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ABSTRACT

Soil properties are very important for the behavior of soils. Determination of the soil
properties depends firstly on the classification of the soils. Coarse and fine-grained soils are
fined out by sieve analysis. Fine-grained soils classification are done with their grain size
distribution which is obtained by hydrometer test as well as their Atterberg limits.

In this thesis, soil classification values have been reached at Atterberg limits values
estimated by using Artificial Neural Networks (ANN) training algorithm for fine-grained
soils of Turkish Republic of Northern Cyprus. For this study, 108 samples of clay, silt, and
sand percentages with liquid limit (LL) and plasticity index (PI) values were used. In the
beginning of the study, the LL and PI values were estimated from the grain size distribution
values. In the second part of the study soil classifications were found using estimated LL
and PI values. In order to obtain the optimum function in ANN model, it was aimed to give
high accuracy of the results by using different parameters and the highest correlation
coefficient (R?) values were examined. According to the results of the R? values for LL were
0.85 for training, 0.86 for testing, and for PI were 0.80 for test and 0.82 for simulation. In
the second and final part of the study, the soil classifications were compared with the
estimated soil classifications found from the LL and PI. The results show that 75 out of 88
data used in the training (85.2%) and 18 out of 20 used in the test (90%) were correctly
estimated. ANN have been used in engineering areas frequently and reliably in recent years.
In particular, the ANN, which are characterized by learning characteristics, can be used
successfully in many prediction, estimation and classification processes, including cases

where good results cannot be achieved with classical regression methods.

Keywords: Soil classification; Atterberg limits; grain size distribution; fine grained soils;

Artificial Neural Networks; correlation coefficient
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OZET

Zemin Ozellikleri, zemin davranislari i¢in ¢ok dnemlidir. Zemin 6zelliklerinin belirlenmesi
oncelikle zeminlerin siniflandirmasina baghdir. iri ve ince daneli zeminler elek analizi ile
belirlenir. ince daneli zeminler, hidrometre testi ile elde edilen dane dagilimina ve Atterberg
limitlerine gore siniflandirilir.

Bu caligma ile Kuzey Kibris Tiirk Cumhuriyeti ince daneli zeminleri igin Yapay Sinir Aglari
(YSA) algoritmast kullanilarak tahmin edilen Atterberg limit degerlerinden, zemin
siiflandirilmasi degerleri tahmin edilmistir. Bu ¢alismada kil, silt, kum, likit limit (LL) ve
plastisite indeksi (PI) degerleri tespit edilen 108 6rnek kullanilmigtir. Calismanin birinci
boliimiinde dane dagilimi degerlerinden LL ve PI degerleri tahmin edilmeye ¢alisilmis olup,
ikinci boliimde ise tahmin edilen LL ve PI degerlerinden zemin siniflandirilmalar
bulunmustur. YSA modeli egitiminde optimum fonksiyon elde edilmesi i¢in farkli
parametreler kullanilarak sonuclarin yiiksek dogruluk vermesi amaglanmis ve en yiiksek
korelasyon katsayisi (R?) degerlerine bakilmustir. R? degerleri; LL degerlerinde egitim igin
kullanilan verilerde 0.85, testte 0.86 ve PI i¢in ise egitimde 0.80 ve testte 0.82 degerleri elde
edilmistir. ikinci ve sonu¢ kisminda tahmin edilen LL-PI degerlerinden bulunan zemin
smiflart ile gergek zemin siiflart karsilagtirlmigtir. Sonuglara gore LL-PI degerleri igin
egitimde kullanilan 88 veriden 75’1 (%85.2) ve testte kullanilan 20 veriden 18’1 (%90) dogru
tahmin edilmistir. YSA, son donemlerde miihendislik alanlarinda siklikla ve giivenilir bir
bigimde kullanilmaya baslanmustir. Ozellikle, 6grenme 6zelligi on plana ¢ikan YSA, klasik
regresyon yontemleri ile iyi sonuglara ulasilamayan durumlar dahil pek ¢ok 6n kestirim,

tahmin ve siniflandirma islemlerinde basarili bir sekilde kullanilabilmekledir.

Anahtar Kelimeler: Zemin siiflandirilmasi; dane dagilimi; ince daneli zemin; Atterberg

limitleri; Yapay Sinir Aglar1; korelasyon katsayisi
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CHAPTER 1

INTRODUCTION

1.1. Background

The soil is composed of gravel, sand, silt, and clay as a result of disintegration or by
disintegration, transportation, and deposition of rocks. There are several methods to find the
properties of soils. The methods followed in the examination of soils are complementary to
each other, it is impossible to obtain information about the behavior of soils without
determining the properties and changes of soil characteristics. Geotechnical engineers are
able to determine which characteristics have the most impact on soil behavior. The soils are
heterogeneous. It can be expected to vary within meters. Soils remain under various
influences such as loading, dewatering, drying, and freezing over the years. The reactions of
the soil in these cases are important both in the use of the soil as a building material and in

the structures to be built upon.

Soils can have infinitely different properties due to the composition of its mineral or organic
contents. It is difficult to apply probability methods to such a subject. It is also considered
that to determine the soil characteristics require long-term and expensive experiments.
Therefore, various researchers presented statistical methods in the form of regression
analysis in order to determine the soil properties which provide reliable results and also can

be obtained rapidly and inexpensively.

The buildings that make up the living areas of people are mostly built on soils. Accurate
estimation of the properties of the soils on which these buildings will be build will provide
economic gain for the design of the buildings and will guarantee their lives and assets for

the people living in it.

The soil classification system has been one of the communication languages among the
engineers in geotechnical engineering applications. The determination of soil classification
is not eliminating the need for detailed soil investigations and other laboratory tests on soil

samples which we determine the engineering properties. However, an engineer can



determine the behavior of the soil in the case of structural loads in the application phase by
classified soil. It is an inevitable fact that clays, which are frequently encountered in soil

mechanics problems, have a wide range in terms of their engineering characteristics.

The grains forming the soil have a very different geometry and are of a wide variety of sizes.
Knowing the grain size distribution in the soil plays an important role in determining the
index properties of soils. The grain size distribution is the ratio of the weight of the grains
of various diameters to the total dry weight of the soil in percent. Soils are divided into two
types: coarse-grained soils (gravel and sand) and fine-grained soils (clay and silt). In order
to determine the grain size distribution of the coarse-grained soils according to the in
diameters, the sieve analysis is carried out and the hydrometer test is performed to determine

the grain size distribution of the fine-grained soils according to the diameters.

Research on Artificial Neural Networks (ANN) continues on software and hardware. Today,
ANN applications can be found in many areas such as economics, industrial engineering,
automation, electronic circuit design, electronic engineering, computer engineering,
medicine, various intelligence problems, optical perception, object identification. ANNs
have also been successfully utilized in the field of geotechnical and construction engineering

with the advancements in computational sciences and in computational power.

ANNSs are inspired by biological neurons (nerve cells), resulting in artificially simulated
studies of the brain's working system. The distinguishing feature of ANN from other
methods of computation is that they perform operations using the learning feature of the
human brain. Classical statistical methods recognize that the relationship between dependent
and independent variables is linear, which results in insufficiencies as well as inefficiencies
in the studies. In geotechnical sciences, parameters are controlled by many variables such as
environmental factors, dynamic characteristics, and pore water pressure, where the
relationships between these variables may be both linear or non-linear. The interdependent
interaction of these features may make it difficult and time-consuming to utilize classical
statistical methods. The application of a series of methods developed by ANN provides
alternative solutions to the problems in geotechnical sciences or offers supplementary tools

to the classical statistical methods in geotechnical studies.



ANN change its structure and weight of the neurons throughout its training and development
by randomly distributed input parameters. It has a structure that can adapt itself like a
nervous system of a living organism. In other words, it can change its structure and learn
according to an internal and external stimulus. In the decision-making stage, the connection
weights are activated and find the solution by itself. Therefore, it is not known what the
system will do under a certain situation. This is the factor that adds an unknown feature to

the system.

The ANN generally generates a set of data sets corresponding to an input data set. In this
context, the final ANN model consists of three layers, an input layer where the input data is
entered, a hidden layer where the data is processed, and an output layer where the results are
obtained. The other important component of the ANN model is the connections between the
layers. Each connection has a weight value. The weights of these connections are altered to
develop a successful ANN tool throughout its training which provides favorable output
results for a given set of input values. The weights generated during training are the values
in which necessary information is stored. Although ANN is a proven technology and has a
wide variety of usage and implementations in almost all science divisions, it is not entirely
known how these weights are calculated and assigned. In this respect, the ANN content has

not been fully solved and is criticized for this reason via various researchers.
1.2. Problem Statement

The aim of this study is to explain the estimation of the desired parameters using the learning
method of the ANN with the available data. In cases where classical statistical methods such
as multiple linear regression are insufficient and there is no linear relationship between
variables, ANN can provide solutions to these type of problems and can be utilized
successfully. Similarly, the linear relationship between the values of the sieve analysis and
the Atterberg values used in the estimation is insufficient, ANN can be used for such a
process. Sieve analysis and hydrometer analysis are required to determine whether the soils
are fine-grained or coarse-grained, while Atterberg limits are required for the classification
of fine-grained soils. Each process is laborious and expensive. The number of processes can

be reduced by using sieve analysis values in estimating Atterberg limits.



