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 ABSTRACT 

 

The St. Petersburg paradox is a gambling game with infinite expected payoff that was first 

presented in 1713 by Nicholas Bernoulli. Despite the infinite payoff, a reasonable person 

will hardly pay more than $25 to play the game. This thesis presents a number of ideas that 

was presented over a period of 300 years to resolve this paradox and also economic and 

financial aspect of the St. Petersburg paradox is presented. A detailed analysis on the St. 

Petersburg Paradox and its solutions in terms of uniform treatment using D’Alembert’s 

ratio test is also presented and finally using computer program a simulation of the St. 

Petersburg game is carried out.  

Keywords: St. Petersburg paradox; infinite expected payoff; d’Alembert’s ratio test; 

simulation; maple 
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ÖZET 

 

Petersburg paradoksu, ilk kez 1713 yılında Nicholas Bernoulli tarafından sunulan sonsuz 

beklenen kazancı olan bir kumar oyunudur Sınırsız kazanca rağmen, makul bir kişi oyunu 

oynamak için 25 dolardan fazla para ödeyemez. Bu tez, bu paradoksu çözmek için 300 

yıllık bir süre içinde sunulan ve St. Petersburg paradoksunun ekonomik ve finansal yönünü 

ortaya koyan bir takım fikirler sunar. Petersburg Paradox ve d’Alembert'in oran testi 

kullanılarak tek tip muamele açısından çözümleri hakkında ayrıntılı bir analiz de sunuldu 

ve bilgisayar programı kullanılarak St. Petersburg oyununun simülasyonu yapıldı. 

 

Anahtar Kelimeler: St. Petersburg paradoksu; sonsuz beklenen ödeme; d’Alembert’in 

Oran testi; Simülasyon; Akçaağaç 
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CHAPTER 1 

INTRODUCTION 

Nicholas Bernoulli a Swiss mathematician in 1713 was the first to present the St. 

Petersburg paradox in a letter to P. R. de Montmort a prominent French mathematician. in 

1738 the first academic article about this paradox was published in Commentaries of the 

Imperial Academy of Science of Saint Petersburg by Daniel Bernoulli a cousin of N. 

Bernoulli (Sergio, D. A., & Raul, G, 2016). In 1768 D’Alembert coined the name of the 

paradox. D. Bernoulli proposed a game in which a coin is continuously flipped only to be 

stopped when it comes up tail, where the total of flips n, determine the price which equal to 

$2𝑛. The number of possible consequences are infinite. For the first time, if the coin comes 

up tail the price is $21 = $2 and the game is terminated. If head appears on the first flip, it 

is flipped again, if tail appear on the second flip the game is terminated and the price is 

$22 = $4. If head appears again on the second flip, it is flipped again and so on (Aumann, 

1977). 

In his paper (Daniel, 1954), Daniel Bernoulli described the St. Petersburg paradox as 

follows: 

“Peter tosses a coin and continues to do so until it should land “heads” when it comes to 

the ground. He agrees to give Paul one ducat if he gets “heads” on the very first throw, 

two ducats if he gets it on the second, four if on the third, eight if on the fourth, and so on, 

so that with each additional throw the number of ducats he pays is doubled. Suppose we 

seek to determine the value of Paul’s expectation.”  

Looking at the game a reasonable person will not be risking to spend much on this game 

because if the desired payoff is raised the corresponding probabilities decreases very fast. 

Below is a table that lists the figures for the consequence when 𝑖 = 1 … 9 in the case of a 

fair coin. 
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Table 1.1: Payoff values and probabilities 

 

i                         P(i)                      Price 

1                        1/2                       $2 

2                        1/4                       $4 

3                        1/8                       $8 

4                        1/16                     $16 

5                        1/32                     $32 

6                        1/64                     $64 

7                        1/128                   $128 

8                        1/256                   $256 

9                        1/512                   $512 

 

On the other hand, by the classical probability theory, the “fair price” of playing a game is 

the mathematical expectation of payoff of the game, which in this game is  

               𝐸 = ∑ 2𝑖−1 ( 
1

2
)

𝑖∞

𝑖=1

=  ∞.                                                                              (1.1) 

To reconcile this discrepancy D. Bernoulli made the observation that although the standard 

calculations shows that the value of expectations is infinitely great it has to be admitted 

that any fairly reasonable man will hardly be willing to pay even $25 to enter such a game. 

The work of D. Bernoulli plays an important role in modern marginal utility theory in 

economics (Emil, 1953). The focus of this research work is on the mathematical 

perspective of the St. Petersburg paradox and some proposed methods of resolving it.  
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The first chapter is an introduction about the origin of St. Petersburg paradox, in the 

second chapter some outstanding proposals of resolving the paradox are considered, also 

economic and financial aspect of the St. Petersburg paradox is presented. Chapter 3 is a 

detailed analysis on the St. Petersburg Paradox and its solutions in terms of uniform 

treatment using d’Alembert’s ratio test and in the fourth chapter a simulation of the St. 

Petersburg paradox was performed using Maple. The fifth section is the conclusion. 

The payoff of a game will be denoted by the random variable 𝑋  which yields the 

probability density function  

𝑃(𝑋 = 2𝑖) =
1

2𝑖+1
,       𝑖 = 0,1,2,3, … .                                                     (1.2) 

where 

𝑆𝑛 = ∑ 𝑋𝑖

𝑛

𝑖=1

  and  𝑋̅𝑛 =  
𝑆𝑛

𝑛
,  

represents the total and average payoff of 𝑛 independent games respectively and 𝑋𝑖, 𝑖 =

1,2,3, … are independent copies of 𝑋. 
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CHAPTER 2 

LITERATURE REVIEW 

 

To resolve the St. Petersburg paradox, several proposals have been put forward. In this 

chapter we consider some of the outstanding ones among these proposals and also 

economic and financial aspect of the St. Petersburg paradox. 

2.1 Expected Utility Approach in Resolving the Paradox 

The concept of expected utility was proposed by Daniel Bernoulli in his paper which was 

published in 1738 (Daniel, 1954). In the paper he argues that to an individual, marginal 

value of money diminishes as his wealthy increases, a concept which is widely used by 

economists now known as utility. In his work he states that: 

“the determination of the value of an item must not be based on the price, but rather on the 

utility it yields …. There is no doubt that a gain of one thousand ducats is more significant 

to the pauper than to a rich man though both gain the same amount.” 

By letting 𝑝(𝑖) to denote the probability of the outcome of obtaining   head in the 𝑖𝑡ℎ toss 

and 𝑓(𝑖) to denote the payoff  when it happens then the mathematical expectation can be 

written in the form  

𝐸 = ∑ 𝑝(𝑖)𝑓(𝑖)

∞

𝑛=1

                                                                                           (2.1) 

By modifying either 𝑝(𝑖) or 𝑓(𝑖)  equation (2.2) can be made to converge. Nicholas 

Bernoulli modified 𝑝(𝑖) to obtain a convergent sum while Gabriel Cramer modified 𝑓(𝑖) to 

obtain a convergent sum (Gerard, 1987). 

Daniel Bernoulli’s proposed solution which considers utility as a function depending on 

wealth was based on decreasing marginal utility of money based on log utility curve. Using 

the calculus terminology, his approach can be considered as the rate of change of utility (𝑦) 
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with respect to wealth (𝑥) is inversely proportional to the initial wealth (Cowen, T. and 

High, J., 1988). 

Mathematically, this can be written as 

𝑑𝑦

𝑑𝑥
=

𝑘

𝑥
,                𝑘 > 0                                                                                 (2.2) 

integrating both side of equation (2.2) yields  

𝑦 = 𝑘𝑙𝑛(𝑥) − 𝑘𝑙𝑛(𝑐) 

𝑐 is considered to be the initial wealth whose utility 𝑦(𝑐) equal to zero. 

