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ABSTRACT

In the present study, a source identification problem with local and nonlocal conditions for
a one-dimensional hyperbolic equation is investigated. Stability estimates for the solutions
of the source identification problems are established. Furthermore, a first and second order
of accuracy difference schemes for the numerical solutions of the source identification
problems for hyperbolic equations with local and nonlocal conditions are presented.
Stability estimates for the solutions of difference schemes are established. Then, these

difference schemes are tested on examples and some numerical results are presented.

Keywords: Source identification problem; hyperbolic differential equations; difference

schemes; local and nonlocal conditions; stability; accuracy



OZET

Bu tezde bir boyutlu bir hiperbolik denklem icin yerel ve yerel olmayan kosullu bir kaynak
tanimlama problemi arastirilmistir. Kaynak tanimlama probleminin ¢éziimii i¢in kararlilik
kestirimleri olusturulmustur. Ayrica, hiperbolik denklemler igin yerel ve yerel olmayan
kosullu kaynak tanimlama problemlerinin sayisal ¢oziimleri igin birinci ve ikinci dereceden
dogruluklu  fark semalari sunulmustur. Fark semalarinin ¢Ozimleri igin kararlilik
kestirimleri olusturulmustur. Daha sonra, bu fark semalar1 6rnekler tizerinde test edilip bazi

sayisal sonuclar verilmistir.

Anahtar Kelimeler: Kaynak tanimlama problemi; hiperbolik diferansiyel denklemler; fark

semalari; yerel ve yerel olmayan kosullar; kararlilik; dogruluk
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CHAPTER 1
INTRODUCTION

1.1 History

The studies of well-posed and ill-posed boundary value problems for hyperbolic and telegraph
partial differential equations are driven not only by a theoretical interest but also by the fact
of several phenomena in engineering and various fields of physics and applied sciences. In
mathematical modelling, hyperbolic and telegraph partial differential equations are used
together with boundary conditions specifying the solution on the boundary of the domain. In
some cases, classical boundary conditions cannot describe a process or phenomenon precisely.
Therefore, mathematical models of various physical, chemical, biological, or environmental
processes often involve nonclassical conditions. Such conditions are usually identified as
nonlocal boundary conditions and reflect situations when the data on the boundary of domain
cannot be measured directly, or when the data on the inside of the domain. Of great interest is
the study of absolutely stable difference schemes of a high order of accuracy for hyperbolic
partial differential equations, in which stability was established without any assumptions with
respect to the grid steps and such type of stability inequalities for the solutions of the first
order of accuracy difference scheme for the differential equations of hyperbolic type were
established for the first time ( Sobolevskii and Chebotareva, 1977).

The survey paper contains the results on the local and nonlocal well-posed problems for second
order differential and difference equations. Results on the stability of differential problems for
hyperbolic equations and of difference schemes for approximate solution of the hyperbolic
problems were presented (Ashyralyev et al., 2015).

Identification problems take an important place in applied sciences and engineering, and have
been studied by many authors (Belov, 2002; Gryazin et al., 1999; Isakov, 1998; Kabanikhin
and Krivorotko, 2015; Prilepko, Orlovsky and Vasin, 2000). The theory and applications of
source identification problems for partial differential equations have been given in various
papers ( Anikonov, 1996; Ashyralyev and Ashyralyyev, 2014; Ashyralyyev, 2014; Ashyralyyev
and Demirdag, 2012; Kozhanov, 1997; Orlovskii, 2008; Orlovskii and Piskarev, 2013).



In particular, Kozhanov, (1997) applied a new approach for solving elliptic equations which is
based on the transition to equations of composite type. The obtained results on solvability of
linear inverse problems for elliptic equations are based on the solvability and the properties of
solutions of boundary value problems for equations of composite type. The inverse problem
of finding the source in an abstract second-order elliptic equation on a finite interval was
studied by (Orlovskii, 2008). The additional information given is the value of the solution
at an interior point of the interval. Moreover, existence, uniqueness, and Fredholm property
theorems for the inverse problem were proved. The authors investigated an inverse problem for
an elliptic equation in a Banach space with the Bitsadze-Samarskii conditions. The suggested
approach uses the notion of a general approximation scheme, the theory of Cp-semigroups of
operators and methods of functional analysis (Orlovskii and Piskarev, 2013).

The well-posedness of the unknown source identification problem for a parabolic equation
has been well investigated when the unknown function p is dependent on the space variable
(Ashyralyev, 2011; Ashyralyev, Erdogan and Demirdag, 2012; Choulli and Yamamoto, 1999;
Eidel’man, 1978; Kostin, 2013). Nevertheless, when the unknown function p is dependent
on ¢, the well-posedness of the source identification problem for a parabolic equation has
been investigated by (Ashyralyev and Erdogan, 2014; Borukhov and Vabishchevich, 2000;
Dehghan, 2003; Erdogan and Sazaklioglu, 2014; Ivanchov, 1995; Saitoh, Tuan and Yamamoto,
2003; Samarskii and Vabishchevich, 2008). Moreover, the well-posedness of the source
identification problem for a delay parabolic equation has also been given by (Ashyralyev and
Agirseven, 2014; Blasio and Lorenzi, 2007). The authors studied the inverse problems in
determining the coeflicients of the equation for the kinetic Boltzmann equation. The Cauchy
problem and the boundary value problem for states close to equilibrium have been considered.
Theorems of the existence and uniqueness of the inverse problems were proved (Orlovskii and
Prilepko, 1987).

The solvability of the inverse problems in various formulations with various overdetermination
conditions for telegraph and hyperbolic equations were studied in many works (Anikonov,
1976; Ashyralyev and Cekig, 2015; Kozhanov and Safiullova, 2010; Kozhanov and Safiullova,

2017; Kozhanov and Telesheva, 2017). In particular, the well-posedness of the source



identification problem for a telegraph equation with unknown parameter p

a2 d
d‘;gt) +a,2_(tl) +Av(t) :p+f(t),0 <t< T,

v(0) =V (0)=y,v(T)={¢

in a Hilbert space H with the self-adjoint positive-definite operator A was proved by (Ashyralyev
and Cekic, 2015). Here ¢,y and { are given elements of H. They established stability estimates
for the solution of this problem. In applications, three source identification problems for
telegraph equations are developed. The authors studied the solvability of the inverse problems

on finding a solution v (x,7) and an unknown coefficient ¢ for a telegraph equation
Ve —Av +cv = f(x,1).

Theorems on the existence of the regular solutions are proved. The feature of the problems is a
presence of new overdetermination conditions for the considered class of equations (Kozhanov
and Safiullova, 2017). The authors studied solvability of the parabolic and hyperbolic inverse
problems of finding a solution together with an unknown right-hand side when the general
overdetermination condition is given. Some theorems of unique existence of regular solutions
were proved ( Kozhanov and Safiullova, 2010). The authors considered nonlinear inverse
coeflicient problems for nonstationary higher-order differential equations of pseudohyperbolic
type (Kozhanov and Telesheva, 2017). More precisely, they study the problems of determining
both the solution of the corresponding equation, an unknown coefficient at the solution or at
the time derivative of the solution in the equation. A distinctive feature of these problems is
the fact that the unknown coefficient is a function of time only. Integral overdetermination is
used as an additional condition. The existence theorems of regular solutions (those solutions
that have all generalized derivatives in the sense of S. L. Sobolev) were proved. The technique
of the proof relies on the transition from the original inverse problem to a new direct problem
for an auxiliary integral-differential equation, and then on the proof of solvability of the latter
and construction of some solution of the original inverse problem from a solution of the
auxiliary problem. A theorem on the uniqueness for solutions to an inverse problem for the
wave equation has been proved (Anikonov, 1976). Finally, some new representations were

given for the solutions and coeflicients of the equations of mathematical physics (Anikonov,
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1995; Anikonov, 1996; Anikonov and Neshchadim, 2011; Anikonov and Neshchadim, 2012
a, 2012b). Their main direction of study was to search for reciprocal formulas connecting
solutions and coeflicients, and involving arbitrary functions as well as functions satisfying
some differential relations. They gave such formulas for evolution equations of first and
second order in time, in particular for parabolic and hyperbolic equations in the linear and
nonlinear cases.

In this thesis, we consider the time-dependent source identification problem for a one-

dimensional hyperbolic equation with local conditions

d%ul(t, o ou(t,
P 2 o0 240 = p g )+ £ 0,

x€(0,0),r€(0,7), (1.1)

u(0,x) = ¢ (x),u (0,x) = ¢ (x),x € [0,1],
w(t,0) = u(t,0) = 0, [ u(t,x)dx = £ (1), € [0,T]

and with nonlocal conditions
u(t,x) 0
a2 ox ( *)
x€(0,0),t € (0,T),
u(0,x) =¢(x),u; (0,x) =y (x),x € [0,],
u(t,0) =u(tl),u(t,0) = u.(t,1),

Jut,x)dx = £(0),1 € [0,T],

Ou (t,x)
0x

)+5u(t,X) =p)q(x)+ f(t.x),

(1.2)

where u (¢, x) and p (¢) are unknown functions, a (x) > a > 0,6 > 0, f (t,x), (t),¢ (x) and
¥ (x) are sufficiently smooth functions, and ¢ (x) is a sufficiently smooth function assuming
/01 q(x)dx # 0,and g (0) = g (1) = 0 for (1.1), ¢ (0) = g (1), ¢' (0) = ¢’ (I) for (1.2). At the
same time, we note that the inverse problems (1.1) and (1.2) for the hyperbolic equation were
not studied before. Basic results of this thesis have been published by the following papers
(Ashyralyev and Emharab, 2017; Ashyralyev and Emharab, 2018a, 2018b, 2018c, 2018d).
Some results of this work were presented in Mini-symposium "Inverse Ill-posed Problems
and its applications" of VI congress of Turkic World Mathematical Society (TWMS 2017),

and 2nd International Conference of Mathematical Sciences, 2018.



1.2 Methods of Solution of Source Identification Problem

It is known that local and nonlocal boundary value problems for second order partial differential
equations can be solved analytically by Fourier series, Laplace transform and Fourier transform
methods. Now, let us illustrate these three different analytical methods by examples. Let us
see how to apply the classic methods, namely, Fourier series, Fourier transform and Laplace
transform for obtaining the solution of source identification problem for hyperbolic equations

on some examples.

Example 1.2.1 Obtain the Fourier series solution of the following source identification

problem

O%u(t,x) 0%u(t,x)
ot? 0x2

O<x<m0<tr<l,

=p(t)sinx + e 'sinx,

(1.3)
u(0,x) =sinx,u; (0,x) = —sinx,0 < x < 7,

u(t,m) =u(t,0) = O,/Onu(t,x)dx =2e1,0<t <1,

for a one dimensional hyperbolic equation.

Solution. In order to solve the problem, we consider the Sturm-Liouville problem
Uy —Au(x)=0,0<x<m u(0)=u(x)=0,

generated by the space operator of problem (1.3). It is easy to see that the solution of this

Sturm-Liouville problem is
Ak = =k u(x) = sinkx, k = 1,2, ....

Therefore, we will seek solution u(z, x) using by the Fourier series
u(t,x) = ZAk () sin kx. (1.4)
k=1

Here Ay (t),k = 1,2... are unknown functions. Putting (1.4) into the equation (1.3) and using

given initial and boundary conditions, we obtain

(o)

Z A} (t)sinkx + Z k%A (1) sinkx = p (t)sinx + e ' sin x,
k=1 k=1



u(0,x) = Z Ay (0)sin kx = sin x,
k=0

u; (0,x) = Z A, (0)sinkx = —sinx,
k=0

d T o — Ay (t) cos k
/ u(t,x)dx :/ ZAk (t)sin kxdx = —Zw
0 0 k=1 k=1

© k+1
=Y apn [FEE ]=2e"-
k=1

k
Equating the coefficients of sin kx,k = 1,2... to zero, we get

T

0

AV O+ KA () =0k#1, AV +A () =pt)+e',0<t <1,

A (0)=0,A7,(0) =0,k # 1, A;(0)=1,A7(0) = -1,

l + (_l)k+1
k

(o)

Ai (1)
]

] =2¢"0<t<1. (1.5)
k
First, we will obtain Ay () for k # 1. It is easy to see that Ay (¢) is the solution of the

following Cauchy problem
AL () + KA () =0, 0<t <1, Ag(0)=0,4(0)=0,

for the second order differential equations. Its solution is A (¢) = 0, k # 1. From that and
formula (1.5), we get

DA, (1) = —2¢7".

