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ABSTRACT 

 

In the present study, a source identification problem for telegraph equations is studied. 

Using tools of classical approach, we are enabled to obtain the solution of the several 

source identification problems for telegraph equations. Furthermore, difference schemes 

for the numerical solution of the source identification problem for telegraph equations 

are presented. Then, these difference schemes are tested on an example and some 

numerical results are presented 

 Keywords: Source identification problems; telegraph equations; Fourier series method; 

Laplace transform and Fourier transform solutions; difference schemes; modified Gauss 

elimination method 
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ÖZET 

 

Bu çalışmada, telegraf denklemleri için kaynak tanımlama problemi incelenmiştir. 

Klasik yaklaşım araçları, telegraf denklemleri için çeşitli kaynak tanımlama 

problemlerinin çözümünü elde etmemize imkan tanır. Ayrıca, telegraf denklemleri için 

kaynak tanımlama probleminin sayısal çözümü için fark şemaları sunulmuştur. Daha 

sonra bu fark şemaları bir örnek üzerinde test edilip bazı sayısal sonuçlar verilmiştir. 

Anahtar Kelimeler: Kaynak tanımlama problemleri; telegraf denklemleri; Fourier serisi 

yöntemi; Laplace dönüşümü ve Fourier dönüşümü çözümleri; fark şemaları; modifiye 

Gauss eliminasyon yöntemi 
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CHAPTER 1

INTRODUCTION

Identification problems take an important place in applied sciences and engineering applica-

tions and have been studied by many authors (Prilepko et al.,1987; Kabanikhin and Krivo-

rotko, 2015; Isakov, 1998; Belov, 2002; Kimura and Suzuki, 1993; Gryazin et al., 1999). The

theory and applications of source identification problems for partial differential equations

have been given in various papers (Orlovskii and Piskarev, 2013; Orlovsky and Piskarev,

2018; Ashyralyyev, 2014; Ashyralyev and Ashyralyyev, 2014; Ashyralyyev and Dedeturk,

2013; Ashyralyyev and Demirdag, 2012; Ashyralyev and Urun, 2014; Kostin, 2013; Eidel-

man, 1984; Eidelman, 1978; Choulli and Yamamoto, 1999; Ashyralyev et al., 2012; Saitoh

et al., 2002; Ivanchov, 1995; Borukhov and Vabishchevich, 2000; Dehghan, 2001; Orazov

and Sadybekov, 2012; Ashyralyev, 2011; Ashyralyyev and Akkan, 2015; Ashyralyev and

Sazaklioglu, 2017).The well-posedness of the unknown source identification problem for a

parabolic equation has been well-investigated when the unknown function p is dependent

on space variable (Kostin, 2013; Eidelman, 1984; Eidelman, 1978; Choulli and Yamamoto,

1999; Ashyralyev et al., 2012). Nevertheless when the unknown function p is dependent on

t the well-posedness of the source identification problem for a parabolic equation has been

investigated in (Saitoh et al., 2002; Ivanchov, 1995; Borukhov and Vabishchevich, 2000;

Dehghan, 2001; Orazov and Sadybekov, 2012; Ashyralyev, 2011; Ashyralyyev and Akkan,

2015; Ashyralyev and Sazaklioglu, 2017; Ashyralyev and Erdogan, 2014; Samarskii and

Vabishchevich, 2007). Moreover, the well-posedness of the source identification problem

for a delay parabolic equation has been investigated in papers (Blasio and Lorenzi, 2007;

Ashyralyev and Agirseven, 2014) . There is a great deal of work in analysis of hyperbolic-

parabolic equations (Berdyshev, 2005; Kalmenov and Sadybekov, 2017; Sadybekov et al.,

2018; Kerbal,Karimov and Rakhmatullaeva,2017). As well as in construction of difference

schemes for such equations (Ashyralyev and Ozdemir,2005; Ashyralyev and Ozdemir, 2007;

Ashyralyev and Ozdemir,2014; Ashyralyev and Yurtsever, 2001). The theory and applica-

tions of source identification problems for hyperbolic-parabolic equations have been well
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investigated in papers (Ashyralyev and Ashyralyyeva, 2015; Ashyralyyeva and Ashyraliyev,

2018). Direct and inverse boundary value problems for telegraph differential equations have

been a major research area in many branches of science and engineering particularly in

applied mathematics. The solvability of the inverse problems in various formulations with

various overdetermination conditions for telegraph and hyperbolic equations were studied in

many works (Anikonov,1976; Ashyralyev and Celik, 2016; Kozhanov and Safiullova, 2017;

Ashyralyev and Emharab, 2017; Ashyralyev and Emharab, 2018; Kozhanov and Safiullova,

2010; Kozhanov and Telesheva, 2017). In particular, the well-posedness of the source

identification problem for a telegraph equation with unknown parameter p
d2u(t)

dt2 + α
du(t)

dt + Au (t) = p + f (t) , 0 ≤ t ≤ T,

u (0) = ϕ, u′ (0) = ψ, u (T) = ζ

in a Hilbert space H with the self-adjoint positive definite operator A was proved in (Ashyra-

lyev and Celik,2016) . They established stability estimates for the solution of this problem. In

applications, three source identification problems for telegraph equations were developed. In

(Kozhanov and Safiullova,2017), the authors studied the solvability of the inverse problems

on finding a solution u (x, t) and an unknown coefficient c for a telegraph equation

utt − ∆u + cu = f (x, t) .

Theorems on the existence of the regular solutions were proved.

However, source identification problems for telegraph equations have not been well-

investigated so far. In the present study, a source identification problem for telegraph equations

is studied. Using tools of classical approach we are enabled to obtain the solution of the

several source identification problems for telegraph equations. Furthermore, the first order

of accuracy difference scheme for the numerical solution of the source identification problem

for telegraph equations is presented. Then, this difference scheme is tested on an example

and some numerical results are presented.
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CHAPTER 2

METHODS OF SOLUTION OF TIME-DEPENDENT SOURCE IDENTIFICATION

PROBLEMS FOR TELEGRAPH EQUATIONS

It is known that identification problems for telegraph differential equations can be solved

analytically by Fourier series, Laplace transform and Fourier transform methods. Now, let us

illustrate these three different analytical methods by examples.

2.1 FOURIER SERIES METHOD

We consider Fourier series method for solution of identification problems for telegraph

differential equations.

Example 2.1.1. Obtain the Fourier series solution of the identification problems for telegraph

differential equation

∂2u(t,x)
∂t2 +

∂u(t,x)
∂t −

∂2u(t,x)
∂x2 + u (t, x) = p (t) sin x + 2 sin x − e−t,

0 < t < 1, 0 < x < π,

u (0, x) = sin x, ut (0, x) = 0, 0 ≤ x ≤ π,

u (t, 0) = u (t, π) = 0,
π∫

0
u (t, x) dx = 2, 0 ≤ t ≤ 1.

(2.1)

Solution. In order to solve this problem, we consider the Sturm-Liouville problem

−uxx − λu (x) + u (x) = 0, 0 < x < π, u (0) = u (π) = 0

generated by the space operator of problem (2.1). It is easy to see that the solution of this

Sturm-Liouville problem is

λk = 1 + k2, uk (x) = sin k x, k = 1, 2, ....