Payoff in wealth is given by 𝑥 − 𝑐.  Letting 

𝑦(𝑖) = 𝑘𝑙𝑛(𝑐 + 2𝑖) − 𝑘𝑙𝑛(𝑐)                                                                      (2.3) 

Substituting equation (2.3) into equation (2.2) and simplifying gives 

𝑘 ∑
1

2𝑖

∞

𝑖=0

(𝑙𝑛(𝑐 + 2𝑖)) − 𝑘𝑙𝑛(𝑐) 

By letting 𝑠 to be the suggested stake of the game we have 

𝑘𝑙𝑛(𝑐 + 𝑠) − 𝑘𝑙𝑛(𝑐) = 𝑘 ∑
1

2𝑖

∞

𝑖=0

(𝑙𝑛(𝑐 + 2𝑖)) − 𝑘𝑙𝑛(𝑐) 

solving for 𝑠 gives 

𝑠 = ∏(𝑐 + 2𝑖)
1

21+𝑖
− 𝑐

∞

𝑖=0

                                                                            (2.4) 

From equation (2.4) it is clear that based on this approach by D. Bernoulli, a players stake 

should depend on his initial wealth 𝑐. 
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Estimated price for some given initial wealth are presented in the table below: 

Table 2.1: Estimated price for some given initial wealth 

Initial              0             10             102            103                104            105             106      

wealth c            

Suggested        2             3               4.4              6                   7.6             9.3              10.9 

stake s 

 

A similar approach was proposed by Cramer in a letter to Nicholas Bernoulli in 1728,  

where he used a utility function U = √2 called the moral value leading to the finite moral 

expectation 

∑ √2𝑖−1 ( 
1

2
)

𝑖

=

∞

𝑖=1

1

2
∑

1

√2𝑖−1

∞

𝑖=1

=
1

2 − √2
.                                                (2.5) 

and the square utility mean (
1

2−√2
)

2

≈ 2.914 to show that the diminishing marginal benefit 

of gain can resolve the problem. Unlike Daniel Bernoulli, he considered only the gain by 

lottery instead of the total wealth of the player. 

The main criticism in their approach lies in their regards to the correct utility function to be 

used. Both the logarithmic function and the square root function and many other concave 

functions would work. Thus, which of the solution will be preferred over the other based 

on the functions used. Also, by changing 2𝑛 to 𝑒2𝑛, the decreasing utility approach used by 

Daniel Bernoulli will yield an infinite expected utility. That is, 

△ 𝑬 = ∑ (( 
1

2
)

𝑛

(𝑙𝑛(𝑊 + 𝑒2𝑛 − 𝑐)))

∞

𝑛=1

− 𝑙𝑛 = ∞.                               (2.6) 

Thus, the critics argue that it does not matter the type of utility function being used, the 

result can always be modified to give an infinite expected value. (Peters,O., 2011) 
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2.2 Probability Weighing Method in Resolving the Paradox 

An alternative method for resolving this paradox was proposed by Nicholas Bernoulli. He 

conjectured that unlikely events will be neglected by people and since only likely events 

yield high payoff that leads to infinite expected value in St. Petersburg game, the paradox 

will be resolved by neglecting events of very small probability. Similar concept was stated 

by his uncle Jacob Bernoulli a concept called moral certitude which appeared in his book 

Ars. Conjectandi. 

Among the draw backs in this solution is that the choice of threshold is subjective, 

therefore can be very arbitrary. Also, small probability with high payoff have big influence 

on the outcome of a game. 

An underweighting of small probabilities was also suggested by Menger (Menger, 1934). 

His proposal by todays standard is an S-shaped probability weighting function, although, 

he assumes a cut-off point beyond which small probabilities are set to be zero.  

2.3 Finite St. Petersburg Game 

The issue of realism of the game is to be put to question since a player having infinite 

expected gain implies that the others potential loss will be infinite and since a player 

cannot have an infinite payout, the game is unrealistic in the real world. Therefore, for the 

expected value to converge, the potential payout of the player has to depict a real life 

situation (weiss, 1987). 

D. Bernoulli made this observation in a letter he wrote to his cousin in 1731, where he 

wrote: 

“I have no more to say to you, if you do not believe that it is necessary to know the sum 

that the other is in position to play” (plous, 1993) 

Letting 𝑊 represent the total wealth of the one offering the game, the maximum amount a 

player can earn will be 𝑊. Letting 𝑛∗ = 1 + ⌊𝑙𝑜𝑔2(𝑊)⌋ , the player will get a payoff of 𝑊 

if he get 𝑛 ≥  𝑛∗ even though he is to get 2𝑛. With this consideration in place the actual 
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payout that can be obtained from the game is now min (2𝑛 , 𝑊). This leads to the following 

finite expected value (Eves, 1990)   

𝐸 = ∑
1

2𝑛+1

∞

𝑛=1

min(2𝑛 , 𝑊)   = ∑
1

2𝑛+1
2𝑛

𝑛∗−1

𝑛=1

+ ∑
1

2𝑛+1
𝑊

∞

𝑛=𝑛∗

    

Then  

= ∑
1

2

𝑛∗−1

𝑛=1

+ 𝑊 ∑
1

2𝑛+1

∞

𝑛=𝑛∗

=
𝑛∗

2
+

𝑊

2𝑛∗  .                                                      (2.4)  

The expected value 𝐸 of the game with various players and their bankroll 𝑊 is shown in 

the table below (a player will be paid what the bank has if he wins more than the bank roll) 

(Wikipedi compane, 2018).  

Table 2.2: Expected value E of the game with various potential players and their bank roll  

Players 

 

 

Bankroll 

 

 

Game 

expected 

value 

Consecutive 

flips to win 

max 

Attempts for  

50% chance to  

win max 

Play time(1  

game per 

minutes) 

Friendly Game $100 $7.56 6 44 44 minutes 

Millionaire $1 milion $20.91 19 363.408 256 days 

Billionaire $1 billion $30.84 29 372,130,559 708 years 

Bill Gates 

(2015) 

$79.2 billion $37.15 36 47,632.711,549 90,625  

Years 

U.S GDP 

(2007) 

$13.8 trillion $44.57 43 6,096,987,078,286 11,600,05 

2 years 

World GDP 

(2007) 

$54.3 trillion $46.54 45 24,387,948,313,146 46,400,206 

Years 

Googolnaire    $10100  $333.14          332 1.340E+191   8.48E+180

× life of the 

universe  

 



9 
 

2.4 G.L.L Buffon 

Buffon made a child play this game 2048 times. He did consider the total number of tosses 

when it comes up head for the first time instead of the payoff of the St. Petersburg paradox. 

