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ABSTRACT 

Recommendation systems are popularly discussed in research literature aimed at solving the 

problems of information overload in a variety of contexts and application fields. When 

developing such applications, there are a wide range of choices regarding what approaches, 

algorithms and techniques to employ. 

In this thesis I will provide a detailed analysis of different recommender systems’ techniques 

(Content-based, Collaborative and Hybrid), which have been proposed in the recent literature. 

Finally, evaluation methods and metrics to measure the performance of those systems will be 

discussed. I will explore the properties and potentials of various metrics and protocols in 

recommendation engines which will serve as a compass  for conducting research and practice 

in the area of recommendation engines. Furthermore, an experiment will be conducted to 

measure their effectiveness on two recommendation models using precision-recall metrics 

which is applied on offline public dataset.   

Keywords: Evaluation; recommender systems; content-based filtering; collaborative filtering; 

hybrid filtering.  
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ÖZET 

Tavsiye sistemleri, popüler olarak, çeşitli bağlamlarda ve uygulama alanlarında aşırı bilgi 

yükü problemlerini çözmeyi amaçlayan araştırma literatüründe tartışılmaktadır. Bu tür 

uygulamalar geliştirilirken, hangi yaklaşımların, algoritmaların ve tekniklerin kullanılacağına 

ilişkin çok çeşitli seçenekler vardır. 

Bu tezde, farklı literatürde öne sürülen farklı tavsiye sistemleri 'tekniklerinin (İçerik tabanlı, 

İşbirlikçi ve Karma) tekniklerinin ayrıntılı bir analizini sunacağım. 

Son olarak, bu sistemlerin performansını ölçmek için değerlendirme yöntemleri ve ölçümleri 

tartışılacaktır. Tavsiye motorları alanında araştırma ve uygulama yapmak için pusula görevi 

yapacak olan tavsiye motorlarında çeşitli ölçüm ve protokollerin özelliklerini ve 

potansiyellerini keşfedeceğim. Ayrıca, çevrimdışı kamu veri setine uygulanan hassas 

hatırlama ölçümleri kullanarak iki öneri modelindeki etkinliğini ölçmek için bir deney 

yapılacaktır. 

Anahtar Kelimeler: Değerlendirme; öneri sistemleri; içerik esaslı filtreleme; işbirlikçi filter; 

hibrit filtre. 
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CHAPTER 1 

INTRODUCTION 

The increasing significance of the internet as a platform for electronic and business 

transactions has served as a driving force for the advancement of recommendation systems 

technology (Aggarwal, 2016). The field of RS was appeared first when Tapestry was 

developed and implemented using collaborative filtering by (Goldberg, Nichols, Oki, and 

Terry, 1992) in 1992. As the RS field introduced, researchers studied the utilization of 

algorithms from machine learning (ML), an area of artificial intelligence (AI). 

Nowadays, RSs are applied in numerous information-based organizations such as Google 

(Liu, Dolan, and Pedersen, 2010), Twitter (Ahmed, Kanagal, Pandey, Josifovski, Pueyo, and 

Yuan, 2013), LinkedIn (Rodriguez, Posse, and Zhang, 2012), Netflix and in the field of 

software engineering (Robillard, Walker, and Zimmermann, 2010). 

Recommender system as explained by (Deshpande and Karypis, 2004), is a personalized 

information filtering technology used to predict whether a specific user will be interested in a 

particular item or to recognize a set of N items that will be preferred by a certain user (Prabha 

and Duraisamy, 2016). 

Stored data, input data, and algorithm (Burke, 2002) are the basic building blocks of a 

recommendation system. According to (Bobadilla, Ortega, Hernando, and Gutiérrez, 2013) 

recommendation algorithms are classified into, collaborative filtering, content-based filtering 

and hybrid filtering. 

Collaborative filtering (CF) requires information from the user on the item to start 

recommending items to the target user. Users express their interest on the item by giving 

certain level of rating to the item i.e. according their taste. The more they like the item the 

high rating they will give. So based the rating another items related to the previous item they 

preferred will be offered by computing the similarity with the item. Many researchers have put 
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effort on CF to develop it. Consequently, it has been applied by various online-shopping sites. 

While this is true, CF approach has limitation such as cold-start and data sparsity. 

Content-based filtering (CBF) in contrast to CF it does not need any previous information 

about the items. A user profile is created by taking the features of the item. Without the item 

contents the recommendation will not get into effect. Once the system has the user profile 

constructed, similarity metrics computes the similarity of the contents of items in the profile  

with the item contents in the database. That way it recommends new items to the user. As CBF 

depends on the item properties, there are conditions where the contents are not able to extract 

for instance image contents. In addition, it keep offering similar items. There is no item 

variety.  

Hybrid filtering algorithms (Hybrid) was basically come to exist to deal the limitation of CF 

and CBF. For example, CBF can overcome cold-start of CF and CF can handle the 

overspecialization problem of CBF. Cascading (Burke, 2002) is one of the methods of 

combing algorithms which merges scores of other techniques with their weights. 

The outcomes of the filtering approaches introduced on top are required to be evaluated for 

their performance. We need to know, how important the recommendation was to the user. For 

example for an e-commerce, is the company selling many items and the revenue of the 

company improved. And several factors has to be considered.  

Evaluation protocols and metrics assists us on knowing the performance in various ways 

before the system commences its actual task. Different datasets are applied to conduct the 

process as the performance differs from one dataset to another. As we aim perfection by 

evaluation, the research area is yet a very challenging (Gunawardana, 2011; Herlocker, 

Konstan,  and Terveen, 2004).  There are several factors that contributes to the challenge:  

• A scalability of dataset is one of the major factors. The algorithms performs distinctly 

for different datasets. The size of dataset also greatly influences the performance. The 

accuracy and speed of the algorithm reduces as the dataset size increments.  
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• We have various number of evaluation metrics with varied properties. Some of them 

contradict to one another. Many tradeoffs are faced. For example, when the precision 

of the recommendation system is improved its recall decreases.  

• Some evaluation metrics requires different evaluation protocols. For instance, 

serendipity is tested using user study while accuracy prediction leverages offline 

method.  

1.1 Motivation of the Work 

In this modern era of technology the critical issue we are facing is information overload which 

is causing a lot of challenges retrieving relevant data. It is challenging separating relevant 

from irrelevant information. Virtual environments like the Internet become more and more 

intricate and rich while comparing with real environment in respect to the amount of 

information and its complexity.   For the last twenty five years, recommender engines have 

been assisting and easing these complexity barriers by presenting the internet users 

information they are really interested in smartly.    

Recommender Systems main goal is to assist users dealing with information overload as 

introduced in (section 1), finding or extracting relevant information from irrelevant in a vast 

space of resources. Research on the area of RS have been active field since the first 

recommendation system evolved and some books and articles that survey different algorithms 

and application domains have been published recently. However, these researches have not 

discussed in depth the different techniques utilized in Recommender System, and only some of 

them have reviewed the different types of evaluation process to assess the effectiveness of RS. 

Thus to narrow this gap, in this thesis i present  introduction of recommendation systems in 

general, and then we focus on presenting details of the main techniques of RS and evaluation 

methods and discuss metrics from different perspectives that have been active in the research 

literature.  
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This thesis will directly provide help to academics and practical professionals to get idea about 

recommendation systems, how they work and implemented, what techniques are leveraged 

and how they are evaluated. Recommendation systems are taking over the e-commerce in 

particular. So inducing understanding on the user is a critical aspect as they have to put trust  

and use them in their day to day activities. 

 1.2 Research Question 

This thesis will answer, What are the most used techniques in recommender systems, the main 

performance evaluation metrics and methodologies used in the recommender systems field 

and Which Recommendation system model (popularity and item based) is better from 

Information Retrieval (IR) perspective? 

1.3 This Research aims and Contributions are to: 

 present a systematic analysis of recommendation approaches and their implementation 

process; 

  present highlights of the limitations and possible solutions of each techniques 

discussed; 

 it systematically examines the recommender systems evaluation metrics from three 

perspectives and 

 finally conduct an experiment comparing item-based to popularity-based 

recommendation models. 
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1.4 Structure of the Thesis 

This thesis includes of five chapters. Chapter 1, introduces a short background to the 

Recommendation engines, describes shortly the recommendation systems headlines and gives 

an overview about the objective and the structure of the thesis. 

In Chapter 2, the literature review about recommendation engine algorithms and evaluation 

metrics is presented.  

In Chapter 3, this thesis first analyzes the three categories of RSs namely CBF, CF and hybrid 

filtering ( Adomavicius and Tuzhilin, 2005) and try to present the findings in an easy to digest 

manner, in order to provide a concrete understanding of available approaches for potential 

users.  

In Chapter 4, the thesis first introduces recommendation system performance evaluation 

protocols, and highlights their pros and cons. Secondly; the thesis discusses three perspectives 

of evaluation metrics of recommendation systems from the perspectives of information 

retrieval, human-computer interaction, and machine learning. Finally, perform a quantitative 

comparison on two RS models (Item-based and popularity-based) built on a real word 

MillionsSong dataset.   

