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ABSTRACT 

 

Soil properties are very important for the behavior of soils. Determination of the soil 

properties depends firstly on the classification of the soils. Coarse and fine-grained soils are 

fined out by sieve analysis. Fine-grained soils classification are done with their grain size 

distribution which is obtained by hydrometer test as well as their Atterberg limits. 

In this thesis, soil classification values have been reached at Atterberg limits values 

estimated by using Artificial Neural Networks (ANN) training algorithm for fine-grained 

soils of Turkish Republic of Northern Cyprus. For this study, 108 samples of clay, silt, and 

sand percentages with liquid limit (LL) and plasticity index (PI) values were used. In the 

beginning of the study, the LL and PI values were estimated from the grain size distribution 

values. In the second part of the study soil classifications were found using estimated LL 

and PI values. In order to obtain the optimum function in ANN model, it was aimed to give 

high accuracy of the results by using different parameters and the highest correlation 

coefficient (R2) values were examined. According to the results of the R2 values for LL were 

0.85 for training, 0.86 for testing, and for PI were 0.80 for test and 0.82 for simulation. In 

the second and final part of the study, the soil classifications were compared with the 

estimated soil classifications found from the LL and PI. The results show that 75 out of 88 

data used in the training (85.2%) and 18 out of 20 used in the test (90%) were correctly 

estimated. ANN have been used in engineering areas frequently and reliably in recent years. 

In particular, the ANN, which are characterized by learning characteristics, can be used 

successfully in many prediction, estimation and classification processes, including cases 

where good results cannot be achieved with classical regression methods. 

 

 

Keywords: Soil classification; Atterberg limits; grain size distribution; fine grained soils; 

Artificial Neural Networks; correlation coefficient 
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ÖZET 

 
Zemin özellikleri, zemin davranışları için çok önemlidir. Zemin özelliklerinin belirlenmesi 

öncelikle zeminlerin sınıflandırmasına bağlıdır. İri ve ince daneli zeminler elek analizi ile 

belirlenir. İnce daneli zeminler, hidrometre testi ile elde edilen dane dağılımına ve Atterberg 

limitlerine göre sınıflandırılır. 

Bu çalışma ile Kuzey Kıbrıs Türk Cumhuriyeti ince daneli zeminleri için Yapay Sinir Ağları 

(YSA) algoritması kullanılarak tahmin edilen Atterberg limit değerlerinden, zemin 

sınıflandırılması değerleri tahmin edilmiştir. Bu çalışmada kil, silt, kum, likit limit (LL) ve 

plastisite indeksi (PI) değerleri tespit edilen 108 örnek kullanılmıştır. Çalışmanın birinci 

bölümünde dane dağılımı değerlerinden LL ve PI değerleri tahmin edilmeye çalışılmış olup, 

ikinci bölümde ise tahmin edilen LL ve PI değerlerinden zemin sınıflandırılmaları 

bulunmuştur. YSA modeli eğitiminde optimum fonksiyon elde edilmesi için farklı 

parametreler kullanılarak sonuçların yüksek doğruluk vermesi amaçlanmış ve en yüksek 

korelasyon katsayısı (R2) değerlerine bakılmıştır. R2 değerleri; LL değerlerinde eğitim için 

kullanılan verilerde 0.85, testte 0.86 ve PI için ise eğitimde 0.80 ve testte 0.82 değerleri elde 

edilmiştir. İkinci ve sonuç kısmında tahmin edilen LL-PI değerlerinden bulunan zemin 

sınıfları ile gerçek zemin sınıfları karşılaştırılmıştır. Sonuçlara göre LL-PI değerleri için 

eğitimde kullanılan 88 veriden 75’i (%85.2) ve testte kullanılan 20 veriden 18’i (%90) doğru 

tahmin edilmiştir.  YSA, son dönemlerde mühendislik alanlarında sıklıkla ve güvenilir bir 

biçimde kullanılmaya başlanmıştır. Özellikle, öğrenme özelliği ön plana çıkan YSA, klasik 

regresyon yöntemleri ile iyi sonuçlara ulaşılamayan durumlar dâhil pek çok ön kestirim, 

tahmin ve sınıflandırma işlemlerinde başarılı bir şekilde kullanılabilmekledir. 

 

Anahtar Kelimeler: Zemin sınıflandırılması; dane dağılımı; ince daneli zemin; Atterberg 

limitleri; Yapay Sinir Ağları; korelasyon katsayısı
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CHAPTER 1 

INTRODUCTION 

1.1. Background 

The soil is composed of gravel, sand, silt, and clay as a result of disintegration or by 

disintegration, transportation, and deposition of rocks. There are several methods to find the 

properties of soils. The methods followed in the examination of soils are complementary to 

each other, it is impossible to obtain information about the behavior of soils without 

determining the properties and changes of soil characteristics. Geotechnical engineers are 

able to determine which characteristics have the most impact on soil behavior. The soils are 

heterogeneous. It can be expected to vary within meters. Soils remain under various 

influences such as loading, dewatering, drying, and freezing over the years. The reactions of 

the soil in these cases are important both in the use of the soil as a building material and in 

the structures to be built upon. 

Soils can have infinitely different properties due to the composition of its mineral or organic 

contents. It is difficult to apply probability methods to such a subject. It is also considered 

that to determine the soil characteristics require long-term and expensive experiments. 

Therefore, various researchers presented statistical methods in the form of regression 

analysis in order to determine the soil properties which provide reliable results and also can 

be obtained rapidly and inexpensively. 

The buildings that make up the living areas of people are mostly built on soils. Accurate 

estimation of the properties of the soils on which these buildings will be build will provide 

economic gain for the design of the buildings and will guarantee their lives and assets for 

the people living in it. 

The soil classification system has been one of the communication languages among the 

engineers in geotechnical engineering applications. The determination of soil classification 

is not eliminating the need for detailed soil investigations and other laboratory tests on soil 

samples which we determine the engineering properties. However, an engineer can 
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determine the behavior of the soil in the case of structural loads in the application phase by 

classified soil. It is an inevitable fact that clays, which are frequently encountered in soil 

mechanics problems, have a wide range in terms of their engineering characteristics.  

The grains forming the soil have a very different geometry and are of a wide variety of sizes. 

Knowing the grain size distribution in the soil plays an important role in determining the 

index properties of soils. The grain size distribution is the ratio of the weight of the grains 

of various diameters to the total dry weight of the soil in percent. Soils are divided into two 

types: coarse-grained soils (gravel and sand) and fine-grained soils (clay and silt). In order 

to determine the grain size distribution of the coarse-grained soils according to the in 

diameters, the sieve analysis is carried out and the hydrometer test is performed to determine 

the grain size distribution of the fine-grained soils according to the diameters. 

Research on Artificial Neural Networks (ANN) continues on software and hardware. Today, 

ANN applications can be found in many areas such as economics, industrial engineering, 

automation, electronic circuit design, electronic engineering, computer engineering, 

medicine, various intelligence problems, optical perception, object identification. ANNs 

have also been successfully utilized in the field of geotechnical and construction engineering 

with the advancements in computational sciences and in computational power.  

ANNs are inspired by biological neurons (nerve cells), resulting in artificially simulated 

studies of the brain's working system. The distinguishing feature of ANN from other 

methods of computation is that they perform operations using the learning feature of the 

human brain. Classical statistical methods recognize that the relationship between dependent 

and independent variables is linear, which results in insufficiencies as well as inefficiencies 

in the studies. In geotechnical sciences, parameters are controlled by many variables such as 

environmental factors, dynamic characteristics, and pore water pressure, where the 

relationships between these variables may be both linear or non-linear. The interdependent 

interaction of these features may make it difficult and time-consuming to utilize classical 

statistical methods. The application of a series of methods developed by ANN provides 

alternative solutions to the problems in geotechnical sciences or offers supplementary tools 

to the classical statistical methods in geotechnical studies.  
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ANN change its structure and weight of the neurons throughout its training and development 

by randomly distributed input parameters. It has a structure that can adapt itself like a 

nervous system of a living organism. In other words, it can change its structure and learn 

according to an internal and external stimulus. In the decision-making stage, the connection 

weights are activated and find the solution by itself. Therefore, it is not known what the 

system will do under a certain situation. This is the factor that adds an unknown feature to 

the system.  

The ANN generally generates a set of data sets corresponding to an input data set. In this 

context, the final ANN model consists of three layers, an input layer where the input data is 

entered, a hidden layer where the data is processed, and an output layer where the results are 

obtained. The other important component of the ANN model is the connections between the 

layers. Each connection has a weight value. The weights of these connections are altered to 

develop a successful ANN tool throughout its training which provides favorable output 

results for a given set of input values. The weights generated during training are the values 

in which necessary information is stored. Although ANN is a  proven technology and has a 

wide variety of usage and implementations in almost all science divisions, it is not entirely 

known how these weights are calculated and assigned. In this respect, the ANN content has 

not been fully solved and is criticized for this reason via various researchers.  

1.2. Problem Statement 

The aim of this study is to explain the estimation of the desired parameters using the learning 

method of the ANN with the available data. In cases where classical statistical methods such 

as multiple linear regression are insufficient and there is no linear relationship between 

variables, ANN can provide solutions to these type of problems and can be utilized 

successfully. Similarly, the linear relationship between the values of the sieve analysis and 

the Atterberg values used in the estimation is insufficient, ANN can be used for such a 

process. Sieve analysis and hydrometer analysis are required to determine whether the soils 

are fine-grained or coarse-grained, while Atterberg limits are required for the classification 

of fine-grained soils. Each process is laborious and expensive. The number of processes can 

be reduced by using sieve analysis values in estimating Atterberg limits. 
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1.3. Hypothesis 

In this thesis, Atterberg limits which are difficult to be predicted by classical statistical 

methods will be calculated by using ANN and soil classification will be made from these 

values. 