Buffon published his resolution in a paper of 1771. Below is a table presenting the 

theoretical and experimental result of Buffon 

Table 2.3: Theoretical and experimental result of Buffon 

Tosses (k)                                             Frequency                                                 Payoff  

                                                                                                                                  (𝟐𝒌)  

    1                                                           1,061                                                         2 

    2                                                           494                                                            4 

    3                                                           232                                                            8 

    4                                                          137                                                             16 

    5                                                           56                                                              32 

    6                                                           29                                                              64 

    7                                                           25                                                              128 

    8                                                            8                                                               256 

    9                                                            6                                                               512 

 

Buffon made the conclusion that in practice, the St. Petersburg game becomes fair with an 

entrance fee of approximately $10. 
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2.5 Application of Generalized Weak Law of Large Number to St. Petersburg 

paradox 

William Feller applied a generalized weak law of large number to St. Petersburg (William, 

1994). In other to have a good understanding of his approach, a good knowledge of 

probability theory and statistics is necessary. The normal weak law of large number goes 

as follows: 

Suppose 𝑋1, 𝑋2, 𝑋3, … are independent and identically distributed random variables with 

finite common expectation 

𝐸𝑋1 = 𝜉 < ∞,  

Then ∀𝜀 > 0, 

lim
𝑛→∞

𝑃(|𝑋̅𝑛 − 𝜉| < 𝜀) = 1                                                                            (2.5) 

Where    

𝑋̅𝑛 ≔
1

𝑛
∑ 𝑋𝑖

𝑛

𝑖=1

 

To be able to apply this to St. Petersburg paradox, Feller generalized the weak law of large 

number for independent and identically distributed random variables with finite 

expectation to that with infinite expectation and he used it to obtain a weak law of large 

number for St. Petersburg paradox (Anders, 1985). 

Denoting the payoffs of St. Petersburg paradox as 𝑋1, 𝑋2, 𝑋3, …, then 

lim
𝑛→∞

𝑃(|𝑋̅𝑛 − 1| < 𝜀) = 1,                                                                          (2.6) 

in the sense of convergence in probability, Feller suggest the fair stake for playing 𝑛 games 

should be of order 𝑛𝑙𝑜𝑔2𝑛. Using this approaches, the expected value will be infinite when 

the game of infinite times is possible, and in finite case, the expected value will be a small 

value. 
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2.6 Application of Petersburg Paradox to the Stock Market 

An interesting application of the St. Petersburg paradox presented by Durand (Durand, 

1957) relates to the valuation of a company whose revenue grows significantly faster than 

the overall economy known as “growth company”. Growth stock is the word used to refer 

to the stocks or share of the company. Due to St. Petersburg paradox applicability to 

financial events that occurred at the end of the 1990s and early 2000s, a review of this 

application is worthwhile. 

Early year 2000, an unprecedented increase was recorded over the previous three years in 

the price of growth stocks, an increase that led to the question of whether the move made 

by investors to buy the shares was a wise one or was it foolish not to buy more amount of 

share before prices increased even further. 

Among those who were concerned about the inflationary pressure resulting from increase 

in stock price was Alan Greenspan Chairman of the Board of Governors of the United 

States Federal Reserve System. He raised the question: 

“But how do we know when irrational exuberance has unduly escalated asset values, 

which then become subject to unexpected and pro longed contractions as they have in 

Japan over the past decade?"   

On 19 November 1999, the Wall Street Journal reported that 59 mutual funds had amassed 

increase of more than 100% during the period January 1 to November 17, 1999 (Susan, 

2005). An example of such fund is the Nicholas-Applegate Global Technology Fund, a 

fund that specializes in high-tech stocks, it has increased in price during the same period by 

astonishing amount of 325%. Or about 15 per day. 

Applying Durand (1957) method using a modified St. Petersburg game and making the 

following assumptions: 

1. Let player 1 “Peter” be the growth of the company. 

2. Let player 2 “Paul” be the prospective purchasers of peters stock. 
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3. Let the probability of tossing head be 
𝑖

𝑖+1
,    𝑖 > 0 (thus, the probability of a tail is                 

1

𝑖+1
 ).  

4. Corresponding payoffs are series of increasing payments in which “Peter” pays 

“Paul”  𝑆 dollars if the toss results in a tail,  𝑆(1 + 𝑓) if the second toss is a tail, 

 𝑆(1 + 𝑓)2 if the third toss is a tail, and so on, if the toss results in a head the game 

stops. 

Total payments to Paul is given by the equation        

∑ 𝑆(1 + 𝑓)𝑗

𝑛−2

𝑗=0

=  
[𝑆(1 + 𝑓)𝑛−1 − 1]

𝑓
                                                        (2.7) 

Equation (2.7) has probability  
𝑖

(𝑖+1)𝑛  since head and tail appears with probability 

1

𝑖+1
 and

𝑖

𝑖+1
  respectively. As observed by Durand (1957), the expected payoffs of Paul are 

given by the double summation. 

∑
𝑖

(𝑖 + 1)𝑛

∞

𝑛=1

∑ 𝑆(1 + 𝑓)𝑗

𝑛−2

𝑗=0

 

Evaluating the above integral yields 

∑
𝑆(1 + 𝑓)𝑛−1

(𝑖 + 1)𝑛

∞

𝑛=0

  =  {

𝑆

1 − 𝑔
 ,          if     𝑓 < 𝑖

∞                   if    𝑓 ≥ 𝑖.

                                        (2.8) 

Thus the expected payoff of Paul is 
𝑆

1−𝑓
    if   𝑓 < 𝑖 and his expected payoff is infinite if 

𝑓 ≥ 𝑖. 

In terms of financial securities, we have the following: 

i. 𝑖 represents a compound interest rate (or an effective rate of interest). 
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ii. 
1

𝑖+1
 is the present value of a loan of one dollar to be repaid one year in the 

future. 

iii. 𝑓 is the growth rate of the company as measured by the compound increase in 

revenue share. 

To estimate a fair value for Peter’s stock, all future dividends is discarded in perpetuity and 

his stock is estimated by the present value of all future dividends. Let peter’s profit per 

share in 𝑘 years be denoted by 𝐸𝑘 ,  𝐵𝑘 his net asset value  per share in the same year and 

𝐷𝑘 his total paid-out dividends per share in year 𝑘. Thus, yearly changes in net asset value 

are equal to the difference between earnings and dividends paid, hence, we have 

𝐵𝑘+1 − 𝐵𝑘 = 𝐸𝑘 − 𝐷𝑘 ,    𝑓𝑜𝑟 all  𝑛 ≥ 1 

A common practice for Paul to estimate the value for Peter’s stock is to make the 

assumption that 𝑟 =  
𝐸𝑘

𝐵𝑘
 and 𝑝 =  

𝐷𝑘

𝐸𝑘
 are independent of 𝑘. This assumption implies that 

𝐵𝑘+1 − 𝐵𝑘 is a constant multiple of  𝐸𝑘 

𝐵𝑘+1 − 𝐵𝑘 = 𝐸𝑘 − 𝐷𝑘 = (1 − 𝑝)𝐸𝑘 = (1 − 𝑝)𝑟𝐵𝑘. 

Thus Peter’s dividends, net asset value, and earnings are all growing at a constant rate,  

 𝑓 = (1 − 𝑝)𝑟 . Here equation (4) is interpreted a perpetual series of dividend payments at 

rate, starting  at 𝑆 𝑑ollars , growing at a constant rate f, and discounted at rate 𝑖  in 

perpetuity. If 𝑖 > 𝑓, 

Then equation (4) converges to 
𝐷1

1−𝑓
=

𝑝𝐸1

1−𝑓
 an estimation representing a fair value for one of 

one Peter’s stock. Equation (2.8) will diverge if  𝑓 ≥ 𝑖 , this leads to a St. Petersburg 

paradox in which the practice of discounting future dividends at a uniform rate in 

perpetuity results to a paradoxical result. 

By applying the valuation formula (2.8) to obtain exorbitant estimated valuations for many 

high-tech growth stocks, stock purchasers bought avidly, thereby forcing prices to extreme 
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levels. By late 2000, stock prices underwent the “prolonged contractions” predicted by 

Greenspan, with subsequent unprecedented losses to corporate and individual stock buyers.  

Three years later, many formerly avidly sought-after high-tech companies and mutual 

funds were defunct. 

