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ABSTRACT 

The study carried out in this thesis deals with deterministic cancer models. They explore the 

relationship/interaction between immune system, immune checkpoints, and BCG in superficial 

bladder cancer treatment. The study is divided into three categories. 

Firstly, we present a model that reveals the dynamics of checkpoints in BCG immunotherapy 

of bladder cancer. Three scenarios are considered; model without treatment, model without 

checkpoints, and model with checkpoints and treatment. The purpose is to establish the 

negative effects of checkpoints on the immune system. Numerical simulations disclose that in 

the absence of checkpoints, the immune system kills the tumor, while the tumor grows 

exponentially in the presence of checkpoints. Thus, the checkpoints have negative influence 

on the immune system. 

Secondly, a control function is introduced into our model. We aim for a BCG optimal dose 

required to, activate the immune system regardless of checkpoints activities and reduce 

toxicity to normal cells. Pontryagin’s principle is used to characterize the control demanding 

to minimize the objective function. Thus, the optimal dose that kills the tumor, minimizes 

checkpoints activity and reduces toxicity to normal cells is          colony forming unit. 

Lastly, we introduce two control functions; one block the activities of checkpoints (immune 

checkpoint inhibitors) and the other activate immune system (BCG). The maximum principle 

is utilized to find the characterization of the optimal control pair. The controls show the cancer 

cells eliminated, the checkpoints activities minimized, and the normal cells maximized. 

Hence, the medical practitioners should adopt single therapy with BCG only, or combination 

therapy of BCG and immune checkpoint inhibitors. 

Keywords: Bladder cancer; immune system; immune checkpoints; Bacillus Calmette Guerin 

(BCG); mathematical model; optimal control 
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ÖZET 

Bu tezin araştırması belirleyci kanser modelerini inceler. Modeller, yüzeyel mesane kanseri 

tedavisinde bağışıklık sistemi, bağışıklık kontrol noktalarını ve BCG aşısı arasındaki ilişkiyi 

ve etkileşimi araştırmaktadır. Çalışma üç kategoriye ayrılmıştır. Öncelikle, mesane kanserinin 

BCG aşısı immünoterapisinde immün kontrol noktalarının dinamiklerini ortaya koyan bir 

model sunuyoruz. Üç senaryo çıkarılır ve dikkate alınır. Bunlar viz., tedavi olmadan model, 

kontrol noktaları olmayan model ve kontrol noktaları ve tedavi ile model. Amaç, kontrol 

noktalarının bağışıklık hücreleri ve tüm tedavi üzerindeki olumsuz etkilerini tespit etmektir. 

Sayısal simülasyonlar şunu açıklar ki; kontrol noktalarının yokluğunda, aktifleştirilmiş 

bağışıklık sistemi kanser hücrelerini öldürür. Ancak, kontrol noktaları mevcut olduğunda, 

kontrol noktalarının bağışıklık sistemi üzerindeki baskılama nedeniyle tümör olarak büyür. 

Böylece kontrol noktalarının bağışıklık sistemi ve tüm terapi üzerinde olumsuz etkisi vardır. 

İkinci olarak, optimal kontrol teorisi kavramını modelimize tanıtıyoruz. Amaç, kontrol 

noktaları aktivitelerinden bağımsız olarak bağışıklık sistemini aktive etmek için gerekli BCG 

tüberküloz aşısı optimal dozunu taklit eden ve reaktif maddenin normal hücrelere toksisitesini 

azaltan bir kontrol fonksiyonu bulmaktır. Pontryagin'in maksimum prensibi, kanser 

hücrelerinin sayısına, normal hücrelere, kontrol noktalarına ve kontrol maliyetine bağlı olan 

objektif işlevi en aza indirgemek için kontrolü talep etmek için kullanılır. Nümerik sonuçlar, 

BCG aşısı  'nın          koloni oluşturan bir biriminin gerekli olduğunu göstermektedir.  

Son olarak, başka bir tedavi seçeneğine sahip olmak için kombinasyon terapisi fikrini 

sunuyoruz. Optimal kontrol çiftinin karakterizasyonunu bulmak için maksimum prensip 

kullanılır. Kontroller kanser hücrelerinin elimine edildiğini, kontrol noktaları aktivitelerinin en 

aza indirildiğini ve normal hücrelerin maksimize edildiğini gösterdi. Böylece, optimal çift 

etkili olur.  Bu nedenle, pratisyen hekimler sadece BCG aşısı ile tek terapiyi veya BCG ve 

immün kontrol noktası inhibitörlerinin kombinasyon tedavisini benimsemelidir. 
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 CHAPTER 1  

INTRODUCTION 

 

 

The phrase “cancer” originated from the Greek phrases ―carcinos‖ and ―carcinoma‖ as first 

described by Hippocrates (a Greek doctor, from 460 to 370 BC) - the father of medicine. He 

used those words to characterize tumors (malignant in particular) and hence called cancer as 

―karkinos‖. A crab; is what actually the Greek terms were referred to, which Hippocrates‟ 

idea likened them to tumor because of their shape (Deeley, 1983). Later, the Greek terms were 

translated into cancer by Celsus (a Roman physician 28-50 BC), which is Latin for crab. The 

word oncos which means swelling in Greek was used by Galen (a Greek physician, 130-200 

AD) to represent tumors. This description by Galen is termed for cancer specialists these days, 

viz. oncologists (Deeley, 1983). 

Cancer are family of fatal and serious diseases characterized by out-of-control abnormal cell 

growth which results in the formation of malignant tumors that destroy or damage body tissues 

as well as the DNA. It is among the top two principal reasons of death around the world 

(Hassanpour and Dehghani, 2017). Worldwide, it is estimated that approximately 8.2 million 

people die per year because of the disease (Carter et al., 2016). In particular, about 7.6 million 

deaths were recorded in 2008, and this figure accounts to 13% of all deceases same year 

(Hegadoren et al., 2014).  

The death and incidence rates are high in Europe. Norway experienced a rapid yearly increase 

of about 3.5% after the millennium (Robsahm et al., 2018). Similarly, Denmark, Slovakia, 

Hungary, and Slovenia, are experiencing raises in deaths due to cancer. However, in countries 

like Japan, Turkey, Switzerland, Mexico, and Finland, the prevalence of cancer is very 

low(Wiencke, 2004; Anand et al.,2008; OECD, 2013). In USA, over one million and 

fivehundred thousand individuals are suffering from cancer, and around 600000 died from the 

disease in 2014 (Siegel et al., 2013).It is reported that over 100 distinct types of cancers exist 

with majority named from the organ they start with. Age and genetics are among the risk 

factors of getting the disease, accounting to at most 10% of the cases. The remaining 90% are, 
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but not limited to obesity, excessive exposure to sunlight, smoking and drinking, environment, 

sluggishness, poor consumption behaviors, and lack of exercise (Anand et al.,2008; OECD, 

2013). 

The death rates in males are always higher than in females across the globe. The gap is 

predominantly eclectic in Turkey, Spain, Korea, Estonia, and Portugal, because the rate in men 

is at least twice that of women. This can be attributed to the superiority of pervasiveness of 

some risk factors among men, for example smoking (Wiencke, 2004; Brayand and Moller 

2006; Anand et al.,2008). In men, the cancers with the highest incidences are lung and 

bronchus, prostate, colon and rectum, and urinary bladder. Lung cancer in particular accounts 

to about 26% of all cancer deaths (Scolyer et al., 2018). 

However, breast, lung, colon and rectum, uterine corpus, and thyroid cancers have the highest 

prevalence in women. We can out rightly state that prostate and breast cancer are the most 

common cancers that frequently occur in males and females respectively (Scolyer et al., 2018; 

Robsahm et al., 2018; Anand et al.,2008). The cancers with the highest prevalence in children 

are leukemia and cancers associated to lymph nodes and brain (Amin et al., 2017; 

Tryggvadottir et al., 2010).  

Prevention, prompt detection, and treatment are the vanguards in the fight against cancer 

(OECD, 2013). The mode and type of treatment depends on the type, location, stage, 

sensitivity of the cancer, and patient‟s body system. Surgery, immunotherapy, chemotherapy, 

radiotherapy, virotherapy, and hormonal therapy are the most frequently used ways of treating 

the disease (Bohle and Brandau, 2003). Immunotherapy is the process of stimulating, 

activating, and triggering the immune cells in order to fight malignant tumors. Whereas, 

radiotherapy refers to, applying high energy rays to stop or control the growth of malignant 

tumors (Kirschner and Panetta, 1998). 

1.1 Urinary Bladder Cancer 

The urinary bladder is a hollow membranous organ or sack in the lower abdomen of animals 

that is used to amass urine produced by the kidneys. The size and shape of the bladder when 

empty is that of a pear. The urine reaches the bladder via two tubes named as ureters. The 

bladder is lined with muscle tissue that is stretchable in order to hold the urine. Normally, it 
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has a capacity of about 400 to 600 milliliters. In the process of urination, the bladder usually 

squeezes through its muscles, forcing the valves to open and allow urine to exit out of the 

body via the urethra. In men, the urethra is usually around 8 inches; which is five times 

lengthier than in women (1.5 inches), since it passes through the penis (Picture of the bladder, 

2014). 

The growth of malignant tumors starting from the urinary bladder is referred to as bladder 

cancer. It is very common among men and women worldwide, with almost 400000 new 

incidences and approximately 150000 people dying as a result of the disease every year (Saad 

et al., 2017;Kapoor et al., 2008). In USA, there are 38000 males and 15000 females that are 

diagnosed annually (Svetlana et al., 2016). It was reported in 1997 that, 54500 new cases were 

detected and almost 12000 patients died from the disease. Ten years later, the number of 

newly diagnosed patients and deaths due to bladder cancer increased to 67160 and 13750 

respectively (Pasin et al., 2008; Schenkman et al., 2004). The rate at which new cases of 

bladder cancer are occurring is on the rise. The US alone experienced an increase of 36% in 

the span of 34 years (viz. from 1956 to 1990). However, bladder cancer-death related cases 

decelerated to 8% between 1980 and 1995 (Kapoor et al., 2008).  

Bladder cancer can be categorized into two different groups; that is invasive and superficial 

(non-muscle invasive). The latter represents almost 67% (two thirds) of all freshly diagnosed 

cases. It is also referred to as tumor confined to the mucosa of the bladder (Heney et al., 2008). 

It consists of CIS (carcinoma in situ), T1 (disease spreading into the sub mucosa), and 

superficial papillary disease (Ta). They have dissimilar reaction rates to therapy (intravesical), 

thus, they ought to be considered as distinct entities (Schenkman et al., 2004). Vast majority of 

these cases in the Western Hemisphere are of transitional cell type (TCC) also known as 

urothelial carcinoma (UC). UC is a type of bladder tumor that occurs most frequently. It 

accounts for 90% of the total diagnoses, followed by Squamous cell carcinoma with 5% and 

adenocarcinoma with 2% (Heney et al., 2008; Schenkman et al., 2004). Tobacco smoking is 

one of the most communal reasons of bladder cancer. 

1.1.1 Bacillus Calmette-Guerin (BCG) 

Intravesical Bacillus Calmette-Guerin (BCG) is referred to as living mitigated non-pathogenic 

strain of Mycobacterium bovis; primarily utilized as a vaccine for TB (tuberculosis). 
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Nevertheless, BCG is now adopted as a form of immunotherapy in treating superficial bladder 

cancer for the past 40 years (Friberg, 1993). Essentially, BCG has been labeled as "a new 

standard for superficial Bladder Cancer"(Lamm and Karger, 1992). It is basically applied after 

malignant tumor has been removed through local surgery to stop its reoccurrence and end 

decline of malignancy in recurrences. Nonetheless, its influence on survival is unclear. The 

instillation of BCG has shown to effectively treat superficial bladder cancer more than 

chemotherapy (Eric et al., 2012; Friberg, 1993). 

A thin, hollow, and flexible tube known as catheter is used to transfer the BCG into the urinary 

bladder through the urethra. As a result, the BCG will create an inflammatory environment 

(inside the bladder) which provokes a prompt and effective anti-tumor response from the 

immune system (Moss and Kadmon, 1991). This is because the antigens of the BCG activate 

the CD4+ T cells and persuade a primary T helper type 1 immune response (Andius and 

Holmang, 2004). The major function of BCG is to stimulate and trigger the body defense 

mechanism (immune system) so that the immune cells can have the strength, resilience, and 

freedom to spread, discover, attack, and neutralize the cancer cells (Redelman-Sidi et al., 

2014). 

Ratliff and his co-workers suggested that BCG instillation needs “attachment, retention, and 

internalization of the bacteria”. This will later be followed by prompt immunological response 

that eventually leads to demolition of the cancer cells (Ratliff, 1989). This robust immune 

response is as a result of a monumental transitory secernment of cytokines in voided urine, 

consisting of interleukin-1 (IL-1) and its likes, interferon γ, TNF-α (tumor necrosis factorα), 

granulocyte-monocyte colony stimulating factor and interferon inducible protein 10 

(Redelman-Sidi et al., 2014).  

The results of BCG treatment of bladder cancer are quite encouraging. It can cause regression 

of residual disease, concisely stop progression from superficial to invasive cancer, and further 

lengthen the disease-free era. This was observed on a study involving thousands of patients. 

However, one of the studies shows that BCG instillation increases patients‟ survival (Herr et 

al., 1988 and Friberg, 1993).  

Some of the side-effects of BCG immunotherapy of bladder cancer are fever, cystitis, 

excessive pain while urination, dysuria, flu-like symptoms, fatigue, joint pain, and hematuria. 
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They are believed to be as a result of BCG toxicity to healthy cells (Lamm et al., 1980). 

Prolonged BCG instillation is expensive and harmful in some cases (Friberg, 1993).  

1.2 Immune Checkpoints 

Immune checkpoints are defined as negative controls of immune stimulation. Their roles in 

preserving autoimmunity, stopping body tissues from immune damage, and maintaining a 

procedure in the body that preserves the immune system functioning properly known as 

immune homeostasis is noted and important as well (Sharpe et al., 2007).  

However, in cancer, they function as immune suppressors, in which their activation blocks or 

suppresses the prompt/promising anti-tumor immune reaction. Moreover, the cancer cells 

typically hijack checkpoints pathways to hide, resist, confine, and runaway from a massive 

anti-tumor immune attack (Postow et al., 2015). The immune checkpoint pathways hijacked 

by the tumors serves as a way of bypassing detection and resisting immune attack. As a result, 

the tumors develop and eventually metastasize to other organs of the body if left untreated 

(Postow et al., 2015). Therefore, the immune checkpoint blocks/prevent the immune system 

from launching a powerful anti-tumor response (Postow et al., 2015; Sharpe et al., 2007). 

Some examples of immune checkpoints includes Cytotoxic T-lymphocyte–associated antigen 

4 (CTLA-4), Programmed cell protein-1 (PD-1), Lymphocyte-activation gene 3 (LAG-3), T 

cell immunoglobulin mucin 3 (TIM-3),and Killer immunoglobulin-like receptors (KIRs) 

(Robert C et al., 2011). 

1.3 Mathematical Model 

A mathematical model is the representation or interpretation of systems and their dynamics, 

processes, or different aspects of real life problems using mathematical techniques, tools 

and/or set of equations. The phenomenon or process of achieving the aforementioned scenario 

is called mathematical modeling. Recently, mathematical modeling has played a key role in 

engineering, environment and industry, health sciences and so on. Its emergence in other fields 

is also on the rise and is now a distinctive tool for quantitative and qualitative analysis 

(Quarteroni et al., 2006).   
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Scientific computation is one of the key reasons that lead to successful transition of 

mathematical modeling, because it allows appropriate translation of a mathematical model into 

some algorithms which can be analyzed and solved by influential computers (Quarteroni and 

Formaggia, 2004). Meanwhile, numerical analysis is the major tool used in solving 

mathematical models in the field of engineering and applied sciences (Parolini and Quarteroni, 

2005). The success rate motivates other new disciplines like biomedical engineering, financial 

engineering, health sciences, information and communication technology to start using 

mathematical modeling to solve problems, and explore their ideas and thoughts (Quarteroni et 

al., 2006).   