Then, we will obtain the Fourier series solution of problem (2.1) by formula

u (t, x) =
∞∑

k=1
Ak (t) sin k x, (2.2)

3



where Ak (t) , k = 1, 2, ... are unknown functions. Putting (2.2) into main problem and using

given initial and boundary conditions, we get
∞∑

k=1
A′′k (t) sin k x +

∞∑
k=1

A′k (t) sin k x +
∞∑

k=1
k2 Ak (t) sin k x +

∞∑
k=1

Ak (t) sin k x

= p (t) sin x − e−t sin x + 2 sin x, (2.3)

u (0, x) =
∞∑

k=1
Ak (0) sin k x = sin x,

ut (0, x) =
∞∑

k=1
A′k (0) sin k x = 0,

π∫
0

u (t, x) dx =

π∫
0

∞∑
k=1

Ak (t) sin k xdx =
∞∑

k=1

−Ak (t) cos k x
k

�����π
0

=

∞∑
k=1

A2k−1 (t)
2

2k − 1
= 2.

Equating coefficients of sink x, k = 1, 2... to zero,we get
A′′k (t) + A′k (t) +

(
k2 + 1

)
Ak (t) = 0, 0 < t < 1,

Ak (0) = A′k (0) = 0, k , 1.

(2.4)

and 
A′′1 (t) + A′1 (t) + 2A1 (t) = 2 + p (t) − e−t, 0 < t < 1,

A1 (0) = 1, A′1 (0) = 0.

(2.5)

We will obtain Ak(t). It is clear that for k , 1, Ak(t) is the solution of the initial value problem

(2.4). The auxiliary equation is

q2 + q +
(
k2 + 1

)
= 0.

We have two roots

q1 = −
1
2
+ i

√
k2 +

3
4
, q2 = −

1
2
− i

√
k2 +

3
4
.

Therefore,
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Ak (t) = e−
t
2

[
c1 cos

√
k2 +

3
4

t + c2 sin
√

k2 +
3
4

t

]
.

Applying initial conditions Ak (0) = A′k (0) = 0, we get

Ak (0) = c1 = 0,

A′k (0) = c2

√
k2 +

3
4
= 0.

Then c1 = c2 = 0 and Ak (t) = 0. Now, we obtain A1(t). Applying Ak (t) = 0, k , 1 and
∞∑

k=1
A2k−1(t) 2

2k−1 = 2, we get A1(t) = 1.

Now, we will obtain p(t). Applying problem (2.5) and A1(t) = 1, we get

p (t) = e−t .

Therefore,

u (t, x) = A1 (t) sin x = sin x.

So, the exact solution of the problem (2.1) is

(u (t, x) , p (t)) =
(
sin x, e−t ) .

Note that using similar procedure one can obtain the solution of the following identification

problem 

∂2u(t,x)
∂t2 + α ∂u(t,x)

∂t −
n∑

r=1
αr

∂2u(t,x)
∂x2

r
= p (t) q (x) + f (t, x),

x = (x1, ..., xn) ∈ Ω, 0 < t < T,

u(0, x) = ϕ(x), ut(0, x) = ψ (x) , x ∈ Ω,

u(t, x) = 0, x ∈ S,
∫

x∈Ω

...
∫

u (t, x) dx1...dxn = ξ(t), 0 ≤ t ≤ T

(2.6)
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for the multidimensional telegraph differential equations. Assume that αr > α > 0 and

f (t, x) , q (x)
(
t ∈ (0,T) , x ∈ Ω

)
, ϕ(x), ψ (x) , ξ(t),

(
t ∈ [0,T] , x ∈ Ω

)
are given smooth func-

tions. Here and in future Ω is the unit open cube in the n−dimensional Euclidean space

Rn (0 < xk < 1, 1 ≤ k ≤ n) with the boundary

S,Ω = Ω ∪ S.

However Fourier series method described in solving (2.6) can be used only in the case when

(2.6) has constant coefficients.

Example 2.1.2. Obtain the Fourier series solution of the identification problem for telegraph

differential equation

∂2u(t,x)
∂t2 +

∂u(t,x)
∂t −

∂2u(t,x)
∂x2 + u (t, x) = p (t) (cos x + 1) + e−t cos x ,

0 < t < 1, 0 < x < π,

u (0, x) = cos x + 1, ut (0, x) = − (cos x + 1) , 0 ≤ x ≤ π,

ux (t, 0) = ux (t, π) = 0,
π∫

0
u (t, x) dx = e−tπ, 0 ≤ t ≤ 1

(2.7)

Solution. In order to solve problem (2.7), we consider the Sturm-Lioville problem

−uxx − λu (x) + u (x) = 0, 0 < x < π, ux (0) = ux (π) = 0

generated by the space operator of problem (2.7). It is easy to see that the solution of this

Sturm Liouville problem is

λk = 1 + k2, uk (x) = cos k x, k = 0, 1, 2, ....

Then, we will obtain the Fourier series solution of problem (2.7) by formula

u (t, x) =
∞∑

k=0
Ak (t) cos k x, (2.8)

where Ak (t) , k = 0, 1, 2, ... are unknown functions. Putting (2.8) into (2.7) and using given

initial and boundary conditions, we obtain

6



∞∑
k=0

A′′k (t) cos k x +
∞∑

k=0
A′k (t) cos k x +

∞∑
k=0

k2 Ak (t) cos k x +
∞∑

k=0
Ak (t) cos k x

= p (t) (cos x + 1) + e−t cos x,

u (0, x) =
∞∑

k=0
Ak (0) cos k x = cos x + 1,

ut (0, x) =
∞∑

k=0
A′k (0) cos k x = − cos x − 1,

A0 (0) = 1, A′0 (0) = −1, A1 (0) = 1, A′1 (0) = −1, Ak (0) = 0, k , 0, 1,

π∫
0

u (t, x) dX =

π∫
0

∞∑
k=0

Ak (t) cos k xdx = A0 (t) π = e−tπ .

From that it follows

A0 (t) = e−t .

Equating coefficients of cos k x, k = 0, 1, 2, ... to zero, we get
A′′k (t) + A′k (t) +

(
k2 + 1

)
Ak (t) = 0, 0 < t < 1,

Ak (0) = 0, A′k (0) = 0, k , 0, 1,

(2.9)


A′′1 (t) + A′1 (t) + 2A1 (t) = p (t) + e−t, 0 < t < 1,

A1 (0) = 1, A′1 (0) = −1,

(2.10)


A′′0 (t) + A′0 (t) + A0 (t) = p (t) , 0 < t < 1,

A0 (0) = 1, A′0 (0) = −1.

(2.11)

First, we obtain p(t). Applying problem (2.11) and A0(t) = e−t, we get

p (t) = e−t .

7



Second, we obtain Ak(t), k , 0, 1. It is clear that for k , 0, 1, Ak(t) is the solution of the initial

value problem (2.9). The auxiliary equation is

q2 + q +
(
k2 + 1

)
= 0.

We have two roots

q1 = −
1
2
+ i

√
k2 +

3
4
, q2 = −

1
2
− i

√
k2 +

3
4
.

Therefore,

Ak (t) = e−
t
2

[
c1 cos

√
k2 +

3
4

t + c2 sin
√

k2 +
3
4

t

]
.

Applying initial conditions Ak (0) = A′k (0) = 0 for k , 0, 1, we get

Ak (0) = c1 = 0,

A′k (0) = c2

√
k2 +

3
4
= 0.

Then c1 = c2 = 0 and Ak (t) = 0. Now, we obtain A1 (t) from (2.10). It is the Cauchy problem

for the second order linear differential equation. We will seek A1 (t) by formula

A1 (t) = AC (t) + AP (t) ,

where AC (t) is general solution of the homogeneous differential equation A′′1 (t) + A′1 (t) +

2A1 (t) = 0, AP (t) is particular solution of nonhomogene uos differential equation. The

auxiliary equation is

q2 + q + 2 = 0.