2.7 Facebook and the St. Petersburg Paradox 

Facebook now the world’s largest social networking site created by Mark Zuckerberg 

originally designed for college students is a site that simplify the connection and sharing of 

information with friends and family online with over a billion users. 

Facebook is a high-growth stock that behaves a lot like St. Petersburg coin St. Petersburg 

coin with enormous potential payoff but not infinite. Approximately, 608 million people 

actively uses Facebook on a monthly basis as at the end of 2010, and is predicted that by 

2020 over 22 billion people will be Facebook users which is almost three times the 

population of the world as at 2019. 

Charles Lee the former head of equity research at Barclays Global Investments and a 

professor of accounting at Stanford University Business School said “it’s an incredibly 

difficult thing to forecast the future cash flow of this kind of company, even for a 

quantitative investor” also he said “once your projections go out beyond two or three years, 

you’re in a very big murky waters.” 

Any slight change in high growth rates can result in great change in values at fast-moving 

companies. Just as the coin flip in a St. Petersburg paradox can terminate at any toss, so 

also the projector in the fastest growing companies can go downward. Facebook recorded a 

revenue of $3.7 billion and a profit of $ $1 billion in 2011. If Facebook is to continue such 

a rapid growth over the next decade it will acquire a 26% in annual growth. The question 

one is to ask is what will happen to Facebook stock? 

If the share of Facebook is to rise from $100 billion which is the initial to $190 billion in 

the course of a decade, 2021 to be precise, it will have 90% cumulative gain for an average 

annual return of 6.8%. 
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In this projection, Facebook first public shareholders stand the chance to be richly 

rewarded over the years to come just as a player playing the St. Petersburg game could 

become very wealthy. 

Table 2.4: Facebook annual revenue (Facebook Revenue, 2009-2018). 

2018                                                    $55,838 

2017                                                    $40.653 

2016                                                    $27,638 

2015                                                    $17,928 

2014                                                    $12,466 

2013                                                    $7,872 

2012                                                    $5,089 

2011                                                    $3,711 

2010                                                    $1,974 

2009                                                    $777 

2008                                                    $272 

2007                                                     $153 

 

2.8 Cumulative Utility Theory and the St. Petersburg paradox 

According to CPT (Cumulative Utility Theory) a person utility of the lottery L involved in 

the St. Petersburg paradox is given by formula (2.9) where u: ú+ → ú+  is a person’s utility 

function for gains and w : [0,1] → [0,1] is an individual’s probability weighting function 

for gains (Palvo, 2004). 
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𝑢(𝐿) = ∑ 𝑢(2𝑛)[𝑤(21−𝑛) − 𝑤(2−𝑛)]

∞

𝑛=1

                                                  (2.9)  

According to Tversky and Kahneman (Tversky, A. and Kahneman, D., 1992), most of 

studies uses a power utility function 𝑢(𝑥) = 𝑥𝛼  and an S-shaped probability weighting 

function 𝑤(𝑝) = 𝑝𝛾(𝑝𝛾 + (1 − 𝑝)𝛾)1/𝛾 first proposed by Quiggin (Quiggin, 1982). Since 

the St. Petersburg paradox L involves very small probabilities, Quiggin’s function w(p) 

may be accurately approximated as w(p) ≈ pγ  due to the fact that the denominator of 

Quiggin’s function w(p) converges to unity for tiny probabilities p. Then, equation (2.9) 

simplifies into formula (2.10). 

𝑢(𝐿) ≈ (2𝛾 − 1) ∑ 2(𝛼−1)𝑛

∞

𝑛=1

                                                                   (2.10) 

It follows from (2.10) that according to CPT a person obtains a bounded utility from lottery 

L only when α < γ i.e. when the sum on the right hand side of (2.10) is convergent. Thus, 

CPT explains the St. Petersburg paradox only when the power coefficient of an 

individual’s utility function is lower than the power coefficient of a person‘s probability 

weighting function. Intuitively, an individual’s utility function must not simply be concave 

but it should be concave relative to a person’s probability weighting function to avoid the 

St. Petersburg paradox. 

Table 2.4 presents typical values of power coefficients α and γ that were obtained from the 

best parametric fitting to the experimental data in well-known recent studies. Some studies 

(e.g. Tversky and Fox, 1995) adopted a probability weighting function. 

w( p) = δ ⋅ pγ (δ ⋅ pγ + (1 − p)γ ), first adopted by Goldstein and Einhorn (Goldstein, W. 

and Einhorn, H., 1987). For small probabilities a Goldstein-Einhorn function w(p) can be 

approximated as w( p) ≈ δ ⋅ pγ . An individual then still obtains a bounded utility from 

lottery L only when α < γ . The best fitting estimates of a power coefficient γ for a 

Goldstein-Einhorn function w( p) are presented in parentheses in the third column of table 

2.5. 
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In all studies from table 2.5 except for Camerer and Ho (Camerer, C. and Ho, T., 1994) 

and Wu and Gonzalez (Wu, G. and Gonzalez, R., 1996) the estimated best fitting CPT 

parameters are α > γ , which implies a divergent sum on the right hand side of equation 

(2). Thus, conventional parameterizations of CPT predict that a person is willing to pay up 

to infinity for the St. Petersburg lottery L . This paradoxical result occurs because a 

conventional inverse S-shaped probability weighting function overweights small 

probabilities too much for a mildly concave utility function to offset this effect. 

Apparently, the parameterization of CPT that accommodates best the available 

experimental evidence does not explain the oldest and the most famous paradox in decision 

theory—the St. Petersburg paradox. To accommodate the St. Petersburg paradox CPT must 

be estimated together with a restriction α < γ on its parameters. However, it is not clear if a 

restricted version of CPT remains descriptively superior to other decision theories. 

Table 2.5: Parameterization of CPT that accommodates best the experimental data in well-               

known recent studies (Palvo, 2004).                                                    .       

Experimental study Power of utility function 

(alpha) 

Power of probability 

weighting  function 

         (gamma) 

Kahneman and Tversky 

(1992) 

0.88 0.61 

Camerer and Ho (1994) 0.37 0.56 

Tversky and Fox (1995) 0.88 0.69 

Wu and Gonzalez (1996) 0.52 0.71(0.68) 

Abdellaoui (2000) 0.89 0.60 

Bleichrodt and Pinto (2000) 0.77 0.76(0.55) 

Kilka and Weber (2001) 0.76 − 1.00 0.30 − 0.51 

Abdellaoui et al. (2003) 0.91 0.76 
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CHAPTER 3 

ANALYSIS OF ST. PETERSBURG PARADOX 

  

In this chapter, analysis of a two Paul game as well as a four Paul game is carried out and a 

detailed analysis on the St. Petersburg Paradox and its solutions in terms of uniform 

treatment using d’Alembert’s ratio test 

3.1 Two Paul Paradox 

Sandor and Gordon (Sandor, C. and Gordon, S., 2002)presented the Two Paul Paradox in 

their paper as follows: 

Suppose Peter agrees to play exactly one St. Petersburg game with each of two players, 

Paul1 and Paul2. Question: Are Paul1 and Paul2 better off (i) accepting their individual 

winning 𝑋1 and 𝑋2, say, or (ii) agreeing, before they play, to divide their total winning in 

half so that each receives 
𝑋1+𝑋2

2
 ?.  