Additionally, mathematical models propose new options to explain the increasing complex 

behavior of technology, which is the foundation of current industrial production (Quarteroni et 

al., 2006). They are important in simulation, investigation, analysis, and decision making; and 

hence, their role to technological progress is obvious. Moreover, mathematical models can 

suggest novel answers and solutions in a very short period of time, therefore allowing the 

increase of swiftness in innovation cycles (Parolini and Quarteroni, 2005).This guarantees a 

possible benefit to production industries and health sciences because they can save money and 

time in authentication and development phases (Quarteroni and Formaggia, 2004).  

Mathematical modeling is usually used to explain the dynamics and spread of numerous 

infections. Moreover, it can also be used to elucidate the outcome of a treatment and explore 

complex biological processes. These models are commonly compartmental models that are 

represented using systems of ordinary and/or partial differential equations. Studying 

mathematical models is of great importance because they gave an insight and crucial 

understanding of the essential features of the spread of transmitted diseases, growth and 

mechanism of other diseases, and appraise the probable effect of control strategies in reducing 

persistence, sickness and mortality (Hethcote, 1994). 

We can thus out rightly state that, scientific computation and mathematical modeling are 

progressively and determinedly expanding in life sciences, environment, applied sciences, 

industry, sports and so on (Detomi, et al., 2008; Parolini and Quarteroni, 2005). 
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1.3.1 Mathematical Biology (Biomathematics) 

Mathematical biology or biomathematics is a branch of mathematical modeling that deals with 

the mathematical and computational studies of real life problems in biological systems and 

health sciences (EPSRC, 2015). The history of the application of mathematical models in 

medicine and biology is long and broad. In 1202, Leonardo of Pisa was one of the first 

scientists to propose a mathematical model in his math book titled Liber abbaci. It was an 

exercise related to the reproduction of rabbits. A question was raised on the pattern and 

number of rabbits likely to be reproduced at the end of each reproductive period when a pair of 

male and female immature rabbits is selected at the start of a breeding period. The answer 

leads to the famous series known as Fibonacci series - every number is the summation of the 

preceding two. In the seventeenth century, he was later named from Leonardo of Pisa to 

Fibonacci (Murray, 2012). 

Daniel Bernoulli suggested the first thoughtful mathematical model with a differential 

equation to measure the consequence of cow-pox vaccination on the spread of smallpox. His 

paper gave certain fascinating records on the death of children and it is further used to evaluate 

the useful benefits of a vaccination control program (Bernoulli, 1760; Murray, 2012). 

Lotka and Volterra model the interaction of a prey and its predator for two populations 

popularly now known as Lotka-Volterra model (Lotka, 1925; Volterra, 1926). Kermack and 

McKendrick formulated the famous susceptible, infected, and recovery (SIR) mathematical 

model that studies the number of infected individuals with an infectious disease in a 

completely susceptible and closed population over time (Kermack and McKendrick, 1932). 

The mathematical model on genetics and natural selection was given by Fisher (Fisher, 1930), 

while Fisher and Kolmogoroff introduced diffusion into their models for some biological 

phenomena (Kolmogoroff et al., 1937; Fisher, 1937). 

Biomathematics started to develop in the 1950s where the work of Hodgkin and Huxley on 

nerve transmission and excitation won them a standard Nobel Prize (Murray, 2012; Hodgkin 

and Huxley, 1952). There were prompt rise of interest in the area between 1960s and 1970s 

particularly in reaction-diffusion models - which Turing, Nicolis, Gierer and Meinhardt 

published their papers on (Murray, 2012). The models on enzyme kinetics built on oxygen 

diffusion into pea nodules and effect of hemoglobin and myoglobin in aiding oxygen in 
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various physiological conditions were developed in (Murray, 1968; Murray, 1971; Murray, 

1974; Murray and Wyman, 1971). 

In the 1980s, it was extensively becoming further familiar that any factual contribution to 

biological sciences from mathematical modeling needs to genuinely be interdisciplinary and 

therefore interrelated to actual biology (Murray, 2012).This implies that, an outstanding and 

best research was/is a mathematical model(s) proposed for particular biological phenomena 

and by which its forecasts were established, or else, by experiment and, essentially, aid our 

clear understanding of the real biological problems (Murray, 2012). As of now, there are 

countless of such models and many more are expected to follow in the future as J.D. Murray 

says “Mathematical biology is a fast-growing, well-recognized, albeit not clearly defined 

subject and is, to my mind, the most exciting modern application of mathematics” (Murray, 

2002). 

1.3.2 Deterministic Models 

Deterministic models are the type of models that snub random deviation, and thus 

continuously forecast similar result from specified starting points- which are fixed. They have 

no parameters that are described by probability distributions i.e. none of the constituents are 

characteristically uncertain. In other words, the output of a deterministic model is completely 

determined by parameter values and initial conditions.  

1.3.3 Stochastic Models 

Stochastic models are just an improvement of deterministic models. They have some essential 

randomness and uncertainty. Therefore, same parameter values and initial conditions will lead 

to a group of different and dissimilar outputs. Moreover, the set of parameters are described by 

probability distributions. 

1.4 Properties of a Mathematical Model 

For any mathematical model to be meaningful and robust, it has to be well-posed. A 

mathematical model is said to be well-posed if it has the following properties: 

1. Existence of solutions 
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2. Uniqueness of solutions 

3. Stability of solutions 

1.4.1 Existence and Uniqueness 

Given the following initial value problem (IVP): 

    (   )           (  )         (1.1) 

where   is continouous in a closed and bounded domain and   ,    are fixed constants. 

Our aim here is to check whether or not the solution of the IVP exists, if it exists is it unique? 

To address the above question we state the following theorems. 

Theorem 1.1. (Cauchy-Peano local existence theorem). Assume that the function   in (1.1) is 

continouous and bounded in some region   *(   )  |     |    |     |    +  with  

       Then the IVP (1.1) has at least one solution    ( ) defined on the interval 

|     |   , where      2  
 

 
3 and   is an upper bound for   which is positive.  

Proof. (Coddington and Levinson, 1955) 

Theorem 1.2. (Picard-Lindelof uniqueness theorem). Presume that  isa continouous and 

bounded function in   (defined in Theorem 1.1). In addition, let the function be Lipschitz 

continuous in the second variable, that is to say, | (    )   (    )|   |     |   (    )  

 , with a Lipschitz constant    Then, the IVP (1.1) possess a unique solution    ( )defined 

on the interval |     |   , where      2  
 

 
3 and   is an upper bound for   which is 

positive. 

Proof. (Coddington and Levinson, 1955) 

1.4.2 Stability 

The characteristic that a minor alteration in the initial point    of a solution has merely a minor 

influence on the behavior of the solution as     is referred to as stability of the solution. 

Suppose    ( )  and   ̃   ̃( ) are solutions to the IVP (1.1) with initial conditions 
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 (  )     and  ̃(  )   ̃ . Then,   ̃   ̃( ) is said to be stable if, given any    ,   a     

such that if |    ̃ |   , then | ( )   ̃( )|           

Moreover, the solution  ̃   ̃( ) is said to be asymptotically stable if it is stable and   a 

     (fixed) such that if |    ̃ |    , then       ( ( )   ̃( ))     

We will need stability of every given solution to which we attribute biological meaning, 

viz.when a slight disruption could brought a huge alteration in the solution, then it is 

irrationally and unreasonably appropriate to regard the solution significant and meaningful 

(Brauer and Castillo-Chavez, 2011). 

In analyzing a biological model, we need an equilibrium solution, because the system is 

difficult to analyze while in motion, therefore equilibrium solutions are needed to study the 

stability of solutions.  

Consider the following autonomous differential equation, 

    ( )        (1.2) 

An equilibrium point of the autonomous differential equation (1.2) is a point    such that 

 (  )     In other words, it represents a constant solution  ( )     of (1.2).  

The concept of linearization is a process that describes the manner of solutions close to 

equilibrium. To establish it, we make the following assumptions and change of variables: 

Suppose    is equilibrium of (1.2), and then let   ( )   ( )      which describes the 

solution deviating from the equilibrium point. Now, differentiating, substituting (in (1.2)), and 

applying Taylor‟s theorem yields   ( )   (  )    (  ) ( )  
 

  
  ( )( ( ))

 
  where 

  (       ( )). Since    is an equilibrium point, then  (  )     

Therefore,    ( )    (  ) ( )   ( ), where  ( )  
 

  
  ( )    Hence, the linearization of 

the autonomous differential equation (1.2) at the equilibrium    is obtained by ignoring the 

higher-order term  , and it is given by the linear homogenous differential equation; 

     (  ) .       (1.3) 
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The main aim of the linearization is that, the behavior of its solutions is simple and friendly to 

examine, thus, this manner and behavior also defines the behavior of solutions of the given 

original autonomous differential equation (1.2) close to the equilibrium. Moreover, the 

linearization can be used to derive asymptotic stability- which is what is usually needed or 

preferred in dealing with biological models rather than just stability. This is due to the fact 

thatan asymptotically stable equilibrium is not bothered significantly by a perturbation of the 

differential equation. Again stability cannot be obtained from the linearization (Brauer and 

Castillo-Chavez, 2011). 

Theorem 1.3. When all solutions of the linearization (1.3) at an equilibrium   approaches zero 

as   tends to   , then all solutions of (1.2) with  (  )sufficiently near  tends tothe 

equilibrium   as  approaches  . 

Proof.(Brauer and Castillo-Chavez, 2011). 

From theorem 1.3, it follows that all solutions of the linearization approaches zero if   (  )  

   Therefore, the equilibrium point    is asymptotically stable when   (  )   , and unstable 

when   (  )     

However, majority of the real life circumstances and biological models involve at least two 

species. Therefore, we are going to briefly give a general framework for a finite multispecies 

interaction.  

Suppose   ,             are distinct sizes (of a population) of   interrelating species. 

Assume also that, at any given time, every population‟s growth rate is dependent on the 

different sizes of the population at that time. Thus, the model is given by a system of   first 

order autonomous differential equations 

 ̇    (             )  

 ̇    (             )  

           (1.4) 

 ̇    (             )  
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where   ,             are continuously differentiable functions. The equilibrium points of 

system (1.4) are points    
    

    
      

  such that  

  (  
    

    
      

 )     

  (  
    

    
      

 )     

           (1.5) 

  (  
    

    
      

 )     

The linearization of (1.4) around the equilibrium   
    

    
      

  is given by the linear 

system of differential equations 

 ̇  
   
   

(  
    

      
 )     

   
   

(  
    

      
 )    

 ̇  
   
   

(  
    

      
 )     

   
   

(  
    

      
 )    

            

 ̇  
   
   

(  
    

      
 )     

   
   

(  
    

      
 )    

which can be written in a vector form as        where   4
   

   
(  

    
      

 )5 is 

referred to as the community matrix of (1.4) at the given equilibrium   (  
    

      
 ) 

(Brauer and Castillo-Chavez, 2011).  

Theorem 1.4. Suppose that all eigenvalues of the community matrix of system (1.4) at 

equilibrium   possess negative real part. Then, the equilibrium   is asymptotically stable. 

Proof. (Brauer and Castillo-Chavez, 2011).  

From theorem 1.4, we can deduce that, if all the eigenvalues of the community matrix of (1.4) 

at the equilibrium   possess negative real part, then all solutions of the linearization at this 

equilibrium approaches zero as   tends to  . Thus, the equilibrium   is asymptotically stable. 
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For two species, the eigenvalues of the community matrix  have negative real part if we know 

the sign of trace and determinant of . That is to say if  ( )             ( )   . 

A general criterion used in implicitly determining the sign (negative real parts or otherwise) of 

the eigenvalues from a given characteristic equation is known as the Routh–Hurwitz criterion. 

Suppose the characteristic equation for   dimension is given by  

      
       

       
           

              

Now, applying the Routh–Hurwitz criterion when    , the roots of the characteristic 

equation have negative real part if       and       and this is equivalent to the trace of   

to be positive and determinant of   to be negative.When      the Routh–Hurwitz condition 

is,                         

However, if      then the condition is,                            (       )  

  
     

Note that the number of conditions depends on the degree of the polynomial equation. 

Hence, to establish the asymptotic stability of equilibrium, it suffices to obtain the community 

matrix by the concept of linearization about the given equilibrium, and then apply the Routh–

Hurwitz criterion or otherwise to check whether the sign of the real part of all the eigenvalues 

of the community matrix. If all the eigenvalues have negative real part then the equilibrium is 

asymptotically stable, else unstable. 

1.5 Mathematical Oncology 

The application of mathematical modeling in studying the growth, evolution, dynamics and 

treatment of cancer is called mathematical oncology. The problem is first understood by the 

applied mathematicians, and later formulates the mathematical models in partnership with 

clinicians (in particular oncologist) and/or biologist. Thus, this makes the field of study 

actually interdisciplinary. The aim here is to use the joint knowledge to increase and develop 

the recent treatment options that will benefit the cancer patients (Stadtländer, 2016). 

Chauviere et al. (2010) and Stadtländer (2016) published review articles on mathematical 

modeling of cancer approaches. The review was based on forecasting tumor evolution and 
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mass, drug supply focusing on measuring the diffusion blockade so that unfortunate reactions 

to chemotherapy should be understood, and multi scale cancer modeling- which is believed to 

be important clinically for surgery, imaging, radiotherapy, and chemotherapy. Several 

mathematical models that study the dynamics and growth of cancer have been established 

(Basanta and Anderson, 2017; Maley et al., 2017; Egeblad et al., 2010). 

1.5.1 Mathematical Models of Cancer Growth 

A mathematical model of tumor growth is a mathematical expression of how the tumor size 

depends on time. The models are based on some principle that states that the rate of change of 

tumor size with respect to time is given by the difference between growth rate and the rate of 

degeneration. That is to say, if   is the tumor size, then the general form is given by  ̇  

  ( )  where  ( ) models the net proliferation of the tumor viz. the difference between its 

growth rate and its rate of degeneration. It is tough to deduce the growth and degeneration 

rates in general using experimental data; hence, we use net-proliferation rate instead (Schattler 

and Ledzewicz, 2015). Some of the mathematical models of cancer growth are: 

i) Exponential Growth 

Provided environmental factors and conditions are unchanged over a small period of time, it is 

usually sensible and rational to make the assumption that both the growth and degradation 

rates are constant (Schattler and Ledzewicz, 2015). Thus, the tumor growth then becomes 

exponential which can simply be written as follows 

 ̇             (1.6) 

where   is a growth factor (Wheldon, 1988). Assuming  (  )    , that is the initial size of 

the tumor is given at     , then the tumor evolution is   ( )     
    with   associated to 

tumor replication time    defined by;    
   

    

It is usually amongst the most common models used in describing tumor evolution (Wheldon, 

1988; Schattler and Ledzewicz, 2015). However, it is mostly applicable at the early stages of 

the cancer where the growth is rampant (somewhat exponential). The exponential growth does 

not adequately describe evolution of the tumor for a long time period, because the proliferation 

rate  ( ) decreases (decreasing function) over time with the growth of the tumor (Wheldon, 
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1988). This is due to the fact that, the nutrients and oxygen accessible are limited, the struggle 

for resources and spaces also increases. Thus, the growth rate decreases and the degeneration 

rate increases (Schattler and Ledzewicz, 2015).  

As the tumor increase in size, the exponential growth needs to be replaced or adjusted with 

other growth models like the logistic or Gompertz model (Schattler and Ledzewicz, 2015).   

ii) Gompertz Growth Model 

This model is one of the most frequently used models to describe cancer growth at its 

advanced phases (Wheldon, 1988). It has a record of supporting experimental data for breast 

cancer (Schattler and Ledzewicz, 2015; Norton and Simon, 1977; Norton, 1988). The model 

was developed by Benjamin Gompertz in 1825. The net proliferation rate  ( ) is given by 

 ( )           where           (1.7) 

The parameters   and   represents growth and death rates respectively (Norton, 1988). 