1.3. Hypothesis

In this thesis, Atterberg limits which are difficult to be predicted by classical statistical
methods will be calculated by using ANN and soil classification will be made from these

values.
1.4. Research Objectives

The main objective of this thesis is to estimate the Atterberg limits from the grain size
distribution values by the ANN method and to determine the soil classification from these
estimated values.
To achieve this goal,
I. Training the model of ANN with sieve analysis and Atterberg limits obtained from
previous projects in North Cyprus soils.

ii. Simulate the trained model with another set of data with the same characteristics.

iii. Determination of soil classification with estimated Atterberg limit values.

iv. The comparison of the determined soil classifications with the original soil

classification.

1.5. Organization of Study
A number of actions have been taken to ensure the success of the identified steps and targets.
The flow algorithm showing these steps are shown in Figure 1.1.

The purpose and steps of the study are described in the first chapter. Other similar
publications are mentioned in the literature section, which is the Chapter 2. The research
area, the methodology of the studies is given in Chapter 3. The modeling process, regression
analysis, and other operations are the subjects of Chapter 4. A comparison of previous

studies is given in Chapter 5.
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CHAPTER 2

LITERATURE REVIEW

2.1. Soil Classification

Soils with a grain size of less than 0.075 mm are defined as fine-grained soils (ASTM D422-
63; Holtz et al., 2011). Furthermore, in order to classify a soil sample as a fine-grained soil,
more than 50% of its dry weight should be finer than 0.075 mm. Fine-grained soils are a
mixture of clay and silt grains. The definition of the size limit between the clay and silt
particles is called the clay fraction and this difference is determined to be 0.005 (ASTM
D422-63) mm or 0.002 mm (Taylor, 1948). However, the cutoff between clay and silt
particles is very narrow. The plasticity properties of silt and clay are a better separator than
the particle size (Holtz et al., 2011).

2.2. Atterberg Limit Tests

Albert Atterberg (1911) originally defined six ‘Limits of consistency’ to classify fine-
grained soils, but in present engineering applications, only three of the limits, i.e. liquid (LL),
plastic (PL) and shrinkage (SL) limits are used. In fact, he was able to define several limits
of consistency and he has developed simple laboratory tests to define these limits. PL is the
transition limit for soils from semi-solid to plastic, and LL is the transition from the plastic
state to the liquid state (Casagrande, 1958; Archer, 1975; PCA, 1992; Campbell, 2001,
McBride, 2008; Das, 2010). These soil limits (soil consistency) are the water content rates
required for mechanical changes in the soil. The plastic range measured as the plastic limit
is the soil behavior limit where soil can return to plastic behavior without fracturing under
loading. These limits are used to classify fine-grained soils. Atterberg limits can also be used
to understand many soil mechanics and soil physical properties. Some of these features are
swelling and shrinkage potentials, shear strength, and compressibility (Archer, 1975; Wroth
and Wood, 1978; Campbell, 2001; McBride, 2008; Seybold, et al., 2008). These limits are
also indispensable for soil and substructure surveys. While investigating the fundamental
properties of soils, many researchers have used these limits. De la Rosa (1979), a research
conducted in Florida, said cation exchange capacity (CEC), organic matter (OM) and clay

content to cause considerable effects on PI. Studies on the soils in Canada and Nigeria have



reported a significant relationship with the clay rate, LL, PL and PI values (Jong, et al.,
1990; Mbagwu and Abeh, 1998). In another study, Odell et al. (1960) concluded that the
clay content, the montmorillonite ratio in the soil and the OM ratio had a weighty effect on
LL and PI. In the study conducted with data on the database on the US, Seybold (2008) noted
that the clay content and CEC had a significant impact on LL and PI. Keller and Dexter

(2012) stated that there was a correlation between the clay content and LL, PL, and P1 values.

2.3. Artificial Neural Network in Geotechnical Engineering

In the studies of civil engineering and geotechnical engineering, ANN has been widely used
since early 1990 (Lee and Lee, 1996; Najjar et al., 1996; Yuanyou et al., 1997; Yang and
Zhang, 1998; Hurtado et al., 2001; Rafiq et al., 2001; Lee et al., 2003; Basma and Kallas,
2004). In the previous studies, it is observed that ANN is frequently used in estimating the
compaction and uplift of pile foundations and axial and lateral load capacities (Goh, 1994,
1996; Chan et al., 1995; Goh et al., 1995; Lee and Lee, 1996; Teh et al., 1997; Abu-Kiefa,
1998; Nawari et al., 1999; Rahman et al., 2001; Hanna et al., 2004; Das and Basudhar, 2006;
Ahmad et al., 2007; Shahin and Jaksa, 2009), drilled pole (Goh et al., 2005; Shahin and
Jaksa, 2009), foundation settlements (Sivakugan et al., 1998) and anchors embedment
(Rahman et al., 2001; Shahin et al., 2004, 2005; Shahin and Jaksa, 2006).

Goh et al. (1995) studied the relative density (Dr) and average effective stress (c) as input in
the ANN model performed on normally loaded and over-consolidated sands. They estimated
the Cone Penetration Test (CPT) and cone resistance (qc) as output. In this study, they used
93 data for training and 74 data for the testing. In this nonlinear relationship, the correlation

coefficient was obtained as 0.97 for training and 0.91 for the test.

The prediction of settlements in the foundations is affected by uncertainties, similar to other
complex issues of geotechnics. For this purpose, settlements prediction was tested with ANN
by some researchers. Sivakugan et al. (1998) predicted the settlement of the shallow
foundations on coarse-grained soils with ANN. In the development of the ANN tool, 79 data
sets were used where 69 of them were used for training and 10 datasets for testing. Five
parameters were used as input values that are applied net pressure, average standard

penetration test (SPT) values, foundation width, foundation form and foundation depth.



The ANN method is applied to other applications in earth sciences; retaining walls (Ozturk,
2014; Ghaleini et al., 2018), dams (Rankovi¢ et al., 2014; Stojanovic et al., 2016), earthquake
(Dindar et al., 2017), geographical information systems (Aslantas and Kurban, 2007),
mining (Rankine and Sivakugan, 2005; Afram et al., 2017), geoenvironmental engineering
(Shang et al., 2004), petroleum engineering (Kulga et al., 2018) and rock mechanics
(Kanungo et al., 2014).

Traditional statistical methods may be insufficient due to interactions between variables.
Prediction of physical properties of soil such as mineralogy, porosity, water content, grain
size etc. with statistical methods is difficult (Yingjie and Rosenbaum, 2002). ANN
algorithms can be used to estimate/determine various soil characteristics, including soil
classification (Cal, 1995).

2.4. Some Existing Correlations

In previous studies, the researchers used the ANN method in the estimation of soil properties
and soil classification. Different estimation methods were compared in previous studies with

ANN and classical regression analysis methods.

Cal (1995) had classified soil by using LL, Pl and clay content. As a result of the study, he
classified the clay soils as; heavy clay (1), light clay (11), heavy sub-clay (I11), medium sub-
clay (IV), light sub-clay (V), and sub-sandy clay (V1).

Giinaydin (2009) predicted optimum moist content (OMC) and maximum dry density
(MDD) values by using different methods. He used different combinations of fine-grained,

sand, gravel, LL and PL values with 126 samples (Table 2.1).

Table 2.1: Models structure used in the study (Giinaydin, 2009)

MODEL INPUTS STRUCTURE TRANSFER FUNCTION
I FG, 5, G, Gy, wr, wp, 5T 7-3-3 tan sig- log sig
II FG. 5, G, wL, wp 5-3-2 tan sig- log sig
I FG.5.G 3-3-2 tan sig- log sig
v WL, We 2-6-2 tan sig- log sig
Vv WL, Wp 2-3-1 tan sig- log sig




In the study, Simple-Multiple Analysis and ANN methods were compared. R? values were

found to be between 0.77-0.78 for multiple linear regression analysis (Equation 2.1), 0.74-
0.82 for simple linear regression analysis (Figure 2.1), and 0.67-0.89 for ANN analysis
(Figure 2.2).
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Figure 2.1: Simple linear regression analysis results; a) LL versus OMC, b) PL versus
OMC, c) LL versus MD, d) PL versus MDD (Giinaydin, 2009)
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compaction values by Model Il (Giinaydin, 2009)

Hassannejad et al. (2015) made soil classification with various ANN approaches to moisture
content, LL, PL, and SPT values with 120 samples. They mentioned that the best algorithm

to estimate soil classification is the Levenberg-Marquardt algorithm.

