
RECOMMENDATION SYTEM ANALYSIS AND

EVALUATION

A THESIS SUBMITTED TO THE GRADUATE

 SCHOOL OF APPLIED SCIENCES

 OF

NEAR EAST UNIVERSITY

By

MINASE NETSEREAB TEKLEAB

In Partial Fulfillment of the Requirements for

 the Degree of Master of Science

 in

Software Engineering

NICOSIA, 2019

M
IN

A
S

E
 E

T
S

E
R

E
A

B

T
E

K
L

E
A

B

R
E

C
O

M
M

E
N

D
A

T
IO

N
S

 S
Y

T
E

M
 A

N
A

L
Y

S
IS

 A
N

D

E
V

A
L

U
A

T
IO

N

N
E

U

2
0
1
9

RECOMMENDATION SYTEM ANALYSIS AND

EVALUATION

A THESIS SUBMITTED TO THE GRADUATE

 SCHOOL OF APPLIED SCIENCES

 OF

NEAR EAST UNIVERSITY

By

MINASE NETSEREAB TEKLEAB

In Partial Fulfillment of the Requirements for

 the Degree of Master of Science

 in

Software Engineering

NICOSIA, 2019

MINASE NETSEREAB TEKLEAB: RECOMMENDATION SYTEM ANALYSIS AND

EVALUATION

Approval of Director of Graduate School of Applied Sciences

Prof. Dr. Nadire Cavus

We certify that this thesis is satisfactory for the award of the degree of Master of Science in

Software Engineering

Examining Committee in Charge:

Asst. Prof. Dr. Yöney Kırsal Ever Head of the Department of Software Engineering,

 NEU

Assoc. Prof. Dr. Kamil Dimililer Head of the Department of Automotive

 Engineering, NEU

Asst. Prof. Dr. Boran Şekeroğlu Supervisor, Department of Information System

 Engineering, NEU

i

I hereby declare that all information in this document has been obtained and presented in

accordance with the academic rules and ethical conduct. I also declare that, as required by

these rules and conducts, I have fully cited and referenced all materials and results that are not

original to this work.

Name, Surname: Minase Netsereab, Tekleab

Signature:

Date:

ii

ACKNOWLEDGEMENTS

This Master’s thesis, Recommendation System Analysis and Evaluation is the concluding

piece of my two-year Master’s degree of SE with NEU.

The project took six months. For other researchers interested in the field of Analysis and

Evaluation recommender system, I believe my work could be a good summary of the state-of-

the-art research results.

The thesis could not be done without the help of many dedicated people. First I would like to

thank Assist. Prof. Dr. Boran Şekeroğlu, my thesis supervisor, who provided timely support

and invaluable feedback and ideas for this research.

 I also would like to thank NEU for generously offering me the opportunity and scholarship to

study in TRNC. This two-year international experience would definitely change my future.

And last but not least, I would like to thank all my friends and family who helped me through

the tough time of these two years and encouraged me to finish this work.

iii

To my parents …

iv

ABSTRACT

Recommendation systems are popularly discussed in research literature aimed at solving the

problems of information overload in a variety of contexts and application fields. When

developing such applications, there are a wide range of choices regarding what approaches,

algorithms and techniques to employ.

In this thesis I will provide a detailed analysis of different recommender systems’ techniques

(Content-based, Collaborative and Hybrid), which have been proposed in the recent literature.

Finally, evaluation methods and metrics to measure the performance of those systems will be

discussed. I will explore the properties and potentials of various metrics and protocols in

recommendation engines which will serve as a compass for conducting research and practice

in the area of recommendation engines. Furthermore, an experiment will be conducted to

measure their effectiveness on two recommendation models using precision-recall metrics

which is applied on offline public dataset.

Keywords: Evaluation; recommender systems; content-based filtering; collaborative filtering;

hybrid filtering.

v

ÖZET

Tavsiye sistemleri, popüler olarak, çeşitli bağlamlarda ve uygulama alanlarında aşırı bilgi

yükü problemlerini çözmeyi amaçlayan araştırma literatüründe tartışılmaktadır. Bu tür

uygulamalar geliştirilirken, hangi yaklaşımların, algoritmaların ve tekniklerin kullanılacağına

ilişkin çok çeşitli seçenekler vardır.

Bu tezde, farklı literatürde öne sürülen farklı tavsiye sistemleri 'tekniklerinin (İçerik tabanlı,

İşbirlikçi ve Karma) tekniklerinin ayrıntılı bir analizini sunacağım.

Son olarak, bu sistemlerin performansını ölçmek için değerlendirme yöntemleri ve ölçümleri

tartışılacaktır. Tavsiye motorları alanında araştırma ve uygulama yapmak için pusula görevi

yapacak olan tavsiye motorlarında çeşitli ölçüm ve protokollerin özelliklerini ve

potansiyellerini keşfedeceğim. Ayrıca, çevrimdışı kamu veri setine uygulanan hassas

hatırlama ölçümleri kullanarak iki öneri modelindeki etkinliğini ölçmek için bir deney

yapılacaktır.

Anahtar Kelimeler: Değerlendirme; öneri sistemleri; içerik esaslı filtreleme; işbirlikçi filter;

hibrit filtre.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii

ABSTRACT ... iv

ÖZET ... v

LIST OF FIGURES .. x

LIST OF ABBREVIATIONS ... xi

CHAPTER 1: INTRODUCTION

1.1. Motivation of the Work ... 3

1.2. Research Question ... 4

1.3. Research Aim and Contribution .. 4

1.4. The Structure of the Thesis .. 5

CHAPTER 2: LITERATURE REVIEW AND RELATED WORKS

2.1. Recommender Systems .. 6

2.2. Filtering Techniques .. 6

2.2.1. Collaborative Filtering .. 6

2.2.2. Content Based Filtering ... 7

2.2.3. Hybrid Filtering .. 7

2.3. Evaluation Methods and Metrics ... 8

CHAPTER 3: ANALYSIS OF RECOMMENDATION SYSTEM TECHNIQUES

3.1. Recommender Systems .. 10

3.2. Content-Based Filtering ... 14

3.2.1. Popular Algorithms .. 16

 3.2.1.1. Term-Frequency - Inverse Document Frequency 16

 3.2.1.2. Naïve-Bayes Classifier .. 17

 3.2.1.3. Decision Tree Rule Learner ... 18

3.2.2. Merits and Demerits ... 19

3.3. Collaborative Filtering Techniques ... 20

vii

3.3.1. Memory-Based Collaborative Filtering ... 21

 3.3.1.1. User-Based .. 22

 3.3.1.2. Item-Based ... 23

 3.3.1.3. Determining Similarity and Prediction .. 23

3.3.2. Model-Based Collaborative Filtering .. 25

 3.3.2.1. Principal Component Analysis ... 26

 3.3.2.2. Probabilistic Matrix Factorization .. 26

 3.3.2.3. Singular Value Decomposition ... 27

 3.3.2.3. Discussion ... 28

3.4. Hybrid Filtering Technique.. 30

3.4.1. Merits and Demerits ... 33

CHAPTER 4: EVALUATION METHODS AND METRICS

4.1. Introduction .. 34

4.2. Evaluation Methods ... 34

4.2.1. Online ... 35

4.2.2. Offline ... 35

4.2.3. User Study .. 36

4.3. Evaluation Metrics ... 37

4.3.1. Machine Learning Perspective ... 37

4.3.2. Information Retrieval ... 38

4.3.3. Human Computer Interaction and Experience ... 40

4.4. Experimental Setup .. 42

4.5. Evaluation Datasets .. 42

4.6. Results .. 43

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

5.1. Conclusion ... 44

5.2. Recommendations and Future Works .. 44

viii

REFERENCES ... 45

APPENDICES

Appendix 1: Bulding a Song Recommender System Sample Code ... 60

Appendix 2: Evaluation Sample Code.. 63

Appendix 3: Recommender Models Sample Code .. 65

ix

 LIST OF TABLES

Table 4.1: Confusion Matrix.. 39

x

LIST OF FIGURES

Figure 3.1: Framework of Recommendation Process ... 11

Figure 3.2: Traditional Recommendation Systems approaches main category 13

Figure 3.3: Frame-work of Content-based approach ... 16

Figure 3.4: Techniques aggregation .. 31

Figure 3.5: Feature integration .. 31

Figure 3.6: Model unification .. 31

Figure 4.1: Precision-Recall Curve of popularity model and item-based model 43

file:///F:/draft%2021%2011%202018/All%20chapters%20draft%201206218.docx%23_Toc532159768
file:///F:/draft%2021%2011%202018/All%20chapters%20draft%201206218.docx%23_Toc532159769
file:///F:/draft%2021%2011%202018/All%20chapters%20draft%201206218.docx%23_Toc532159770
file:///F:/draft%2021%2011%202018/All%20chapters%20draft%201206218.docx%23_Toc532159771
file:///F:/draft%2021%2011%202018/All%20chapters%20draft%201206218.docx%23_Toc532159772
file:///F:/draft%2021%2011%202018/All%20chapters%20draft%201206218.docx%23_Toc532159771
file:///F:/draft%2021%2011%202018/All%20chapters%20draft%201206218.docx%23_Toc532159773

xi

LIST OF ABBREVIATIONS

RS: Recommendation System

CF: Collaborative Filtering

CBF: Content Based Filtering

IR: Information Retrieval

GUI: Graphical User Interface

PCA: Principal Component Analysis

ML: Machine Learning

RSSE: Recommendation systems in software engineering

CBRS: Content Based Recommender System

AI: Artificial Intelligence

SVD: Singular Value Decomposition

MSE: Mean Square Error

RMSE: Root Mean Square Error

MAE: Mean Absolute Error

MSD: Millions Song Dataset

PCA: Principal Component Analysis

LSA: Latent Semantic Analysis

1

CHAPTER 1

INTRODUCTION

The increasing significance of the internet as a platform for electronic and business

transactions has served as a driving force for the advancement of recommendation systems

technology (Aggarwal, 2016). The field of RS was appeared first when Tapestry was

developed and implemented using collaborative filtering by (Goldberg, Nichols, Oki, and

Terry, 1992) in 1992. As the RS field introduced, researchers studied the utilization of

algorithms from machine learning (ML), an area of artificial intelligence (AI).

Nowadays, RSs are applied in numerous information-based organizations such as Google

(Liu, Dolan, and Pedersen, 2010), Twitter (Ahmed, Kanagal, Pandey, Josifovski, Pueyo, and

Yuan, 2013), LinkedIn (Rodriguez, Posse, and Zhang, 2012), Netflix and in the field of

software engineering (Robillard, Walker, and Zimmermann, 2010).

Recommender system as explained by (Deshpande and Karypis, 2004), is a personalized

information filtering technology used to predict whether a specific user will be interested in a

particular item or to recognize a set of N items that will be preferred by a certain user (Prabha

and Duraisamy, 2016).

Stored data, input data, and algorithm (Burke, 2002) are the basic building blocks of a

recommendation system. According to (Bobadilla, Ortega, Hernando, and Gutiérrez, 2013)

recommendation algorithms are classified into, collaborative filtering, content-based filtering

and hybrid filtering.

Collaborative filtering (CF) requires information from the user on the item to start

recommending items to the target user. Users express their interest on the item by giving

certain level of rating to the item i.e. according their taste. The more they like the item the

high rating they will give. So based the rating another items related to the previous item they

preferred will be offered by computing the similarity with the item. Many researchers have put

2

effort on CF to develop it. Consequently, it has been applied by various online-shopping sites.

While this is true, CF approach has limitation such as cold-start and data sparsity.

Content-based filtering (CBF) in contrast to CF it does not need any previous information

about the items. A user profile is created by taking the features of the item. Without the item

contents the recommendation will not get into effect. Once the system has the user profile

constructed, similarity metrics computes the similarity of the contents of items in the profile

with the item contents in the database. That way it recommends new items to the user. As CBF

depends on the item properties, there are conditions where the contents are not able to extract

for instance image contents. In addition, it keep offering similar items. There is no item

variety.

Hybrid filtering algorithms (Hybrid) was basically come to exist to deal the limitation of CF

and CBF. For example, CBF can overcome cold-start of CF and CF can handle the

overspecialization problem of CBF. Cascading (Burke, 2002) is one of the methods of

combing algorithms which merges scores of other techniques with their weights.

The outcomes of the filtering approaches introduced on top are required to be evaluated for

their performance. We need to know, how important the recommendation was to the user. For

example for an e-commerce, is the company selling many items and the revenue of the

company improved. And several factors has to be considered.

Evaluation protocols and metrics assists us on knowing the performance in various ways

before the system commences its actual task. Different datasets are applied to conduct the

process as the performance differs from one dataset to another. As we aim perfection by

evaluation, the research area is yet a very challenging (Gunawardana, 2011; Herlocker,

Konstan, and Terveen, 2004). There are several factors that contributes to the challenge:

• A scalability of dataset is one of the major factors. The algorithms performs distinctly

for different datasets. The size of dataset also greatly influences the performance. The

accuracy and speed of the algorithm reduces as the dataset size increments.

3

• We have various number of evaluation metrics with varied properties. Some of them

contradict to one another. Many tradeoffs are faced. For example, when the precision

of the recommendation system is improved its recall decreases.