1.4. Research Objectives 

The main objective of this thesis is to estimate the Atterberg limits from the grain size 

distribution values by the ANN method and to determine the soil classification from these 

estimated values. 

To achieve this goal;   

i. Training the model of ANN with sieve analysis and Atterberg limits obtained from 

previous projects in North Cyprus soils. 

ii. Simulate the trained model with another set of data with the same characteristics. 

iii. Determination of soil classification with estimated Atterberg limit values.  

iv. The comparison of the determined soil classifications with the original soil 

classification. 

1.5. Organization of Study 

A number of actions have been taken to ensure the success of the identified steps and targets. 

The flow algorithm showing these steps are shown in Figure 1.1. 

The purpose and steps of the study are described in the first chapter. Other similar 

publications are mentioned in the literature section, which is the Chapter 2. The research 

area, the methodology of the studies is given in Chapter 3. The modeling process, regression 

analysis, and other operations are the subjects of Chapter 4. A comparison of previous 

studies is given in Chapter 5. 
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Figure 1.1:  Algorithm of the study



6 
 

CHAPTER 2 

LITERATURE REVIEW 

2.1. Soil Classification 

Soils with a grain size of less than 0.075 mm are defined as fine-grained soils (ASTM D422-

63; Holtz et al., 2011). Furthermore, in order to classify a soil sample as a fine-grained soil, 

more than 50% of its dry weight should be finer than 0.075 mm. Fine-grained soils are a 

mixture of clay and silt grains. The definition of the size limit between the clay and silt 

particles is called the clay fraction and this difference is determined to be 0.005 (ASTM 

D422-63) mm or 0.002 mm (Taylor, 1948). However, the cutoff between clay and silt 

particles is very narrow. The plasticity properties of silt and clay are a better separator than 

the particle size (Holtz et al., 2011). 

2.2. Atterberg Limit Tests 

Albert Atterberg (1911) originally defined six ‘Limits of consistency’ to classify fine-

grained soils, but in present engineering applications, only three of the limits, i.e. liquid (LL), 

plastic (PL) and shrinkage (SL) limits are used. In fact, he was able to define several limits 

of consistency and he has developed simple laboratory tests to define these limits. PL is the 

transition limit for soils from semi-solid to plastic, and LL is the transition from the plastic 

state to the liquid state (Casagrande, 1958; Archer, 1975; PCA, 1992; Campbell, 2001; 

McBride, 2008; Das, 2010). These soil limits (soil consistency) are the water content rates 

required for mechanical changes in the soil. The plastic range measured as the plastic limit 

is the soil behavior limit where soil can return to plastic behavior without fracturing under 

loading. These limits are used to classify fine-grained soils. Atterberg limits can also be used 

to understand many soil mechanics and soil physical properties. Some of these features are 

swelling and shrinkage potentials, shear strength, and compressibility (Archer, 1975; Wroth 

and Wood, 1978; Campbell, 2001; McBride, 2008; Seybold, et al., 2008). These limits are 

also indispensable for soil and substructure surveys. While investigating the fundamental 

properties of soils, many researchers have used these limits. De la Rosa (1979), a research 

conducted in Florida, said cation exchange capacity (CEC), organic matter (OM) and clay 

content to cause considerable effects on PI. Studies on the soils in Canada and Nigeria have 
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reported a significant relationship with the clay rate, LL, PL and PI values  (Jong, et al., 

1990; Mbagwu and Abeh, 1998). In another study, Odell et al. (1960) concluded that the 

clay content, the montmorillonite ratio in the soil and the OM ratio had a weighty effect on 

LL and PI. In the study conducted with data on the database on the US, Seybold (2008) noted 

that the clay content and CEC had a significant impact on LL and PI. Keller and Dexter 

(2012) stated that there was a correlation between the clay content and LL, PL, and PI values. 

2.3. Artificial Neural Network in Geotechnical Engineering 

In the studies of civil engineering and geotechnical engineering, ANN has been widely used 

since early 1990 (Lee and Lee, 1996; Najjar et al., 1996; Yuanyou et al., 1997; Yang and 

Zhang, 1998; Hurtado et al., 2001; Rafiq et al., 2001; Lee et al., 2003; Basma and Kallas, 

2004). In the previous studies, it is observed that ANN is frequently used in estimating the 

compaction and uplift of pile foundations and axial and lateral load capacities (Goh, 1994, 

1996; Chan et al., 1995; Goh et al., 1995; Lee and Lee, 1996; Teh et al., 1997; Abu-Kiefa, 

1998; Nawari et al., 1999; Rahman et al., 2001; Hanna et al., 2004; Das and Basudhar, 2006; 

Ahmad et al., 2007; Shahin and Jaksa, 2009), drilled pole (Goh et al., 2005; Shahin and 

Jaksa, 2009), foundation settlements (Sivakugan et al., 1998) and  anchors embedment 

(Rahman et al., 2001; Shahin et al., 2004, 2005; Shahin and Jaksa, 2006). 

 

Goh et al. (1995) studied the relative density (Dr) and average effective stress (σ') as input in 

the ANN model performed on normally loaded and over-consolidated sands. They estimated 

the Cone Penetration Test (CPT) and cone resistance (qc) as output. In this study, they used 

93 data for training and 74 data for the testing. In this nonlinear relationship, the correlation 

coefficient was obtained as 0.97 for training and 0.91 for the test.  

 

The prediction of settlements in the foundations is affected by uncertainties, similar to other 

complex issues of geotechnics. For this purpose, settlements prediction was tested with ANN 

by some researchers. Sivakugan et al. (1998) predicted the settlement of the shallow 

foundations on coarse-grained soils with ANN. In the development of the ANN tool, 79 data 

sets were used where 69 of them were used for training and 10 datasets for testing. Five 

parameters were used as input values that are applied net pressure, average standard 

penetration test (SPT) values, foundation width, foundation form and foundation depth. 
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The ANN method is applied to other applications in earth sciences; retaining walls (Ozturk, 

2014; Ghaleini et al., 2018), dams (Ranković et al., 2014; Stojanovic et al., 2016), earthquake 

(Dindar et al., 2017), geographical information systems (Aslantaş and Kurban, 2007), 

mining (Rankine and Sivakugan, 2005; Afram et al., 2017), geoenvironmental engineering 

(Shang et al., 2004), petroleum engineering (Kulga et al., 2018) and rock mechanics 

(Kanungo et al., 2014). 

 

Traditional statistical methods may be insufficient due to interactions between variables. 

Prediction of physical properties of soil such as mineralogy, porosity, water content, grain 

size etc. with statistical methods is difficult (Yingjie and Rosenbaum, 2002). ANN 

algorithms can be used to estimate/determine various soil characteristics, including soil 

classification (Cal, 1995). 

 

2.4. Some Existing Correlations 

In previous studies, the researchers used the ANN method in the estimation of soil properties 

and soil classification. Different estimation methods were compared in previous studies with 

ANN and classical regression analysis methods. 

Cal (1995) had classified soil by using LL, PI and clay content. As a result of the study, he 

classified the clay soils as; heavy clay (I), light clay (II), heavy sub-clay (III), medium sub-

clay (IV), light sub-clay (V), and sub-sandy clay (VI). 

Günaydın (2009) predicted optimum moist content (OMC) and maximum dry density 

(MDD) values by using different methods. He used different combinations of fine-grained, 

sand, gravel, LL and PL values with 126 samples (Table 2.1).  

Table 2.1: Models structure used in the study (Günaydın, 2009) 
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In the study, Simple-Multiple Analysis and ANN methods were compared. R2 values were 

found to be between 0.77-0.78 for multiple linear regression analysis (Equation 2.1), 0.74-

0.82 for simple linear regression analysis (Figure 2.1), and 0.67-0.89 for ANN analysis 

(Figure 2.2). 

𝑂𝑂𝑂𝑂𝑂𝑂 = 0.3802𝑤𝑤𝐿𝐿 + 2.4513  𝑅𝑅2 = 0.82 (2.1) 

 

 
Figure 2.1: Simple linear regression analysis results; a) LL versus OMC, b) PL versus 

OMC, c) LL versus MD, d) PL versus MDD (Günaydın, 2009) 
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Figure 2.2: Comparison between measured compaction values, and the estimated 

compaction values by Model II (Günaydın, 2009) 
 

Hassannejad et al. (2015) made soil classification with various ANN approaches to moisture 

content, LL, PL, and SPT values with 120 samples. They mentioned that the best algorithm 

to estimate soil classification is the Levenberg-Marquardt algorithm.  

Tenpe and Kaur (2015) using ANN techniques calculated the OMC and MDD from LL, PL, 

and sieve analysis values with 210 samples. According to the ANN model results, the R2 

values for OMC values were 0.85 in the training, 0.76 in the test and 0.95 in the simulation 

(Figure 2.3 a, b, and c).  

 

Figure 2.3: Observed OMC vs Predicted OMC values during a) Training, b) Testing, and c) 

Simulation (Tenpe and Kaur, 2015) 
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Also, R2 for MDD values were 0.88 in training, 0.81 in testing and 0.95 in the simulation 

(Figure 2.4 a, b, and c). 