Tenpe and Kaur (2015) using ANN techniques calculated the OMC and MDD from LL, PL,
and sieve analysis values with 210 samples. According to the ANN model results, the R?
values for OMC values were 0.85 in the training, 0.76 in the test and 0.95 in the simulation
(Figure 2.3 a, b, and c).
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Also, R? for MDD values were 0.88 in training, 0.81 in testing and 0.95 in the simulation
(Figure 2.4 a, b, and c).
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Figure 2.4: Observed OMC vs Predicted MDD values during a) Training, b) Testing, and
c) Simulation (Tenpe and Kaur, 2015)

Bahmed et al (2017) were used the LL, the PL and Lime content as input for estimate the PlI,
the MDD, and the OMC values separately with ANN. In the study they used 280 data
collected from previous studies. As shown the Figure 2.5 a, b, and ¢, the R? value for the PI
was 0.91, for MDD and OMC were 0.83.
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Figure 2.5: a) Experimental LL versus predicted LL, b) Experimental MDD versus
predicted MDD, and c) Experimental OMC versus predicted OMC (Bahmed et al., 2017)

Reale et al. (2018) used the CPT values and estimated soil classification with ANN. For this
reason, they used 216 data set. For this purpose, they developed two different ANN network.
The first network developed to estimate fines content (FC) and second network developed
for predicted for both the LL and PI. The R? of correlations results were 0.79 for FC, 0.85
for LL, and 0.78 for PI (Figure 2.6 a, b and c).
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CHAPTER 3

MATERIALS AND METHODS

3.1. Area of Study

The soil samples and data used in this project were collected from various parts of Cyprus,
especially Nicosia. The samples represent the different depth and soil types. The island of
Cyprus is the third of the Mediterranean and the largest island of the Eastern Mediterranean
with an area of 9251 km?. The total area of North Cyprus is 3299 km?.

Intensive investigations were carried out about the geology of Cyprus. However, there is no
consensus yet. Ketin (1987) suggested five geological zones from north to south (1) Kyrenia
or Five fingers Mountains, (2) Mesaoria Neogen Basin, (3) Troodos Massive, (4) Mamonia
Complex, and (5) Limassol Forest Complex and Arakapas Fault Belt (Ketin, 1987).
According to the Geological Survey Department of Cyprus, there are four geological zones
in Cyprus namely; (1) Kyrenia, (2) Troodos, (3) Mamoniaand (4) Circum Troodos
Sedimentary Succession (GSD, 2002). Another suggestion about geological zones of Cyprus
is made by Atalar (2005) and he divided the island into six geological zones according to
geological evolution and emplacement of its geological units: These are; Kyrenia Zone,
Mamonia Zone (Mamonia Complex), South Cyprus Zone, Troodos Zone (Troodos
Ophiolite), Mesaoria Zone and the Alluviums (Atalar, 2005, 2006) (Figure 3.1).

North Cyprus {(Kyrenia) Zone

South Cyprus Zone

Figure 3.1: Cyprus geological map (Atalar, 2005)
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The majority of the Cyprus soils are alluviums and over-consolidated clays (Table 3.1). The
alluviums are located between the Kyrenia and Trodos mountain ranges, which are flat and
topographically low areas. These represent the soils in the center of Cyprus (Atalar and Das,
2009). Alluvial soils consist of loose-medium density gravel and sand and soft hard silt and
clays. The clay size amount in the alluviums is low. The amount of montmorillonite in the
alluvium is high. These alluviums have partially high strength when dry. However, their
strength is reduced with saturation. These clayey soils have low to intermediate swelling
potential in North Cyprus. They were observed especially on the east and west coasts within

the old harbors. There are old river beds filled with alluviums on the shoreline and inland.

Mesaoria clay zone; consists of clay with high and very high swelling potential. This group,
which is heavily observed in the middle of the Island, have high and extremely high swelling
potential (Table 3.1) especially in Nicosia, Famagusta, Larnaca, and Polis. This zone, which

is mainly composed marl, also contains calcaremite, conglomerates, limestone, and gravel.

Clays of Degirmenlik (Kythrea) Group; This group includes mostly turbidite rocks. The
group consists of gravel, pebbles, greywacke, marl and abyssal turbidites with mostly
shallow environmental limestone, chalk, marl, limestone, and gypsum. The tens of meters
of clayey units, which are several meters thick in different formations of the Degirmenlik
(Kythrea) group, exhibit varied swelling potential. Haspolat (Mia Milia) present
intermediate to high swelling potential, Yilmazkoy (Skylloura) and Yazilitepe (Lapatza)
formations present high to very high swelling potential (Atalar, 2004).

Bentonitic Clays are formed by pillow lavas (Troodos Ophiolites) and form the first clays of
Cyprus. Reaches a thickness of more than 300 meters in South Cyprus. Although 35% of
bentonitic clays are calcium montmorillonite with low swelling potential, bentonitic clays

have the highest swelling potential of Cyprus clays.

Clays of Momonia Complex are within igneous-volcanic, and metamorphic rocks of the
Mamonia Complex of Middle Triassic to Cretaceous ages. Their swelling potential is much

less than in the bentonitic clays (Figure 3.2).
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Figure 3.2: Cyprus soils map (Atalar and Das, 2009)

Table 3.1: Swelling potential of Cyprus clays (Atalar and Das, 2018)

Clays Liquid Limit (LL) Swelling Potential
Alluvium (North Nicosia) 32-48 Low-Intermediate
Alluvium (South Nicosia) 60-115 High — Extremely High

Mesaoria Clay Zone 52-119 High — Extremely High
Degirmenlik Group Clay 47-88 Intermediate — High
Mamonia Complex 33-167 Intermediate — Extremely High
Bentonitic Clays 55-210 High — Extremely High

3.2 Testing Methods

Soils can be divided into coarse-grained soils and fine-grained soils. In order to make this
distinction, the grain size distribution analysis method is used. Grain size distribution
analysis is divided into sieve analysis and hydrometer test analysis. If the ratio of the material

under the 0.075 mm sieve is less than 50% it is called as coarse-grain soil (Gravel, sand),
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and if it is more than 50%, it is called as fine-grained soil (silt, clay). Fine-grained soils are
determined by hydrometer analysis after sieve analysis. We need LL and PI values when

classifying fine-grained soils. Atterberg limit tests are performed for this purpose.

3.2.1. Grain size distribution

Grain Size Distribution analysis can be defined as the combination of two methods; sieve

analysis and hydrometer analysis.

a) Sieve Analysis Test

During the analysis of the field works, reports, and projects sieve analysis were performing
by using appropriate sieves according to ASTM D6913-17 standards. Samples were dried
overnight at 105 ° C to 110 ° C. After the samples were cooled, they took to the sieve and
the sieving process is performed. In the process using sieves with different sizes, the amount

of sample remaining after each sieve is noted.

b) Hydrometer Test
In accordance with ASTM D 422-63 - Standard Test Method for Particle-Size Analysis of
Soils standards;

e Samples remaining in the tray after sieve analysis are used for hydrometer analysis.
Dispersing agents (Sodium Hexametaphosphate (40 g / L)) is added to the clay and
silt grains to prevent them from sticking together and are allowed to soak for 10
minutes.

e The prepared solution is taken up in the precipitation vessel and pure water is added
until the volume of the solution is reached.

e The open-end vessel is sealed with a stopper and upend 30 times per minute.

e After the vessel is directed, the cover is removed and time is recorded. After 1 minute
40 seconds the hydrometer is placed in the cylinder for the first reading.

e An identical 1000 ml vessel is filled with distilled water and the hydrometer is
calibrated. Hydrometer reading in distilled water should normally be zero. A reading

other than that is recorded and used as a hydrometer correction.
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e For the first reading of the suspension, the hydrometer is slowly released into the
liquid and the value is recorded.

¢ Inthe hydrometer test, readings are performed after 30 seconds, 1, 2, 4, 8, 15, 30, 60,
120, 240 and 1440 minutes.

e At each reading, the temperature of the suspension liquid is recorded and after

reading, the hydrometer is swirled inside the control vessel.

After the hydrometer test is completed the calculation of the grain size is found by Equation
3.1

p=ny e (3.1)
t
_ 0.3n
v =(z@-m) 62

In where;

D is grain size, M is temperature, n is water viscosity, G is specific gravity, pwwater density

(g9/ml), Heis effective depth and t is sedimentation time.

For the calculation of percentages of grain size smaller than D;

N ( G ) R 100
= *k — %
G—1) M, (3.3)

In where;

R is Hydrometer reading correction, Ms is dry soil mass.

3.2.2. Atterberg limits

Atterberg limits were determined by using distilled water on fine-grained soils. When
performing the tests, ASTM D4318-17 (Standard Test Method for LL, PL of soils) standards
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are followed. The tests are performed with 200 gr soil sample which passes from No.40
(0.425 mm) sieve.