Therefore,

Al (t)=e". (1.6)
Second,we will obtain p (). It is clear that A () is solution of the following Cauchy problem
AT+ A () =p@)+2e",0<t <1, A (0)=1, A} (0) = -1, (1.7)

for the second order differential equations. Applying (1.6) and (1.7), we obtain

t

p(t)y=e".

6



Then, (1.4) becomes u (z,x) = Ay (f) sin x = e~ sin x. Therefore, the exact solution of problem
(1.3)is (u(t,x),p (1)) = (" sinx,e™).

Note that using similar procedure one can obtain the solution of the following source

identification problem

Au(t,x) . 0%u(t,x)
- > a = p(t)g(x) + f(t,x),
G~ % e 5 = pg() + 0.

x =(X1,...,x,) € Q0<r<T,

u(0,x) = ¢(x), u(0,x) = ¢ (x), x € Q, (1.8)

u(t,x)=0,0<t<T, xS,

/.--/u(t,x)dxl...dxnzf(t),()stST,

xeQ

for the multidimensional hyperbolic partial differential equation. Assume that @, > @ > 0

and £ (1,%),q (x),(t € (0,T),x € Q), o(x), ¥ (x), (x € 5) L£(1), (¢ € [0,T]) are given smooth

functions. Here and in future Q is the unit open cube in the n—dimensional Euclidean space

R"(0 < x; < 1,1 < k < n) with the boundary S and Q = QU S.

Example 1.2.2 Obtain the Fourier series solution of the following source identification

problem

2
0 b;ig,x) N (')b;(f;x) = p(¢) (1 + sin2x) + 4e~* sin 2x,
X

O0<t<1,0<x<m,

1 ©(0,x)=1+sin2x,u, (0,x) = —(1 +sin2x), 0 < x < m, (1.9)

u(t,0) =u(t,m),u, (t,0) =u, (t,7), 0 <t <1,

foﬂu(t,x)dx =e'm, 0<1t<1,

for a one dimensional hyperbolic equation.

Solution. In order to solve this problem, we consider the Sturm-Liouville problem

Uy — Au(x) = 0,0 < x <7, u(0) =u(x), u, (0) = uy, (1)



generated by the space operator of problem (1.9). It is easy to see that the solution of this

Sturm-Liouville problem is
A = 4/’(2,u;< (x) =cos2kx,k =0,1,2,..., u; (x) =sin2kx, k = 1,2, ....

Therefore, we will seek solution u(z, x) using by the Fourier series

u(t,x) = ZAk () cos 2kx + ZBk (t) sin 2kx, (1.10)
k=0 k=1

where Ag (t),k =0,1,2,... and By (t),k = 1,2,... are unknown functions, Putting (1.10) into
(1.9) and using given initial and boundary conditions, we get

(o8]

DAY (t)ycos 2kx + Y BY (1) sin2kx + 4k Ay (1) cos kx
k=0 k=1 k=0

+Z4k2Bk (t)sin2kx = p(t) (sin2x + 1) + 4e~" sin 2x,
k=1

u(0,x) = ZAk (0) cos 2kx + ZBk (0) sin 2kx = sin2x + 1,
k=0 k=1

u; (0,x) = ZA; (0) cos 2kx + ZB; (0) sin 2kx = —sin2x — 1,
k=0 k=1

T T o o
/ u(t,x)dx :/ ZAk (t)cos2kx + ZBk (t)sin2kx | dx
0 0 lk=0 k=1
< Ac()sin2kx || B 2kx|”
t t
=Ag(t)m+ Z% —Z% =Ay(t)r =e'm.
k=1 0 k=1 0

From that it follows that Ag (¢) = e~’. Equating the coefficients of cos kx,k = 0,1,2,... and

sinkx,k =1,2,... to zero, we get

AY (1) + 4k A (1) =0,0 <1 < 1,

(1.11)
A (0)=0,A,(0) =0,k # 0,
Ag@)=p(),0<t<1, (1.12)

Ao (0) = 1,4, (0) = -1,



B! (1) +4k*By (1) =0,0 <1 <1,
B (0) = 0, B, (0) = 0,

(1.13)

B (t)+4Bi(t) = p(t)+4e, 0 <t <1,
B (0) = 1,B](0) = —1.

(1.14)

t

First, we obtain p(t). Applying problem (1.12) and Ag(¢) = e™/, we get

t

p(t)=e".

Second, we obtain Ai(t),k # 0. It is clear that for k # 0, A;(¢) is the solution of the initial

value problems (1.11) and (1.12). The auxiliary equation is
m? + 4k* = 0.
We have two roots
mp = 2ik,m2 = -2ik

Therefore,

Ay (1) = ¢y cos 2kt + ¢ sin 2kt.

Applying initial conditions A, (0) = A} (0) = 0, we get
Ag (0) =C = 0,

AL (0) = 2k, = 0.

Then c; = ¢p = 0and A, (t) = 0,k # 0. Third, we obtain By(z). It is clear that for k # 1, By(¢)

is the solution of the initial value problem (1.13). The auxiliary equation is
m* + 4k* = 0.

‘We have two roots

mp = 2ik,m2 = -2ik.

Therefore,

By (t) = c¢1 cos 2kt + c¢; sin 2kt.



Applying initial conditions By (0) = B; (0) = 0, we get
By (0)=c; =0,

B (0) = 2kc; = 0.

Then ¢; = ¢; = 0 and By (r) = 0. Now, we obtain Bj (7) from (1.14), and p (t) = e”". Itis
the Cauchy problem for the second order linear differential equation. We will seek B; (7) by

formula

By (1) = Bc (1) + Bp (1),

where B (1) is general solution of the homogeneous differential equation BY (¢) +4B; (t) = 0
and Bp () is particular solution of non-homogeneous differential equation. The auxiliary
equation is

m?+4=0.

‘We have two roots

mp = 2ik,m2 = -2ik.

Therefore,

B.(t) = ¢ cos 2kt + ¢ sin 2kt.

Since +i2 # —1, we put

B, (1) =e¢"a.

Therefore,

ae”" +4ae” =577,

From that it follows a = 1 and

B,(t)=¢"".

Thus,

By (t) = ¢; cos 2kt + ¢y sin 2kt + 7.
Applying initial conditions By (0) = 1, B} (0) = —1, we get

Bl(()):cl+l:1, Bi(O):szZ—IZ—l.

10



From that it follows

By (t)=e".

Therefore,

u(t,x)=e'(sin2x +1).

So, the exact solution of problem (1.9) is
(ut,x),p(r) = (e (sin2x + 1),e7’) .

Note that using similar procedure one can obtain the solution of the following source
identification problem

0%u(t, x) oz N 0%u(t, x)
atz r=1 ' 8x,2

=p®)q(x)+ f(t,x),

x=(X1,..,x,) € QO 0<t<T,

w(0, %) = ¢(x),u(0,x) = ¢ (), x € Q,

3 (1.15)
3 Ou(t,x)|  Ou(t,x)
u(t’x)lsl - u(t’x)|52’ om 5 - om SZ’
/---/u(t,x)dxl...dxn =&(),0<t<T,

xeQ

for the multidimensional hyperbolic partial differential equation. Assume that @, > @ > 0 and
f(t,x),q(x),te0,T),x€Q),¥(x),E7), (t € [0,T],x € ﬁ) are given smooth functions.
Here S = §1 U 5,51 NSy = 0, and m is the normal vector to S| and 5.

However Fourier series method described in solving (1.8) and (1.15) can be used only in the
case when (1.8) and (1.15) have constant coefficients.

Second, we consider the Laplace transform method for solution of the source identification

problem for hyperbolic differential equation.

Example 1.2.3 Obtain the Laplace transform solution of the following source identifica-

11



tion problem

2 2
9u(tx) - u(t,x) +2u(t,x)=p(t)e ™ +e ™%,

or? 0x?2
0<x<oo,0<t<l,
u(0,x) =e*u (0,x) = —%,0 < x < o0, (1.16)

u(,0)=eu (t,00=-e",0<t<1,

fooou(t,x)dx =e’0<t<1,0<x< o0,
for a one dimensional hyperbolic equation.

Solution. We will denote

LAu(t,x)} = ult,s).

Using formula

1
L{e} = 1 (1.17)

and taking the Laplace transform of both sides of the differential equation and conditions

u(t,0) = e, u,(t,0) = —e™, we can write
LA{uy (6,0} = LA{ux (1,0} +2L{u(t,x)} = [p() + '] L{T},
L{uO,x)} = L{e"}, L{u(0,x)} =-L{e"}

or

u (t,8) — s2u (t,8) + su (t,0) + uy (£,0) + 2u(t,s) = p (1) % +et L

) s+1°
u(0,s) = u;(0,5) = ———

s+1°

s+ 1

Therefore, we get the following problem

uy (t,5)+ (2= s2)u(t,s) +se’ —e' =p(t) 9-}—_1 +e ! L

1 s+1°
u(0,s) = u;(0,5) = ———.
s

+ 1

s+ 1

Applying the condition

/ u(t,x)dx =e',0<t <1,
0

and the definition of the Laplace transform, we get
u(t,0)=e’,0<t<1, (1.18)
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It is clear that u(z, s) is solution of the following source identification problem

2-5% ¢
s+1 e

2 — 1
i (1,8) + (2= s*)u(t,s) = p(t) 57 + (1.19)

M(O,S) = ﬁ’ut (O,S) = ﬁ

Applying the D’Alembert’s formula, we obtain

1 1
cos V2 — s2t — sin V2 — 52t (1.20)

1
ult,s) = s+ 1

s+ 142
1 ! 12—
+ in V2 —s2(r— — idy.
= [ sinV2= y>{p(y>s+1 — } y

Now, we will apply the condition (1.18) with (1.20), we get
L 1 i _
e =cosV2r — —sinV2r + — | sinV2(t —y) {p(y) +2¢} dy. (1.21)
V2 V2 Jo
Taking the first and second order derivatives, we get
t
—e™" = —V2sin V2t — cos V2r + / cos V2 (t = y) {p(y) + 27} dy,
0

e™' = —=2cos V21 + V2sin V2t
t
—\/5/ sin V2 (= y) {p(y) + 2¢ 7} dy + p (1) + 2¢". (1.22)
0

Applying (1.21) and (1.22), we get

e~ = —2cos V2r + V2 sin V21 + p(t)+2e!

-2 {\/5 {e" — cos V2t + % sin \/it}} :

From that it follows

pt)=e. (1.23)

Finally, applying (1.20) and (1.23), we get

cos V2 — st — ! ! sin V2 — s2t

1
t,s) = 2
u(t:s) s+ 1 s+ 14/ _ 2
1 ! 3—s?
inV2—s2(r—y){e” .
+ 2_S2A sin s%(t y){e (S+1)}dy

13



Applying the formula

t ; — 2 -\ _ 2 _ _ 2 )
/sin\/ﬁ(i—y)e‘ydyzsm 2—s2t+e V2 — 52— V2 —s2cos V2 st’
0 3—s2
we get
1 1 1
u(t,s):S+1cosv2—s2t—s+—lmsin\/2—s2t
s 1 3-s2|sinV2—s2t+e'V2—s2—V2—s2cos V2 — 52t
V2_g2s+1 3-52
1 1 1
— 2_ 24— 1 2_ 2t
g 1cosv st 1 Z_stm\/ s
1 1 e! 1 1
+ in V2 — 52t + - V2 —s2t=e¢" ) 1.24
\/2_S2s+lsm S s+ 1 s+1COS S ¢ s+ 1 ( )
From that it follows that
ut,x)=e'L£71 b e
’ s+ 1 '

Therefore, the exact solution of problem (1.16) is

(u(t,x),p@) = (e e7).

Example 1.2.4 Obtain the Laplace transform solution of the following source identification

problem

d%u (t, x) . Ou(t,x) _
or? o
t>00<x<m,

p (1) (1 + sin2x) + 4e " sin 2x,

1 u(0,x)=1+sin2x, u;(0,x)=—-(1+sin2x), 0 <x <,
u(t,0) =u(t,m),u,(,0) = uy (t,7), t >0,

/Oﬂu(t,x)dx =e'm,0<t <1,

for a one dimensional hyperbolic equation.