• Some evaluation metrics requires different evaluation protocols. For instance,

serendipity is tested using user study while accuracy prediction leverages offline

method.

1.1 Motivation of the Work

In this modern era of technology the critical issue we are facing is information overload which

is causing a lot of challenges retrieving relevant data. It is challenging separating relevant

from irrelevant information. Virtual environments like the Internet become more and more

intricate and rich while comparing with real environment in respect to the amount of

information and its complexity. For the last twenty five years, recommender engines have

been assisting and easing these complexity barriers by presenting the internet users

information they are really interested in smartly.

Recommender Systems main goal is to assist users dealing with information overload as

introduced in (section 1), finding or extracting relevant information from irrelevant in a vast

space of resources. Research on the area of RS have been active field since the first

recommendation system evolved and some books and articles that survey different algorithms

and application domains have been published recently. However, these researches have not

discussed in depth the different techniques utilized in Recommender System, and only some of

them have reviewed the different types of evaluation process to assess the effectiveness of RS.

Thus to narrow this gap, in this thesis i present introduction of recommendation systems in

general, and then we focus on presenting details of the main techniques of RS and evaluation

methods and discuss metrics from different perspectives that have been active in the research

literature.

4

This thesis will directly provide help to academics and practical professionals to get idea about

recommendation systems, how they work and implemented, what techniques are leveraged

and how they are evaluated. Recommendation systems are taking over the e-commerce in

particular. So inducing understanding on the user is a critical aspect as they have to put trust

and use them in their day to day activities.

 1.2 Research Question

This thesis will answer, What are the most used techniques in recommender systems, the main

performance evaluation metrics and methodologies used in the recommender systems field

and Which Recommendation system model (popularity and item based) is better from

Information Retrieval (IR) perspective?

1.3 This Research aims and Contributions are to:

 present a systematic analysis of recommendation approaches and their implementation

process;

 present highlights of the limitations and possible solutions of each techniques

discussed;

 it systematically examines the recommender systems evaluation metrics from three

perspectives and

 finally conduct an experiment comparing item-based to popularity-based

recommendation models.

5

1.4 Structure of the Thesis

This thesis includes of five chapters. Chapter 1, introduces a short background to the

Recommendation engines, describes shortly the recommendation systems headlines and gives

an overview about the objective and the structure of the thesis.

In Chapter 2, the literature review about recommendation engine algorithms and evaluation

metrics is presented.

In Chapter 3, this thesis first analyzes the three categories of RSs namely CBF, CF and hybrid

filtering (Adomavicius and Tuzhilin, 2005) and try to present the findings in an easy to digest

manner, in order to provide a concrete understanding of available approaches for potential

users.

In Chapter 4, the thesis first introduces recommendation system performance evaluation

protocols, and highlights their pros and cons. Secondly; the thesis discusses three perspectives

of evaluation metrics of recommendation systems from the perspectives of information

retrieval, human-computer interaction, and machine learning. Finally, perform a quantitative

comparison on two RS models (Item-based and popularity-based) built on a real word

MillionsSong dataset.

In Chapter 5, this thesis is concluded by providing answer to the research questions. The

future work including suggestions for the further development is summarized.

6

CHAPTER 2

LITERATURE SURVEY AND RELATED WORKS

2.1 Recommendation Systems

Recommendation system is generally described as a system that offers suggestion or

recommendation for subjects to deal with the complex information overload (Rashid, Albert,

Cosley, Lam, and McNee, 2002) and in the area of online shopping, assists users by finding

items from a database that are similar to their interests and preference (Schafer and Konstan,

1999). Recommender systems provides users with their individual tastes and services of

recommendation (Isinkaye and Folajimi, 2015) which overcomes the problem of retrieving

users’ needs due to information overload. There are different ways of building

recommendation systems utilizing techniques such as collaborative algorithm, content-based

algorithm or a combination of both hybrid algorithm (Acilar, 2009; Jalali, Mustapha, Sulaiman

and , 2010).

2.2 Filtering Techniques

2.2.1 Collaborative Techniques

This technique suggests items to users by searching like-minded subjects with identical

preference based on their preference it present suggestions to the target user which is referred

item-based. Various application areas have employed CF approaches. Existing CF approaches

generally categorized into: model-based and memory-based (Adomavicius and Tuzhilin,

2005). Neighborhood-based is splitted into, user-based (Huang, Wang, Liu, Ma, and Chen,

2015) and item-based (Shi and Larson, 2010), which makes predictions based on historical

ratings related to similar item or users. On the other hand, model-based methods uses vectors

to represent the items and users in a vector space. A dimensionality reduction technique,

Matrix factorization, a well-performing approach, latent factor models used (Weimer,

Karatzoglou and Le, 2007) and proposed Co-Rank. ListRank-MF provided by (Shi and

Larson, 2010) creates features with MF.

7

News-based system, GroupLens, is one of the CF applications which suggests users articles

from a massive news dataset. Topic diversification algorithms are used by Amazon which

bettered its predictions (Huang, Wang, Liu, Ma, and Chen, 2015). The Application leverages

CF technique to handle the problem of scalability by creating a matrix of related items offline

using item-item matrix. The application predicts items to the user that matches to those

already bought. However, collaborative methods has limitations such as ramp-up (Montaner,

López, and de la Rosa, 2002), scalability and sparsity issues.

2.2.2 Content Based Filtering

CBF techniques match item-content to user features. CBF presents prediction by only

considering the user’s features it does not regard other user’s interests unlike to collaborative

techniques (Wang, Sun, and Gao, 2014).

 Fab an example of CBF algorithm mostly depends on various users’ ratings in order to form a

training data. Some other recommenders like Letizia (Letizia, 1995) use CBF to assist users to

find the information that interest them on the Internet. The application adopts a GUI which

enables customers searching the web; it tracks the users’ browsing pattern in order to suggest

web pages that may like. Similarly (Pazzani, 1999) used Naive Bayesian classifier to build an

intelligent agent. The system has the capability of providing training instances to the user by

rating several web sites as important or not.

 Regardless the success of CBF technique, it suffers from several limitations. Limited feature

extraction, over-specializing predictions and data-sparsity (Adomavicius and Tuzhilin, 2005)

can be listed. Such limitations affect the accuracy of predictions.

2.2.3. Hybrid Filtering

The idea of combining recommendation algorithms, hybrid filtering, was proposed to mitigate

the limitations identified and to improve the accuracy and performance of recommendations (

Adomavicius and Tuzhilin, 2005). Doing so, the strength is harnessed while leveling out their

corresponding weaknesses (Al-Shamri and Bharadwaj, 2008). (Mican, 2010) classified into

8

hybrid filtering into seven types; weighted, feature-augmentation, mixed, feature-combination,

switching, cascading and meta-level based on their operations.

Most widely used hybrid techniques are built by combining CF and CBF, their output is

aggregated later or adding CBF to CF features or vice versa. Ultimately, a model that

integrates features of both the techniques could be designed (Ziegler and Lausen, 2004). A

simple hybrid merging characteristics of CF with CBF together was proposed by

(Cunningham, Bergmann, Schmitt, Traphoner, and Breen, 2001).

Cascade hybrid technique was recommended by (Ghazantar, 2010), combining the ratings,

properties and demographic data of items address the sparsity as well as cold-start issues.

Hybrid CF technique proposed by (Ziegler and Lausen, 2004) generates profiles by applying

the technique super-topic score and topic diversification that exploits bulk taxonomic

information which in return overcomes sparsity limitation of CF.

2.3 Recommendation System Evaluation

Various evaluation on many recommendation techniques using distinct dataset was conducted

by (Breese, John, and David Heckerman, 1998). The experiments on that research paper are a

corner stone to the current research literature.

The research done by (McNee and Riedl, 2006) reveals, that accuracy metrics are not

sufficient to for choosing the right algorithm. The researchers highlighted considering the non-

accuracy metrics such as serendipity of the items being recommended. An extensive study

metrics targeting for measuring CF recommendation system was provided by (Herlocker,

2004). An experiment was also done on the similarity of various metrics in a perceptive way

and finally decided that the analyzed metrics can be classified in to three main classes.

Some researchers like (Herlocker, 2004) do not accept MAE as a metric evaluating

recommendations. They backed their idea by giving a similar example as a user’s rating does

not mean the user is probably to listen a music. Other researchers also advice considering the

purpose of the recommendation algorithm in general. For instance (Del Olmo and Gaudioso,

9

2008), built a recommendation system framework that splits the recommendation system into

two parts, filter and guide, for calculating predictions distinctly. And suggested to employ

metrics that focus on the fact whether the recommendations provided by the system are

actually found to be relevant to the users’ needs and on the RS’s goal.

(Cremonesi, Turrin, and Lentini, 2009) also proposed an evaluation approach for CF RSs. A

further research by (Celma and Herrera, 2008) applied accuracy metrics and classification

metrics for comparing two CF techniques using MovieLens1 dataset. Limitations and

challenges of RS evaluation is discussed on a paper (Herlocker, 2009). It also focuses on

usage of methodologies, dataset and metrics.

(Kohavi, Longbotham, and Sommerfield, 2009b) presented comprehensive study on evalution

and provided a hands-on guide for carrying experiments on a web. In the next paper Crook et

al. advices to emphasize on the importance of evaluation criteria’s that meet the business

goals (Crook, Frasca, and Kohavi, 2009), in their book encompass a section that overviews

RS evaluation (Jannach, Zanker, and Felfernig, 2010). Similarly, Shani and Gunawardana, has

contributed very insightful RS evaluation chapter to (Ricci, Rokach, and Shapira, 2010)

handbook and outline the necessary aspects in conducting offline, online and user-study

experiments.

In the literature, Information retrieval is another valuable source of evaluation metrics and

measures. Basically it is aimed at providing relevant search results and contributes metrics for

RS evaluations (for example (Measures, 2009)). Davis and Goadrich depicts that there is a

deep correlation between Receiver Operator Characteristic (ROC) space and Precision-Recall

(PR) space (Davis and Goadrich, 2006).

10

CHAPTER 3

ANALYSIS OF RECOMMENDATION SYSTEM TECHNIQUES

3.1. Recommendation Systems

Recommendation Systems (RS) intend to suggest a user or a group in a system to select or

purchase items from a large number of item or information space (Aggarwal, 2016). Methods

or algorithms adopted from the fields of ML, AI, and statistics are widely used in RS. Amazon

for instance sorts and suggests books by employing ML. RS also contributes a significant role

helping users when they are having a problem of deciding which item to select from a mass of

items (Ricci, Rokach, Shapira, and Kantor, 2011), assisting users to maximize profits (Prabha

and Duraisamy, 2016) or minimize risks (Said and Bellogín, 2014).

Research on recommendation systems has been going on both on academic and industry for

almost twenty five years now, but with the increase in the number of e-commerce

applications, online users, vendors and increasingly complex products and services, the

demand for new intelligent recommendation techniques has also increased linearly.

Recommendation systems development varies from domain to domain and the type data to

work on. For instance, five-star is used in Netflix, like/dislike in Facebook and soon. Which

means the user feedback is recorded into a data source in such a way. The data filtering

process aiming at finding the matching pairs also differs.

Generally, all recommendation engines apply a similar process (Hiralall, 2011) to offer

recommendations to a target user, as illustrated in Figure 3.1.

11

Figure 3.1: Framework of Recommendation Process

(Adomaviciu and Tuzhilin, 2005) classified Recommendation systems into three namely

collaborative filtering, content-based, and hybrid filtering (see Figure 2.1), based on the

information utilized to provide the suggestions. Detail RS techniques analysis is presented in

section 3.1

 RSs with a CF approach measure the like mindedness of two users by comparing

their inclination for items which they have evaluated. The intuition is similar-users

have similar-item rating. This degree of similarity is then exploited while choosing

the set of users whose views influence the final recommendations. Thus similarity

computation is the crucial part of CF process. For example, by getting access to

user profiles in an online movie database, the RS has get access to all of the person

records, including the age, country, city, and films purchased. Based on this

information, the system can identify users that share the same music preference,

and then suggest movies purchased/watched by similar users.

Generally, CF-based techniques suffer from new user or item as it depends on a history of

ratings of the user/item to compute the similarities, for the determination of the neighborhood.

 RSs with a CBF depends on item attributes to accomplish the recommendation

process. For instance, a user is on flight-reservation web site to book flights searching

flights to a certain destination. The system will ask the user to provide attributes such

12

as from-to airports and calendar. The system then matches these user flight-attributes

to the flight-attributes in the flight database and present flights exactly to the attributes

or similar to them. Different types of algorithms are used to find the similarity

between items. The commonly used are; Term Frequency Inverse Document

Frequency (TF/IDF) (Mooney and Roy., 2000), Naïve Bayes Classifier, Decision

Trees, and Artificial Neural Networks (ANN.

 The third classification, Hybrid recommendation systems combine two or more

recommendation techniques to handle their unique limitation and advantage from their

unique strength. Netflix is a well-known model of hybrid RSs.

The application provide

suggestions by analyzing the watching and searching habits of related users (i.e., CF)

and by recommending movies that share traits with movies that a customer has rated

highly (CBF). CF and hybrid filtering recommendation system require data from the

user prior to presenting recommendations. To achieve such task, feedback from users

can be gathered using explicit or implicit methods.