3.3 Artificial Neural Network
3.3.1. Definition of ANN

The basis of the ANNSs began in 1942 with the first cell model proposed by McCulloch and Pitts.
An ANN is a complex neural network composed of a combination of many simple nerve
cells (Lippmann, 1987). Important features of ANNs are solving non-linear problems,
having a distributed parallel structure, learning, error tolerance, and generalization. Through
to these features are used in many areas. One of the important features of ANNSs is learning
and generalize this learning. By exploring the relationship between inputs and outputs given
to the network, it is able to produce the appropriate outputs against unrecognized data (Garip,
2011).

ANN has a structure that model the functioning of live nervous system. In the live nervous
system, the nerve cells receive signals and perform the signal transmission according to the
signal they receive (Figure 3.3). The received signals are transmitted to the center of the cell
(cell body). When the collected signals exceed the threshold, the signal is transmitted to the

other nerve cells via the axon (Akkaya, 2011).

Neuron

Soma
{cell body)

Dendrites —

Figure 3.3: Biological nerve cell structure (Brain Education, 2018)
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ANN is formed by the combination of many artificial nerve cells. This combination takes

place in layers, not arbitrary (Akkaya, 2011).

We can mention about 3 learning strategies used in ANN.

a) Supervised Learning: Supervised learning is a machine learning technique that
produces a function through training data. In other words, in this learning technique,
the algorithm generates a function that makes a matching function between inputs
and outputs (Hinton et al., 1999).

b) Unsupervised Learning: Unsupervised Learning model is a machine learning
technique based on observations. In other words, the method tries to perform learning
only through inputs without using output data. This method is especially used to
collect the data set (Hinton et al., 1999).

¢) Reinforcement Learning: Reinforcement Learning, a type of machine learning,
demonstrates how an autonomous agent who senses the environment in which it is

located and learns to make the right decisions to reach its goal (Johnson et al., 2000).

3.3.2. Main components of ANN

The artificial nerve cell is the basic element of the ANN and is also referred to as the
processing element. A processing element consists of five components. These consist of
inputs, weights, summing function, transfer function, and output. The similarities between the

biological nervous system and the ANN are shown in Table 3.2 (Sagiroglu et al., 2003).

Table 3.2: Biological Nervous System with similar features of ANN (Sagiroglu et al.,

2003)
Biological Nervous System Artificial Neural Network
Dendrite Summing Function
Cell Body Artificial Neuron (Processing Element)
AXxons Transfer Function
Neurons Artificial Neuron Output
Synapses Weights
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3.3.2.1. Inputs

The inputs are data from outside a neuron, and these data may come from an external neuron

or neuron itself to the neuron (Aslay and Ustiin, 2013). The basis of network training is input.
3.3.2.2. Weights

The weights are represented by w coefficients showing the effect of input data from the
neural nerve on the nerve cell. Each input has a weight. The high weight value indicates that
the input is important and the effective rate is high. Low weight values indicate that input is
insignificant (Elmas, 2007). Weights are used in the relationship between input and output
values (Garip, 2011).

3.3.2.3. Summing function

It calculates the net input from the neuron and different functions can be used to perform
this calculation. The most commonly used method is the weighted sum (Hamzagebi, 2011).

The summing function equation is shown in Equation 3.4.

n

Vi = z XiWh; (3.4)

i=1

In equation 3.4; Vi is net input, xi is ANNSs input values, wk: is weights (i. input range k.
neuron connecting weight), n is number of inputs. The selection of the summing function
may vary depending on the problem. The trial and error method is used for the determination

of ideal summing function.
3.3.2.4 Activation function

It is the function that keeps the output value against the net input value of the neuron in a certain
range. It establishes a bond between the input and output values of the neuron (Haykin and
Network, 2004). It processes the total input to the cell and generates the corresponding output.
Different functions are used for output generating. Some network models require the use of a

derivative function (Oztemel, 2003).

21



The activation function may be of different types depending on the function of the neuron. The
optimal activation function can be found as a result of the attempts of the network developer, the
activation functions can be fixed or adaptable. The most frequently used activation functions are

sigmoid and hyperbolic tangent functions (Kakici, 2017).

a) Sigmoid Function (logsig): The sigmoid activation function is a continuous and
derivative function. It is one of the most frequently used functions in ANN
applications due to its non-linearity. This function generates a value between zero
and one for each of the input values. The input-output expression of this activation
function and the change of the function relative to the input are given respectively in

Equation 3.5 and in Figure 3.4.

1

“= 1+e™ (3:9)

0,5

-0,5

-1

Figure 3.4: Sigmoid activation function

b) Hyperbolic tangent sigmoid function (tansig): For this activation function, the neuron
input-output expression is given Equation 3.6 and the change of function are given
in Figure 3.5. The dynamic change interval of the function is the range [-1 1] and the
function shows a non-linear change in this range depending on the total input of the

neuron.

n_ ,-n
a=_¢ (3.6)
et+e™™m
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Figure 3.5: Hyperbolic tangent sigmoid function

c) Linear function (purelin): In this activation function, neuron output changes linearly
according to the change of neuron inputs. The dynamic change interval is [-1 1]. The
input-output characteristic of the function is given in Figure 3.6 and the function

description is given Equation 3.7.

a=n (3.7)

0,5

-0,5

-1

Figure 3.6: Linear (purelin) function

3.3.2.5 Outputs

The output value generated by the activation function. This value can be sent to the outside or to

another neuron. The cell can use the generated output as input (Oztemel, 2003).
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3.3.3. Neural network types

There are many different types of ANN, such as;

Adaptive Resonance Theory (ART) Network
Backpropagation networks

Radial Basis Function (RBF) Network
Kohonen Network

Hopfield Network

Recurrent Neural Networks (RNN)

3.3.3.1. Adaptive Resonance Theory (ART) Network

ART, based on the functioning of the human brain, was developed by Stephen Grossberg and

Gail Carpenter (Figure 3.7). This network consists of a set of neural networks that examine

issues such as forecasting and pattern recognition using supervised and unsupervised learning

methods.

Fl

Figure 3.7: Adaptive resonance theory (ART) network structure (Miljkovic, 2010)
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The basis of the network is the search for the presented model for a match in the stored
categories. If this searching is not giving any matching, the network considers this model as

an innovation.

3.3.3.2. Backpropagation networks

Backpropagation network is one of the most used artificial neural network models in
engineering applications. The main principle of the Backpropagation network is to minimize
the error obtained at the output of the selected network structure and to accordingly change
the network weights. In this type of ANN, the processing elements (neurons) are arranged
in layers. Each network model consists of at least three layers as input, hidden layer and

output.

The backpropagation network model consists of seven learning steps, the first four of which

are forward, and the last three steps are backward steps.

1. Defining the network structure: The number of inputs, output, a hidden layer, and
neuron numbers is determined.

2. Determination of initial network parameters: The weight and bias to be used in the
selected network structure are determined.

3. ldentification the learning set to the network: A learning set consisting of inputs and
outputs to be used to solve the problem or application is identified to the network.

4. Presence the last output of the network: For each processing element used in the
network architecture, the total input, and transfer values are calculated and the last
output of the network is the presence.

5. The error between the original value and the network output value is calculated.

6. The error is distributed to backward weights, starting from the output layer.

7. If the error is within acceptable limits, the operation is stopped, otherwise is returned

to step 3.

The backpropagation network model tries to reach to minimum error value by increasing
or decreasing the weight value it assigns after each approach. It is difficult to estimate the
weight values to be used between input and output parameters. The advantage of the
system are that the network propagation backwards and changes the weights according to
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the error rate. As in this study, backpropagation network model is preferred for problems

that do not have a linear relationship between input and output parameters.

3.3.3.3. Radial basis function (RBF) networks
RBF networks consist of a 3-layer structure, an input layer, a single hidden layer using the

radial functions, and an output layer (Figure 3.8).

Input Layer Hidden Layer Qutput Layer
i=1.N j=L.L k=1.M

Figure 3.8: RBF network structure (Kaynar et al., 2016)

The working principle of the RBF network is the process of determining the relationship
between the input and output by creating linear combinations of the outputs produced by
these functions with appropriate weight values by determining RBFs with appropriate width

and center values in the hidden layer depending on the input data.

3.3.3.4. Kohonen networks

Kohonen networks aim to cluster data when groups are not initially known. Kohonen
networks are a data visualization tool as well as being used for clustering purposes. Kohonen
networks are a type of neural network that performs unsupervised learning as there is no

output (dependent variable) o be estimated.

3.3.3.5. Hopfield networks
Hopfield network structures are mainly single layer and fully connected neural network

structures used for associative purposes. Each unit in the network structure is a simple
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threshold value processor unit and there is a bi-directional connection weighted between

each processor unit pair.

3.3.3.6. Recurrent networks

The Recurrent Neural Network (RNN) is an artificial neural network model where the links
between the units form a directed loop. With this loop, a network internal state has been
created that allows it to display dynamic temporal behavior. In contrast to feed-forward
neural networks, RNNs can use their input memory to process random sequences of inputs
(Mikolov, 2010).