In Chapter 5, this thesis is concluded by providing answer to the research questions. The 

future work including suggestions for the further development is summarized. 
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CHAPTER 2 

LITERATURE SURVEY AND RELATED WORKS 

2.1 Recommendation Systems 

Recommendation system is generally described as a system that offers suggestion or 

recommendation for subjects to deal with the complex information overload (Rashid, Albert, 

Cosley, Lam, and McNee, 2002) and in the area of online shopping, assists users by finding 

items from a database that are similar to their interests and preference (Schafer and Konstan, 

1999). Recommender systems provides users with their individual tastes and services of  

recommendation (Isinkaye and Folajimi, 2015) which overcomes the problem of retrieving 

users’ needs due to information overload. There are different ways of building 

recommendation systems utilizing techniques such as collaborative algorithm, content-based 

algorithm or a combination of both hybrid algorithm (Acilar, 2009; Jalali, Mustapha, Sulaiman 

and , 2010).  

2.2 Filtering Techniques 

2.2.1 Collaborative Techniques 

This technique suggests items to users by searching like-minded subjects with identical 

preference based on their preference it present suggestions to the target user which is referred 

item-based. Various application areas have employed CF approaches. Existing CF approaches 

generally categorized into: model-based and memory-based ( Adomavicius and Tuzhilin, 

2005). Neighborhood-based is splitted into, user-based (Huang, Wang, Liu, Ma, and Chen, 

2015) and item-based (Shi and Larson, 2010), which makes predictions based on historical 

ratings related to similar item or users. On the other hand, model-based methods uses vectors 

to represent the items and users in a vector space. A dimensionality reduction technique, 

Matrix factorization, a well-performing approach, latent factor models used (Weimer, 

Karatzoglou and Le, 2007) and proposed Co-Rank. ListRank-MF provided by (Shi and 

Larson, 2010) creates features with MF. 
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News-based system, GroupLens, is one of the CF applications which suggests users articles 

from a massive news dataset. Topic diversification algorithms are used by Amazon which 

bettered its predictions (Huang, Wang, Liu, Ma, and Chen, 2015). The Application leverages 

CF technique to handle the problem of scalability by creating a matrix of related items offline 

using item-item matrix. The application predicts items to the user that matches to those 

already bought. However, collaborative methods has limitations such as ramp-up (Montaner, 

López, and de la Rosa, 2002), scalability and sparsity issues. 

2.2.2 Content Based Filtering 

CBF techniques match item-content to user features. CBF presents prediction by only 

considering the user’s features it does not regard other user’s interests unlike to collaborative 

techniques (Wang, Sun, and Gao, 2014). 

 Fab an example of CBF algorithm mostly depends on various users’ ratings in order to form a 

training data. Some other recommenders like Letizia (Letizia, 1995) use CBF to assist users to 

find the information that interest them on the Internet. The application adopts a GUI which 

enables customers searching the web; it tracks the users’ browsing pattern in order to suggest 

web pages that may like. Similarly (Pazzani, 1999) used Naive Bayesian classifier to build an 

intelligent agent. The system has the capability of providing training instances to the user by 

rating several web sites as important or not. 

 Regardless the success of CBF technique, it suffers from several limitations. Limited feature 

extraction, over-specializing predictions and data-sparsity ( Adomavicius and Tuzhilin, 2005) 

can be listed. Such limitations affect the accuracy of predictions. 

2.2.3. Hybrid Filtering 

The idea of combining recommendation algorithms, hybrid filtering, was proposed to mitigate 

the limitations identified and to improve the accuracy and performance of recommendations ( 

Adomavicius and Tuzhilin, 2005). Doing so, the strength is harnessed while leveling out their 

corresponding weaknesses (Al-Shamri and Bharadwaj, 2008).  (Mican, 2010) classified into 
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hybrid filtering into seven types; weighted, feature-augmentation, mixed, feature-combination, 

switching, cascading and meta-level  based on their operations.  

Most widely used hybrid techniques are built by combining CF and CBF, their output is 

aggregated later or adding CBF to CF features or vice versa. Ultimately, a model that 

integrates features of both the techniques could be designed (Ziegler and Lausen, 2004). A 

simple hybrid merging characteristics of CF with CBF together was proposed by 

(Cunningham, Bergmann, Schmitt, Traphoner, and Breen, 2001). 

Cascade hybrid technique was recommended by (Ghazantar, 2010), combining the ratings, 

properties and demographic data of items address the sparsity as well as cold-start issues. 

Hybrid CF technique proposed by (Ziegler and Lausen, 2004) generates profiles by applying 

the technique super-topic score and topic diversification that exploits bulk taxonomic 

information which in return overcomes sparsity limitation of CF.  

2.3 Recommendation System Evaluation 

Various evaluation on many recommendation techniques using distinct dataset was conducted 

by (Breese, John, and David Heckerman, 1998). The experiments on that research paper are a 

corner stone to the current research literature. 

The research done by (McNee and Riedl, 2006) reveals, that accuracy metrics are not 

sufficient to for choosing the right algorithm. The researchers highlighted considering the non-

accuracy metrics such as serendipity of the items being recommended.  An extensive study 

metrics targeting for measuring CF recommendation system was provided by (Herlocker, 

2004).  An experiment was also done on the similarity of various metrics in a perceptive way 

and finally decided that the analyzed metrics can be classified in to three main classes. 

Some researchers like (Herlocker, 2004) do not accept MAE as a metric evaluating 

recommendations. They backed their idea by giving a similar example as a user’s rating does 

not mean the user is probably to listen a music. Other researchers also advice considering the 

purpose of the recommendation algorithm in general. For instance ( Del Olmo and Gaudioso, 
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2008), built a recommendation system framework that splits the recommendation system into 

two parts, filter and guide, for calculating predictions distinctly. And suggested to employ 

metrics that focus on the fact whether the recommendations provided by the system are 

actually found to be relevant to the users’ needs and on the RS’s goal. 

(Cremonesi, Turrin, and Lentini, 2009) also proposed an evaluation approach for CF RSs. A 

further research by ( Celma and Herrera, 2008) applied accuracy metrics and classification 

metrics for comparing two CF techniques using MovieLens1 dataset. Limitations and 

challenges of RS evaluation is discussed on a paper (Herlocker, 2009). It also focuses on 

usage of methodologies, dataset and metrics. 

(Kohavi, Longbotham, and Sommerfield, 2009b) presented comprehensive study on evalution 

and provided a hands-on guide for carrying experiments on a web. In the next paper Crook et 

al.  advices to emphasize on the importance of evaluation criteria’s that meet the business 

goals (Crook, Frasca, and Kohavi, 2009), in their book encompass  a section that overviews 

RS evaluation (Jannach, Zanker, and Felfernig, 2010). Similarly, Shani and Gunawardana, has 

contributed  very insightful RS evaluation chapter to (Ricci, Rokach, and Shapira, 2010)  

handbook and outline the necessary aspects in conducting offline, online and user-study 

experiments.  

In the literature, Information retrieval is another valuable source of evaluation metrics and 

measures. Basically it is aimed at providing relevant search results and contributes metrics for 

RS evaluations (for example (Measures, 2009)). Davis and Goadrich depicts that there is a 

deep correlation between Receiver Operator Characteristic (ROC) space and Precision-Recall 

(PR) space ( Davis and Goadrich, 2006).  

 

 

 



10 
 

CHAPTER 3 

ANALYSIS OF RECOMMENDATION SYSTEM TECHNIQUES 

3.1. Recommendation Systems 

Recommendation Systems (RS) intend to suggest a user or a group in a system to select or 

purchase items from a large number of item or information space ( Aggarwal, 2016). Methods 

or algorithms adopted from the fields of ML, AI, and statistics are widely used in RS. Amazon 

for instance sorts and suggests books by employing ML. RS also contributes a significant role 

helping users when they are having a problem of deciding which item to select from a mass of 

items (Ricci, Rokach, Shapira, and Kantor, 2011), assisting users to maximize profits (Prabha 

and Duraisamy, 2016) or minimize risks ( Said and Bellogín, 2014).  

Research on recommendation systems has been going on both on academic and industry for 

almost twenty five years  now, but with the increase in the number of e-commerce 

applications, online users, vendors and increasingly complex products and services, the 

demand for new intelligent recommendation techniques has also increased linearly.  

Recommendation systems development varies from domain to domain and the type data to 

work on. For instance, five-star is used in Netflix, like/dislike in Facebook and soon. Which 

means the user feedback is recorded into a data source in such a way. The data filtering 

process aiming at finding the matching pairs also differs.  

Generally, all recommendation engines apply a similar process (Hiralall, 2011) to offer 

recommendations to a target user, as illustrated in Figure 3.1.  
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Figure 3.1: Framework of Recommendation Process 

(Adomaviciu and Tuzhilin, 2005) classified Recommendation systems into three namely 

collaborative filtering, content-based, and hybrid filtering (see Figure 2.1), based on the 

information utilized to provide the suggestions. Detail RS techniques analysis is presented in 

section 3.1 

 RSs with a CF approach measure the like mindedness of two users by comparing 

their inclination for items which they have evaluated. The intuition is similar-users 

have similar-item rating. This degree of similarity is then exploited while choosing 

the set of users whose views influence the final recommendations. Thus similarity 

computation is the crucial part of CF process. For example, by getting access to 

user profiles in an online movie database, the RS has get access to all of the person 

records, including the age, country, city, and films purchased. Based on this 

information, the system can identify users that share the same music preference, 

and then suggest movies purchased/watched by similar users. 

