm(t—y)l::(y)dy — —F(s)
SFim SFim
0

and taking the inverse Laplace transform, we get

1 . . 1 ' '
y(t) = 5 [e—lmt + elmt] y(0) + S [elmt_ e—lmt] ¥ (0)

t
+.L / [eim(t—y) _e—im(t—y)} F(y)dy.
2im



Using formulas

cos(mt) =

| =

we get

t
y(t) = cos(mt )y(0)+ l sin (mt )y’(O) + l / sin (m(t—y)) F(y)dy.
m m ;

Now, we obtain y(0) and y’(0). Taking the derivative, we get

t
y' (t) =—msin(mt ) y(0) + cos (mt) y’(O) + / cos (m(t—y))F(y)dy.
0

Putting F(y) = —af(y) + bf(n—y) —if’ (y), we get

y(t) = cos (mt) y(0) + é sin (mt)y’(0)

t
1 . )
- / sin (m(t—y)) [-af(y) +bf(z—y)—if (y)] dy.
0

y'(t) =-msin(mt) y(0)+ cos(mt) y/ 0)
t

+ / cos (m(t—y)) [-af(y) + bf(n—y)—if (y)] dy
0
Substituting % for t into equations (2.8)and (2.9) gives us

y( )= cosm2 y(0)+ l smm— (0)

I

2
1 . T ;
+ / sin m(i ~y) [-af(y) +bf(n-y) - 1f’(y)] dy,

y'(E) = —msinmg y(0)+cosmg y'(O)

+

\Nm

cos m(— —y) [-af(y) +bf(n—y)-if (y)] dy
Applying initial conditions y(z) =1,y (Z) =-i {a+b + f(%)}, we obtain

cos (5F) y(0)+%sin () ') =1-0y,

—msin (5F) y(0)+cos (%) y'(0) =—i {a+b+£(5)} —ap.

8
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[e—lmt + elmt} ,sin(mt )=2_ [elmt _ e—lmt} ,
1

(2.8)

2.9



Here

%
1
= / sin (m(3 -y) ) [-af(y)+bf(r—y)-if (v)] dy.
0

%
" / cos (m(3 -y)) [-af(y) +bf(z-y)~if ()] dy.
0

Since
T . T
= cos? mi +sin? mE =10,

we have that
Ay _ -0y Lgin (%)
A | Si{a+b+f(§)} -y cos(TE)

y(0) = cos (%) 1=oy] + —sin (?) [—i {a+b+f(g)} —0(2] :

m
A cos (1T 1-a
yo=5=| <08 1
—msm(TT[) —1{a+b+f(%)}—oc2

Y/ =-cos (57) [i{a+b+f) | +on | +msin () [1-a].

y(t) = cos (mt) {COS (%)

Putting y(0) and y’(0) into equation (2.8), we get
1 ) )
{ 1-— [sin (m(g —y)) [~af(y) +bf(r—y)—if ()] dy}
1 . /mz ) T
+5 sin (7) {—1 {a+b+f(§)}
cos (m(g —y)> [~af(y) +bf(r—y)—if (y)] dy} }

—i sin (mt) {cos (?) [i {a+b+f(g)}

cos (m(g -y)> [~af(y)+bf(r—y)—if (y)] dy]

O\N\:I

O\N\Fl

+

O\I\)\:I

9



e

2

+msin (%) { 1_rr11 sin (m(g —y)) [~af(y) +bf(x—y)—if (y)] dy} }

0

t
1 ) .
T / sin(m(t-y)) [-af(y)+ bf(x—y)-if (v)] dy

1
—cosmtcosm?+—cosmts1nm— [ {a+b+f(< )}
m

1
—— sinmtcos mr [i{a+b + f(—)] +sinmtsin me
m 2 2

iy

[\

—cosmtcos? sm—(——y) —af(y)+bf(7t y)— 1f’(y)}
0

e

1 ) .
+5 cosmtsin % /cos m(g -y) [—af(y) +bf(n-y)— 1f/(y)] dy

1 . mn
——sinmtcos

T )
- - cos m(z -y) [—af(y) +bf(n—-y)— 1f’(y)} dy

DO~ O

—sinmtsin % / sin m(g -y) [—af(y) +bf(t—y)- if/(y)] dy

1 ) -l
- / sinm(t-y) [~af(y) +bf(n—y)-if (y)] dy

. 1 . I8 . T
=cosm(t— §)+ - smm(z—t) [1{a+b+f(§)]

z

1 . )
——cos m(t— g) / sin m(g —y) [af(y) +bf(z—y) - if’ (y)] dy

s

1 . .
+a sin m(g —t) / cos m(g -y) [—af(y) +bf(t-y)— 1f’(y)] dy
0

t
1 i .
+5 / sinm(t—y) [—af(y) +bf(n—y) —lfJ(Y)] dy

10



= cosm(t— g)+ i sinm(g—t) [i{a+b+f(g)]

Y

2
1 ) )
- O/ sinm(t-y) [—af(y) +bf(n—-y)— lf’(Y)} dy

t
1
+a / sinm(t—y) [—af(y) +bf(n—y)- if’ (y)} dy.
0
Therefore, the exact solution of this problem is

1 . )
y(t) = cosm(t— g) + - smm(g —1) [1{a+b+f(g)}

2
1 / sinm(t—y) [-af(y) +bf(n—y)—if (y)] dy. (2.10)
m t
In the second case a2 —b? = 0. Then,
y (6 =F(). (2.11)
Applying the Laplace transform, we get
s7y(s) —sy(0)—y'(0) = F(s).
Then
1 1, 1
¥(8) = —y(0) + —y'(0) + — F(s).
S S S
y() =yO)L{1}+ y'(OL{t} +L{t} F(s)

Taking the inverse Laplace transform, we get

t
y(®) = y(0)+ ty'(0) + / (t-y)F(y)dy. (2.12)
0

From that it follows

t
Y1) =y (0)+ / F(y)dy.
0

Applying initial conditions y(5) = 1,y'(5) =—i{a+b+f(5)}, we obtain

1= y(g) = y(0)+g y'(0)+ (g —y> F(y)dy,

O\Nm

11



T

S {a+b+f(g)} = y'(g) = y’(0)+/F(y)dy-
0
Therefore,

%
Y0 =-i{a+b+i5) /F(y)dy,
0

s

y)=1-3 —i{a+b+f<§>}—0/2F(y>dy - [ (5-v)Foay

o\..wm

s

—1+ gi {a+b+f(g)} +0/2yF(y)dy.

Putting y(0) and y’(0) into equation (2.12), we get

)

2
y(t)—l+21 a+b+f( ) +/yF(y)dy
0

+t —i{a+b+f<§>}—/2F<y>dy +/<t—y)F(y)dy
0 0

e}

:1+(g—t> a+b+f( ) /2( y)F(y)dy+/(t—y)F(y)dy
0 0

T

—1+ (g—t> i{a+b+f(g)}—/(t—y)F(y)dy.
t

In the third case a2 —b? =m? < 0. Substituting —m? for a2 —b? into equation (2.6a), we get

" 2
y (O—m~y(t) = F(V).
Applying Laplace transform, we get
2 / 2 —
s7y(s)—sy(0) -y (0)—m~y(s) = F(s)

or

1 1
Y8 = 5= Y0+ 5=y 0+ 5 FGs).