We have two roots

q1 = −
1
2
+ i

√
7
4
, q2 = −

1
2
− i

√
7
4
.

Therefore,

Ac (t) = e−
t
2

[
c1 cos

√
7
4

t + c2 sin
√

7
4

t

]
.

Since −1
2 ± i

√
7
4 , −1, we put

Ap (t) = e−ta.

8



Therefore,

ae−t − ae−t + 2ae−t = 2e−t .

From that it follows a = 1 and

Ap (t) = e−t .

Thus,

A1 (t) = e−
t
2

[
c1 cos

√
7
4

t + c2 sin
√

7
4

t

]
+ e−t .

Applying initial conditions A1 (0) = 1, A′1 (0) = −1, we get

A1 (0) = c1 + 1 = 1, A′1 (0) =
√

7
4

c2 − 1 = −1.

From that it follows c1 = c2 = 0 and

A1 (t) = e−t .

Therefore,

u (t, x) = A0 (t) + A1 (t) cos x = e−t + e−t cos x.

So, the exact solution of the problem (2.7) is

(u (t, x) , p (t)) =
(
e−t (cos x + 1) , e−t ) .

Note that using similar procedure one can obtain the solution of the following identification

problem. 

∂2u(t,x)
∂t2 + α ∂u(t,x)

∂t −
n∑

r=1
αr

∂2u(t,x)
∂x2

r
= p (t) q (x) + f (t, x),

x = (x1, ..., xn) ∈ Ω, 0 < t < T,

u(0, x) = ϕ(x), ut(0, x) = ψ (x) , x ∈ Ω, ,

∂u(t,x)
∂m = 0, x ∈ S,

∫
x∈Ω

...
∫

u (t, x) dx1...dxn = ξ(t), 0 ≤ t ≤ T

(2.12)
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for the multidimensional telegraph differential equation. Assume that αr > α > 0 and

f (t, x) , q (x)
(
t ∈ (0,T) , x ∈ Ω

)
, ψ (x) , ξ(t),

(
t ∈ [0,T] , x ∈ Ω

)
are given smooth functions.

Here m is the normal vector to boundary S.

However Fourier series method described in solving (2.12) can be also used only in the case

when (2.12) has constant coefficients.

Example 2.1.3. Obtain the Fourier series solution of the identification problem for the

telegraph differential equation

∂2u(t,x)
∂t2 +

∂u(t,x)
∂t −

∂2u(t,x)
∂x2 + u (t, x)

= p (t) (sin 2x + 1) + 4e−t sin 2x,

0 < t < 1, 0 < x < π,

u (0, x) = sin 2x + 1, ut (0, x) = − (sin 2x + 1) , 0 ≤ x ≤ π,

u (t, 0) = u (t, π) , ux (t, 0) = ux (t, π) , 0 ≤ t ≤ 1,

π∫
0

u (t, x) dx = e−tπ, 0 ≤ t ≤ 1.

(2.13)

Solution. In order to solve this problem, we consider the Sturm-Liouville problem

−uxx − λu (x) + u (x) = 0, 0 < x < π, u (0) = u (x) , ux (0) = ux (π)

generated by the space operator of problem (2.13). It is easy to see that the solution of this

Sturm-Liouville problem is

λk = 4k2 + 1, uk (x) = cos 2k x, k = 0, 1, 2, ..., uk (x) = sin 2k x, k = 1, 2, ....

Then, we will obtain the Fourier series solution of problem (2.13) by formula

u (t, x) =
∞∑

k=0
Ak (t) cos 2k x +

∞∑
k=1

Bk (t) sin 2k x, (2.14)
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where Ak (t) , k = 0, 1, 2, ... and Bk (t) , k = 1, 2, ...are unknown functions, Putting (2.14) into

(2.13) and using given initial and boundary conditions

∞∑
k=0

A′′k (t) cos 2k x +
∞∑

k=1
B′′k (t) sin 2k x +

∞∑
k=0

A′k (t) cos 2k x +
∞∑

k=1
B′k (t) sin 2k x

+

∞∑
k=0

4k2 Ak (t) cos 2k x +
∞∑

k=1
4k2Bk (t) sin 2k x +

∞∑
k=0

Ak (t) cos 2k x +
∞∑

k=1
Bk (t) sin 2k x

= p (t) (sin 2x + 1) + 4e−t sin 2x,

u (0, x) =
∞∑

k=0
Ak (0) cos 2k x +

∞∑
k=1

Bk (0) sin 2k x = sin 2x + 1,

ut (0, x) =
∞∑

k=0
A′k (0) cos 2k x +

∞∑
k=1

B′k (0) sin 2k x = − sin 2x − 1,

π∫
0

u (t, x) dx =

π∫
0

[
∞∑

k=0
Ak (t) cos 2k x +

∞∑
k=1

Bk (t) sin 2k x

]
dx

= A0 (t) π +
∞∑

k=1

Ak (t) sin 2k x
2k

]π
0

−

∞∑
k=1

Bk (t) cos 2k x
2k

]π
0

= A0 (t) π = e−tπ.

From that it follows that A0 (t) = e−t .Equating the coefficients of cos k x, k = 0, 1, 2, ... and

sink x, k = 1, 2, ... to zero, we get
A′′k (t) + A′k (t) +

(
4k2 + 1

)
Ak (t) = 0, 0 < t < 1,

Ak (0) = 0, A′k (0) = 0, k , 0,

(2.15)


A′′0 (t) + A′0 (t) + A0 (t) = p (t) , 0 < t < 1,

A0 (0) = 1, A′0 (0) = −1,

(2.16)


B′′k (t) + B′k (t) +

(
4k2 + 1

)
Bk (t) = 0, 0 < t < 1,

Bk (0) = 0, B′k (0) = 0, k , 0,

(2.17)

11




B′′1 (t) + B′1 (t) + 5B1 (t) = 5e−t, 0 < t < 1,

B1 (0) = 1, B′1 (0) = 1.

(2.18)

First, we obtain p(t). Applying problem (2.16) and A0(t) = e−t, we get

p (t) = e−t .

Second, we obtain Ak(t), k , 0. It is clear that for k , 0, Ak(t) is the solution of the initial

value problem (2.15) . The auxiliary equation is

q2 + q + 4k2 + 1 = 0.

We have two roots

q1 = −
1
2
+ i

√
4k2 +

3
4
, q2 = −

1
2
− i

√
4k2 +

3
4
.

Therefore,

Ak (t) = e−
t
2

[
c1 cos

√
4k2 +

3
4

t + c2 sin
√

4k2 +
3
4

t

]
.

Applying initial conditions Ak (0) = A′k (0) = 0, we get

Ak (0) = c1 = 0,

A′k (0) = c2

√
4k2 +

3
4
= 0.

Then c1 = c2 = 0 and Ak (t) = 0. Third, we obtain Bk(t). It is clear that for k , 1, Bk(t) is

the solution of the initial value problem (2.17). The auxiliary equation is

q2 + q + 4k2 + 1 = 0.

We have two roots

q1 = −
1
2
+ i

√
4k2 +

3
4
, q2 = −

1
2
− i

√
4k2 +

3
4
.

Therefore,
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Bk (t) = e−
t
2

[
c1 cos

√
4k2 +

3
4

t + c2 sin
√

4k2 +
3
4

t

]
.

Applying initial conditions Bk (0) = B′k (0) = 0, we get

Bk (0) = c1 = 0,

B′k (0) = c2

√
4k2 +

3
4
= 0.