Generally, CF-based techniques suffer from new user or item as it depends on a history of 

ratings of the user/item to compute the similarities, for the determination of the neighborhood.  

 RSs with a CBF depends on item attributes to accomplish the recommendation 

process. For instance, a user is on flight-reservation web site to book flights searching 

flights to a certain destination. The system will ask the user to provide attributes such 
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as from-to airports and calendar. The system then matches these user flight-attributes 

to the flight-attributes in the flight database and present flights exactly to the attributes 

or similar to them.  Different types of algorithms are used to find the similarity 

between items. The commonly used are; Term Frequency Inverse Document 

Frequency (TF/IDF) (Mooney and Roy., 2000), Naïve Bayes Classifier, Decision 

Trees, and Artificial Neural Networks (ANN.  

 The third classification, Hybrid recommendation systems combine two or more 

recommendation techniques to handle their unique limitation and advantage from their 

unique strength. Netflix is a well-known model of hybrid RSs.
 
The application provide 

suggestions by analyzing  the watching and searching habits of related users (i.e., CF) 

and by recommending movies that share traits with movies that a customer has rated 

highly (CBF). CF and hybrid filtering recommendation system require data from the 

user prior to presenting recommendations. To achieve such task, feedback from users 

can be gathered using explicit or implicit methods.  

Explicit feedback: This type of feedback is given directly by the user through ratings. The 

most common example is when a user rates a watched movie on a scale from 1 to 5 or when 

users express their preferences by like/dislike on Facebook. The system therefore receives an 

explicit preference score for a given user-item pair, based on which a ranking of items can be 

determined.  

 Implicit feedback: is collected implicitly from various user interactions on a website, such as 

product page views, purchases, or additions to cart. Monitor user click and keystroke logs. The 

feedback that the system receives when such an event is registered as a result of successful 

recommendation takes the form of values. This implies binary preference, for example, value 

= 1 if bought, value= 0 if not bought.  

In addition to the commonly used recommendation approaches, in which users are provided 

with items that might like, recommendations can be done in other ways. Trust-based 

recommendations (Bobadilla, Ortega, and Hernando, 2013) take into consideration the trust 
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relationship that users have between them. A trust relationship is a link in a social network to a 

friend or a following connection. Suggestions based on trusted friends are worth more than 

those that do not have trust links. Context-aware recommendations (Melville and Sindhawani) 

completely depend on the context or the situation the user is in.  

 A context is a set of information that characterize the current activity or state of the user, such 

as the user’s current location (museum, church, office), or the current activity (idle, running, 

cleaning). Despite their remarkable role, context-aware require high computation time to 

process the contextual dataset which makes them very challenging in the research area. 

Another context based approach is, risk-aware recommendations (Bruke, 2002), considers a 

state where critical information is available such as patient’s vital symptoms. As its name 

indicates, it is sensitive to risk because a wrong decision may risk/threaten a user’s life or 

cause damage. For instance, recommending pills the patient should take or stocks the customer 

should buy or, sell.  

 

  

 

 

 

Figure 3.2: Traditional Recommendation Systems approaches main category 
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3.2 Content Based Filtering 

CBF is also called cognitive Filtering. Cognitive filtering systems were basically designed to 

filter relevant content and suggest from items mainly text-based like e-mail messages. It is 

successfully implemented on text mining related system. 

Nowadays, CBF are popularly used in the area of RS. These systems make predictions on the 

basis of past user selections history (Bobadilla, Ortega, Hernando, and Gutiérrez, 2013; Lu, 

Dianshuang, Mao, and Wang, 2015; Lu, Medo, Yeung, Zhang, and Zhang, 2012; Pujahari and 

Padmanabhan, 2014; Wintrode, Sell, Jansen, Fox, and Garcia-Romero, 2015). 

In cognitive system first a user profile (Onoda and Murata, 2006) is created based on the 

information provided by the user such as age, gender, and soon. A profile for the item the user 

liked or watched also generated. Related items to profile generated are then recommended to 

the user (Lops, Marco, and Semeraro, 2011). Pandora.com is one of the many applications of a 

CBRS, as it profiles songs by attributes, and then recommends users or listeners with songs 

that are similar to those the user liked in the past. It does so, by matching or searching the 

features within songs not user profile of neighbor candidates. 

Researchers considers cognitive systems as Information retrieval (Balabanovic and Shoham, 

1997) and generally It employs techniques from Information Retrieval such as classification, 

clustering and text analysis (Mooney and Roy, 2000). For instance, in NewsWeeder (Lang, 

1995), documents in the rating categories are represented by word vectors using TF - IDF, and 

then each user is given a weight for each category by averaging tf-idf word vectors.  

Skyskill and Newsweeder are most common CBF based recommendation systems. Skyskill 

recommendation system recommends Web documents (Pazzani, 1999) and Newsweeder 

suggests news articles (Lang, 1995). And (Zhang, Callan and Minka, 2002) proposes an 

application which identifies relevant documents with new information and without by 

implementing a Bayesian approach (discussed in later section). 
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Steps in content-based RS (Pradeep and Bhaskar, 2018), consider, a user is on a book 

recommender system, the Recommendation System will analyse the content of that book 

aiming at finding other similar books it can offer as follows:  

1) Initially, the books are represented in the form of attributes or descriptors the same 

as a relational database. Books can be described by Genre (Science fiction, Comedy, 

Drama), Author’s Name, Publisher, Published-date, words used in the book.  

2) Represent the values for each descriptor by a vector in a multidimensional vector 

space.  

3) Similarly, a user profile is created for each user based on his purchase history, 

explicit ratings, and reviews.   

4) So now the user is represented with attributes like the genre (List of books they 

prefer), Author’s name (List of books they bought of an Author).   

5) Finally map each user to a book similar to his taste using similarity metrics. In CBF 

Cosine similarity is generally used, which finds the similarity or cosine distance 

between the item vector and profile vector. Assume we have profile vector u and item 

vector v, then their similarity is (See Equation 3.7 and 3.8).                                                        

Based on the cosine value, which ranges between -1 to 1, the items are arranged in descending 

order and one of the two below approaches is used for recommendations: 

 Top-n approach: the user is recommended the first top n items where the n elements 

are decided by the business. 

 Rating scale approach: in this technique a threshold is set and all the items on top of 

the threshold are offered to the user. 

A major drawback of this algorithm is it over-specialize items presented to the user. It will 

never recommend products which the user has not bought or liked in the past. For instance, If 
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a user has watched or liked only romantic movies in the past, the system will recommend only 

romantic movies. As such, it missed a feature called Serendipity, which is the main feature CF 

(discussed in the next section). Content based filtering approach framework as shown in 

Figure 3.3.  

 

Figure 3.3:  Frame-work of content-based approach (Aamir and Bhusry., 2015) 

3.2.1 Popular Content-Based Filtering Algorithms.  

Various algorithms are being used in content-based models. These techniques finds similarities 

in the descriptions that can be leveraged to differentiate highly liked items from others 

(Robles, Larranaga, Pena, Marbán, Crespo, and Pérez, 2003). Generally algorithms are 

adopted from  IR and ML as they are well-suited for text categorization (Sebastiani, 2002). 

The most used algorithms are reviewed in the section below.  

3.2.1.1 Term-Frequency - Inverse Document Frequency (TF - IDF) 

TF-IDF, as its name indicates it measures the frequency of a term in documents. The more the 

term is repeated on the text, more it becomes important. However, the importance reduces if it 

occurs frequently on the corpus. The weight (Baeza-Yates, and Ricardo, 1999) of a particular 

term in a text is computed (Chakrabarti, 2002) as, 
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Where,         is the frequency of term x in a document. 

IDF is a measure that works together with TF. Its main goal is to reduce the weight of a term 

that appears in the corpus frequently. The importance of the term decreases if it shows up in 

the collection of documents more often. So it should be assigned a small weight. The IDF 

Equation is given by, 

          
 

    
                                           (3.3) 

Where   is the corpus size,      the number of documents                       occurs. 

Therefore, TF-IDF is given by Equation 3.4  : 

                                                                                                 

3.2.1.2 Naive-Bayes Classifier 

Naive Bayes is a probabilistic approach to inductive learning, and belongs to the general class 

of Bayesian classifiers, and its text classification performance was reported by (Maron, 1961). 

It is treated as one of the exceptionally well-performing text classification algorithm and in 

consequence many recent works have frequently adopted the algorithm (McCallum, 

Rosenfeld, Mitchell, and Ng, 1998; Mitchell, 1997; Nigam, McCallum, Thrun, and Mitchell, 

1998). It generates a probabilistic model based on previously observed data. So when two 

random variables are jointly distributed with the value of one unknown then the probability of 

the other variables is calculated applying Bayes-rule.  

The probability, P(c/d),  is calculated using Bayes theorem Equation 3.5 (Paquale and 

Semeraro, 2011) as, the probability of    given  ,         is given by the product of 

                                         ,       to the probability of d given c, divided by 

the probability of a document in class  ; 



18 
 

                (
 

 
)  

     (
 

 
)

    
                                                                                                          

Where, P(c) is the probability of a document in class C. 