12



Applying formulas

S 1{ 1 N 1 1
2-m? 2 |s+m s-m) s2—m2
1 1
" 2m |s—m s+m
we get
1
yo) =5 {—+ ] y(0)
1 1 1
— - 0 +— F(s).
2m [s—m s+m ]Y( ) [ s+m1 (®)
Applying formulas
1 / 1
L +mt =—,L / :tm(t—y)F d =—F
{em™} sEm e (y)dy sTm (s)

0

and taking the inverse Laplace transform, we get

t mt 1 mt —mt
[ e y(0)+ 5 [e™ -]y '0)

NI'—‘

y(© =

t

+L / [em(t—}’)_e—m(t—Y}] F(y)dy.
2m

0
Using formulas

cosh (mt) :% [e™ +e™], sinh(mt ):% [eM™—e™™],

we get
t

1 1
y(t) = cosh(mt ) y(0) + — sinh (mt )y’ 0)+— / sinh (m(t—y)) F(y)dy.
m m
0
Now, we obtain y(0) and y’(0). Taking the derivative, we get

t

y/(t) =-—msinh(mt ) y(0) + cosh (mt) y' O)+ / cosh(m(t—y))F(y)dy.
0

Putting F(y) = —af(y) + bf(n—y)—if' (y), we get

y(t) = cosh (mt) y(0) + i sinh (mt) y’(0)

13



+$ / sinh (m(t-y)) [-af(y) +bf(r—y)—if'(y)] dy, (2.13)

y'(t) = msinh (mt) y(0)+cosh(mt) y’(0)
t

+ / cosh(m(t—y)) [—af(y) +bf(n—-y)— if'(y)} dy. (2.14)
0
Substituting % for t into equations (2.13)and (2.14), we get

1
y(5) = coshm’ y(0)+ — sinhm~ y'(0)
2 2 m 2

2
1 . T .
+5 / sinh m(i -y) [—af(y) +bf(n—y)—1f/(}’)} dy,

y’(g) = msinhmg y(0)+ coshmg y/(O)

+ [ cosh m(g —y) [-af(y) +bf(r—y)-if'(y)] dy

o\mm

Applying initial conditions y(5) = 1,y'(5) =i {a+b+ f(%)}, we obtain

cosh (M) y(0)+ - sinh (%) y'(0) = 1-0,

msinh (5%) y(0)+cosh (%) y'(0) =—i {a+b+£(5)} —ap.

Here -
1 / . T .
e o) s o
0
%
oy = / cosh (m(5 -y) ) [-af(y)+bf(x-y)-if ()] dy
0
Since
cosh (M) Lgipp (M2
A= ( 2 ) m ( 2 ) :coshzmg —Sinhzmg:1?/0,
. m m
msinh (%) cosh (%5%)
we have that
Ay 1—ay o sinh (%3F)

y(0)=—== "
A | Sifa+b+f(5)} -y cosh ()

14



y(0) = cosh (%) [—ay] + i sinh (?) [—i {a+b+f(g)} —0(2} ,

cosh (%5%) 1-oy
I

m

y)=—-=
msinh(T) —i{a+b+f(%)}—oc2

A

y'(© =-cosh (57 ) [i{a+b+3) | +on| ~msinh (55) [1-1].

Putting y(0) and y/(0) into equation (2.13), we get

y(t) = cosh(mt) {cosh (%)

{ _i /2 sinh (——y) —af(y)+bf(ﬂ—}’)—if/ ¥)] dy}
0
+$ sinh (?) {—i{a+b+f(g)}
/2 cosh m(——y) —af(y)+bf(n—y)—if’(y)} dY}}
0
+$ sinh (mt) {—COSh (%) {i {a+b+f(g)}

3
+ / cosh (m(; —y)) [—af(y) +bf(n-y) —if’(y)} dy }
0

o\mm

—msinh (m) {1l
2 m

t
1 i )
+E / sin(m(t—y)) [—af(y) +bf(nt-y)- 1f’(y)} dy

sin <m(g _ y)> [~af(y)+bf(rt—y)—if (y)] dy } }

1
= coshmtcosh%— i~ coshmtsmh— [ {a+b+f(< )}

1
- s1nhmtcosh— [ {a+b+f(< )} —smhmtsmh—
m 2 2

T

—coshmtcosh mT sinh %(g —y) [-af(y) +bf(n—y)—if'(y)| dy

o\mm
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- cosh mt smh cosh m(— -y) —af(y) +bf(n—y)—if (y)]

— smh mt smh

%
>/
%
- smh mt cosh / cosh m(— -y) —af(y) +bf(n—y)—1if (y)]
0
%
/ sinh m(— —y) [-af(y) +bf(r—y)-if'(y)] dy
0

t

1 ) .
+E / sinhm(t—y) [—af(y) +bf(n-y)— 1f’(y)} dy

. 1 . T . T
= coshm(t-3)-—sinhm(5 -0 [1{a+b+f(§)}

1 5
~— coshm(t- g) / sinh m(g —y) [Faf(y) +bf(x—y)—if'(y)] dy

I

1 . )
- sinh m(g —t) / cosh m(g -y) [—af(y) +bf(nt-y)- if’ (y)} dy

t
1 . )
+E / sinhm(t—y) [—af(y) +bf(n-y)- lf/()’)} dy

. 1 . T . T
= coshm(t— 5)_ - smhm(z —t) [1{a+b +f(§)}

I

2
1 7. .
— / sinhm(t-y) [-af(y) +bf(n—y)—if’ (y)] dy
0

t
1
+— / sinhm(t-y) [-af(y) + bf(r—y)—if (y)] dy
m
0
Therefore, the exact solution of this problem is

(O =coshm(t-2) - sinhm(C -1 [ifa+b+1C)

2
1 ) .
0 t/ sinhm(t—y) [—af(y)+bf(rc—y)—1f/(y)} dy
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2.2 Schrodinger Type Involutory Partial Differential Equations

It is known that initial value problems for Schrodinger type involutory partial differential
equations can be solved analytically by Fourier series, Laplace transform and Fourier
transform methods. Now, let us illustrate these three different analytical methods by
examples.

First, we consider Fourier series method for solution of problems for Schrodinger type

involutory partial differential equations.

Example 2.2.1. Obtain the Fourier series solution of the initial boundary value problem
P2UES) _auy (1, %)~ bugx (T—t,%) = (—1 +a)eitsin (x)—be tsin (x),

X € (0,m),—00 <t < o0,
(2.15)

u(3,x) =isin(x), x € [0,],

\ u(t,0) =u(t,m) =0,t € (—oo,0)

for one dimensional idempotent Schrédinger’s equation.

Solution. In order to solve this problem, we consider the Sturm-Liouville problem
—u”(x)-hu(x) =0, 0 < x < 7,u(0) = u(r) = 0.

generated by the space operator of problem (2.15). It is easy to see that the solution of this

Sturm-Liouville problem is
M =k2, u(x) =sinkx, k=1,2,....
Then, we will obtain the Fourier series solution of problem (2.15) by formula

u(t,x) = Z Ax(t) sinkx,
k=1
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Here Ay (t) are unknown functions. Applying this equation and initial condition, we get

i} Aj®sinkx+a ) k*Ap(®sinkx+b Y K2Ay(n—t)sinkx
kzl k:l k:l

=(-1+a) ellsin x)— beitsin x).