Therefore, the Gompertz model with a normalized initial condition is given by 

 ̇   (      )         ( )     

To solve the above differential equation, we make the following change of variable        

then,   ̇             ( )      Then,   ( )  
 

 
(      )  Hence, the evolution of the tumor 

is given by,   ( )     (
 

 
(      ))  

iii) Logistic and Generalized Logistic Growth Model 

The generalized logistic growth model‟s net proliferation  ( ) is as follows: 

 ( )   4  .
 

 
/
 

5                     

The model is established on struggle amongst systems related with growth and degeneration. 

The resulting differential equation for the tumor size becomes, 

 ̇    (  .
 

 
/
 

)       (  )          (1.8) 
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where   here is the carrying capacity of the tumor. The tumor carrying capacity refers to 

maximum tumor volume the surroundings can withstand indeterminately. However, in 1838, 

Verhulst developed the classical so-called logistic growth model (   ). His work was based 

on the description of a self-limiting biotic population. He assumed that the reproduction rate is 

directly proportional to the quantity of accessible resources and current population (Schattler 

and Ledzewicz, 2015). The logistic model is given by 

 ̇    .  
 

 
/       (  )          (1.9) 

Later in the 1930s Richards gave the generalized version in (1.8). The advantage of the 

generalized version is, it is applicable to both sluggishly and fast developing tumors, and can 

distinguish between them. The speed of the growth of the tumor is dependent on   value. The 

greater the  value, the more rigorous and faster the tumor develops and approaches the 

exponential growth as   tends to   (Schattler and Ledzewicz, 2015). The evolution of the 

tumor is obtained by solving the Bernoulli differential equation in (1.8), and the solution is 

given by 

 ( )    (.
  

 
/
 

    (    ) 4  .
  

 
/
 

5)

 
 

 

  

1.6 Optimal Control Theory 

Optimal control theory objectively deals with finding control signals that will maximize (or 

minimize) a given performance index or criterion and at the same time causing the process to 

fulfill some physical constraints (Kirk, 2004).In other words, it is a way of deriving control 

function(s) and state trajectories over time-period for a dynamical system, in order to 

maximize (or minimize) a performance criterion (Bryson, 1996; Kirk, 2004). It is originated 

and an extension of the calculus of variation (CV) (Bryson, 1996).  

 

The earliest and most important scientist that leads to the discovery and development of 

optimal control and theory of calculus of variation comprises of Pierre dc Fermat (1601-1665), 

Isaac Newton (1642-1727), Johann Bernoulli (1667-1748), Leonhard Euler (1707-1793), 

Ludovico Lagrange (1736-1813), Andrien Legendre (1752-1833), Carl Jacobi (1804-1851), 
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William Hamilton (1805-1865), Karl Weierstrass (1815-1897), Adolph Mayer (1839-1907), 

and Oskar Bolza (1857-1942)(Bryson, 1996). 

 

In particular, Fermat initiated calculus of variation in 1662 through a principle – for a 

minimum amount of time, light travels via a sequence of optical media. Galileo‟s 

“brachistochrone” and “heavy chain” problems postured in 1638 were later solved in the mid-

1600 by calculus of variation. CV was also used by Isaac Newton to determine the minimum 

drag nose shape of a projectile (Bryson, 1996). In 1967, Benoulli adopted Fermat‟s concepts to 

establish the solution of a discrete-step type of the brachistochrone problem. The continuous 

version was later solved in 1699 by Leibniz, L‟Hospital, and Newton after they were 

challenged by Bernoulli (Goldstine, 1980; Bryson, 1996). The CV was further developed in 

the 17
th

 century by Newton, Bernoulli, Fermat, and Leibniz. Euler/Lagrange and 

Legndre/Jacobi/Hamilton/Weistrass further enhanced the evolution of CV in the 18
th

 and 19
th

 

century, respectively.   

The generality of the CV to optimal control theory was established enormously in the 1950s 

and 1960s. Some of the significant landmarks were accomplished by Lev Pontryagin (1908-

1988) and his associates (coworkers) - V. G. Boltyanskii, R. V. Gamkrelidz and E. F. 

Misshchenko in establishing the maximum principle (Pontryagin‟s maximum principle), 

Richard Bellman (1920-1984) for invention of dynamic programming, and Rudolf Kalman 

(1930-2016) credited for the development of Kalman filter and construction of the linear 

quadratic regulator (Pontryagin, 1962; Bryson, 1996). 

 

The emergence of the Pontryagin‟s maximum principle defines a new era in optimal control 

theory because; it provides mathematicians with appropriate conditions in optimization 

problems consisting of differential equations as their constraints and paves way for extensive 

research in the area (Pontryagin, 1962). Solving optimization problems comprising of 

constraints on the derivatives of functions by CV is problematic, thus, optimal control is 

applied to obtain the solutions (Leitmann, 1997). 

 

Optimal control theory is extensively applied in various fields of study, which includes 

economics and management, finance, biology and health sciences, aerospace and aeronautics, 
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biomedical engineering, control theory, robotics and so on. The emergence of fast and high 

resolution computers helps in applying optimal control methods to solve difficult and 

complicated problems (Bryson, 1996). Various approaches exist in the formulation of optimal 

control problems where the principal process can be expressed by PDE (partial differential 

equations), SDE (stochastic differential equations), ODE (ordinary differential equations), and 

difference equations and so on. However, this thesis is devoted to studying optimal control 

theory with ODE. 

1.6.1 Optimal Control Problem (OCP) 

The setting of an OCP involves: 

1. Explaining the process to control (Mathematical model). 

2. Declaring physical constraints. 

3. Describing some performance index or criterion. 

Given the following ordinary differential equation, 

{
 ̇( )   (   ( ))

 (  )    
            (1.10) 

where         ,           to be continuous and piecewise differentiable, and the 

initial condition      . System (1.10) gives the mathematical model, which can also be 

taken as dynamical development of state for some process - “state system”. Now, we introduce 

a new function to make some generalization by assuming that  further depends on some 

“control” parameters from a set, say,       . Thus, we define           . Let     

such that         is defined as 

 ( )  

{
  
 

  
 

          
          
          

 
 
 

            

 

where              , and               In general, the function   is called a 

control and analogous to every control we consider (1.11) - usually referred to as the 
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“controlled system”, and the solution  ( ) (trajectory; which is dependent on the control and 

initial condition) as the resultant response to the system. 

{
 ̇   (   ( )  ( ))

 (  )    
          (1.11) 

It is important to note that  ,   and can be written as follows: 

 ( )  

[
 
 
 
 
 
  ( )

  ( )
 
 
 

  ( )]
 
 
 
 
 

  ( )  

[
 
 
 
 
 
  ( )

  ( )
 
 
 

  ( )]
 
 
 
 
 

   and  

 (   ( )  ( ))  

[
 
 
 
 
 
 
  (  ( )     ( )   ( )    ( ))

  (  ( )     ( )   ( )    ( ))
 
 
 

  (  ( )     ( )   ( )    ( ))]
 
 
 
 
 
 

  

Define a set   *                                           + representing the pool 

or collection of all admissible controls, with  ( )  

[
 
 
 
 
 
  ( )

  ( )
 
 
 

  ( )]
 
 
 
 
 

  

The class of admissible controls cannot be considered to consist of continuous functions 

because of the jumps expected from the control. Thus, they are considered to be piecewise 

continuous functions.  

A piecewise continuous function  , defined on some time interval, say        , with range 

in the control region  ,    , for all   [     ], is said to be an admissible control. Since, 

they are piecewise continuous, thus, controls    ( )are continuous for all   under 

consideration, with the exception of only a finite number of  , at which  ( )may have 

discontinuities of the first kind. We can observe that every admissible control is bounded. 
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A usual control problem needs a performance criterion/index or objective function to be 

maximized (or minimized) as mentioned earlier. The objective function   is generally defined 

as  

 , ( )  ( )-   . (  )/  ∫  ( ( )  ( ))  
  
  

    (1.12) 

where   solves (1.11) for the control  . The functions           and          are 

continuously differentiable, denoting running and terminal payoffs, respectively. The 

functions   and   will be given as well as the final time,   , and   is generally referred to as 

the Lagrangian,  . 

Our overall goal is to determine a control    that maximize (or minimize) the performance 

criterion (objective function) subject to (1.11). That is to say, we determine    such that  

 (  )   ( )        (1.13) 

for all controls    . Such a control   ( ) if found is referred to as optimal. In a nutshell, we 

aim to find an optimal control that will maximize or (minimize) a given performance index 

subject to the state system describing the process.  

There are three main formulations of an optimal control problem, that is, Bolza, Lagrange, and 

Mayer formulations. The Bolza formulation of an optimal control is given by  

   
   

                     , ( )  ( )-   .    (  )/  ∫  (   ( )  ( ))  

  

  

 

              ̇( )   (   ( )  ( ))    (1.14) 

    (  )      

where the value of  at the final time,  (  ) can be fixed or free.  

However, the Lagrange formulation can be obtained from Bolza (1.14) as follows: 

   
   

                     , ( )  ( )-  ∫  (   ( )  ( ))  

  

  

 

              ̇( )   (   ( )  ( ))    (1.15) 
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    (  )      

Moreover, we can get the Mayer formulation from Bolza as well. It is given by: 

   
   

                     , ( )  ( )-   .    (  )/ 

              ̇( )   (   ( )  ( ))    (1.16) 

 (  )      

Theorem 1.5. Bolza, Lagrange, and Mayer formulations are equivalent. 

Proof. (Fleming and Rishel, 1975) 

Some natural and obvious questions to ask are as follows: 

i. Do the optimal controls exist? 

ii. In what way could we characterize the controls mathematically? 

iii. How can we construct an optimal control? 

1.6.2 Existence of Optimal Control 

Before attempting to solve and find an optimal control, we need to ensure that the solution 

exists, that is to say, in particular the optimal control exist. 

Theorem 1.6. Given the objective functional in (1.13), where the set of controls are Lebesgue 

integrable functions on         in the set of real numbers. Assume there exists some 

constants   ,   ,    such that; 

1. The class of all initial conditions with a control  , (    ), in the admissible control set 

along with each state equation being satisfied is nonempty. 

2. | (     )|    (  | |  | |). 

3. | (      )   (     )|    | 
   |(  | |)  

4.   is closed and convex,  (     )   (   )   (   ) , and  (   ( )  ( )) is convex on  . 

5.  (   ( )  ( ))    | |    ,      and    .  

Then, there exist (  
    ) that minimize  (    ).  
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Proof. (Fleming and Rishel, 1975). 

Theorem 1.6 guarantees the existence of an optimal that will minimize (or maximize) the 

objective function of a control problem subject to its physical constraints.  

1.6.3 Hamiltonian Function 

The function                defined by  

 (   ( )  ( )  ( ))   (   ( )  ( ))    (   ( )  ( )),  (1.17) 

is referred to as Hamiltonian function, where  (to be explained later) is the adjoint variable.   

1.6.4 Pontryagin’s Principle 

The essence of the Pontryagin's principle also known as Maximum principle is to establish the 

optimality conditions and characterization of OCP. That is to say, to give the fundamental 

necessary conditions for a controlled trajectory to be optimal (Schattler and Ledzewicz, 2012). 

L.S Pontryagin and his colleagues developed this principle around 1955 in the Soviet Union. 

The necessary conditions are obtained using the principle by reducing the problem to a two-

point BVP (boundary value problem) for a set of differential equations together with a 

maximization (or minimization) side condition. The solutions or computations of the BVP 

give the characterization of the optimal control (Fleming and Rishel, 1975). 

Nevertheless, the solution of the two point boundary value problem might be complicated in 

difficult examples. Thus, numerical methods like shooting, multiple shooting, and forward-

backward sweep methods are employed to compute the numerical solution of the optimization 

problem (Fleming and Rishel, 1975). 

Theorem 1.7. (Pontryagin‟s maximum principle). Given the objective function   and suppose 

   is optimal for (1.13), and    is the resultant state solution. Then, there exists a function  

   [     ]     such that  

 (   ( )   ( )  ( ))   (   ( )   ( )  ( ) )    (1.18) 

for all control     and   [     ]  

 ̇ ( )  
  (   ( )   ( )  ( ) )

  
       (1.19) 
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 ̇( )   
  (   ( )   ( )  ( ) )

  
       (1.20) 

and lastly,     (  )         (1.21) 

Proof. (Fleming and Rishel, 1975). 

From Theorem 1.7, (1.20) is referred to as the adjoint equations, and the transversality 

condition is given by (1.21); which can be used only when    is free. The maximization 

principle is specified in (1.18). Furthermore, the theorem reduces the optimal control problem 

to maximizing the Hamiltonian function. As a result, we find the critical point of the 

Hamiltonian using what is known as the optimality condition, that is to say, 

  (   ( )   ( )  ( ) )

  
  .      (1.22) 

Therefore, we do not have to evaluate the integral in the objective function to determine the 

necessary conditions for optimality; instead we use Hamiltonian only to achieve that. 

The version of the Pontryagin‟s principle for Bolza formulation is given by the following 

corollary. 

Corollary 1.1. Suppose   and   are optimal for (1.14), Then, there exists a function    

 [     ]     such that  

 (   ( )   ( )  ( ))   (   ( )   ( )  ( ) )    (1.23) 

for all control     and   [     ]  

 ̇ ( )  
  (   ( )   ( )  ( ) )

  
       (1.24) 

 ̇( )   
  (   ( )   ( )  ( ) )

  
       (1.25) 

and lastly,     (  )   ̇( (  ))     (1.26) 

Proof. (Kamien and Schwartz, 1991). 

In real life applications, most of the controls are bounded, thus, we should establish the 

necessary conditions for bounded controls. 

Corollary 1.2. Given the following optimal control problem  
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                     , ( )  ( )-  ∫  (   ( )  ( ))  

  

  

 

              ̇( )   (   ( )  ( ))   (1.27) 

     (  )      

   ( )     

for any given constants   and   such that      Suppose that   and   are optimal for (1.27), 

then therexists a piecewise differentiable function  with 

 (   ( )   ( )  ( ))   (   ( )   ( )  ( ) )    (1.28) 

for all control     and   [     ]       

 ̇ ( )  
  (   ( )   ( )  ( ) )

  
       (1.29) 

 ̇( )   
  (   ( )   ( )  ( ) )

  
       (1.30) 

 (  )   ̇( (  ))        (1.31) 

Moreover, the optimality condition is given by  

   

{
 
 

 
                                   

  

  
  

   ̆( )              
  

  
  

                                 
  

  
  

     (1.32)   

or in compact form  

  ( )     (   ( ̆  )  )      (1.33) 

Proof. (Fleming and Rishel, 1975). 
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1.6.5 Applications of Pontryagin’s Maximum Principle 

Now, we are going to give some examples to illustrate how the Pontryagin‟s maximum 

principle works. 

Example 1. Use the Pontryagin‟s principle and solve the OCP. 

   
   

   , ( )  ( )-  ∫(    )  

 

 

 

            ̇( )           

    ( )    

 ( )     

The first step is to outline the Hamiltonian for the optimal control problem as follows: 

 (       )        (     )  

The adjoint variable is obtained from the Hamiltonian and given by  ̇( )   
  

  
       

This implies that,  ̇( )        The optimality condition is as follows: 

  

  
         

 ⁄   

The transversality condition,  ( )     is used to solve the adjoint equation, that is to say, we 

solve the first order linear ordinary differential equation with transversality condition in (1.34),  

{
 ̇( )       
 ( )             

       (1.34) 

The solution is given by  ( )  
 

 
(       )  

Thus,     
 

 
(       ) (from the optimality condition). To find the corresponding 

trajectory,   , we solve the following initial value problem: 
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{
 ̇      

 

 
(       )

 ( )    
 

The trajectory is  ( )   
 

 
   (            )  

Therefore,  ( )   
 

 
   (            ) is the solution of the problem corresponding to 

the optimal control     
 

 
(       ). 