Explicit feedback: This type of feedback is given directly by the user through ratings. The

most common example is when a user rates a watched movie on a scale from 1 to 5 or when

users express their preferences by like/dislike on Facebook. The system therefore receives an

explicit preference score for a given user-item pair, based on which a ranking of items can be

determined.

 Implicit feedback: is collected implicitly from various user interactions on a website, such as

product page views, purchases, or additions to cart. Monitor user click and keystroke logs. The

feedback that the system receives when such an event is registered as a result of successful

recommendation takes the form of values. This implies binary preference, for example, value

= 1 if bought, value= 0 if not bought.

In addition to the commonly used recommendation approaches, in which users are provided

with items that might like, recommendations can be done in other ways. Trust-based

recommendations (Bobadilla, Ortega, and Hernando, 2013) take into consideration the trust

13

relationship that users have between them. A trust relationship is a link in a social network to a

friend or a following connection. Suggestions based on trusted friends are worth more than

those that do not have trust links. Context-aware recommendations (Melville and Sindhawani)

completely depend on the context or the situation the user is in.

 A context is a set of information that characterize the current activity or state of the user, such

as the user’s current location (museum, church, office), or the current activity (idle, running,

cleaning). Despite their remarkable role, context-aware require high computation time to

process the contextual dataset which makes them very challenging in the research area.

Another context based approach is, risk-aware recommendations (Bruke, 2002), considers a

state where critical information is available such as patient’s vital symptoms. As its name

indicates, it is sensitive to risk because a wrong decision may risk/threaten a user’s life or

cause damage. For instance, recommending pills the patient should take or stocks the customer

should buy or, sell.

Figure 3.2: Traditional Recommendation Systems approaches main category

14

3.2 Content Based Filtering

CBF is also called cognitive Filtering. Cognitive filtering systems were basically designed to

filter relevant content and suggest from items mainly text-based like e-mail messages. It is

successfully implemented on text mining related system.

Nowadays, CBF are popularly used in the area of RS. These systems make predictions on the

basis of past user selections history (Bobadilla, Ortega, Hernando, and Gutiérrez, 2013; Lu,

Dianshuang, Mao, and Wang, 2015; Lu, Medo, Yeung, Zhang, and Zhang, 2012; Pujahari and

Padmanabhan, 2014; Wintrode, Sell, Jansen, Fox, and Garcia-Romero, 2015).

In cognitive system first a user profile (Onoda and Murata, 2006) is created based on the

information provided by the user such as age, gender, and soon. A profile for the item the user

liked or watched also generated. Related items to profile generated are then recommended to

the user (Lops, Marco, and Semeraro, 2011). Pandora.com is one of the many applications of a

CBRS, as it profiles songs by attributes, and then recommends users or listeners with songs

that are similar to those the user liked in the past. It does so, by matching or searching the

features within songs not user profile of neighbor candidates.

Researchers considers cognitive systems as Information retrieval (Balabanovic and Shoham,

1997) and generally It employs techniques from Information Retrieval such as classification,

clustering and text analysis (Mooney and Roy, 2000). For instance, in NewsWeeder (Lang,

1995), documents in the rating categories are represented by word vectors using TF - IDF, and

then each user is given a weight for each category by averaging tf-idf word vectors.

Skyskill and Newsweeder are most common CBF based recommendation systems. Skyskill

recommendation system recommends Web documents (Pazzani, 1999) and Newsweeder

suggests news articles (Lang, 1995). And (Zhang, Callan and Minka, 2002) proposes an

application which identifies relevant documents with new information and without by

implementing a Bayesian approach (discussed in later section).

15

Steps in content-based RS (Pradeep and Bhaskar, 2018), consider, a user is on a book

recommender system, the Recommendation System will analyse the content of that book

aiming at finding other similar books it can offer as follows:

1) Initially, the books are represented in the form of attributes or descriptors the same

as a relational database. Books can be described by Genre (Science fiction, Comedy,

Drama), Author’s Name, Publisher, Published-date, words used in the book.

2) Represent the values for each descriptor by a vector in a multidimensional vector

space.

3) Similarly, a user profile is created for each user based on his purchase history,

explicit ratings, and reviews.

4) So now the user is represented with attributes like the genre (List of books they

prefer), Author’s name (List of books they bought of an Author).

5) Finally map each user to a book similar to his taste using similarity metrics. In CBF

Cosine similarity is generally used, which finds the similarity or cosine distance

between the item vector and profile vector. Assume we have profile vector u and item

vector v, then their similarity is (See Equation 3.7 and 3.8).

Based on the cosine value, which ranges between -1 to 1, the items are arranged in descending

order and one of the two below approaches is used for recommendations:

 Top-n approach: the user is recommended the first top n items where the n elements

are decided by the business.

 Rating scale approach: in this technique a threshold is set and all the items on top of

the threshold are offered to the user.

A major drawback of this algorithm is it over-specialize items presented to the user. It will

never recommend products which the user has not bought or liked in the past. For instance, If

16

a user has watched or liked only romantic movies in the past, the system will recommend only

romantic movies. As such, it missed a feature called Serendipity, which is the main feature CF

(discussed in the next section). Content based filtering approach framework as shown in

Figure 3.3.

Figure 3.3: Frame-work of content-based approach (Aamir and Bhusry., 2015)

3.2.1 Popular Content-Based Filtering Algorithms.

Various algorithms are being used in content-based models. These techniques finds similarities

in the descriptions that can be leveraged to differentiate highly liked items from others

(Robles, Larranaga, Pena, Marbán, Crespo, and Pérez, 2003). Generally algorithms are

adopted from IR and ML as they are well-suited for text categorization (Sebastiani, 2002).

The most used algorithms are reviewed in the section below.

3.2.1.1 Term-Frequency - Inverse Document Frequency (TF - IDF)

TF-IDF, as its name indicates it measures the frequency of a term in documents. The more the

term is repeated on the text, more it becomes important. However, the importance reduces if it

occurs frequently on the corpus. The weight (Baeza-Yates, and Ricardo, 1999) of a particular

term in a text is computed (Chakrabarti, 2002) as,

17

Where, is the frequency of term x in a document.

IDF is a measure that works together with TF. Its main goal is to reduce the weight of a term

that appears in the corpus frequently. The importance of the term decreases if it shows up in

the collection of documents more often. So it should be assigned a small weight. The IDF

Equation is given by,

 (3.3)

Where is the corpus size, the number of documents occurs.

Therefore, TF-IDF is given by Equation 3.4 :

3.2.1.2 Naive-Bayes Classifier

Naive Bayes is a probabilistic approach to inductive learning, and belongs to the general class

of Bayesian classifiers, and its text classification performance was reported by (Maron, 1961).

It is treated as one of the exceptionally well-performing text classification algorithm and in

consequence many recent works have frequently adopted the algorithm (McCallum,

Rosenfeld, Mitchell, and Ng, 1998; Mitchell, 1997; Nigam, McCallum, Thrun, and Mitchell,

1998). It generates a probabilistic model based on previously observed data. So when two

random variables are jointly distributed with the value of one unknown then the probability of

the other variables is calculated applying Bayes-rule.

The probability, P(c/d), is calculated using Bayes theorem Equation 3.5 (Paquale and

Semeraro, 2011) as, the probability of given , is given by the product of

 , to the probability of d given c, divided by

the probability of a document in class ;

18

 (

)

 (

)

Where, P(c) is the probability of a document in class C.

To classify the document d, the class with the highest probability is chosen:

3.2.1.3 Decision Tree Rule Learner

Decision tree is a data mining technique which also widely adopted by recommendation

systems. As its name signifies, it applies a tree like structure for visualizing the classification

problem into nodes or new trees. The algorithm recursively (Quinlan, 1986) builds new

classes by splitting the training set, in our case the text documents, until the new classes

consists only the instances of a single class that is the word or phrase. The algorithm

commonly employs entropy as for selecting the most important attributes (Yang and Pedersen,

1997) .

 This technique is being widely researched for the use with structured or restricted data.

However, many disagree the usage of decision tree bias for unstructured or unrestricted textual

classification tasks (Pazzani and Billsus, 1997). As a result, the splitting criteria i.e.

information-theoretic employed the algorithm and the inductive bias are useful for small trees

with few tests. But, usually textual classification task consists a lot of relevant attributes

(Joachims, 1998). On this case, the technique is less applicable as it poorly affects the

performance of the textual classification process. Decision trees are easy and understandable

when only applied on small structured which improves the performance of content-based

models.

19

3.2.2 Merits and Demerits of CBF

Merits:

 Recommendations are generated using the user preferences alone rather than the user

community

 Can be employed in real time as the model does not need to load all the data for

processing or generating recommendations

 High accuracy compared to CF as product content is utilized rather than just rating

information

 Easily handling of the “cold-start” problem

Demerits:

 limited content analysis

- domains other than text documents, for example , images are difficult to extract

their feature and represent them using keywords.

 Overspecialization

- no serendipity: the system will keep recommending the user items that are

similar to those already rated.

- diversity of recommendations is needed: the RS keeping recommending similar

items

20

3.3 Collaborative Filtering Recommendation System

Since the first recommendation system Tapesery built in mid 1990s, CF has been the most

well-performing and often employed filtering technique and researched (Sarwar, Karypis and

Konstan , 2000; Sarwar, Karypi, and Konstan, 2001; Yang and Liu, 1999). Collaborative

techniques handles well some of the limitations of the content-based technique discussed in

the previous section 3.2. For instance, it works well with items in which CBF has a problem of

extracting the items content such as movies by getting other users feedback. The strong side of

CF is it depends on the quality of an item not on content. This enables to break the barriers of

serendipity and limited content analysis problem of CF.

CF RSs works on a dataset of users and item rating. The target user who is expecting

recommendation is known as active user. The active-user is recommended items from similar

users by simply searching the database. Based on those users that have similar taste, it will

recommend the items like in Amazon.com and www.movielens.org. These e-commerce sites

in turn increases the customers’ loyalty and sales(Schafer, and Konstan, 1999).

The major tasks being performed in collaborative filtering are user-user or item-item. The

workflow (Good, Schafer, Konstan, Borchers, and Sarwar, 2008) for item-item:

1) Expressing a User’s preference by rating the items.

2) Finds the users with most similar taste by mapping their rating with other users rating.

3) Then finally, the most highly rated by users are recommended by the system.

And in the user-user:

1) Searching the user neighbors.

2) Discovering the interests of the neighbors of a active customer.

21

In CF technique, user neighbors are created by looking at the user’s purchasing history and

computing their similarity. Then the prediction is performed in either of these two ways,

explicit such as item-rating or implicit for instance monitoring the user’s behavior towards the

item .

CF employs various approaches such as

 Cosine angle (Qamar, 2010) or neighborhood based algorithm (KNN (DENIYI , and

WAI, 2014)) used to compute the cosine distance between two users that is item-item

approach.

 Pearson coefficient (Rodgers and Nicewander, 1988) performs well in computing the

similarity between two users that is user-user technique.

 For other techniques CF uses Bayesian techniques (Deerwester and Dumais, 1990),

matrix factorization (SVD (Golub and Kahan, 1965)), association rules, PCA (Pearson,

1901), and Latent Semantic Analysis (LSA (Golub and Kahan, 1965)).

CF is further classified into:

3.3.1 Memory-Based Filtering

Professor L.Herlocker, from University of Minnesota, proposed this algorithm in late 1990s.

Memory-based algorithms employ the complete user-item database loaded in the memory to

create a prediction. These approaches use methods borrowed from statistics to get neighbors

for the active user. Neighbors are users that either bought similar item or rated items that are

different equally.

Neighborhood-based methods works for almost any types of recommendation like books,

music, movies and products without the need of feature selection. Nevertheless, it suffers from

some limitations like; Cold start (first- rater) problem, Sparsity (huge number of users with

little item ratings), and Popularity bias problem.

22

The next subsections discusses the two subcategories of memory based approaches, Item-

based and user based. They follow almost similar intuition, user-based look for users who

gave similar credit for an item and item-based for an “item rated similarly by various users".

3.3.1.1. User-Based Collaborative Technique

User based approach searches and determines similarity of users who provided the same rating

for items using measures known as similarity metrics (Isinkaye, Folajimi, and Ojokoh, 2015)

(discussed in section 3.2.1.3).

Here is the basic workflow of this strategy, let us consider a user u and neighborhood of u as

v,

1. Find a user/ group-of-users whose like/s and dislike/s are similar to the defined user

u. For example, u likes the same movies, the user/ group-of-users like and u dislike the

movies the user/ group doesn't like. This user/ group-of-users is called neighborhood of

u.

2. After finding the v, then the step following is finding the set of items/movies which

are not bought/seen by user u but are liked by v. Then, recommend those items to user

u.

User-based approach has a scalability drawback. It is a situation exhibited when the user-

matrix contains a lot more users comparing to items, and so plenty of computation time is

employed which makes searching much harder over users. For instance, in youtube.com the

number of users increases at a very high rate in contrast the items uploaded (Ekstrand, Riedl

and Konstan, 2010). This scalability issue leads to the evolution of item-based collaborative

approach. Whilst, the domain where we apply these approaches also it determines. In the

context of news, for instance, user-based performs exceptionally well.