Solution. We will denote

LAu(t,x)} = u(s,x).

14
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Using formula
1

£{e_t}:s+1

and taking the Laplace transform of both sides of the differential equation and conditions

u(0,x) = 1+ sin2x,u,(0,x) = —(1 + sin 2x), we can write

s%u (5,x) —u(s5,0) — uy (1,0) + uyx (s, x)
=p(s)(1 +sin2x) + % sin 2x,

u(s,0) =u(s,m),ux(s,0) =uyx(s,m), 0<r < 1.

Therefore, we get the following problem

s2u (s, x) — s (1 +sin2x) + (1 + sin2x) — uyy (s, X)
| = p(s)(1 +sin2x) + % sin 2x,
u(t,0) =u(t,m),u,(t,0) = u, (t,7),

/Onu(s,x)dx: s 0t <L

(1.26)

In order to solve this problem, we consider the Sturm-Liouville problem
Uyy — Au(x) = 0,0 < x <, u(0) = u(x), uy (0) = uy (n)

generated by the space operator of problem (1.26). It is easy to see that the solution of this

Sturm-Liouville problem is
A = 4k2,uk (x) =cos2kx,k =0,1,2,..., ur(x)=sin2kx, k =1,2,....

Then, we will obtain the Fourier series solution of problem (1.26) by formula
u(s,x) = ZAk (s) cos 2kx + ZBk (s) sin 2kx, (1.27)
k=0 k=1

where Ay (t),k =0,1,2,... and By (t),k = 1,2,...are unknown functions, Putting (1.27) into

(1.26) and using given initial and boundary conditions, we get

SZZAk (s)cos2kx — s (1 +sin2x) + (1 + sin2x)
k=0

+SZZBk (s)sin2kx + Z4k2Ak (s)cos kx
k=1 k=0

15



+Z4k23k (s)sin2kx = p(s) (1 + sin2x) +
k=1

sin 2x,
1+s

u(0,x) = ZAk (0) cos 2kx + ZBk (0) sin2kx = 1 + sin2x,
k=0 k=1

u, (0,x) = ZA;( (0)cos 2kx + Z:B;C (0)sin2kx = —1 — sin 2x,
k=0 k=1

T Vs o0 (o]
/ u(s,x)dx = / ZAk (s)cos2kx + ZBk (s)sin2kx | dx
0 0 k=0 k=1
3 o Ay (s) sin 2kx T By (s)cos 2kx " 3 o
—AO(S)7T+; Y k ; o O—Ao(s)n_1+s.

From that it follows Ay (s) = ﬁ Equating the coeflicients of cos kx,k = 0,1,2,... and

sinkx,k = 1,2,... to zero, we get

$2Ar (s) + 4k*Ar (s) =0, k #0,

(1.28)
Ay (0) = 0,4, (0) = 0,and Ag (s) = 0, k # 0,
2
s“Ag(s)—s+1= p(s),
0 (s) p(s) (129)
Ap (0) = 1,A;,(0) = —1,
2 2
§“By (s) +4k“By (s) =0,
K () K (s) (130)
By (0) = 0,B; (0) = 0,and By (s) =0, k # 0,
2B (s)+ 4B (s)—s+ 1= s) + =2
1 (s) 1 (s) p(s)+ 77 (131)
B1(0)=1, B{(0)=1.
First, we obtain p(s). Applying problem (1.29) and Ay(t) = ﬁ, we get
1
pls) = l+s
Second, we obtain Bj (f) from (1.31) and p (s) = ﬁ where
(s2+4)B(s)—s+1— +i
! T l4s s+l
Thus,
Bi(5) = —
A

16



Then, (1.27) becomes
1

b = i 2 b
u(s,x) 1+S+1+Ssmx
From that it follows
u(t,x)= L ! + sin2x ¢ = e (1 + sin 2x)
’ l+s 1+ ’

Therefore, the exact solution of problem (1.25) is

{u(t,x),p(t)} = {e" (1+ sin2x),e"} )

Note that using similar procedure one can obtain the solution of the following source

identification problem

Qu(t,x) n 0%u(t,x)
- r

a

atz r=1 0)6,?
—+

x=(x1.,x,)€Q ,0<t<T,

= p(H)gq(x) + f(1,x),

u(0,x) = ¢(x),u,(0,x) = (x) x¢€ §+, (1.32)
u(t,x) = a(t,x), uy(t,x)=p(x)),
1<r<n0<t<T,xeS

/OXI Ox” u(t,x)dxy...dx, = £1),0 <t <T,

for the multidimensional hyperbolic partial differential equation. Assume that
a > a > 0 and f(1,x), (r € (0,T),x € 5*) E0, (€ [0,T]), 0(x), 0 (x) (x € 5*),
a(t,x),B(tx)(t €[0,T],x € S*) are given smooth functions. Here and in future Q7 is
the open cube in the n-dimensional Euclidean space R” (0 < x; < 00,1 < k < n) with the
boundary S* and Q =0rust.

However Laplace transform method described in solving (1.32) can be used only in the case
when (1.32) has constant or polynomial coefficients.

Third, we consider Fourier transform method for solution of the source identification problem

for hyperbolic differential equations.

17



Example 1.2.5 Obtain the Fourier transform solution of the following source identifica-

tion problem

2 2
9 ”(; Eg x) _9 2 (’2’ Y e - (4x2 +2) e,
X

—o<x<00,0<t <1,

1 (0,x) = e u; (0,x) = e, x € (—00,00),

f_o:ou(t,x)dx =e '\t >0,

for a one dimensional hyperbolic equation.

Solution. Let us denote

Flut,x)} =u(t,p).

(1.33)

Taking the Fourier transform of both sides of the differential equation and initial conditions

(1.33), we can obtain

e (1.0 + Wu (1) = p (O F (e}
—e"T{;—; (e'xz)} 0<t<1,
u(0,u) = T{e‘xz} Jup (0, ) = —(f{e_xZ} )
Then, we obtain u (¢, i) as the solution of the following Cauchy problem
i () + P () = (p () + e F {e o<t < 1,
uO,u) =F {e‘xz} ,u (0, u) = =F {e‘xz} X

Using the D’Alembert’s formula, we obtain

eiul + e—i,ut ) eiut _ e—i,ut )
ni) = —5—7 {7} - ]
u(t,p) > T{e i F \e
t o iu(t—s) _ ,—iu(t—s)
+/ ¢ ¢ [(p(s)wze-S)?-‘{e—xz}]ds
0 2ip

or

(i, 1) = M 4 e—iut? {e_x2} B % [t ei“ydy (T {e_xz})

t

2
2 [ raleosec)rietls

18
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Using the formula  {f (x = ¢)} = e F {f (x)}, we obtain

=4l (o) —;/,’ i)

/ / p(s)7: (”y) dyds + = / / (“y)z}dyds.
(t-5) (- s)

Since WF {e‘x } =-F {% (e_xz)} , we have that
en= Al e -4 [ e
—t

1 /t t—s B ) 1 t » t—s 82 B )
+— p(s)/ T{e (x+y) }dyds— —/ e °/ F{—— (e ")} dyds.
2 Jo ~(t-s5) 2 .Jo —(t-5) dy? ( )

Taking the inverse Fourier transform, we obtain

-1 ! ~(x+t)? ~(x—1)? L —(x+y)?
w(tx) = F ut ) =5 |0 w0 <o [ ey
-t

1 /l‘ t—s ~ ) 1 t B t—s 62 ~ )
+= p(s)/ e dyds — —/ e 5/ — (e (x+y) )dyds.
2 Jo ~(t-s) 2 Jo (1-5) 0Y?

Now, applying condition f_ 0; u(t,x)dx = e”'\/zr, we obtain

_z\/— [/‘X’ _(x+t)2dx N /00 _(x—z)zdx:| _ / / —(x+y) dxdy
/ p(s)/ / e~ () dxdyds — —/ / / _(x+y)2) dxdyds.
(t=s) (t-s)

Since / e dx = V7, we can write
—00

t 1 t -5 (o) 2
e '\ =rn - nrr+ \/E/ (t-s)p(s)ds— = / e / / 8—2 (e_(x+y)2) dxdyds.
0 2 Jo —(1=5) J =00 OY

Since
i 2 ’ 2 2
poes (e—<x+y> ) = 4(x + y)2 e T _ ()
y

we have that

2
"9 ( —(x+y) )dx = (x +y)e 0 gy — 2 _(“y)de
w Y2

—00
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= 4/ pze_pzdp - 2/ e_pzdp = —2/ pd (e_pz) - 2Vn

o o

2/ e P dp — 2\ = 27 — 247 = 0.

Therefore,
t
e’ =1 —t+/ (t—s)p(s)ds.
0

From that it follows

t
—el=-1 +/ p(s)ds.
0
Taking the derivative, we obtain
el =p).

Putting p (¢) into the given differential equation (1.35), we obtain the following Cauchy

problem

g (1, ) + pPu(t,p) = e’ (1+ /12) T{e‘xz} 0<t<1,
uO,u)=F {e'xz} Ju (O, u) = =F {e"‘z} .

We will seek the general solution u (¢, u) of this equation by the following formula
u(t, ) = ue (1, 1) +uy (1, 1),
where u, (t, u) is the solution of homogeneous equation
ug (6, p0) + pPu(t, 1) = 0,0 <1< 1
and u,, (¢, 1) is the particular solution of nonhomogeneous equation
Uy (1, 1) + (P (1, 1) = e (1 + ,uz) T{e‘xz} ,0<t<1.
Then we have that
ue (1, 1) = cre™ + cre™ .
Now, we will seek u, (¢, 1) by putting the formula u,, (r, 1) = A (1) e”'. We have that
A(w e + PA(u) e’ = e (1 + /Jz) 7 {e_xz} .
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From that it follows
2
A(p) = 7:{6_)‘ } )
Therefore, the general solution of this equation is
_ iut —iut —t —x?
u(t,p) =cre™ + e +e'F e .
Using initial conditions, we obtain the system of the equations

uO,p) =cr+c+ ?‘{e—xz} - ?‘{e—xz}’
u (O, 1) =ip(cr —c2) = T{e—xz} = _-F {e‘xz}

or
c1+c =0,
Cl —C = 0.
Solving this system, we get
Cl =C = 0.

Therefore,
Wt ) = e'F {e-xz} .
Taking the inverse Fourier transform, we obtain
u(t,x) = ele™
So, the exact solution of problem (1.33) is

(2, p ) = (e, 7).

Note that using the same manner one obtain the solution of the following boundary value

problem
d%u(t, x) allu(z, x)
- [ t + t,x),
o |r|:2ma ox\'...0xy p()g(x) + f(t,x)

O<t<T,x,reRY |r|=r+..+r,

u(0,x) = p(x), 1,(0,x) = Y (x), x € R, (1.36)

/---/u(t,x)dxl...dxn =&(1),0<t<T,
Rn
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for a second order in ¢ and 2m — th order in space variables multidimensional hyper-
bolic differential equation. Assume that @, > @ > 0 and f (t,x),&(¢),(t € [0,T],x € R"),
©(x),¥ (x),(x € R") are given smooth functions.

However Fourier transform method described in solving (1.36) can be used only in the case
when (1.36) has constant coefficients. So, all analytical methods described above, namely the
Fourier series method, Laplace transform method and the Fourier transform method can be
used only in the case when the differential equation has constant coefficients. It is well-known
that the most general method for solving partial differential equation with dependent in ¢ and

in the space variables is operator method.

1.3 The Aim of the Thesis
Now, let us briefly describe the contents of the various chapters of the thesis. It consists of

four chapters.

First chapter is the introduction.

Second chapter the theorem on stability of problem (1.1) with local conditions is established.
The first and second order of accuracy difference schemes for the numerical solution of
identification hyperbolic problem (1.1) are presented. The theorems on the stability
estimates for the solution of these difference schemes are established. Numerical results

are provided.

Third chapter the theorem on stability of problem (1.2) with nonlocal conditions is estab-
lished. The first and second order of accuracy difference schemes for the numerical
solution of identification hyperbolic problem (1.2) are presented. The theorems on the
stability estimates for the solution of these difference schemes are proved. Numerical

results are provided.