The next example will be for an optimal control problem with terminal payoffs and bounded 

controls. 

Example 2. Consider the optimal control below 

   
   

   , ( )  ( )-   (  )  ∫(  
 

 
  )   

 

 

  

            ̇( )           

    ( )     

    ( )      

Form the Hamiltonian as follows:  (       )    
 

 
    (    )   The adjoint equation 

is given by, 

 ̇( )   
  

  
        

and the transversality condition is  ( )   , since  ̇( (  ))     Thus,  

 ( )  
 

 
(  (    )   ). 

The optimality condition is given by  
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Then,  ̃   
 

 
(  (    )   ). Thus, by the Pontryagin‟s maximum principle, 

   

{
 
 

 
                                                         

  

  
  

 
 

 
(  (    )   )                          

  

  
  

                                                           
  

  
   

 

However, if the state equations and controls are system of ordinary differential equations, 

analytic solutions are difficult to get. Hence, we employ some numerical methods to solve the 

optimality system - it is obtained when state equations with their initial conditions are coupled 

together with the adjoint equations and their transversality conditions. In this thesis, we are 

going to explain the forward-backward sweep method – a method used in finding the 

numerical solutions of optimality systems. 

1.6.6 Forward-Backward Sweep Method 

It is a type of an indirect method used to numerically find the optimality conditions of an OCP. 

The application of maximum principle reduces the problem to a multiple point boundary value 

problem (optimality system). The optimality system is solved to determine the optimal values 

for the original control problem. In indirect methods, it is basically essential to have adjoint 

equations, transversality conditions, and the control equations. The procedure for the forward-

backward sweep method is as follows: 

1. We start by making an initial estimate (guess) for the control function. 

2. Then, state equations in the optimality system are solved forward in time using the initial 

conditions and the control value (guessed in 1). This process is conducted using the fourth 

order Runge-Kutta scheme or the solver ode45 for Matlab (Lenhart and Workman, 2007; 

Wang, 2009). 

3. Next, we use the updated values of the state, control value, and the transversality conditions 

to solve the adjoint equations backward in time with fourth order Runge-Kutta scheme or the 

solver ode45 for Matlab (Wang, 2009). 
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4. The control is then updated when the latest updated values of the states and adjoints are 

substituted in the representation of the optimal control obtained from the maximum principle. 

5. The process is repeated until we have convergence viz. - the difference between newest and 

previous values of the variables is within an acceptable error range. Thus, the current values 

will be the solution of the optimality system when convergence is achieved. 

1.7 Mathematical Modeling and Optimal Control of Superficial Bladder Cancer  

Several mathematical studies have been conducted on superficial bladder cancer treatment. 

Bunimovich-Mendrazitsky et al (2007) presented the first model of bladder cancer 

immunotherapy using BCG. Stability analysis of the model with exponential and logistic 

growth of the cancer was also conducted. Their research aims to illustrate relation between the 

immune system and bladder cancer cells in consequence to BCG immunotherapy. In 2008, 

they modified the model by changing the mode of infusion of the BCG from continuous to 

pulsing. Thus, they used impulsive differential equations to study the dynamics and stability 

analysis of the model (Bunimovich-Mendrazitsky et al., 2008). 

Mathematical modeling of combination therapy for bladder cancer with BCG and interleukin-

2 (IL-2) was studied in (Bunimovich-Mendrazitsky et al., 2011; Bunimovich-Mendrazitsky et 

al., 2016). A nine-dimensional model of bladder cancer immunotherapy (BCG therapy) that 

provide cancer clearance conditions was developed in 2015 (Starkov and Bunimovich-

Mendrazitsky, 2015). 

Optimal control theory is applied to various cancer treatment models in order to find the best 

optimal dose or best control strategy required to minimize or eradicate cancer cells. An 

isoperimetric optimal control problem on a BCG immunotherapy model was utilized to 

determine optimal BCG dose needed in activating the immune system in (Elmouki and Saadi, 

2014). Meryem et al. developed a free-final time optimal control approach that determines the 

optimal dosage and time of applying the BCG in bladder cancer treatment (Alkama et al., 

2018).  

Many researchers used the Pontryagin‟s principle in finding optimal BCG dose required to 

stimulate the immune system, in order to launch a rigorous and robust anti-tumor attack 

(Elmouki and Saadi, 2016; Aboulaich et al., 2017; Saadi et al., 2015; Alkama et al., 2017).  
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More literature will be revealed in the subsequent chapters of the thesis.  

1.8 Framework of the Thesis  

The central aim of this thesis is to develop and formulate mathematical models of bladder 

cancer immunotherapy using Bacillus Calmette Guerin (BCG), with a special focus on the 

negative influence/effect of immune checkpoints on the immune cells and the entire treatment. 

Additionally, it is in our target to structure the treatment into a OCP demanding the 

maximization (or minimization) of certain specified objective functions; which are dependent 

on the number/concentration of cancer cells, concentration of immune checkpoints, number of 

immune cells, and costs of controls, for some known and specified initial conditions. 

Thus, this will enable us to explain, suggest, propose, and give the best treatment strategy or 

outcome - optimal dose in particular, required to eradicate or minimize the severity of the 

disease. 

The thesis comprises of three manuscripts. The manuscripts can be read independently 

because of their self-sufficient nature. Chapter 1 presents the mathematical and biological 

backgrounds that support the original results of the thesis.  

The first result (first paper) is presented in chapter 2, that is, 

Dynamics of immune checkpoints, immune system, and BCG in the treatment of superficial 

bladder cancer, Saad F.T., Hincal E., Kaymakamzade B., Computational and Mathematical 

Methods in Medicine, Volume 2017, Article ID 3573082, 9 pages. 

The model formulated in this chapter explores the interaction of bladder tumor, immune 

system, BCG, and immune checkpoints in bladder cancer treatment. Moreover, we establish 

mathematically the negative influence of the immune checkpoints on the immune system and 

the therapy at large. 

Chapter 3 deals with the second result of this thesis. A control function,  ( ), is introduced 

into the model of chapter 2 to mimic the optimal BCG dose required to activate and stimulate 

a powerful anti-tumor attack, regardless of the interference and blockade from the immune 

checkpoints, as well as reducing the toxicity on normal cells. The title of the article for this 

chapter is:  
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An optimal control approach for the interaction of immune checkpoints, immune system, and 

BCG in the treatment of superficial bladder cancer, Saad F.T., Hincal E., European Physical 

Journal Plus (2018) 133:241. 

In chapter 4, the third result is established. Two control functions   ( ) and   ( )are 

incorporated into the model. The first control,   ( ), represent the optimal dose of an immune 

checkpoint inhibitor (drug therapy) needed to take the breaks off the immune system by 

blocking the activity of the checkpoints, while the second control,   ( ), denote the optimal 

dose of BCG administered in order to stimulate and activate the immune system. This result 

yields the following manuscript: 

Optimal Control Applied to Immune Checkpoint Inhibitors and BCG for Superficial Bladder 

Cancer Model, F.T. Saad, E. Hincal, under review in Applied Mathematics and Computation. 

Summary and conclusion of the thesis is given in chapter 5. 
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CHAPTER 2 

DYNAMICS OF IMMUNE CHECKPOINTS, IMMUNE SYSTEM AND BCG IN THE 

TREATMENT OF SUPERFICIAL BLADDER CANCER 

 

 

2.1 Introduction 

Cancer as defined earlier, is a class of illnesses characterized by out-of-control cell growth 

which affects and damages the DNA. Cancer prevalence is increasing in many countries 

(Bohle and Brandau, 2003). Many treatment options of cancer exist which include surgery, 

immunotherapy, chemotherapy, radiotherapy, vaccine therapy, and hormonal therapy (Bohle 

and Brandau, 2003; Kirschner and Panetta, 1998). The mode and type of treatment depends on 

the type, location, grade of the cancer, and the patient‟s body system. The bladder is a hollow 

organ in the lower abdomen which collects urine produced by the kidneys. Bladder cancer is a 

growth of malignant cells initiating in the urinary bladder. It is common, with around 38,000 

men and 15,000 women diagnosed every year in the United States. Approximately 400,000 

new cases are diagnosed and about 150,000 die directly from the disease every year across the 

globe (Kapoor et al., 2008; Bunimovich-Mendrazitsky et al., 2016). 

The bladder wall is lined with transitional and squamous cells. The most communal kind of 

bladder cancer is the UC or TCC. It mostly originates from the transitional cells and further 

progressed and develops quickly on the inner surface of the bladder. Thus, it occupies the 

bladder vessels and wall, dispersing to nearby organs in addition to establishing distant 

metastases (Fuge et al., 2015; Bunimovich-Mendrazitsky et al., 2007; Kawai et al., 2013). 

Immunotherapy is among the most effective ways of treating bladder cancer. BCG is a form of 

immunotherapy used in treating cancer. The attenuation (of the BCG) is reached via 

manipulation of the bacillus by serial growths on a culture medium. As a result, the genes 

causing virulence will be lost and inoculated into humans (Redelman-Sidi et al., 2014; 

Askeland et al., 2012). It is also used for various types of cancers. For example, skin cancer, 

bladder cancer and acute lymphoblastic leukemia (Askeland et al., 2012). 
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The first successful report on BCG therapy of bladder cancer was in 1976 by Morales and his 

coworkers (Lamm et al., 1980; Starkov et al., 2016). They obtained the efficacy of the therapy 

and established it as a pillar for treating nonmuscle-invasive bladder cancer after transurethral 

resection (Fuge et al., 2015; Andius and Holmang, 2004).BCG therapy is undoubtedly the 

most efficient and successful immunotherapy of superficial bladder cancer. 

It is usually applied after local surgery to prevent tumor reoccurrence. The intravesical 

instillation of           bacteria over a 6 weeks period is administered. This has proved to be 

superior to chemotherapy in decreasing tumor relapse rates (Lamm et al., 1980; Starkov et al., 

2016; Bunimovich-Mendrazitsky et al., 2011)”.  

When the BCG is infused and processed within the bladder, it creates an inflammatory 

environment which in turns stimulates an immune response resulting in attacking the cancer 

cells. Therefore, many researchers believed that BCG reduces tumor progression and 

henceforth stated that, the principal aim of BCG treatment is stimulating the immune effector 

cells to attack the tumor. Even though BCG instillation is regarded as the „gold standard‟ 

treatment, it has many side effects that include hematuria, fever, dysuria, pain and so on 

(Kawai et al., 2013; Bunimovich-Mendrazitsky et al., 2008; Redelman-Sidi et al., 2014; 

Askeland et al., 2012; Andius and Holmang, 2004; Lamm et al., 1980; Starkov et al., 2016; 

Bunimovich-Mendrazitsky et al., 2011)”.  

Immune checkpoints are damaging regulators of the immune system which play important 

roles in preserving self-tolerance, keeping tissues from immune collateral harm, and inhibiting 

autoimmunity. These checkpoints are often hijacked by tumors to restrain the ability of the 

immune system to launch a real anti-tumor reaction. The tumors neutralize some immune 

checkpoint pathways in order to maintain immune resistance, principally against T cells -

specific tumor antigens. Examples of checkpoints include PD-1 protein and CTLA4 

(Bunimovich-Mendrazitsky et al., 2011; Thibult et al., 2013). 

Programmed cell death protein 1 (PD-1), is a protein that is encoded by the PDCD1 gene in 

humans. It is a cell surface receptor which is a member to the immunoglobulin superfamily 

and is expressed on T cells and pro-B cells. PD-1 binds two ligands, PD-L1 and PD-L2.  The 

PD-1 acts as an immune checkpoint, which plays an important role in down regulating the 
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immune system by preventing the activation of the T-cells. Hence, decreases autoimmunity 

and encourages self-tolerance (Pallard, 2000; Kim et al., 2015).  

The immune system is directly affected by the activities of PD-1 protein in the sense that it 

suppresses, blocks, and deactivates the immune system from disseminating, and fighting the 

tumor. Therefore, PD-1 protein aids in growth, development, and progression of the cancer. In 

conclusion, it disrupts and affects immunotherapy (Keir et al., 2008; Hofmeyer et al., 2011; 

Latchman et al., 2001; Wang et al., 2014; Iwai et al., 2002).  

Transforming growth factor-beta 1 (TGF-β1), is a regulatory cytokine which suppresses 

immune function in cancers and in chronic viral infections. It inhibits the activation of the T-

cells and subdues their proliferation. Hence, cancer cells take advantage of this immune 

checkpoint pathway as a way to escape and evade detection. This leads to the inhibition of 

anti-tumor immune response, resulting in cancer growth and development (Yoshimura and 

Muto, 2011; Banerjee et al., 2015). 

Mathematical modeling and simulation helps in predicting treatments outcome, as well as 

describing the behavior and complex dynamics involved. Mathematical models that study the 

use of BCG in non-invasive bladder cancer were developed in (Bunimovich-Mendrazitsky et 

al., 2011, Bunimovich-Mendrazitsky et al., 2008; Bunimovich-Mendrazitsky et al., 2007). 

These articles identified fixed points and presented the conditions for stability of the 

dynamical systems. Bunimovich-Mendrazitsky et al (2015) constructed a new mathematical 

model for combined BCG and IL-2 bladder cancer treatment which introduces the effect of 

TAA T-cells. Furthermore, Starkov et al (2016) utilized a mathematical approach for bladder 

cancer treatment model in the derivation of ultimate upper and lower bounds. He also 

presented tumor clearance conditions for BCG treatment of bladder cancer. 

In this chapter, we formulate a deterministic model which studies the dynamics of immune 

suppressors/checkpoints, immune system in BCG immunotherapy of bladder cancer. 

Moreover, we highlight the negative effects of checkpoints on the immune system and the 

therapy numerically. 

The chapter is organized as follows; section 2.1 is the introduction, section 2.2 gives the 

formulation and presentation of the model. We give the stability analysis and numerical 
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simulations in section 2.3 and 2.4 respectively. In the final section, we state our conclusion 

and discussions.  

2.2 Formulation of the Model 

The model consists of system of four non-linear ordinary differential equations; which 

characterize the dynamics of the interaction between cancer cells (C), different categories/arms 

of the immune system regarded as effector cells (E), BCG (B), and all categories of immune 

suppressors/checkpoints as (P). The model equations are generated as follows: 

i) Dynamics of Cancer Cells 

The dynamics of cancer cells is given by; 

  

  
    

    

   
  

In the absence of immune system, we assume the cancer cells grow exponentially with growth 

rate  . The next term shows the elimination of cancer cells by the effector cells at rate   , 

while 
 

   
  is the immunosuppressive factor by the immune checkpoints/checkpoints which 

interrupts the activities of the effector cells and  being an inhibitory parameter. 

ii) Dynamics of the Effector Cells 

The dynamics of the effector cells is given by; 

  

  
 

    

   
 

    

   
           

The first term here gives the recruitment of effector cells at the rate    which is directly 

proportional to the population of cancer cells (i.e. occurring due to the direct presence of 

cancer cells),      shows the activation of effector cells by BCG at the rate   .    is the 

antigenicity of cancer cells which triggers an immune response in the host. It is believed that 

the immune checkpoints will distort both the recruitment and activation of effector cells, 

hence, 
 

   
 is the immunosuppressive response which put limitation to the recruitment level 

and interrupts the activation of effector cells, with   here being an inhibitory parameter. The 
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next term gives the destruction of effector cells by the tumor at rate   , and the last term refer 

to the degradation of effector cells at rate   . 

iii) Dynamics of BCG 

The dynamics of BCG is given by; 

  

  
             

The first term   is the constant and continuous rate of introduction of BCG into the bladder, 

the second term describes the eradication of BCG by immune effector cells at rate   , and the 

third term presents the decay of BCG at rate   . 

iv) Dynamics of Checkpoints 

The dynamics of immune checkpoints is given by; 

  

  
        

The evolution of the checkpoints starts with their source at a continuous rate  , followed by 

their degradation rate,   . Finally, the interactions of tumor, BCG, immune checkpoints, and 

effector cells lead to the following non-linear ordinary differential equations: 

  

  
    

    

   
 

  

  
 

    

   
 

    

   
              (2.1) 

  

  
            

  

  
           

with initial conditions  ( )          ( )         ( )             ( )        

2.3 Invariance of Positive Orthant 

We show the system is positively invariant. 
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From system (2.1), assume  ( )       ( )      ( )          ( )     

From 
  

  
    

    

   
, the solution is given by ( )       .∫ .  