27



CHAPTER 4

DATA ANALYSIS AND RESULTS

A kind of different approaches can be used to provide the relationship between the
multivariate data. As a classical method, multivariate regression coefficient estimates can be
used. Besides, in these days’ ANN are used as an alternative way to this method. This thesis
includes 108 data from field works and previous reports, and projects such as Swelling Clay
Project (Atalar, 2002; Geotest, 2014; Hussain 2016). These data are compiled according to
grain size distribution (% sand, % silt, % clay) and Atterberg limit values. The main aim of
this thesis is to predict soil classification with grain size distribution analysis by using ANN.
Therefore, at the first phase of this study we predicted liquid limit and plasticity index from
grain size distribution with ANN, and in the second phase, we determined soil classification
from the Unified Soil Classification System (USCS) chart.

4.1. Data Analysis Methods

There are many methods used to determine the relationship between variables. However, in
this study, multiple linear regression and artificial neural network training algorithm
methods were used. The coefficient of determination is used as a parameter to determine the
degree of accuracy of these methods. If it is necessary to explain this; Coefficient of

determination (R?) is shown in Equation 4.1;

SSE
Rz —1_2% (4.1)

Where; SSE (Equation 4.2) is the sum of squares of model errors and SST (Equation 4.3) is
the square sum of the errors in the model.

" @2
SSE = ) (i = 9
i=1
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n (4.3)
SST =) 1 = )?

It is one of the most important parameters used in observing the correspondence between
estimated values and actual values. R? values descriptive between 0 and +1. Chin (1998)

described the accuracy level of R? like substantial, more moderate, and weak (Table 4.1).

Table 4.1: Accuracy of coefficient determination (Chin, 1998)

R2 Desired Value

0.67 Substantial
0.33 More Moderate
0.19 Weak

Data normalization (Equation 4.4) has been applied in order to calculate the predicted values
in a healthy and secure way. There are differences between the input and output parameter
values. This process was applied to group the data in a certain order and range (between 0
and 1). Another benefit of this process is to reduce the processing time. Is shown in Equation

4.4,

X - Xmin (44)

>
I

Xmax - Xmin

4.2. Multiple Linear Regression Analysis

Multiple linear regression is the analysis of being able to explain the relationship between a
single dependent variable and multiple independent variables (Equation 4.5). There is a
correlation between the dependent and independent variables in this analysis method.

29



The most general regression equation;

Y S ao + a1X1 + a2X2 + -+ aan + el (4.5)

Where; X;are independent, Y; dependent variables and e;is error term (Y-Y).

In this study, sand, silt, clay percentages were used as independent variables. Liquid limit
and plasticity index were evaluated separately as dependent variables. In Table 4.2 is shown
that statistical properties of the data.

Table 4.2: Data properties

% Sand % Silt % Clay LL PI

Min 0.4 8.7 253 26.3 5.1
Max 49.7 51.7 78.0 87.5 56.7
Std. Dev. 12.98 9.55 12.37 15.05 13.81

As is shown in Table 4.3 R? values are about 0.38. The comparisons of multiple regression
analysis results are shown in Figure 4.1 for LL and Figure 4.2 for PI. That’s mean the
accuracy of variables being more moderate. This isn’t enough for us. Due to this reason, we
can’t trust this analysis result. In cases where multiple regression analysis is inadequate, the
ANN method is used as an alternative method.

Table 4.3: Multiple linear regression analysis results

Dependent Independent Variables ,
Variables %Sand %Silt %Clay o R
LL 7.184287 6.890024 7.788753 -683.325 0.387924
Pl 7.198396 6.645002 7.507712 -690.861 0.374896
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LL- Multiple Linear Regression Analysis
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Figure 4.1: Multiple linear regression analysis results for LL

PI- Multiple Linear Regression Analysis
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4.3. Artificial Neural Network Training Algorithm

This study is presented in two separate sections. In the first section, an ANN model was
proposed to predict LL and PI by using grain size distribution analysis values. Later, using
predicted LL and PI values, classification of soils were determined. Figure 4.3 illustrates the

steps adopted in the study for fulfilling above-mentioned procedures.

Grain Size
Distribution
(Sand%,
Silt%,
Clay%)

Grain Size

silt%, R
Clay%)
60
50 -
40 4
30 -
20

10 |

Plasticity Index (PT)

. ML
0 10 20 30 40 50 60 70 80 90 100
Liquid Limit (LL)

v

Soil

Classification

Figure 4.3: Generalized base of the study

4.3.1. Prediction to liquid limit and plasticity index

ANN are computer-based modeling and statistical techniques that mimic the human brain's
thinking and acting characteristics. This system consists of the input layer, hidden layers, the
output layer, weights (w), and bias (b) as shown in Figure 4.4. Input values for the ANN
model are given in the system and multiplied by the corresponding weights. After that,

entries with weight sums from all input sources are added to the hidden layers. After data is
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generated, the hidden layer transfer function is activated and it is calculated as the input
layer. This process maintains until the output layer is obtained.

= Bias
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v Function
e ¥ e A "
Inputs — X { } > W » } >l 5 » Output
2\ / 2 \ Z f .
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| |
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Weights Hidden Layer

Figure 4.4: The generalized ANN model

4.3.1.1. Preparation of training and test data set

After input and output data are gathered and structured; training and test sets must be
established. A total of 108 data were used in this study, 88 were used for the training (Table
4.4) and 20 of them used for the testing (Table 4.5). Normalization has been also applied to
the inout and output data sets during the development of the ANN tool.
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Table 4.4: Normalized input and output data for training

Input Data
Sand Silt Clay
0.00 0.74 0.64
0.00 0.74 0.64
0.04 0.46 0.83
0.05 0.50 0.79
0.06 0.48 0.80
0.06 0.48 0.80
0.06 0.44 0.83
0.07 0.49 0.78
0.08 0.56 0.72
0.08 0.34 0.89
0.09 0.40 0.84
0.09 0.40 0.84
0.09 0.45 0.79
0.10 0.42 0.81
0.10 0.41 0.77
0.10 0.37 0.85
0.10 0.42 0.75
0.10 0.39 0.83
0.10 0.53 0.72
0.13 0.38 0.75
0.13 0.63 0.60
0.14 1.00 0.30
0.15 0.13 1.00
0.27 0.48 0.60
0.28 0.50 0.58
0.29 0.20 0.81
0.29 0.26 0.75
0.31 0.23 0.77
0.33 0.34 0.66

34

Output Data

LL PL Pl

0.41 0.68 0.28
0.43 0.70 0.29
0.48 0.95 0.22
0.33 0.58 0.24
0.74 0.66 0.68
0.74 0.66 0.68
0.71 0.54 0.71
0.74 0.63 0.70
0.46 0.95 0.21
0.84 0.76 0.74
0.82 0.70 0.76
0.82 0.70 0.76
0.48 0.92 0.24
0.32 0.66 0.18
0.34 0.77 0.15
0.76 0.70 0.68
0.33 0.66 0.20
0.32 0.67 0.17
0.49 0.96 0.23
0.35 0.76 0.16
0.22 0.61 0.09
0.34 0.70 0.18
1.00 0.69 0.97
0.19 0.60 0.05
0.19 0.62 0.05
0.92 0.65 0.90
0.86 0.60 0.85
0.89 0.65 0.86
0.57 0.62 0.50




Table 4.4 Continued

Input Data
Sand Silt Clay
0.34 0.21 0.75
0.35 0.22 0.73
0.36 0.19 0.75
0.36 0.55 0.39
0.36 0.67 0.36
0.37 0.61 0.40
0.38 0.28 0.66
0.39 0.59 0.40
0.39 0.59 0.40
0.40 0.21 0.70
0.41 0.16 0.73
0.41 0.32 0.60
0.42 0.33 0.59
0.42 0.24 0.66
0.42 0.58 0.38
0.42 0.58 0.38
0.42 0.23 0.66
0.42 0.19 0.70
0.44 0.26 0.62
0.49 0.64 0.26
0.50 0.20 0.62
0.52 0.57 0.29
0.54 0.24 0.54
0.54 0.19 0.58
0.54 0.64 0.22
0.54 0.65 0.21
0.54 0.65 0.21
0.54 0.71 0.16
0.57 0.25 0.51
0.57 0.20 0.54
0.58 0.75 0.09
0.58 0.24 0.51
0.59 0.09 0.62
0.60 0.22 0.51
0.60 0.79 0.04
0.61 0.19 0.53
0.62 0.15 0.54
0.63 0.05 0.62
0.63 0.16 0.53
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Output Data