Fourth chapter contains conclusion.
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CHAPTER 2
STABILITY OF THE HYPERBOLIC DIFFERENTIAL AND DIFFERENCE
EQUATION WITH LOCAL CONDITIONS

2.1 Introduction
In this chapter, we consider the source identification problem for a one-dimensional hyperbolic

equation with local conditions

(92 o 0
% dx (“(X)$) =p®)q(x)+ f(t.x),

x€(0,1),r€(0.7), (2.1)

M(O,X) = SD(X)’MI (O,X) = l/’(x),x € [O’Z]’
u(t,0) = u(t,) =0, [ ut,x)dx = ¢ (1),1 € [0,T],

where u (f,x) and p (t) are unknown functions, a (x) > a > 0, f (t,x),{ (¢),¢ (x) and ¢ (x)
are sufficiently smooth functions, and ¢ (x) is a sufficiently smooth function assuming g (0)

=q()=0and [ q(x)dx #0.

2.2 Stability of the Differential Problem (2.1)
To formulate our results, we introduce the Banach space C (H) = C ([0,T], H) of all abstract

continuous functions ¢ (¢) defined on [0, 7] with values in H, equipped with the norm

Iollcu = max ll¢ @)l

Let L, [0,] be the space of all square-integrable functions y (x) defined on [0,/], equipped

with the norm

1
1 5 E
||y||L2[o,l]=( /0 y () dx) ,

and let W2l [0,1], W22 [0,1] be Sobolev spaces with norms

N =

l
Y lwsgon = ( [ rwsre) dx) ,

| =

1
||y||W;[0,l]=( [ o wa)?.
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respectively. We introduce the differential operator A defined by the formula

Au(x) = ( () 2 (x)) 2.2)

with the domain

D(A) ={u:uu” € L[0,1],u(0)=u(l)=0}.

It is easy that A is the self-adjoint positive-definite operator in H = L, [0,/] . Actually, for all

u,v € Ly [0,1] we have that

[ [
(Au,v):/o A(u)v(x)dx:—/o d ( (x )du(x))v(x)dx
[
( x )du(x)) (x) /0 () dbzlix) d\;lix)dx

l
0200+ a0 2000y 1 [0 LDLD,,

dx dx
l
:/ a(x) dv (x) du (x)dx
0

dx dx

l
(u,AV)Z/O u(x)Av(x)dx:_/ u(x)—(a( )dv(x))

I
— u(x) (a (x) d‘;(x)) + [) a(x) d\;’ix) db;ix) dx
0
( ) dv (0) dv (x) du (x)
+u(0)a (0) /0 atn) DL
3 ! dv (x) du (x)
= /0 a(x) T dx dx

From that it follows

(Au,v) = {u, Av)

and

1 1
(Au,u) = /0 a(x) db;ix) db;ix) dx > a/o db;ix) db;ix) dx =a{u',u'y. (2.3)

Moreover, using the condition u(0) = 0, we get

y y —
u(y):/o db;ix)dx:/o W‘h
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We will introduce the following function u. defined by formula
du(y —t
du.(y-1) %,o <t<yyelol],
dt

0, otherwise.

l
u(y):‘/o Mdr

Then

dt
Applying the Minkowsky inequality and the definition of the function u. (x), we get

! 3 U (dus (- 1)) 5
2
(o] < [ (=57 ) «

! Zdu(x)z :
S/O(/O(dx)dx)dt
_ U(du(x)\* :
—l(/o( dx)dx).

Therefore,
I / 2
d
(u,u):/ u? (y)dyslzf ( u(x)) dxtext (2.4)
0 0 dx
I
du (x) du (x)
_ 72 el — 7120 4
=1 /0 T dx dx =1 {u',u’) .

Applying inequalities (2.3) and (2.4), we get
a
(Au,u) > 7 (u,u) .

For the self adjoint positive definite operator A we will introduce ¢(f) and s(¢) operator
functions defined by formulas u(z) = c¢(t)¢ and v(¢) = s(z)¥, where abstract functions u(¢) and

v(t) are solutions of the following Cauchy problems in a Hilbert space H
u”(t) + Au(r) = 0,1 > 0,u(0) = ¢,u’(0) = 0, (2.5)
v7(t) + Av(t) = 0, > 0,v(0) = 0,v'(0) = ¢, (2.6)
respectively. We have the following formulas

1 1
A2 e—ltAZ

2i

1 1
eitAZ + e—itAZ

leit
R t =A2
)

c(t) =
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and the following estimates hold

lecOllg—n < 1,

A%s(t)H <1. 2.7)
H—H

It is based on the spectral represents of unit self adjoint positive definite operator A and

If(Dllg—p < sup [f(D].

0<A<0
Here f is the bounded function on [§, o) .
Moreover, for the differential operator A defined by formula Au = —u”(x) with the domain

D(A) = {u : u(x),u’(x),u”(x) € E}, we can obtain the following estimates

1
Mg < 1,42 t“ <1.
e < 1Jaks)]

Here, E = L, (R'),1 < p < 00, C*(R'),0 < @ < 1,R! = (—c0,00). The proof of these

estimates is based on the triangle inequality and the following lemma.

Lemma 2.2.1 The following formulas hold:

e(x+1)+@(x—1)

c(t)p(x) = 3 , (2.8)
00 = 3 / o(2)dz 2.9)
A s(t)p(n) = EEHD—elx 1) (2.10)

21

Proof. First, we will proof the formula (2.8). Using the definition of operator function c(¢),

we can write
u(t, x) = c(t)e(x),
where u(t, x) is the solution of the following Cauchy problem

u(t, %) — uyr(t,x) = 0,1 > 0,x € R, u(0,x) = ¢(x),u;(0,x) = 0 (2.11)

for the hyperbolic equation with smooth ¢(x). Assume that ¢(+o00) = 0.

Taking the Fourier transform, we get the following Cauchy problem
ug(t,8) + s*u(t,s) = 0, > 0,u(0,s) = {¢(x)},u;(0,5) = 0
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for the second order differential equation. Taking the Laplace transform, we get

1Pulp,s) — p{@(x)} + su(u,5) = 0

or

u(p,s) = uzﬁ 5 o).

Since

b

w111
W2+s2 2 |pu—is  u+is

we have that

{e(x)} .

(.5) 1 1 N 1
ump,s)= = . s
K 2 \u—is u+is

Applying the inverse Laplace transform, we get

) = 3 [ g0} + e ()]

Using the shift rule, we get

ult,5) = 5 Ll + ) + (= D)1,

Applying the inverse Fourier transform, we get formula (2.8).
Second, we will proof the formula (2.9). Using the definition of operator function s(z), we can

write
u(t, x) = s()(x),
where u(t, x) is the solution of the following Cauchy problem

(1, %) — upe(t,x) = 0,2 > 0,x € R, u(0,x) = 0,u,(0, x) = ¢(x) (2.12)

for the hyperbolic equation with smooth /(x). Assume that y(+c0) = 0.

Taking the Fourier transform, we get the following Cauchy problem
un(t,s) + s2u(t,s) = 0,¢ > 0,u(0,s) = 0,u,(0, ) = {y(x)}
for the second order differential equation. Taking the Laplace transform, we get

Pu(p,s) = {g(0)} + s*u(p,s) = 0
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or
1
u(u,s) = m {y(x)}.

Since

9

S B 1
W25 2s|pu—is  p+is

we have that

(s) = 5 | = | oo
u—is

2is U+is

Applying the inverse Laplace transform, we get

t

u(t,s) = —— [ (W)} — e W] = 2 [ édy W)
2is 2

—t

Using the shift rule, we get

ut.9)= 31 [ ey ay

Applying the inverse Fourier transform, we get formula

u(t,x) = %/w(x + y)dy.

From that it follows formula (2.9). Lemma 2.2.1 is proved.

Throughout the present thesis, M denotes positive constants, which may differ in time, and

thus are not a subject of precision. However, we will use the notation M(«a, 3,7, ...) to stress

the fact that the constant depends only on @, 3,7, ....

We have the following theorem on the stability of problem (2.1):

Theorem 2.2.2 Assume that ¢ € sz [0,1],y € W21 [0,{] and f(z,x) is a continuously

differentiable function in ¢ and square-integrable in x, and £ (¢) is a twice continuously

differentiable function. Suppose that ¢ (x) is a sufficiently smooth function assuming ¢ (0)

=¢q(l)=0and /Ol q (x) dx # 0. Then, for the solution of problem (2.1) the following stability

estimates hold:

0%u
o0t?

+ ||u”C(W22[O,l]) < M (q) ||90||W22[0,1] + ||¢’||W21[0,1]
C(L2[01])
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af

0,.
+1£ 0, ) 100 + ER

+ ||§”||C[O,T]]’

C(La2[01])
Ipllcfor) < M2 (q) [”SDHW%[O,[] + ||‘/’||W21[0,l] + ||éw||c[0,T]

of
ot

+ 17O, ) Lo +
C(L[0,1])

Proof. We will use the substitution

u(t,x) =w(t,x)+n(t)qx),

where 7 (¢) is the function defined by formula

t
10 = [ t=5)p)dsn© =7 ©) =0
It is easy to see that w (, x) is the solution of the mixed problem

2

10| 5 @) @] € QD1 € 01

w(0,x) = @ (x),w; (0,x) = ¢ (x),x € [0,1],
w(t,0)=w(t,])=0,r € [0,T].

(2.14)

(2.15)

(2.16)

(2.17)

Now, we will take an estimate for |p (¢)| . Applying the integral overdetermined condition

/()l u(t,x)dx = £ (t) and substitution (2.15), we get
I
L0 [yw(tx)dx

n (1)

l
Jy a(x)dx
From that and p (r) = n” (¢), it follows
4 l 62
7 (1) - /0 ﬁw (t,x) dx
p(t) = ; :
/0 q(x)dx
Then, using the Cauchy—Schwarz inequality and the triangle inequality, we obtain
144 l 82
&7 @1+ f |55 (1.0)| dx
P()] < l
f g () da

1 L1O%w (1, x) 2 ’
<S———— |§"(t>|+w( (—) d)
‘/()lCI(X)dX‘ /0 or? ’
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w(t,.)
ot?

< M(q) [Ié" (0] + ]
L,[0,]

for all ¢ € [0,T]. From that, it follows

0w
1PNl crory < M (@) 1" letor + || 57 : (2.19)
0t~ llcwaton
Now, using substitution (2.15), we get
O%u(t,x) 0*w(t,x)
= +plt X).
= T P04 ()
Applying the triangle inequality, we obtain
d%u 9w
v <3z + |lpllcror gl oo, - (2.20)
= lewalon = llealon

Therefore, the proof of estimates (2.13) and (2.14) is based on equation (2.1), the triangle

inequality, estimates (2.19), (2.20) and on the stability estimate

0w

125 <o [tz + Wy @21
= lNearon)
of ”
+LF O, ) 000 + m +11¢ ||C[0,T]],
Hlewaton

for the solution of problem (2.17). This completes the proof of Theorem 2.2.2.
Now, we will prove the estimate (2.21) for the solution of problem (2.17).
Firstly, it is easy to see that problem (2.17) can be written as the abstract Cauchy problem

d*w (1)
dr?

+Aw(t) = f (1) =1 () Ag,t € (0,T), (2.22)

w(0) = ¢, w" (0) = ¥,

in a Hilbert space H with positive-definite self-adjoint operator A defined by formula (2.2).

Here,
w(t) =w(t,x), f(t)=f(x)
are unknown and known abstract functions defined on (0,7) with values in H = L, [0,[],

respectively, and ¢ = ¢(x),¥ = ¥(x),q = g(x) are given.
Secondly, applying the approaches of ( Ashyralyev and Sobolevskii, 2004) , we will prove a
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lemma that will be needed in the sequel.

Lemma 2.2.3 Assume that ¢ € D(A),¥,q € D(A%), f (¢) is a continuously differentiable
abstract function in ¢ with values in H, and 7 (¢) is a twice continuously differentiable function
defined by formula (2.16). Then, for the solution of problem ( 2.22), the following stability
estimate holds

d*w (1)
dr?

1
< lAglly + |[ady] (223)
H

d t
17Oty + 7| %] wnia [roias

C(H)
for any ¢ € [0,T] .
Proof. We have that (see Ashyralyev and Sobolevskii, 2004)

t
wt)=ct)e+sOy+ /O s(t=y)[f (v) —n(y) Agl dy, (2.24)
where ] 1 1 1
itAY | =itA2 itA2 _ ,—itA2
c(t)=¢ 26 and s() = A~ 2;
Applying equation (2.22) and formula (2.24), we get
d*w (1)

2 =S -nt)Ag-Ac() g - As()y

—/0 As(t = ) [f ) = 7(») Aq] dy.