 

Figure 2.4: Observed OMC vs Predicted MDD values during a) Training, b) Testing, and 

c) Simulation (Tenpe and Kaur, 2015) 

Bahmed et al (2017) were used the LL, the PL and Lime content as input for estimate the PI, 

the MDD, and the OMC values separately with ANN. In the study they used 280 data 

collected from previous studies. As shown the Figure 2.5 a, b, and c, the R2 value for the PI 

was 0.91, for MDD and OMC were 0.83. 
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Figure 2.5: a) Experimental LL versus predicted LL, b) Experimental MDD versus 

predicted MDD, and c) Experimental OMC versus predicted OMC (Bahmed et al., 2017) 

Reale et al. (2018) used the CPT values and estimated soil classification with ANN. For this 

reason, they used 216 data set. For this purpose, they developed two different ANN network. 

The first network developed to estimate fines content (FC) and second network developed 

for predicted for both the LL and PI. The R2 of correlations results were 0.79 for FC, 0.85 

for LL, and 0.78 for PI (Figure 2.6 a, b and c).  
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Figure 2.6: a) Measured FC versus predicted FC, b) Measured LL versus predicted LL, c) 

Measured PI versus predicted PI (Reale et al., 2018) 
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CHAPTER 3 

MATERIALS AND METHODS 

3.1. Area of Study 

The soil samples and data used in this project were collected from various parts of Cyprus, 

especially Nicosia. The samples represent the different depth and soil types. The island of 

Cyprus is the third of the Mediterranean and the largest island of the Eastern Mediterranean 

with an area of 9251 km2. The total area of North Cyprus is 3299 km2. 

Intensive investigations were carried out about the geology of Cyprus. However, there is no 

consensus yet. Ketin (1987) suggested five geological zones from north to south (1) Kyrenia 

or Five fingers Mountains, (2) Mesaoria Neogen Basin, (3) Troodos Massive, (4) Mamonia 

Complex, and (5) Limassol Forest Complex and Arakapas Fault Belt (Ketin, 1987). 

According to the Geological Survey Department of Cyprus, there are four geological zones 

in Cyprus namely; (1) Kyrenia, (2) Troodos, (3) Mamonia and (4) Circum Troodos 

Sedimentary Succession (GSD, 2002). Another suggestion about geological zones of Cyprus 

is made by Atalar (2005) and he divided the island into six geological zones according to 

geological evolution and emplacement of its geological units: These are; Kyrenia Zone, 

Mamonia Zone (Mamonia Complex), South Cyprus Zone, Troodos Zone (Troodos 

Ophiolite), Mesaoria Zone and the Alluviums (Atalar, 2005, 2006) (Figure 3.1). 

 

Figure 3.1: Cyprus geological map (Atalar, 2005) 
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The majority of the Cyprus soils are alluviums and over-consolidated clays (Table 3.1). The 

alluviums are located between the Kyrenia and Trodos mountain ranges, which are flat and 

topographically low areas. These represent the soils in the center of Cyprus (Atalar and Das, 

2009).  Alluvial soils consist of loose-medium density gravel and sand and soft hard silt and 

clays. The clay size amount in the alluviums is low. The amount of montmorillonite in the 

alluvium is high. These alluviums have partially high strength when dry. However, their 

strength is reduced with saturation. These clayey soils have low to intermediate swelling 

potential in North Cyprus. They were observed especially on the east and west coasts within 

the old harbors. There are old river beds filled with alluviums on the shoreline and inland. 

Mesaoria clay zone; consists of clay with high and very high swelling potential. This group, 

which is heavily observed in the middle of the Island, have high and extremely high swelling 

potential (Table 3.1) especially in Nicosia, Famagusta, Larnaca, and Polis. This zone, which 

is mainly composed marl, also contains calcaremite, conglomerates, limestone, and gravel. 

Clays of Değirmenlik (Kythrea) Group; This group includes mostly turbidite rocks. The 

group consists of gravel, pebbles, greywacke, marl and abyssal turbidites with mostly 

shallow environmental limestone, chalk, marl, limestone, and gypsum. The tens of meters 

of clayey units, which are several meters thick in different formations of the Değirmenlik 

(Kythrea) group, exhibit varied swelling potential. Haspolat (Mia Milia) present 

intermediate to high swelling potential, Yılmazköy (Skylloura) and Yazılıtepe (Lapatza) 

formations present high to very high swelling potential (Atalar, 2004). 

Bentonitic Clays are formed by pillow lavas (Troodos Ophiolites) and form the first clays of 

Cyprus. Reaches a thickness of more than 300 meters in South Cyprus. Although 35% of 

bentonitic clays are calcium montmorillonite with low swelling potential, bentonitic clays 

have the highest swelling potential of Cyprus clays. 

Clays of Momonia Complex are within igneous-volcanic, and metamorphic rocks of the 

Mamonia Complex of Middle Triassic to Cretaceous ages. Their swelling potential is much 

less than in the bentonitic clays (Figure 3.2). 
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Figure 3.2: Cyprus soils map (Atalar and Das, 2009) 

 

Table 3.1:  Swelling potential of Cyprus clays (Atalar and Das, 2018) 

Clays Liquid Limit (LL) Swelling Potential 

Alluvium (North Nicosia) 32-48 Low-Intermediate 

Alluvium (South Nicosia) 60-115 High – Extremely High 

Mesaoria Clay Zone 52-119 High – Extremely High 

Değirmenlik Group Clay 47-88 Intermediate – High 

Mamonia Complex 33-167 Intermediate – Extremely High 

Bentonitic Clays 55-210 High – Extremely High 

 

3.2 Testing Methods 

Soils can be divided into coarse-grained soils and fine-grained soils. In order to make this 

distinction, the grain size distribution analysis method is used. Grain size distribution 

analysis is divided into sieve analysis and hydrometer test analysis. If the ratio of the material 

under the 0.075 mm sieve is less than 50% it is called as coarse-grain soil (Gravel, sand), 
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and if it is more than 50%, it is called as fine-grained soil (silt, clay). Fine-grained soils are 

determined by hydrometer analysis after sieve analysis. We need LL and PI values when 

classifying fine-grained soils. Atterberg limit tests are performed for this purpose. 

3.2.1. Grain size distribution 

Grain Size Distribution analysis can be defined as the combination of two methods; sieve 

analysis and hydrometer analysis. 

 

a) Sieve Analysis Test 

During the analysis of the field works, reports, and projects sieve analysis were performing 

by using appropriate sieves according to ASTM D6913-17 standards. Samples were dried 

overnight at 105 ° C to 110 ° C. After the samples were cooled, they took to the sieve and 

the sieving process is performed. In the process using sieves with different sizes, the amount 

of sample remaining after each sieve is noted. 

b) Hydrometer Test 

In accordance with ASTM D 422-63 - Standard Test Method for Particle-Size Analysis of 

Soils standards; 

• Samples remaining in the tray after sieve analysis are used for hydrometer analysis. 

Dispersing agents (Sodium Hexametaphosphate (40 g / L)) is added to the clay and 

silt grains to prevent them from sticking together and are allowed to soak for 10 

minutes. 

• The prepared solution is taken up in the precipitation vessel and pure water is added 

until the volume of the solution is reached.  

• The open-end vessel is sealed with a stopper and upend 30 times per minute. 

• After the vessel is directed, the cover is removed and time is recorded. After 1 minute 

40 seconds the hydrometer is placed in the cylinder for the first reading. 

• An identical 1000 ml vessel is filled with distilled water and the hydrometer is 

calibrated. Hydrometer reading in distilled water should normally be zero. A reading 

other than that is recorded and used as a hydrometer correction. 
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• For the first reading of the suspension, the hydrometer is slowly released into the 

liquid and the value is recorded. 

• In the hydrometer test, readings are performed after 30 seconds, 1, 2, 4, 8, 15, 30, 60, 

120, 240 and 1440 minutes. 

• At each reading, the temperature of the suspension liquid is recorded and after 

reading, the hydrometer is swirled inside the control vessel. 

After the hydrometer test is completed the calculation of the grain size is found by Equation 

3.1.  

𝐷𝐷 = 𝑂𝑂�
𝐻𝐻𝑒𝑒
𝑡𝑡

 (3.1) 

𝑂𝑂 = �
0.3𝜂𝜂

𝑔𝑔(𝐺𝐺 − 1)𝜌𝜌𝑤𝑤
� (3.2) 

 

In where; 

D is grain size, M is temperature, 𝜂𝜂 is water viscosity, G is specific gravity, ρw water density 

(g/ml), He is effective depth and t is sedimentation time. 

For the calculation of percentages of grain size smaller than D; 

 

 

In where; 

R is Hydrometer reading correction, Ms is dry soil mass. 

3.2.2. Atterberg limits 

Atterberg limits were determined by using distilled water on fine-grained soils. When 

performing the tests, ASTM D4318-17 (Standard Test Method for LL, PL of soils) standards 

𝑁𝑁 =  �
𝐺𝐺

𝐺𝐺 − 1
� ∗

𝑅𝑅
𝑂𝑂𝑠𝑠

∗ 100 (3.3) 
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are followed. The tests are performed with 200 gr soil sample which passes from No.40 

(0.425 mm) sieve. 

3.3 Artificial Neural Network 

3.3.1. Definition of ANN 

The basis of the ANNs began in 1942 with the first cell model proposed by McCulloch and Pitts. 

An ANN is a complex neural network composed of a combination of many simple nerve 

cells (Lippmann, 1987). Important features of ANNs are solving non-linear problems, 

having a distributed parallel structure, learning, error tolerance, and generalization. Through 

to these features are used in many areas. One of the important features of ANNs is learning 

and generalize this learning. By exploring the relationship between inputs and outputs given 

to the network, it is able to produce the appropriate outputs against unrecognized data (Garip, 

2011). 