Y A (5 ) sinkx = isin(o),x € 0,7,
k=1 2

u(g,x) = isin(x), x € [0,7].
Equating coefficients sinkx,k = 1,2,... to zero, we get

IA](D+aA (D) +bA (t-t) = (-1 +a) et _pe-it,

A1 (3) =i,

1A} () —ak? A () —bK2 Ay (1—t) = 0,k # 1,

Ak (3) =0.
We will obtain A(t). Taking the derivative (2.16), we get

Al +aAl (O-bA | (n—t) =i (-1 +a)e! +ibe .
Putting t—t instead of t, we get
A} (—t) +aA | (n—) +bA | (1) = (-1 +2)e("V _pe (0,

Multiplying equation (2.18) by i and equation (2.19) by b, we get

_A/l/(t) + aiA/1 (t) —biA/l (n—t)=—(-1+a) elt _perit,

ibA] (n—t) +abA | (n—1)+b%A| (1) = b(~1 +a)e!("V _p2e 1D,

Adding last two equations, we get
~AY(®) +aiA] () +abA | (n—t) +b2A (D)
=—(-1+a)e'—be U+ b (=1 +2)e! TV _p2e i,
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Applying formulas
e (70 = ¢TIl = (cos (—m) +isin (-m)) et = —el!,

el™ = elTe it = (cos (n) +isin (n)e ' = — 7T,

e+i% = CO0S (g) +1sin (g) =1,

e_i% =cos <E> —18in (E) =,
2 2

—AY (0 +aiA] () +abA | (n—t) +b*A (1) = (1—a+b?)el —abe .

we get

Multiplying equation (2.16) by (-a), we get
—aiA ()—a?A; (D-abA;(z—1) = (a—a?) e +abe ™.
Then, adding these equations, we get
~Af O+ (b2-a?) A0 = (b —a?+ 1) e
or
A+ (a2-67) A0 = (a2-b7-1) . (2.20)
Substituting % for t into equation (2.16), we get

iA] (g) +aA, (g) +bA, (n—g> = (-1+a)el(3) _pei(3)

or

iA] (g) +ai+bi=(~1+a)i+bi.

4 (5)=n

Therefore, we get the following problem

A+ (a2-b7) Aj0 = (a2-b7-1) ", A (g) =i, A" (g) =1

Then

There are three cases : aZ—b? > 0, a’-b’= 0, a2—b% < 0.
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In the first case a2—b? = m?2 > 0. Substituting m? for a2—b? into equation (2.20), we get
Al +m2A; () = (az—b2 - 1) elt. 2.21)
We will obtain Laplace transform solution of problem (2.21), we get

s2A1(s)—sA1(0)— A’ (0)+m2A () = <a2 b 1) eis.

or
(s2+mDA|(s) = sA; (0)+ A (0)+ <a2—b2— 1) oiS.
Then,
S 1 1 -
AL(8) = 5 AL (0)+ ———— A} (0 +—(a2—b2—1)e15.
1) s2 +m? 1©) 52 +m?2 1©) s2 +m?
Applying formulas
s 1 1 N 1 1 1 1
s24m?2 2 |s+im s—im]’s24+m2 2im |s—im s+im|’
we get
1 1
Ai(s)=~ A0 - AL
1) 2[s+im+s—im] i )+2im [s—im s+im] 1©)

1 1 1 :
+— [ — - — } (az—b2—1> e's.
2im | s—1im S+1m

Taking the inverse Laplace transform, we get

1

1r - : : :
A =5 [ ™™ A O+ 5 [¢™ -] Aj(0)

(22-02-1) £ | |

+T / [elm(t—y) _ e—lm(t—y)} ely dy.
0

Applying formulas

: . . 1. .
[e—lmt + elmt} sin(mt ):? [elmt_ e—lmt} ’
i

| =

cos(mt) =

we get

Aj(t)=cos(mt )A;(0)+ i sin (mt )A’l 0)

a2-b2-1) ! .
+u / sin(m(t—y))eYdy. (2.22)
o 0
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Now, we obtain A{(0) and A’1 (0). Taking the derivative, we get

Al (t) =-msin(mt ) A{(0)
t
+cos (mt) A}(0)+ <a2 b3 - 1) /cos (m(t—y))e'Ydy.
0
Substituting % for t into equations (2.22)and (2.23), we get

Al( )= cos<n; )Al(O)
+rLs1n(H; )A/(O)+ i 1 /281 ) eYdy,
0

AL C )-—msm(n; >A1(O)+cos<n; )A’(O)

() fem (G )

Applying initial conditions A (%) =1,A (%) =-1, we obtain

O\mm

—_—~

cos (M) A1 (0) + L sin (BF) A}(0) =i-ay,

—msin (%) A;(0)+cos (5F) A} (0)=-1-ay.

Here )
2 2 2
(a P _1> jsin(m(n ))eiyd
= —_—
0
%
Tt .
oy = (az—bz—l) /cos (m (E—y» eYdy.
0
Since
1 .
A= . (%) m S0 (%) = cos?m= +sin’m= = 1 Z0
—msin (53%)  cos (%F) 2 2
we have that
. 1 .: (/mx
A 1-01 & Sin(—5-

~1-0y cos(5F)

21
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mrt

A1(0):c0s< : ) [i—ou] + ~sin (%) [1+y],

m

A cos (BF)  i-oy
/ e 2
AO="3 r

—msin (5F) -1-ap
AL (0) =—cos (57 ) [1+ay] +msin (- ) [i-a ]

Putting A{(0)and A’1 (0) into equation (2.22), we get

A (t) =cos(mt) ¢ cos (?) i—w/zsin <m <g—y)> eiydy
0

az—b2—1> t )
+ / sin(m(t—y))eYdy
m
0
R) 3
. (a -b —1) mr [ - iy
:lCOSITItCOS———COSI'IltCOS—/Sln <m <——y>>€ dy
2 m 2 2
0
2 12 3
| (2-02-1) Cmr - y
+—cosmtsm—+—cosmtsm—/cos (m (——y)) dy
m 2 2 2
0
2 12
, mn (a -b ‘1> : mr T iy
—sinmtcos — — sinmtcos — [ cos (m <——y>) dy
2 m 2 2

.. . m . .
—1sinmtsin 7 — <az—b2— 1> sinmtsin
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(a2—b2—1> t

- O/sm (m(t—y))e’dy

(az—bz—l)
m

+

1
= icosm(t—g)—asinm(t—g)_

(az—bz—l)

——— = sinm(t—
m

o

o

w

3

=2

T

N A

p—

O\wm

t

)

N A

O\N\:I

0
(az—b2—1> 3 )
S~ 7 i _ 1y
- /sm(m(t y))e~’dy
0

) Tt 1 . T
= t—=)+— ——0)—
1cosm( 2) smm(2 )

+w /t sin(m (t—y))e'Ydy
0

(az_bz_ 1) 2

t

1 .
=icosm(t—g)+asinm(§—t)— sin(m(t—y))eYdy.

Therefore, the exact solution of this problem is

<a2_b2_1> /ZSin(m(t—Y))eide-

t

1
Aq(t) =icosm(t— g)+ - sinm(g —t)—

It is easy to see that

Aq(D) = icos (i(t—g)) + ﬁ sin (i(g —t)) —icos (g —t) _sin (g—t

(i) dGiG0
=ie ’ ¢’ +e ’ C ’ =ie_1(§_t) =elt
2 2i

for m? = 1. Now, we obtain A (t) for m? % 1. We denote

I= / sin(m(t—y))eYdy.
We have that
1 . .
[=—sin(m(t—y))e" + 9 /cos (m(t—y))eYdy
i i

= %sin (m(t—y))e?Y —mcos(m(t—y))e"” +m2/sin (m(t—y))eYdy.
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Therefore,
1 . .
I (1 —m2) = —sin(m(t—y))e"Y —mcos(m(t—y))e"
i

or

I= ! 2{lsin(m(t—y))eiy—mcos(m(t_y))eiY}. (2.25)
1-m~ (1

Therefore,

ﬁ\mm

. 1 1 i i .
sin(m(t—y))eYdy = T~ {Y sin (m (t—%)) e'2 —mcos (m (t—%)) e'2 +me1t]

= 1—1m2 Eisin (m (t— g)) —micos (m (t— g)) +meit} (2.26)

Putting (2.26) into equation (2.24), we get

1
A(0) =icosm(t— g)+ — sinm(g—t)—

) (s o5 i o o)) o]

=icosm(t ﬂ)+1sinm(]T t)
B 2" 'm 2

A ()i o) o]

1
=icosm(t—g)+asinm(g—t)
1 L.
+E sin <m (t—%)) —icos (m (t—g)) +ell=¢lt,

INIO T

Therefore

It is easy to see that A(t) = elt for a2 —b% =0 and a2 —b? < 0.
Now, we will obtain Ay(t) for k # 1. We consider the problem (2.17). Taking the derivative
(2.17), we get
1A (1) +ak? AL () - bk A (1) = 0. (2.27)
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Putting t—t instead of t, we get
iAL(T—t) +aAg(nt—1)+bA(1) = 0. (2.28)
Multiplying equation (2.27) by i and equation (2.28) by bkZ, we get
~A} () +aik> Al (1) —ibk* Al (1—1) = 0,

ibk? A (1 —t) + abk? A (1—1) + b2k Ay (1) = 0.