Then c1 = c2 = 0 and Bk (t) = 0. Now, we obtain B1 (t) from (2.18). It is the Cauchy problem

for the second order linear differential equation. We will seek B1 (t) by formula

B1 (t) = BC (t) + BP (t) ,

where BC (t) is general solution of the homogeneous differential equation B′′1 (t) + B′1 (t) +

5B1 (t) = 0 and BP (t) be particular solution of nonhomogeneuos differential equation. The

auxiliary equation is

q2 + q + 5 = 0.

We have two roots

q1 = −
1
2
+ i

√
19
4
, q2 = −

1
2
− i

√
19
4
.

Therefore,

Bc (t) = e−
t
2

[
c1 cos

√
19
4

t + c2 sin
√

19
4

t

]
.

Since −1
2 ± i

√
19
4 , −1, we put

Bp (t) = e−ta.

Therefore,

ae−t − ae−t + 5ae−t = 5e−t .

From that it follows a = 1 and

Bp (t) = e−t .
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Thus,

B1 (t) = e−
t
2

[
c1 cos

√
19
4

t + c2 sin
√

19
4

t

]
+ e−t .

Applying initial conditions B1 (0) = 1, B′1 (0) = −1, we get

B1 (0) = c1 + 1 = 1, B′1 (0) =
√

19
4

c2 − 1 = −1.

From that it follows

B1 (t) = e−t .

Therefore,

u (t, x) = e−t (sin 2x + 1) .

So, the exact solution of problem (2.13) is

(u (t, x) , p (t)) =
(
e−t (sin 2x + 1) , e−t ) .

Note that using similar procedure one can obtain the solution of the following identification

problem 

∂2u(t,x)
∂t2 + α ∂u(t,x)

∂t −
n∑

r=1
αr

∂2u(t,x)
∂x2

r
= p (t) q (x) + f (t, x),

x = (x1, ..., xn) ∈ Ω, 0 < t < T,

u(0, x) = ϕ(x), ut(0, x) = ψ (x) , x ∈ Ω,

u(t, x)|S1 = u(t, x)|S2 ,
∂u(t,x)
∂m

���
S1
=

∂u(t,x)
∂m

���
S2
,

∫
x∈Ω

...
∫

u (t, x) dx1...dxn = ξ(t), 0 ≤ t ≤ T

(2.19)

for the multidimensional telegraph differential equations. Assume that αr > α > 0 and
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f (t, x) , q (x)
(
t ∈ (0,T) , x ∈ Ω

)
, ψ (x) , ξ(t),

(
t ∈ [0,T] , x ∈ Ω

)
are given smooth functions.

Here S = S1 ∪ S2, S1 ∩ S2 = ∅.

However Fourier series method described in solving (2.19) can be used only in the case when

(2.19) has constant coefficients.

2.2 LAPLACE TRANSFORM METHOD

We consider Laplace transform solution of identification problems for telegraph differential

equations.

Example 2.2.1. Obtain the Laplace transform solution of the following problem

∂2u(t,x)
∂t2 +

∂u(t,x)
∂t −

∂2u(t,x)
∂x2 + u (t, x) = p (t) e−x − e−t−x ,

0 < x < ∞, 0 < t < ∞,

u (0, x) = e−x, ut (0, x) = −e−x, 0 ≤ x < ∞,

u (t, 0) = e−t, ux (t, 0) = −e−t , 0 ≤ t < ∞,

∞∫
0

u (t, x) dx = e−t, 0 ≤ t < ∞

(2.20)

for the one dimensional telegraph differential equation.

Solution. Here and in future we denote

Ľ {u (t, x)} = u (t, s) .

Using formula

Ľ {e−x} =
1

s + 1
(2.21)

and taking theLaplace transformof both sides of the differential equation and using conditions

u (t, 0) = e−t, ux (t, 0) = −e−t,

we can write

Ľ {utt (t, x)} + Ľ {ut (t, x)} − Ľ {uxx (t, x)} + Ľ {u (t, x)} =
(
p (t) − e−t ) Ľ {e−x} ,
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Ľ {u (0, x)} = Ľ {e−x} , Ľ {ut (0, x)} = −Ľ {e−x}

or 

utt (t, s) + ut (t, s) − s2u (t, s) + su (t, 0) + ux (t, 0) + u (t, s)

=
(
p (t) − e−t ) 1

1+s, t > 0,

u (0, s) = 1
1+s, ut (0, s) = − 1

1+s .

Therefore, we get the following problem

utt (t, s) + ut (t, s) +
(
1 − s2) u (t, s)

= (1 − s) e−t +
(
p (t) − e−t ) 1

1+s, t > 0,

u (0, s) = 1
1+s , ut (0, s) = 1

1+s .

(2.22)

Applying the condition

∞∫
0

u (t, x) dx = e−t, t ≥ 0

and the definition of the Laplace transform, we get

u (t, 0) = e−t, t ≥ 0. (2.23)

Now we will obtain the solution of problem (2.22). We denote

u (t, s) = v (t, s) e−
t
2 .

Then

ut (t, s) = −
1
2

e−
t
2 v (t, s) + e−

t
2 vt (t, s) ,

utt (t, s) =
1
4

e−
t
2 v (t, s) − e−

t
2 vt (t, s) + e−

t
2 vtt (t, s) .
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Using in (2.22) we get the following problem

vtt (t, s) +
(

3
4 − s2

)
v (t, s)

=
(
1 − s − 1

1+s

)
e−

t
2 + p (t) e−

t
2 1

1+s , t > 0,

v (0, s) = 1
1+s, vt (0, s) = −1

2
1

1+s .

Applying the D’Alembert’s formula, we get

v (t, s) =
1

1 + s
cos

√
3
4
− s2t +

1√
3
4 − s2

sin
√

3
4
− s2t

(
−

1
2 (1 + s)

)
+

1√
3
4 − s2

×

t∫
0

sin
√

3
4
− s2 (t − y)

{(
1 − s −

1
1 + s

)
e−

y
2 + p (y) e

y
2

1
1 + s

}
dy. (2.24)

Using condition (2.23), we get v (t, 0) = e−
t
2 . Then from (2.24) it follows

e−
t
2 = cos

√
3
4

t +
1√

3
4

sin
√

3
4

t
(
−

1
2

)

+
1√

3
4

t∫
0

sin
√

3
4
(t − y)

{
p (y) e

y
2

}
dy . (2.25)

Take the first and second order derivatives, we get

−
1
2

e−
t
2 = −

√
3

2
sin
√

3
2

t −
1
2

cos
√

3
2

t

+

t∫
0

cos
√

3
2
(t − y)

{
p (y) e

y
2

}
dy ,

1
4

e−
t
2 = −

3
4

cos
√

3
2

t +

√
3

4
sin
√

3
2

t

+p (t) e
t
2 −

√
3

2

t∫
0

sin
√

3
2
(t − y)

{
p (y) e

y
2

}
dy . (2.26)
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Applying (2.25) and (2.26), we get

1
4

e−
t
2 = −

3
4

cos
√

3
2

t +

√
3

4
sin
√

3
2

t + p (t) e
t
2

−

√
3

2

{√
3

2

{
e−

t
2 − cos

√
3

2
t +

1
√

3
sin
√

3
2

t

}}
or

e−
t
2 = p (t) e

t
2 .

So

p (t) = e−t .

Now we obtain v (t, s) . Applying formula (2.24), we get

v (t, s) =
1

1 + s
cos

√
3
4
− s2t +

1√
3
4 − s2

sin
√

3
4
− s2t

(
−

1
2 (1 + s)

)

+ (1 − s)
1√

3
4 − s2

t∫
0

sin

(√
3
4
− s2 (t − y)

)
e−

y
2 dy .