ANN has a structure that model the functioning of live nervous system. In the live nervous 

system, the nerve cells receive signals and perform the signal transmission according to the 

signal they receive (Figure 3.3). The received signals are transmitted to the center of the cell 

(cell body). When the collected signals exceed the threshold, the signal is transmitted to the 

other nerve cells via the axon (Akkaya, 2011).  

 
Figure 3.3: Biological nerve cell structure (Brain Education, 2018) 
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ANN is formed by the combination of many artificial nerve cells. This combination takes 

place in layers, not arbitrary (Akkaya, 2011). 

We can mention about 3 learning strategies used in ANN. 

 

a) Supervised Learning: Supervised learning is a machine learning technique that 

produces a function through training data. In other words, in this learning technique, 

the algorithm generates a function that makes a matching function between inputs 

and outputs (Hinton et al., 1999). 

b) Unsupervised Learning: Unsupervised Learning model is a machine learning 

technique based on observations. In other words, the method tries to perform learning 

only through inputs without using output data. This method is especially used to 

collect the data set (Hinton et al., 1999). 

c) Reinforcement Learning:  Reinforcement Learning, a type of machine learning, 

demonstrates how an autonomous agent who senses the environment in which it is 

located and learns to make the right decisions to reach its goal (Johnson et al., 2000). 

3.3.2. Main components of ANN 

The artificial nerve cell is the basic element of the ANN and is also referred to as the 

processing element. A processing element consists of five components. These consist of 

inputs, weights, summing function, transfer function, and output. The similarities between the 

biological nervous system and the ANN are shown in Table 3.2 (Sağıroğlu et al., 2003).   

 

Table 3.2:  Biological Nervous System with similar features of ANN (Sağıroğlu et al., 

2003) 

Biological Nervous System Artificial Neural Network 
Dendrite Summing Function 
Cell Body  Artificial Neuron (Processing Element)  
Axons Transfer Function 
Neurons Artificial Neuron Output  
Synapses   Weights  
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3.3.2.1. Inputs 

The inputs are data from outside a neuron, and these data may come from an external neuron 

or neuron itself to the neuron (Aslay and Üstün, 2013). The basis of network training is input. 

3.3.2.2. Weights 

The weights are represented by w coefficients showing the effect of input data from the 

neural nerve on the nerve cell. Each input has a weight. The high weight value indicates that 

the input is important and the effective rate is high. Low weight values indicate that input is 

insignificant (Elmas, 2007). Weights are used in the relationship between input and output 

values (Garip, 2011). 

3.3.2.3. Summing function 

It calculates the net input from the neuron and different functions can be used to perform 

this calculation. The most commonly used method is the weighted sum (Hamzaçebi, 2011). 

The summing function equation is shown in Equation 3.4. 

𝑉𝑉𝑘𝑘 = �𝑥𝑥𝑖𝑖𝑤𝑤𝑘𝑘𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (3.4) 

 

In equation 3.4; 𝑉𝑉𝑘𝑘 is net input, 𝑥𝑥𝑖𝑖 is ANNs input values, 𝑤𝑤𝑘𝑘𝑖𝑖 is weights (i. input range k. 

neuron connecting weight), n is number of inputs. The selection of the summing function 

may vary depending on the problem. The trial and error method is used for the determination 

of ideal summing function.  

3.3.2.4 Activation function 

It is the function that keeps the output value against the net input value of the neuron in a certain 

range. It establishes a bond between the input and output values of the neuron (Haykin and 

Network, 2004). It processes the total input to the cell and generates the corresponding output. 
Different functions are used for output generating. Some network models require the use of a 

derivative function (Öztemel, 2003). 
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The activation function may be of different types depending on the function of the neuron. The 

optimal activation function can be found as a result of the attempts of the network developer, the 

activation functions can be fixed or adaptable. The most frequently used activation functions are 

sigmoid and hyperbolic tangent functions (Kakıcı, 2017). 

 

a) Sigmoid Function (logsig): The sigmoid activation function is a continuous and 

derivative function. It is one of the most frequently used functions in ANN 

applications due to its non-linearity. This function generates a value between zero 

and one for each of the input values. The input-output expression of this activation 

function and the change of the function relative to the input are given respectively in 

Equation 3.5 and in Figure 3.4. 

 

𝑎𝑎 =
1

1 + 𝑒𝑒−𝑛𝑛
 (3.5) 

 

 
Figure 3.4: Sigmoid activation function 

 

b) Hyperbolic tangent sigmoid function (tansig): For this activation function, the neuron 

input-output expression is given Equation 3.6 and the change of function are given 

in Figure 3.5. The dynamic change interval of the function is the range [-1 1] and the 

function shows a non-linear change in this range depending on the total input of the 

neuron. 

 

𝑎𝑎 =  
𝑒𝑒𝑛𝑛 − 𝑒𝑒−𝑛𝑛

𝑒𝑒𝑛𝑛 + 𝑒𝑒−𝑛𝑛
 (3.6) 
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Figure 3.5: Hyperbolic tangent sigmoid function 

c) Linear function (purelin): In this activation function, neuron output changes linearly 

according to the change of neuron inputs. The dynamic change interval is [-1 1]. The 

input-output characteristic of the function is given in Figure 3.6 and the function 

description is given Equation 3.7. 

 

𝑎𝑎 = 𝑛𝑛 (3.7) 

 

 
Figure 3.6: Linear (purelin) function 

 

3.3.2.5 Outputs 

The output value generated by the activation function. This value can be sent to the outside or to 

another neuron. The cell can use the generated output as input (Öztemel, 2003). 
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3.3.3. Neural network types 

There are many different types of ANN, such as;  

• Adaptive Resonance Theory (ART) Network 

• Backpropagation networks 

• Radial Basis Function (RBF) Network 

• Kohonen Network 

• Hopfield Network 

• Recurrent Neural Networks (RNN) 

 

3.3.3.1. Adaptive Resonance Theory (ART) Network 

ART, based on the functioning of the human brain, was developed by Stephen Grossberg and 

Gail Carpenter (Figure 3.7). This network consists of a set of neural networks that examine 

issues such as forecasting and pattern recognition using supervised and unsupervised learning 

methods. 

 

Figure 3.7: Adaptive resonance theory (ART) network structure (Miljkovic, 2010) 
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The basis of the network is the search for the presented model for a match in the stored 

categories. If this searching is not giving any matching, the network considers this model as 

an innovation. 

3.3.3.2. Backpropagation networks 

Backpropagation network is one of the most used artificial neural network models in 

engineering applications. The main principle of the Backpropagation network is to minimize 

the error obtained at the output of the selected network structure and to accordingly change 

the network weights. In this type of ANN, the processing elements (neurons) are arranged 

in layers. Each network model consists of at least three layers as input, hidden layer and 

output. 

The backpropagation network model consists of seven learning steps, the first four of which 

are forward, and the last three steps are backward steps. 

1. Defining the network structure: The number of inputs, output, a hidden layer, and 

neuron numbers is determined. 

2. Determination of initial network parameters: The weight and bias to be used in the 

selected network structure are determined. 

3. Identification the learning set to the network: A learning set consisting of inputs and 

outputs to be used to solve the problem or application is identified to the network. 

4. Presence the last output of the network: For each processing element used in the 

network architecture, the total input, and transfer values are calculated and the last 

output of the network is the presence. 

5. The error between the original value and the network output value is calculated. 

6. The error is distributed to backward weights, starting from the output layer. 

7. If the error is within acceptable limits, the operation is stopped, otherwise is returned 

to step 3. 

The backpropagation network model tries to reach to minimum error value  by increasing 

or decreasing the weight value it assigns after each approach. It is difficult to estimate the 

weight values to be used between input and output parameters. The advantage of the 

system are that the network propagation backwards and changes the weights according to 
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the error rate. As in this study, backpropagation network model is preferred for problems 

that do not have a linear relationship between input and output parameters. 

3.3.3.3. Radial basis function (RBF) networks 

RBF networks consist of a 3-layer structure, an input layer, a single hidden layer using the 

radial functions, and an output layer (Figure 3.8). 

 

 

Figure 3.8: RBF network structure  (Kaynar et al., 2016) 

 

The working principle of the RBF network is the process of determining the relationship 

between the input and output by creating linear combinations of the outputs produced by 

these functions with appropriate weight values by determining RBFs with appropriate width 

and center values in the hidden layer depending on the input data. 

3.3.3.4. Kohonen networks 

Kohonen networks aim to cluster data when groups are not initially known. Kohonen 

networks are a data visualization tool as well as being used for clustering purposes. Kohonen 

networks are a type of neural network that performs unsupervised learning as there is no 

output (dependent variable) o be estimated. 

3.3.3.5. Hopfield networks 

Hopfield network structures are mainly single layer and fully connected neural network 

structures used for associative purposes. Each unit in the network structure is a simple 
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threshold value processor unit and there is a bi-directional connection weighted between 

each processor unit pair. 

3.3.3.6. Recurrent networks 

The Recurrent Neural Network (RNN) is an artificial neural network model where the links 

between the units form a directed loop. With this loop, a network internal state has been 

created that allows it to display dynamic temporal behavior. In contrast to feed-forward 

neural networks, RNNs can use their input memory to process random sequences of inputs 

(Mikolov, 2010).
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CHAPTER 4 

DATA ANALYSIS AND RESULTS 

A kind of different approaches can be used to provide the relationship between the 

multivariate data. As a classical method, multivariate regression coefficient estimates can be 

used. Besides, in these days’ ANN are used as an alternative way to this method. This thesis 

includes 108 data from field works and previous reports, and projects such as Swelling Clay 

Project (Atalar, 2002; Geotest, 2014; Hussain 2016). These data are compiled according to 

grain size distribution (% sand, % silt, % clay) and Atterberg limit values. The main aim of 

this thesis is to predict soil classification with grain size distribution analysis by using ANN. 