Csorgo and Simons (Csörgő, 2005) proceeded to show that Two Pauls adopting strategy 

(ii) are better off as follows:  

Let 𝑋, 𝑋1 and 𝑋2 be identically independently distributed random variables with common 

distribution given by 

𝑃(𝑋 = 2𝑗) =
1

2𝑗+1
, 𝑗 = 0,1, …                                                          (3.1)  

For 𝑥 > 0 we have 

 𝑃(𝑋1 + 𝑋2 ≥ 𝑥) ≥ 𝑃(2𝑋1 ≥ 𝑥) 

Proof: From the right side of equation (3.1) we have  
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𝑃(2𝑋1 ≥ 𝑥) = 𝑃 (𝑋1 ≥
𝑥

2
) = ∑

1

2𝑗+1

 

𝑗=⌈𝑙𝑜𝑔2(
𝑥
2

)⌉

=
1

2⌈𝑙𝑜𝑔2(
𝑥
2

)⌉

= (
1

2
)

𝑗𝑥

,                                                                                (3.2) 

Where 

⌈𝑥⌉ is the ceiling function of 𝑥, 

𝑗𝑥 ≔ ⌈𝑙𝑜𝑔2(𝑥)⌉ − 1 

Let 𝑀 = max {𝑋1, 𝑋2}, and let the events on the left side of equation (3.1) be union of the 

exclusive events: 

(i) {𝑀 < 2𝑗𝑥 , 𝑋1 + 𝑋2 ≥ 𝑥} 

(ii) {𝑀 > 2𝑗𝑥 , 𝑋1 + 𝑋2 ≥ 𝑥} 

(iii) {𝑀 = 2𝑗𝑥 , 𝑋1 + 𝑋2 ≥ 𝑥} 

For case (i) 

𝑀 ≤ 2𝑗𝑥−1   if  𝑀 < 2𝑗𝑥  , this implies 𝑋1 + 𝑋2 ≤ 2𝑀 ≤ 2𝑗𝑥 < 𝑥. 

Thus,  

𝑋1 + 𝑋2 ≥ 𝑥   implies   𝑀 ≥ 2𝑗𝑥  

Hence the probability of evevt (𝑖) is zero 𝑦 

For case (ii) 

𝑀 ≥ 2𝑗𝑥+1 , 𝑡ℎ𝑒𝑛 𝑋1 + 𝑋2 ≥ 𝑀 + 1 ≥ 2𝑗𝑥+1 ≥ 𝑥. 

Thus, 
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𝑃(𝑀 > 2𝑗𝑥 ,  𝑋1 + 𝑋2 ≥ 𝑥) = 𝑃(𝑋 ≥ 2𝑗𝑥+1) = 1 − 𝑃(𝑀 < 2𝑗𝑥+1)  

= 1 − 𝑃(𝑋1 ≤ 2𝑗𝑥)𝑃(𝑋1 ≤ 2𝑗𝑥)

= 1 − (1 −
1

2𝑗𝑥+1
)(1 −

1

2𝑗𝑥+1
) = (

1

2
)

𝑗𝑥

− (
1

2
)

2𝑗𝑥+2

 

Case (iii) we have  

𝑋1 ≥ 𝑥 − 2𝑗𝑥 ⟺ 𝑙𝑜𝑔2( 𝑋1) ≥ ⌈𝑙𝑜𝑔2(𝑥 − 2𝑗𝑥)⌉ − 1 ≔ 𝑘𝑥 .  ⟺ 𝑋1 ≥ 2𝑘𝑥 

Then  

{𝑀 = 2𝑗𝑥 ,  𝑋1 + 𝑋2 ≥ 𝑥} = { 𝑋1 = 2𝑗𝑥 , 𝑥 − 2𝑗𝑥 ≤ 𝑋2 ≤ 2𝑗𝑥}⋃{ 𝑋2

= 2𝑗𝑥 , 𝑥 − 2𝑗𝑥 ≤ 𝑋1 ≤ 2𝑗𝑥}

= { 𝑋1 = 2𝑗𝑥 , 2𝑘𝑥 ≤ 𝑋2 ≤ 2𝑗𝑥}⋃{ 𝑋2 = 2𝑗𝑥 , 2𝑘𝑥 ≤ 𝑋1

≤ 2𝑗𝑥−1} 

Since  𝑋1 and  𝑋2 are independent, we have 

𝑃(𝑀 = 2𝑗𝑥 , 𝑋1 + 𝑋2 ≥ 𝑥)

= 𝑃(𝑋1 = 2𝑗𝑥)𝑃(2𝑘𝑥 ≤ 𝑋2 ≤ 2𝑗𝑥)

+ 𝑃(𝑋2 = 2𝑗𝑥)𝑃(2𝑘𝑥 ≤ 𝑋1 ≤ 2𝑗𝑥−1)

=
1

2𝑗𝑥+1
(

1

2𝑘𝑥
−

1

2𝑗𝑥+1
) +

1

2𝑗𝑥+1
(

1

2𝑘𝑥
−

1

2𝑗𝑥
)

= (
1

2
)

𝑗𝑥+𝑘𝑥

− (
1

2
)

2𝑗𝑥+2

+ (
1

2
)

2𝑗𝑥+1

 

Combining results from (i), (ii) and (iii) yields 

𝑃(𝑋1 + 𝑋2 ≥ 𝑥) = (
1

2
)

𝑗𝑥

+ (
1

2
) [(

1

2
)

𝑘𝑥

− (
1

2
)

𝑗𝑥

]                                 (3.3) 

Comparing (3.2) and (3.3) and the fact that 𝑘𝑥 ≤ 𝑗𝑥  for all  𝑥 > 0 leads 𝑡𝑜(3.1)  This 

completes the proof. 
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3.2 Four Paul Paradox 

For a Four Paul problem we need to show that for all  𝑥 > 0 

𝑃(𝑋1 + 𝑋2 + 𝑋3 + 𝑋4 ≥ 𝑥) ≥ 𝑃(4𝑋1 ≥ 𝑥)                                             (3.4) 

To establish the right side of equation (3.4) we proceed as follows: 

𝑃(4𝑋1 ≥ 𝑥) = 𝑃 (𝑋1 ≥
𝑥

4
) = ∑

1

2𝑗+1
𝑗=⌈𝑙𝑜𝑔2(𝑥/4)⌉

=
1

2⌈𝑙𝑜𝑔2(𝑥/4)⌉

= (
1

2
)

𝑗𝑥−1

                                                                             (3.5) 

Where 

𝑗𝑥 ≔ ⌈𝑙𝑜𝑔2(𝑥)⌉ − 1 

To find the right hand side of equation (3.4) we use    

𝑃(𝑋1 + 𝑋2 + 𝑋3 + 𝑋4 ≥ 𝑥)  

= ∑ 𝑃(𝑋1 + 𝑋2 = 𝑦)𝑃(𝑋3 + 𝑋4 ≥ 𝑥 − 𝑦)

𝑥−2

𝑦=2

+ 𝑃(𝑋1 + 𝑋2 ≥ 𝑥 − 1)                                                     (3.6) 

𝑃(𝑋3 + 𝑋4 ≥ 𝑥 − 𝑦)  𝑎𝑛𝑑  𝑃(𝑋1 + 𝑋2 ≥ 𝑥 − 1)  can be found using (3.3) and we can find  

𝑃(𝑋1 + 𝑋2 = 𝑦) = 𝑃(𝑋1 + 𝑋2 ≥ 𝑦) − 𝑃(𝑋1 + 𝑋2 ≥ 𝑥 + 1)              (3.7) 

Equation (3.6) cannot be simplified, so we can make use of Maple to calculate their values 

for each 𝑥 . Keguo Huang use Mathematica to show the significance of the difference 

(Keguo, 2013). 
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3.3 Detailed Analysis of the St. Petersburg Paradox 

Theorem 1: Let ℕ denote the set of natural numbers and let 𝑥: ℕ → 𝑋 ⊂ ℝ+ denotes a 

strictly increasing mapping, that is, 𝑥𝑗 > 𝑥𝑖  ∀ 𝑗 > 𝑖, 𝑖, 𝑗 ∈ ℕ.  Let 𝑢: 𝑋 → ℝ+ denote a non-

decreasing function such that 𝑢(> 𝑥𝑖) < ∞ ∀ 𝑖 <  ∞, and 𝑝: 𝑋 → [0,1],  a non-increasing 

function such ∑ 𝑝(𝑥𝑖) = 1,∞
𝑖=1  that is, a probability distribution. Then the following hold 

(Christian, 2013): 

Case 1: ∑ 𝑢(𝑥𝑖)𝑝(𝑥𝑖) < ∞,∞
𝑖=1  if ∃𝑖∗ < ∞ such that 𝑝(𝑥𝑖) = 0 ∀ 𝑖 ≥  𝑖∗.  