We denote that

I(t, s) =

t∫
0

1√
3
4 − s2

sin
√

3
4
− s2 (t − y) e−

y
2 dy.

Then

v (t, s) =
1

1 + s
cos

√
3
4
− s2t

+
1√

3
4 − s2

sin
√

3
4
− s2t

(
−

1
2 (1 + s)

)
+ (1 − s) I(t, s). (2.27)

Now we will compute I(t, s). Actually,

I(t, s) = −2


1√

3
4 − s2

sin
√

3
4
− s2 (t − y) e−

y
2




t

0
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−2
t∫

0

√
3
4 − s2√
3
4 − s2

cos
√

3
4
− s2 (t − y) e−

y
2 dy

=
2√

3
4 − s2

sin
√

3
4
− s2t + 4 cos

√
3
4
− s2 (t − y) e−

y
2

] t

0

−4
√

3
4
− s2

t∫
0

sin
√

3
4
− s2 (t − y) e−

y
2 dy

=
2√

3
4 − s2

sin
√

3
4
− s2t + 4e−

t
2

−4 cos
√

3
4
− s2t − 4

√
3
4
− s2

t∫
0

sin
√

3
4
− s2 (t − y) e−

y
2 dy

=
2√

3
4 − s2

sin
√

3
4
− s2t + 4e−

t
2 − 4 cos

√
3
4
− s2t

−4
√

3
4
− s2

t∫
0

sin
√

3
4
− s2 (t − y) e−

y
2 dy.

Therefore,

I(t, s) =
2√

3
4 − s2

sin

(√
3
4
− s2t

)

+4e−
t
2 − 4 cos

(√
3
4
− s2t

)
− 4

(
3
4
− s2

)
I(t, s).

From that it follows

(1 − s) I(t, s) = e−
t
2

1
1 + s

+
1

2
√

3
4 − s2

sin

(√
3
4
− s2t

)
1

1 + s
− cos

(√
3
4
− s2t

)
1

1 + s
. (2.28)

Applying (2.27) and (2.28), we get

v (t, s) = e−
t
2

1
1 + s

.
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From that it follows that

u (t, x) = e−t Ľ−1
{

1
1 + s

}
= e−t−x .

Therefore, the exact solution of problem (2.20) is

(u (t, x) , p (t)) =
(
e−t−x, e−t ) .

Example 2.2.2. Obtain the Laplace trasform solution of the following problem

∂2u(t,x)
∂t2 +

∂u(t,x)
∂t −

∂2u(t,x)
∂x2 = p (t) e−x − 2e−x,

0 < x < ∞, 0 < t < ∞ ,

u (0, x) = e−x, ut (0, x) = 0, 0 ≤ x < ∞,

u (t, 0) = 1, u (t,∞) = 0 , 0 ≤ t < ∞,

∞∫
0

u (t, x) dx = 1, 0 ≤ t < ∞

(2.29)

for a one dimensional telegraph differential equation.

Solution. Using formula (2.21) and conditions u (t, 0) = 1, u (t,∞) = 0, and taking the

Laplace transform of both sides of the differential equation and initial conditions, we can

write

Ľ {utt (t, x)} + Ľ {ut (t, x)} − Ľ {uxx (t, x)} = (p (t) − 2) Ľ {e−x} ,

Ľ {u (0, x)} = Ľ {e−x} , Ľ {ut (0, x)} = 0

or 

utt (t, s) + ut (t, s) − s2u (t, s) + s + ux (t, 0)

= (p (t) − 2) 1
1+s, t > 0,

u (0, s) = 1
1+s, ut (0, s) = 0.
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We denote that

ux (t, 0) = β(t). (2.30)

Therefore, we get the following problem

utt (t, s) + ut (t, s) − s2u (t, s) + s + β(t)

= (p (t) − 2) 1
1+s, t > 0,

u (0, s) = 1
1+s, ut (0, s) = 0.

Now, we obtain β(t) and p(t). It is clear that u(t, s) is solution of the following source

identification problem 

utt (t, s) + ut (t, x) − s2u (t, s)

= [p (t) − 2] 1
s+1 − s − β(t),

u (0, s) = 1
s+1, ut (0, s) = 0, u(t, 0) = 1

(2.31)

for u (t,∞) = 0. Taking the Laplace transform with respect to t, we get

ω2u(ω, s) − ω
1

s + 1
+ ωu(ω, s) −

1
s + 1

− s2u (ω, s)

= p (ω)
1

s + 1
−

2
ω(s + 1)

−
s
ω
− β(ω), u(ω, 0) =

1
ω
, u (ω,∞) = 0.

Then

u(ω, s) =
1

ω2 + ω − s2

{[
−s2 − s + ω2 + ω − 2

ω (s + 1)

]
+ p (ω)

1
s + 1

− β(ω)

}
, (2.32)

u(ω, 0) =
1
ω
, u (ω,∞) = 0.

Since u(ω, 0) = 1
ω, we have

u(ω, 0) =
1

ω2 + ω

{[
ω2 + ω − 2

ω

]
+ p (ω) − β(ω)

}
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or
1
ω
=

1
ω
−

2
ω(ω2 + ω)

+
p (ω) − β(ω)
ω2 + ω

.

Hence,

p (ω) =
2
ω
+ β(ω). (2.33)

Then, from (2.32 ) it follows

u(ω, s) =
1

ω2 + ω − s2

{[
−s2 − s + ω2 + ω − 2

ω(s + 1)

]
+

(
2
ω
+ β(ω)

)
1

s + 1
− β(ω)

}
.

Taking the inverse Laplace transform with respect to x, we get

u(ω, x) =
[
−β(ω) −

1
ω

]
Ľ−1

{
s

(s + 1)(ω2 + ω − s2)

}
+

1
ω

e−x .

Now, we compute Ľ−1
{

s
(s+1)(ω2+ω−s2)

}
. Applying the formula

s
(s + 1)(ω2 + ω − s2)

=
1

2
√
ω(ω + 1)

{
1√

ω(ω + 1) − s
+

1√
ω(ω + 1) + s

}

−
1

2
√
ω(ω + 1)

{[
1√

ω(ω + 1) − s
+

1
s + 1

]
1

1 +
√
ω(ω + 1)

× lim
x→∞

{
1

2
√
ω(ω + 1)

{
e
√
ω(ω+1)x + e−

√
ω(ω+1)x

}}}
,

we get

Ľ−1
{

s
(s + 1)(ω2 + ω − s2)

}
=

1
2
√
ω(ω + 1)

{
e
√
ω(ω+1)x + e−

√
ω(ω+1)x

}

−
1

2
√
ω(ω + 1)

{[
e
√
ω(ω+1)x + e−x

] 1
1 +

√
ω(ω + 1)

+

[
e−
√
ω(ω+1)x − e−x

] 1
1 −

√
ω(ω + 1)

}
.
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Therefore,

u(ω, x) =
1
ω

e−x +

[
−β(ω) −

1
ω

] {
1

2
√
ω(ω + 1)

{
e
√
ω(ω+1)x + e−

√
ω(ω+1)x

}
−

1
2
√
ω(ω + 1)

{[
e
√
ω(ω+1)x + e−x

] 1
1 +

√
ω(ω + 1)

.

+
[
e−
√
ω(ω+1)x − e−x

] 1
1 −

√
ω(ω + 1)

}}
.