Integrating by parts, we get

2
T = F @ -n(0)Ag - Ac )0~ As @ ~ £ 0
+c (1) £(0) +77(1) Ag — ¢ (1)1 (0) Aq
+/O c(t=y) f (y)dy- /O c(t=y)n' (y) Agdy.
Therefore,
D0 Acye - A0+ e f O)

+/O c(t—y)f’(y)dy—/o c(t=y)n' (y)Agdy.

31



From that it follows

dz;:z(t) =-Ac(t)p—As()y +c(t) £ (0) + /Ot c(t-y) f'(y)dy
+[s(t = y)n' (y) Aqly - /O s(t—y)n” (y) Aqdy
or
L0 newip- A+ ) £0)
+/0 c(t=y)f (y)dy— /0 s(t=y)n" (v) Aqdy
4
= Z G (1),
i=1
where

Gi (1) =c(1)(f(0) - Ag), G2(1) =-As(1)y,

Gs (1) = /0 c(t =) f (5)dy. Galt) = - /0 S = ) 1" () Aqdy

Now, applying the triangle inequality, we obtain

for any ¢ € [0,T] . Therefore, we will estimate ||G; (¢)||,i = 1,2, 3,4, separately. Firstly, using

d*w (1)
dt?

4
< > IGiOly
i=1

H

the estimates (2.7), we obtain

1G1 Dl < lle Dllz—n 1Ae = fO)la < 1A@lly + L O)lla.

1G2 Ol = \A%A%SWHH < HA%S@H ‘A%wuﬂ < ‘A%l,,

H—H ‘ ‘H

for any ¢ € [0,7]. Secondly, using the triangle inequality and estimates (2.7), we get

1G3 ()l < /O le (= DMl 1 Ol dy < /0 1 Ol dy

af
dt

<t max ||f < T max ||f =T
max 17 Ol < 7 a1 0l »

for any ¢ € [0,7] . Thirdly, using the triangle inequality and estimates (2.7), we get
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|4

N 4k "
1Gs @l < [ [|ads = a|, riay

H—-H

! 144 1 ! 124
< [ wola|ate, < @ [ wrona

for any 7 € [0,7] . Combining these estimates, we obtain estimate (2.23) for the solution of

problem (2.22) for any ¢ € [0,T].

Theorem 2.2.4 Assume that all conditions of Theorem 2.2.1 are satisfied. Then, for the
solution of problem (2.17) the stability estimate (2.21) holds.

Proof. Putting H = L, [0,{],¢ = ¢(x),¥ = ¥(x),q = q(x), f(t) = f(t,x),w(t) = w(t,x)
and applying estimates (2.18), (2.23), we get

0*w (1)
‘ . < Ms @) [I¢lhyzon + 19 lwigon ]
i POV
af
+1F O, Lgos1 +TH + M (q) M4 (q)
C(L2[0.])
! ” W(y, )
X / 1" ("] dy + T dy
0 y LZ[OJ]

for any ¢t € [0,7]. By the Gronwall’s inequality, we conclude that, for any 7 € [0,T], the
following estimate for the solution of problem (2.17) holds:

3w (1)
ot?

< {M5 @ [I¢luzion * 19llwsion | + 17 o

L,[0,]

|3

+ M (q) M4 (q) ||§”||c[oj]]} eM@Ma(q)t,
C(L2[0.1])

This completes the proof of Theorem 2.2.4.

2.3 Stability of Difference Scheme
To formulate our results on a difference problem, we introduce the Banach space C; (H) =

C ([0,T],,H) of all abstract grid functions ¢™ = {¢ (tk)}k]\’:0 defined on
[0,T], ={tx =k7,0< k < N,NT =T},

with values in H, equipped with the norm
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T = ma t .
167lc,m = max 16 ol

Moreover, Ly, = L, [0,1], is the Hilbert space of all grid functions y" (x) = {yn}fyzo defined
on

[0,1], ={xp =nh,0<n< M,Mh =1},
equipped with the norm
M >
h _ 2
b, = {33}
i=0

and Wzlh = W21 [0,1], ,W22h = W22 [0,1];, are the discrete analogues of Sobolev spaces of all

grid functions y" (x) = {yn}i’i o defined on [0, /], with norms

h g N[ Vit P :
4 11—
1
bl = {3t e 3 [rr=esreaf
y W22h )/l H

respectively. For the differential operator A defined by (2.2), we introduce the difference

operator Aj, defined by formula

1 . — 0o M-1
Ang" (x) = {‘z (@ Conen) ZH=22 — a (x,) %)} ,
n=1

acting in the space of grid functions ¢" (x) = {gon},[:/lzo defined on [0,/],, satisfying the
conditions ¢y = ¢ = 0.

It is easy that A, is the self-adjoint positive-definite operator in H = Ly, = L, [0,1];, . Actually,

we have that

<Ahuh,vh>: Z Ap" ()" (x)h

xe[Ol]h
1 Upil — U Uy — Uy

= Zl A ( (M’Hl)% - a(xn) nTnl) vnh
M-1 u

== a(xn+1) dad B Vn + Z a(xn)
n=1
M

= Za(xn) Vn 1+ Z a(xn)
n=2
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M-1
Upy — Up—1 Up — Up—1
=—-a ()CM) ) VM-1— Z a(xn) ) Vn-1

h h
n=1
M-1 U —u
n=1
= ”n 1 Vn — Vn-1
= —a (xm) upr—1vp—1 + Z a(xn) p h
:a(x )MM_MM—I VM_VM_1h+MZla(X )un_un—l Vn_Vn—lh
M h LNy h
_ Z a (Xn) un 1 Vn — Vn-1 ,
h
<uh, Ahvh> = Z u () A" (x)h
XG[O,Z]h
__Mz_llul(a(x )Vn+l_vn_a(x)vn_vn—l)h
= nh n+1 A n A
Vi
=- Z 1@ (1) = + Z tna () 22—
=- Z 1 () 2L Z tna () 2"
VM — VM-1 = v Vn-1
- _ ARGl S n el
= —up-1a(xp) 7 ; a(x,) n Un—1
M-1 v
n n—
St
1 g — Up—1Vn — Vn-1
= —a(XM)MM 1VM-1 + Z a(xn) . ; h
n=1
u Upf—1 VvV V-1 M Up — Up—1 Vn — V-1
M — UM- M — VM- n— Un—-1Vn — Vp—
= ]’l + ]’l

un 1Vn = Vn-1
- Z a (x}’l) h hs

From that it follows
<Ahuh, vh> = <uh, Ahvh>
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and

M
(A" ) = > a () tn _h””‘l tn _h“”‘l h (2.25)
n=1

M
Up — Up—1 Up — Up—1 h h
>a h=a{Dyu",Dyu").
; . ; (Dyu", Dy

Here

D" (x) = {

Up — Un-1 }M
h n=1 '

Moreover, using the condition up = 0, we get

We will introduce the mesh function u”(x) defined by the following formula

Unp—i+1 — Um—i .
(um—i+1_l/tm—i) _ Tvlslsm,lsmSM,
*

h 0, otherwise.

Then

U = i (um—i+1 - um—i) h
m —/’L . .

i=1
Applying the discrete analogue of Minkowsky inequality and the definition of the mesh

function u” (x), we get

(] <3S )
>

m=1

Therefore,
M-1 Moo 5
(W)= Y uth < 2y (=) (2.26)
m=1 =1
L n Uy — U
:lzz z hn_l L hn_lh ? <Dhuh,Dhuh>
n=1
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Applying inequalities (2.25) and (2.26), we get

ho h a , non
h b — b .
<AM I/£>>l—2<l/l I/l>

2.3.1 The first order of accuracy difference scheme

M
For the numerical solution {{uﬁ}ivzo} o of problem (2.1), we consider the first order of

accuracy difference scheme

uk+1 k—1 k+1 _  k+1 uk+1 _ Z4k+1
n n—1

u
- (Cl (Xn+1) ’MTn —a(x,) .

2u + u,

) 2

= prq (xn) + f (te> Xn)

ty=kt,x,=nh,1<k<N-1,1<n<M-1,Nt=T,
1_,0
:‘p(xn)’un - :l//(xn)’0<n<M,Mh:l,

u/(§+1 k+1 Z luk+1h {(tk+l) -1<k<N-1.

(2.27)

Here, it is assumed that g3 = go = 0, and Zf” . ¢i # 0. We have the following theorem on

the stability of the difference scheme (2.27):

Theorem 2.3.1 For the solution of difference scheme (2.27), the following stability esti-

mates hold:

h ho, b NI
i { }

k=1l e, (L)

<M@mmwfwm%wmg

fk fk 1
T

”Wﬁﬂmﬂ<M@MMMfW%@WMM

- A"
T

-1

k=1

H §k+1 - 2§k + k- 1}

k=2 llc, (Lan)

72

Ckr1 — 28k + Gi- 1} Nt
k=1

k=2 1lC (L) clor

Here and throughout this subsection fkh (x)=Af (tk,xn)}nM: 0-1 <k <N-1.
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Proof. We will use the substitution

uk = wk + g (2.30)
where
qn = q(x,),
and
k
st = (k+1=i)pr 1 <k <N =1L =1 =0. 2.31)

i=1
. NN M- . .
It is easy to see that {{wn } k:O} o 18 the solution of the difference problem
n=

w2k 4k -w

k—1 1 k+1 _ | k+1 k+l k+1
72 T a(xnﬂ)an a(x,) h ”‘1)
= f (tr, xa) + % [a (Xn+1) W —a(xy) % Neals
I<SkSN-L1<n<M-1, (2.32)

1 0
WSZSD(xn), n —l/’(xn) 0<n<M,
T

witl =whil=0,-1<k<N-1.

Now, we will take an estimate for |p;| .Using the overdetermined condition Zf‘;’ 1_1 uf“h =

{ (tr+1) and substitution (2.30), one can obtain
G = S witth
ZlMl gih .

Then, using the formulas p; = Mw and (2.33), we get

Mk+1 = (2.33)

Jert =28 + Lot = ITT (WEH = 2wk 4wk

72 ZMl gih
Then, applying the discrete analogue of the Cauchy—Schwartz inequality and the triangle

Pk =

inequality, we obtain

1
Pkl < == (2.34)
= gil
[§k+1—2§k+§k1 +MZ:1W - 2w} +Wk1h]
i=1
M
1 Ckr1 — 24k + Lk Vi with = 2wl wit
M- 2 + 2
|Zl 1 qi |

i=0 Ly,
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h ho o
Ckr1 — 28k + L1 N Wi 2w+ wy

72

< Mg(Q)[

72

forall 1 < k < N — 1. From that, it follows

N-1
N-1 Civ1 — 28k + Lk
P35 leory, < Ms (@) ‘{ > } (2.35)
k=1lcror1,
h h n N1
{Wk+l = 2w+ wl }
+
2
k=1l cp(Lap)
Now, using substitution (2.30), we get
u,’j” — 2u,’j + u,’j_l w,lf“ - ZWZZC + w,’i_l
T2 = T2 + pkq (xn) M
Applying the triangle inequality, we obtain
h ho, b NI h h no N1
Upyy = 2 + gy Wi m 2w AW
{ > < — (2.36)
k=Ule, (Lo k=l (Lo

+ ”{pk}g:_l]”C[O,T]T X (xn)}’[:/leHLZh :

Therefore, the proof of estimates (2.28) and (2.29) is based on equation (2.27), the triangle
inequality, estimates (2.35), (2.36) and on the following stability estimate for the solution of
difference problem (2.32):

N-1
h  ~h oy ok
{Wk+1 2w+ wi }

. <@ Iy Wy, @37

k=1l e, (L)

h_ eh N1 3 N-1
+||flh||L2h N {fk k—l} +H{§k+1 2§k+§k-1}

T 72 k=1

k=2lle, (Lo clor

This completes the proof of Theorem 3.2.1.
Now, we will prove estimate (2.37) for the solution of difference problem (2.32). Firstly, it
is easy to see that difference scheme (2.32) can be written as the abstract Cauchy difference

problem
Wil — 2Wg + Wi

T2
w1 — wo

+ AWis1 = fi —Mks14q, 1 <k <N -1,
=y

(2.38)

wo = ¢,
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in a Hilbert space H = Ly, with positive-definite self-adjoint operator A. Here,

{widheg = {WZ}LO’{JC’C}ZIXQI = {£ ]/::11

are unknown and known abstract mesh functions defined on [0, 7], with values in H = Ly,
respectively, and ¢ = ",y = Y, g = ¢" are given elements.
Secondly, applying the approaches of (Ashyralyev and Sobolevskii, 2004) we will prove a

lemma that will be needed in the sequel.