   

   
/  

 

 
/  This implies 

 ( )   since      

Now, consider 
  

  
 

(       ) 

   
            then,  

 ( )        (∫(
       

   
       )   

 

 

)     

This implies that  ( )                 

More so, equation 3 and 4 from system (2.1) gives linear first order ordinary differential 

equations, which can be solved using integrating factor method. Solving the equations reveals 

that  ( )           ( )       , since  ( )            ( )   . 

Hence, the positive orthant   
  is invariant, moreover,  ( )       ( )      ( )  

        ( )       . 

2.4 Model without Treatment 

The model without treatment is obtained from (2.1)by setting     Thus, It is given as 

follows 

  

  
    

    

   
 

  

  
 

    

   
 

    

   
              (2.2) 

  

  
           

  

  
        

We now analyze model (2.2) viz. in the absence of treatment. 

2.4.1 Equilibrium and Stability Analysis of Model (2.2)  

The steady states are obtained by equating the right-hand sides of equations in (2.2) to zero 

and solving concurrently for the variables C, E, B, and P. They steady states are as follows: 



37 

 

 

   2      
 

  
3,     2   

  

  
 
  (     )

    
 

 

  
3,  and  

   {
  (     )

       (     )
 
 (     )

    
   

 

  
}  

 

From the positivity of invariance, we concentrate solely on nonnegative steady states presumptuous 

that all initial conditions are positive. As a result, the steady state    will not be considered. 

Moreover,    exists only if the following condition is satisfied  

       (     )  

The Jacobian matrix obtained from (2.2) is given by 

 ̂(           )
 

 

 

* * * *

1 1 1

2* *
*

* * * ** * * *
1 2* *1 1 2 2

2 2 1 2* * *
*

* *

3 3 2

3

0

0 0

0 0 0

E C E C
r

P k P k P k

a C E a B Ea E a C a B a E
E C

P k P k P k P k

B E

  

  

  



 
 

   
 

  
    

    
 

   
  

     (

 

The stability of the equilibria is as follows: 

i) Immune Checkpoints Equilibrium:    2      
 

  
3  

The Jacobian matrix  ̂evaluated at    yields: 

 ̂(  )  

























3

2

1

000

000

000

000







r

 

The eigenvalues of    (  ) are: 

                         and         

Since one of the eigenvalues is always positive, then    is an unstable saddle point. Clinically, 

   is referred to as the death equilibrium. 

ii) BCG-free equilibrium:    2
   (     ) 

      
     (     ) 

 
 (     )

    
   

 

  
3 

Assume    exists, that is        (     ), then substituting    in  ̂ yields the following 

eigenvalues: 
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      ,    
                  

    

,    
√ (             

 )

(     )
, and  

   
√ (             

 )

(     )
  

Two of the eigenvalues have real part equal to zero, which signifies neutral stability. 

Therefore, the equilibrium point    is neutrally stable. 

Conclusively, in the absence of treatment, none of the equilibrium points was found to be 

stable. 

2.5 Model without Immune Checkpoints 

Now, we analyze the model without any suppression of checkpoints against the immune 

system. The mathematical model is as follows: 

  

  
         

  

  
                        (2.3) 

  

  
            

2.5.1 Equilibrium and Stability Analysis of Model (2.3) 

The equilibrium points are as follows: 

   2    
 

  
3     2  

        

    
 
  

  
3  and  

   {
                  

(                         
 
 

  
 

   

(        )
}  

 

The equilibrium point    exists only if         . This means that, the cancer cells will 

disappear if the constant rate of introduction of BCG and activation rate of BCG is bigger than 

the degradation rates of both the effector cells and the BCG. 

The equilibrium point    also exist if, 

                                                      

    OR 

                                                      

From model (2.3), we have the following Jacobian matrix; 
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 (̅        )  [

     
     

  
   

     
    

     
     

       
 

     
     

    

]. 

The stability of the equilibria of model (2.3) is as follows: 

i) BCG equilibrium:    2    
 

  
3. 

The eigenvalues of   ̅evaluated at    are; 

    ,    
        

  
,  and         

The eigenvalue    is always positive and the rest are negative. Therefore, the equilibrium 

point    is an unstable saddle point. 

ii) Cancer-free equilibrium:    2  
        

    
 
  

  
3. 

Assume the equilibrium point    exist, then substituting    in   ̅will give the following matrix: 

 (̅  )  

[
 
 
 
 
 
 

                

    
  

                         

    
 

  
         

    

  
    

  
 

   

  ]
 
 
 
 
 
 

 

The eigenvalues of  (̅  ) are: 

   
                

    
,    

     √(   )        
       

 

   
, and  

   
     √(   )        

       
 

   
  

Now, if    and    are complex roots, then    is a stable fixed point if 

        (      ),    , 

if    and    are real roots, then    is a stable fixed point when 

        and          (      ). 

But, since we already assume that the equilibrium point    exists then         , thus, we 

can conclude that    is a stable fixed point if          (      ). 

This means that, the effector cells activated by BCG will eradicate/destroy the cancer cells, if 

the constant rate of introduction of BCG, effector cells recruitment rate, and rate of activation 

of effector cells by BCG is bigger than or can overcome the cancer growth rate, rate of 

elimination of BCG by effector cells, and degradation rates of effector cells and BCG 
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altogether. Therefore, to eliminate the cancer, we increase the rate of introduction of BCG, 

recruitment rate of effector cells, along with rate of effector cells activation by BCG, and 

concurrently decrease the elimination rate of BCG (by effector cells), degradation rates of 

both effector cells and BCG, as well as the cancer growth rate. 

2.6 Model with Treatment and Immune Checkpoints 

We now consider the dynamics of tumor, immune effector cells, BCG, and checkpoints. It is 

given by 

  

  
    

    

   
 

  

  
 

    

   
 

    

   
              (2.1) 

  

  
            

  

  
          

2.6.1 Equilibrium and Stability Analysis of Model (2.1) 

The equilibrium points of model (2.1) are as follows:  

   2    
 

  
 

 

  
3,    2  

                   

    (     )
 
  (     )

    
 

 

  
3, and  

   

{
 
 
 
 

 
 
 
     

              

     
   

          
    

             
      

                

                    
   

        
        

     

                 
    

 
 (     )

    
 

     

   (     )
       

 
 

  

}
 
 
 
 

 
 
 
 

  

 

The equilibrium point    exists if, 

     

    (     )
  .        (2.4) 

Also,    exists  

If     
                   

   
          

                 
      and 
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         +      
      

OR 

If,     
                   

   
          

                 
       

and                  
        

                             
   

    

         +      
      

From model (2.4), we obtain the following Jacobian matrix: 

 ̃(           )

 

 

 

* * * *

1 1 1

2* *
*

* * * ** * * *
1 1* *1 1 2 2

2 2 1 2* * *
*

* *

3 3 2

3

0

0 0

0 0 0

E C E C
r

P k P k P k
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The stability analysis of the equilibria of model (2.1) is as follows: 

i) BCG and Immune checkpoints equilibrium:    2    
 

  
 

 

  
3. 

The eigenvalues of the  ̃ evaluated at    are: 

          
                   

  (     )
                        .  

Since one of the eigenvalues is always positive, then    is an unstable saddle point. 

ii) Tumor-free equilibrium:    2  
                   

    (     )
 
  (     )

    
 

 

  
3. 

Assume this equilibrium point exists, then the eigenvalues of  ̃ evaluated at    are as follows: 

      ,  

    
                          

          
                 

      

    (     ) 
, 

    

       √
(     )     

         
           

   
     

    
           

   
     

   (     )
  and  

    

       √
(     )     

         
           

   
     

    
           

   
     

   (     )
. 

The equilibrium point    is a stable fixed point if, 
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    (     )
    {  

(                  )  

    
}  

However, condition (2.5) is already true, then    is a stable fixed point if, 

     

    (     )
 

(                  )  

    
  

iii) Interior equilibrium:    2   
 (     )

    
 

     

   (     )       
 

 

  
3 

The eigenvalues of the Jacobian matrix  ̃(  ) are very long, complicated and difficult to 

analyze. Therefore, we use numerical simulations to show the stability of the equilibrium point 

  . 

2.7 Numerical Illustrations 

In this section, the numerical simulations of the three models will be shown. The aim here is to 

show the effect of immune checkpoints on the effector cells. We use MATLAB version 2016b 

to plot the graphs with initial populations of the compartments involved taken to be equal. 

Other parameters used in the numerical simulations are given in Table 2.1. 

We first plot the graph of model (2.2) to illustrate what happens in the absence of treatment. 

As expected, the cancer cells develop because the effector cells are being suppressed and 

blocked by immune checkpoints activities, as such; they dominate the immune system and 

results in growth and maturation of the cancer. Therefore, the numerical simulations of model 

(2.2) support this notion as shown in Figure 2.1. 

Next, we show the behavior of model (2.3) i.e. without the immune checkpoints. Here, we will 

see how the effector cells attacks and kill the cancer cells as a result of the 

stimulation/activation by the BCG. Unlike in Figure 2.1, Figure 2.2 shows the way tumor 

evolution/growth is restricted and thus, eventually results in its extinction by the effector cells. 

 

 

 

 

 

 

 

 

 

 

 

 



43 

 

Table 2.1: List of all parameters used in numerical simulations 

 

Parameter  Interpretation 

(units) 

Estimated 

value 

  Growth rate of the tumor                  

   Elimination rate of cancer cells by effector cells 

           

 

         

 

  

 

Inhibitory parameter       

   Recruitment rate of effector cells 

          

     

   Activation rate of effector cells by the BCG 

             

      

  

 

Internal production of immune checkpoints 

 

            

 

   

 

Destruction of BCG by effector cells 

             

          

   Degradation rate of immune checkpoints 

          

 

       

   Elimination rate of effector cells by cancer cells 

             

           

   Degradation rate of effector cells 

          

      

   Rate of BCG decay 

          

    

 

  Bio-effective concentration of BCG 
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Figure 2.1: The model without treatment (Model 2.2) 

Figure 2.2: The model without immune suppressors (Model 2.3) 
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The general model will now be considered. Despite stimulation and activation of the effector 

cells by the BCG, the immune suppressors block and deactivate their function; hence, this 

leads to the reduction of autoimmunity of the effector cells. Therefore, the cancer develops and 

grows exponentially as shown in Figure 2.3. 

 

Therefore, comparing Figure 2.2 and Figure 2.3, we will notice the effect of immune 

checkpoints on the effector cells. In Figure 2.2, the effector cells in the absence of immune 

suppressors, fights the cancer cells resulting in stopping their development and progression. 

While Figure 2.3 shows the progression and development of cancer cells, as a result of the 

presence of immune suppressors. 

 

Figure 2.3: The model with treatment and immune checkpoints (Model 2.4) 

2.8 Conclusion and Discussion 

In this chapter, we used a system of nonlinear ODE to model the dynamics of cancer, effector 

cells, BCG, and checkpoints in bladder cancer immunotherapy. We derived three possible 

dynamics from our model. Firstly, the model was analyzed in the absence of treatment and we 
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study the stability analysis of the equilibria involved. Figure 2.1 showed how the cancer 

progressed in the absence of treatment and presence of immune checkpoints/suppressors. 

Secondly, we study the model without the immune checkpoints/suppressors. Stability 

conditions for the equilibria involved were also given. We saw that when the immune 

checkpoints/suppressors are not present, the effector cells activated by the BCG have limitless 

independence to ramble around and detect the cancer cells; as a result, they kill them and stop 

the cancer from progressing. This was shown in Figure 2.2.  

Thirdly, we considered the dynamics of the model with treatment and the immune 

checkpoints/suppressors. Conditions for stability of the equilibrium points were given, and 

Figure 2.3 showed how the cancer cells grow and develop despite the application of the 

treatment (BCG). This is believed to be as a result of the blockage and suppression the effector 

cells suffered by the immune checkpoints. 

Therefore, the figures used in this chapter assist in showing the effect of immune 

suppressors/checkpoints against effector cells and the overall therapy. To avoid cancer 

progression and advancement, there is need for action to block or limit the production of the 

immune checkpoints. This will take the brakes off the immune system and thereby allowing it 

to mount a stronger and more effective attack against cancer cells. (Postow et al., 2015; Padoll, 

2012). 
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CHAPTER 3 

AN OPTIMAL CONTROL APPROACH FOR THE INTERACTION OF IMMUNE 

CHECKPOINTS, IMMUNE SYSTEM, AND BCG IN THE TREATMENT OF 

SUPERFICIAL BLADDER CANCER 

 

 

3.1 Introduction 

The bladder is a distensible membranous sac at the lower abdomen that gather urine produced 

by the kidneys, whose wall is seamed with cells usually called transitional and squamous cells. 

Superficial bladder cancer or non-muscle invasive bladder cancer is a type of bladder cancer 

that is seen on the surface of the inside lining of the bladder. It is arguably the most common 

type of bladder cancer accounting for 75% of new incidences associated with the disease 

(Moss and Kadmon, 1991).  

Intravesical Bacillus Calmette-Guerin (BCG) is a live attenuated nonpathogenic strain of 

Mycobacterium bovis that was previously used as a vaccine against tuberculosis. Superficial 

bladder cancer is the fifth most usual cancers in the USA accounting to at least 14,000 deaths 

yearly. 

Additionally, about 73,000 incidences were recorded in 2012. A thin flexible tube known as 

catheter is introduced through the urethra in order to convey the BCG into the bladder where it 

is internalized and processed. Typically, BCG is administered once every week for a period of 

six weeks. It may be reapplied for the same period if there is a suspicion of tumor recurrence 

and/or persistence (Eric et al., 2012). Morales et al. in 1976, was the first to highlight the 

mechanism of action of BCG inside the bladder. The positive response to BCG treatment was 

estimated to be 55-65% for papillary tumors and 70-75% for carcinoma in situ (CIS). 

However, this automatically results to 30-45% failures (Morales et al., 1981; Morales et al., 

1976). 

It is evident BCG has many side effects that include dysuria, excessive pain, fever, hematuria, 

cystitis, and symptoms of life-threatening BCG sepsis. Most patients are reported to be BCG 
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intolerant because of these aforementioned side effects. The side effects are partly believed to 

be as a result of the damage suffered by the normal cells (Vander Meijden et al., 2003).The 

BCG is internalized by both the normal and cancer cells resulting in creating an inflammation 

inside the bladder. As a result, it triggers an immediate immune response, where CD4+ cells 

and other immune effector cells are activated. As a result, the immune cells spread, locate, and 

attack the cancer cells in order to neutralize their threat (Luo et al., 2003). 

One of the major drawbacks of immunotherapy of the bladder cancer is the presence and 

action of the immune checkpoints. They are negative regulators of the immune system that 

block the immune effector cells from spreading, attacking, and killing the cancer cells. More 

so, tumors hijack these immune checkpoints to escape an efficient anti-tumor activity from the 

immune cells (Padoll, 2012; Thibultet al., 2013). PD-1 protein, Transforming growth factor-

beta 1 (TGF-β1), and CTLA4 are some of the examples of immune checkpoints/suppressors 

(Leach et al., 1996; Postow et al., 1982).   

Transforming growth factor-beta 1 (TGF-β1) subdues the activation and spread of the immune 

T-cells, as a result, the cancer cells use this checkpoint pathway as a means of evading 

detection. Thus, the cancer cells gain unlimited freedom to roam about, develop and that lead 

to fatal consequences (Yoshimura and Muto, 2010). 