23

3.3.1.2 Item-Based Collaborative Technique

Researchers of university of Minnesota proposed this technique in 2001 (Pronk, Verhaegh,

Proidl, and Tiemann, 2007) and then adopted by Amazon.com (Linden, Smith, and York,

2003). It is based on a Computation of similarity as user-based but between items. Item-item

approach use Pearson Correlation (Xiaoyuan and Taghi, 2007) to calculate the similarities

among items and NKK offer prediction to the active user .

In this system finding similarity (Sarwar, Karypis, and Konstan, 2001) among items is the

most complex step. To compute the similarity and generate the prediction, the utility-matrix or

the database of users has to be scanned now and then which is impractical in real life

applications. These solutions below will somehow easy the problem:

1. Find out the nearest items/users in a regular manner.

2. Use clustering to pre-group items into groups and limiting the search space to a cluster.

3. Dimensionality reduction techniques can also be used to reduce the search space.

3.3.1.3 Determining Similarity

Similarity metrics play a critical role in recommendation systems which measure the similarity

between user-user or item-item. In this section I will present the most popular approaches,

Cosine Similarity and Pearson Correlation (Amatriain and Xavier, 2011; Breese, John, David

Heckerman and Kadie, 1998) which compute the similarity that is used as input for getting the

user neighbors.

Pearson Correlation approach: The Pearson correlation was first suggested as an appropriate

similarity metric in the Group-Lens recommender system project in 1994 (Konstan, Miller,

Maltz, Herlocker, Gordon and Riedl, 1997). It is the most used approach for user-user

collaborative techniques (Breese, John, David Heckerman and Kadie, 1998; Herlocker,

Konstan, and Reidel, 2002). In Pearson Correlation, we scale the similarity from -1(low

correlation) to +1 (high correlation). Zero is for no correlation. Let Iu,v is the set of items rated

by users u and v, rui and rvi are user-rating of u and v for item i, respectively. And u and v are

24

the mean user rating of u and v, respectively, the pearson correlation between items

and is given by the Equation 3.7:

∑ (̅ ̅)

√∑ (̅ ∑
 ̅)

 Similarly the pearson correlation between items and is given by the Equation 3.8:

∑ (̅ (̅))

√∑ (̅
 ∑

(̅)

)

Cosine-based approach: This metric is most suited on Item-Based collaborative approaches

(Jannach, Zanker, Felfernig, and Friedrich, 2011). As in Pearson correlation, it uses similar

scaling.

In vector form, the Cosine angle is given as shown in Equation 3.9:

 (̅ ̅)
 ̅ ̅

‖ ̅‖ ‖ ̅‖

Let is the similarity of users u and v, the user based Equation 10 is:

∑

√∑
 ∑

)

And is the similarity of items i and j, the item based formula can be depicted by

Equation 3.11:

∑

√∑
 ∑

25

Prediction: Nearest neighbor is the most commonly used prediction algorithm of

neighborhood based technique. (KNN) is the de-facto algorithm which is the easiest and

understandable and well-performing method. In the following section KNN is summarized.

KNN User-based prediction: Let, user v and u are neighbors i.e. similar, in order to predict

item i to user u, the neighbors’ of u , v, ratings rvi on i should be analyzed. Therefore item-

based equation,

 (3.12)

KNN item-based prediction:

3.3.2 Model-Based Algorithm

Techniques adopted from ML, linear algebra and data mining approaches are used for

searching the patterns on the training-set and make predictions for real time data to develop

model-based CF algorithm. It matches the model for the given rating matrix to issue the

recommendations. The method was proposed to deal the limitations of memory-based

methods. In contrast with memory based CF, the entire dataset is not used to present

predictions for real data.

 One of the well-performing techniques used in the recent literature is matrix factorization

(Schelter, Boden, Schenck, Alexandrov, and Markl, 2013; Song, Cheng, and Lu, 2015;

Zhuang , Chin, Juan, and Lin, 2013). This is commonly implemented through techniques such

as Stochastic Gradient Descent or Alternating Least Squares (Gemulla, Nijkamp, J Haas, and

Sismanis, 2011; Koren, Bell, and Volinsky, 2009; Schelter, Boden, Schenck, and Alexandrov,

2013; Zhou, Wilkinson, Schreiber, and Pan, 2008). Generally, it out-performs memory-based

approach in terms of speed and accuracy. Yet, Matrix factorization needs to be recalculated

whenever a new rating is entered. Thus it is expensive to compute and time consuming.

26

Dimensionality Reduction techniques reduce the problems of sparsity (Sarwar et al. 2009) in

RS databases, for instance, Principal Component Analysis (PCA), Singular Value

Decomposition(SVD), Probabilistic Matrix Factorization (PMF), Latent Semantic Methods,

Lustering and Matrix Completion Technique (Isinkaye, Folajimi, and Ojokoh, 2015). Below

we described the most widely employed, PCA, SVD and PMF.

3.3.2.1 Principal Component Analysis (PCA)

This is a powerful technique to reduce the dimensions of the data set, this is considered a

realization of the MF (Francesco, Rokach, and Shaira, 2011). The principal component

analysis is known by using an orthogonal transformation, since it makes use of the

eigenvectors of the covariance matrix. The idea is to transform a set of variables that might be

correlated, into a set of new uncorrelated vectors. These new vectors are named the principal

components. Given that the main purpose is to reduce dimensions, the set of original variables

is greater than the final number of principal components. However, when we reduce

dimensions, we also lose some information, but the construction of this methodology allows

the retain the maximal variance and the least squared errors are minimized (Girase, Sheetal,

and Mukhopadhyay, 2015). Each component retains a percentage of the variance, being the

first component the one that retains the most, and the percentage retained starts to decrease in

each component. Then the dimensions can be reduced by deciding the amount of variance we

want to keep.

3.3.2.2 Probabilistic Matrix Factorization

This methodology is a probabilistic method with Gaussian observation noise (Girase, Sheetal,

and Mukhopadhyay, 2015). In this case, the user item matrix (V) is represented as the product

of two low rank matrices, one for users and the other for the items. Let us recall our variables,

we have n users, m movies, vi,j is the rating from the user u to the movie pj. Now, let us assume

Ui and Pj represent the d-dimensional user-specific and movie-specific latent feature vectors,

respectively. Then the conditional distributions in the space of the observed ratings V ,

27

the prior distribution over the users U , and movies P , are given by (Bokde,

Dheeraj, Sheetal, Girase, and Mukhopadhyay, 2015) Equation 3.14, 3.15 and 3.16.

 ∏ ∏ [

]

 (3.14)

 ∏

 (3.15)

 ∏ (

)
 (3.16)

where, n(X/ μ , σ
2
) represents the Gaussian distribution with mean and variance , and Iij

is the indicator variable, Iij = if the user has rated the movie pj and 0 otherwise .

3.3.2.3 Singular value decomposition (SVD)

Matrix factorization or latent factor methods can be used in recommendation systems to drive

 and represent by

such vectors of factors. Using SVD was first proposed by (Deerwester, Dumais, Furnas,

Landauer, Landauer,and Harshman,1990) as a method to discover the latent factors. In

information retrieval settings, this technique is also known as

Latent Semantic Analysis (LSI). The idea then inherited by the domain of recommender

systems (Goldberg, Roeder, Gupta, and Perkins 2001; Canny, 1990; and Sarwar, Karypis,

Konstan, and Riedl, 2000). The general equation can be given as, X= USV
t
. Given an nxm

matrix X, then U is an rxr orthogonal matrix with non-negative real numbers on the diagonal,

and V is an rxn orthogonal matrix. The elements on the diagonal S are referred as the singular

values of X (Kalman and Dan, 1996). Then the user-item marix defined as X (before we

named it V) can be expressed as a composition of U, S and V. where U is representing the

feature vectors corresponding to the items in the hidden feature space (Schafer, Ben, Konstan,

and Riedel, 1999).

28

Now we can make a prediction as in Equation 3.18 by multiplying the matrices U, S, and

3.3.3 Discussion

As we have discussed so far, the Memory-based techniques (User and Item based) are in many

ways alike, even though the output created are distinct. The approach is easy to use and

produce satisfactory results. Nonetheless, it exhibits problem of computing the similarity

between items/users due to:

 Ramp up/Cold Start Problem:

New user: when a fresh user registers in a recommender, the systems lacks of information to

do prediction.

New item: items have to be liked / disliked or rated by users so that there will not be similarity

computation problem. For instance, if I upload a new clip on youtube.com, the clip will not be

predicted to other users unless it has sufficient user feedback.

Cold start: so a recommender faces prediction difficulty when the items or users added afresh.

 Sparsity: this issue appears usually when there is cold-start. For example, there is a

mass of users and items in a database, however, most of the users have not rated most

of the items (Park DH, HK, IY and JK, 2012; Burke, 2002). So, the database or user-

item matrix becomes very sparse.

29

 Reduced coverage problem: Coverage is explained as the number of items that the

approach can present as suggestions. Coverage is reduced due to the incomparable

very less number of users’ ratings to the items in the database which causes the system

to get difficulty offering them for the users.

Neighbor transitivity: this issue occurs due to data sparsity, in which likeminded users may not

be recognized unless both users have rated any of the same items.

 Scalability: refers to the problem when percentage of users and items in database rise

enormously, the computation also grows linearly (DH, HK, IY and JK, 2012). Which

rises the algorithm complexity such as time, speed and memory. As internet contain

massive information, it is difficult to recommend item in less amount of time because

of scalability issue.

 Synonymy: occurs when the recommendation system is unable to distinguish items

that are exactly or nearly related items to have distinct entries. This latent association

between the items cannot be identified by most of the recommender systems thus

consider these products differently. For example, “Comic movie” and “Funny movie”

looks different but they are actually the same item. However, model-based approaches

dealt well the synonymy problem.

 Popularity bias problem, appears when a user is new to a recommendation system, the

system offers the user most popular items regardless the user preference. However,

this issue is overcome by CBF approach (Section3.2). This effect is referred to Harry

Porter’s effect (Sarwar, Karypis, Konstan, and Riedl, 2001). Popularity based method

is a resolution for cold start or ramp up problem.

30

3.4 Hybrid Filtering

Hybrid algorithm (Barragans-Martine, Costa-Montenegro, Burguillo, Rey-Lopez, Mikic-

Fonte, and Peleterio 2010; Burke, 2002). A hybrid filtering combining two algorithms m and n

tries make use of the pros of m to fix the cons of n or vice versa. For instance, ramp-up and

popularity bias limitations of CF algorithm. Ramp-up weakness does not affect content-based

algorithms since the recommendation for new products is based on their content (features) that

are typically available when the new-item enters the system.

In recent literature, the most widely used hybridizing methodology is mixing CF with

demographic filtering (Vozalis and Margaritis, 2007) or CF with content-based filtering (

Barragans-Martine et al, 2010; Choi, Yoo, Kim, and Suh, 2012), in order to use the merits of

each one of these techniques. Various fields of research have contributed so much to the

growth of Hybrid filtering. Algorithms from soft-computing such as genetic algorithms (Gao

and Li 2008; Ho, Fong, and Yan, 2007)], (HO et al, 2007)], fuzzy genetic (Al-Shamri and

Bharadwaj, 2008), neural- networks (Christakou and Stafylopatis, 2005; Lee and Woo, 2002;

Ren, He, Gu, Xia, and Wu, 2008), Bayesian networks (Campos, Fernández-Luna, and Huete,

2010), clustering (Shinde and Kulkami, 2012) and latent features (Saranya and Atsuhirto,

2009) have been used and packaged into the family of hybrid techniques.

Integrating different techniques of the same type is also possible, like naïve Bayes based CB

with kNN based CB. Hybridizing similar techniques with different datasets can also be

possible.

31

Hybrid approaches can be implemented in various ways:

1. Apply collaborative and content-based methods individually and aggregate their

predictions.

Figure 3.4: Techniques aggregation

2. Integrate some content-based features into a collaborative approach or vice versa,

or

Figure 3.5: Feature integration

3. Construct a unified model that integrate both content-based and collaborative characteristics

Figure 3.6: Model Unification

32

Bruke first classified hybrid RS into seven hybridization techniques in 2002:

Weighted hybrid: In this technique each component of hybrid recommender gives score to

every item and these scores are aggregated by linear formula. This hybrid system is applied in

P-tango (Claypool, Gokhale, Miranda, Murnikov, Netes, and Sartin, 1999) which hybrids both

CBF and CF.

Switching hybrid: as its name goes the system switches between two recommender

appraoches depending on some parameters. The metrics like precision, recall, confidence,

accuracy etc. of a recommender system could be some of the switching criteria’s (Burke,

2007). DailyLearner (Pazzani and Billsus, 1997), for instance, employs content-based

recommendation first then collaborative recommendation if the collaborative system is un able

to offer recommendations with enough evidence.

Mixed hybrid : In this hybridization different recommendations generated are merged to

provide a single rating list. PickAFlick (Burke and Hammond, 1997)], PTV system (Smyth

and Cotter, 2000) and rofinder (Wasfi, 1999). The reward of this technique is, it avoids the

“new item” start-up problem.