Lemma 2.3.2 Assume that ¢ € D(A),,q € D(A%). Then, for the solution of difference
problem (2.38), the following stability estimate holds forany 1 < k < N — 1:

= 2wi + wi—
‘Wk” IR < lAgly +[at]| o+ 1l (239)
T H H
N
Je = fr1
+ImllAglly +T {f
S |t = 205 + 5 1
s+1 — S s— 1
+ A2 )
; 72 T” qH

Proof. It is clear that there exists a unique solution of this initial value problem, and for the

solution of (2.38), the following formula is satisfied (see Ashyralyev and Sobolevskii, 2004)
wo =@, w1 =@+ 1Y,

1

we = ~[R¥! + R¥ Mg + 7(R - R)™! [Rk - k’k] " (2.40)

N |

k—1
— -1 —
+ Z RR (R - R) [R"‘S - R’H] {fs = ns11Aq} %,
s=1

2< k<N,

-1 — -1
where R = (I + iTA%) and R = (I - iTA%) . Using the spectral property of the self-adjoint

positive-definite operator, we get

TA%RH <1. 2.41)
H—H

Hl’eﬂ < I,HTA%R” <1. (2.42)
H—H H—-H

40
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Now, we will establish estimates for ‘ Wl Z2 W)

‘H,l < k < N — 1. Applying equation
(2.38) and formula (2.40), we get

Witl — 2Wi + Wi
= (2.43)

1 ~ —~ -
= fi = i1 Aq = S [R" + R ]Ag — TA(R = )™ [Rk“ - Rk+1] 7
k _ -1 _
_ZARR (R_R) X [Rk+1—s _Rk+1—s] {fs —775+1AC]}T2
s=1
Lok | % L 15k -1 kp-1| 44
-:fk—ﬂk+1A6]—§[R +R]A¢,0—Z[RR — R*R ]Ahj/

TA% AR £ k—s : Sk—s 73
+( 5 )(,TAQ) {ZR (I—R)+ZR (I—R)}{fs—ns+1Aq}

s=1 s=1

1 ~ 1 [~ _ ~ 1
= fk — Mk+1Aq — E[Rk + R*Ap - % [RkR I _R'R 1] A2y
1

k k
-5 {Z [Rk—s _ Rk+1—s] " Z [Ek—s _ §k+1—s] (fs - 77s+1Aq)}

s=1 s=1

T U fmeo gmt] o1
= f = meriAg = 3[R + R)Ag — 5 |[R'R™ - R'R!| Aty (2.44)
1< . k _
-3 {Z | R+ B[ (s = gy - D) |RE1 - Rk“‘s]} (fs = 15+1Aq)
s=1 s=1
2<k<N.

Applying Abel’s formula to (2.44), we can write

Wil = 2Wg + Wi

72
1 = 1 [ _
= fi = menAq = 5IR* + RAg - 5 |[R'R™ - RERT! | Aty
l

k+1 k
1 ~ !
5{ Rk+1 s 4 pk+l- s] Z [Rk+1—s +Rk+1—s]} (fi1 = 1sAq)

s=1

_ 1 (= _ 1.
= fi = Mk+14q — —[Rk + R¥Ap - % [RkR ' _R'R 1] A2y

l\)l'—t

k
{Z Rk+l s o Rk+1- s] (fs=1 = 15Aq) + 2 (fx — nk+1A9)
s=2

s=2

- Zk: [R"”‘s - ﬁ"”‘s] (fs = ns+14q) - [R" + ﬁk] (fi - nqu)}
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1

11~ _
_ [RkR‘l - RkR‘l] Aty
l

[R* + R Ay

D= N =

[Rk+1—s +§k+1—s] (for = ) + % [Rk +Ek] f

M- 1M

_ oy — 1 2
[Rk+1 s + Rk+1 S] (ns _ ns+l)Aq — E [Rk + Rk] I]qu,

N —
12}
Il
[\

Now, we have that

Wil — 2Wg + Wiy

T2
_ 11~ _
= -3 [R" + R Ag - o [RkR‘l - R‘le] ATy
l
1 _ 1 <& _
+§ [Rk +Rk] f‘l _ EZ [Rk+l—s _Rk+1—s] (fs—l _f:y)
s=2

where
| - k |-
Gl(k)_—E[R +R ]A¢+§[R + R*] A1,
1
G2 (k) = 5 [R"R—l R—lR"] Azy,
i
1< .
G3 (k) — _EZ [Rk+l—s + Rk+1—s] (f;“—l _f:v)’
s=2
1 & _
G4. (k) — 5 Z [Rk+1—s + Rk+1—s] (r]s _ 77s+1)ACI-

©
I
—_

Now, applying the triangle inequality, we obtain

1

1 pk ok
Gy (Ol < 5 IR+ R, | 1Al + i)

< [lAglly + lAilla »
1

Gl < [|FR] <[]
1620l < 5 | [RR)_

1
A
w H

1
At
%],

H—>H]
<|
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forany 1 < k < N — 1. Secondly, using the triangle inequality and estimates (2.41), (2.42),
we get

k
1 —
||G3 (k)”[—] < Z 5 [||Rk+l_s||H_>H + HRk+1—s
2

{fk fi-1 }
T k=1

forany 1 < k < N — 1. Thirdly, applying Abel’s formula to the sum G4 (k), we can write

e = Bl

k
<> M= fillg <T

§=2 Cr(H)

k

= % (l'TA%)_l {Z [Rk_s - ﬁk—s] (s — ns+1) Aq

s=1

k
_Z [Rk+1 s Rk+1 s]} (ns _ T]s+1)A6]

s=1

1 -1 k+1 _
=5 (iTAi) ; [R"“‘S - R"”‘S] (m5-1 — m5) Aq

k
_Z [Rk+1 s _ ph+l- S]}(ns—nm)flq

s=1

(lTAZ) {Zkl [Rkﬂ_s - §k+l_s] (M5-1 —ns) Aq
|

s=1

— R —ﬁk]}(no—m)Aq

k
— Z [Rk+1—s _ Rk+1—s] (77? _ ns+l)AQ}

k
oo\l s kel
(ira?) {E | REx1=s = R | (ns_l—zns—nm)Aq}
s=1
i
s=1

[Rk+1—s _ ’R’k+1—s] (ﬂs+1 - 27725 + ﬂs—l) Tqu}
T

Finally, using the triangle inequality and estimates (2.41), (2.42), we get
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Ns+1 — 2773 + Ms—1

1
A2
72 d

k
1 —~
||G4 (k)”H Z [||Rk+l S||H_,H+ HRk+l—s

s=1
al,

<
s=1

forany 1 < k < N — 1. Combining these estimates, we obtain estimate ( 2.39) for the solution

of problem (2.38) forany 1 < k < N — 1.

T )

.

H—)H]

Ns+1 — 277s + 151

7|

Theorem 2.3.3 For the solution of difference problem (2.32), the stability estimate ( 2.38)
holds.

Proof. Putting H = Ly, ¢ = "y = y",q = ¢",Ap = A", wi = WZ’fk = fkh and
applying estimates (3.35) and (2.39), we get

h
k+1

h

w k-1

—2w£’+w

TZ
Loy,

< Mi2(q) [||‘Ph||w22h + v ]

+ AN, + T Je i + M3 (q) Ms (q)
2h T
k=2l (La)
Cs+ _2§s+§s s+ _2W +W
XZ {[ 1 1 2 -1 ]}T
Loy,

forany 1 < k < N — 1. By the difference analogue of Gronwall’s inequality, we conclude that

h h h
Wiel = 2w+ wil
T2
Loy,
1

h h
ST M (@) Ms (@) {M”@ [”“’ s, + Il ”Wzlh]

il <7 {fk I }

k=2 1lc, (L)
Lot =28+ Gt |V (k=1yr M3@Ms@
+M13 (q) MS (q) T { 2 } 1_M13(4)M8(¢I)T
T k=1lcror,

for any 1 < k < N — 1.This completes the proof of Theorem 2.3.3.
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2.3.2 The second order of accuracy difference scheme

M
For the numerical solution {{uﬁ}ivzo} . of problem (2.1), we consider the second order of
n=

accuracy difference scheme

uk k k k
ul]§+1 2u +ukl_L a(x ) n+l_un_a(x)ui’l_un—l
72 2p Y T "
k+1 k+1 k-1 k-1
_ a(x )unil_un+ +un+1_un
ah n+1 h
B S N S5 B S8 B |
ma o) S = e+ f (o),
Nrt=T,1<sns<M-1Mh=Lty=kt,1 <k<<N-1,
tn = ¢ ()0 < (2.45)
}1 T n+1 u2+1_ur1l+u2 .
—‘z a (o) !
_a(xn) /’l )_w(xn)"' f(O xn)
0 0 0_ .0
11 u . —u u, —u.
+§ 7 (a(xnﬂ)%_a(xn) HTM) + pogn | »
I<sns<M-1,
ubtt = uk = 0, 3wk h = ¢ (1), -1 < kSN - 1

Here, it is assumed that g3 = go = 0, and ZM | ¢i # 0. We have the following theorem on
the stability of the difference scheme (2.45):
Theorem 2.3.4 For the solution of difference scheme (2.45), the following stability estimates

hold:

Upyy = 2 + Uy N g+ 2uf +up_y (2.46)
72 4

k=1 Cr (L) k=1 CT(WZZh)
< @ [y, + 10y + 10,

(W
T

k=1l ey (L)

1

{§k+1 — 20k + Lk }N_

72

k=1lcro,r),
0 legory, < s @ [z, 19" + 1521, @47
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-1

{§k+1 =20 + Gk- 1}

2
T k=1

55 e
T

Here and throughout this subsection fk (x)=A{f (tk,xn)}n 0:1 <k<N-1.

Proof. We will use the substitution

k _ _ k
Uy, =Wy + Nkqn,

where

- Ek] {(k —i)pi+ (k== 1) piry

> }72,1<k<N,n0:O,

i=1

M
. N . . .
It is easy to see that {{w,’i} kzo} o is the solution of the difference problem
n=

k k k k
k+1 2w +Wk1_i alx 1)Wn+1_wn_a(x)wn_wn—l
2h " h " h
whktl _ k] k+1 k+1
with —w
( (xn+l) Pnsi . a(xn) 7 n_l)
w,’f_l w,’f_l - w,’;_ll
@ o) 2T () L) = f )
1— — gn-1 1
+ a(xp41) ———— ol ~ G _ a(x,) %] X7 (Mi+1 + 20k +Mi—1),
1<k<N-11<n<<M-1,
2 SD(X,J,OSI’ISM,
R wl =0 —wl e wd
Wn = Wy T n+1 n+1 n n
T - Z a(xn+1) h
1 0 1 0
Wp=Wp =W, + W, T qn+1 — qn
~a () - - T (e 2L
—a (o) =) = g () + 3 (0,%)
0 0 0 0
11 w) o —w wy —w
i ( (ont) =5~ () Tl)] ’
l<n<M-1,
w’é” —wﬁl 0,-1<k<<N-1.