To classify the document d, the class with the highest probability is chosen: 

                             
            

    
                                                                                 

3.2.1.3 Decision Tree Rule Learner 

Decision tree is a data mining technique which also widely adopted by recommendation 

systems. As its name signifies, it applies a tree like structure for visualizing the classification 

problem into nodes or new trees. The algorithm recursively (Quinlan, 1986) builds new 

classes by splitting the training set, in our case the text documents, until the new classes 

consists only the instances of a single class that is the word or phrase. The algorithm 

commonly employs entropy as for selecting the most important attributes (Yang and Pedersen, 

1997) . 

 This technique is being widely researched for the use with structured or restricted data. 

However, many disagree the usage of decision tree bias for unstructured or unrestricted textual 

classification tasks (Pazzani and Billsus, 1997). As a result, the splitting criteria i.e. 

information-theoretic employed the algorithm and the inductive bias are useful for small trees 

with few tests. But, usually textual classification task consists a lot of relevant attributes 

(Joachims, 1998). On this case, the technique is less applicable as it poorly affects the 

performance of the textual classification process. Decision trees are easy and understandable 

when only applied on small structured which improves the performance of content-based 

models. 
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3.2.2 Merits and Demerits of CBF 

Merits:  

 Recommendations are generated using the user preferences alone rather than the user 

community 

 Can be employed in real time as the model does not need to load all the data for 

processing or generating recommendations 

 High accuracy compared to CF as product content is utilized rather than just rating 

information 

 Easily handling of the “cold-start” problem 

Demerits: 

 limited content analysis 

- domains other than text documents, for example , images are difficult to extract 

their feature and represent them using keywords.  

 Overspecialization 

- no serendipity: the system will keep recommending the user items that are 

similar to those already rated. 

- diversity of recommendations is needed: the RS keeping recommending similar 

items 
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3.3 Collaborative Filtering Recommendation System 

Since the first recommendation system Tapesery built in mid 1990s, CF has been the most 

well-performing and often employed filtering technique and researched (Sarwar, Karypis and 

Konstan , 2000; Sarwar, Karypi, and Konstan, 2001; Yang and Liu, 1999). Collaborative 

techniques handles well some of the limitations of the content-based technique discussed in 

the previous section 3.2. For instance, it works well with items in which CBF has a problem of 

extracting the items content such as movies by getting other users feedback. The strong side of 

CF is it depends on the quality of an item not on content. This enables to break the barriers of 

serendipity and limited content analysis problem of CF. 

CF RSs works on a dataset of users and item rating. The target user who is expecting 

recommendation is known as active user. The active-user is recommended items from similar 

users by simply searching the database. Based on those users that have similar taste, it will 

recommend the items like in Amazon.com and  www.movielens.org. These e-commerce sites 

in turn increases the customers’ loyalty and sales(Schafer, and Konstan, 1999).   

The major tasks being performed in collaborative filtering are user-user or item-item. The 

workflow (Good, Schafer, Konstan, Borchers, and Sarwar, 2008) for item-item:  

1) Expressing a User’s preference by rating the items.  

2) Finds the users with most similar taste by mapping their rating with other users rating.  

3) Then finally, the most highly rated by users are recommended by the system.  

And in the user-user:  

1) Searching the user neighbors.  

2) Discovering the interests of the neighbors of a active customer.  
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In CF technique, user neighbors are created by looking at the user’s purchasing history and 

computing their similarity. Then the prediction is performed in either of these two ways, 

explicit such as item-rating or implicit for instance monitoring the user’s behavior towards the 

item . 

CF employs various approaches such as 

 Cosine angle (Qamar, 2010) or neighborhood based algorithm (KNN (DENIYI , and 

WAI, 2014)) used to compute the cosine distance between two users that is item-item 

approach. 

 Pearson coefficient (Rodgers and Nicewander, 1988) performs well in computing the 

similarity between two users that is user-user technique.  

 For other techniques CF uses Bayesian techniques (Deerwester and Dumais, 1990), 

matrix factorization (SVD (Golub and Kahan, 1965)), association rules, PCA (Pearson, 

1901), and Latent Semantic Analysis (LSA (Golub and Kahan, 1965)). 

CF is further classified into:  

3.3.1 Memory-Based Filtering  

Professor L.Herlocker, from University of Minnesota, proposed this algorithm in late 1990s. 

Memory-based algorithms employ the complete user-item database loaded in the memory to 

create a prediction. These approaches use methods borrowed from statistics to get neighbors 

for the active user. Neighbors are users that either bought similar item or rated items that are 

different equally.   

Neighborhood-based methods works for almost any types of recommendation like books, 

music, movies and products without the need of feature selection. Nevertheless, it suffers from 

some limitations like; Cold start (first- rater) problem, Sparsity (huge number of users with 

little item ratings), and Popularity bias problem. 
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The next subsections discusses the two subcategories of memory based approaches, Item-

based and user based. They follow almost similar intuition, user-based look for users who 

gave similar credit for an item and item-based for an “item rated similarly by various users". 

3.3.1.1. User-Based Collaborative Technique 

User based approach searches and determines similarity of users who provided the same rating 

for items using measures known as similarity metrics (Isinkaye, Folajimi, and Ojokoh, 2015) 

(discussed in section 3.2.1.3).  

Here is the basic workflow of this strategy, let us consider a user u and neighborhood of u as 

v,  

1. Find a user/ group-of-users whose like/s and dislike/s are similar to the defined user 

u. For example, u likes the same movies, the user/ group-of-users like and u dislike the 

movies the user/ group doesn't like. This user/ group-of-users is called neighborhood of 

u.  

2. After finding the v, then the step following is finding the set of items/movies which 

are not bought/seen by user u but are liked by v. Then, recommend those items to user 

u.  

User-based approach has a scalability drawback. It is a situation exhibited when the user-

matrix contains a lot more users comparing to items, and so plenty of computation time is 

employed which makes searching much harder over users. For instance, in youtube.com the 

number of users increases at a very high rate in contrast the items uploaded (Ekstrand, Riedl 

and Konstan, 2010). This scalability issue leads to the evolution of item-based collaborative 

approach. Whilst, the domain where we apply these approaches also it determines.  In the 

context of news, for instance, user-based performs exceptionally well. 
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3.3.1.2 Item-Based Collaborative Technique 

Researchers of university of Minnesota proposed this technique in 2001 (Pronk, Verhaegh,  

Proidl, and Tiemann, 2007) and then adopted by Amazon.com (Linden, Smith, and York, 

2003). It is based on a Computation of similarity as user-based but between items. Item-item 

approach use Pearson Correlation (Xiaoyuan and Taghi, 2007) to calculate the similarities 

among items and NKK offer prediction to the active user . 

In this system finding similarity (Sarwar, Karypis, and Konstan, 2001) among items is the 

most complex step. To compute the similarity and generate the prediction, the utility-matrix or 

the database of users has to be scanned now and then which is impractical in real life 

applications. These solutions below will somehow easy the problem: 

1. Find out the nearest items/users in a regular manner.  

2. Use clustering to pre-group items into groups and limiting the search space to a cluster.  

3. Dimensionality reduction techniques can also be used to reduce the search space. 

3.3.1.3 Determining Similarity  

Similarity metrics play a critical role in recommendation systems which measure the similarity 

between user-user or item-item. In this section I will present the most popular approaches, 

Cosine Similarity and Pearson Correlation (Amatriain and Xavier, 2011; Breese, John, David 

Heckerman and Kadie, 1998) which compute the similarity that is used as input for getting the 

user neighbors.  

Pearson Correlation approach: The Pearson correlation was first suggested as an appropriate 

similarity metric in the Group-Lens recommender system project in 1994 (Konstan, Miller, 

Maltz, Herlocker, Gordon and Riedl, 1997). It is the most used approach for user-user 

collaborative techniques (Breese, John, David Heckerman and Kadie, 1998; Herlocker, 

Konstan, and Reidel, 2002). In Pearson Correlation, we scale the similarity from -1(low 

correlation) to +1 (high correlation). Zero is for no correlation. Let Iu,v is the set of items rated 

by users u and v, rui and rvi are user-rating of u and v for item i, respectively. And   u and  v are 
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the mean user rating of u and v, respectively, the pearson correlation        between items   

and   is given by the Equation 3.7: 
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 Similarly the pearson correlation        between items   and   is given by the Equation 3.8:
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Cosine-based approach: This metric is most suited on Item-Based collaborative approaches 

(Jannach, Zanker, Felfernig, and Friedrich, 2011). As in Pearson correlation, it uses similar 

scaling.  

In vector form, the Cosine angle is given as shown in Equation 3.9:    
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Let          is the similarity of users u and v, the user based Equation 10 is: 
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And          is the similarity of items i and j, the item based formula can be depicted by 

Equation 3.11:   

         
∑     

      

√∑   
  ∑   

  

 

         

                                                             



25 
 

Prediction: Nearest neighbor is the most commonly used prediction algorithm of 

neighborhood based technique. (KNN) is the de-facto algorithm which is the easiest and 

understandable and well-performing method. In the following section KNN is summarized. 