LL PL Pl

0.91 0.62 0.90
0.87 0.47 0.93
0.71 0.52 0.71
0.13 0.38 0.09
0.61 1.00 0.35
0.12 0.38 0.09
0.84 0.73 0.76
0.71 0.16 0.90
0.71 0.16 0.90
0.74 0.70 0.66
0.73 0.15 0.92
0.06 0.34 0.03
0.69 0.65 0.62
0.80 0.64 0.76
0.70 0.89 0.51
0.70 0.89 0.51
0.63 0.28 0.74
0.72 0.41 0.78
0.67 0.55 0.66
0.50 0.69 0.39
0.69 0.55 0.67
0.15 0.35 0.13
0.79 0.55 0.79
0.69 0.48 0.71
0.05 0.17 0.11
0.57 0.68 0.47
0.57 0.68 0.47
0.85 0.90 0.69
0.64 0.37 0.71
0.75 0.73 0.65
0.17 0.34 0.16
0.65 0.37 0.72
0.66 0.47 0.68
0.68 0.41 0.73
0.16 0.20 0.22
0.55 0.73 0.42
0.66 0.46 0.68
0.73 0.00 1.00
0.70 0.54 0.69




Table 4.4 Continued

Input Data
Sand Silt Clay
0.34 0.21 0.75
0.35 0.22 0.73
0.36 0.19 0.75
0.36 0.55 0.39
0.36 0.67 0.36
0.37 0.61 0.40
0.38 0.28 0.66
0.39 0.59 0.40
0.39 0.59 0.40
0.40 0.21 0.70
0.41 0.16 0.73
0.41 0.32 0.60
0.42 0.33 0.59
0.42 0.24 0.66
0.42 0.58 0.38
0.42 0.58 0.38
0.42 0.23 0.66
0.42 0.19 0.70
0.44 0.26 0.62
0.49 0.64 0.26
0.50 0.20 0.62
0.52 0.57 0.29
0.54 0.24 0.54
0.54 0.19 0.58
0.54 0.64 0.22
0.54 0.65 0.21
0.54 0.65 0.21
0.54 0.71 0.16
0.57 0.25 0.51
0.57 0.20 0.54
0.58 0.75 0.09
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Output Data

LL PL Pl

0.91 0.62 0.90
0.87 0.47 0.93
0.71 0.52 0.71
0.13 0.38 0.09
0.61 1.00 0.35
0.12 0.38 0.09
0.84 0.73 0.76
0.71 0.16 0.90
0.71 0.16 0.90
0.74 0.70 0.66
0.73 0.15 0.92
0.06 0.34 0.03
0.69 0.65 0.62
0.80 0.64 0.76
0.70 0.89 0.51
0.70 0.89 0.51
0.63 0.28 0.74
0.72 0.41 0.78
0.67 0.55 0.66
0.50 0.69 0.39
0.69 0.55 0.67
0.15 0.35 0.13
0.79 0.55 0.79
0.69 0.48 0.71
0.05 0.17 0.11
0.57 0.68 0.47
0.57 0.68 0.47
0.85 0.90 0.69
0.64 0.37 0.71
0.75 0.73 0.65
0.17 0.34 0.16




Table 4.4 Continued

Input Data
Sand Silt Clay
0.64 0.08 0.58
0.65 0.78 0.00
0.66 0.24 0.43
0.71 0.19 0.43
0.73 0.09 0.49
0.74 0.11 0.47
0.74 0.22 0.37
0.75 0.07 0.49
0.76 0.09 0.47
0.78 0.30 0.27
0.79 0.31 0.26
0.79 0.19 0.35
0.80 0.17 0.35
0.80 0.15 0.37
0.81 0.21 0.32
0.81 0.27 0.26
0.86 0.15 0.32
0.87 0.00 0.43
0.98 0.08 0.26
1.00 0.01 0.30

37

Output Data

LL PL Pl

0.61 0.54 0.59
0.10 0.10 0.20
0.56 0.48 0.56
0.49 0.54 0.44
0.56 0.37 0.61
0.56 0.40 0.60
0.54 0.38 0.58
0.45 0.52 0.41
0.53 0.36 0.59
0.01 0.24 0.02
0.00 0.25 0.01
0.53 0.38 0.57
0.53 0.37 0.58
0.49 0.32 0.55
0.51 0.34 0.57
0.00 0.27 0.00
0.50 0.36 0.54
0.46 0.39 0.48
0.46 0.38 0.49
0.47 0.20 0.59




Table 4.5: Normalized input and output data for test

Input Data Output Data
Sand Silt Clay LL PL Pl
0.06 0.44 0.83 0.71 0.54 0.71
0.07 0.49 0.78 0.74 0.63 0.70
0.08 0.34 0.89 0.84 0.76 0.74
0.09 0.41 0.83 0.47 0.93 0.22
0.10 0.37 0.85 0.76 0.70 0.68
0.10 0.40 0.77 0.34 0.77 0.16
0.29 0.34 0.70 0.89 0.89 0.74
0.36 0.67 0.36 0.61 1.00 0.35
0.42 0.33 0.59 0.69 0.65 0.62
0.49 0.64 0.26 0.50 0.69 0.39
0.52 0.57 0.29 0.15 0.35 0.13
0.54 0.64 0.22 0.05 0.17 0.11
0.54 0.71 0.16 0.85 0.90 0.69
0.58 0.75 0.09 0.17 0.34 0.16
0.60 0.79 0.04 0.16 0.20 0.22
0.62 0.15 0.54 0.62 0.22 0.76
0.65 0.78 0.00 0.10 0.10 0.20
0.79 0.03 0.49 0.53 0.38 0.56
0.87 0.07 0.37 0.44 0.33 0.49
0.91 0.10 0.32 0.53 0.37 0.57

4.3.1.2. Ann structure
Some parameters have been selected for the generation of the ANN model for estimating the

output parameters.

Prediction for LL values 9 models was developed. The results of those models are shown in
Table 4.6. The best-structured model was determined with R? values (Figure 4.5).
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Table 4.6: ANN models for LL prediction

RZ
Number Number ]
Model Output of of Trans_fer Training Validation Testing AngSt
No Functions R
Layers Neurons
1 LL 2 5 Tansig 0.79 0.59 073  0.76
Tansig
2 LL 2 5 Tansig 0.73 0.41 043  0.65
Logsig
3 LL 2 5 Logsig 0.61 0.55 052 058
Logsig
4 LL 2 7 Tansig 0.74 0.89 065 0.76
Tansig
5 LL 2 7 Tansig 0.67 0.59 051 0.64
Logsig
6 LL 2 7 Logsig 0.74 0.83 0.89  0.76
Logsig
7 LL 2 10 Tansig 0.82 0.88 082  0.83
Tansig
8 LL 2 10 Tansig 0.77 0.86 0.89  0.79
Logsig
9 LL 2 10 Logsig 0.62 0.59 062 061
Logsig
Regression analysis results of models are given in Appendix 2.
]
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Figure 4.5: Comparison ANN models for predict LL
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As shown in Table 4.6 and Figure 4.5, the Model 7 was determined the best structure to

solve this problem. Some model’s regression analysis results are shown in Figure 4.6a, b, c,

and d.
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Figure 4.6: Regression analysis results; a) Model 5, and b) Model 3

40



Prediction for P1 values 9 models was developed. The results of those models are shown in

Table 4.7. The best-structured model was determined with R? values (Figure 4.7).

Table 4.7: ANN models for PI prediction
R2

Number Number .
Model Output of of Transfer Training Validation Testing Adjust

No Functions R?
Layers Neurons

1 Pl 2 5 Tansig 0.84 0.79 0.7 081
Tansig

2 Pl 2 5 Tansig 0.7 061 055 0.6
Logsig

3 Pl 2 5 Logsig 0.69 062 060 0.6
Logsig

4 Pl 2 7 Tansig 0.88 087 088 088
Tansig

5 Pl 2 7 Tansig 0.61 064 072 063
Logsig

6 Pl 2 7 Logsig 0.63 065 056 061
Logsig

7Pl 2 10 Tansig 0.69 072 064 070
Tansig

8 Pl 2 10 Tansig 0.62 069 073 064
Logsig

9 Pl 2 10 Logsig 0.67 061 067 065
Logsig

The regression analysis result of models is given in Appendix 3.
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Figure 4.7: Comparison ANN models for predict Pl
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As shown in Table 4.7 and Figure 4.7, the Model 4 was determined the best structure to

solve this problem. Some model’s regression analysis results are shown in Figure 4.8a, b, c,

and d.
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Figure 4.8: Regression analysis results; a) Model 2, and b) Model 7
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It has been tried to find optimum values while selecting these parameters that are given in
Table 4.8.

Backpropagation feedforward model was used in this study with supervised learning
technique. In the development of ANN tool, "nntool" tool which is available as a ready tool
in MatLab R2013a software is used. As a result of the models generated by selecting the
appropriate number of layers and hidden element values for each output parameter (Figure

4.9), the learning process is trained to achieve optimum results.

Table 4.8 ANN structure parameters

Values
Parameters
LL Pl
Input Parameter 3 3
Number of Layers 2 2
Number of Neurons 10 7
Transfer Function Tansig Tansig

Network Type Feed-forward  backpropagation

Hidden Layer

Figure 4.9: ANN model sample

In figure 4.9 Input represents the grain size distribution data, w is weight, b is bias and Output

is LL or PI.