Now, we will take an estimate for |py| .Using the overdetermined condition Zl 1

{ (tr+1) and substitution (2.48), one can obtain
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(2.48)

(2.49)

(2.50)

luk+1h —



Ge = 2 wh
wal CIt

Then, using the formulas p; = ”"*'_i# and (2.51), we get

Nk = (2.51)

M-1 _
Cket = 20 + Go — 2T (W = 2wE + wk ) B

ZlMl Ql

Then, applying the discrete analogue of the Cauchy—Schwarz inequality and the triangle

Pk =

inequality, we obtain

M-1 k k-1
1 Jkr1 — 2§k + {k-1 with = 2w+ w]
lpil < = X [ + (2.52)
| le ! ‘Iih| ; 7 |
k+1 k -1\ M
1 Skl — 248k + Lk Y Wi = 2w+ w,
M— 2 2
|Zl 1 ql | T T i=0
Loy,
h h
—27 + O wl o =2wl+w
< M (q) Ck+1 §2k Lk-1 N ‘ k+1 2k k-1 ]
T
Loy
forall 1 < k < N — 1. From that it follows
N-1
N-1 Ckr1 — 24k + Qk1
P32 lejory, < Mis (@) '{ > } (2.53)
k=1licror).
h h no N1
N Wi — 2w AW
2
k=Lllc, (L)
Now, using substitution (2.48), we get
u,’j” 2u + uk 1 w,f“ 2w + wk 1
2 = 2 + pkq (xn) N
T T
Applying the triangle inequality, we obtain
N-1 N-1
k+1 k 1 k+1 k k 1
{ 72 } < { 2 } (2.54)
k=l (Lo k=Ule, (Lo

+ ”{Pk}g:_ll ||C[O,T]T ||{q (x")}ﬁ:iO”Lzh '

Therefore, the proof of estimates (2.46) and (2.47) is based on equation (2.45), the triangle
inequality, estimates (2.53), (2.54) and on the following stability estimate for the solution of
difference problem (2.50):
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N-1
Wl =2l < M5@) [, + Io* =
— < Mi7(q) [”9" “szh + v ||W21h (29

k=1llc, (L)

=1t

h k k—1

o, 22

Now, we will prove estimate (2.55) for the solution of difference problem (2.50). Firstly, it

Siv1 — 28k + Sk- 1} B
k=1

72

k:1 CT(LZI’I) C[O’T]T

This completes the proof of Theorem 2.3.4.

is easy to see that difference scheme (2.50) can be written as the abstract Cauchy difference

problem

Wi+l — 2Wk + Wi
- + TA (Wt + 2wg + wio1) = Oy,

2
=
Ok = fi = 3 (st + 2 + 1) Ag,

Ok = O(t), 1y = k1,1 <k < N- 1Nt =1, (2.56)

(I+72A) 77 (wi —wo) = 5 (60 — Awo) + ¥,

6o = f(0) + pog, wo = ¢,

in a Hilbert space H = Ly, with positive-definite self-adjoint operator A. Here,

{Wikoo = {wk}k o Uidest = {A! kN:II

are unknown and known abstract mesh functions defined on [0, 7], with values in H = Ly,
respectively, and ¢ = ",y = Y, g = ¢" are given elements.
Secondly, applying the approaches of ( Ashyralyev and Sobolevskii, 2004) ) we will prove a

lemma that will be needed in the sequel.

Lemma 2.3.5 Assume that ¢ € D(A),y,q € D(A%). Then, for the solution of difference
problem (2.56), the following stability estimate holds forany 1 < k < N — 1:

Wit — 2Wi + Wi
2

2

o], + 1ol + ) 2.57)

< M(q) [IlAglly +||4

T H

N
{fk — fr-1 } Ns+1 — 215 + 151 .
T k=1

+
72

C(H) =1

forany 1 <k < N-1.
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Proof. It is clear that there exists a unique solution of this initial value problem, and for the

solution of (2.56), the following formula is satisfied (see Ashyralyev and Sobolevskii, 2004)

) -1 T2 T2
WQ=¢,W1=(1+TA) (I+?A)go+n//+?90] (2.58)
1
1 | iITA2
= |RF+ —A"2|I- [R Rk]
Wk Y ( 2 )
1
A2 -1
x(1+”22 %A zAZ(I 2A))(1+TA) ¢

Applying Abel’s formula, we can write
Wy = {Rk - %iA—%B [Rk - E"] (E%A A7 (1 + TzA)) (1 + TZA)_I} o (259
+ {%A‘%BE [Rk - E"] (1 + T2A)_1} "
+ {%A‘%BE [Rk - E"] (1 + TZA)_l} %00

=2
{

S
A _
s+ 8o [t 57 ]
2<k<N,
where
lTA% lTA% -
R=BB ' =|I- I+
S
lTA% lTA% -
R=BB'=[1+ - —



Using the spectral property of the self-adjoint positive-definite operator, we get

-1
iTA2
R” < LI+
H—H 2

-1
TA? (1 + iTA%)

<1, (2.60)

IRy < 1,

H—H

<1. (2.61)
H—-H

<1,
H—-H

-1
H(I + iTAi)

Wit 1 =2Wg Wi |
2

Now, we will establish estimates for ‘ ‘H, 1 <k <N-1. Applying equation (

2.56), formula (2.59) and identities

I+R=2B"" 1+R=2B"", (2.62)

we get

AWk+l + M;k + Wi-1 (2.63)

IO | _ o
= {B—‘RkB—‘ - ZiTA% [BRk—‘B—‘ _ B‘le‘lB]

1 1~ _
x (1 + TZA) -3 [B_le - B_le_l]}A(p

1 _ I .
4o {[BR"_IB_I - B‘le_lB] (1 + T2A) } iAby

+

RI— Nl— &= N

_ — s, -1
iTA? [BR’HB‘1 - B'lR"'lB] (1 + T2A) }90

—_——

T

1
— — 1 —
[B—lR’H + B_le_s] (051 — 05) + 1 [TZAB_IB_l] Ok

+
Il
V)

+

11~ _
5 [B—le—l + B—le—l] 0,

—

B+ g_l] Or—1 —

M=

Ji (k).

1

1l
—_

where

_ 1 — — s -1
Ty (k) = {B—leB—l - ZiTA% [BR’HB‘I - B‘le‘lB] (1 + TZA)

171~ —~
_5 [B—le _ B_le_l]}A(’O,

D (k) = {[BR’HE‘1 - B‘lﬁ"‘lﬁ] (1 + TZA)_I} iAby,

Bl— 0] —

— — - -1
Ty (k) = {irA% [BR"—lB—1 - B‘le‘lB] (1 + TZA) }90

50



1 2 1 -1 p—1
- ABB] —[B +B ]9_
4[T 2 k-1
—1[31 k=14 gr1Rk- 1]9
2
1k1

ACEE [ B'R 4 BTIRE S](esl—e)

S=

Now, applying the triangle inequality, we obtain

+wy +
e e an(k)llH (2.64)

forany 1 < k < N — 1. Therefore, we will estimate ||J; (k)||y,i = 1,2,3,4, separately. Firstly,

using estimates (2.60), (2.61), we get

— -1
I (Kl < HB IRKB H iTA%BRk-lB-l(H#A)

H—>H HoH

—_ _ -1
+|lirA B 'R*1B (1 + TZA)

H—)H]
111~

= B‘le”
a1l

<M ||A¢lly,

B R Al

H—H H—>H]

-1

HBR"_1§_1 (1 + TZA)

1
12 (k)| < 3
H—H

—~ _ -1
+||B'R'B (1+72A) Aty

.

H—H
<]

1
A
wH

forany 1 < k < N — 1. Secondly, using the triangle inequality and estimates (2.60), (2.61),

we get
1 k=1p-1_ 44 2 -1
155 Ol < ~ ||[BR¥'B 17 Az (]+T A)
4 H—H
— — -1
+||B' R BrAs (I+72A) 1601
H—H
L2, pe131
+=[|l2aB 1B H 0 ]
i 10l
| TP -1
+§ ”B ”H—’H * HB HH—>H] 1911l
1~ _
+o B—le—IH +HB‘1R"‘1H ] 9
2 H H—H H—H “ lllH
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b

k
11
< T [HQOHH + Z 160; — 6i-1ll4

i=1

k—1
1 1~ _

Tu(k —[HB‘IR"‘S +HB‘1R’H ] 0.1 -0
TACIPRSIE . ] e - e

s=2

k—1

< ”93—1 - Qs”H
s=2

forany 1 < kK < N — 1. Using the triangle inequality and estimate (2.64), we get

Wil + 2wg + Wiy
4

!

k-1
1
< Mgl + M A%y + D 6 —6ls @265)
s=2

k
— |60l + > 116 - e,-_1||H]
i=1

forany 1 < k < N — 1.Using the triangle inequality and estimate, we get

H

Wiel + 2wi + Wi
4

Wiel = 2Wi + Wi

+ |0kl g
H

k-1
1
Aty|| + D051 =0l
s=

k
160l + > 16 = 6i- ||H]
i=1

forany 1 < k < N — 1. Combining these estimates, we obtain estimate ( 2.57) for the solution

72

<4

H

< M [[Agly + M|

of difference problem (2.56) forany 1 < k < N — 1.

Theorem 2.3.6 For the solution of difference problem (2.50), the stability estimate (2.56)
holds.

Proof. Putting H = Ly, = "y = y",q = ¢",Ap = Ao, wi = W;il,fk = fkh and
applying estimates (2.52) and (2.57), we get

h A h oy ok
Wi 2w+ w

< Mo (q) [||‘Ph||w22h + ||¢’h||W21h]

2
Loy,
= fh
+ ”f()h”LZh +T { Lkt + Ma1 (q) M6 (q)
k=Ule, (Lo
wh h h

X Z ds+1 — 255 + 41 Wi = 2wy +wl

72 T
Loy
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forany 1 < k < N — 1. By the difference analogue of Gronwall’s inequality, we conclude that

h ho, o oh
Wi — 2wl Wi 1 [ h h ]
v Loy S T= M1 () Mis (@) 7 {MZO @]lle ||W22h *lv ”Wzlh
fh—fh
Nl T { /e } M @) Mis )T

k=Ulle, (L)

_ My (@)M16(q)
KT iy @ gl

{§k+1 - 20 + Qk- 1} N

72

k=Ulcror,
forany 1 < kK < N — 1.This completes the proof of Theorem 2.3.6.
Applying same approach with this work we can study another the second order of accuracy

difference scheme for the numerical solution of problem (2.1).

ukHt — 24k 4 k=1 1 o (o) s:[ll k+l+u§+% uk!
72 2n |7 h
u£+1 k+1 +uk 1 us:ll
_a(xn) h
:kaIn"‘f(tk’xn)aQn = Q(xn)’xn :nthT :T9
lsnsM-1Mh=1Lt,=kt,1 <k<N-1,
W =9 (x,),0<n< M,
1 0 1 0
3 u;—ug_z a(x )un+1—un+]—u + u, (2.66)
P2 R h
1 0 1 0
u, —u, — U, +u
—a (x,) . - hn_l n_l)"‘w(xn)"'%f(oaxn)
0 0 0 0
11 u’' . —u u, —u.
v E(mxnﬂ)%—a(xn)"T’”)qun ,
I<n<M-1,
uk+] — uk+1 0, ZM {<+1h — é:(tk+1),—1 <k<N-1

Here, it is assumed that gy = go = 0, and wa | ¢i # 0. We have the following theorem on

the stability of the difference scheme (2.66):

Theorem 2.3.7 For the solution of difference scheme (2.66), the following stability estimates

N-1 N-1
{k+1_2” kl} N {k+1+”k1}
72 2
- =le.(ws,)

at Cr(Lon)

hold:
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< 5@ [l + 160, + 147,

. {fk fkl}
T

||{pk}5;s||qo,ﬂ < 15 @) 6"z + 1 hs + 120

fk fk 1
T

Now, we consider one more the second order of accuracy difference scheme

72

Ckr1 — 248k + Gi- 1} Nt
k=1

k=le, (Lo clor

1

2
T k=1

N—
N H Ckv1 — 24k + fk—l}

k=Hlce(Lan) clori,

k k k k
uk+l — 24k +tu, "1 alx )u"+l_un—a(x)u —ut
TZ A n+1 h n A
2 k+1 _  k+1 k+1 _  k+1
™ |1 111 u u u,
+I {Za(xnn) ﬁ [z (a (Xn42) % —a(Xp41) %)
k k k k
1 u —u Uy, —u
. (a (o) L — g ) 2L ]
k k k k
1 1 U, —u uy —us_
_Ea(xn) E a(Xp+1) +1h . —a(xp-) - hnl
I S S R
ol o) P2 ) 22
J :pkq”"'f(tk,xn)’QnZQ(xn),xn:nhaNT:Ta (267)
l<sns<sM-1,Mh=Lty=kt,1 <k<N-1,
1(1) ©(x,),0<n <M,
1 0 1 0
,11 uO_I alx )un+1_un+l_un+”n
T h n+1 h
1 0 1 0
U, — Uy —u, _ +u, _
—a(x,) = P 1) +w(xn)+§f(0,xn)
0 0 0 0
1 w . .—u U, —u
+ E(auﬁo%—a(xn)”T’“)qun ,
1<n<M-1,
I/tl(§+1 k+1 0 Z luk+1h g(tk+1) -1<k<N-1