Then, using the condition u (ω,∞) = 0, we get

0 = lim
x→∞

u(ω, x) =
1
ω

e−x +

[
−β(ω) −

1
ω

]
× lim

x→∞

{
1

2
√
ω(ω + 1)

{
e
√
ω(ω+1)x + e−

√
ω(ω+1)x

}
−

1
2
√
ω(ω + 1)

{
e
√
ω(ω+1)x 1

1 +
√
ω(ω + 1)

}}
=

[
−β(ω) −

1
ω

]
1

2
√
ω(ω + 1)

[
1 −

1
1 +

√
ω(ω + 1)

]
lim
x→∞

e
√
ω(ω+1)x .

Since
1

2
√
ω(ω + 1)

[
1 −

1
1 +

√
ω(ω + 1)

]
, 0,

we have that

−β(ω) −
1
ω
= 0.

From that it follows β(ω) = − 1
ω . Applying (2.33) and (2.29), we get p (ω) = 1

ω and

u(ω, s) =
1

(ω2 + ω − s2)

[
−s2 − s + ω2 + ω − 2

ω(s + 1)
+

1
ω(s + 1)

+
1
ω

]
u(ω, s) =

1
ω(s + 1)

.

Taking the inverse of Laplace transform with respect to x, we get

u(ω, x) =
1
ω

Ľ−1
{

1
s + 1

}
=

1
ω

e−x .
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Finally, taking the inverse Laplace transform with respect to t, we get

β(t) = −1, p(t) = 1

and

u(t, x) = e−x .

Therefore, the exact solution of problem (2.29)

(u (t, x) , p (t)) = (e−x, 1) .

Note that using similar procedure one can obtain the solution of the following identification

problem 

∂2u(t,x)
∂t2 + α ∂u(t,x)

∂t −
n∑

r=1
ar

∂2u(t,x)
∂x2

r
= p(t)q(x) + f (t, x),

x = (x1, ..., xn) ∈ Ω
+
, 0 < t < T,

u(0, x) = ϕ(x), ut(0, x) = ψ (x) , x ∈ Ω
+
,

u(t, x) = α (t, x) , uxr (t, x) = β (t, x) ,

1 ≤ r ≤ n, 0 ≤ t ≤ T, x ∈ S+,

x1∫
0
...

xn∫
0

u (t, x) dx1...dxn = g(t), 0 ≤ t ≤ T

(2.34)

for the multidimensional telegraph differential equation. Assume that ar(x) > a > 0

and f (t, x) ,
(
t ∈ (0,T) , x ∈ Ω

+
)
, ϕ(x), ψ (x)

(
x ∈ Ω

+
)
, α (t, x) , β (t, x) (t ∈ [0,T] , x ∈ S+)

are given smooth functions. Here and in future Ω+ is the open cube in the n-dimensional

Euclidean space Rn (0 < xk < ∞, 1 ≤ k ≤ n) with the boundary S+ and

Ω
+
= Ω+ ∪ S+.

However Laplace transform method described in solving (2.34) can be used only in the case

when (2.34) has ar(x) polynomials coefficients.
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2.3 FOURIER TRANSFORM METHOD

Third, we consider Fourier transform solution of identification problems for telegraph differ-

ential equations.

Example 2.3.1. Obtain the Fourier transform solution of the following problem

∂2u(t,x)
∂t2 +

∂u(t,x)
∂t −

∂2u(t,x)
∂x2 = p (t) e−x2

+
(
−4x2 + 1

)
e−t−x2

,

t > 0, x ∈ R1,

u (0, x) = e−x2
, ut (0, x) = −e−x2

, x ∈ R1,

∞∫
−∞

u (t, x) dx = e−t√π, t ≥ 0.

(2.35)

for a one dimensional telegraph differential equation.

Solution. Here and in future we denote

F {u (t, x)} = u (t, s) .

Taking the Fourier transform of both sides of the differential equation (2.35) and using initial

conditions, we can obtain

utt (t, s) + ut (t, s) + s2u (t, s)

= p (t) z
{
e−x2

}
+ e−tz

{
∂2

∂x2

(
−e−x2

)}
− e−tz

{
e−x2

}
, t > 0,

u (0, s) = z
{
e−x2

}
, ut (0, s) = −z

{
e−x2

}
.

(2.36)

Applying the formula

z

{
∂2

∂x2

(
e−x2

)}
= −s2z

{
e−x2

}
,

we get
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

utt (t, s) + ut (t, s) + s2u (t, s)

=
[
p (t) + e−t (

s2 − 1
) ]
z
{
e−x2

}
, t > 0,

u (0, s) = z
{
e−x2

}
, ut (0, s) = −z

{
e−x2

}
.

(2.37)

Now, taking the Laplace transform of both sides of the differential equation (2.37) with

respect to t, we get(
ω2 + ω + s2

)
u (ω, s) =

(
ω + p (ω) +

1
1 + ω

(
s2 − 1

))
z
{
e−x2

}
. (2.38)

Applying condition
∞∫
−∞

u (t, x) dx = e−t√π, t ≥ 0 and the definition of Fourier transform, we

get

u (t, 0) =
∞∫

−∞

u (t, x) dx = e−t√π, t ≥ 0.

Taking the Laplace transform of both sides of the formula, we get

u (ω, 0) =
√
π

1 + ω
. (2.39)

Therefore, using (2.38), (2.39) and formula

z
{
e−x2

}
=
√
πe−

s2
4 ,

we get

√
πω = ω

√
π. +

(
p (ω) −

1
1 + ω

)
√
π.

From that it follows

p (ω) =
1

1 + ω
,

Now, taking the inverse Laplace transform with respect to t, we get

p (t) = e−t .

Putting p (t) into the differential equation (2.36), we obtain the following problem
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
utt (t, s) + ut (t, s) + s2u (t, s) =

(
e−t + e−t s2 − e−t ) z {

e−x2
}
, t > 0,

u (0, s) = z
{
e−x2

}
, ut (0, s) = −z

{
e−x2

}
or 

utt (t, s) + ut (t, s) + s2u (t, s) = e−t s2z
{
e−x2

}
, t > 0,

u (0, s) = z
{
e−x2

}
, ut (0, s) = −z

{
e−x2

}
.

We will seek the general solution u (t, s) of this equation by the following formula

u (t, s) = uc (t, s) + up (t, s) ,

where uc (t, s) is the solution of homogeneous equation

utt (t, s) + ut (t, s) + s2u (t, s) = 0, t > 0

and up (t, s) is the particular solution of nonhomogeneous equation

utt (t, s) + ut (t, s) + s2u (t, s) = e−t s2z
{
e−x2

}
, t > 0.

The auxiliary equation is

q2 + q + s2 = 0.

We have two roots

q1 = −
1
2
+

√
s2 −

1
4

i, q2 = −
1
2
−

√
s2 −

1
4

i.

Therefore,

uc (t, s) = e−
t
2

[
c1 cos

√
s2 −

1
4

t + c2 sin
√

s2 −
1
4

t

]
.

Now, we will seek up (t, s) by putting the formula

up (t, s) = A (s) e−t .

We have that

A (s) e−t − A (s) e−t + s2 A (s) e−t = e−t s2z
{
e−x2

}
.
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From that it follows

A (s) = z
{
e−x2

}
.

Therefore, the general solution of this equation is

u (t, s) = e−
t
2

[
c1 cos

√
s2 −

1
4

t + c2 sin
√

s2 −
1
4

t

]
+ e−tz

{
e−x2

}
.