4.3.1.3. Ann training
Once the model is created, the system needs to be trained. The data for the training is written
in vector format according to the program. In the model 70% of the data were used for the

training, 15% for validation and 15% for the test.
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a) Liquid Limit Prediction

Predicting of liquid limit values; the data for the training is entered into the system (Figure
4.10) and the predicting process is performed from the program.

The program is called approaches until the calculated values reach the optimum value and

the operation stops when the optimum values are reached or the limit values are reached.

T Network: LL_10.2

- O *

View Train  Simulate Adapt Reinitialize Weights View/Edit Weights

Training Info  Training Parameters

Training Data Training Results

Inputs sieve v Outputs LL_10_2_outputs

Targets iL iv| || Emors LL_10_2_errors

Init Input Delay States (zeros) Final Input Delay States LL_10_2_inputStates

Init Layer Delay States (zeros) Final Layer Delay States LL_10_2_layerStates

\'-:] Train Network
Figure 4.10: Data entry into the network

In order to examine the relationship between the values obtained as a result of the regression
and the actual values, the regression graph generated at the end of the process is looked at.
In our study, adjusted R? values were calculated as 0.82 for the training, 0.82 for the
validation, 0.88 for the test, and 0.83 for all data (Figure 4.11).
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Training: R=0.82412 Validation: R=0.88478
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Figure 4.11: Regression analysis result for LL

After checking the predicted values and real data relationship (Table 4.9) we calculated an

R?value which is found as 0.85.
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Table 4.9: Comparison of the training dataset for LL values

LL LL LL

LL Predicted LL Predicted LL Predicted
0.41 0.49 0.12 0.16 0.61 0.65
0.43 0.49 0.84 0.70 0.10 0.09
0.48 0.60 0.71 0.62 0.56 0.52
0.33 0.36 0.71 0.62 0.49 0.57
0.74 0.76 0.74 0.76 0.56 0.58
0.74 0.76 0.73 0.66 0.56 0.57
0.71 0.76 0.06 0.03 0.54 0.50
0.74 0.57 0.69 0.53 0.45 0.57
0.46 0.53 0.80 0.76 0.53 0.55
0.84 0.85 0.70 0.61 0.01 0.01
0.82 0.62 0.70 0.61 0.00 0.08
0.82 0.62 0.63 0.74 0.53 0.51
0.48 0.52 0.72 0.72 0.53 0.51
0.32 0.55 0.67 0.70 0.49 0.52
0.34 0.35 0.50 0.67 0.51 0.48
0.76 0.69 0.69 0.74 0.00 0.03
0.33 0.30 0.15 0.26 0.50 0.49
0.32 0.59 0.79 0.68 0.46 0.51
0.49 0.50 0.69 0.72 0.46 0.47
0.35 0.27 0.05 0.07 0.47 0.47
0.22 0.42 0.57 0.47
0.34 0.33 0.57 0.47
1.00 0.97 0.85 0.61
0.19 0.21 0.64 0.63
0.19 0.24 0.75 0.69
0.92 0.94 0.17 0.33
0.86 0.91 0.65 0.65
0.89 0.93 0.66 0.68
0.57 0.32 0.68 0.66
0.91 0.87 0.16 0.17
0.87 0.84 0.55 0.68
0.71 0.81 0.66 0.66
0.13 0.14 0.73 0.67
0.61 0.73 0.70 0.66

R?=0.85
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ANN model trained with training data should be simulated with a test data set. As a result of
this operation (Table 4.10), the R? value is calculated as 0.86.

Table 4.10: Comparison of the test data set for LL values

LL
LL Predicted
0.71 0.66
0.74 0.66
0.84 0.85
0.47 0.59
0.76 0.69
0.34 0.33
0.89 0.85
0.61 0.73
0.69 0.63
0.50 0.67
0.15 0.26
0.05 0.08
0.85 0.61
0.17 0.33
0.16 0.17
0.62 0.66
0.10 0.03
0.53 0.55
0.44 0.50
0.53 0.48

R2=0.86
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The relationship with the real and predicted data of LL values is shown in Figure 4.12.
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Figure 4.12: Comparison between real and predict data for LL

b) Plasticity Index Prediction

Predicting of plasticity index values; the data for the training is entered into the system

(Figure 4.13) and the predicting process is performed from the program.

The program operates until the calculated values reach the optimum values and it stops the

operation once the desired values are predicted (optimum values); in other words, the

program stops once the plasticity index values are predicted favorably.

48



1 Network: PL7 2

View Train  Simulate Adapt Reinitialize Weights

Training Info | Training Parameters

Training Data

Inputs

View/Edit Weights

Training Results

(zeros) R Outputs PI_7_2_outputs
Targets (zeros) o Errors PI_7_2 _errors
Init Input Delay States (zeros) Final Input Delay States PI_7_2_inputStates
Init Layer Delay States (zeros)

Final Layer Delay States

PI_7_2 layerStates

t:j Train Metwork

Figure 4.13: Data entry into the network

In order to examine the relationship between the actual values and the predictions, the
regression graph is plotted at the end of the training process. In our study, adjusted R? for Pl

values were calculated as 0.86 for the training, 0.87 for the validation, 0.88 for the test, and
0.87 for all data (Figure 4.14).
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Figure 4.14: Regression analysis result for PI

After checking the predicted values and real data relationship (Table 4.11) we calculated an

R?value for Pl which was 0.81.
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Table 4.11: Comparison of training data set for Pl values

PI Pl Pl Pl
Predicted Predicted Predicted

0.28 0.31 0.09 0.40 0.59 0.63
0.29 0.31 0.76 0.72 0.20 0.07
0.22 0.37 0.90 0.62 0.56 0.53
0.24 0.24 0.90 0.62 0.44 0.60
0.68 0.68 0.66 0.84 0.61 0.58
0.68 0.68 0.92 0.74 0.60 0.58
0.71 0.65 0.03 0.03 0.58 0.53
0.70 0.46 0.62 0.36 0.41 0.58
0.21 0.25 0.76 0.79 0.59 0.58
0.74 0.71 0.51 0.49 0.02 0.03
0.76 0.87 0.51 0.49 0.01 0.02
0.76 0.87 0.74 0.73 0.57 0.55
0.24 0.19 0.78 0.76 0.58 0.56
0.18 0.42 0.66 0.64 0.55 0.57
0.15 0.00 0.39 0.44 0.57 0.51
0.68 0.48 0.67 0.74 0.00 0.07
0.20 0.00 0.13 0.24 0.54 0.56
0.17 0.19 0.79 0.76 0.48 0.56
0.23 0.15 0.71 0.77 0.49 0.56
0.16 0.00 0.11 0.28 0.59 0.56
0.09 0.00 0.47 0.27
0.18 0.19 0.47 0.27
0.97 0.93 0.69 0.34
0.05 0.03 0.71 0.68
0.05 0.07 0.65 0.73
0.90 0.96 0.16 0.21
0.85 0.79 0.72 0.70
0.86 0.96 0.68 0.67
0.50 0.49 0.73 0.71
0.90 0.92 0.22 0.20
0.93 0.89 0.42 0.71
0.71 0.90 0.68 0.66
0.09 0.00 1.00 0.63
0.35 0.30 0.69 0.66

R?=0.81
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ANN model trained with training data should be simulated with a test data set. As a result of
this operation (Table 4.12), the R? value for Pl is calculated as 0.82.

Table 4.12. Comparison of the test data set for Pl values

Pl
Pl Predicted
0.71 0.59
0.70 0.64
0.74 0.79
0.22 0.25
0.68 0.60
0.16 0.22
0.74 0.45
0.35 0.47
0.62 0.50
0.39 0.43
0.13 0.30
0.11 0.28
0.69 0.63
0.16 0.29
0.22 0.32
0.76 0.70
0.20 0.24
0.56 0.59
0.49 0.59
0.57 0.56
R2=0.82

The relationship with the real and predicted data of PI is shown in Figure 4.15.
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Figure 4.15: Comparison between real and predict data for Pl
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4.3.2. Determination of soil classification

The second part of the study includes finding the soil classification by using predicted LL
and PI values. We used USCS Chart (Figure 4.16) for determined soil classification. When

fine-grained soils are classified, some letters are taken according to some conditions

depending on LL and PI values. These;

e L islow plasticity

e His high plasticity
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100

Figure 4.16: Unified Soil Classification System Symbol Chart (Wagner, 1957)
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In this part of the study, the real data (Figure 4.17 and Figure 4.18) and the predicted data
(Figure 4.19 and Figure 4.20) are classified separately with the aid of the classification chart.
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Figure 4.17: Real data set classification which used for training
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Figure 4.18: Real data set classification which used for testing
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Figure 4.19: Predicted data set classification which used for training
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Figure 4.20: Predicted data set classification which used for testing

Table 4.13 and Table 4.14 are prepared so that the accuracy of adaptation of the study done
can be better understood. The table is divided into two parts (True and False) and the real
soil classification and the predicted soil classification are compared. True (T) represents that
the real soil classification and predicted soil classification are the same, and if it is false (F),

it represents that the real soil classification and predicted soil classification are different.
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Table 4.13: Comparison of soil classification with training data set

Predicted True/False

Real

Predicted True/False

Real

H
H
H

H

H

H

H
H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H
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Table 4.13 Continued

Predicted True/False
T
T

Py
@
2

T

O00O00O00O0O0O00OO0
I I IrrIIITIIrrCrT
O00O00O0000Z200
I I IrIIIIrr

R I I [ e

T
T
—

75 True/13 False = %85.22 Accuracy

As a result of the data used for training, 75 of the 88 classifications were found to be correct

in the soil classifications. This gives an accuracy of about 85%.