Case 2: ∑ 𝑢(𝑥𝑖)𝑝(𝑥𝑖) < ∞,∞
𝑖=1  if ∃𝑖∗ < ∞ such that 𝑠𝑢𝑝𝑖≥𝑖∗  

𝑢(𝑥𝑖+1)𝑝(𝑥𝑖+1)

𝑢(𝑥𝑖)𝑝(𝑥𝑖)
< 1. 

Case 3: ∑ 𝑢(𝑥𝑖)𝑝(𝑥𝑖) = ∞,∞
𝑖=1  if ∃𝑖∗ < ∞ such that 𝑖𝑛𝑓𝑖≥𝑖∗  

𝑢(𝑥𝑖+1)𝑝(𝑥𝑖+1)

𝑢(𝑥𝑖)𝑝(𝑥𝑖)
≥ 1. 

Case 4: ∑ 𝑢(𝑥𝑖)𝑝(𝑥𝑖),∞
𝑖=1   may converge or diverge if lim

𝑖→∞
 
𝑢(𝑥𝑖+1)𝑝(𝑥𝑖+1)

𝑢(𝑥𝑖)𝑝(𝑥𝑖)
= 1. 

Proof: Case 1 is obvious. For case 2, 3 and 4 follow from d’Alembert’s ratio test 

(Stephenson, 1973) 

Corollary 1: [St. Petersburg paradox case] for each probability distribution 𝑝(𝑥𝑖) > 0,

∑ 𝑝(𝑥𝑖) = 1,∞
𝑖=1  which is strictly decreasing for all 𝑖 ≥  𝑖∗, 𝑖∗ < ∞, there exist functions 

𝑢(𝑥𝑖) which is strictly increasing for 𝑖 ≥  𝑖∗, 𝑖∗ < ∞, such that ∑ 𝑢(𝑥𝑖)𝑝(𝑥𝑖) = ∞.∞
𝑖=1  

Proof: By applying case 3 of Theorem 1 and considering the function 𝑢(𝑥𝑖) to be such that  

𝑢(𝑥𝑖+1)

𝑢(𝑥𝑖)
>

𝑝(𝑥𝑖)

𝑝(𝑥𝑖+1)
> 1              𝑓𝑜𝑟 𝑎𝑙𝑙   𝑖 ≥  𝑖∗, 

here the growth rate of utility is more than 
𝑝(𝑥𝑖)

𝑝(𝑥𝑖+1)
  the shrinkage rate of probabilities (for 

instance if  
𝑝(𝑥𝑖+1)

𝑝(𝑥𝑖)
= 3 this implies that 𝑝(𝑥𝑖) is triple as high as 𝑝(𝑥𝑖+1) ) for infinitely 

many items. Equality in the above relation leads to case 4 of the Theorem 1. 
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Remark 1: in the original St. Petersburg paradox we have 𝑥𝑖 = 𝑖, 𝑢(𝑥𝑖) = 2𝑖−1, 𝑝(𝑥𝑖) =

1

6
(

5

6
)

𝑖−1

 ,  this gives  ∑ 𝑢(𝑥𝑖)𝑝(𝑥𝑖) = ∑
1

6
(

10

6
)

𝑖−1

= ∞.∞
𝑖=1

∞
𝑖=1  Since 

𝑢(𝑥𝑖+1)𝑝(𝑥𝑖+1)

𝑢(𝑥𝑖)𝑝(𝑥𝑖)
=  

10

6
>

1 ∀ 𝑖 ≥ 2, the original St. Petersburg Paradox becomes case 3 of Theorem 1 

∑ 𝑢(𝑥𝑖)𝑝(𝑥𝑖) = ∞.∞
𝑖=1   

In Cramer’s version of the “Classical” St. Petersburg Paradox the assumptions 𝑥𝑖 =

𝑖 , 𝑢(𝑥𝑖) = 2−𝑖 , which leads to ∑ 𝑢(𝑥𝑖)𝑝(𝑥𝑖) = 2−𝑖 × ∞ = ∞.∞
𝑖=1   

Observe that  
𝑢(𝑥𝑖+1)

𝑢(𝑥𝑖)
= 2,

𝑝(𝑥𝑖)

𝑝(𝑥𝑖+1)
= 2, and 

𝑢(𝑥𝑖+1)𝑝(𝑥𝑖+1)

𝑢(𝑥𝑖)𝑝(𝑥𝑖)
= 1 ∀ 𝑖 ≥ 2.  

Hence, the “classical” St. Petersburg Paradox becomes case 4 of the Theorem 1 for which 

∑ 𝑢(𝑥𝑖)𝑝(𝑥𝑖) = ∞.∞
𝑖=1  Thus, Corollary 1 holds generally for case 3 and may hold for some 

instances of case 4 Theorem 1. 

Corollary 2: Assume a probability distribution for which 𝐸(𝑥) < ∞. Then for all concave 

functions 𝑢(∙) such that (𝑥𝑖) < ∞ ∀ 𝑥𝑖  <  ∞, we have 𝐸[𝑢(𝑥)] < ∞. 

Proof: applying Jensen’s inequality implies 𝐸[𝑢(𝑥)] < 𝑢[𝐸(𝑥)] and thus, 𝐸[𝑢(𝑥)] < ∞. 

Corollary 3: (Bernoulli-Crammer case) For any non-decreasing 0 < 𝑢(𝑥𝑖) < ∞ ∀ 𝑖 < ∞ 

and a strictly decreasing probability distribution 𝑝(𝑥𝑖) > 0 ∀ 𝑖 < ∞, such that 

∑ 𝑢(𝑥𝑖)𝑝(𝑥𝑖) = ∞∞
𝑖=1  and 𝑖𝑛𝑓𝑖∈ℕ

𝑝(𝑥𝑖)

𝑝(𝑥𝑖+1)
> 1, there exist an increasing transformation of 

𝑢(𝑥𝑖), viz. 𝜑[𝑢(𝑥𝑖)], 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑ 𝜑[𝑢(𝑥𝑖)]𝑝(𝑥𝑖)
∞
𝑖=1 < ∞. 