Feature combination: in this approach the system treats the collaborative data as simple

additional feature connected to every sample and applies CB approaches on the augmented

data. For instance, In a research conducted by (Basu and Hirsh, 1998) on movie

recommendation system, collaborative filter’s ratings and content features were used which

improved the precision of a pure collaborative technique.

Feature augmentation: this method is related to the feature combination in which the first

recommender’s rating output of items is input for the second recommender. The second

recommender augments the data with its own contribution. For example, in Libra system

(Mooney and Roy, 2000) content-based RS augments and performs recommendation of books

using the dataset from Amazon.com by a naive Bayes text classifier.

33

Cascade hybrid: this approach carries out a staged process of a recommendation process.

Where the first recommendation algorithm outputs a coarse prediction of ranking users or

items and inputs to the second technique. Then the second algorithm refines the prior

recommendation and presents a ultimate recommendation. As an example, EntreeC (Burke,

2002) uses cascade knowledge-based and collaborative algorithms.

Meta-level hybrid: is popularly implemented hybrid technique. In this approach two

recommendation techniques are mixed in such a way output of one of the recommendation

approach is the input of the other. Meta-level solves sparsity problem of collaborative filtering

(Pazzanai, 1999). LaboUr (Schwab and Kobsa, 2001) is one of the applications of Meta-level

method, it builds CB user profile which is then cross-checked in a CF way by applying instant-

based learning to create.

3.4.1 Merits and Demerits of Hybrid Technique

Merits:

 High accuracy is achieved comparing to CBF and CB.

 Overcomes sparsity and cold-start problems

Demerits:

 A hybridized recommender system is complex to develop, it is not that easy and

promising to design the hybrid (Bruke, 2007).

34

CHAPTER 4

EVALUATION METHODS AND METRICS

4.1 Introduction

Since the coming of the first recommendation system evaluation of recommenders has been

proceeding in the recent literature. The research paper by (Herlocker, Konstan, Terveen, and

Riedl, 2009) gave us a holistic and extensive study of RS evaluation. Recommendation

performance is generally linked to the exactness of rating recommendation. That is, how

accurate is the rating estimated against the real rating. Error metrics (discussed later) helps us

get the difference between the predicted and real rating. Recently, precision-recall based,

quality assessment metrics are taking over as they yield satisfactory results comparing to error

metrics. Generally, we care at the quality of a recommendation not ranking. Therefore,

precision-recall is widely leveraged in this area as a performance evaluator and used it to

conduct the experiment .

This chapter is organized as, first in section 4.2 evaluation methods are reviewed, second in

section 4.3 evalution metrics from three perspectives are discussed, finally the experimental

setup, dataset and results are provided.

4.2 Evaluation Methods

To test the performance of recommender systems, different approaches are used to evaluate

them. Two most commonly applied evaluation protocols are usually considered (Gunawardana

and Shani, 2009) online and offline. Simulation evaluation, which allows comparing a many

candidate algorithms at a cheap cost (Shani and Gunawardana, 2011). Hence we have utilized

in the experiment comparing user-based model to popularity-based. The main goal of

recommendation systems is to activate a user to interact with a relevant item because it is

shown in the recommendations list.

35

4.2.1 Online

Also known as “Flights”(Kohavi, Longbotham, Sommerfield, and Henne, 2009a). This

method of evaluation is within the real application on real users. As a result, the results are

very trustworthy over real users, and measures performance on real application. However,

especially in the beginning phases of development this is not a feasible option due to two main

reasons. First, it usually takes too much time and effort to test all possible recommendation

algorithms with all possible configurations on a real-life data set with strict requirements on

response time, a large user and/or item base and within a certain budget (Gunawardana and

Shani, 2015). Furthermore, it is applicable to applications that are not launched and it might

turn out that one of the tested algorithms is not suitable for the particular use-case. When the

evaluation is done in an online setting, users of the system might be negatively influenced by

this unsuitable algorithm as it serves them irrelevant recommendations. As this scenario needs

to be prevented, offline evaluation is used, which does not change the recommendations in an

operating recommender system.

4.2.2 Offline

Offline evaluation is used in the early stages of development evaluation as it is not concerned

with a running system, and therefore does not influence the recommendations the subjects of

such a system receive (Gunawardana and Shani, 2015). For offline evaluation only historical

data of user interactions is needed. Part of this data is used to enable the recommender system

to estimate the optimal rating function as closely as possible. This process is known as training

the model, and the part of the data set used for this is therefore referred to as training data set.

The other part of the data set is used for the actual evaluation of the recommender algorithm

but not used during training, and is known as the test data. The dataset is splitted to prevent

algorithms to not overfit to the evaluation test data when the same data is used for both

training and evaluation. We adopted random splitting option in our experiment.

Simulation is economical to conduct, and it allows comparing several algorithms on various

distinct datasets at once. When a dataset is ready, the evaluation process simply runs the test

36

algorithm and compares the predicted results to the \ground truth" from the dataset. The

dataset employed for the simulation should be as exact as possible to the data that the

recommendation system will use in real life (Herlocker et al, 2009). The limitation of offline

simulation lies in the incompleteness of dataset. It is impractical to evaluate the exactness or

accuracy of a recommended item to a user if no information about that user-item pair exists in

the dataset. Since this evaluation method does not recruit any users, only objective evaluation

can be provided.

4.2.3 User Study

A user study regularly recruits a group of users to assess recommendation systems.

Quantitative measurement can be collected during subjects performing tasks through

observing their behavior, such as how many recommendations are accepted by the user or the

ratings indicating how much the user likes the recommended items. On the other hand,

qualitative measurement can be collected via questionnaires or surveys. The subjects may be

required to answer questions such as whether they have received interesting recommendations,

or whether they trust the system (Shani and Gunawardana, 2011).

Unlike online simulation, user studies allow studying user behavior through subjects'

interaction with the system and collecting qualitative data which is necessary for estimating

the recommendation performance (Hu and Ogihara, 2011). Nevertheless, it is not assured that

users will behave in the same way in real life as in the lab (Swearingenv and Sinha, 2001). The

outcome can be biased because subjects already know that they are involving in an

experiment. If the users know the hypothesis tested, they may tend to support it and satisfy the

conductor of the experiment.

Merits:

 Direct answers on the questions at hand

 Collect information unavailable for real users especially in controlled and monitored

environments.

37

Demerits:

 Expensive (typically test subjects get paid).

 Test subjects poorly represent the real system users.

 Measure only a small subset of the system.

 Short term experience mainly.

 Difficult to measure how users will spend real money. Also true for time, attention,

and effort.

4.3 Evaluation Metrics

In the next subsections prediction accuracy metrics (MAE, MSE and RMSE), classification

accuracy metrics (Precision, Recall, F-measure) and non-accuracy metrics are depicted.

4.3.1 Machine Learning Perspective

Error metrics are employed to quantify the error made by a recommender system on an item

rating. A well performing algorithm results in a zero or very less error. The error metrics that

recommender system uses are inherited from the area of statistics.

MAE: is the basic means of measuring prediction error. It reads, how much the predicted

rating deviates from the real rating (see Formula 4.1). An extensive study is conducted in

(Gunawardana and Shani, 2011). Let, pi and ri are the predicted and real rating, respectively, N

is sum of prediction, MAE is given by the Equation 4.1:

∑

MSE: in the term itself the definition lies, first we calculate the error for the test and actual

data then square it and finally compute the mean of the errors as shown in Equation 4.2. It is

38

similar to MAE, it just penalizes larger errors since squaring larger numbers has a greater

impact than squaring smaller numbers.

∑

 is another option of MSE, which is one of the most popular metrics (Gunawardana and

Shani, 2009) and was applied in Netflix Prize.

 √ (4.3)

The error results of RMSE and MAE lies in the range between zero and positive infinity.

Therefore, for better understanding and interpretation the error results are normalized as

Equation 4.4:

 and

4.3.2 Information Retrieval

When options are binary i.e. when the task at hand is to guess if a user will or won’t like an

item given a list of items, then classification metrics such as precision and recall are used to

evaluate the performance of a recommendation algorithm. When doing such a selection, each

item can be categorized into a True-Positive, False-Positive, True-Negative, or False-Negative

as showed in Table 4.1. Such a matrix is often referred to as a confusion matrix (Burke, et al.,

2011).

39

 Table 4.1: Confusion matrix

 Recommended Not Recommended

Good recommendation True Positive (tp) False Negative (fn)

Bad recommendation False Positive (fp) True Negative (tn)

From the confusion matrix, Equation of precision and recall is given 4.5 and 4.6, respectively.

 , (4.6)

From Eq. 4.5 it can be derived that, Precision forecasts out of all the samples classified as

positive, what portion of it was actually correct or relevant to the user (Manning, Raghavan,

and Schtze, 2008). For instance, we have a corpus of documents. The corpus contains

documents that are relevant and irrelevant to the user. So, while predicting, the precision

measures how much junk or irrelevant documents are giving the user.

Therefore, if the system is designed in such a way not to show irrelevant items to the user,

precision could indicate the performance satisfactorily.

The complementary form of precision is recall. In practice, both metrics are reported together

(Herlocker et al, 2004). Recall or hit-rate (Deshpande and Karypis, 2004) is out of the

positive samples, what portion did my RS pick-up. The intuition is how much of the relevant

items the RS missed. Recall is a good indicator when the purpose of the RS is to predict only

relevant items or the users desires only to see the relevant items.

Precision and recall are inversely related. For instance, If we need 100% recall, the entire

corpus will be returned to the user. However, the precision will be abysmal because the RS is

returning a lot of irrelevant items. That is the reason why we report them together. To resolve

40

this trade-off, F-measure or the harmonic mean (Ge, Delgado-Battenfeld, and Jannach, 2010)

which returns the mean of relevant and irrelevant items is used:

 (4.7)

Remark:

According to (McLaughlin and Herlocker, 2004) measuring an algorithm's performance based

on Precision and Recall reflects the real user experience better than MAE does because,

usually, users actually receive ranked lists in lieu of predictions for ratings of specific items

from a recommender. They determined that algorithms that were quite successful in predicting

MAEs for rated items produced unsatisfactory results when analyzing their top-ranked items.

(Carenini and Sharma, 2004a) also argue that MAE is not a good indicator from a theoretical

perspective, as all deviations are equally weighted. From the user's perspective, however, the

only fact that counts is whether an item is recommended. Hence precision-recall metric is

adopted in the experiment conducted in section 4.4.

4.3.3 Human Computer Interaction and Experience

The goal of a RS is not really to predict rating of a user to given item but to recommend items

that the user might view, buy or listen to. Sometimes, when recommending users’ items that

have high rating the user might end up to only seeing similar items. At this case, diversity is

lost. Diversity measures the RS’s ability to offer users items that are unfamiliar and interesting

to them. (Lathia, 2010) introduced a metric to measure diversity as Equation4.8.

 div(l1, l2, n)=

Where l2/l1 is the portion items in the list l2 but does not belong to the l1.

Novelty: is another metric, which measure how good a RS is presenting users with items that

are new (Shani and Gunawardana, 2011). This metric is also known as unexpectedness. The

41

RS should surprise (Herlocker et al, 2004; Zhang, Callan, and Minka, 2002) the user with

Items that has never watched, purchased or listened to. (Lathia, 2010) developed an Equation

4.9 that calculates the number of new items over a certain period of time.

 novelity(l2, n)=

Where l2 is the recent list that is to be contrasted against to the set of all items offered to the

user date At .

Novelty and diversity are studied well in (Gunawardana and Shani, 2011; Lathia, 2010; Zhang

and Hurley, 2009; Vargas and Castellas, 2011), and algorithms design to offer novel and

diversity in item forecast is detailed in (Jambor and Wang, 2010; Onuma, Tong, and

Faloutsos, 2009; Weng, Xu, Li, and Nayak, 2007; Zhou, Kuscsik, Liu, Medo, Wakeling, and

Zhang, 2010).

Coverage: is a most popular non-accuracy that quantifies the percentage of items or users that

a recommender system is able to suggest. We have two categories of coverage:

Item-coverage: represents the portion of items listed in the recommendation list per the total

set of items (Herlocker et al, 2004). Let u is subset of U users, i is the subset of I items and

Each item has a content vector C of length c, then the item-coverage is given by Equation 4.10

:

User-coverage: measures the portion of users to whom the recommender system is able to

offer items over the set of all users, Equation 4.11. The formula is:

42

There are additional metrics that play an important role in measuring the non-accuracy quality

of a RS, for instance, privacy, serendipity and scalability, However, these metrics are not

much active in the literature et al, 2004; McNee, Riedl, and Konstan, 2006).

4.4 Experimental Setup

 In order to run the experiment, the recommender system models (Popularity and similarity

based) and evaluation application must actually be built. The Experiment is carried on a public

dataset Million Song dataset (see next section) offline.

The experiment is performed by training the recommender models using the generated training

sets, and letting them predict the results in the test sets based on this training. By comparing

these predictions to the actual results in the test set, the effectiveness of the recommender

algorithm can then be evaluated, as discussed in the definition of the evaluation metrics in

Section 4.3.