KNN User-based prediction: Let, user v and u are neighbors i.e. similar, in order to predict 

item i to user u, the neighbors’ of u , v, ratings rvi  on i should be analyzed. Therefore item-

based equation,                 

                         
                    

                    
                                                           (3.12) 

KNN item-based prediction: 

          
                                    

                               
                               

3.3.2 Model-Based Algorithm 

Techniques adopted from ML, linear algebra and data mining approaches are used for 

searching the patterns on the training-set and make predictions for real time data to develop 

model-based CF algorithm. It matches the model for the given rating matrix to issue the 

recommendations. The method was proposed to deal the limitations of memory-based 

methods. In contrast with memory based CF, the entire dataset is not used to present 

predictions for real data.  

 One of the well-performing techniques used in the recent literature is matrix factorization 

(Schelter, Boden, Schenck, Alexandrov, and Markl, 2013; Song, Cheng, and Lu, 2015; 

Zhuang , Chin, Juan, and Lin, 2013). This is commonly implemented through techniques such 

as Stochastic Gradient Descent or Alternating Least Squares (Gemulla, Nijkamp, J Haas, and 

Sismanis, 2011; Koren, Bell, and Volinsky, 2009; Schelter, Boden, Schenck, and Alexandrov, 

2013; Zhou, Wilkinson, Schreiber, and Pan, 2008). Generally, it out-performs  memory-based 

approach in terms of speed and accuracy. Yet, Matrix factorization needs to be recalculated 

whenever a new rating is entered. Thus it is expensive to compute and time consuming. 
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Dimensionality Reduction techniques reduce the problems of sparsity (Sarwar et al. 2009) in 

RS databases, for instance, Principal Component Analysis (PCA), Singular Value 

Decomposition(SVD), Probabilistic Matrix Factorization (PMF), Latent Semantic Methods, 

Lustering and Matrix Completion Technique (Isinkaye, Folajimi, and Ojokoh, 2015). Below 

we described the most widely employed, PCA, SVD and PMF. 

3.3.2.1 Principal Component Analysis (PCA) 

This is a powerful technique to reduce the dimensions of the data set, this is considered a 

realization of the MF (Francesco, Rokach, and Shaira, 2011). The principal component 

analysis is known by using an orthogonal transformation, since it makes use of the 

eigenvectors of the covariance matrix. The idea is to transform a set of variables that might be 

correlated, into a set of new uncorrelated vectors. These new vectors are named the principal 

components. Given that the main purpose is to reduce dimensions, the set of original variables 

is greater than the final number of principal components. However, when we reduce 

dimensions, we also lose some information, but the construction of this methodology allows 

the retain the maximal variance and the least squared errors are minimized (Girase, Sheetal, 

and Mukhopadhyay, 2015). Each component retains a percentage of the variance, being the 

first component the one that retains the most, and the percentage retained starts to decrease in 

each component. Then the dimensions can be reduced by deciding the amount of variance we 

want to keep. 

3.3.2.2 Probabilistic Matrix Factorization  

This methodology is a probabilistic method with Gaussian observation noise (Girase, Sheetal, 

and Mukhopadhyay, 2015). In this case, the user item matrix (V) is represented as the product 

of two low rank matrices, one for users and the other for the items. Let us recall our variables, 

we have n users, m movies, vi,j is the rating from the user u to the movie pj. Now, let us assume 

Ui and Pj represent the d-dimensional user-specific and movie-specific latent feature vectors, 

respectively. Then the conditional distributions in the space of the observed ratings V       , 
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the prior distribution over the users U       , and movies P      , are given by (Bokde, 

Dheeraj, Sheetal, Girase, and Mukhopadhyay, 2015) Equation 3.14, 3.15 and 3.16.  
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where, n(X/ μ , σ
2
 ) represents the Gaussian distribution with mean   and variance    , and Iij  

is the indicator variable, Iij =   if the user     has rated the movie pj and 0 otherwise . 

3.3.2.3 Singular value decomposition (SVD) 

Matrix factorization or latent factor methods can be used in recommendation systems to drive 

                                                 and represent                      by 

such vectors of factors. Using SVD was first proposed by (Deerwester, Dumais, Furnas, 

Landauer, Landauer,and Harshman,1990) as a method to discover the latent factors. In 

information retrieval settings, this                                technique is also known as 

Latent Semantic Analysis (LSI). The idea then inherited by the domain of recommender 

systems (Goldberg, Roeder, Gupta, and Perkins 2001; Canny, 1990;  and  Sarwar, Karypis, 

Konstan, and Riedl, 2000). The general equation can be given as, X= USV
t
. Given an nxm 

matrix X, then U is an rxr orthogonal matrix with non-negative real numbers on the diagonal, 

and V is an rxn orthogonal matrix. The elements on the diagonal S are referred as the singular 

values of X (Kalman and Dan, 1996). Then the user-item marix defined as X (before we 

named it V) can be expressed as a composition of U, S and V. where U is representing the 

feature vectors corresponding to the items in the hidden feature space (Schafer, Ben, Konstan, 

and Riedel, 1999).   
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Now we can make a prediction as in Equation 3.18 by multiplying the matrices U, S, and    

                                                                                                                             

3.3.3 Discussion 

As we have discussed so far, the Memory-based techniques (User and Item based) are in many 

ways alike, even though the output created are distinct. The approach is easy to use and 

produce satisfactory results. Nonetheless, it exhibits problem of computing the similarity 

between items/users due to: 

 Ramp up/Cold Start Problem: 

New user: when a fresh user registers in a recommender, the systems lacks of information to 

do prediction.  

New item: items have to be liked / disliked or rated by users so that there will not be similarity 

computation problem. For instance, if I upload a new clip on youtube.com, the clip will not be 

predicted to other users unless it has sufficient user feedback. 

Cold start: so a recommender faces prediction difficulty when the items or users added afresh.  

 Sparsity: this issue appears usually when there is cold-start. For example, there is a 

mass of users and items in a database, however, most of the users have not rated most 

of the items (Park DH, HK, IY and JK, 2012; Burke, 2002). So, the database or user-

item matrix becomes very sparse.  
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 Reduced coverage problem: Coverage is explained as the number of items that the 

approach can present as suggestions. Coverage is reduced due to the incomparable 

very less number of users’ ratings to the items in the database which causes the system 

to get difficulty offering them for the users.  

Neighbor transitivity: this issue occurs due to data sparsity, in which likeminded users may not 

be recognized unless both users have rated any of the same items.  

 Scalability: refers to the problem when percentage of users and items in database rise 

enormously, the computation also grows linearly (DH, HK, IY and JK, 2012). Which 

rises the algorithm complexity such as time, speed and memory. As internet contain 

massive information, it is difficult to recommend item in less amount of time because 

of scalability issue. 

 Synonymy: occurs when the recommendation system is unable to distinguish items 

that are exactly or nearly related items to have distinct entries. This latent association 

between the items cannot be identified by most of the recommender systems thus 

consider these products differently. For example, “Comic movie” and “Funny movie” 

looks different but they are actually the same item. However, model-based approaches 

dealt well the synonymy problem.  

 Popularity bias problem, appears when a user is new to a recommendation system, the 

system offers the user most popular items regardless the user preference. However, 

this issue is overcome by CBF approach (Section3.2). This effect is referred to Harry 

Porter’s effect (Sarwar, Karypis, Konstan, and Riedl, 2001). Popularity based method 

is a resolution for cold start or ramp up problem. 
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3.4 Hybrid Filtering 

Hybrid algorithm (Barragans-Martine, Costa-Montenegro, Burguillo, Rey-Lopez, Mikic-

Fonte, and Peleterio 2010; Burke, 2002). A hybrid filtering combining two algorithms m and n 

tries make use of the pros of m to fix the cons of n or vice versa. For instance, ramp-up and 

popularity bias limitations of CF algorithm. Ramp-up weakness does not affect content-based 

algorithms since the recommendation for new products is based on their content (features) that 

are typically available when the new-item enters the system.  

In recent literature, the most widely used hybridizing methodology is  mixing CF with 

demographic filtering (Vozalis and Margaritis, 2007) or CF with content-based filtering ( 

Barragans-Martine et al, 2010; Choi, Yoo, Kim, and Suh, 2012), in order to use the merits of 

each one of these techniques. Various fields of research have contributed so much to the 

growth of Hybrid filtering. Algorithms from soft-computing such as genetic algorithms (Gao 

and Li 2008; Ho, Fong, and Yan, 2007)], (HO et al, 2007)], fuzzy genetic (Al-Shamri and 

Bharadwaj, 2008), neural- networks (Christakou and Stafylopatis, 2005; Lee and Woo, 2002; 

Ren, He, Gu, Xia, and Wu, 2008), Bayesian networks (Campos, Fernández-Luna, and Huete, 

2010), clustering (Shinde and Kulkami, 2012) and latent features (Saranya and Atsuhirto, 

2009) have been used and packaged into the family of hybrid techniques. 

Integrating different techniques of the same type is also possible, like naïve Bayes based CB      

with kNN based CB.  Hybridizing similar techniques with different datasets can also be 

possible. 
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Hybrid approaches can be implemented in various ways:  

1. Apply collaborative and content-based methods individually and aggregate their 

predictions.  