Table 4.14: Comparison of soil classification with test data set

Real Predicted True/False
C H C H T

C H C H T

C H C H T

M H M H T

C H C H T

M L M L T

M H M H T

M H M H T

C H M H F
M H M H T

C L C L T

C L C L T

M H C H F
C L C L T

C L C L T

C H C H T
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Table 4.12 Continued

Real Predicted True/False
CL CL T
C H C H T
C H C H T
C H C H T

18 True/2 False = %90.00 Accuracy

As a result of the data used for training, 18 of the 20 classifications were found to be correct
in the soil classifications, which gives an accuracy of about 90%.

4.4. Results

The determination of soil classification has an important place in geotechnical engineering
which is one of the most important areas of civil engineering. As mentioned in Chapter 2,
different soil characteristics play an effective role in determining the soil classification.
Some of these features are in a linear relationship with each other. However, there is no
linear relationship between grain size distribution values and LL-PI values used in this study.

We can reach this result with multiple linear analysis results.

In the previous studies, the values of R?, which are estimated different soil properties
performing using different input parameters, vary in the range of 0.67-0.97. The data used
in this thesis were derived from the North Cyprus clays described in Chapter 3, from the
Degirmenlik Group Clay, Mesaoria Zone, and Alluvium groups. As a result of these studies,
R2 values vary between 0.81 and 0.87. Besides, it is concluded that the accuracy ranges from
85% to 90% in the soil classification.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1. Conclusions

ANN, which is becoming more widespread in the fields of science and engineering, is also

a useful method in geotechnical engineering fields. This study presents the advantages of

using ANN in cases where classical regression methods are inadequate. In total, 108 data

sets are used in the development of the ANN tool. It was aimed to maximize the validity of

the program with selected examples from North Cyprus.

The following conclusions can be reached as a result of the studies carried out;

1.

There is no direct relationship between the liquid limit and plasticity index and sieve
analysis values.

The tansig transfer function among the transfer functions for the data used in this
study enabled us to achieve better results than the logsig transfer function.

As a result of the study with ANN, a connection could be made between the
parameters that are not directly related.

By using the ANN method, we can reach the sieve analysis values and the Atterberg
values with a high accuracy rate.

There is a higher connection between the LL values and the sieve analysis values
than PI values.

The validity and accuracy of the system have been tested by making the soil
classification with the LL and PI values as a result of the ANN.

ANN can successfully apply in engineering problems that are more affected by
variables such as soil properties.

No attempt was made to find the relationship of different soils.
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5.2.

Recommendations

. This study was carried out only on North Cyprus soils, especially on the clays. Work

areas and parameters can be expanded during future work.
Similar work within the same soil groups will point out the relationship of the soils

with different swelling potential
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Appendix 1: Samples used in this study

INPUTS
Sand Silt Clay
49.7 9.3 41.0
48.9 12.1 39.0
45.2 12.8 42.0
43.3 8.7 48.0
43.2 11.9 45.0
42.9 15.2 42.0
40.4 17.6 42.0
40.0 15.0 45.0
39.9 16.1 44.0
39.2 16.8 44.0
39.1 9.9 51.0
37.6 12.4 50.0
37.4 11.6 51.0
36.8 18.2 45.0
36.7 13.3 50.0
36.5 12.5 51.0
35.3 16.7 48.0
32.8 19.2 48.0
32.0 12.1 56.0
31.6 15.4 53.0
31.3 10.7 58.0
30.8 15.2 54.0
30.8 15.2 54.0
30.3 16.7 53.0
29.8 18.2 52.0
29.6 12.4 58.0
29.1 18.9 52.0
28.7 17.3 54.0
28.7 19.3 52.0
27.0 17.0 56.0
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OUTPUTS
LL Pl
55.0 35.4
54.6 30.3
58.5 34.7
54.5 30.1
53.2 30.3
56.8 33.2
57.8 34.6
56.3 33.6
58.9 35.1
58.7 34.4
58.5 34.2
58.9 35.3
54.0 26.2
59.1 34.8
60.7 35.9
60.3 36.5
56.0 27.7
60.8 34.1
63.8 355
69.0 40.7
71.0 56.7
64.2 44.2
66.5 40.3
59.9 26.6
67.9 42.9
66.7 40.1
65.9 42.1
72.0 38.7
65.4 41.6
68.3 41.6




INPUTS OUTPUTS
Sand Silt Clay LL Pl
22.2 19.9 58.0 67.5 38.9
21.2 16.8 62.0 70.4 454
21.2 18.8 60.0 65.0 43.4
21.1 19.0 60.0 75.5 44.5
20.4 15.6 64.0 71.0 52.7
20.2 17.8 62.0 71.4 38.9
19.2 20.8 60.0 77.6 44.3
18.2 16.8 65.0 69.5 41.7
17.7 18.3 64.0 79.5 53.0
17.3 17.7 65.0 81.8 515
16.5 23.5 60.0 61.2 30.8
155 18.5 66.0 80.9 49.6
14.9 20.1 65.0 78.9 48.9
14.8 23.2 62.0 81.0 43.5
14.7 17.3 68.0 82.7 51.3
7.6 14.4 78.0 87.5 55.2
40.4 20.4 39.2 26.3 5.1
39.1 21.9 39.0 26.5 5.6
38.9 21.8 39.3 26.8 6.2
32.6 42.1 25.3 32.3 15.4
30.2 42.5 27.3 36.1 16.7
29.1 41.1 29.8 36.6 135
27.2 39.1 33.7 78.5 40.9
27.1 36.1 36.8 29.5 10.8
27.1 36.7 36.2 61.4 29.6
26.2 33.3 40.5 35.3 11.8
24.6 36.3 39.1 57.2 25.0
21.1 335 45.4 68.9 315
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INPUTS

Sand Silt Clay
53 26.3 66.0
21.0 22.8 56.2
20.7 22.3 57.0
19.6 34.2 46.2
18.5 35.0 46.5
18.3 325 46.0
18.3 37.6 44.1
14.0 30.0 56.0
13.8 29.2 57.0
7.3 51.7 41.0
7.0 25.2 65.0
7.0 36.0 57.0
55 26.1 66.0
5.4 26.9 65.0
5.4 25.6 69.0
5.4 31.6 63.0
53 24.7 70.0
53 26.7 68.0
4.8 28.2 67.0
4.6 26.4 69.0
4.6 26.0 69.4
4.5 23.5 72.1
4.4 32.6 63.0
4.1 29.7 66.2
3.3 27.7 69.0
3.1 29.4 67.5
2.9 30.1 67.0
2.5 28.5 69.0
0.4 40.6 59.0
0.4 40.4 59.2
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OUTPUTS
LL Pl
46.9 12.7
68.4 37.1
30.0 6.8
69.9 514
33.9 9.8
34.2 9.9
63.7 234
38.0 7.5
37.7 7.8
47.1 14.6
41.7 13.6
40.0 9.8
47.4 13.2
46.8 154
45.9 141
56.3 17.0
72.6 40.1
45.7 14.2
55.7 17.5
55.1 16.7
76.7 443
77.6 43.5
54.6 15.7
71.8 41.2
70.0 41.6
71.7 40.1
46.8 17.4
55.5 16.4
514 19.3
52.6 20.2




INPUTS

Sand Silt Clay
30.2 42.5 27.3
29.1 411 29.8
27.2 39.1 33.7
27.1 36.1 36.8
27.1 36.7 36.2
26.2 33.3 40.5
24.6 36.3 39.1
21.1 33.5 45.4
21.0 22.8 56.2
19.6 34.2 46.2
18.3 37.6 44.1
5.3 24.7 70.0
4.6 26.0 69.4
4.5 23.5 72.1
4.1 29.7 66.2
3.3 27.7 69.0
3.1 29.4 67.5
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OUTPUTS
LL Pl
36.1 16.7
36.6 135
78.5 40.9
29.5 10.8
61.4 29.6
35.3 11.8
57.2 25.0
68.9 315
68.4 37.1
69.9 51.4
63.7 234
72.6 40.1
76.7 44.3
77.6 43.5
71.8 41.2
70.0 41.6
71.7 40.1




Appendix 2: Regression analysis results for LL
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Appendix 3: Regression analysis results for Pl
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