To assess the performance of the recommendation models in this offline experiment the subset

of 10,000 songs (1.8GB) is randomly opted from the entire dataset (280 GB) for

experimentation purpose. All data sets are splitted randomly such that the first 80% of the

interactions forms the training dataset, and the remaining 20% of the interactions forms the

test set.

Our RS models are built on the training dataset. The effectiveness of the models is evaluated

using the precision and recall metrics as explained in Section 4.3.2.

4.5 Evaluation Datasets

The MillionSongdataset (MSD) which is available from
1

is used for this experiment. As

indicated by its name, The MSD contains a collection of one million contemporary top songs

(Bertin-Mahieux, Ellis, Whitman, and Lamere 2011; McFee, Bertin-Mahieux, Ellis, and

Lanckriet 2012). Since this dataset is linked to several complementary datasets (e.g.,

1
 http://labrosa.ee.columbia.edu/millionsong/

http://labrosa.ee.columbia.edu/millionsong/

43

EchoNest, last.fm and MusicBrainz
2
), it contains extensive metadata, audio features, artist tags

and level of song, lyrics, and so on. The data corpus used in the competition is termed as the

Taste Profile Subset
3
, which includes more than forty eight million triplets (song; user; count)

collected from user listening histories. The data involves around 1.2 million subjects and more

than 380k songs, where all users have minimum 10 songs in their profile.

4.6 Result

The curve for item-based model is larger than popularity model this suggests the item-based

model makes better recommendation as shown in Figure. 4.1.

Figure 4.1: Precision-Recall Curve of popularity model and item-based model

2
 http://musicbrainz.org/

3
 http://labrosa.ee.columbia.edu/millionsong/tastepro_le

http://musicbrainz.org/
http://labrosa.ee.columbia.edu/millionsong/tastepro_le

44

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

Within the scope of this thesis we covered the detailed analysis of the most popular

recommendation system algorithms, Collaborative Filtering, Content-based Filtering and Hybrid

Approaches. The aim of this research was to understand the RS with their pros and cons of all the

algorithms, and then be able to decide which one was the one that fits better for your application.

Furthermore, we gave an overview of evaluation protocols and metrics. Also, two RS models have

been implemented, namely Popularity-based and item-based for the experimentation purpose. Both

implementations are then evaluated using precision-recall curve. For the evaluation, offline

protocol and MSD have been leveraged. The experiments then depict that item-based model is

better than popularity-based model.

5.2 Recommendation and Future Works

This thesis recommendation is to use the recommendation techniques and evaluation metrics/

protocols as per the requirements of the business and the domain area as each and every one of

them performs well for their targeted domain.

The thesis disregards group recommendation system. The system that provides recommendation to

more than one user. This will be discussed on the future works. Moreover, the non-accuracy

metrics such as serendipity, novelty and diversity are to be considered in the experiment evaluating

the two models employed. The future work will focus on studying and drawing a framework of

recommendation systems targeting to the software engineering area.

45

REFERENCES

Aamir, M., & Bhusry, M. (2015). Recommendation System: State of the Art Approach.

Iinternational Journal of Computer Applications, 120, 887-975.

Acilar, AM., & Arslan, A. (2009). A collaborative filtering method based on Artificial Immune

Network. Expert System Application, 8324–8332.

Adomaviciu, G. & Tuzhilin, A. (2005). Towards the Next Generation of recommendation Systems:

A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions of

Knowledge and Data Engineering, 17 (6), 734-749.

Aggarwal, C.C. (2016). Recommender Systems. The Textbook p1. Springer International

Publishing Switzerland.

Ahmed, A., Kanagal, B., Pandey, S., Josifovski, V., Pueyo, L. G., & Yuan, J. (2013). Latent factor

models with additive and hierarchically-smoothed user preferences. In Proceedings of the

sixth ACM international conference on web search and data mining, 385-394.

AL-shamri M., Y. H., & Bharadwaj K. K. (2008). Fuzzy-genetic approach to recommender

systems based on a novel hybrid user model. Expert systems with Applications, 35 (3),

1386-1399.

Amatriain & Xavier. (2011). Data Mining Methods for Recommender Systems. In

Recommender Systems Handbook (pp. 39–71). Springer: US.

Baeza-Yates, Ricardo, & Ribeiro-Neto B. (1999). Modern information retrieval. ACM press

New York, 463.

Balabanovic, M. & Shoham, Y. Fab. (1997). Content-based, collaborative recommendation.

Communications of the Association for Computing Machinery, 40 (3), 66–72.

Barragans-martine, A. B., Costa-montenegro E., Burguillo J. C., Rey-lopez M., Mikic-fonte F., &

Peleterio A. (2010). A hybrid content-based and item-based collaborative filtering

approach to recommend TV programs enhanced with singular value decomposition.

International journal of Information Sciences, 180 (22), 4290-4311.

46

Basu, C., Hirsh H., & Cohen, W. (1998). Recommendation as classification: using social and

content-based information in recommendation. In Proceedings of the 15th national

conference on artificial intelligence (pp. 714–20). Madison, WI.

Baumann, S., T. Pohle, & S. Vembu. (2004). Towards a socio-cultural compatibility of MIR

systems. In Proceedings of International Society for Music Information Retrieval

Conference.

Bellogín A., Cantador I., Díez, F., Castells, P. & Chavarriaga, E. (2012). An empirical comparison

of social, collaborative filtering, and hybrid recommenders. ACM Transactions on

Intelligent Systems and Technology.

Bellogín, A., Cantador, I., & Castells, P. (2010). A study of heterogeneity in recommendations for

a social music service. In Proceedings of the 1st International Workshop on Information

Heterogeneity and Fusion in Recommender Systems, HetRec (pp. 1-8). New York, NY,

USA. ACM.

Bertin-Mahieux, T., D. P. W. Ellis, B. Whitman, & P. Lamere. (2011). The million song dataset. In

Proceedings of International Society for Music Information Retrieval Conference, 591- 6.

Billsus, D., & Pazzani, MJ. (1999). A hybrid user model for news story classification. In

Proceedings of the seventh international conference on user modeling (pp. 99-108). Banff,

Canada. Springer-Verlag, New York.

Bobadilla, J., Ortega, F., Hernando, A., & Gutierrez, A. (2013). Recommender systems survey.

Knowledge-Based Systems, 46, 109-132.

Bokde, Dheeraj, Girase, S., & Mukhopadhyay, D. (2015). Matrix factorization model in

collaborative filtering algorithms: A survey. In Proceeding Computer Science, 49, 136-

146.

Bradley, K. & Smyth, B. (2001). Improving Recommendation Diversity. In Proceedings of

theTwelvth Irish Conference on Artificial Intelligence and Cognitive Science.

Breese, John S., Heckerman, D., & Kadie C. (1998). Empirical Analysis of Predictive Algorithms

for Collaborative Filtering. In Proceedings of the Fourteenth Conference on Uncertainty in

47

Artificial Intelligence (pp. 43-52). UAI’98. Madison, Wisconsin: Morgan Kaufmann

Publishers Inc.

Bruke, R. (2007). Hybrid Web Recommender System. The Adaptive Web, LNCS, 4321, 377-

408.

Burke, R, Hammond, K, & Young, B. (1997). The Find Me approach to assisted browsing.

IEEE Expert, 32-40.

Campos L.M., Fernández-Luna J.M., Huete J.F., & Rueda-Morales M.A. (2010). Combining

content-based and collaborative recommendations: a hybrid approach based on

Bayesian Networks. International Journal of Approximate Reasoning, 51 (7), 785-799.

Canny J. (1990). Collaborative filtering with privacy. In Proceedings of the 2002 IEEE Symposium

on Security and Privacy (pp. 45-57, pp. 391-407). Washington, DC: IEEE Computer

Society 2002a.

Celma, O. & Herrera, P. (2008). A new approach to evaluating novel recommendations. In

Proceedings of the 2008 ACM conference on Recommender systems (pp. 179-186). New

York, NY, USA: ACM.

Chakrabarti, S. (2002). Mining the web: Discovering knowledge from hypertext data Science.

Chen, LS., Hsu, FH., Chen, MC., & Hsu, YC. (2008). Developing recommender systems with

the consideration of product profitability for sellers. International Journal of

Information Science, 178 (4), 1032-48.

Choi K., Yoo D., Kim G., & Suh Y. (2012). A Hybrid online-product recommendation system:

Combining implicit rating-based collaborative filtering and sequential pattern analysis.

International journal of Electronic Commerce Research and Applications.

Christakou C., & Stafylopatis A. (2005). A hybrid movie recommender system based on neural

networks. In International Conference on Intelligent Systems Design and Applications.

Claypool, M, Gokhale, A, Miranda, T, Murnikov, P, Netes, D, Sartin, M. (1999). Combining

content- based and collaborative filters in an online newspaper. In Proceedings of ACM

SIGIR workshop on recommender systems: algorithms and evaluation. Berkeley:

California.

48

Cremonesi, P., Turrin, R., Lentini, E., & Matteucci, M. (2008). An evaluation methodology for

collaborative recommender systems. In AXMEDIS (pp. 224-231). Washington, DC,

USA.

Crook, T., Frasca, B., Kohavi, R., & Longbotham R. (2009). Seven pitfalls to avoid when running

controlled experiments on the web. In Proceedings of the 15
th

ACM SIGKDD, 1105-1114.

Cunningham, P., Bergmann, R., Schmitt, S., Traphoner, R., Breen, S., & Smyth B.

(2001).WebSell: Intelligent sales assistants for the World Wide Web. In Proceedings

CBR in Ecommerce (pp. 104-109). Vancouver BC.

Deerwester, S., Dumais, S.T., & Furnas, G.W. (1990). Indexing by latent semantic analysis.

Journal of the American Society for Information Science, 41, 6, 391-407.

Del Olmo, F. H. & Gaudioso, E. (2008). Evaluation of recommender systems: A new approach.

Expert Systems with Applications, 35 (3), 790-804.

Deniyi A., D., Wai, Z., & Yongquan, Y. (2014). Automated web usage data mining and

recommendation system using k-nearest neighbor (KNN) classification method.

International journal of Applied Computing and Informatics.

Deshpande, M., & Karypis, G. (2004) Item-based top-n recommendation algorithms. ACM

Trans. Inf. Syst., 22 (1), 143-177.

Eighteenth Text REtrieval Conference. (2009). Appendix a: Common evaluation measures. In

The Eighteenth Text REtrieval Conference (TREC 2009) Proceedings.

Ekstrand, M. D., J. T. Riedl, J. A. & Konstan. (2010). Collaborative Filtering Recommender

Systems. Human-Computer Interaction, 4 (2).

Fleder, D. & Hosanagar, K. (2009). Blockbuster Cultures Next Rise or Fall: The Impact of

Recommender Systems on Sales Diversity. Manage. Sci., 55, 697-712.

Francesco R., Rokach L., & Shapira B. (2011). Introduction to recommender systems handbook. In

Recommender systems handbook, 1-35.

49

Gao L. Q., & Li C. (2008). Hybrid personalized recommended model based on genetic

algorithm. In International Conference on Wireless Communication, Networks and mobile

Computing, 9215-9218.

Ghazantar, MA., & Pragel-Benett, A. A. (2010). Scalable accurate hybrid recommender system. In

the 3rd International conference on knowledge discovery and data mining (WKDD), IEEE

Computer Society. Washington, DC: USA.

Gemulla, R., Nijkamp, E., J Haas, P., & Sismanis, Y. (2011). Large-scale matrix factorization with

distributed stochastic gradient descent. In Proceedings of the 17th ACM SIGKDD

international conference on Knowledge discovery and data mining (pp. 69-77). ACM.

Girase, Sheetal, & Mukhopadhyay D. (2015). Role of Matrix Factorization Model in

Collaborative Filtering Algorithm: A Survey.

Goldberg K., Roeder T., Gupta D., & Perkins C. (2001). Eigentaste: A constant time collaborative

filtering algorithm. International journal of Information Retrieval 4 (2), 133-151.

Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to

weave an information tapestry. International journal of Communications of the ACM,

35(12), 61-70.

Golub, G., & Kahan, W. (1965). “Calculating the singular values and pseudo inverse of a matrix”.

Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis,

2 (2), 205-224.

Gunawardana A. and Shani G. (2009). A Survey of Accuracy Evaluation Metrics of

Recommendation Tasks. Journal of Machine Learning Res,10, 2935-2962.

Gunawardana, A. & Shani, G. (2015). Evaluating recommender systems. In Recommender

Systems Handbook (pp. 265-308). Springer.

Herlocker J. L., Konstan J. A., Terveen L. G., and Riedl J. T. (2004). Evaluating collaborative

filtering recommender systems. ACM Transaction on Information Systems 22 (1), 5-53.

Herlocker, J., Konstan, J. A., & RiedlJ. (2002). An Empirical Analysis of Design Choices in

Neighborhood-Based Collaborative Filtering Algorithms. International journal of

Information Retrieval, 5 (4).

50

Hiralall M., (2011). Recommender systems for e-shops, Business Mathematics and Informatics

paper, Vrije Universiteit: Amsterdam.

Ho Y., Fong S., & Yan Z. (2007). A hybrid ga-based collaborative filtering model for online

recommenders. In International Conference on e-Business, 200 -203.