Adding last two equations, we get
—A] () +aik> AL (1) + abk* Ay (=) + b7 K* Ay (1) = 0.
Multiplying equation (2.17) by (-ak?), we get
—aik? Al () —ak* Ay () —abk* Ay (n—t) = 0.
Then adding these equations, we get
-A{0- (2267 ) K* A =0

or

AL+ (267 KA =0. (2.29)

Substituting 5 for t into equation (2.17), we get

™ (g) +ak?Ay (g) +bk2A, <n—g> —0.

Then
Al (E) =0,
k{2

So, we have the following problem

AL+ (207 ) KA =0, A (3) =0.40(3) =o0.

There are three cases : a2—b2 > 0, a2—b? = 0, a2 —b2 < 0. In the first case a2 —b? =

m? > 0. Substituting m? for a>—b? into equation (2.29), we get
Al +m*k* A (t) = 0. (2.30)
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We will obtain Laplace transform solution of problem (2.30), we get

s2Ai(5)—5A(0)— AL (0) + m?k* A (s) = 0.

or
(s> +m?kH) Ay (s) = sA(0) + AL(0).
Then,
S 1
Ak(S) = ———=—AL(0)+ ———— AL (0).
Applying formulas
S 1 [ 1 N 1 } 1
$2+m2k* 2 |s+imk? s—imk?] s2+m2k?
1 { 1 1 }
2imk? [s—imk? s+imk? ]’
we get
1 1 1 1 1 1 p
Ax(s) == + Ar(0)+ — - Ay (0).
k=3 L+imk2 s—imkz] KO 2im L—imkz s+imk2} KO
Taking the inverse Laplace transform, we get
1r - . 1 . .
Ak(t) - _ |:e—1mk2t+elm_k2ti| Ak(O)'l‘ . 5 [elmkzt_e—lmkzt] Af((())
2 2imk
Applying formulas
cos (mk2t> _1 [e—imkzt N eimet} sin <mk2t ) _1 [eimkzt_e—imkzt}
2 ’ 2i ’
we get
1
Al() = cos <mk2t ) AK(O)+—sin (mkzt ) AL(0). 2.31)
m

Now, we obtain Ay (0) and A{((O). Taking the derivative, we get
AL =-mkZsin (it ) A(0)-+cos (mit) AL (). (2.32)

Substituting % for t into equations (2.31) and (2.32), we get

k2 1 mk?
Ak(g) = cos (% ) A0+ —sin ( : T ) AL(0),
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k2 S
AL =-mksin <m2 : ) A(0) +cos <m2 : ) ALO).

Applying initial conditions Ay (5) =0,A (5) =0, we obtain

cos (%) A (0) + % sin <m1§2“> AL0)=0,

~msin (25°T) A (0)+cos (25 ) Al (0)=0.

Since

mk’x | . mk’x
COS( > ) ﬁSln(T

A= : mk2n mk2n
—msm( > > COS( > )

) = coszmkzg +sin2mkzg =140,

we have that
0 —L sin (—mk2“>

AV 2 2
A(0)=— = mk =0,
A 0 cos (%27“)

k’n
A cos ( 5T 0
AL©)==1 = ( 2 ) =0.

A —mk?sin (%zn) 0

Putting Ai(0)and A} (0) into equation (2.31), we get

Ai(t) = cos <mk2t ) 0)+ ﬁ sin (mkzt ) (0) = 0.

It is easy to see that Ay (t) =0,k # 1 for a2-b%=0and a2-b? < 0.

Therefore,

t

u(t,x) =A(t)sinx = ellsinx

is the exact solution of problem (2.15).

Note that using similar procedure one can obtain the solution of the following initial
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boundary value problem

n
8u(tx) _a Z s 02 ;(th) b Z 02 u(d tx) = f(t, x),
X =(X{,....,Xn) € Q, —00 < t < oo,

(2.33)
u($.x) = p(x),x € 2,d >0,

\ u(t,x)=0,x € S,t € (—o0,0)

for the multidimensional involutory Schrodinger type equation. Assume that oy > o > 0 and
f(t,x) (t € (—o0,00),x € ), P(x) (t € (—o0,00),x € 1) are given smooth functions. Here and
in future €2 is the wunit open cube in the n-dimensional Euclidean space

R (0 < x¢ < 1,1 <k < n) with the boundary
S,Q=QuUS.

However Fourier series method described in solving (2.33) can be used only in the case

when (2.33) has constant coefficients.

Example 2.2.2. Obtain the Fourier series solution of the initial boundary value problem
( . .
i% —augx (t,X) —buxx (—t,X) = (=1 +a)e' cos (x) + be M cos (x),
X € (0,m),—00 < t < oo,
(2.34)
u(0,x) =cos(x), x € [0, ],

\ uX(t7 0) = uX(t’ TE) = O’t € (—oo, oo)
for one dimensional involutory Schrodinger’s equation.

Solution. In order to solve this problem, we consider the Sturm-Liouville problem
—u"(x)-2u(x)=0, 0<x <, ug(0)=ux(nx)=0
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generated by the space operator of problem (2.34). It is easy to see that the solution of this

Sturm-Liouville problem is
A = K2, u(x) = coskx, k=0,1,2, ...
Then, we will obtain the Fourier series solution of problem (2.34) by formula

u(t,x) = Z Ay (t)coskx,
k=0

Here Ay(t) are unknown functions. Applying this equation and initial condition, we get

i) Ap(tcoskx+a)’ k?Ag(t)coskx +b ) k2 Ay (~t) coskx
k=1 k=1 k=1

=(-1+a) el cos x)+ be it cos (x),

Z Ay (0)coskx = cos(x),x € [0,1].
k=1

Equating coefficients coskx,k =0,1,2,...to zero, we get

iAf () +aA (0 +bA| (<0 = (—1 +a)ell + be ™,

A (0)=1,

LA () +ak? A () +bK2A(-) = 0,k # 1,

A (0)=0.
We will obtain A(t). Taking the derivative of (2.35), we get

AT (0 +aAl () -bA|(—0) = i(-1 +a)elt—ibe I,
Putting —t instead of t, we get
A} (~t) +aA | (=) +bA | (1) = (=1 +a) 'Y —be ™Y,
Multiplying equation (2.37) by i and equation (2.38) by b, we get
plying eq y q y g
—A](t)+aiA| () —biA] (—t) = — (-1 +a)el +be T,
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ibA] (~t) +abA | (—t) +b? A1 (t) = b(~1 +a)e L+ bZel.

Adding last two equations, we get
—AY(0) +aiA] () +abA | () +b? A1 (t) = (1—a+b?)e! +abe 'L,
Multiplying equation (2.35) by (-a), we get
—ai A (t)—a%A () —abA | (-t) = (a—a2> eit —abe it
Then from these equations, we get
A0+ (bz—a2> Ay = <b2—a2 + 1) olt

or

AT+ (a-62) A0 = (a2-b7-1) . (2.39)
Substituting (0) for t into (2.16) equation, we get
iA] (0)+aA| (0)+bA | (0) = (-1 +2)e'@ +be @

iA](0)+a+b=(~1+a)+b.

or

A0 =i.