Proof: By the given assumption 𝑖𝑛𝑓𝑖∈ℕ
𝑝(𝑥𝑖)

𝑝(𝑥𝑖+1)
=  𝛽 > 1 and since ∑ 𝑢(𝑥𝑖)𝑝(𝑥𝑖) = ∞∞

𝑖=1  

this implies for all 𝑖 >  𝑖∗ 

𝑢(𝑥𝑖+1)

𝑢(𝑥𝑖)
>

𝑝(𝑥𝑖)

𝑝(𝑥𝑖+1)
>  𝛽,                                                                              (3.8) 

else the initial series will converge. Constructing 𝜑(∙) in such a way that for any 𝑢(∙) 

having property (3.8) 
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𝜑[𝑢(𝑥𝑖+1)]

𝜑[𝑢(𝑥𝑖)]
< 𝛽.                                                                                             (3.9) 

To establish that observe that for any number 
𝑢(𝑥𝑖+1)

𝑢(𝑥𝑖)
≥ 𝛽 > 1 there exist a real number  

0 < 𝜔(𝑥𝑖, 𝑥𝑖+1) < 1 and thus, 1 <  (
𝑢(𝑥𝑖+1)

𝑢(𝑥𝑖)
)

𝜔(𝑥𝑖,𝑥𝑖+1)

< 𝛽. Let 𝜔∗= 𝑖𝑛𝑓𝑖>𝑖∗𝜔(𝑥𝑖, 𝑥𝑖+1), then 

it can be chosen that  𝜑[𝑢(𝑥𝑖)] = [𝑢(𝑥𝑖)]𝜔∗
 for  𝜑(∙) in equation (3.9), this implies that 

folmula. 

𝜑[𝑢(𝑥𝑖+1)]𝑝(𝑥𝑖+1)

𝜑[𝑢(𝑥𝑖)]𝑝(𝑥𝑖)
< 1                  ∀ 𝑖 >  𝑖∗. 

Thus, by Case 2 of Theorem 1 it follows that ∑ 𝜑[𝑢(𝑥𝑖)]𝑝(𝑥𝑖) < ∞.∞
𝑖=𝑖∗.  

Remark 2: 𝜑[𝑢(𝑥𝑖)] = ln [𝑢(𝑥𝑖)]  = ln( 2𝑖−1 ) was proposed by Daniel Bernoulli and 

𝜑[𝑢(𝑥𝑖)]  = √𝑢(𝑥𝑖) = √2𝑖−1. These functions are for 𝑝(𝑥𝑖) =  2−𝑖  thus leading to formula  

𝜑[𝑢(𝑥𝑖+1)]𝑝(𝑥𝑖+1)

𝜑[𝑢(𝑥𝑖)]𝑝(𝑥𝑖)
 =

𝑖

2(𝑖 − 1)
< 1 for 𝑖 > 2 for that proposed by Bernoulli, we have ıt 

𝜑[𝑢(𝑥𝑖+1)]𝑝(𝑥𝑖+1)

𝜑[𝑢(𝑥𝑖)]𝑝(𝑥𝑖)
=

√2

2
< 1 for 𝑖 ∈ ℕ for that proposed by Cramer.                    

Remark 3: The St. Petersburg paradox is obtained about by winning and the probability 

distribution. Replacing the probabilities of the Cramer solution by 𝑝(𝑥𝑖) =
1

𝐿√2𝑖
  where 𝐿 =

∑ 2−
𝑖

2∞
𝑖=1 =

1

√2−1
 denotes the calibrating constant, obviously 

∑ 𝑝(𝑥′)

∞

𝑖=1

=  ∑
1

𝐿√2𝑖

∞

𝑖=1

= ∑ 1/
2

𝑖
2

2
1
2 − 1

∞

𝑖=1

= (2
1
2 − 1) ∑ 2−

𝑖
2

∞

𝑖=1

= 1, and 

∑ 𝜑[𝑢(𝑥𝑖)] 𝑝̃(𝑥′)

∞

𝑖=1

= ∑
√2𝑖−1

√2𝑖/√2 − 1

∞

𝑖=1

= ∑ (1 −
1

√2 − 1
)

∞

𝑖=1

= ∞, 

Which reextablishes the St. Petersburg Paradox. 
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Corollary 4: Case 2 of Theorem 1 obtains if the shrinkage rate of probability exceeds the 

rate of utility for infinitely many winnings. 

Case 3 of Theorem 1 obtains if the growth rate of utility exceeds the shrinkage rate of 

probability for infinitely many winnings. 

Case 2 can be transformed into case 3 by an appropriate increasing complex mapping  

Corollary 5: (Buffon Case) Consider non-decreasing functions 𝑢(𝑥𝑖)  < ∞, 𝑖 < ∞, and 

probability distribution 𝑝(𝑥𝑖) > 0, 𝑖 <  ∞, such that ∑ 𝑢(𝑥𝑖)𝑝(𝑥𝑖) = ∞.∞
𝑖=1  Suppose a 

gambler perceives the aggregates upper tail of the probability distribution 0 <  𝜀 ∶=

∑ 𝑝(𝑥𝑖)
∞
𝑖=𝑖∗+1  as close to zero, and therefore negligible. Consequently, the gambler 

perceives all  𝑝(𝑥𝑖), 𝑖 > 𝑖∗, as close to zero and negligible. Hence, the probability 

distribution becomes finite, and ∑ 𝑢(𝑥𝑖)𝑝(𝑥𝑖)
∞
𝑖=1   is perceived as a finite expression 

∑ 𝑢(𝑥𝑖)𝑝(𝑥𝑖)  ≈

𝑖∗

𝑖=1

∑ 𝑢(𝑥𝑖)𝑝(𝑥𝑖)  < ∞,

𝑖∗

𝑖=1

 

where 

𝑝(𝑥𝑖) = {
𝑝(𝑥𝑖) 

1 − 𝜀
      ∀ 𝑖 ≥ 𝑖∗,

0               ∀ 𝑖 > 𝑖∗.

 

Proof: follows from case 1 of Theorem 1. 

Corollary 6: (Menger Case) For all strictly increasing functions 𝑢(∙), 𝑢(𝑥𝑖) < ∞, ∀ 𝑖 <  ∞, 

and all probability distribution 𝑝(𝑥𝑖)  ≥ 0,   ∑ 𝑝(𝑥𝑖) = 1,∞
𝑖=1    ∑ 𝑢(𝑥𝑖)𝑝(𝑥𝑖) < ∞ ∞

𝑖=1 holds 

if and only if ∃ 𝑩 < ∞ such that 𝑢(𝑥𝑖) ≤ 𝑩 ∀ 𝑖 𝜖 ℕ. 

Proof: Obviously 𝑢(𝑥𝑖) ≤ 𝑩 <  ∞  𝑖 𝜖 ℕ implies ∑ 𝑢(𝑥𝑖)𝑝(𝑥𝑖)  ≤ ∑ 𝑩𝑝(𝑥𝑖) = 𝑩 <∞
𝑖=1

∞
𝑖=1

∞ .  

Conversely, by assuming 𝑢(𝑥𝑖) → ∞  as 𝑥𝑖 → ∞ . The case 𝑝(𝑥𝑖) = 0 ∀ 𝑖 ≥ 𝑖∗,  leads to 

Case 1. Since ∑ 𝑝(𝑥𝑖) = 1  ∞
𝑖=1 all feasible probability distributions will be strictly 

decreasing for infinite 𝑥𝑖′𝑠.thus, 𝑝(𝑥𝑖) > 0 is strictly decreasing for all  𝑖 > 𝑖∗,  𝑖∗ <  ∞. 
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This leads to 
𝑝(𝑥𝑖)

𝑝(𝑥𝑖+1)
> 1  for all  𝑖 > 𝑖∗,  𝑖∗ <  ∞ . Also ∑ 𝑝(𝑥𝑖) = 1  ∞

𝑖=1  implies 

𝑠𝑢𝑝𝑖>𝑖∗  
𝑝(𝑥𝑖)

𝑝(𝑥𝑖+1)
< ∞. If 𝑖𝑛𝑓𝑖>𝑖∗

𝑢(𝑥𝑖+1)

𝑢(𝑥𝑖)
> 𝑠𝑢𝑝𝑖>𝑖∗  

𝑝(𝑥𝑖)