Bunimovich-Mendrazitsky et al, proposed the first mathematical model of bladder cancer 

immunotherapy using BCG (Bunimovich-Mendrazitsky et al., 2007). They later presented 

another model of bladder cancer with pulsed immunotherapy (Bunimovich-Mendrazitsky et 

al., 2008). In 2015, Svetlana Bunimovich-Mendrazitsky developed a new mathematical model 

for combined BCG and IL-2 bladder cancer treatment which introduces the effect of TAA T-

cells (Bunimovich-Mendrazitsky et al., 2016).  

Saad et al developed a mathematical model that studied the dynamics of immune checkpoints, 

immune system, and BCG in the treatment of superficial bladder cancer. They established the 

effects of immune checkpoints on the immune system and the treatment at large (Saad et al., 

2017).  Thalya et al investigated a mathematical model for the dynamics between tumor cells, 

immune cells, and the cytokine interleukin-2 (IL-2). They applied optimal control theory and 

determined the circumstances on how the tumor was eliminated (Thalya et al., 2004).   
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Pontryagin‟s maximum principle was used in (Elmouki and Saadi, 2016) to outline different 

resolutions of an optimal control problem in BCG immunotherapy of bladder cancer. Forward-

backward sweep method and secant-method were used to numerically solve the two-point 

boundary value problem with an isoperimetric constraint on the control process function 

representing the optimal concentration suggested to use in each instillation of BCG. Meryem 

et al proposed a free final time optimal control approach applied to a model of tumor-immune 

interactions in the bladder after the injection of BCG of a hypothetical patient (Alkama et al., 

2018).  They found the optimal amount needed in each instillation of BCG for activating the 

immune cells to kill cancer cells. In addition, they determined the optimal duration of 

treatment required stop the therapy with minimum side effects. 

The aim of this section is to adopt the model from chapter 1 and apply optimal control theory 

to find an optimal dosage (BCG dosage) required to minimize the actions of immune 

checkpoints on the immune system and cancer cells, while maximizing the number of effector 

and normal cells. We incorporate a compartment for normal cells (inside the bladder) into the 

model in order to relate the direct effect of continuous BCG instillation (side effects) on 

normal cells.  

The chapter is organized as follows; section 3.1 is the introduction. In section 3.2, we 

reconstruct and explain the model. The analysis of the model without control is given in 

section 3.3. We present the necessary conditions for optimality of the control in section 3.4. In 

the last section we give the numerical simulations of the controlled system followed by 

conclusion and discussion. 

3.2 Construction of the model 

We construct a deterministic model using ordinary differential equations to describe the 

interaction between cancer cells, normal cells, immune checkpoints and BCG immunotherapy. 

In our model,   represents the concentration or population of cancer cells in the bladder, 

 denotes the collective population of normal cells,  represent the concentration of BCG 

injected into the bladder,  denotes different arms of the immune system called effector cells, 

and   is the concentration or population of immune checkpoints. Our approach is similar to 

the work in (Kuznetsov et al., 1994; Kirschner and Panetta, 1998; De Pillis et al., 2005), 

despite the fact that their models were not on bladder cancer. 
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Thus, the model equations are given as follows: 

  

  
    (     )  

    

   
      

  

  
    (     )                

  

  
                 (3.1) 

  

  
 

    

   
 

    

   
                    

  

  
          

 ( )        ( )        ( )        ( )           ( )        

The first equation in (3.1) describes the dynamics of cancer cells inside the bladder. The first 

term gives the growth of cancer cells which is considered to be logistic with intrinsic rate    

and carrying capacity 
 

  
. The second term is the elimination of cancer cells by the effector 

cells at the rate   . This is believed to be disturbed by the immune checkpoints with 
 

   
 to be 

the immunosuppressive term and  being an inhibitory parameter. The third term gives the 

competition of space and nutrients between cancer and normal cells with normal cells wining 

at the rate   . 

 

The second equation gives the dynamics of normal cells with logistic growth where    is the 

growth rate and carrying capacity     ,      describe how the cancer cells win the 

competition with normal cells (by either killing, displacement for space and/or nutrients) at the 

rate   . The BCG also affect the normal cells because of its toxicity and is given by     . 

Lastly, the normal cells naturally die through apoptosis or other means at the rate     

 

The dynamics of BCG is given in the third equation; where   gives the constant and 

continuous infusion of the BCG inside the bladder,     , gives the elimination of BCG by 

effector cells at the rate   , and     gives the degradation of the BCG at the rate   . 
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The fourth equation describes the dynamics of the effector cells. The first term gives the 

recruitment of effector cells at the rate    which is related to the population of cancer cells 

present, the immunosuppressive term 
 

   
 is believed to be limiting the recruitment process, 

the second term describe the activation of the effector cells by the BCG which again is 

distorted and disturbed by the immune checkpoints with immunosuppressive term 
 

   
. The 

term     , explains the elimination of effector cells by the cancer cells at the rate   ,     , 

gives the elimination of effector cells by the BCG at the rate   , and lastly effector cells die 

naturally (through apoptosis) at the rate   . 

The fifth equation describes the dynamics and action of the immune checkpoints with   being 

their source at constant rate and     their natural degradation at the rate   . 

Similar analysis in chapter 1 reveals that the solutions of model (3.1) are all positive for any 

value of  . 

 

3.3 Model without treatment (   ) 

We use equations in (3.1) with     to obtain the model without treatment.  

 

3.3.1 Equilibrium Analysis 

Equating the right-hand side of the model without treatment to zero and solving 

simultaneously for  ,  ,  ,  , and   gives the following steady states: 

i)                                    2        
 

  
3  

ii)                      2
 

  
       

 

  
3  

iii)                              2  
     

    
     

 

  
3  

iv)                           2
                 

              
 
                   

              
     

 

  
3  

v)                                          

   {
  (     )

              
     

(     ),(     )(       )      -

(               )
 
 

  
}  

vi)                        
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{
 

   (     )

              
 

(     ),       (     )-

     (     )

    (               )
      

 

  

}
 

 
  

Due to the positivity of solutions of the model, we have the following remarks: 

a. The steady states   and    always exists. 

b. The steady state   exists only if  

   
  
  

    

c. The steady state   exists if 

   
    

  (     )
            

  

(       )
    

 

d. The steady state   exists if 

   
    

       
      

        

    
              

           
    

     

e. The steady states   exists if 

              
    

         
    

The steady state    is considered “death equilibrium because the normal cells go to extinction. 

The patient is considered dead if such a situation happens. 

3.3.2 Local stability Analysis of steady states 

Theorem 3.1. The steady state     is always unstable. 

Proof: From system (3.1), the Jacobian matrix evaluated at the points             and    is 

given by:  
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Therefore, evaluating   at    yields;  
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The eigenvalues of  (  ) are as follows: 

     ,     42 r ,        ,        ,  and        . Observe that one of the 

eigenvalues (  )is always positive. Hence, the steady state   is always unstable. Medically, 

this is an unwanted steady state because it implies that the patient is dead. 

Theorem 3.2. The steady state   is asymptotically stable if      and      . 

Proof: Evaluating the Jacobian matrix at    gives 
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The following are the eigenvalues of matrix (  ): 

   
22

2112241

kr

rrkr  
,     42  r ,        ,        ,  and        . 

We can see that    
22

2112241

kr

rrkr  
   if and only if                   This 

implies that, 

           
    

    

Therefore,      if and only if    
           

    
    Similarly,      if and only    

  

  
    The proof is complete. 

Theorem 3.3: The steady state   is a asymptotically stable if      and      . 

Theorem 3.4: The steady state is   asymptotically stable if      and      . 



54 

 

Theorem 3.5: The steady state    is a stable fixed point if     ,      . 

The proofs of the following theorems are similar to the proof of theorem 3.2. 

Hence, the conditions for the stability of the steady states are established. Now, we state our 

optimal control problem. 

3.4 Optimal Control 

Recall that, a real optimal control problem needs a cost functional or performance index 

( , ( )  ( )-), set of state variables ( ( )   ), and a set of control variables ( ( )   ) 

with        . The aim is to find a piecewise continuous function  ( ) (control) and the 

related state variable  ( ) that will maximize a given objective function. Moreover, the basic 

optimal control problem in Lagrange formulation is of the form  

   
 

                     , ( )  ( )-  ∫  (   ( )  ( ))  

  

  

 

             ̇( )   (   ( )  ( )) 

    ( )    , 

where  (  ) could be free or fixed viz.  (  )    , and  and  are always continuously 

differentiable. The control set    is assumed to be a piecewise continuous function. We can 

interchange between maximization and minimization by simply negating the objective 

functional, that is: 

   *   +      *    +  

The generalization of the calculus of variations to optimal control theory was developed 

massively since 1950. The major breakthrough was accomplished by Lev S. Pontryagin (1908-

1988)and his co-workers (V. G. Boltyanskii, R. V. Gamkrelidz and E. F. Misshchenko) with 

the expression and presentation of the Pontryagin Maximum Principle (Pontryagin et al., 

1962). This principle has catered for many researches with desirable conditions and strategies 

for optimization problems with differential equations as constraints. 

In this section, we incorporate a control function  ( ) in the form of injection, representing an 

external source of BCG. For model (3.1), we now seek for a control that will minimize the 
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number of cancer cells, maximize the number of effector and normal cells, minimize the action 

of immune checkpoints, and minimize the total BCG injection/cost of control. 

The controlled system is given by 

  

  
    (     )  

    

   
      

  

  
    (     )                

  

  
   ( )                   (3.2) 

  

  
 

    

   
 

    

   
                    

  

  
          

with initial conditions:  ( )          ( )      ( )       ( )           ( )    ,   is 

the control function and   is the strength of the treatment. In general, the problem may be 

stated as follows: 

 ̇ ( )    ( ⃑( )  ( )) 

               ⃑( )   ⃑  

where  ⃗  

(

 
 

 
 
 
 
 )

 
 

 and  ( ) is the control function bounded as follows;    ( )   . The 

objective functional   in Bolza form is usually given by  

   . ⃑(  )/  ∫  . ⃑( )  ( )/  

  

  

 

where      is the given final time,   is the objective value of each stage (Lagrangian) and   is 

the performance index at the end of the procedure. 

As a result, the objective functional to be minimized for our problem is given by; 

     ( )     ( )  ∫4 ( )   ( )  
 

 
  ( )   ( )   ( )5    
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where   is a weight factor that represents the patient‟s level of acceptance of BCG treatment. 

A quadratic control 
 

 
  ( )  is used for convenience in finding an analytic representation of 

the control      and 

   * ( )      ( )                                                  ,   -+  

where                   (                   ) and                   are the 

values found to bound the BCG optimal dose (Elmouki and Saadi, 2016; Alkama et al., 2018; 

Elmouki and Saadi, 2016). 

Now, we show that an optimal control    for system (3.2) actually exists. To establish that, we 

need to show that system (3.2) is bounded for finite time (Fleming and Rishel, 1975). We 

proceed by finding solutions that are upper bounds (supersolutions) of               in 

model (3.2).  

Consider first the last equation of (3.2). Let      serve as upper bound solution associated 

with   and given that  ( )    for all   ,   -. Then, 

     

  
                             

Assume      as an upper bound solution associated with   in (2). Given  ( )   ,  ( )   , 

and  ( )   , then  

     

  
               

     

Similar analysis implies that          
   ,           , and         

  , where   

depends on     ,     , and      . 

By using the bounds, we can form a set of upper bound solutions for system (3.2). Denoting 

these upper solutions by  ̅  ̅  ̅  ̅  and  ̅, we have the following system: 

  ̅

  
    ̅ 

  ̅

  
    ̅ 

  ̅

  
            (3.3) 

  ̅

  
 

   ̅    

      
 

   ̅    
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  ̅

  
   

 

that is bounded on a finite time interval. Then we can write system (3.3) as  
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Observe that this is a linear system in finite time with bounded coefficients, therefore, the 

supersolutions  ̅  ̅  ̅  ̅  and  ̅ are uniformly bounded. Hence, our original system is 

ultimately bounded. We can now prove that an optimal control exists. 

 

3.4.1 Necessary Conditions for Optimality 

Theorem 3.6. Given the objective functional 

     ( )     ( )  ∫4 ( )   ( )  
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where   * ( )      ( )                                      ,   -+, subject to 

system (3) with  ( )    ,  ( )    ,  ( )    ,  ( )    , and  ( )    ; then there 

exists an optimal control    such that, 

   
       

 ( )   (  ) 

 if the following conditions are satisfied 

i) The class of all initial conditions with a control   in the admissible control set along with 

each state equation being satisfied is not empty. 

ii) The admissible control set   is closed and convex. 

iii) Each right hand side of the equations in system (3.2) is continouous, bounded above by the 

sum of the bounded control and the state, and can be written as a linear function of   with 

coefficients depending on time and state. 

iv) The integrand of  ( ) is convex on   and is bounded below by        
  with       
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Proof. Because system (3.2) possesses bounded coefficients and the solutions are bounded on 

the finite time interval, we can apply a result from (Lukes, 1982) to obtain the existence of 

solution of system (3.2).  

Note that by definition   is closed and convex which prove (ii). For the third condition, the 

right hand side of system (3.2) is continouous since the denominators of each of the equations 

of the system is nonzero. 

Let   ⃗⃗(   ⃗) be the right hand side of system (2) except for the terms of   and define  

 (   ⃗  )   ⃗⃗(   ⃗)      
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 and  ⃗⃗ is a vector valued function of   ⃗.  
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where    is dependent on the coefficients on the system. This implies condition (iii). 

We now prove (iv). The integrand of   ( )  is given by  

 ( )   ( )  
 

 
  ( )   ( )   ( )   (           )  

We need to show   is convex on U. Let   ,      , and   (   ). Then, we have to 

establish  

 (          (   )      ) 

 (   ) (            )    (            )  

Evaluating the difference we get, 
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Equation (3.4) is true because        since   (   ) and (     )
    implying that, 

(    )(     )
     

Therefore, 

 (          (   )      ) 

 (   ) (            )    (            )  

from (3.4). 

Thence   is convex.Finally, from the integrand of  ( ), we‟ve; 

 ( )   ( )  
 

 
  ( )   ( )   ( )    ( )   ( )  

 

 
  ( )  

       | ( )|   

where    
 

 
 and    are dependent on the lower bound on   and   .  The proof is now 

complete. This implies that an optimal control    exists. 

Since an optimal control exist that will minimize the objective functional  ( ) subject to 

system (3.2), we then use a version of Pontryagin‟s maximum principle to characterize the 

optimal control. 

 

3.4.2 Characterization of Optimal control 

Theorem 3.7. Given an optimal control     and solutions of the corresponding state system, 

there exist adjoint variables    ,              that satisfy the following  
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where   ( )       ( )        ( )      ( )     and   ( )      In addition,    is 

represented by  
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  ( )     4   4 
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   5    5   

Proof. Given the existence of the control, we can now use a version of Pontryagin‟s maximum 

principle to derive necessary conditions for the optimal control (Kamien and Schwartz, 1991).  

Define the Lagrangian as 

 (                        )      (    )    (    ) 

where         are penalty multipliers satisfying:  (     )    and   ( 
    )   , and 

  is the Hamiltonian given by  
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Calculation of the adjoint system variables from the Lagrangian is as follows: 
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where the adjoint vector   
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  defines the vector solution of the system above 

with transversality conditions in the time   ;   ( )       ( )       ( )      ( )     

and   ( )     

The minimization problem   is equivalent to the following minimization condition 

 .   ⃗   ( )   ( )   ( )   ( )/         (   ⃗  ( )  ( )   ( )   ( )). 

To complete the representation of  , we get the optimality equation by differentiating the 

Lagrangian   with respect to  on the set  .  