Using initial conditions, we obtain

u (0, s) = c1 + z
{
e−x2

}
= z

{
e−x2

}
,

ut (0, s) = −
1
2

c1 +

√
s2 −

1
4

c2 − z
{
e−x2

}
= −z

{
e−x2

}
.

From that it follows

c1 = 0,
√

s2 −
1
4

c2 = 0.

Therefore c1 = c2 = 0 and

u (t, s) = e−tz
{
e−x2

}
.

Taking the inverse Fourier transform with respect to x, we obtain

u (t, x) = e−te−x2
.

So, the exact solution of problem (2.35) is

(u (t, x) , p (t)) =
(
e−t−x2

, e−t
)
.

Note that using the same manner one obtain the solution of the following boundary value

problem 

∂2u(t,x)
∂t2 + α ∂u(t,x)

∂t −
∑
|r |=2m

αr
∂ |r |u(t,x)
∂xr11 ...∂xrnn

= p(t)q(x) + f (t, x),

0 < t < T, x, r ∈ Rn, |r | = r1 + ... + rn,

u(0, x) = ϕ(x), ut(0, x) = ψ (x) , x ∈ Rn,

∫
...

∫
Rn

u (t, x) dx1 · · · dxn = g(t), 0 ≤ t ≤ T

(2.40)
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for a second order in t and 2m − th order in space variables multidimensional telegraph

differential equation. Assume that αr ≥ α ≥ 0 and f (t, x) , g(t), (t ∈ [0,T] , x ∈ Rn) ,

ϕ(x), ψ (x) , (x ∈ Rn) are given smooth functions.

However Fourier transform method described in solving (2.40) can be used only in the case

when (2.40) has constant coefficients.

So, all analytical methods described above, namely the Fourier series method, Laplace

transform method and the Fourier transform method can be used only in the case when the

differential equation has constant coefficients or polynomial coefficients. It is well-known

that the most general method for solving partial differential equation with depend on t and in

the space variables is finite difference method.

In the next chapter, we consider the time-dependent source identification problem for a one-

dimensional telegraph equation. The first and order of accuracy difference schemes for the

numerical solution of this source identification problem is presented. Numerical analysis and

discussions are presented.
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CHAPTER 3

FINITE DIFFERENCE METHOD OF THE SOLUTION OF SOURCE

IDENTIFICATION PROBLEMS FOR TELEGRAPH EQUATIONS

In this section, we study the numerical solution of the identification problem



∂2u(t,x)
∂t2 + 2 ∂u(t,x)

∂t −
∂2u(t,x)
∂x2 = p (t) sin x − e−t sin x,

x ∈ (0, π) , t ∈ (0, 1) ,

u (0, x) = sin x, ut (0, x) = − sin x, x ∈ [0, π] ,

u (t, 0) = u (t, π) = 0, t ∈ [0, 1] ,

∫ π

0 u (t, x) dx = 2e−t, t ∈ [0, 1]

(3.1)

for a telegraph equation. The exact solution pair of this problem is (u (t, x) , p (t)) =(
e−t sin x, e−t ) .
For the numerical solution of problem (3.1), we present the following first order of accuracy

difference scheme for the approximate solution for the problem (3.1)

uk+1
n −2ukn+uk−1

n

τ2 + 2uk+1
n −ukn
τ −

uk+1
n+1−2uk+1

n +uk+1
n−1

h2

= pk sin xn − e−tk+1 sin xn,

tk = kτ, xn = nh, 1 6 k 6 N − 1, 1 6 n 6 M − 1,

u0
n = sin xn,

u1
n−u0

n

τ = − sin xn, 0 6 n 6 M, Mh = π, Nτ = 1,

uk+1
0 = uk+1

M = 0,
∑M−1

i=1 uk+1
i h = 2e−tk+1,−1 6 k 6 N − 1.

(3.2)
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Algorithm for obtaining the solution of identification problem (3.2) {uk}
N
k=0 =

{{
uk

n
}N

k=0

}M

n=0
and {pk}

N−1
k=1 contains three stages. Actually, let us define

uk
n = wk

n + ηk sin xn, 0 ≤ k ≤ N, 0 ≤ n ≤ M, (3.3)

Applying difference scheme (3.2) and formula (3.3), we will obtain formula

ηk+1 =
2e−tk+1 −

∑M−1
i=1 wk+1

i h∑M−1
i=1 sin xih

,−1 ≤ k ≤ N − 1 (3.4)

and the difference scheme

wk+1
n −2wk

n+w
k−1
n

τ2 + 2wk+1
n −w

k
n

τ −
wk+1
n+1−2wk+1

n +wk+1
n−1

h2

+
∑M−1

i=1 wk+1
i h∑M−1

i=1 sin xih
sin xn

2(cosh−1)
h2 − 2

∑M−1
i=1

wk+1
i
−wk

i
τ h∑M−1

i=1 sin xih
sin xn

= −
4 e
−t
k+1−e−tk

τ∑M−1
i=1 sin xih

sin xn +
[

2∑M−1
i=1 sin xih

2(cosh−1)
h2 − 1

]
e−tk+1 sin xn,

1 6 k 6 N − 1, 1 6 n 6 M − 1,

w0
n = sin xn,

w1
n−w

0
n

τ = − sin xn, 0 6 n 6 M,

wk+1
0 = wk+1

M = 0,−1 6 k 6 N − 1.

(3.5)

In the first stage, we find numerical solution
{{
wk

n
}N

k=0

}M

n=0
of corresponding first order of

accuracy difference scheme (3.5). For obtaining the solution of difference scheme (3.5), we

will write it in the matrix form as
Awk+1 + Bwk + Cwk−1 = f k, 1 6 k 6 N − 1,

w0 = {sin xn}
M
n=0 ,w

1 = (1 − τ) {sin xn}
M
n=0 ,

(3.6)

where A, B,C are (M + 1) × (M + 1) square matrices, ws, s = k, k ± 1, f k are (M + 1) × 1
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column matrices and

A =



1 0 0 0 · · · 0 0 0 0

b a + c1 b + c1 c1 · · · c1 c1 c1 0

0 b + c2 a + c2 b + c2 · · · c2 c2 c2 0

0 c3 b + c3 a + c3 · · · c3 c3 c3 0
...

...
...

...
. . .

...
...

...
...

0 cM−3 cM−3 cM−3 · · · a + cM−3 b + cM−3 cM−3 0

0 cM−2 cM−2 cM−2 · · · b + cM−2 a + cM−2 b + cM−2 0

0 cM−1 cM−1 cM−1 · · · cM−1 b + cM−1 a + cM−1 b

0 0 0 0 · · · 0 0 0 1

 (M+1)×(M+1)

,

,

B =



0 0 0 0 · · · 0 0 0 0

0 e + z1 z1 z1 · · · z1 z1 z1 0

0 z2 e + z2 z2 · · · z2 z2 z2 0

0 z3 z3 e + z3 · · · z3 z3 z3 0
...

...
...

...
. . .

...
...

...
...