Therefore, at the first phase of this study we predicted liquid limit and plasticity index from 

grain size distribution with ANN, and in the second phase, we determined soil classification 

from the Unified Soil Classification System (USCS) chart.  

4.1. Data Analysis Methods 

There are many methods used to determine the relationship between variables. However, in 

this study, multiple linear regression and artificial neural network training algorithm 

methods were used. The coefficient of determination is used as a parameter to determine the 

degree of accuracy of these methods. If it is necessary to explain this; Coefficient of 

determination (R2) is shown in Equation 4.1;  

𝑅𝑅2 = 1 −
𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆

 (4.1) 

Where; SSE (Equation 4.2) is the sum of squares of model errors and SST (Equation 4.3) is 

the square sum of the errors in the model. 

𝑆𝑆𝑆𝑆𝑆𝑆 = �(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2
𝑛𝑛

𝑖𝑖=1

 
(4.2) 
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𝑆𝑆𝑆𝑆𝑆𝑆 = �(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2
𝑛𝑛

𝑖𝑖=1

 
(4.3) 

It is one of the most important parameters used in observing the correspondence between 

estimated values and actual values. R2 values descriptive between 0 and +1. Chin (1998) 

described the accuracy level of R2 like substantial, more moderate, and weak (Table 4.1). 

Table 4.1: Accuracy of coefficient determination (Chin, 1998) 

R2 Desired Value 

0.67 Substantial 

0.33 More Moderate 

0.19 Weak 

 

Data normalization (Equation 4.4) has been applied in order to calculate the predicted values 

in a healthy and secure way. There are differences between the input and output parameter 

values. This process was applied to group the data in a certain order and range (between 0 

and 1). Another benefit of this process is to reduce the processing time. Is shown in Equation 

4.4. 

𝑋𝑋′ =
𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑖𝑖𝑛𝑛

𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑚𝑚𝑖𝑖𝑛𝑛
 (4.4) 

 

4.2. Multiple Linear Regression Analysis 

Multiple linear regression is the analysis of being able to explain the relationship between a 

single dependent variable and multiple independent variables (Equation 4.5). There is a 

correlation between the dependent and independent variables in this analysis method. 
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The most general regression equation; 

𝑌𝑌 =  𝑎𝑎0 + 𝑎𝑎1𝑋𝑋1 + 𝑎𝑎2𝑋𝑋2 + ⋯+ 𝑎𝑎𝑛𝑛𝑋𝑋𝑛𝑛 + 𝑒𝑒𝑖𝑖 (4.5) 

 

Where; Xi are independent, Yi dependent variables and ei is error term (Y-Ŷ). 

 

In this study, sand, silt, clay percentages were used as independent variables. Liquid limit 

and plasticity index were evaluated separately as dependent variables.  In Table 4.2 is shown 

that statistical properties of the data. 

Table 4.2: Data properties 

 % Sand % Silt % Clay LL PI 

Min 0.4 8.7 25.3 26.3 5.1 

Max 49.7 51.7 78.0 87.5 56.7 

Std. Dev. 12.98 9.55 12.37 15.05 13.81 

 

As is shown in Table 4.3 R2 values are about 0.38. The comparisons of multiple regression 

analysis results are shown in Figure 4.1 for LL and Figure 4.2 for PI. That’s mean the 

accuracy of variables being more moderate. This isn’t enough for us. Due to this reason, we 

can’t trust this analysis result. In cases where multiple regression analysis is inadequate, the 

ANN method is used as an alternative method. 

Table 4.3: Multiple linear regression analysis results 

Dependent 

Variables 

Independent Variables 
𝒂𝒂𝟎𝟎 R2 

%Sand %Silt %Clay 

LL 7.184287 6.890024 7.788753 -683.325 0.387924 

PI 7.198396 6.645002 7.507712 -690.861 0.374896 
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Figure 4.1: Multiple linear regression analysis results for LL 

 

 

Hata! Yer işareti tanımlanmamış.Figure 4.2: Multiple linear regression analysis results 

for PI 
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4.3. Artificial Neural Network Training Algorithm 

This study is presented in two separate sections. In the first section, an ANN model was 

proposed to predict LL and PI by using grain size distribution analysis values. Later, using 

predicted LL and PI values, classification of soils were determined. Figure 4.3 illustrates the 

steps adopted in the study for fulfilling above-mentioned procedures. 

 

 

Figure 4.3: Generalized base of the study 

 

4.3.1. Prediction to liquid limit and plasticity index 

ANN are computer-based modeling and statistical techniques that mimic the human brain's 

thinking and acting characteristics. This system consists of the input layer, hidden layers, the 

output layer, weights (w), and bias (b) as shown in Figure 4.4. Input values for the ANN 

model are given in the system and multiplied by the corresponding weights. After that, 

entries with weight sums from all input sources are added to the hidden layers. After data is 
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generated, the hidden layer transfer function is activated and it is calculated as the input 

layer. This process maintains until the output layer is obtained. 

 

Figure 4.4: The generalized ANN model 

4.3.1.1. Preparation of training and test data set 

After input and output data are gathered and structured; training and test sets must be 

established. A total of 108 data were used in this study, 88 were used for the training (Table 

4.4) and 20 of them used for the testing (Table 4.5).  Normalization has been also applied to 

the inout and output data sets during the development of the ANN tool. 
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Table 4.4: Normalized input and output data for training 

Input Data  Output Data 
Sand Silt Clay  LL PL PI 
0.00 0.74 0.64  0.41 0.68 0.28 
0.00 0.74 0.64  0.43 0.70 0.29 
0.04 0.46 0.83  0.48 0.95 0.22 
0.05 0.50 0.79  0.33 0.58 0.24 
0.06 0.48 0.80  0.74 0.66 0.68 
0.06 0.48 0.80  0.74 0.66 0.68 
0.06 0.44 0.83  0.71 0.54 0.71 
0.07 0.49 0.78  0.74 0.63 0.70 
0.08 0.56 0.72  0.46 0.95 0.21 
0.08 0.34 0.89  0.84 0.76 0.74 
0.09 0.40 0.84  0.82 0.70 0.76 
0.09 0.40 0.84  0.82 0.70 0.76 
0.09 0.45 0.79  0.48 0.92 0.24 
0.10 0.42 0.81  0.32 0.66 0.18 
0.10 0.41 0.77  0.34 0.77 0.15 
0.10 0.37 0.85  0.76 0.70 0.68 
0.10 0.42 0.75  0.33 0.66 0.20 
0.10 0.39 0.83  0.32 0.67 0.17 
0.10 0.53 0.72  0.49 0.96 0.23 
0.13 0.38 0.75  0.35 0.76 0.16 
0.13 0.63 0.60  0.22 0.61 0.09 
0.14 1.00 0.30  0.34 0.70 0.18 
0.15 0.13 1.00  1.00 0.69 0.97 
0.27 0.48 0.60  0.19 0.60 0.05 
0.28 0.50 0.58  0.19 0.62 0.05 
0.29 0.20 0.81  0.92 0.65 0.90 
0.29 0.26 0.75  0.86 0.60 0.85 
0.31 0.23 0.77  0.89 0.65 0.86 
0.33 0.34 0.66  0.57 0.62 0.50 
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Table 4.4 Continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input Data  Output Data 
Sand Silt Clay  LL PL PI 
0.34 0.21 0.75  0.91 0.62 0.90 
0.35 0.22 0.73  0.87 0.47 0.93 
0.36 0.19 0.75  0.71 0.52 0.71 
0.36 0.55 0.39  0.13 0.38 0.09 
0.36 0.67 0.36  0.61 1.00 0.35 
0.37 0.61 0.40  0.12 0.38 0.09 
0.38 0.28 0.66  0.84 0.73 0.76 
0.39 0.59 0.40  0.71 0.16 0.90 
0.39 0.59 0.40  0.71 0.16 0.90 
0.40 0.21 0.70  0.74 0.70 0.66 
0.41 0.16 0.73  0.73 0.15 0.92 
0.41 0.32 0.60  0.06 0.34 0.03 
0.42 0.33 0.59  0.69 0.65 0.62 
0.42 0.24 0.66  0.80 0.64 0.76 
0.42 0.58 0.38  0.70 0.89 0.51 
0.42 0.58 0.38  0.70 0.89 0.51 
0.42 0.23 0.66  0.63 0.28 0.74 
0.42 0.19 0.70  0.72 0.41 0.78 
0.44 0.26 0.62  0.67 0.55 0.66 
0.49 0.64 0.26  0.50 0.69 0.39 
0.50 0.20 0.62  0.69 0.55 0.67 
0.52 0.57 0.29  0.15 0.35 0.13 
0.54 0.24 0.54  0.79 0.55 0.79 
0.54 0.19 0.58  0.69 0.48 0.71 
0.54 0.64 0.22  0.05 0.17 0.11 
0.54 0.65 0.21  0.57 0.68 0.47 
0.54 0.65 0.21  0.57 0.68 0.47 
0.54 0.71 0.16  0.85 0.90 0.69 
0.57 0.25 0.51  0.64 0.37 0.71 
0.57 0.20 0.54  0.75 0.73 0.65 
0.58 0.75 0.09  0.17 0.34 0.16 
0.58 0.24 0.51  0.65 0.37 0.72 
0.59 0.09 0.62  0.66 0.47 0.68 
0.60 0.22 0.51  0.68 0.41 0.73 
0.60 0.79 0.04  0.16 0.20 0.22 
0.61 0.19 0.53  0.55 0.73 0.42 
0.62 0.15 0.54  0.66 0.46 0.68 
0.63 0.05 0.62  0.73 0.00 1.00 
0.63 0.16 0.53  0.70 0.54 0.69 
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Table 4.4 Continued 