Thus, 

  

  
                    (3.5) 

Equating (3.5) to zero to obtain     we have, 
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We now analyze (3.6). 
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Since   ( )    and     , we get 
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Using these standard optimality arguments, we characterize the control   ( ) by  
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or in compact form, 

  ( )     4   4 
   ( )

 
   5    5   

We can also observe that the second derivative of the Lagrangian with respect to   is   and it 

is positive, thus, a minimum occurs at     

3.5 Numerical Simulations 

In this section, we present the numerical simulations of system (3.2) (controlled system) to 

reconnoiter the possible action of the optimal control of the system. We use MATLAB version 

2017b to portray the Figures (3.1 to 3.7) of the numerical solutions of the controlled system 

with parameter values from Table 1 used. They are obtained from (Saad et al., 2017; Thalya et 

al., 2004; Bunimovich-Mendrazitsky et al., 2007).  
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Figure 3.1: Description of model (3.2) (without control). 

 

 

Figure 3.2: Cancer cells with control 
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Figure 3.3: Effector cells with control 

 

Figure 3.4: Normal cells with control 
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Figure 3.5: Checkpoints with control 

 

Figure 3.6: Control function 



66 

 

Figure 3.7: Normal cells maintaining a threshold. 

 

From Figure 3.1, we can observe that the cancer cells keep growing in the absence of the 

control. The effector cells vanish as well. This is believed to be as a result of the action of 

immune checkpoints on the immune system. Additionally, the normal cells are also eliminated 

in the absence of control. Thus, the cancer cells and the immune checkpoints obviously win 

the battle in the absence of control and this is supported by Figure 3.1.  

Figure 3.2, 3.3, 3.4, and 3.5 give the graphs of cancer cells, effector cells, normal cells and 

immune checkpoints respectively when the control   is applied. We can discover that, the 

cancer cells are reduced and eventually eliminated, the effector cells stays at a higher level, the 

normal cells keep rising and maintain a threshold level, and the immune checkpoints are 

decreased to a relatively significant number. Therefore, this shows the effectiveness and use of 

the control. 

The optimal control proposed an amount of the BCG (                )that should be 

continuously administered throughout the period of treatment. 

We can conclude that the optimal dose of                  is enough to minimize the 

objective functional  ( ). In other words, the introduction of the control helps the effector 

cells to win the fight against cancer and eventually the checkpoints. More so, the immune 
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checkpoints are minimized in number as can be seen by observing their population in Figure 

3.1 and 3.5. In Figure 3.7, the collective concentrations of normal cells maintain a threshold 

level and lastly, Figure3.6 describe the nature of the control function. 

Table 3.1: Parameter values 

Parameter Values and units 

   0.0033 to 0.99            

            to                  
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Table 3.1 Continued 

              

        

 

3.6 Discussion and Conclusion 

We consider a mathematical model that studies the dynamics of immune checkpoints, immune 

system, normal cells, and BCG in the treatment of superficial bladder cancer. The model 

produced various equilibrium points. Existence and stability of the equilibria of the model 

without control was studied. We also presented the conditions for the stability of the 

equilibria. We verified from Figure 3.1 that, the cancer cells grow in the absence of control, 

whereas the effector cells, normal cells and the BCG all go to extinction. This is due to the 

action of the immune checkpoints; blocking/suppressing the immune system. Hence, the 

cancer cells will have unlimited freedom to proliferate, grow and metastasize.  

 

After the introduction of the control, Figure 3.2 showed how the growth of the cancer cell was 

restricted, and thus, driven to zero. We also discovered in Figure 3.3 that, the effector cells 

overcame the suppression and blockage by the immune checkpoints when control was applied, 

thence, detect, spread, locate, and kill the cancer cells. 

 

Figure 3.4 gave the dynamics of normal cells when the control is also applied. Unlike without 

the control, the normal cells rose up and stabilize to a threshold level. In Figure 3.5, the 

immune checkpoints were minimized compared to their population in Figure 3.1. This will 

eventually remove the majority of the brakes off the immune system in order to detect and kill 

cancer cells. So the control also helps in minimizing the action of the immune checkpoints on 

cancer cells. 

 

In conclusion, we can say that, despite the pressure and threat posed by the immune 

checkpoints on the immune cells and the deadly nature of cancer cells, we were able obtain an 

optimal dose of BCG that is able to achieve our desired aim, that is, to minimize and 

eventually eliminate the cancer cells, minimize the action of immune checkpoints, maximize 
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the action of the immune system, and minimize the toxicity/side effects caused by the BCG 

and cancer cells on normal cells. 
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CHAPTER 4 

OPTIMAL CONTROL APPLIED TO IMMUNE CHECKPOINT INHIBITORS AND 

BCG FOR SUPERFICIAL BLADDER CANCER MODEL 

 

 

4.1 Introduction 

In 1997 it was forecasted that 54,500 new incidences of bladder cancer will be diagnosed with 

11,700 projected deaths occurring from the disease. Similarly, around 67,160 new cases would 

be discovered in 2007, and approximately 13,750 bladder cancer deaths will occur. The 

occurrence of bladder cancer in men is about 4 times higher than in women. It is also ranked 

among the top five cancers in men and the eight most usual in women. Incidence rate of 

bladder cancer has elevated to 36% in the USA from 1956 to 1990 and death rates have 

decreased to 8% from 1980 to 1995. Most of the bladder cancer diagnoses are urothelial 

carcinoma (90%), followed by squamous cell carcinoma (5%), and lastly adenocarcinoma 

(2%) (Pasin et al., 2008; Schenkman et al., 2004).  

Intravesical Bacillus Calmette-Guerin (BCG) is defined as a live attenuated non-pathogenic 

strain of Mycobacterium bovis previously utilized as a vaccine against tuberculosis. However, 

it is recently a form of immunotherapy that is adopted to treat superficial bladder cancer. BCG 

instillation has been proved to be an effective and superior to any chemotherapeutic drug used 

in treating superficial bladder cancer. It is usually applied after surgery to avoid/halt tumor 

reoccurrences (Eric et al., 2012; Friberg, 1993).  

A catheter is used to transfuse the BCG into the bladder via the urethra. The normal and 

cancer cells internalized the mycobacterium which results in inflammatory reactions and 

consequent urothelial activations inside the bladder (Moss and Kadmon, 1991). The BCG 

antigens then stimulate the CD4+ T cells (a type of immune cell) and induce a primary T 

helper type (Th) 1 immune response. In other words, the inflammation caused by the BCG will 

trigger an immediate immune response (Andius and Holmang, 2004). It is evident that the 

major function of BCG is to provoke/activate the immune system. Therefore, the immune cells 

outspread, uncover, fight, and kill the tumor (Redelman-Sidi et al., 2014).  
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Due to the fact that, the BCG is a live attenuated vaccine, it has but not limited to the 

following side effects; irritation in the bladder, fatigue, fever, flu-like symptoms, joint pain, 

difficulty during urination, dysuria, excessive pain, cystitis, and hematuria. These 

aforementioned side effects are partially because of the toxicity of BCG on the normal cells 

(Lamm et al., 1980).  

Immune checkpoints are negative controllers of immune stimulation. They play a major role in 

preventing autoimmunity, preserving immune homeostasis, maintaining immune tolerance, 

and preventing body tissues from immune corroborative damage (Sharpe et al., 2007). In 

cancer, immune checkpoints are mainly activated to block an effective anti-cancer immune 

response.  

Additionally, the tumors usually commandeer/hijack the immune checkpoints in order to 

restrain, resist, and escape a powerful attack from the immune system. In a nutshell, the 

immune checkpoints suppress, block, and stop the immune system to launch a powerful anti-

tumor attack. Moreover, they also take over some of the immune checkpoint pathways as a 

means of bypassing detection and resisting immune attack. Therefore, the tumors continue to 

grow, develop and metastasize to other parts of the body from its primary source (Postow et 

al., 2015).   

This development has given rise to the evolution of new categories of drugs called immune 

checkpoint inhibitors. They are responsible for blocking the activities of the immune 

checkpoints. The blockage is possible using antibodies because most of the immune 

checkpoints are originated by ligand-receptor association. Blocking the immune checkpoints 

will then enhance effective antitumor response because the brakes (checkpoints) are taken off 

the immune system. Some of these drugs are recognized and accepted by the U.S. Food and 

Drug Administration (FDA) while some are presently under clinical trials (Pardoll, 2012).  

The first immune-checkpoint receptor to be aimed clinically is CTLA4; it is expressed entirely 

on T cells where it mainly controls the magnitude of initial phase of T cell activation. In 

general, CTLA4 comprehensively regulates activation of T cell. Ipilimumab and 

tremelimumab are the antibodies (checkpoint inhibitors) that were approved by the FDA in 

order to block the activities of CTLA4in patients with melanoma (Rudd et al., 2009).  
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PD-1 is another immune-checkpoint receptor that is emanating as an encouraging target. When 

an infection (in the body) is detected, the PD-1 will limit the actions of the T cells from 

launching an inflammatory response. Moreover, it also restricts autoimmunity. Thus, PD-1 

generally regulates the actions of the effector T cell in tissues and tumors. Nivolumab is an 

antibody (checkpoint inhibitor) currently approved by the FDA. It is used in targeting the 

activities of PD-1 in cancer treatment. This will allow the activation of T cells and cell 

mediated responses against the tumors (Phan et al., 2003). 

The standard treatment for metastatic urothelial carcinoma has been chemotherapy for the past 

two decades. However, recent researches revealing better understanding of tumor-immune 

interaction led to the discovery of immune-checkpoint inhibitors. They also serve as 

alternative for bladder cancer patients that are unsound for standard chemotherapy due to their 

safety profile (Massari et al., 2018). Thus, immunotherapy of cancer using immune checkpoint 

inhibitors has become promising and exciting, there by developing quickly in the field of 

cancer management. In particular, it has a high response rate and survival benefits in urothelial 

carcinoma of the bladder (Bidnur et al., 2016; Massard et al., 2016).  

Atezolizumab is a humanized Ig (immunoglobulin) G1 monoclonal antibody that suppresses 

the action of PD-1. It was the first immune checkpoint inhibitor that demonstrated clinical 

activity in urothelial carcinoma of the bladder. The results lead to the approval of 

Atezolizumab (by the FDA) for treating metastatic urothelial carcinoma patients whose 

situation has deteriorated within a year of adjuvant platinum-based chemotherapy (Powles et 

al., 2014; Plimack et al., 2017). 

It is well known that cancer cells are generally clever, strong and good at escaping immune 

attack (immune resistance). At times, treatment using checkpoint inhibitors only is not 

sufficient in combatting the disease. Therefore, combination therapies with immune 

checkpoint inhibitors and other agents, radiotherapy, chemotherapy, other immune agents and 

different checkpoint inhibitors are suggested or tested in order to overcome the resistance by 

the cancer cells. This led to an interesting strategy of combination therapy that is aimed to 

strengthen the potency of checkpoint inhibitors. The combination of Bacillus Calmette Guerin 

(BCG), Pembrolizumab, and Atezolizumab is presently being examined in early phase of high 

risk urothelial carcinoma of the bladder (Larkin et al., 2015; Postow et al., 2015).  
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The earliest mathematical models of BCG immunotherapy of superficial bladder cancer were 

developed and studied (Bunimovich-Mendrazitsky et al., 2007; Bunimovich-Mendrazitsky et 

al., 2008; Starkov et al., 2016). Saad et al. investigated the interaction between immune system 

and immune checkpoints in superficial bladder cancer treatment using BCG (Saad et al., 

2017). They also established the effects of the immune checkpoints on the effector cells and 

the overall therapy. Optimal control theory was applied in (Ghafari and Naserifar, 2010; 

Thalya et al., 2004) to find an optimal dose required to trigger the immune system in order to 

launch a robust antitumor assault. In (Elmouki and Saadi, 2016), the authors followed a 

different approach of optimal control (isoperimetric optimal control problem) on a BCG 

immunotherapy model.  

A free final time optimal control approach was developed by (Alkama et al., 2018). Their 

work finds the optimal dose and time of application of BCG in the treatment of bladder cancer. 

In (Elmouki and Saadi, 2016), a quadratic control was used instead of linear control in a given 

objective functional that need to be minimized in a bladder cancer model. They used the 

maximum principle and the generalized Legendre-Clebsh condition for obtaining the 

characterization of desired controls. The RK-4 iterative program is applied to numerically find 

solutions of the optimality system.   

Saad et al. established a model which investigates the synergy of effector cells, checkpoints, 

and normal cells in BCG immunotherapy of bladder cancer. Furthermore, they applied 

Pontryagin‟s maximum principle to characterize an optimal dose of BCG needed to trigger an 

effective anti-tumor response regardless of the activities of the immune checkpoints (Saad and 

Hincal, 2018).      

The purpose of this section is to utilize the mathematical cancer model in chapter 3 and 

introduce two control functions, one blocks the activities of immune checkpoints (  ) 

(because of the emergence of immune checkpoint inhibitors as a new way of treating bladder 

cancer) and the other activates the immune system (  ).The control function    mimic dosage 

of an immune checkpoint inhibitor, while    denotes the BCG dose. We aim to get an optimal 

control pair (     ) which will minimize our objective function. 

This chapter is classified as follows; the first section gives the introduction. The model is 

presented and explained in section 4.2. In section 4.3, the theorem of existence of optimal 
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control pair is stated and proved; we derive characterization of the controls, and outline the 

proof of uniqueness of the optimality system. The numerical simulations are presented in 

section 4.4. In the last section, we state our discussions and conclusions. 

4.2 The Mathematical Model 

We present a deterministic ODE model developed in (Saad and Hincal, 2018) that studies the 

interaction between cancer cells (C), normal cells (N), BCG (B), effector cells (E), and 

immune checkpoints (P). Our aim is to adopt model (3.1) and incorporate two control 

functions   ; which represent dosage of an immune checkpoint inhibitor while    denotes the 

BCG dose. It is important to note that the model (3.1) was with only one control function 

mimicking the BCG dose. However, because of the advancement and recent development of 

drugs that blocks the action of the immune checkpoints (checkpoints inhibitors) on the 

immune system, we wish to incorporate this into the model and analyze it with two control 

functions.  

The model is as follows: 

  

  
    (     )      

  ( )

   
      

  

  
    (     )                

  

  
    ( )               (4.1) 

  

  
     

  ( )

   
     

  ( )

   
                  

  

  
          

 ( )        ( )        ( )         ( )        ( )        

The evolution of the tumor is given in the first equation of system (4.1). The term,    (  

   ),  represents the advancement of the tumor and is regarded as logistic growth at rate    

and a carrying capacity 
 

  
  The next term models the expulsion of tumor by activated immune 

effector cells (activated by BCG) with elimination rate   , and the procedure is understood to 
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be distorted by the immune checkpoints where 
 

   
 is regarded as the immunosuppressive 

term. This term suppresses/block the activities of the effector cells. The control function    

denotes the dosage of the immune checkpoint inhibitors that will block the activity of the 

immune checkpoints against the effector cells. It is applied directly in order to block the action 

of the immunosuppressive term, and hence, we have 
  ( )

   
   with inhibitory parameter  .  

The third term describes the destruction of normal cells by the malignant cells at rate   . 

The dynamics of normal cells is given in the second equation, with the first term describing 

their growth (logistic) at the rate    and carrying capacity 
 

  
  The second and third terms 

represents the elimination of the normal cells by the tumor and BCG (due to its toxicity ) at the 

rate    and    respectively. The last term gives the natural death of normal cells (via 

apoptosis) at rate   . 

The third equation explains the evolution of BCG.   ( ) is the concentration of the solution 

(BCG) that is injected into the bladder with   being the strength of the treatment. The effector 

cells kill the BCG because it is considered foreign at the rate    and the degradation of the 

BCG is given by the last term. 

The second to the last equation represent the activities of the immune system, where the first 

and second terms gives the recruitment (which depends on the tumor mass or volume at the 

rate   ) and activation of effector cells by BCG (at rate   ) respectively. Both the recruitment 

and the activation are presupposed to be disrupted by checkpoints; hence, we use the 

immunosuppressive term to explain that. We also apply the control function to both the 

processes in order to inhibit the activities of the immune checkpoints explained above. The 

third and fourth terms describe the destruction of effector cells by the tumor and BCG 

respectively. While the last term states the natural degradation of effector cells.  