0 zM−3 zM−3 zM−3 · · · e + zM−3 zM−3 zM−3 0

0 zM−2 zM−2 zM−2 · · · zM−2 e + zM−2 zM−2 0

0 zM−1 zM−1 zM−1 · · · zM−1 zM−1 e + zM−1 0

0 0 0 0 · · · 0 0 0 0

 (M+1)×(M+1)

,

,
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C =



0 0 0 0 · · · 0 0 0 0

0 g 0 0 · · · 0 0 0 0

0 0 g 0 · · · 0 0 0 0

0 0 0 g · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · g 0 0 0

0 0 0 0 · · · 0 g 0 0

0 0 0 0 · · · 0 0 g 0

0 0 0 0 · · · 0 0 0 0

 (M+1)×(M+1)

,

,

f k =



0

f (tk, x1)

.

f (tk, xM−1)

0

 (M+1)×1

,

ws =



ws
0

ws
1

.

ws
M−1

ws
M


for s = k, k ± 1. Here,

a =
1
τ2 +

2
τ
+

2
h2 , b = −

1
h2 , cn =

h
d

sin xn

[
2 (cosh−1)

h2 −
2
τ

]
,

d =
M−1∑
i=1

sin xih, e = −
2
τ2 −

2
τ
, g =

1
τ2 , zn =

2h
dτ

sin xn,
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f (tk, xn) = −
4 e−tk+1−e−tk

τ∑M−1
i=1 sin xih

sin xn +

[
2∑M−1

i=1 sin xih

2(cosh−1)
h2 − 1

]
e−tk+1 sin xn,

1 ≤ k ≤ N − 1, 1 ≤ n ≤ M − 1.

So, we have the initial value problem for the first order difference equation (3.2) with respect

to k with matrix coefficients A, B and C. Since w0and w1are given, we can obtain the

solution
{{
wk

n
}N

k=0

}M

n=0
of (3.6) by direct formula

wk+1 = A−1
(

f k − Bwk − Cwk−1
)
, k = 1, ..., N − 1.

In the second stage, applying formulas

pk =
ηk+1 − 2ηk + ηk−1

τ2 , 1 ≤ k ≤ N − 1. (3.7)

and (3.4), we can obtain {pk}
N−1
k=1 . Finally, in the third stage, we will obtain

{{
uk

n
}N

k=0

}M

n=0
by

formulas (3.3) and (3.4). The errors are computed by

Eu = max
06k6N

(
M−1∑
n=1

��u (tk, xn) − uk
n

��2 h

) 1
2

,

Ep = max
16k6N−1

|p (tk) − pk | ,

where u (t, x) , p(t) represent the exact solution, uk
n represent the numerical solutions at (tk, xn)

and pk represent the numerical solutions at tk . The numerical results are given in the following

table.

Table 1.Error analysis

Error N = M = 20 N = M = 40 N = M = 80 N = M = 160

Eu 0.0179 0.0091 0.0046 0.0023

Ep 0.0936 0.0484 0.0246 0.0124

As it is seen in Table 1, we get some numerical results. If N and M are doubled, the

value of errors between the exact solution and approximate solution decreases by a factor of

approximately 1/2 for first order difference scheme (3.2).
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CHAPTER 4

CONCLUSIONS

This thesis is devoted to time-dependent source identification problem for telegraph equations

with unknown parameter p(t). The following results are established:

• The history of direct and inverse boundary value problems for telegraph differential

equations are considered.

• Fourier series, Laplace transform and Fourier transform methods are used for solution of

six identification problems for telegraph equations.

• The first order of accuracy difference scheme is presented for the approximate solution of

the one dimensional time - dependent identification problem for telegraph equation with the

Dirichlet condition.

• The Matlab implementation of the numerical solution is added.
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APPENDIX 1 

MATLAB PROGRAMMING 

clc; clear all ; close all; 

N=160; 

M=160; 

h=pi/M; tau=1/N; 

d=0; 

for i=1:M-1; 

d=d+h*sin(i*h); 

end; 

a=(1/(tau^2))+(2/(h^2))+(2/(tau)); 

b=-1/(h^2); 

g=1/(tau^2); 

c=(h/d)*((2*(cos(h)-1)/(h^2))-(2/tau)); 

e=-2/(tau^2)-2/tau; 

z=(2*h)/(d*tau); 

A=zeros(M+1,M+1); 

for i=2:M; 

for j=2:M; 

A(i,j)=c*sin((i-1)*h); 

end; 

end; 

for i=2:M 
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A(i,i)=a+(c*sin((i-1)*h)); 

end; 

for i=2:M-1; 

A(i,i+1)=b+(c*sin((i-1)*h)); 

end; 

for i=3:M; 

A(i,i-1)=b+(c*sin((i-1)*h)); 

end; 

A(1,1)=1; 

A(M+1,M+1)=1; 

A(2,1)=b; 

A(M,M+1)=b; 

A; 

B=zeros(M+1,M+1); 

for i=2:M; 

for j=2:M; 

B(i,j)=z*sin((i-1)*h); 

end; 

end; 

for i=2:M 

B(i,i)=e+(z*sin((i-1)*h)); 

end; 

B; 
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C=zeros(M+1,M+1); 

for n=2:M; 

C(n,n)=g; 

end; 

C; 

fii=zeros(M+1,1); 

for j=1:M+1; 

for k=2:N; 

fii(j,k)=((4*(cos(h)-1)/(d*(h^2)))-(4/(d*tau))-1)*exp(-k*tau)*sin((j-

1)*h)+(4/(d*tau))*exp(-(k-1)*tau)*sin((j-1)*h); 

end; 

end; 

fii; 

G=inv(A); 

W=zeros(M+1,1); 

for j=1:M+1; 

W(j,1)=sin((j-1)*h); 

W(j,2)=(1-tau)*sin((j-1)*h); 

for k=3:N+1; 

W(:,k)=G*(-(B*W(:,k-1))-(C*W(:,k-2))+fii(:,k-1)); 

end; 

end; 

for k=2:N; 
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D=0; 

for j=1:M-1; 

S(j)=D+W(j,k+1)-2*(W(j,k))+W(j,k-1); 

D=S(j); 

end; 

p(k)=(2*exp(-(k+1)*tau)-4*exp(-k*tau)+2*exp(-(k-1)*tau)-(h*D))/(d*(tau^2)); 

end; 

p(k); 

L=zeros(M+1,M+1); 

for i=2:M; 

for j=2:M; 

L(i,j)=0; 

end 

end; 

for i=2:M; 

L(i,i)=a; 

end; 

for i=2:M-1; 

L(i,i+1)=b; 

end; 

for i=3:M; 

L(i,i-1)=b; 

end; 
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L(1,1)=1; 

L(M+1,M+1)=1; 

L; 

R=zeros(M+1,M+1); 

for n=2:M; 

R(n,n)=e; 

end; 

R; 

C=zeros(M+1,M+1); 

for n=2:M; 

C(n,n)=g; 

end; 

C; 

fii=zeros(M+1,1) ; 

for j=1:M+1; 

for k=2:N; 

x=(j-1)*h; 

fii(j,k)=p(k)*sin(x)-exp(-(k)*tau)*sin(x); 

end; 

end; 

fii; 

G=inv(L); 

u=zeros(M+1,1); 
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for j=1:M+1; 

x=(j-1)*h; 

u(j,1)=sin(x); 

u(j,2)=(1-tau)*sin(x); 

end; 

for k=3:N+1; 

u(:,k)=G*(-(R*u(:,k-1))-(C*u(:,k-2))+fii(:,k-1)); 

end; 

%\%\%\%\%\%'EXACT SOLUTION OF THIS PDE' \%\%\%\%\%\%\%\% 

for j=1:M+1; 

for k=1:N+1; 

t=(k-1)*tau; 

x=(j-1)*h; 

es(j,k)=(1-t)*sin(x); 

eu(j,k)=exp(-t)*sin(x); 

end; 

end; 

for k=2:N; 

t=(k-1)*tau; 

ep(k)=exp(-t); 

end; 

% ABSOLUTE DIFFERENCES ; 

absdiff=max(max(abs(es-W))) 
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absdiff=max(max(abs(ep-p))) 

absdiff=max(max(abs(eu-u))) 

 