 

Figure 3.4: Techniques aggregation 

2. Integrate some content-based features into a collaborative approach or vice versa,  

 

or 

 

Figure 3.5: Feature integration 

3. Construct a unified model that integrate both content-based and collaborative characteristics 

 

Figure 3.6: Model Unification 
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Bruke first classified hybrid RS into seven hybridization techniques in 2002: 

Weighted hybrid: In this technique each component of hybrid recommender gives score to 

every item and these scores are aggregated by linear formula. This hybrid system is applied in 

P-tango (Claypool, Gokhale, Miranda, Murnikov, Netes, and Sartin, 1999) which hybrids both 

CBF and CF. 

Switching hybrid: as its name goes the system switches between two recommender   

appraoches depending on some parameters. The metrics like precision, recall, confidence, 

accuracy etc. of a recommender system could be some of the switching criteria’s (Burke, 

2007). DailyLearner (Pazzani and Billsus, 1997), for instance, employs content-based 

recommendation first then collaborative recommendation if the collaborative system is un able 

to offer recommendations with enough evidence. 

Mixed hybrid : In this hybridization different recommendations generated are merged to 

provide a single rating list. PickAFlick (Burke and Hammond, 1997)], PTV system (Smyth 

and Cotter, 2000) and rofinder (Wasfi, 1999). The reward of this technique is, it avoids  the  

“new  item”  start-up  problem. 

Feature combination:  in this approach the system treats the collaborative data as simple 

additional feature connected to every sample and applies CB approaches on the augmented 

data. For instance, In a research conducted by (Basu and Hirsh, 1998) on movie 

recommendation system, collaborative filter’s ratings and content features were used which 

improved the precision of a pure collaborative technique.  

Feature augmentation: this method is related to the feature combination in which the first 

recommender’s rating output of items is input for the second recommender.  The second 

recommender augments the data with its own contribution. For example, in Libra system 

(Mooney and Roy, 2000) content-based RS augments and performs recommendation of books 

using the dataset from Amazon.com by a naive Bayes text classifier.  
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Cascade hybrid: this approach carries out a staged process of a recommendation process. 

Where the first recommendation algorithm outputs a coarse prediction of ranking users or 

items and inputs to the second technique. Then the second algorithm refines the prior 

recommendation and presents a ultimate recommendation. As an example, EntreeC (Burke, 

2002) uses cascade knowledge-based and collaborative algorithms. 

Meta-level hybrid:  is popularly implemented hybrid technique. In this approach two 

recommendation techniques are mixed in such a way output of one of the recommendation 

approach is the input of the other. Meta-level solves sparsity problem of collaborative filtering 

(Pazzanai, 1999). LaboUr (Schwab and Kobsa, 2001) is one of the applications of Meta-level 

method, it builds CB user profile which is then cross-checked in a CF way by applying instant-

based learning to create. 

3.4.1 Merits and Demerits of Hybrid Technique 

Merits:  

 High accuracy is achieved comparing to CBF and CB. 

 Overcomes sparsity and cold-start problems 

Demerits: 

 A hybridized recommender system is complex to develop, it is not that easy and 

promising to design the hybrid (Bruke, 2007).    
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CHAPTER 4 

EVALUATION METHODS AND METRICS 

4.1 Introduction 

Since the coming of the first recommendation system evaluation of recommenders has been 

proceeding in the recent literature. The research paper by (Herlocker, Konstan, Terveen, and 

Riedl, 2009) gave us a holistic and extensive study of RS evaluation. Recommendation 

performance is generally linked to the exactness of rating recommendation. That is, how 

accurate is the rating estimated against the real rating. Error metrics (discussed later) helps us 

get the difference between the predicted and real rating. Recently, precision-recall based, 

quality assessment metrics are taking over as they yield satisfactory results comparing to error 

metrics. Generally, we care at the quality of a recommendation not ranking. Therefore, 

precision-recall is widely leveraged in this area as a performance evaluator and used it to 

conduct the experiment . 

This chapter is organized as, first in section 4.2 evaluation methods are reviewed, second in 

section 4.3 evalution metrics from three perspectives are discussed, finally the experimental 

setup, dataset and results are provided.  

4.2 Evaluation Methods  

To test the performance of recommender systems, different approaches are used to evaluate 

them. Two most commonly applied evaluation protocols are usually considered (Gunawardana 

and Shani, 2009) online and offline. Simulation evaluation, which allows comparing a many 

candidate algorithms at a cheap cost (Shani and Gunawardana, 2011). Hence we have utilized 

in the experiment comparing user-based model to popularity-based. The main goal of 

recommendation systems is to activate a user to interact with a relevant item because it is 

shown in the recommendations list.  
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4.2.1 Online 

Also known as “Flights”(Kohavi, Longbotham, Sommerfield, and Henne, 2009a). This 

method of evaluation is within the real application on real users. As a result, the results are 

very trustworthy over real users, and measures performance on real application. However, 

especially in the beginning phases of development this is not a feasible option due to two main 

reasons. First, it usually takes too much time and effort to test all possible recommendation 

algorithms with all possible configurations on a real-life data set with strict requirements on 

response time, a large user and/or item base and within a certain budget (Gunawardana and 

Shani, 2015). Furthermore, it is applicable to applications that are not launched and it might 

turn out that one of the tested algorithms is not suitable for the particular use-case. When the 

evaluation is done in an online setting, users of the system might be negatively influenced by 

this unsuitable algorithm as it serves them irrelevant recommendations. As this scenario needs 

to be prevented, offline evaluation is used, which does not change the recommendations in an 

operating recommender system. 

4.2.2 Offline 

Offline evaluation is used in the early stages of development evaluation as it is not concerned 

with a running system, and therefore does not influence the recommendations the subjects of 

such a system receive (Gunawardana and Shani, 2015). For offline evaluation only historical 

data of user interactions is needed. Part of this data is used to enable the recommender system 

to estimate the optimal rating function as closely as possible. This process is known as training 

the model, and the part of the data set used for this is therefore referred to as training data set. 

The other part of the data set is used for the actual evaluation of the recommender algorithm 

but not used during training, and is known as the test data. The dataset is splitted to prevent 

algorithms to not overfit to the evaluation test data when the same data is used for both 

training and evaluation. We adopted random splitting option in our experiment. 

Simulation is economical to conduct, and it allows comparing several algorithms on various 

distinct datasets at once. When a dataset is ready, the evaluation process simply runs the test 
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algorithm and compares the predicted results to the \ground truth" from the dataset. The 

dataset employed for the simulation should be as exact as possible to the data that the 

recommendation system will use in real life (Herlocker et al, 2009). The limitation of offline 

simulation lies in the incompleteness of dataset. It is impractical to evaluate the exactness or 

accuracy of a recommended item to a user if no information about that user-item pair exists in 

the dataset. Since this evaluation method does not recruit any users, only objective evaluation 

can be provided.  

4.2.3 User Study  

A user study regularly recruits a group of users to assess recommendation systems. 

Quantitative measurement can be collected during subjects performing tasks through 

observing their behavior, such as how many recommendations are accepted by the user or the 

ratings indicating how much the user likes the recommended items. On the other hand, 

qualitative measurement can be collected via questionnaires or surveys. The subjects may be 

required to answer questions such as whether they have received interesting recommendations, 

or whether they trust the system (Shani and Gunawardana, 2011). 

Unlike online simulation, user studies allow studying user behavior through subjects' 

interaction with the system and collecting qualitative data which is necessary for estimating 

the recommendation performance (Hu and Ogihara, 2011). Nevertheless, it is not assured that 

users will behave in the same way in real life as in the lab (Swearingenv and Sinha, 2001). The 

outcome can be biased because subjects already know that they are involving in an 

experiment. If the users know the hypothesis tested, they may tend to support it and satisfy the 

conductor of the experiment.   

Merits: 

 Direct answers on the questions at hand  

 Collect information unavailable for real users especially in controlled and monitored 

environments. 
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Demerits: 

 Expensive (typically test subjects get paid). 

 Test subjects poorly represent the real system users. 

 Measure only a small subset of the system. 

 Short term experience mainly. 

 Difficult to measure how users will spend real money. Also true for time, attention, 

and effort. 

4.3 Evaluation Metrics 

In the next subsections prediction accuracy metrics (MAE, MSE and RMSE), classification 

accuracy metrics (Precision, Recall, F-measure) and non-accuracy metrics are depicted. 

4.3.1 Machine Learning Perspective 

Error metrics are employed to quantify the error made by a recommender system on an item 

rating. A well performing algorithm results in a zero or very less error. The error metrics that 

recommender system uses are inherited from the area of statistics. 

MAE: is the basic means of measuring prediction error. It reads, how much the predicted 

rating deviates from the real rating (see Formula 4.1). An extensive study is conducted in 

(Gunawardana and Shani, 2011). Let, pi and ri are the predicted and real rating, respectively, N 

is sum of prediction, MAE is given by the Equation 4.1: 

       
∑        

 
    

 
                                                                                         

MSE: in the term itself the definition lies, first we calculate the error for the test and actual 

data then square it and finally compute the mean of the errors as shown in Equation 4.2. It is 
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similar to MAE, it just penalizes larger errors since squaring larger numbers has a greater 

impact than squaring smaller numbers. 