 

 

 

 

 

 

 

 

 

 

 

 

Input Data  Output Data 
Sand Silt Clay  LL PL PI 
0.34 0.21 0.75  0.91 0.62 0.90 
0.35 0.22 0.73  0.87 0.47 0.93 
0.36 0.19 0.75  0.71 0.52 0.71 
0.36 0.55 0.39  0.13 0.38 0.09 
0.36 0.67 0.36  0.61 1.00 0.35 
0.37 0.61 0.40  0.12 0.38 0.09 
0.38 0.28 0.66  0.84 0.73 0.76 
0.39 0.59 0.40  0.71 0.16 0.90 
0.39 0.59 0.40  0.71 0.16 0.90 
0.40 0.21 0.70  0.74 0.70 0.66 
0.41 0.16 0.73  0.73 0.15 0.92 
0.41 0.32 0.60  0.06 0.34 0.03 
0.42 0.33 0.59  0.69 0.65 0.62 
0.42 0.24 0.66  0.80 0.64 0.76 
0.42 0.58 0.38  0.70 0.89 0.51 
0.42 0.58 0.38  0.70 0.89 0.51 
0.42 0.23 0.66  0.63 0.28 0.74 
0.42 0.19 0.70  0.72 0.41 0.78 
0.44 0.26 0.62  0.67 0.55 0.66 
0.49 0.64 0.26  0.50 0.69 0.39 
0.50 0.20 0.62  0.69 0.55 0.67 
0.52 0.57 0.29  0.15 0.35 0.13 
0.54 0.24 0.54  0.79 0.55 0.79 
0.54 0.19 0.58  0.69 0.48 0.71 
0.54 0.64 0.22  0.05 0.17 0.11 
0.54 0.65 0.21  0.57 0.68 0.47 
0.54 0.65 0.21  0.57 0.68 0.47 
0.54 0.71 0.16  0.85 0.90 0.69 
0.57 0.25 0.51  0.64 0.37 0.71 
0.57 0.20 0.54  0.75 0.73 0.65 
0.58 0.75 0.09  0.17 0.34 0.16 
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Table 4.4 Continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input Data  Output Data 
Sand Silt Clay  LL PL PI 
0.64 0.08 0.58  0.61 0.54 0.59 
0.65 0.78 0.00  0.10 0.10 0.20 
0.66 0.24 0.43  0.56 0.48 0.56 
0.71 0.19 0.43  0.49 0.54 0.44 
0.73 0.09 0.49  0.56 0.37 0.61 
0.74 0.11 0.47  0.56 0.40 0.60 
0.74 0.22 0.37  0.54 0.38 0.58 
0.75 0.07 0.49  0.45 0.52 0.41 
0.76 0.09 0.47  0.53 0.36 0.59 
0.78 0.30 0.27  0.01 0.24 0.02 
0.79 0.31 0.26  0.00 0.25 0.01 
0.79 0.19 0.35  0.53 0.38 0.57 
0.80 0.17 0.35  0.53 0.37 0.58 
0.80 0.15 0.37  0.49 0.32 0.55 
0.81 0.21 0.32  0.51 0.34 0.57 
0.81 0.27 0.26  0.00 0.27 0.00 
0.86 0.15 0.32  0.50 0.36 0.54 
0.87 0.00 0.43  0.46 0.39 0.48 
0.98 0.08 0.26  0.46 0.38 0.49 
1.00 0.01 0.30  0.47 0.20 0.59 
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Table 4.5: Normalized input and output data for test 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.1.2. Ann structure 

Some parameters have been selected for the generation of the ANN model for estimating the 

output parameters. 

Prediction for LL values 9 models was developed. The results of those models are shown in 

Table 4.6. The best-structured model was determined with R2 values (Figure 4.5). 

 

 

 

 

 

Input Data  Output Data 
Sand Silt Clay  LL PL PI 
0.06 0.44 0.83  0.71 0.54 0.71 
0.07 0.49 0.78  0.74 0.63 0.70 
0.08 0.34 0.89  0.84 0.76 0.74 
0.09 0.41 0.83  0.47 0.93 0.22 
0.10 0.37 0.85  0.76 0.70 0.68 
0.10 0.40 0.77  0.34 0.77 0.16 
0.29 0.34 0.70  0.89 0.89 0.74 
0.36 0.67 0.36  0.61 1.00 0.35 
0.42 0.33 0.59  0.69 0.65 0.62 
0.49 0.64 0.26  0.50 0.69 0.39 
0.52 0.57 0.29  0.15 0.35 0.13 
0.54 0.64 0.22  0.05 0.17 0.11 
0.54 0.71 0.16  0.85 0.90 0.69 
0.58 0.75 0.09  0.17 0.34 0.16 
0.60 0.79 0.04  0.16 0.20 0.22 
0.62 0.15 0.54  0.62 0.22 0.76 
0.65 0.78 0.00  0.10 0.10 0.20 
0.79 0.03 0.49  0.53 0.38 0.56 
0.87 0.07 0.37  0.44 0.33 0.49 
0.91 0.10 0.32  0.53 0.37 0.57 
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Table 4.6: ANN models for LL prediction 

     R2 

Model 
No Output 

Number 
of 

Layers 

Number 
of 

Neurons 

Transfer 
Functions Training Validation Testing Adjust 

R2 

1 LL 2 5 Tansig 
Tansig 0.79 0.59 0.73 0.76 

2 LL 2 5 Tansig 
Logsig 0.73 0.41 0.43 0.65 

3 LL 2 5 Logsig 
Logsig 0.61 0.55 0.52 0.58 

4 LL 2 7 Tansig 
Tansig 0.74 0.89 0.65 0.76 

5 LL 2 7 Tansig 
Logsig 0.67 0.59 0.51 0.64 

6 LL 2 7 Logsig 
Logsig 0.74 0.83 0.89 0.76 

7 LL 2 10 Tansig 
Tansig 0.82 0.88 0.82 0.83 

8 LL 2 10 Tansig 
Logsig 0.77 0.86 0.89 0.79 

9 LL 2 10 Logsig 
Logsig 0.62 0.59 0.62 0.61 

Regression analysis results of models are given in Appendix 2. 

 
Figure 4.5: Comparison ANN models for predict LL 
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As shown in Table 4.6 and Figure 4.5, the Model 7 was determined the best structure to 

solve this problem. Some model’s regression analysis results are shown in Figure 4.6a, b, c, 

and d. 

 
Figure 4.6: Regression analysis results; a) Model 5, and b) Model 3 
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Prediction for PI values 9 models was developed. The results of those models are shown in 

Table 4.7. The best-structured model was determined with R2 values (Figure 4.7). 

Table 4.7: ANN models for PI prediction 

     R2 

Model 
No Output 

Number 
of 

Layers 

Number 
of 

Neurons 

Transfer 
Functions Training Validation Testing Adjust 

R2 

1 PI 2 5 Tansig 
Tansig 0.84 0.79 0.7 0.81 

2 PI 2 5 Tansig 
Logsig 0.7 0.61 0.55 0.66 

3 PI 2 5 Logsig 
Logsig 0.69 0.62 0.60 0.66 

4 PI 2 7 Tansig 
Tansig 0.88 0.87 0.88 0.88 

5 PI 2 7 Tansig 
Logsig 0.61 0.64 0.72 0.63 

6 PI 2 7 Logsig 
Logsig 0.63 0.65 0.56 0.61 

7 PI 2 10 Tansig 
Tansig 0.69 0.72 0.64 0.70 

8 PI 2 10 Tansig 
Logsig 0.62 0.69 0.73 0.64 

9 PI 2 10 Logsig 
Logsig 0.67 0.61 0.67 0.65 

The regression analysis result of models is given in Appendix 3. 

 

Figure 4.7: Comparison ANN models for predict PI 
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As shown in Table 4.7 and Figure 4.7, the Model 4 was determined the best structure to 

solve this problem. Some model’s regression analysis results are shown in Figure 4.8a, b, c, 

and d. 

 

Figure 4.8: Regression analysis results; a) Model 2, and b) Model 7 
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It has been tried to find optimum values while selecting these parameters that are given in 

Table 4.8. 

Backpropagation feedforward model was used in this study with supervised learning 

technique. In the development of ANN tool,  "nntool" tool which is available as a ready tool 

in MatLab R2013a software is used. As a result of the models generated by selecting the 

appropriate number of layers and hidden element values for each output parameter (Figure 

4.9), the learning process is trained to achieve optimum results. 

Table 4.8 ANN structure parameters 

Parameters 
Values 

LL PI 

Input Parameter 3 3 

Number of Layers 2 2 

Number of Neurons 10 7 

Transfer Function Tansig Tansig 

Network Type Feed-forward       backpropagation 

 

 
Figure 4.9: ANN model sample 

In figure 4.9 Input represents the grain size distribution data, w is weight, b is bias and Output 

is LL or PI. 

4.3.1.3. Ann training 

Once the model is created, the system needs to be trained. The data for the training is written 

in vector format according to the program. In the model 70% of the data were used for the 

training, 15% for validation and 15% for the test.  
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a) Liquid Limit Prediction 

Predicting of liquid limit values; the data for the training is entered into the system (Figure 

4.10) and the predicting process is performed from the program.  

The program is called approaches until the calculated values reach the optimum value and 

the operation stops when the optimum values are reached or the limit values are reached. 