In the final equation, the evolution of the immune checkpoints is explained.   is their constant 

source and     denotes their natural death.   

The analysis of the model without treatment is given in chapter 3, hence; we will directly find 

the characterization of our optimal control pair. 
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We take our controls to be class of piecewise continuous function defined for all   such that 

       ( )       and      ( )      Moreover,  

                  (                    and                    

are values obtained to bound the BCG optimal dose (Elmouki and Saadi, 2016; Alkama et al., 

2018; Elmouki and Saadi, 2016; Saad and Hincal, 2018). Therefore, we present the class of 

admissible controls as  

  *(  ( )   ( ))         ( )            ( )         ,   -+  

with   ( ) and   ( ) piecewise continuous.  

Now, we state our objective function. We seek to minimize the activities/effects of immune 

checkpoints, costs of the controls, tumor size, as well as maximizing the concentration of 

normal cells. Thus, the objective function is defined as 

 (     )  ∫( ( )   ( )   ( )  
 

 
    

  
 

 
    

 )

 

 

    

Here, we are minimizing the number of cancer cells, immune checkpoints activities, costs of 

controls, number of cancer cells in addition to maximizing the concentration of normal cells. 

   and    are weight factors representing benefit/cost and the level of patient‟s acceptance of 

the BCG treatment respectively.  

Our goal is to find   
    

  (optimal control pair) that will satisfy the following: 

 (  
    

 )     
(     )  

 (     ) 

4.3 Necessary and sufficient conditions of optimal control pair  

4.3.1 Existence of Optimal Control Pair 

In this part, the investigation of conditions that guarantee the existence of an optimal control 

pair for state system (4.1) would be conducted. To achieve this, we need to show that solutions 

of system (4.1) are bounded for finite time interval ,   -  

The boundedness can be proved using the notion of supersolutions  ̅  ̅  ̅  ̅  and  ̅ satisfying  
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  ̅

  
    ̅ 

  ̅

  
    ̅ 

  ̅

  
            (4.2) 

  ̅

  
    ̅          ̅             

  ̅

  
  , 

are bounded on a finite time interval, where     and      are upper bound solutions related 

to   and   respectively. We can apply a result demonstrated by Fleming and Rishel to 

establish the existence of the control pair (Fleming and Rishel, 1975).  

Theorem 4.1Given the objective functional  

 (     )  ∫( ( )   ( )   ( )  
 

 
    

  
 

 
    

 )

 

 

    

where, 

  *(  ( )   ( ))         ( )            ( )         ,   -+  

with   ( ) and   ( ) piecewise continuous,  

subject to state equations of (1) with  ( )    ,  ( )    ,  ( )    ,  ( )    , and 

 ( )    ; then there exists an optimal control pair   
    

  such that 

 (  
    

 )     
(     )  

 (     ) 

provided the following conditions are met: 

i) The class of all initial conditions with an optimal control pair      in the admissible control 

set along with each state equation being satisfied is nonempty. 

ii) The admissible control set   is closed and convex. 
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iii) Each right hand side of the equations of system (4.1) is continouous, bounded above by a 

sum of the bounded control and the state, and can be written as a linear function of an optimal 

control pair      with coefficients depending on time and state. 

iv) The integrand of  (     )is convex on  and bounded below by       (|  |
  |  |

 ) 

with       

Proof. In order to prove i), we utilize an outcome from Lukes (Lukes, 1982) that give the 

existence of solutions of ordinary differential equations in system (4.1) with bounded 

coefficients. Since the solution of system (4.1) is bounded as established, hence, condition 1 is 

proved. Therefore, the set is nonempty. By definition,   is closed and convex. The right hand 

side of system (4.1) is continuous and can be expressed as follows: 
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Using the boundedness of solutions we have that 
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It holds because    ,      and   ,   -  Therefore the integrand of  (     ) is convex. 

Furthermore,  

 ( )   ( )   ( )  
 

 
    

  
 

 
    

    ( )  
 

 
    

  
 

 
    

  

       (|  |
  |  |

 )  



80 

 

with    depending on the lower bound on  ,      because        . Thus, since all the 

conditions are proved, then optimal control pair exists. 

4.3.2 Characterization of optimal control pair 

In consideration of existence of optimal control pair that will minimize the objective function 

 (     ) subject to state equations in (4.1), then we use a version of Pontryagin‟s maximum 

principle to obtain the necessary conditions as well as characterization of the optimal control 

pair (Pontryagin et al., Garira et al., 2005; Fister et al., 1998). To achieve this, we state the 

Lagrangian as follows: 

 (                          ) 

      (     )     (     )     (     )     (     )  

where                   are penalty multipliers satisfying: 

   (     )   ,   (     )    at   
   and   

   (     )       (     )    at   
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while   is the Hamiltonian given by 

   ( )   ( )    ( )  
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Therefore, the Lagrangian can now be expressed as follows; 
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Theorem 4.2Given an optimal control pair    
    

  and solutions          and   of the 

corresponding state system (1), there exists adjoint variables    for             that satisfy 

the following adjoint system 
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with transversality conditions   ( )    for            . Furthermore, the characterization 

is given by 

      (   (
                    

  (   )
   )    ) 
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   ( )
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Proof. The proof is a direct implementation of the Pontryagin‟s maximum principle for 

bounded controls. The adjoint system can be found using the following:  

 

   

  
  

  

  
    

   

  
  

  

  
    

   

  
  

  

  
 

   

  
  

  

  
 

   

  
  

  

  
  

 

and   ( )    for             evaluated at the optimal control and corresponding states. 

This gives the adjoint system and transversality conditions. Finally, to get the optimal control 

pair, the optimality conditions requires that 
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for the optimal control pair (  
    

 )   Therefore,   
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Now, we find the representation for the control pair explicitly without penalty multipliers. 

For   , we check the following cases: 

Case 1: If         
      , then          . Hence,  
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Case 2: If     
 , then      . Hence,  
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   since      . Therefore,  
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Case 3: If     
 , then      . Thus,  
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        because        Thence,  
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In conclusion, putting the cases together yields 
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Alternatively,   
  can be expressed in compact form as  
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In similar fashion,   
  can be characterize as follows 
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In compact form we have,  

  
     4   4 

   ( )
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Hence, the theorem is proved. 

4.3.3 Optimality System 

We now present the optimality system and prove the uniqueness theorem of its solutions. It 

constitutes the state equations and their initial conditions coupled with the adjoint system and 

transversality conditions. It is given by: 
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 ( )      ( )      ( )      ( )      ( )     and   ( )    for 

           .  

We then state the theorems for the uniqueness of the optimality system. 

Theorem 4.3The function given by  ( )  *   (   (   )  )+ is Lipschitz continuous in  , 

with     being positive parameters.  

Proof. (Garira et al., 2005). 

Theorem 4.4. The bounded solutions of the optimality system above are unique for a 

sufficiently small time    

Proof. Assume for the sake of contradiction that there are two different solutions of the 

optimality system viz. (                        ) and ( ̅  ̅  ̅  ̅  ̅  ̅   ̅   ̅   ̅   ̅ ). We 

now make the following change of variables: 

      ,       ,       ,       ,       ,         ,         , 

        ,         ,           and  

 ̅      ̅,  ̅      ̅,  ̅      ,̅  ̅      ̅,  ̅      ̅,  ̅       ̅,  ̅       ̅, 

 ̅       ,̅  ̅       ̅,  ̅       ̅where     is chosen.  

Furthermore, we let  

      4   4
                          

  (      )
   5    5 

and 
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Observe that from theorem 4.3 we have,  
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(   )̅  Substituting       ,  ̅      ̅ and         ,  ̅       ̅ 

into the first and sixth equations of the optimality system respectively we have:  
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Now, we take the difference between equations for   and   ̅,   and   ̅, and the result is then 

multiplied by    ̅ and    ̅ and further integrated from   to   respectively.  
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We obtain similar equations for   and  ̅,   and  ̅,   and  ̅,   and  ̅,    and  ̅ ,    and  ̅ ,    

and  ̅ , and    and  ̅ . Next, we find upper bounds or estimates on the right-hand sides of all 

the ten integral equations obtained. Moreover, we separate terms that involve powers, squares, 

several multiplied terms and quotients. For example, from equation (4.3), we have 
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where        and    are dependent on the coefficients and the appropriate bounds on 

solutions variables              and    Similarly, from equation (4.4) we have the following 

estimates; 
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where     ,        , depends on the coefficients and appropriate bounds on solutions  The 

remaining eight integral equations are obtained in a similar manner. To prove the uniqueness, 

all the ten integral equations of (   ̅) (   ̅) (   ̅) (   ̅) (   ̅) (   ̅) (   ̅) 

(   ̅) (   )̅  and (   ̅) are combined. This yields the following: 
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where  ̃   ,          depends on the coefficients and appropriate bounds. Applying the 

positivity of solutions of the variable expressions computed at both the initial and final time, 

and further simplifying the above inequality is restored to the following: 
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(     ̃    )∫ 2(   ̅)  (   ̅)  (   ̅)  (   ̅)  (   ̅) 

 

 

 (   ̅)  (   )̅
 
 (   ̅)  (   ̅)   (   ̅) 3       

with   and  ̃ depending on all the coefficients and upper bounds on all variable solutions 

                   . If we select   such that      ̃        then (4.5) holds if the 

integrand is identically zero. Thus, due to the fact that the natural logarithm function has an 

increasing property, then   .
   

 ̃
/       provided      ̃. This implies that   

 

  
  .

   

 ̃
/  Therefore,     ̅    ̅,    ̅,    ̅,    ̅,    ̅,    ,̅    ̅,    ̅, and 

   ̅. Thus, the solution of the optimality system is unique for small time.  

Table 4.1: Values of the parameters 

Parameter Values and units 

   0.000000009        
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Table 4.1 Continued 

Parameter Values and units 

      

 

4.4 Numerical Simulations 

The optimality system obtained in section 4.3 is a two-point boundary value problem, where 

the initial conditions of the state system are given and final conditions of the adjoint system 

are also specified. It is solved via an iterative method with RK-4 scheme using parameter 

values from Table 4.1. An initial guess for the controls is first assumed. So, the state 

optimality system is solved forward in time by using the guessed values of controls via RK-4 

algorithm with initial conditions of state system used. Next, the new solutions of state system 

obtained are applied to solve the adjoint system backward in time using RK-4 schemes with 

the terminal conditions used. We then compute new values of the controls from our 

characterization by using the new solutions of the state and adjoint systems. We repeat these 

iterations from the beginning with the new values of the optimal control pair until convergence 

(Garira et al., 2005). It is important to note that both systems above are solved with MATLAB 

version 2017b. 

Figure 4.1: Cancer cells with optimal control pair 
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Figure 4.2: Normal cells with optimal control pair 

Figure 4.3: Immune checkpoints with optimal control pair 
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Figure 4.4: BCG dose (Second control function) 

Figure 4.5: Immune checkpoint inhibitors dosage (First control function) 

The results of the numerical simulations using parameter values from Table 4.1 are presented 

in Figures 4.1 through 4.5. In Figure 4.1, we can observe that the tumor is minimized and 

eventually eradicated when the two controls are applied. On the contrary, Figure 4.2 showed 
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that the concentration of normal cells is maximized after the application of the controls. The 

activities of the immune checkpoints are minimized after introducing the controls to the model 

and this can be seen in Figure 4.3. Figure 4.4 and 4.5 explains how the controls should be 

applied in order to achieve the desired aim (objective functional). From Figure 4.4, we can 

observe that the BCG dose should be               , and this amount must be administered 

throughout the period of the treatment so as to achieve the desired outcome. This amount is 

enough to trigger an immune response and at the same time is less toxic to the normal cells. 

Moreover, from Figure 4.5, we can see that the maximum dose of the immune checkpoints 

inhibitors should be administered for a period of around two weeks, and then later on reduced 

to the minimum dose (of the checkpoint inhibitors) for the remaining duration of the treatment. 

Therefore, this treatment schedule for the checkpoint inhibitors will stop/block the activities of 

the checkpoints on the immune cells, thus, the effector cells can move freely, spread, locate, 

fight, and kill the tumor. Conclusively, the two controls are effective because they are able to 

minimize the objective functional viz. minimize the tumor volume, activities of the 

checkpoints, cost of controls, along with maximizing the concentration of normal cells.    

4.5 Discussions and Conclusion 

We presented a model of BCG immunotherapy for bladder cancer along with disturbance and 

suppression of immune system by the immune checkpoints. Two control functions      were 

introducedinto the model; the former block the activity of checkpoints on the immune effector 

cells while the latter triggers the immune system. Existence theorem of optimal control pair 

required to minimize the objective functional  (     )was stated and proved. The objective 

function minimizes the tumor concentration, activities of immune checkpoints, and cost of 

controls, in addition to maximizing the concentration of normal cells inside the bladder. 

Pontryagin‟s maximum principle was followed in characterizing the nature of the optimal 

control pair. Coupling state system with its initial conditions and the adjoint system together 

with transversality conditions gave the optimality system; which is a two-point boundary value 

problem. The solution of the optimality system was shown to be unique for a sufficiently small 

time  . The forward-backward sweep method was applied to find numerical solutions of the 

optimality system. The solutions were displayed in Figures 4.1 to 4.5. In Figure 4.1 and 4.3, 

we observed that the number of cancer cells were minimized and eliminated eventually, and 
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the activities of the immune checkpoints were reduced as well, respectively. Figure 4.2 

showed that the concentration of normal cells was maximized. The control functions required 

to do this was given in Figure 4.4 and 4.5; we can see the nature of our optimal control pair. 

When the BCG constant amount of                is administered throughout the duration 

of the therapy combined with a maximum dose of checkpoint inhibitors at the early stage of 

the treatment (approximately two weeks), and so later reduced to a minimum dose of the 

checkpoint inhibitors for the period of the treatment, then, the immune system will 

successfully be triggered and the checkpoints will also be effectively blocked. Hence, the 

activated immune system will gain limitless freedom to wander about, detect, locate and 

rigorously attack and kill the cancer cells. Thus, the cancer will be successfully eliminated.  

In conclusion, our control functions are effective in neutralizing the tumor. We recommend the 

combination of BCG immunotherapy and immune checkpoint inhibitors in combating this 

deadly disease. 
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CHAPTER 5 

CONCLUSION 

 

 

5.1 Conclusion 

In conclusion, this thesis studied a deterministic model on BCG immunotherapy of bladder 

cancer with special consideration on the activities of immune checkpoints against the immune 

system. The first part of this thesis established mathematically the effects of the checkpoints 

on the immune system which leads to the failure of the entire treatment.  

The second part deals with finding the BCG optimal dose needed to activate the immune 

system regardless of the actions of checkpoints. Moreover, the optimal dose is required to 

reduce the toxicity to normal cells. Optimal control theory is implemented via Pontryagin‟s 

maximum principle in order to find the characterization for the control function (BCG optimal 

dose). The control function effectively minimize the stated objective functional, because the 

cancer cells are minimized and eradicated eventually, activity of checkpoints is reduced as 

well, and the normal cells are maximized attaining some threshold.  

The third part of this thesis is related to the emergence of new categories of drugs that are 

recently approved by the FDA named as checkpoint inhibitors – they block the activities of the 

immune checkpoints on the immune cells. We incorporate two control functions into the 

model we formulated in the second part. The first control function mimics the optimal dose of 

a checkpoint inhibitor, while the second control describes the BCG optimal dose. This implies 

that the second control gives the optimal BCG dose required to activate the immune system, 

whereas the first control blocks the activity of the checkpoints, so that the activated immune 

system move freely and kill the tumor. Pontryagin‟s principle was used to characterize the 

optimal control pair. The two control functions effectively minimize the objective function.  

Thus, the medical practitioners should consider the single therapy suggested in chapter three, 

or combination therapy presented in chapter four. This is because all the two studies achieve 

the desired aim – minimizing and eventually eliminating the cancer cells.   
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