        
∑        

 

   
  

 
                                                                                 

      is another option of MSE, which is one of the most popular metrics (Gunawardana and 

Shani, 2009) and was applied in Netflix Prize. 

                     √                                                                                           (4.3) 

The error results of RMSE and MAE lies in the range between zero and positive infinity. 

Therefore, for better understanding and interpretation the error results are normalized as 

Equation 4.4: 

                     
   

          
 and        

    

          
                                             

4.3.2 Information Retrieval  

When options are binary i.e. when the task at hand is to guess if a user will or won’t like an 

item given a list of items, then classification metrics such as precision and recall are used to 

evaluate the performance of a recommendation algorithm. When doing such a selection, each 

item can be categorized into a True-Positive, False-Positive, True-Negative, or False-Negative 

as showed in Table 4.1. Such a matrix is often referred to as a confusion matrix (Burke, et al., 

2011).    
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                 Table 4.1: Confusion matrix 

 Recommended Not Recommended 

Good recommendation True Positive (tp) False Negative (fn) 

Bad recommendation False Positive (fp) True Negative (tn) 

From the confusion matrix, Equation of precision and recall is given 4.5 and 4.6, respectively.                                                                                         

                          
                                   

                 
  

  

     
                                  

                        
                                   

              
 

  

       
  ,                           (4.6) 

From Eq. 4.5 it can be derived that, Precision forecasts out of all the samples classified as 

positive, what portion of it was actually correct or relevant to the user (Manning, Raghavan, 

and Schtze, 2008). For instance, we have a corpus of documents. The corpus contains 

documents that are relevant and irrelevant to the user.  So, while predicting, the precision 

measures how much junk or irrelevant documents are giving the user. 

Therefore, if the system is designed in such a way not to show irrelevant items to the user, 

precision could indicate the performance satisfactorily.  

The complementary form of precision is recall. In practice, both metrics are reported together 

(Herlocker et al, 2004). Recall or hit-rate (Deshpande and Karypis, 2004)  is out of the 

positive samples, what portion did my RS pick-up. The intuition is how much of the relevant 

items the RS missed. Recall is a good indicator when the purpose of the RS is to predict only 

relevant items or the users desires only to see the relevant items.  

Precision and recall are inversely related. For instance, If we need 100% recall, the entire 

corpus will be returned to the user. However, the precision will be abysmal because the RS is 

returning a lot of irrelevant items. That is the reason why we report them together. To resolve 
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this trade-off, F-measure or the harmonic mean (Ge, Delgado-Battenfeld, and Jannach, 2010) 

which returns the mean of  relevant and irrelevant items is used:  

                            
                      

                  
                                                         (4.7) 

Remark:  

According to (McLaughlin and Herlocker, 2004) measuring an algorithm's performance based 

on Precision and Recall reflects the real user experience better than MAE does because, 

usually, users actually receive ranked lists in lieu of predictions for ratings of specific items 

from a recommender. They determined that algorithms that were quite successful in predicting 

MAEs for rated items produced unsatisfactory results when analyzing their top-ranked items. 

(Carenini and Sharma, 2004a) also argue that MAE is not a good indicator from a theoretical 

perspective, as all deviations are equally weighted. From the user's perspective, however, the 

only fact that counts is whether an item is recommended. Hence precision-recall metric is 

adopted in the experiment conducted in section 4.4. 

4.3.3 Human Computer Interaction and Experience  

The goal of a RS is not really to predict rating of a user to given item but to recommend items 

that the user might view, buy or listen to. Sometimes, when recommending users’ items that 

have high rating the user might end up to only seeing similar items. At this case, diversity is 

lost. Diversity measures the RS’s ability to offer users items that are unfamiliar and interesting 

to them.  (Lathia, 2010) introduced a metric to measure diversity as Equation4.8.  

               div(l1, l2, n)= 
  
  

  
 

 
                                                                                                         

Where  l2/l1 is the portion items in the list l2 but  does not belong to the  l1. 

Novelty: is another metric, which measure how good a RS is presenting users with items that 

are new (Shani  and Gunawardana, 2011). This metric is also known as unexpectedness. The 
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RS should surprise (Herlocker et al, 2004; Zhang, Callan, and Minka, 2002) the user with 

Items that has never watched, purchased or listened to. (Lathia, 2010) developed an Equation 

4.9 that calculates the number of new items over a certain period of time.  

                novelity( l2, n)= 
  
  

  
 

 
                                                                                                  

Where l2  is the recent list that is to be contrasted against to the set of all items offered to the 

user date At . 

Novelty and diversity are studied well in (Gunawardana and Shani, 2011; Lathia, 2010; Zhang 

and Hurley, 2009; Vargas and Castellas, 2011), and algorithms design to offer novel and 

diversity in item forecast is detailed in ( Jambor and Wang, 2010; Onuma, Tong, and 

Faloutsos, 2009; Weng, Xu, Li, and Nayak, 2007; Zhou, Kuscsik, Liu, Medo, Wakeling, and 

Zhang, 2010).  

Coverage:  is a most popular non-accuracy that quantifies the percentage of items or users that 

a recommender system is able to suggest. We have two categories of coverage: 

Item-coverage: represents the portion of items listed in the recommendation list per the total 

set of items (Herlocker et al, 2004). Let u is subset of U users, i is the subset of I items and 

Each item has a content vector C of length c, then the item-coverage is given by Equation 4.10 

: 

            
 

 
                                                                                                               

 

User-coverage: measures the portion of users to whom the recommender system is able to 

offer items over the set of all users, Equation 4.11. The formula is: 
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There are additional metrics that play an important role in measuring the non-accuracy quality 

of a RS, for instance, privacy, serendipity and scalability, However, these metrics are not 

much active in the literature  et al, 2004; McNee, Riedl, and Konstan, 2006). 

4.4 Experimental Setup   

 In order to run the experiment, the recommender system models (Popularity and similarity 

based) and evaluation application must actually be built. The Experiment is carried on a public 

dataset Million Song dataset (see next section) offline.  

The experiment is performed by training the recommender models using the generated training 

sets, and letting them predict the results in the test sets based on this training. By comparing 

these predictions to the actual results in the test set, the effectiveness of the recommender 

algorithm can then be evaluated, as discussed in the definition of the evaluation metrics in 

Section 4.3.  

To assess the performance of the recommendation models in this offline experiment the subset 

of 10,000 songs (1.8GB) is randomly opted from the entire dataset (280 GB) for 

experimentation purpose. All data sets are splitted randomly such that the first 80% of the 

interactions forms the training dataset, and the remaining 20% of the interactions forms the 

test set. 

Our RS models are built on the training dataset. The effectiveness of the models is evaluated 

using the precision and recall metrics as explained in Section 4.3.2. 

4.5 Evaluation Datasets  

The MillionSongdataset (MSD) which is available from
1 

is used for this experiment.  As 

indicated by its name, The MSD contains a collection of one million contemporary top songs 

(Bertin-Mahieux, Ellis, Whitman, and Lamere 2011; McFee, Bertin-Mahieux, Ellis, and 

Lanckriet 2012). Since this dataset is linked to several complementary datasets (e.g., 

                                                           
1
 http://labrosa.ee.columbia.edu/millionsong/ 

http://labrosa.ee.columbia.edu/millionsong/
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EchoNest, last.fm and MusicBrainz
2
), it contains extensive metadata, audio features, artist tags 

and level of song, lyrics, and so on. The data corpus used in the competition is termed as the 

Taste Profile Subset
3
, which includes more than forty eight million triplets (song; user; count) 

collected from user listening histories. The data involves around 1.2 million subjects and more 

than 380k songs, where all users have minimum 10 songs in their profile. 

4.6 Result 

The curve for item-based model is larger than popularity model this suggests the item-based 

model makes better recommendation as shown in Figure. 4.1.  

 

Figure 4.1: Precision-Recall Curve of popularity model and item-based model

                                                           
2
 http://musicbrainz.org/ 

3
 http://labrosa.ee.columbia.edu/millionsong/tastepro_le 

http://musicbrainz.org/
http://labrosa.ee.columbia.edu/millionsong/tastepro_le
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

Within the scope of this thesis we covered the detailed analysis of the most popular 

recommendation system algorithms, Collaborative Filtering, Content-based Filtering and Hybrid 

Approaches. The aim of this research was to understand the RS with their pros and cons of all the 

algorithms, and then be able to decide which one was the one that fits better for your application.  

Furthermore, we gave an overview of evaluation protocols and metrics. Also, two RS models have 

been implemented, namely Popularity-based and item-based for the experimentation purpose. Both 

implementations are then evaluated using precision-recall curve. For the evaluation, offline 

protocol and MSD have been leveraged. The experiments then depict that item-based model is 

better than popularity-based model.  

5.2 Recommendation and Future Works 

This thesis recommendation is to use the recommendation techniques and evaluation metrics/ 

protocols as per the requirements of the business and the domain area as each and every one of 

them performs well for their targeted domain. 