𝑝(𝑥𝑖+1)
, then it can proceed along this path, 

else a strictly increasing transformation is chosen 𝜑(∙)  such that 𝑖𝑛𝑓𝑖>𝑖∗
𝜑[𝑢(𝑥𝑖+1)]

𝜑[𝑢(𝑥𝑖)]
 >

𝑠𝑢𝑝𝑖>𝑖∗  
𝑝(𝑥𝑖)

𝑝(𝑥𝑖+1)
.  Such transformation 𝜑(∙)   always exist. One of such obvious case is 

𝜑[𝑢(𝑥𝑖)] =  [𝑢(𝑥𝑖)]𝛾, 𝛾 > 1 . Since 
𝑢(𝑥𝑖+1)

𝑢(𝑥𝑖)
> 1,  , 𝛾 > 1  can be selected such that 

𝑖𝑛𝑓𝑖>𝑖∗ [
𝑢(𝑥𝑖+1)

𝑢(𝑥𝑖)
]

 𝛾

 > 𝑠𝑢𝑝𝑖>𝑖∗  
𝑝(𝑥𝑖)

𝑝(𝑥𝑖+1)
. This leads to  

𝜑[𝑢(𝑥𝑖+1)]

𝜑[𝑢(𝑥𝑖)]
>

𝑝(𝑥𝑖)

𝑝(𝑥𝑖+1)
⇔

𝜑[𝑢(𝑥𝑖+1)]𝑝(𝑥𝑖+1)

𝜑[𝑢(𝑥𝑖)]𝑝(𝑥𝑖)
> 1 ∀𝑖 ≥ 𝑖∗, 𝑖∗ <  ∞, 

Which becomes case 3 of Theorem 1 for 𝑖 ≥ 𝑖∗. Therefore, boundedness of is a necessary 

and sufficient condition for ∑ 𝑢(𝑥𝑖)𝑝(𝑥𝑖) < ∞ ∞
𝑖=1 . 
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CHAPTER 4  

RESULTS 

In this chapter we present some of the results of simulated St. Petersburg game using 

Maple (Adi, 1999). 

The plot of the probability of getting n sequential head using maple with n = 10 is given 

below (see Appendix 1 for the code).  

 

Figure 4.1: Probability of getting n head in a row 
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Setting c = $10 (cost of playing the game) and n = 150 (number of game played) we obtain 

the following outcome from the Maple simulation 

 

 

 

Where the entries of L are 0’s and 1’s, the 0’s represents the outcomes where tail are 

obtained and the 1’s represents the outcomes where head are obtained. LL entries 

represents the payoffs obtained (see Appendix 1 for the code). 
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Figure 4.2: Utility Curve 

 

Setting c = $5 (cost of playing the game) and n = 10000 (number of game played) we 

obtain the Utility Curve above. The lack of smoothness in the equity curve is brought about 

by the occasional obtainment of long sequences of head that leads to large profit (see 

Appendix 1 for the code). 

People attitude towards risk can be grouped into three distinct categories in relation to their 

respective Bernoulli functions. 
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1. Risk-averse: a risk-averse person is an individual whose utility of the expected value of 

a game is greater than his expected utility from the game itself. 

A concave utility function is used to capture a risk-averse behavior. Considering a 

simple game based on a coin toss which a player obtain $10 if the coin lands heads and 

$20  if the coins land tail. The expected value of the game will be (0.5 × 10) +

(0.5 × 20) = 1.5. a risk-averse individual whose Bernoulli utility function functions 

the form 𝑢(𝑤) = 𝑙𝑜𝑔𝑤, 𝑤 being the outcome will yield the expected utility (0.5 ×

log (10)) + (0.5 × log (20)) = 1.15 

The utility of the expected value of the gamble is log(15) = 1.176 

 

 
 

Figure 4.3: Risk-averse curve of the Bernoulli Utility log function 
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2. Risk-loving: A risk-loving person is an individual whose utility of the expected value 

of a game is less than his expected utility from the game itself. Based on this definition, 

a player that is truly risk-loving should be willing to stake all their wealth on a single 

dice roll. 

We capture this risk-loving behavior using a convex Bernoulli utility function such as 

the exponential function. A risk-loving individual whose Bernoulli utility function 

follows the form 𝑢(𝑤) = 𝑤2 will yield the expected utility over the game of (0.5 ×

102) + (0.5 × 202) = 250 

The utility of the expected value of the game is 152=225 

 

 

Figure 4.4: Risk-loving curve of the Bernoulli Utility exponential function 
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3. Risk-neutral: A risk-loving person is an individual whose utility of the expected value 

of a game is equal his expected utility from the game itself. A lot of financial firms 

adapt the risk-neutral manner while investing. We capture this risk-loving behavior 

using a linear Bernoulli utility function. A risk-loving individual whose Bernoulli 

utility function follows the form 𝑢(𝑤) = 2𝑤 will yield the expected utility over the 

game of (0.5 × 2 × 10) + (0.5 × 2 × 20) = 30 

The utility of the expected value of the game is 2×15=30 

 

 

Figure. 4.5: Risk-neutral curve of the Bernoulli Utility linear function 
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Figure 4.6: Risk Aversion Curve 

 

Setting c = $0,…,$5 (cost of playing the game) and n = 100 (number of game played) the 

percentage number of times a result greater than zero is plotted as can be seen above. It is 

obvious that a risk aversion player will not be willing to pay more than $6 to participate in 

this game (see Appendix 1 for the code). 
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Figure 4.7: Plot of profit as a function of the game cost. 

 

Finally, the plot of profit as a function of the cost of the game and n (number of 

simulations) shows that the profit is a decreasing function of the cost of the game and the 

number of times the game is played. Occasionally, long run of head yields a large profit as 

can be seen from the plot above (see Appendix 1 for the code). 
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CHAPTER 5  

CONCLUSION 

Contemporary mathematicians have made the proposal that the stake of a game should be 

more than the expected value of winning the game. A game of hazard having an infinite 

expected value was formulated by Nicholas Bernoulli, but no gambler will be willing to 

bet a stake that is more than a moderate amount to take part in this game of chance. This 

paradox brought about by this game led to various attempt in obtaining a solution to 

resolve this paradox. Daniel Bernoulli and Cramer proposed a concave transformation in 

other to obtain the solution. A method of neglecting some of the probabilities was 

suggested by Buffon and others. The first person that was successful in showing that a 

necessary and sufficient condition to obtain a finite expected value for the St. Petersburg 

paradox is Menger his findings led to the development of expected utility theory by 

Morgenstern’s and von Neumann. 

Chapter 3 presents an analysis on a Two-Paul game and a Four-Paul game and also the 

four possible cases of St. Petersburg paradox have been shown to be uniformly treated by 

the use of d’Alembert ratio test and finally computer simulation using Maple was carried 

out to support our result. 
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APPENDIX 

SIMULATION OF THE ST. PETERSBURG PARADOX USING MAPLE  

In this section the Maple codes used to obtain the results in chapter 4 are presented. More 

detail on the algorithm can be obtain from Maple link (Marcus, 2010). 

The code used to obtain the probability of getting n sequential head using maple is as 

follows: 

>  

>  

The simulation of the outcome of basic fair coin toss is as follows: 

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  
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>  

The code used to plot the equality curve in chapter 4 is as follows: 

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

The code for the risk aversion curve in chapter 4 is as follows: 

>  

>  

>  

>  

>  

>  

>  
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>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  
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>  

The code used to plot the profit as a function of the cost of the game and n using maple in 

chapter 4 is as follows:  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  
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>  

 

 

 

 

 

 

 

 

 

 

 

 