 

Figure 4.10: Data entry into the network 

In order to examine the relationship between the values obtained as a result of the regression 

and the actual values, the regression graph generated at the end of the process is looked at. 

In our study, adjusted R2 values were calculated as 0.82 for the training, 0.82 for the 

validation, 0.88 for the test, and 0.83 for all data (Figure 4.11). 
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Figure 4.11: Regression analysis result for LL 

After checking the predicted values and real data relationship (Table 4.9) we calculated an 

R2 value which is found as 0.85. 
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Table 4.9: Comparison of the training dataset for LL values 

LL LL 
Predicted  LL LL 

Predicted  LL LL 
Predicted 

0.41 0.49  0.12 0.16  0.61 0.65 
0.43 0.49  0.84 0.70  0.10 0.09 
0.48 0.60  0.71 0.62  0.56 0.52 
0.33 0.36  0.71 0.62  0.49 0.57 
0.74 0.76  0.74 0.76  0.56 0.58 
0.74 0.76  0.73 0.66  0.56 0.57 
0.71 0.76  0.06 0.03  0.54 0.50 
0.74 0.57  0.69 0.53  0.45 0.57 
0.46 0.53  0.80 0.76  0.53 0.55 
0.84 0.85  0.70 0.61  0.01 0.01 
0.82 0.62  0.70 0.61  0.00 0.08 
0.82 0.62  0.63 0.74  0.53 0.51 
0.48 0.52  0.72 0.72  0.53 0.51 
0.32 0.55  0.67 0.70  0.49 0.52 
0.34 0.35  0.50 0.67  0.51 0.48 
0.76 0.69  0.69 0.74  0.00 0.03 
0.33 0.30  0.15 0.26  0.50 0.49 
0.32 0.59  0.79 0.68  0.46 0.51 
0.49 0.50  0.69 0.72  0.46 0.47 
0.35 0.27  0.05 0.07  0.47 0.47 
0.22 0.42  0.57 0.47    
0.34 0.33  0.57 0.47    
1.00 0.97  0.85 0.61    
0.19 0.21  0.64 0.63    
0.19 0.24  0.75 0.69    
0.92 0.94  0.17 0.33    
0.86 0.91  0.65 0.65    
0.89 0.93  0.66 0.68    
0.57 0.32  0.68 0.66    
0.91 0.87  0.16 0.17    
0.87 0.84  0.55 0.68    
0.71 0.81  0.66 0.66    
0.13 0.14  0.73 0.67    
0.61 0.73  0.70 0.66    

R2= 0.85 
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ANN model trained with training data should be simulated with a test data set. As a result of 

this operation (Table 4.10), the R2 value is calculated as 0.86. 

Table 4.10: Comparison of the test data set for LL values 

LL LL 
Predicted 

0.71 0.66 
0.74 0.66 
0.84 0.85 
0.47 0.59 
0.76 0.69 
0.34 0.33 
0.89 0.85 
0.61 0.73 
0.69 0.63 
0.50 0.67 
0.15 0.26 
0.05 0.08 
0.85 0.61 
0.17 0.33 
0.16 0.17 
0.62 0.66 
0.10 0.03 
0.53 0.55 
0.44 0.50 
0.53 0.48 

R2= 0.86 
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The relationship with the real and predicted data of LL values is shown in Figure 4.12. 

 

Figure 4.12: Comparison between real and predict data for LL 

b) Plasticity Index Prediction 

Predicting of plasticity index values; the data for the training is entered into the system 

(Figure 4.13) and the predicting process is performed from the program.  

The program operates until the calculated values reach the optimum values and it stops the 

operation once the desired values are predicted (optimum values); in other words, the 

program stops once the plasticity index values are predicted favorably. 
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Figure 4.13: Data entry into the network 

In order to examine the relationship between the actual values and the predictions, the 

regression graph is plotted at the end of the training process. In our study, adjusted R2 for PI 

values were calculated as 0.86 for the training, 0.87 for the validation, 0.88 for the test, and 

0.87 for all data (Figure 4.14). 
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Figure 4.14: Regression analysis result for PI 

After checking the predicted values and real data relationship (Table 4.11) we calculated an 

R2 value for PI which was 0.81. 
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Table 4.11: Comparison of training data set for PI values 

PI PI 
Predicted  PI PI 

Predicted  PI PI 
Predicted 

0.28 0.31  0.09 0.40  0.59 0.63 
0.29 0.31  0.76 0.72  0.20 0.07 
0.22 0.37  0.90 0.62  0.56 0.53 
0.24 0.24  0.90 0.62  0.44 0.60 
0.68 0.68  0.66 0.84  0.61 0.58 
0.68 0.68  0.92 0.74  0.60 0.58 
0.71 0.65  0.03 0.03  0.58 0.53 
0.70 0.46  0.62 0.36  0.41 0.58 
0.21 0.25  0.76 0.79  0.59 0.58 
0.74 0.71  0.51 0.49  0.02 0.03 
0.76 0.87  0.51 0.49  0.01 0.02 
0.76 0.87  0.74 0.73  0.57 0.55 
0.24 0.19  0.78 0.76  0.58 0.56 
0.18 0.42  0.66 0.64  0.55 0.57 
0.15 0.00  0.39 0.44  0.57 0.51 
0.68 0.48  0.67 0.74  0.00 0.07 
0.20 0.00  0.13 0.24  0.54 0.56 
0.17 0.19  0.79 0.76  0.48 0.56 
0.23 0.15  0.71 0.77  0.49 0.56 
0.16 0.00  0.11 0.28  0.59 0.56 
0.09 0.00  0.47 0.27    
0.18 0.19  0.47 0.27    
0.97 0.93  0.69 0.34    
0.05 0.03  0.71 0.68    
0.05 0.07  0.65 0.73    
0.90 0.96  0.16 0.21    
0.85 0.79  0.72 0.70    
0.86 0.96  0.68 0.67    
0.50 0.49  0.73 0.71    
0.90 0.92  0.22 0.20    
0.93 0.89  0.42 0.71    
0.71 0.90  0.68 0.66    
0.09 0.00  1.00 0.63    
0.35 0.30  0.69 0.66    

R2= 0.81 
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ANN model trained with training data should be simulated with a test data set. As a result of 

this operation (Table 4.12), the R2 value for PI is calculated as 0.82.  

Table 4.12. Comparison of the test data set for PI values 

PI PI 
Predicted 

0.71 0.59 
0.70 0.64 
0.74 0.79 
0.22 0.25 
0.68 0.60 
0.16 0.22 
0.74 0.45 
0.35 0.47 
0.62 0.50 
0.39 0.43 
0.13 0.30 
0.11 0.28 
0.69 0.63 
0.16 0.29 
0.22 0.32 
0.76 0.70 
0.20 0.24 
0.56 0.59 
0.49 0.59 
0.57 0.56 

R2= 0.82 
 

The relationship with the real and predicted data of PI is shown in Figure 4.15. 
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Figure 4.15: Comparison between real and predict data for PI 

4.3.2. Determination of soil classification 

The second part of the study includes finding the soil classification by using predicted LL 

and PI values. We used USCS Chart (Figure 4.16) for determined soil classification. When 

fine-grained soils are classified, some letters are taken according to some conditions 

depending on LL and PI values. These; 

• L is low plasticity 

• H is high plasticity  

 

Figure 4.16: Unified Soil Classification System Symbol Chart (Wagner, 1957) 
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In this part of the study, the real data (Figure 4.17 and Figure 4.18) and the predicted data 

(Figure 4.19 and Figure 4.20) are classified separately with the aid of the classification chart.  

 

 
Figure 4.17: Real data set classification which used for training 

 
Figure 4.18: Real data set classification which used for testing 

 

Liquid Limit (LL) 
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Figure 4.19: Predicted data set classification which used for training 

 

Figure 4.20: Predicted data set classification which used for testing 

Table 4.13 and Table 4.14 are prepared so that the accuracy of adaptation of the study done 

can be better understood. The table is divided into two parts (True and False) and the real 

soil classification and the predicted soil classification are compared. True (T) represents that 

the real soil classification and predicted soil classification are the same, and if it is false (F), 

it represents that the real soil classification and predicted soil classification are different. 
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Table 4.13: Comparison of soil classification with training data set 

Real   Predicted  True/False  Real  Predicted True/False 
M H   M H  T   C H  C H T  
M H   M H  T   C H  C H T  
M H   M H  T   M L  C L  F 
M L   M L  T   C H  M H  F 
C H   C H  T   C H  C H T  
C H   C H  T   M H  M H T  
C H   C H  T   M H  M H T  
C H   M H   F  C H  C H T  
M H   M H  T   C H  C H T  
C H   M H   F  C H  C H T  
C H   C H  T   M H  M H T  
C H   C H  T   C H  C H T  
M H   M H  T   C L  C L T  
M L   M H   F  C H  C H T  
M L   M L  T   C H  C H T  
C H   M H   F  C L  C L T  
M L   M L  T   M H  M H T  
M L   M H   F  M H  M H T  
M H   M H  T   M H  M H T  
M L   M L  T   C H  C H T  
M L   M H   F  C H  C H T  
M L   M L  T   C L  M L  F 
C H   C H  T   C H  C H T  
M L   M L  T   C H  C H T  
M L   M L  T   C H  C H T  
C H   C H  T   C L  C L T  
C H   C H  T   M H  C H  F 
C H   C H  T   C H  C H T  
C H   C L   F  C H  C H T  
C H   C H  T   C H  C H T  
C H   C H  T   C H  C H T  
C H   C H  T   C L  C L T  
M L   M L  T   C H  C H T  
M H   M H  T   C H  C H T  
M L   C L   F  C H  C H T  
C H   C H  T   C H  C H T  
C H   C H  T   C H  C H T  
C H   C H  T   C H  C H T  
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Table 4.13 Continued 

Real  Predicted  True/False 
C H  C H  T  
C L  C L  T  
C L  M L   F 
C H  C H  T  
C H  C H  T  
C H  C H  T  
C H  C H  T  
C L  C L  T  
C H  C H  T  
C H  C H  T  
C H  C H  T  
C H  C H  T  
75 True/13 False = %85.22 Accuracy 

 

As a result of the data used for training, 75 of the 88 classifications were found to be correct 

in the soil classifications. This gives an accuracy of about 85%.  