So, we have the following problem
A+ (-62) A1 0 = (2-b7-1) ", A1©) =1.A4](O) =i

There are three cases : a2—b? > 0, a’_b?= 0, a’—b2 < 0.

In the first case a2—b? =m? > 0. Substituting m? for a2—b? into equation (2.39), we get
Al +m?A = (a2 -b2-1) et (2.40)
We will obtain Laplace transform solution of problem (2.40). We have that

s2A(s)—sA1(0)— Al (0)+m2A;(s) = (az—bz—l) eis.

30



or

(2 +mDA() = A1 (0)+ A} (0)+ (a2 b7 1) &

Then,
AG) = 5 A+ 5 A0+ (P-b2-1) e
Z4m2 | 2+m2 1 s2 +m? '
Applying formulas
S 1 1 N 1 1 1 1 1
s2+m2 2 |s+im s—im|’ s2+m2 2im |s—im s+im|’
we get
1 1 1 /
AB) =5 | ——+—— | A1)+ ————| A}(0)
2 |s+im s—im 2im | s—im Ss+im
1 1 1 .
+— [ ——— ](az—b2—1> e's.
2im | s—im s+im
Applying formulas

t

, 1 , 1
L { ilmt} _ L / MY py)dy § = F
e sTim e (y)dy STim (s)
0

Taking the inverse Laplace transform, we get

1T e i 1 . _
A =3 [e im +elm}A1(O)+E [elmt—e lmt] A} (0)

(22-02-1) £, | |
+—/ |:elm(t_Y)_e=1m(t_Y)] el}Idy.

2im
0
Applying formulas

i i . 17 _
cos (mt) =3 [e ™ +e™ | sin(me )= [eM -]
1

| =

we get

I . / (az—b2—1> t- iy
Al(t):cos(mt)A1(0)+Es1n(rnt)A1(0)+T/sm(m(t—y))e dy. (2.41)
0

Applying initial conditions A; (0) =1, A’1 (0) =1, we obtain

(az—:—l) /

0

Aq(t) = cos(mt ) + ii sin(mt )+ sin(m(t—y))eYdy.
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It is easy to see that

Aq(t) =cos(£t)+ iﬁ sin(4t) = cos(t) +isin(t)

elt + e—lt ' e1t _ e—lt it
= 1 " =¢C
2 2i

for m? = 1. Now, we obtain Aq(t) for m? #1. Applying (2.25), we get
1 1 it _ it
Aj(t)=cos(mt )+i—sin(mt )—cos(mt )—i—sin(mt )+e" =¢e .
m m

So, Aj(t) = elt Tt is easy to see that Ay(t) = elt for a2 —b? = 0, a?-b% < 0.

Now, we will obtain Ay (t) for k = 1. We consider the problem (2.36), we get
IAY(t) +ak? Al () DK A (~t) = 0. (2.42)
Putting —t instead of t, we get
1AL (—t) + ak? Ay (—t) + bk? A (1) = 0. (2.43)
Multiplying equation (2.42) by i and equation (2.43) by bk2, we get
—A (1) +aik? Al () - bik> A (—t) = 0,
ibk? A (—t) +abk* Ay (—) + b7k Ay () = 0.
Adding last two equations, we get
—A (1) +aik? Al (t) + abk* Ay (—t) + b?k* A (t) = 0.
Multiplying equation (2.36) by (—ak?), we get
—aik? AL () —aZk* Ay () —abk* Ay (1) = 0.
Then from these equations, we get
~A{©- (22 -b?) Ax© =0

or

Al + (a2 —b2> Ap() = 0. (2.44)
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Substituting (0) for t into equation (2.36), we get
1A} (0)+ak?Ay (0)+bk?Ay (1—-0) =0
or
AL (0)=0.
We have the following problem
Al(t)+ (a2 —b2> A =0, A (0)=0,AL(0)=0.

From that it follows Ay (t) =0,k # 1. In the same manner Ay(t) =0,k # 1 for a2—b? = 0 and
a’-b% <0.
Therefore,

u(t,x) = Aj(t)cosx = el cosx

is the exact solution of problem (2.34).

Note that using similar procedure one can obtain the solution of the following initial

boundary value problem

i8u§tt,x)_a y r8 8u(t2x) b Z 02 u(d t,X) _ = £(t,X),

r=1

X =(X{,....,Xp) € Q, —00 < t < oo,
(2.45)
u($.x) = (x),x € 2,d >0,

% =0,X €S,t € (—o0,0)

for the multidimensional involutory Schrodinger type equation. Assume that o > o > 0 and
f(t,x) (t € (—o0,00),x € ), P(x) (t € (—o0,00),x € 1) are given smooth functions. Here and
in future m is the normal vector to S. However Fourier series method described in solving

(2.45) can be used only in the case when (2.45) has constant coefficients.
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Example 2.2.3. Obtain the Fourier series solution of the initial-boundary value problem

( .
fug(t, X) — auyx (t, X) —buyxx (—t,x) = e, —00 < t < 00,0 < X < T,

u0,x)=1,0<x<m, (2.46)

[ ut.0)=u(t,n), ux(t,0)=ux(tm), tel
for one dimensional involutory Schrédinger’s equation.

Solution. In order to solve this problem, we consider the Sturm-Liouville problem
—u"(x)-hu(x) =0, 0<x <7, u0)=u(n), ux(0) = ux(r)

generated by the space operator of problem (2.46). It is easy to see that the solution of this

Sturm-Liouville problem is
A = 4k2, ug(x) =cos2kx, k=0,1,2,..., ug(x) =sin2kx, k=1,2,....
Then, we will obtain the Fourier series solution of problem (2.46) by formula
u(t,x) = i A (t)cos2kx + i By (t) sin 2kx, (2.47)
k=0 k=1

where Ay(t), k=0,1,2,...., and Bi(t), k=1,2,.... are unknown functions. Putting formula

(2.46) into the main problem and using given initial condition, we obtain

i) Aj(Hcos2kx+i ) B(t)sin2kx—a )’ 4K> Ay (t) cos 2kx
k=0 k=1 k=0

—a ) 4By (0)sin2kx—b Y 4k?Ay () cos2kx—b ¥ 4k?By(~t)sin 2kx
k=1 k=0 k=1

= el tel, xe(0, 1),

Y Ax(0)cos2kx+ ) By(0)sin2kx =1, 0 <x <,
k=0 k:l
Equating the coefficients of coskx, k=0,1,2,..., and sinkx, k=1,2, ... to zero, we get
iB] () —4ak’By (t)—4bk*By(-t) = 0, te,
(2.48)
Br(0)=0, k=1,2,...,
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iAH(0)=—e7t, tel,
(2.49)
Ap(0) =1,

1A} () —4ak? A () —4bk> Ay () = 0, tel,
(2.50)
Ag(0)=0, k=1,2,...
First, we obtain A(t). Using (2.49), we get

Ap(t) = el

Taking the integral, we get
Ag(t) = Ag(0)+e't—1.

From that it follows

Ag(t) =et,

Second, we obtain A (t) for k 0. Using (2.50), we get

1A} (—0) —4ak? A (—t) —4bk> A (t) = 0,

1A](t) —4ak? Al () + 4bk> Af (~t) = 0.
From first equation it follows that

—4Kk?bA] (—t)— 16k*iabAy (—t) — 16k*biAy () = 0.
Therefore,
1A} (1) —4ak? Al (t) — 4bk% A (1) + 4bk% A (=) — 16k*iab A (—t) — 16k*biA () = 0.

or

1A](t) —4ak? Af (1) - 16k*iabAy (—) — 16k*biA (1) = 0.
Using (2.50), we get
4ak? Al (t) + 16k*iabA (—t) + 16k biA (1) = 0.
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From last two equations it follows
AL (6)+ 16k* (a2 —b)iA() = 0, tel.
Applying equation (2.50) and initial condition, we get
AL(0)=0.
Therefore, we get the following Cauchy problem
AL (0 +16k*@% —bH) AL (1) = 0,t € I, A (0) = 0, A}(0)=0.