Hu, Y., & M. Ogihara. (2011). Nextone player: A music recommendation system based on user

behavior. In Proceedings of International Society for Music Information Retrieval

Conference, 103-108.

Huang, S., Wang, S., Liu, T.-Y., Ma, J., Chen, Z., & Veijalainen, J. (2015). List-wise

collaborative filtering. In SIGIR, 343-352.

Isinkaye, F.O., Folajimi, Y.O., & Ojokoh B.A. (2015). Recommendation systems: Principles,

methods and Evaluation. Egyptian Informatics Journal, 16, 216-273.

Jalali, M., Mustapha, N., Sulaiman, M., & Mamay, A. (2010). WEBPUM: a web-based

recommendation system to predict user future movement. In Exp. Syst. Applicat., 37(9),

6201-6212.

Jambor, T. & Wang, J. (2010b). Optimizing multiple objectives in collaborative filtering. In

RecSys ’10: Proceedings of the fourth ACM conference on Recommender systems (pp. 55-

62). New York, NY, USA: ACM.

Jannach, D., Zanker, M., Felfernig, A., & Friedich, G. (2010). Recommender Systems: An

Introduction. Cambridge University Press, 1 edition.

Kohavi, R., Longbotham, R., Sommerfield, D., & Henne R. M. (2009). Controlled experiments on

the web: survey and practical guide. Data Min. Knowl. Discov., 18, 140–181.

Lieberman, H. (1995). Letizia: an agent that assists web browsing. In Proceedings of the 1995

international joint conference on artificial intelligence (pp. 924–9). Montreal, Canada.

Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: Item-to-item

collaborative filtering. In IEEE Internet Computation, 7(1), 76-80.

51

Liu, J., Dolan, P., & Pedersen, E. R. (2010). Personalized news recommendation based on click

behavior. In Proceedings of the 15th international conference on Intelligent user interfaces

(pp. 31-40). ACM.

Jannach, D., Zanker, M., Felfernig, A., & Friedrich G. (2011). Recommender Systems, An

Introduction. Cambridge University Press.

Jesse, D. & Mark, G. (2006). The Relationship Between Precision-Recall and ROC Curves.

Appearing in Proceedings of the 23
rd

International Conference on Machine Learning.

Pittsburgh, PA.

Joachims, T. (1998). Text Categorization With Support Vector Machines: Learning with Many

Relevant Features. In European Conference on Machine Learning (pp. 137-142).

Chemnitz: Germany.

Kalman & Dan (1996). A singularly valuable decomposition: the SVD of a matrix. In The college

mathematics journal, 27 (1), 2–23.

Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M. (2009). Controlled experiments on

the web: survey and practical guide. In Data Min. Knowl. Discov. 18(1), 140-181.

Konstan, J. A., McNee, S. M., Ziegler, C.N., Torres, R., Kapoor, N., & Riedl J. (2006). Lessons on

applying automated recommender systems to information-seeking tasks. In AAAI.

Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R., Riedl, J.

(1997).GroupLens: applying collaborative filtering to Usenet news. Communications of

the ACM, 40 (3).

Lang, K. (1995). NewsWeeder: Learning to filter netnews. In Proceedings of the Twelfth

International Conference on Machine Learning (ICML-95) (pp. 331-339). San

Francisco, CA.

Lathia, N. (2010). Evaluating Collaborative Filtering Over Time. PhD thesis. University of

London, Department of Computer Science..

Lee M., & Woo Y. (2002). A hybrid recommender system combining collaborative filtering

with neural network. Lecture Notes on Computer Sciences 2347, 531-534.

52

Linden, G., Smith, B., York, J. (2003). Amazon.com Recommendations, Item-to-Item

Collaborative Filtering. IEEE Internet Computing, 7 (1).

Lops P., de Gemmis, M., & Semeraro, G. (2011). Content-based Recommender System: State of

the Art and Trends. In Springer, Recommender Systems Handbook, 73-105.

Lu, J., Dianshuang, Wu, Mao, M., Wang, W., & Zhang, G. (2015). Recommender system

application developments: a survey. In Decision Support Systems, 74, 12-32.

Lu, L., Medo, M., Yeung, C. H., Zhang, Y.C., Zhang, Z. K., & Zhou T. (2012). Recommender

systems. In Physics Reports, 519(1), 1-49.

Manning, C.D., Raghavan, P., & Schtze H. (2008). Introduction to Information Retrieval.

Cambridge University Press, New York.

Maron, M. (1961). Automatic Indexing: An Experimental Inquiry. Journal of the Association

for Computing Machinery ,8(3), 404-417.

McCallum, A., Rosenfeld, R., Mitchell T., Ng, A. (1998). Improving Text Classification by

Shrinkage in a Hierarchy of Classes. In Proceedings of the International Conference on

Machine Learning (pp. 359-367). Morgan Kaufmann Publishers: Madison, WI,

McFee, B., T. Bertin-Mahieux, D. P. Ellis, & G. R. Lanckriet. (2012). The million song dataset

challenge. In Proceedings of 21st International Conference Companion on World

Wide Web, 909-916.

McLaughlin & Herlocker. (2004). Information retrieval. In Proceedings of the 27th annual

international ACM SIGIR conference on Research and development in information

retrieval, 329-336.

McNee, S. M., Riedl, J., & Konstan, J. A. (2006). Being accurate is not enough: how accuracy

metrics have hurt recommender systems. In CHI ’06 extended abstracts on Human factors

in computing systems, CHI EA (vol. 06, pp. 1097-1101). New York, NY, USA: ACM.

Mitchell, T. (1997). Machine Learning. McGraw-Hill.

53

Mican, D., & Tomai, N. (2010). Association ruled-based recommender system for personalization

in adaptive web-based applications. In Proceedings of the 10th international conference on

current trends in web engineering (ICWE’10) (pp. 85-90). Berlin: Springer-Verlag.

Mooney, RJ., & Roy, L. (2000). Content-based book recommending using learning for text

categorization. In Proceedings of the fifth ACM conference on digital libraries (pp. 195-

204). ACM.

Mobasher, B. (2007). Recommender systems. Kunstliche Intelligenz Special Issue on Web

Mining (vol. 3. pp. 41-3). BottcherIT Verlag, Bremen, Germany.

Montaner, M., López, B., de la Rosa, J. & Ll. (2002). Developing Trust in Recommender

Agents. Proceedings of the First International Joint Conference on Autonomous Agents and

Multi agent Systems (AAMAS'02), Palazzo Re Enzo (Italy).

Murat, G., & Sule, GO. (2010). Combination of web page recommender systems. Exp Syst

Application, 37(4), 2911-22.

Nigam, K., McCallum, A., Thrun, S., Mitchell, T. (1998). Learning to Classify Text from Labeled

and Unlabeled Documents. In Proceedings of the 15th International Conference

on Artificial Intelligence (pp. 792-799). Madison, WI.

Onoda, T., Murata, H., & Yamada, S. (2006). Support vector machines based active learning for

the relevance feedback document retrieval. In Proceedings of the 2006 IEEE/WIC/ACM

International Conference on Web Intelligence and Intelligent Agent Technology,1822,

389-392.

Onuma, K., Tong, H., & Faloutsos, C. (2009). TANGENT: a novel, ‟Surprise me‟,

recommendation algorithm. In KDD ’09: Proceedings of the 15th ACM SIGKDD

international conference on Knowledge discovery and data mining (pp. 657-666). New

York, NY, USA: ACM.

Park DH, Kim HK, Choi IY, & Kim JK. (2012). A literature review and classification of

recommender systems research. In Expert Syst. Appl., 39 (11), 59-72.

Pazzani MJ. (1999). A framework for collaborative, content-based and demographic filtering.

Artific. Intell. Rev., 13, 5(6), 393–408.

54

Pazzani, M. & Billsus, D. (1997). Learning and Revising User Profiles: The Identification of

Interesting Web Sites. Machine Learning, 27(3), 313-331.

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. In

Philosophical Magazine, 2 (6), 559-572.

Prabha, S. & Duraisamy, K.S. K. (2016). A Comparative Analysis of Recommendation

Systems Rangasamy College of Technology, Tiruchengode, Tamilnadu, India. Middle-

East Journal of Scientific Research 24 (Techniques and Algorithms in Emerging

Technologies), 346-357.

Pradeep, I. K., & Bhaskar, M. J. (2018). Comparative analysis of recommender systems and its

enhancements. In International Journal of Engineering & Technology, 304-310.

Pronk, V., Verhaegh, W., Proidl, A., & Tiemann, M. (2007). Incorporating user control into

recommender systems based on naive bayesian classification. In RecSys ’07: Proceedings

of the 2007 ACM conference on Recommender systems, 73-80.

Pujahari, A. & Padmanabhan, V. (2014). An approach to content based recommender systems

using decision list based classification with k-dnf rule set. In Information Technology

(ICIT) (pp. 260-263). IEEE.

Qamar, A.M. (2010). Generalized cosine and similarity metrics: a supervised learning approach

based on nearest neighbors. Thesis, University of Grenoble.

Quinlan, J. (1986). Induction of Decision Trees. Machine Learning,181-106.

Ren L., He L., Gu J., Xia W., and Wu F.(2008). A hybrid recommender approach based on

Widrow-Hoff learning. In International Conference on Future Generation Communication

and Networking, 40-45.

Ricci, F., Rokach, L., Shapira, B. & Kantor, P.B. (2011) Recommender Systems Handbook,

Springer.

Ricci, F., Rokach, L., Shapira, B., & Kantor, P. B. (2010). Recommender Systems Handbook.

Springer, Berlin, 1st edition.

55

Rashid, AM., Albert, I., Cosley D., Lam, SK., McNee, SM., & Konstan, JA. (2002). Getting to

know you: learning new user preferences in recommender systems. In Proceedings of the

international conference on intelligent user interfaces, 127-34.

Robillard, M.P., Walker, R.J., & Zimmermann, T. (2009). Recommendation systems for

software engineering. IEEE Software 27(4), 80-86.

Robles, V., Larranaga, P., Pena, J., Marbán, O., Crespo, J. and Pérez, M.S. (2003). Collaborative

filtering using interval estimation naive Bayes. In Advances in Web Intelligence (pp. 46-

53). Springer: New York, NY.

Rodgers, J.L., & Nicewander, A.W. (1988). Thirteen ways to look at the correlation coefficient,

The American Statistician, 42 (1), 59-66.

Rodriguez, M., Posse, C., & Zhang, E. (2012). Multiple objective optimization in recommender

systems. In Proceedings of the sixth ACM conference on Recommender systems (pp. 11-

18). ACM.

Said, A. & Bellogín, A. (2014). Comparative Recommender System Evaluation: Benchmarking

Recommendation Frameworks. In Proceedings of the 8th ACM Conference.

Salter, J. & Antonopoulos, N. (2006). CinemaScreen Recommender Agent: Combining

Collaborative and Content-Based Filtering. IEEE Intelligent Systems, 21(1), 35–41.

Saranya M., & Atsuhirto T. (2009). Hybrid recommender systems using latent features. In

Proceeding of International Conference on Advanced Information Networking and

Applications Workshops, 661- 666.

Sarwar B., Karypis G., Konstan J., & Riedl J. (2009). Item-based Collaborative Filtering

Recommendation Algorithms In WWW10. Hong Kong.

Sarwar B., Karypis G., Konstan J., & Riedl J. (2000). Analysis of recommendation algorithms

for e-commerce. In Proceedings of the 2nd ACM Conference on Electronic Commerce (EC

’00) (Minneapolis, MN), ACM, 158-167.

Sarwar, B. M., Karypis, G., Konstan, J. A, & Riedl, J. T. (2000). Application of Dimensionality

Reduction in Recommender System. A Case Study, Architecture, 1625, 264-8.

56

Sarwar, B. M., Karypis, G., Konstan, J. A., & Riedl J. (2001). Item-based collaborative filtering

recommendation algorithms. In Proceedings of the 10th International Conference on World

Wide Web (WWW ’01), 285-295.

Schafer, JB., Konstan, J., & Riedl, J. (1999). Recommender system in e-commerce. In

Proceedings of the 1st ACM conference on electronic commerce, 158-66.

Schelter, S., Boden, C., Schenck, M., Alexandrov, A., & Markl, V. (2013). Distributed matrix

factorization with mapreduce using a series of broadcast-joins. In Proceedings of the 7th

ACM conference on Recommender systems (pp. 281–284). ACM.

Schwab, I., Kobsa, A., & Koychev, I. (2001). Learning user interests through positive examples

using content analysis and collaborative filtering. Draft from Fraunhofer Institute for

Applied Information Technology, Germany.

Sebastiani, F. (2002) Machine Learning in Automated Text Categorization. In ACM Computing

Surveys, 34 (1).

Shani, G. & Gunawardana, A. (2011). Evaluating recommendation systems. In Recommender

systems handbook. Springer US, 257297.

Shi, Y., Larson, M., & Hanjalic, A. (2010). List-wise learning to rank with matrix factorization

for collaborative filtering. In RecSys., 269 – 272.

Shinde S. K., and KulkamI U. (2012). Hybrid personalized recommender system using

centering-bunching based clustering algorithm. In Expert Systems with Applications, 39 (1),

1381- 1387.