The thesis disregards group recommendation system. The system that provides recommendation to 

more than one user. This will be discussed on the future works. Moreover, the non-accuracy 

metrics such as serendipity, novelty and diversity are to be considered in the experiment evaluating 

the two models employed. The future work will focus on studying and drawing a framework of 

recommendation systems targeting to the software engineering area. 
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APPENDIX 1 

A SONG RECOMMENDER SAMPLE CODE 

# Load music data 

#Read userid-songid-listen_count triplets 

#This step might take time to download data from external sources 

triplets_file = 'https://static.turi.com/datasets/millionsong/10000.txt' 

songs_metadata_file = 'https://static.turi.com/datasets/millionsong/song_data.csv' 

song_df_1 = pandas.read_table(triplets_file,header=None) 

song_df_1.columns = ['user_id', 'song_id', 'listen_count'] 

song_df_2 =  pandas.read_csv(songs_metadata_file) 

song_df = pandas.merge(song_df_1, song_df_2.drop_duplicates(['song_id']), on="song_id", 

how="left") 

song_df = song_df.head(10000) 

song_df = song_df.head(10000) 

song_df['song'] = song_df['title'].map(str) + " - " + song_df['artist_name'] 

song_grouped = song_df.groupby(['song']).agg({'listen_count': 'count'}).reset_index() 

grouped_sum = song_grouped['listen_count'].sum() 

song_grouped['percentage']  = song_grouped['listen_count'].div(grouped_sum)*100 

song_grouped.sort_values(['listen_count', 'song'], ascending = [0,1]) 

train_data, test_data = train_test_split(song_df, test_size = 0.20, random_state=0) 

print(train_data.head(5)) 

pm = Recommenders.popularity_recommender_py() 

pm.create(train_data, 'user_id', 'song') 
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user_id = users[5] 

pm.recommend(user_id) 

# Build a song recommender with personalization 

# Create instance of item similarity based recommender class   

is_model = Recommenders.item_similarity_recommender_py() 

is_model.create(train_data, 'user_id', 'song') 

#Recommend songs for the user using personalized model 

is_model.recommend(user_id) 

#Quantitative comparison between the models 

#We now formally compare the popularity and the personalized models using precision-recall 

curves 

start = time.time() 

#Define what percentage of users to use for precision recall calculation 

user_sample = 0.05 

#Instantiate the precision_recall_calculator class 

pr = Evaluation.precision_recall_calculator(test_data, train_data, pm, is_model) 

#Call method to calculate precision and recall values 

(pm_avg_precision_list, pm_avg_recall_list, ism_avg_precision_list, ism_avg_recall_list) = 

pr.calculate_measures(user_sample) 

end = time.time() 

print(end - start) 

#Code to plot precision and recall curve 

import pylab as pl 
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#Method to generate precision and recall curve 

def plot_precision_recall(m1_precision_list, m1_recall_list, m1_label, m2_precision_list, 

m2_recall_list, m2_label): 

    pl.clf()     

    pl.plot(m1_recall_list, m1_precision_list, label=m1_label) 

    pl.plot(m2_recall_list, m2_precision_list, label=m2_label) 

    pl.title('Precision-Recall curve') 

    #pl.legend(loc="upper right") 

    pl.legend(loc=9, bbox_to_anchor=(0.5, -0.2)) 

    pl.show() 

print("Plotting precision recall curves.") 

plot_precision_recall(pm_avg_precision_list, pm_avg_recall_list, "popularity_model", 

                      ism_avg_precision_list, ism_avg_recall_list, "item_similarity_model") 
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APPENDIX 2 

EVALUATION SAMPLE CODE 

class precision_recall_calculator():     

    def __init__(self, test_data, train_data, pm, is_model): 

        self.test_data = test_data 

        self.train_data = train_data 

        self.user_test_sample = None 

        self.model1 = pm 

        self.model2 = is_model 

        self.ism_training_dict = dict() 

        self.pm_training_dict = dict() 

        self.test_dict = dict()     

    def remove_percentage(self, list_a, percentage): 

        k = int(len(list_a) * percentage) 

        random.seed(0) 

        indicies = random.sample(range(len(list_a)), k) 

        new_list = [list_a[i] for i in indicies]     

        return new_list     

    def create_user_test_sample(self, percentage): 

        #Find users common between training and test set 

        users_test_and_training = 

list(set(self.test_data['user_id'].unique()).intersection(set(self.train_data['user_id'].unique()))) 

        print("Length of user_test_and_training:%d" % len(users_test_and_training)) 

        self.users_test_sample = self.remove_percentage(users_test_and_training, percentage) 

        print("Length of user sample:%d" % len(self.users_test_sample))         

    def get_test_sample_recommendations(self): 

        for user_id in self.users_test_sample: 

            print("Getting recommendations for user:%s" % user_id) 
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            test_data_user = self.test_data[self.test_data['user_id'] == user_id] 

            self.test_dict[user_id] = set(test_data_user['song'].unique() )     

    def calculate_precision_recall(self): 

        cutoff_list = list(range(1,11))      

        num_users_sample = len(self.users_test_sample) 

        for N in cutoff_list: 

            ism_sum_precision = 0 

            ism_sum_recall = 0 

            for user_id in self.users_test_sample: 

                ism_hitset = 

self.test_dict[user_id].intersection(set(self.ism_training_dict[user_id][0:N])) 

                pm_hitset = 

self.test_dict[user_id].intersection(set(self.pm_training_dict[user_id][0:N])) 

                testset = self.test_dict[user_id]         

        return (pm_avg_precision_list, pm_avg_recall_list, ism_avg_precision_list, 

ism_avg_recall_list)      

    def calculate_measures(self, percentage): 

        self.create_user_test_sample(percentage)         

        self.get_test_sample_recommendations()                 

        return self.calculate_precision_recall() 
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APPENDIX 3 

RECOMMENDER MODELS SAMPLE CODE 

class popularity_recommender_py(): 

train_data_grouped = train_data.groupby([self.item_id]).agg({self.user_id:  

train_data_grouped.rename(columns = {'user_id': 'score'},inplace=True) 

train_data_sort = train_data_grouped.sort_values(['score', self.item_id], ascending = [0,1]) 

self.popularity_recommendations = train_data_sort.head(10) 

def recommend(self, user_id):  

user_recommendations = self.popularity_recommendations 

user_recommendations['user_id'] = user_id 

cols = user_recommendations.columns.tolist() 

cols = cols[-1:] + cols[:-1] 

user_recommendations = user_recommendations[cols] 

return user_recommendations 

class item_similarity_recommender_py(): 

def get_user_items(self, user): 

user_data = self.train_data[self.train_data[self.user_id] == user] 

user_items = list(user_data[self.item_id].unique()) 

return user_items 

def get_item_users(self, item): 

item_data = self.train_data[self.train_data[self.item_id] == item] 

item_users = set(item_data[self.user_id].unique()) 

return item_users 

def get_all_items_train_data(self): 

all_items = list(self.train_data[self.item_id].unique()) 

return all_items 
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def construct_cooccurence_matrix(self, user_songs, all_songs): 

user_songs_users = []  

for i in range(0, len(user_songs)): 

user_songs_users.append(self.get_item_users(user_songs[i])) 

cooccurence_matrix = np.matrix(np.zeros(shape=(len(user_songs), len(all_songs))), float) 

for i in range(0,len(all_songs)): 

songs_i_data = self.train_data[self.train_data[self.item_id] == all_songs[i]] 

users_i = set(songs_i_data[self.user_id].unique()) 

for j in range(0,len(user_songs)):  

users_j = user_songs_users[j] 

users_intersection = users_i.intersection(users_j) 

if len(users_intersection) != 0: 

users_union = users_i.union(users_j) 

cooccurence_matrix[j,i] = float(len(users_intersection))/float(len(users_union)) 

else: 

cooccurence_matrix[j,i] = 0 

return cooccurence_matrix 

def generate_top_recommendations(self, user, cooccurence_matrix, all_songs, user_songs): 

print("Non zero values in cooccurence_matrix :%d" % np.count_nonzero(cooccurence_matrix)) 

user_sim_scores = cooccurence_matrix.sum(axis=0)/float(cooccurence_matrix.shape[0]) 

user_sim_scores = np.array(user_sim_scores)[0].tolist() 

sort_index = sorted(((e,i) for i,e in enumerate(list(user_sim_scores))), reverse=True) 

columns = ['user_id', 'song', 'score', 'rank'] 

df = pandas.DataFrame(columns=columns) 

return df 

def create(self, train_data, user_id, item_id): 

print("no. of unique songs in the training set: %d" % len(all_songs)) 

cooccurence_matrix = self.construct_cooccurence_matrix(user_songs, all_songs) 
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df_recommendations = self.generate_top_recommendations(user, cooccurence_matrix, 

all_songs, user_songs) 

return df_recommendations 

def get_similar_items(self, item_list): 

user_songs = item_list 

all_songs = self.get_all_items_train_data() 

print("no. of unique songs in the training set: %d" % len(all_songs)) 

cooccurence_matrix = self.construct_cooccurence_matrix(user_songs, all_songs) 

user = "" 

df_recommendations = self.generate_top_recommendations(user, cooccurence_matrix, 

all_songs, user_songs) 

return df_recommendations 
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