The auxiliary equation is

q* +16k*(a>—b%) = 0.

There are three cases: a2 —b? > 0, a?-b%= 0, a2 —b? < 0. In the first case l6k4(a2—b2) =m?2.
Then
1
Ax (D) = cos (mt) Ay (0) +— sin (mt) AL(0)=0.

In the second case 161(4(212 —bz) =0. Then
Ax(®) = A(0)+ AL (0)t=0.
In the third case 16k*(a2 —b%) = —m?. Then
Ay (t) = cosh (mt) A (0) + é sinh (mt) A{<(O) =0.

So, Ag(t)=0 for any t € I. In the same manner, we can obtain By (t) =0 forany t € L.
Therefore,

u(t,x) = Ag(t) = ell,

is the exact solution of problem (2.46).
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Note that using similar procedure one can obtain the solution of the following initial

boundary value problem

\

Bu(gttx) az raau(tzx) b): 8u(d tx) = £(t,x),

r=1

X = (X{,...sXp) €, —o0 <t < oo,

(2.51)
u(§,0) = (x),x € 2,d >0,

Ju(t,x)

u(t. g, = u(t,x)[g,, 240 = Jultx)

- m ’te —00, 0
s, = om g, ( )

for the multidimensional involutory Schrédinger type equation. Assume that o > o > 0 and

f(t’ X) (t € (—oo,oo)’

X € Q),0(x) (t € (~o0,00),x € Q) are given smooth functions. Here

S=S,US,,@=S5;NS,. However Fourier series method described in solving (2.51) can be

used only in the case when (2.51) has constant coefficients.

Second, we consider Laplace transform solution of problems for Schrodinger type

involutory partial differential equations.

Example 2.2.4. Obtain the Laplace transform solution of the initial boundary value problem

( i du(t,x)
ot

—augy (1, X)—bugx (=, X) = (=1 —a)elte X —beite X,

X € (0,00),—00 < t < o0,
(2.52)

u(0,x) =e™, x € [0,00),

[ u(t.0)=e" ux(t,0) = €'t € (~e0,0)

for one dimensional involutory Schrédinger’s equation.

Solution. We will obtain Laplace transform solution of problem (2.52). We denote that

u(t,s)=L{u(t,x)}.
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Taking the Laplace transform, we get
iug (t,s)—a { s2u (t,8)— sell - (—eit> } -b {szu (-t,s)— seit_ (—e_it> }

-1 L1 1
=—(1+a)e'— —be™—— u(0,s) = Tos

I+s 1+s’
or
iug (t,s)—asu(t,s)—bs?u(~t,s) =a(s)e'=b(s)e L, u(0,s) = Trs
S
Here , ,
as“+1 bs
M= PO

Taking the derivative (2.53), we get
1ug (t,8)— aszut (t,8)+ bszut (-t,s) =1a(s) el +ib (s) it
Putting —t instead of t into equation (2.53), we get
¢ (=t,s)— as2u (-t,8) _bs?u (t,s)=a(s) el p (s) elt,
Multiplying equation (2.55) by (1) and equation (2.56) by (bs2> , we get
ugt (t,8) + iaszut (t,8)— ibszut (—t,s) =a(s) ell+b (s) e_it,
ibs2uy (—t,5)—abs*u (—t,5) ~b2s*u (t,s) = bs?a(s) e —bs’b (s) el
Adding last two equations, we get
ug (t,8) + iaszut (t,8)— abs*u (—t,8)— b%s*u (t,s)
= (a (s) _bs%b (s)) el + <b (s)+ bsza(s)> e it,
Multiplying equation (2.53) by <—a52), we get
—asziut (t,s)+ as*u (t,s)+ abs*u (-t,s) = _as?a (s) el +as?b (s) e it
Adding last two equations, we get
ug (t,8) “b3s*u (t,8)+ a2s*u (t,9)
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= (a (s)— as2a (s) _bs?b (s)) el + (b (s)+ as2b (s)+ bs2a (s)) e it

Using notations (2.54), we get

2 2 2
+1 +1 b .
uge (t,8) + (a254 —b254> u(t,s) = (— as +as? as _bs? S ) oit

1+s 1+s 1+s
bs? bs? 241\
2 as? o pe?® et
1+s 1+s 1+s
or
()1

elt,

Uy (t,8) + <a2s4—bzs4> u(t,s) = Tas

Using u(0,s) = 1L+s and equation (2.56), we get

1
Ut (0, S) = —m.

Then, we have the following initial value problem for the second order ordinary differential

equation
(2-7)st-

it
T e,tel,

ue (t,8) + <32 —b2> stu(t,s) =
(2.57)
U.(O, S) = ﬁ,Ut(O, S) :_ﬁ-
Now, we obtain the solution of problem (2.57).There are three cases: a>—b? > 0,a%—b? =
Oa a2 _b2 < 0

In the first case a2 —b2 > 0. Substituting m? for (az—b2> s* into equation (2.57), we get

2

m-—1 ; 1 1
utt(t,s)+m2u(t,s)=—1+s elt,tEI,u(O,s)=—1+S,Ut(0,s)=——1+s.

We have that

u(t,s) =uc(t,s)+up(t,s),
up (t,5) = w(s)e'’,

where u¢ (t,s) is general solution of equation

ug (t,8) + m2u (t,s)=0
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and up (t,s) is partucally solution of given equation. Then,
it
up (t,8) = w(s)e".
It is easy to see that

1
w(s)= —
1+s

and

uc(t,s) =cret+cpe,
Therefore,
it

1
t —t
u(t,s)=cje +cHhe +——=¢.
Ls)=cy 2 1+s

Using initial conditions, we get

1 1
0,8)=——=cj+cr+—,
u(0:s) I+s ‘1+¢2 I+s

1 1
0’ =—- = - - .
0 (0.5) I+s f1me I+s
From that it follows ¢| =c, =0 and

1 .
u(t,s)= —elt.
() 1+s
In the same manner u(t,s) = ﬁeit fora2—b2=0and a2-b?< 0.Therefore, taking the
inverse Laplace transform, we get

: 1
ut,x)=e'L! {—1 +s}’

u(t,x) = elle™ .

is the exact solution of problem (2.52).
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Example 2.2.5. Obtain the Laplace transform solution of the initial boundary value problem

igustt,x) —auxy (t, X) —buxx (—t,x) = (-b—a)e X,

X € (0,00),—00 < t < 00,
(2.58)

u(0,x)=¢e™, x € [0,0),

L u(t’ 0) = 1’u(ta oo) = O’t € (_ooa oo)

for one dimensional involutory Schrodinger’s equation.
Solution. We will obtain Laplace transform solution of problem (2.58). Taking the Laplace

transform, we get

(

iug (t,9)-a [s2u(6,5) -s— O] -b | Pu (- 5)-s—B (-0

atb

—m,—oo <t < o,

u(0,s) = 70~

or

¢ (t,8)— asZu (t,8) ~bs2u (-t,s)

=—(a+b)s—aB () -bB ()~ 3L, 0o < t < o, (2.59)

_ 1
L U(O, S) = 1ss°
From (2.59) it follows that

2
@¥D)S” o rb)s—(a+b)p0)— 22

1u¢ (0,8) = Tas

or

ug(0,s) =i(a+b) [1+5(0)].
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Taking the derivative (2.59), we get
fug (t,s) —as?ug (t, s) + bs2ug (—t,5) = —a’ (t) + b3’ (—t). (2.60)

Putting —t instead of t into equation (2.59), we get

iug (—t,s)—as u(—t S)— bs2 u(t,s) =—(a+b)s—aB(-t)— bB(t)—%ts). (2.61)

Multiplying equation (2.60) by (-i) and equation (2.61) by (bsz) , we get
ug (t, 5) +ias?ug (t, s) —ibs>ug (¢, 5) = i3’ () — b’ ().

ibszut (—t,8)— abs*u (—t,s)+ b2s*u (t,8)
b
= —(a+b)bs —abs? B(-0) +bzszﬁ (- (211-: s) bs?.