Table 4.14: Comparison of soil classification with test data set 

Real  Predicted  True/False 
C H  C H  T  
C H  C H  T  
C H  C H  T  
M H  M H  T  
C H  C H  T  
M L  M L  T  
M H  M H  T  
M H  M H  T  
C H  M H   F 
M H  M H  T  
C L  C L  T  
C L  C L  T  
M H  C H   F 
C L  C L  T  
C L  C L  T  
C H  C H  T  
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Table 4.12 Continued 

Real  Predicted  True/False 

C L  C L  T  

C H  C H  T  

C H  C H  T  

C H  C H  T  

18 True/2 False = %90.00 Accuracy 

 

As a result of the data used for training, 18 of the 20 classifications were found to be correct 

in the soil classifications, which gives an accuracy of about 90%.  

4.4. Results 

The determination of soil classification has an important place in geotechnical engineering 

which is one of the most important areas of civil engineering. As mentioned in Chapter 2, 

different soil characteristics play an effective role in determining the soil classification. 

Some of these features are in a linear relationship with each other. However, there is no 

linear relationship between grain size distribution values and LL-PI values used in this study. 

We can reach this result with multiple linear analysis results. 

 

In the previous studies, the values of R2, which are estimated different soil properties 

performing using different input parameters, vary in the range of 0.67-0.97. The data used 

in this thesis were derived from the North Cyprus clays described in Chapter 3, from the 

Değirmenlik Group Clay, Mesaoria Zone, and Alluvium groups. As a result of these studies, 

R2 values vary between 0.81 and 0.87. Besides, it is concluded that the accuracy ranges from 

85% to 90% in the soil classification. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusions 

ANN, which is becoming more widespread in the fields of science and engineering, is also 

a useful method in geotechnical engineering fields. This study presents the advantages of 

using ANN in cases where classical regression methods are inadequate. In total, 108 data 

sets are used in the development of the ANN tool. It was aimed to maximize the validity of 

the program with selected examples from North Cyprus.  

The following conclusions can be reached as a result of the studies carried out; 

1. There is no direct relationship between the liquid limit and plasticity index and sieve 

analysis values. 

2. The tansig transfer function among the transfer functions for the data used in this 

study enabled us to achieve better results than the logsig transfer function.  

3. As a result of the study with ANN, a connection could be made between the 

parameters that are not directly related. 

4. By using the ANN method, we can reach the sieve analysis values and the Atterberg 

values with a high accuracy rate. 

5. There is a higher connection between the LL values and the sieve analysis values 

than PI values. 

6. The validity and accuracy of the system have been tested by making the soil 

classification with the LL and PI values as a result of the ANN. 

7. ANN can successfully apply in engineering problems that are more affected by 

variables such as soil properties.  

8. No attempt was made to find the relationship of different soils. 
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5.2. Recommendations 

1. This study was carried out only on North Cyprus soils, especially on the clays. Work 

areas and parameters can be expanded during future work.  

2. Similar work within the same soil groups will point out the relationship of the soils 

with different swelling potential
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Appendix 1: Samples used in this study  

 

INPUTS 
 

OUTPUTS 

Sand Silt Clay LL PI 

49.7 9.3 41.0 55.0 35.4 
48.9 12.1 39.0  54.6 30.3 
45.2 12.8 42.0  58.5 34.7 
43.3 8.7 48.0  54.5 30.1 
43.2 11.9 45.0  53.2 30.3 
42.9 15.2 42.0  56.8 33.2 
40.4 17.6 42.0  57.8 34.6 
40.0 15.0 45.0  56.3 33.6 
39.9 16.1 44.0  58.9 35.1 
39.2 16.8 44.0  58.7 34.4 
39.1 9.9 51.0  58.5 34.2 
37.6 12.4 50.0  58.9 35.3 
37.4 11.6 51.0  54.0 26.2 
36.8 18.2 45.0  59.1 34.8 
36.7 13.3 50.0  60.7 35.9 
36.5 12.5 51.0  60.3 36.5 
35.3 16.7 48.0  56.0 27.7 
32.8 19.2 48.0  60.8 34.1 
32.0 12.1 56.0  63.8 35.5 
31.6 15.4 53.0  69.0 40.7 
31.3 10.7 58.0  71.0 56.7 
30.8 15.2 54.0  64.2 44.2 
30.8 15.2 54.0  66.5 40.3 
30.3 16.7 53.0  59.9 26.6 
29.8 18.2 52.0  67.9 42.9 
29.6 12.4 58.0  66.7 40.1 
29.1 18.9 52.0  65.9 42.1 
28.7 17.3 54.0  72.0 38.7 
28.7 19.3 52.0  65.4 41.6 
27.0 17.0 56.0  68.3 41.6 
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INPUTS  OUTPUTS 
Sand Silt Clay LL PI 
22.2 19.9 58.0 67.5 38.9 
21.2 16.8 62.0  70.4 45.4 
21.2 18.8 60.0  65.0 43.4 
21.1 19.0 60.0  75.5 44.5 
20.4 15.6 64.0  71.0 52.7 
20.2 17.8 62.0  71.4 38.9 
19.2 20.8 60.0  77.6 44.3 
18.2 16.8 65.0  69.5 41.7 
17.7 18.3 64.0  79.5 53.0 
17.3 17.7 65.0  81.8 51.5 
16.5 23.5 60.0  61.2 30.8 
15.5 18.5 66.0  80.9 49.6 
14.9 20.1 65.0  78.9 48.9 
14.8 23.2 62.0  81.0 43.5 
14.7 17.3 68.0  82.7 51.3 
7.6 14.4 78.0  87.5 55.2 
40.4 20.4 39.2  26.3 5.1 
39.1 21.9 39.0  26.5 5.6 
38.9 21.8 39.3  26.8 6.2 
32.6 42.1 25.3  32.3 15.4 
30.2 42.5 27.3  36.1 16.7 
29.1 41.1 29.8  36.6 13.5 
27.2 39.1 33.7  78.5 40.9 
27.1 36.1 36.8  29.5 10.8 
27.1 36.7 36.2  61.4 29.6 
26.2 33.3 40.5  35.3 11.8 
24.6 36.3 39.1  57.2 25.0 
21.1 33.5 45.4  68.9 31.5 
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INPUTS  OUTPUTS 
Sand Silt Clay LL PI 
5.3 26.3 66.0 46.9 12.7 
21.0 22.8 56.2  68.4 37.1 
20.7 22.3 57.0  30.0 6.8 
19.6 34.2 46.2  69.9 51.4 
18.5 35.0 46.5  33.9 9.8 
18.3 32.5 46.0  34.2 9.9 
18.3 37.6 44.1  63.7 23.4 
14.0 30.0 56.0  38.0 7.5 
13.8 29.2 57.0  37.7 7.8 
7.3 51.7 41.0  47.1 14.6 
7.0 25.2 65.0  47.7 13.6 
7.0 36.0 57.0  40.0 9.8 
5.5 26.1 66.0  47.4 13.2 
5.4 26.9 65.0  46.8 15.4 
5.4 25.6 69.0  45.9 14.1 
5.4 31.6 63.0  56.3 17.0 
5.3 24.7 70.0  72.6 40.1 
5.3 26.7 68.0  45.7 14.2 
4.8 28.2 67.0  55.7 17.5 
4.6 26.4 69.0  55.1 16.7 
4.6 26.0 69.4  76.7 44.3 
4.5 23.5 72.1  77.6 43.5 
4.4 32.6 63.0  54.6 15.7 
4.1 29.7 66.2  71.8 41.2 
3.3 27.7 69.0  70.0 41.6 
3.1 29.4 67.5  71.7 40.1 
2.9 30.1 67.0  46.8 17.4 
2.5 28.5 69.0  55.5 16.4 
0.4 40.6 59.0  51.4 19.3 
0.4 40.4 59.2  52.6 20.2 
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INPUTS  OUTPUTS 

Sand Silt Clay LL PI 

30.2 42.5 27.3 36.1 16.7 

29.1 41.1 29.8  36.6 13.5 

27.2 39.1 33.7  78.5 40.9 

27.1 36.1 36.8  29.5 10.8 

27.1 36.7 36.2  61.4 29.6 

26.2 33.3 40.5  35.3 11.8 

24.6 36.3 39.1  57.2 25.0 

21.1 33.5 45.4  68.9 31.5 

21.0 22.8 56.2  68.4 37.1 

19.6 34.2 46.2  69.9 51.4 

18.3 37.6 44.1  63.7 23.4 

5.3 24.7 70.0  72.6 40.1 

4.6 26.0 69.4  76.7 44.3 

4.5 23.5 72.1  77.6 43.5 

4.1 29.7 66.2  71.8 41.2 

3.3 27.7 69.0  70.0 41.6 

3.1 29.4 67.5  71.7 40.1 
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Appendix 2: Regression analysis results for LL 
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Appendix 3: Regression analysis results for PI 
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