Smyth, B, & Cotter, P. (2000). A personalized TV listings service for the digital TV age. In

Knowl-Based Syst, 13(2-3), 53-9.

Song, Q., Cheng, J., & Lu, H. (2015). Incremental matrix factorization via feature space re-

learning for recommender system. In Proceedings of the 9th ACM Conference on

Recommender Systems (pp. 277-280). ACM.

Steck, H. (2013). Evaluation of recommendations: rating-prediction and ranking. In Proceedings of

the 7th ACM Conference on Recommender Systems (pp. 213-220). ACM.

57

Swearingen, K., & Sinha, R. (2001). Beyond algorithms: An HCI perspective on recommender

systems. In ACM SIGIR Workshop on Recommender Systems, 13, 393-408.

Tomlinson, S. (2005). European ad hoc retrieval experiments with hummingbird Search Server

TM at. In CLEF, Working Notes for the CLEF 2005 Workshop.

Vargas, S. & Castells, P. (2011). Rank and relevance in novelty and diversity metrics for

recommender systems. In Proceedings of the fifth ACM conference on Recommender

systems, RecSys ‟11 (pp. 109–116). New York, NY, USA: ACM.

Vozalis m. g., & Margaritis k. g. (2007). Using SVD and Demographic Data for the

Enhancement of Generalized Collabrative Filtering. Information Sciences, 177, 3017-

3037.

Wang, S., Sun, J., Gao, B. J., & Vsrank, J. Ma. (2014). A novel framework for ranking-based

collaborative filtering. ACM Trans. Intell. Syst. Technol., 5(3).

Wasfi, AM. (1999). Collecting user access patterns for building user profiles and collaborative

filtering. In Proceedings of the 1999 international conference on intelligent user, Redondo

Beach (pp. 57–64). CA.

Weimer, M., Karatzoglou, A., Le, Q. V., & Smola, A. J. (2007). Co_Rank: Maximum margin

matrix factorization for collaborative ranking. In NIPS. ems. Computer, 42(8), 30-37,

200.

Weng, L. T., Xu, Y., Li, Y., & Nayak, R. (2007). Improving Recommendation Novelty Based on

Topic Taxonomy. In Web Intelligence and Intelligent Agent Technology, International

Conference on, 115-118.

Wintrode, J., Sell, G., Jansen, A., Fox, M., Garcia-Romero, D., & McCree A. (2015). Content-

based recommender systems for spoken documents. In Acoustics, Speech and Signal

Processing (ICASSP), IEEE International Conference (pp. 5201-5205). IEEE.

Xiaoyuan, S., & Taghi, M. K. (2009). A Survey of Collaborative Filtering Techniques. In

Advances in Artificial Intelligence, 421-425.

58

Yang, Y. & Liu, X. (1999). A re-examination of text categorization methods. In Proceedings of the

22nd annual international ACM SIGIR conference on Research and development in

information retrieval, 42-49.

Yang, Y., & Pedersen J. (1997). A Comparative Study on Feature Selection in Text

Categorization. In Proceedings of the Fourteenth International Conference on Machine

Learning, Nashville, TN, 412-420.

Zhang, M. & Hurley, N. (2009). Statistical Modeling of Diversity in Top-N Recommender

Systems. In Web Intelligence and Intelligent Agent Technology, IEEE/WIC/ACM

International Conference, 1, 490-497.

Zhang, Y., Callan, J., & Minka, T. (2002). Novelty and redundancy detection in adaptive

filtering. In Proceedings of the 25th annual international ACM SIGIR conference on

Research and development in information retrieval, SIGIR ‟02 (pp. 81-88). New York,

NY, USA: ACM.

Zhou, T., Kuscsik, Z., Liu, J.-G., Medo, M., Wakeling, J. R., & Zhang, Y.-C. (2010). Solving the

apparent diversity-accuracy dilemma of recommender systems. In Proceedings of the

National Academy of Sciences, 107(10), 4511-4515.

Zhou, Y., Wilkinson, D., Schreiber, R., & Pan, R. (2008). Large-scale parallel collaborative

filtering for the netflix prize. In Algorithmic Aspects in Information and Management

(pp337-348). Springer.

Zhuang Y., Chin W., Juan Y., & Lin C. (2013). A fast parallel sgd for matrix factorization in

shared memory systems. In Proceedings of the 7th ACM conference on Recommender

systems (pp. 249-256). ACM.

Ziegler, CN., Lausen, G., & Schmidt-Thieme, L. (2004). Taxonomy-driven computation of

product recommendations. In Proceedings of the 13th international conference on

information and knowledge management (CIKM ‘04) (pp. 406-15). Washington, DC, USA.

59

APPENDICES

60

APPENDIX 1

A SONG RECOMMENDER SAMPLE CODE

Load music data

#Read userid-songid-listen_count triplets

#This step might take time to download data from external sources

triplets_file = 'https://static.turi.com/datasets/millionsong/10000.txt'

songs_metadata_file = 'https://static.turi.com/datasets/millionsong/song_data.csv'

song_df_1 = pandas.read_table(triplets_file,header=None)

song_df_1.columns = ['user_id', 'song_id', 'listen_count']

song_df_2 = pandas.read_csv(songs_metadata_file)

song_df = pandas.merge(song_df_1, song_df_2.drop_duplicates(['song_id']), on="song_id",

how="left")

song_df = song_df.head(10000)

song_df = song_df.head(10000)

song_df['song'] = song_df['title'].map(str) + " - " + song_df['artist_name']

song_grouped = song_df.groupby(['song']).agg({'listen_count': 'count'}).reset_index()

grouped_sum = song_grouped['listen_count'].sum()

song_grouped['percentage'] = song_grouped['listen_count'].div(grouped_sum)*100

song_grouped.sort_values(['listen_count', 'song'], ascending = [0,1])

train_data, test_data = train_test_split(song_df, test_size = 0.20, random_state=0)

print(train_data.head(5))

pm = Recommenders.popularity_recommender_py()

pm.create(train_data, 'user_id', 'song')

61

user_id = users[5]

pm.recommend(user_id)

Build a song recommender with personalization

Create instance of item similarity based recommender class

is_model = Recommenders.item_similarity_recommender_py()

is_model.create(train_data, 'user_id', 'song')

#Recommend songs for the user using personalized model

is_model.recommend(user_id)

#Quantitative comparison between the models

#We now formally compare the popularity and the personalized models using precision-recall

curves

start = time.time()

#Define what percentage of users to use for precision recall calculation

user_sample = 0.05

#Instantiate the precision_recall_calculator class

pr = Evaluation.precision_recall_calculator(test_data, train_data, pm, is_model)

#Call method to calculate precision and recall values

(pm_avg_precision_list, pm_avg_recall_list, ism_avg_precision_list, ism_avg_recall_list) =

pr.calculate_measures(user_sample)

end = time.time()

print(end - start)

#Code to plot precision and recall curve

import pylab as pl

62

#Method to generate precision and recall curve

def plot_precision_recall(m1_precision_list, m1_recall_list, m1_label, m2_precision_list,

m2_recall_list, m2_label):

 pl.clf()

 pl.plot(m1_recall_list, m1_precision_list, label=m1_label)

 pl.plot(m2_recall_list, m2_precision_list, label=m2_label)

 pl.title('Precision-Recall curve')

 #pl.legend(loc="upper right")

 pl.legend(loc=9, bbox_to_anchor=(0.5, -0.2))

 pl.show()

print("Plotting precision recall curves.")

plot_precision_recall(pm_avg_precision_list, pm_avg_recall_list, "popularity_model",

 ism_avg_precision_list, ism_avg_recall_list, "item_similarity_model")

63

APPENDIX 2

EVALUATION SAMPLE CODE

class precision_recall_calculator():

 def __init__(self, test_data, train_data, pm, is_model):

 self.test_data = test_data

 self.train_data = train_data

 self.user_test_sample = None

 self.model1 = pm

 self.model2 = is_model

 self.ism_training_dict = dict()

 self.pm_training_dict = dict()

 self.test_dict = dict()

 def remove_percentage(self, list_a, percentage):

 k = int(len(list_a) * percentage)

 random.seed(0)

 indicies = random.sample(range(len(list_a)), k)

 new_list = [list_a[i] for i in indicies]

 return new_list

 def create_user_test_sample(self, percentage):

 #Find users common between training and test set

 users_test_and_training =

list(set(self.test_data['user_id'].unique()).intersection(set(self.train_data['user_id'].unique())))

 print("Length of user_test_and_training:%d" % len(users_test_and_training))

 self.users_test_sample = self.remove_percentage(users_test_and_training, percentage)

 print("Length of user sample:%d" % len(self.users_test_sample))

 def get_test_sample_recommendations(self):

 for user_id in self.users_test_sample:

 print("Getting recommendations for user:%s" % user_id)

64

 test_data_user = self.test_data[self.test_data['user_id'] == user_id]

 self.test_dict[user_id] = set(test_data_user['song'].unique())

 def calculate_precision_recall(self):

 cutoff_list = list(range(1,11))

 num_users_sample = len(self.users_test_sample)

 for N in cutoff_list:

 ism_sum_precision = 0

 ism_sum_recall = 0

 for user_id in self.users_test_sample:

 ism_hitset =

self.test_dict[user_id].intersection(set(self.ism_training_dict[user_id][0:N]))

 pm_hitset =

self.test_dict[user_id].intersection(set(self.pm_training_dict[user_id][0:N]))

 testset = self.test_dict[user_id]

 return (pm_avg_precision_list, pm_avg_recall_list, ism_avg_precision_list,

ism_avg_recall_list)

 def calculate_measures(self, percentage):

 self.create_user_test_sample(percentage)

 self.get_test_sample_recommendations()

 return self.calculate_precision_recall()

65

APPENDIX 3

RECOMMENDER MODELS SAMPLE CODE

class popularity_recommender_py():

train_data_grouped = train_data.groupby([self.item_id]).agg({self.user_id:

train_data_grouped.rename(columns = {'user_id': 'score'},inplace=True)

train_data_sort = train_data_grouped.sort_values(['score', self.item_id], ascending = [0,1])

self.popularity_recommendations = train_data_sort.head(10)

def recommend(self, user_id):

user_recommendations = self.popularity_recommendations

user_recommendations['user_id'] = user_id

cols = user_recommendations.columns.tolist()

cols = cols[-1:] + cols[:-1]

user_recommendations = user_recommendations[cols]

return user_recommendations

class item_similarity_recommender_py():

def get_user_items(self, user):

user_data = self.train_data[self.train_data[self.user_id] == user]

user_items = list(user_data[self.item_id].unique())

return user_items

def get_item_users(self, item):

item_data = self.train_data[self.train_data[self.item_id] == item]

item_users = set(item_data[self.user_id].unique())

return item_users

def get_all_items_train_data(self):

all_items = list(self.train_data[self.item_id].unique())

return all_items

66

def construct_cooccurence_matrix(self, user_songs, all_songs):

user_songs_users = []

for i in range(0, len(user_songs)):

user_songs_users.append(self.get_item_users(user_songs[i]))

cooccurence_matrix = np.matrix(np.zeros(shape=(len(user_songs), len(all_songs))), float)

for i in range(0,len(all_songs)):

songs_i_data = self.train_data[self.train_data[self.item_id] == all_songs[i]]

users_i = set(songs_i_data[self.user_id].unique())

for j in range(0,len(user_songs)):

users_j = user_songs_users[j]

users_intersection = users_i.intersection(users_j)

if len(users_intersection) != 0:

users_union = users_i.union(users_j)

cooccurence_matrix[j,i] = float(len(users_intersection))/float(len(users_union))

else:

cooccurence_matrix[j,i] = 0

return cooccurence_matrix

def generate_top_recommendations(self, user, cooccurence_matrix, all_songs, user_songs):

print("Non zero values in cooccurence_matrix :%d" % np.count_nonzero(cooccurence_matrix))

user_sim_scores = cooccurence_matrix.sum(axis=0)/float(cooccurence_matrix.shape[0])

user_sim_scores = np.array(user_sim_scores)[0].tolist()

sort_index = sorted(((e,i) for i,e in enumerate(list(user_sim_scores))), reverse=True)

columns = ['user_id', 'song', 'score', 'rank']

df = pandas.DataFrame(columns=columns)

return df

def create(self, train_data, user_id, item_id):

print("no. of unique songs in the training set: %d" % len(all_songs))

cooccurence_matrix = self.construct_cooccurence_matrix(user_songs, all_songs)

67

df_recommendations = self.generate_top_recommendations(user, cooccurence_matrix,

all_songs, user_songs)

return df_recommendations

def get_similar_items(self, item_list):

user_songs = item_list

all_songs = self.get_all_items_train_data()

print("no. of unique songs in the training set: %d" % len(all_songs))

cooccurence_matrix = self.construct_cooccurence_matrix(user_songs, all_songs)

user = ""

df_recommendations = self.generate_top_recommendations(user, cooccurence_matrix,

all_songs, user_songs)

return df_recommendations

	cover page 12072018.pdf (p.1-3)
	first page.pdf (p.4-14)
	Second Part (2).pdf (p.15-81)