Adding last two equations, we get
U (t,8) + iaszut (t,8)— abs*u (—t,8)— b%s*u (t,s)

= iaB’ (t)—ibB’ (~t)— (a+b) bs® —abs{ (=) + b2s2B (1) - <a+b) bs?.

1+s

Multiplying equation (2.59) by <—a52) , we get
—iaszut (t,8)+ aZs*u (t,s)+ abs*u (-t,s)

b
=(a+b) as> + azszﬁ )+ aszbﬁ (-t + as? %

Adding last two equations, we get
ua(t9)+ (a2 =62 u(t,s) =i (©-ibF (-0—(@+b)bs’ +b225(0

3 2a+b a+b 2
bs
+(a+b)as’ +a’s ﬁ(t)+as Tos (l+s)

or

e (t9)+ (262 u(t,9) = ia' © -iby' (-0

+ <a2—b2) $3+ @s2+ (az—b2> szﬁ(t).

1+s
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There are three cases: a2 —b? = 0, a?-b% > 0, a2—b2 < 0. In the first case a2 —b? = 0. Then

uge (t,8) = 1af’ (t) —ibp’ (—t)

u(0,8) = 1., ug (0,5) =i(a+b) [L+B(0)] .
Applying formula

t
y() =y +ty)+ / (t-s)y"(s)ds,
0

we get

t
1
u(t,s) = ot {i@+b) [1+p(0)]} +/(t—y) {iap’ (y)-ibB' (-y)} dy
0

1 . .
=t {i@@+b) [1+B(0)] } +i(t-y)

4052 0]+ [ (aBy)-ibB ) dy
0

t

1
=+t {i@+b) [1+B(0)]}—it (a+b)p(0)+/i (aB (y)—ib3 (~y)) dy

1+s
0

t

1
= m+it(a+b)+i / (aB(y)—ibB(-y)) dy.

0
Therefore,
1 t
u(t, s)—m =it(a+b)+i / (aB(y)—ibp (-y)) dy.
0
Putting
t
A() =it(a+b)+i / (aB (y)— b3 (—y)) dy,
0
we get

1
t,8)——— = A(t).
u(t, s) Tas ®
Taking inverse the Laplace transform, we get
ut,x)—e* =L {A®)}. (2.62)
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Applying x — oo, we get
0=L""{A®)}.

Then,
LL ' {A®)} =0

or

A(t)=0.

Putting A(t) into (2.62), we get

u(t,x)—e * =0.
u(t,x) =¢e .

In the same manner we can obtain

u(t,x)=¢e

fora?-b?>0and a?-b%< 0.Therefore,
u(t,x)=¢e

is the exact solution of problem (2.58).

Note that using similar procedure one can obtain the solution of the following problem

(. ou(t, D 92u, D 92u(d—t,
1 u(th)_arglar ;f&%X)_brgar ua(Xr2 S =1t

X =(X{,...,Xpn) € §+, —oo < t < oo,
(2.63)

u$,x) = px),x €,

u(t,x) =o(t,x), ux(tx)=p(tx),1<r<ntelxeS*

N
for the multidimensional Schrodinger type involutory partial differential equations. Assume

that a, > a > 0 and f(t,x) (tE Ix €§+) ,
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o(x) (X € §+> , o (t,x), Br (t,X) (t elxe S+) are given smooth functions. Here and in future
QO is the open cube in the n-dimensional Euclidean space R™ (0 < xj < o, 1 <k < n) with
the boundary S* and Q" = Qt US*.

However Laplace transform method described in solving (2.63) can be used only in the case

when (2.63) has constant coefficients.

Third, we consider Fourier transform solution of the problem for Schrodinger type

involutory partial differential equations.

Example 2.2.6. Obtain the Fourier transform solution of the initial value problem

i% —auxx (t,x) —buxx (-, x)

= (—1 _a(4x2- 2)) elle ™ _p(4x2 - 2)emite™,
(2.64)

X € (0,00),—00 < t < oo,

| w00 =™, x € [0,%)

for one dimensional involutory Schrodinger’s equation.

Solution.We will obtain Fourier transform solution of problem (2.64). Taking the Fourier

transform, we get
.

e (t,8)+ asZu (t,s)+ bsZu (-t,s)

3 =—ellq(s)+asZellq(s) + bsZelq(s), (2.65)

\ u(0,s) =q(s).

Here
u(t,s)=F{u(t,x)},q(s)=F {e‘xz} .
From (2.65) it follows that
iug (0,5) = ~as*q(s)—bs?q(s) —q(s) +asq(s) + bsq(s) = —q(s)
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or
ue (0,s) =iq(s).
Taking the derivative (2.65), we get
ug (t,8) + 52 (aug (t,8)—bug (-t,s)) = —ieitq(s) +52 (ia\eit —ibe_it> q(s). (2.66)
Putting —t instead of t into equation (2.65), we get
ug (—t,8) + 52 (au(—t,s)+bu(t,s)) = —e_itq(s) +52 (ae_it + beit) q(s). (2.67)
Multiplying equation (2.66) by (-1) and equation (2.67) by <—bsz> , we get
2,: -2 _ it 2, it 2. it
uge (t,8)—s~aiug (t,s) +1s“buy (—t,8) =—eq(s)+s“ae q(s)—s“be " q(s).
—iszbut (—t,s)— s*b (au(-t,s)+bu(t,s)) = szbe_itq(s) +5%b (ae_it + beit> q(s).
Adding last two equations, we get
4b2

U (t,8)— szaiut (t,s)— s*bau (-t,s)—s"b“u(t,s)

= —eitq(s) + szaeitq(s) + bas4e_itq(s) - s4bzeitq(s).
Multiplying equation (2.65) by <asz) , we get
Zelt 2s4eitq(s) + abs4e"itq(s).

iaszut (t,s)+ a%s*u (t,s)+ abs*u (-t,s) =—as“e q(s)+a

Adding last two equations, we get the following problem

uge (,8) + <a2 —bz) stu(t,s) = ellq(s) {—1 + <a2 —bz) 34} ,

u(0,8)=q(s), ut(0,8)=iq(s).

We have that

u (ta S) =Uc (t’ S) +up (ta S) )
where u¢ (t,s) is the general solution of homogenous equation
U (t,8) + (az —bz) s*u (t,s)=0
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and up (t,s) is the particular solution of nonhomogenous equation. The auxillary equation is
p2 + (az—b2> st=0.

There are three cases: aZ—b? > 0, a’-b?= 0, a2 —b? < 0. In the first case a2 —b2 = 0. Then
P1,2 = 0,0

uc (t,s) =cq +cat.
In the second case py , = £i a2—b%s2. Then
e (t,8) = cq cos V a2 —b2s?t+c, sin Va2 —b2s2t.
In the third case py 5 =+ b?—a2s?. Then
uc (t,8) = cle\/]mS2t + cze_mszt.
Now, we will obtain the particular solution up (t,s) by formula
up (t,5) = A(s)ell.

Putting it into nonhomogenous equation, we get

-A(s) el + <a2 —b2> A (s) ell = eitq(s) {—1 + (a2 —b2> 54}

or
{—1 + (az—b2> s4} A(s)=gq {—1 + (az—b2> s4} .
Therefore
A(s)=q(s)
and

up (t,8) = q(s)eit.

In the first case, we have

u(t,s)=cj+cot+ q(s)eit.
Applying initial conditions, we get
u(0,s) =cy+q(s) =q(s),
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e (0,8) = cp +iq(s) = iq(s).
From that it follows ¢; =c, =0 and
u(t,s) = q(s)eit.

In the second case, we have
u(t,s) =cjcos Va2 —b2s%t+ cysin'V a2 —b2s%t+ q(s)eit.

Applying initial conditions, we get
u(0,8) =cy+q(s) =q(s),
ug (0,s) = ¢y Va2 —b2 +iq(s) = iq(s).
From that it follows ¢; =c, =0 and
u(t,s) = q(s)eit.

In the third case, we have

Vv b2-a2s2t -V b2-a2s2t

u(t,s)=cje +coe +q(s)eit.

Applying initial conditions, we get
u(0,s) =cy+cp+q(s) =q(s),
ug(0,5) = Vb?—a? (¢ —cp) +iq(s) = iq(s).
From that it follows ¢ = ¢, =0 and
u(t,s) = q(s)eit.

Therefore,
u(t,s) = q(s)ell = el'F {e_x2 }
and

u(t,x)=F! {eitF {e_xz } } = et ™’
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Therefore,
u(t,x) =elte™

is the exact solution of problem (2.64).

Note that using similar procedure one can obtain the solution of the following problem

8u(tx) Z raau(tz)() bz M = (t,x),

X =(X],...,Xp) € R®, —o0 < t < oo, (2.63)

u($.x) = p(x),x € R"

\

for the multidimensional Schrodinger type involutory partial differential equations. Assume
that a; > a > 0 and f(t,x) (teLx€R"), @(x)(x € R") are given smooth functions.
However Fourier transform method described in solving (2.68) can be used only in the case

when (2.68) has constant coefficients.
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CHAPTER 3
DIFFERENCE METHOD FOR THE SOLUTION OF SCHRODINGER TYPE
INVOLUTORY PARTIAL DIFFERENTIAL EQUATIONS

When the analytical methods do not work properly, the numerical methods for obtaining
approximate solutions of the local and nonlocal problems for the Schrodinger type involutory
partial differential equations play an important role in applied mathematics. In this chapter,

we study the numerical solution of the initial boundary value problem

( .
iaugt’X) —Uxx(t,X) —uxx(~t,x) = e 'sinx,
0<x<m -n<t<m,
3.1

u(0,x) =sinx, 0 <x <,

\ ut,0)=u(t,n)=0,-1<t<n

for the Schrodinger type involutory partial differential equation. The exact solution of this
problem is u(t,x) = elsinx. For the numerical solution of the problem (3.1), we present
first order of accuracy difference scheme. We will apply a procedure of modified Gauss
elimination method to solve the problem. Finally, the error analysis of first order of accuracy
difference scheme is given.

For the numerical solution of the problem (3.1), we present the following first order of

accuracy difference scheme
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¢k k-1 k ko k -k —k
up-ugT Uy 1~ 2uptug Uy 112Uy U

T h2 h2

-k
n—1

= e ksinxy, ty =kt,Xp =nh,Nt=1,Mh =,

N+1<k<N, 1<n<M-1, (3.2)

ugzsinxn, 0<n<M,

\ u1(§=u11§,[=0, —-N<k<N.
We will write it in the following boundary value problem for the second order difference

equation with respect to n

Aup 1 +Bup+Cupyp =¢p, I <n<M-1,
3.3)
Ug = 0, umMm = 0.
Here, A,B,C are (2N +1) x (2N + 1) square matrices and ug,s =n,n= 1,¢, are 2N+1) x 1

column matrices and

i ' ' J @N+1)x(2N+1)
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L ' ’ 1 ON+1)x (2N+1)
i sinXp ] [ ugN ]
e 1N+ ginxy ugh+l
Pn = . ,» Us = . >
e iIN-1 sinxp ul-1
e '™ ginx, uls\I
i JeN+)x1 i J@eN+)x1

where a = —hiz, b= —%, c= h_22 and d = % + % For obtainig {un}anowe have the following

algorithm
un=ocn+1un+1+@n+1, 1’1=M—1,...,0,UM=0, (34)
Uy = —(B+Cc>(n)_1 A,a; =0,
Bt = (B+Con) ™ (gn—CBn), B1 =0,n=1,.. . M~1.

of the numerical solutions, where u(t,Xy) represents the exact solution and u% represents
the numerical solution at (t,Xp) and the results are given in the following table

Table 3.1: Error analysis

Difference Scheme 20,20 40,40 80,80 160,160
Eulltl/I 0.5088 0.2578 0.1293 0.0647
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As it is seen in Table 3.1, we get some numerical results. If N and M are doubled, the
value of errors between the exact solution and approximate solution decreases by a factor of

approximately 1/2 for first order difference scheme.
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CHAPTER 4
CONCLUSION

This thesis is devoted to initial boundary value problem for Schrodinger type involutory

differential equations:The following results are obtained:

The history of involutory differential equations is given.

Fourier series, Laplace transform and Fourier transform methods are applied for the

solution of six Schrodinger type involutory partial differential equations.

The first order of accuracy difference scheme is considered for the approximate
solution of the one dimensional Schrddinger type involutory partial differential

equation with Dirichlet condition.

The Matlab implementation of the numerical solution is presented.
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APPENDIX

MATLAB PROGRAMMING

Matlab programs are presented for the first order of approximation two-step difference
scheme for M=N.
function mmmmm(N,M)
if nargin;1;end;
close;close;

Y%first order

N=20;

M=20;

tau=pi/N;

h=pi/M;

a=-1/(h"2);

b=-i/tau;

c=2/h"2;

d=i/tau+2/h"2;
A=zeros(2*N+1,2*N+1);
for k=2:N;
A(N+1,N+1)=2*a;
A(k,k)=a;

Ak, 2*N+2-k)=a;

end;

for k=N+2:2*N+1;
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Ak, k)=a;
A(k,2*N+2-k)=a;
end;

A;

C=A;
B=zeros(2*N+1,2*N+1);
B(1,N+1)=1;

for k=2:N;
B(k,k-1)=b;
B(N+1,N+1)=c+d;
B(N+1,N)=b;
B(k,k)=d;
B(k,2*N+2-k)=c;
end;

for k=N+2:2*N+1;
B(k,k)=d;
B(k,2*N+2-k)=c;
B(k,k-1)=b;

end;

B;
D=eye(2*N+1,2*N+1);
for j=1:M+1;

for k=2:2*N+1;

fii(k,j)=exp(-(k-1-N)*tau*i)*sin((j-1)*h);



end;

fii(1,j)=sin((j-1)*h);

end;

alpha{l}=zeros(2*N+1,2*N+1);
betha{l}=zeros(2*N+1,1);

for j=2:M;

Q=inv(B+C*alpha{j-1});
alpha{j}=-Q*A;

betha {j}=Q*(D*(fii(:,j))-C*betha{j-1});
end;

U=zeros(2*N+1,M+1);

for j=M:-1:1;

U(:,j)=alpha{j} *U(:,j+1)+betha{j};

end

'EXACT SOLUTION OF THIS PROBLEM';
for j=1:M+1;

for k=1:2*N+1;
es(k,j)=exp((k-1-N)*tau*i)*sin((j-1)*h);
end;

end;

%.ERROR ANALYSIS.;
maxes—=max(max(abs(es)));
maxerror=max(max(abs(es-U)))

relativeerror=maxerror/maxes;
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cevap l=[maxerror,relativeerror] ;
Y%figure;
%m(1,1)=min(min(abs(U)))-0.01;
%m(2,2)=nan;

%surf(m);

%hold;

%surf(es);rotate3d;axis tight;
%title('Exact Solution');

%figure;

%surf(m);

%hold;

%surf(U);rotate3d;axis tight;

%title('FIRST ORDER");
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