Here, it is assumed that g3y = g9 = 0, and ZM | ¢i # 0. We have the following theorem on
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the stability of the difference scheme (2.45):

Theorem 2.3.8 For the solution of difference scheme (2.67), the following stability estimates

h o, h N1
Uppq = 2 + gy {uh}
72 k e (W2,)

k=Ulle, (Lon)

< 5@ [l + 01y, + 1],

hold:

-1

{fk fk 1} H §k+1—2§k+§k 1}
’ k= le, (L) =

||{pk}f:;s||qo,n <15 @) [z, + 0z + ||foh||L2h

fk fk 1 §k+1 =20k + {1
T 72 k=1
k=11lc, (L)

clorl],

clor],

2.4 Numerical Experiments
In this section, we study the numerical solution of the identification problem
O%u(t,x) 0*u(t,x)

0z ox2
x € (0,m),t€(0,1),

=p(t)sinx + e~ sinx,

u (0,x) = sin x,u; (0,x) = —sinx, x € [0, 7], (2.68)

u(,0)=u(t,n) =0,t € [0,1],
/Oﬂu(t,x) dx =2e7",t €0,1]

for a hyperbolic differential equation. The exact solution pair of this problem s (u (¢, x), p (¢)) =
(e"sinx,e”").
Firstly, for the numerical solution of problem (2.68), we present the following first order of

accuracy difference scheme for the approximate solution for problem (2.68):
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k-1 k+1 k+1 k+1
2“ + Uy _ un+l 2I/t + un 1

2 12
= py sin x,, + e”'k+1 sin x,,,

\ =k, x,=nh,1<k<N-1,1<n<M-1,

k+1
un

0 . Uy—ul .
u, = sin x, =—sinx,, 0<n<MMh=nNt=1,
k+1 — uk+l =0, ZM 1 k+1h Ze_tk“ 1<k« —-1.

(2.69)

The algorithm for obtaining the solution of identification problem (2.69) contains three stages.

Actually, let us define

uk =wk 4 sinx,, 0 <k <N,0<n< M,

Applying difference scheme (2.69) and formula (2.70), we will obtain

e+l — Zlﬁil—l Wk+1

N+l = — ,—1<k<N-1
M1 sin x;h
and
k+1 k k-1 k+1 _ k+1 k+1
Wy — 2Wn + Wy, _ Wott 2W" + W1
2 hz
M- k 1
2ict ,~+ h  2(cosh-1)
—smxn—
Mll sin x;h h?
2 2(cosh -1
) = > ) + 1| e+ sin x,,
Zl T sin x;h h
I1<k<N-1,1<n<<M-1,
wl — w0
w¥ = sin x,, —= T = —sinx,,0<n <M,
wetl =whtl =0,-1 <k <N-1.

(2.70)

2.71)

(2.72)

M
In the first stage, we find the solution {{wﬁ }2;0} . of the corresponding first order of accuracy
n=

difference scheme (2.72). For obtaining it, we will write difference scheme (2.72) in matrix

form as

AW Bwk 1 Cwk T = ok 1 < k< N -1,

w? = {sinx,}M,,w! = (1 - 7) {sinx,}2,,
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where A, B,C are (M + 1) X (M + 1) square matrices, w®,s = k,k + 1,(,0" are (M +1)x1

column matrices, and

1 0 0o - 0 0o 0

b a+ci b+c - 1 1 0
0 b+cy a+cy - 1) 1) 0
A= ,
0 cyo CM—2 - a+cy—s b+cy_r O
0 cy-1 cy-1 - b+cey-1 a+cy-1 b
0 0 0 . 0 0 1
| < (M+1)x(M+1)
00O 0020 000 0 0O
0 e O 0020 0 0 0 0O
0 0 e 000 0 g 0 00
B = C = ’
000 e 00 000 00
0 0O 0 e O 0 0O 0
0 0O 000 0 0O 0 0
“(M+1)x(M+1) - “ (M+1)xX(M+1)
0 0
o wy
(pk: . w' = . ,for s=kk+1.
k K
Pr-1 W1
0 0
- (M+1)x1 - - (M+1)x1
Here,
1 2 b= P2 1
A A =)
g 2(cosh —1)
d= Z sinx;h, ¢, = sinan,l <sns<M-1,

i=1

4(cosh —1)

h? Zf‘;’l_l sin x;h

o =

+1|e ™ sinx, ]l <k<N-1,1<n<M-1.
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So, we have the initial value problem for the second-order difference equation (2.73) with

respect to k£ with the matrix coefficients A, B and C. Since w%and w!are given, we can obtain

v }f:o}MO by (2.73).

n=

Now, applying formula (2.31), we can obtain

L= Mk+1 — 2Nk + Mi—1

3 1 <k<N-1. (2.74)
T

In the second stage, we will obtain { pk}sz_l1 by formulas (2.71) and (2.74). Finally, in the third
M
stage, we will obtain {{u’,ﬁ }5{\/:0} o by formulas (2.70) and (2.71). The errors are computed by

n=
1
M-1 5 2
E, = max Z|u(tk,xn)—uﬁ| hl| .,
0<k<N =

E, = max 1) — ,
p =, max |p () - pl

where u (¢, x), p(t) represent the exact solution, u* represents the numerical solutions at (#, x,,)

and py represents the numerical solutions at #;. The numerical results are given in Table 1.

Table 1: Error analysis for difference scheme (2.69)

Error N=M=20 N=M=40 N=M=S80 N=M =160

E, 0.0347 0.0181 0.0092 0.0047

E, 0.0462 0.0240 0.0123 0.0062

As can be seen in Table 1, if N and M are doubled, the value of errors between the exact
solution and approximate solution decreases by a factor of approximately % for the first order

difference scheme (2.69).
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Secondly, for the numerical solution of problem (2.68), we present the following second order

of accuracy difference schemes for the approximate solution for problem (2.68):

W = 2uk vkt Tuy, = 2uf
k+‘[i2 k+1 2k+1 kﬁl2 k-1 k-1
L = 2u," +u," N U, 1 —2u,  +u,",
4 h2 h?

= pg sinx,, + e 'k sin x,,,

\ i =kt,1<k<N-1LNt=Llx,=nh,1<n<M-1,Mh=n, (2.75)
1 0

u, —u T
0 _ o n" Y T 4 0 A1 0, ,1 _ .0
Uy = Si0 Xy, —— e (un+1 U, | —2U, +2uy, +u, ”n—l)

0 0 0
_ T (U, —2un+un_1 ) _
:—smxn+§ e + posinx, +sinx,|,0 <n< M,
uktl = kol — o S M-l kil — D=t _1 < k< N =1
0 M i=1 i
and
R AR BN e R AR
72 2 h? h?

= p sin x,, + e~ sin x,,,

ty=kt,1 <k<N-1,Nt=Lx,=nh,1<n<M-1,Mh=m,

1 .0 y =y T () 0 1 0, 1 0 (2.76)
u, = sin x,, ) (un+1 — Uy~ 2u, + 2uy +u, | — un_l)
) T u2+1 —2u2+u2_1 ) )
:—smx,,+§ e + posinx, +sinx,|,0 <n <M,

k+1 _  k+1 _ M-1_ k+17 _ —feel _
Uy =uy, =0, u; 7 h =2 -1 <k<N-1

The algorithm for obtaining the solution of identification problem (2.75) contains three stages.

Actually, let us define

uk = wk £ npsinx, 0 <k <N,0<n<M, (2.77)

Applying the second order of accuracy difference scheme(2.75) and formula (2.77), we will

obtain

- M-1
e = 27 — Xic, W'kh,o <k<N (2.78)
M1 sin x;h

and the difference scheme
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+_
22 310  sin x;h

wy =sinx,,0<n< M,
1 0
Wo =W, T (wl
T 2 n+1
27(cosh—-1) |
sin x,, 3’

h? f‘;’l_lsinxl-h
0
4re”"(cosh—-1) |

h2 Y M sin xih

= e 'k sin x, + [e"k“ +2e7 M + e"k—l]

M-
=1

-
- _ 0 0
+2h2 (Wn+l 2w, + wn_l)

Wt 2wl 4wt T = 2w
72 2 2
el -2ttt ot 4t
4 h? h?
1 (cosh-1) |
sin x,

M-1_ k+1 M-1_ k M-1_ k-1
X (T ke 2 ST whh o+ S wE

(cosh—1)

h2 M sin x;h

sin x;,,

I<k<SN-L1<n<M-1,
0
n

1 1
2w, +w, )

! wl.lh

(% - 1) sin x;,

sinx,,0 < n <M,

witl =whii1=0,-1<k<N-1.

(2.79)

M
In the first stage, we find the solution {{w,’f}gzo} of the corresponding second order of

n=0

accuracy difference scheme (2.79). For obtaining it, we will write difference scheme (2.79),

in matrix form as

AW Bwk 4 Cwk = ok 1 < k< N -1,

0,,1

wY,w" are given,

(2.80)

where A, B,C are (M + 1) x (M + 1) square matrices, w’,s = k,k + 1,¢* are (M + 1) x 1

column matrices and
1 0 0
b a+c b+

0 b+tcy a+ao

A=
0 cu—2 cua
0 cm-1 cma
0 0

o

0 0 0
C1 C1 C1
€2 (&) 2

a+cy—r b+cy—r 0
b+cy-1 a+cy-1 b

0 0 1

I(M+1)x(M+1)
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o o O

0
q+el

r+es

eM-2
eM-1

0

0

a+ cy

0

r+ e

q+e

eM-2
eM-1

0

0

b+ c;

b+cy a+c

CM-2
CM-1

0

CM-2
CM-1

0

I(M+1)x1

€]

€2

e

p)

qtey—o r+eyon

r+epy-1

0

C1

2

a+cy_r b+cys

b+ cy_q

0

sin xp

sin x|

sin XM-1

sin xps
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q+epm-1

0

1

(&)

a+ Ccy-1

0

1(M+1)x1

€]

€2

I(M+1)x(M+1)

S

I(M+1)x(M+1)

Jdfors =k, k+1,



where,

1 1 1 1 1 2

- + _’b - ol = ~, 24 — — T Ho
2 2" T T T T T T

1 . (cosh-1) . (cosh-1)
¢y = = sinx,———=, ¢, = sin x,,——,

2 dh dh

d= Zsmx,hl n<M-—1,

(cosh—1)
h? ZMI sin x;h

gk = e sinx, + (e + 2e7 + o71) sin x;,,

I<k<N-L1<n<M-1.

Finally, we obtain w!. Applying the formula

1 0
w, —Ww 2t(cosh — 1
L1 —L(wl L= 2wa+wl )+ o ) sinx, SMT wlh
T h? " h2 M0 sin x;h l ’
T T , 4re" (cos h-1) .
+—2( n+1—2w +wn 1):(——1)s1nx,,+ ERSITa sin x;,,
2h 2 r2 Y M sin x;h
and conditions wj = w;, = 0, we get
Ew!' + Fw® = . (2.81)
Here
1 0 0 . 0 0 0
y x+z1 y+tz1 - 4| 21 0
0 y+2 x+z20 - 2 2 0
E = ,
0 zm—2 zm—2 - x+zm—2 y+zm—2 O
0 zm1 zm-1 - y+zm-1 Xx+zm-1 Y
0 0 0 . 0 0 1
L I(M+1)x(M+1)
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2t 1 T 27(cosh —1)
oY= s
h? dh

sin x;,,

I(M+1)x(M+1)

I(M+1)x1

T 4re "(cosh — 1)
Ve=1l=-1+ sin x;,.
" (2 h2 M sin x;h ) !

From that, it follows
w! = ! (y - FWO) . (2.82)

So, we have the initial value problem for the second-order difference equation (2.80) with

respect to k with the matrix coefficients A, B and C. Since wYand w'are given, we can obtain

(o) by 2.80)

n=

Now, applying formula (2.49), we can obtain

— 20k + M- 2
= BT T < k<N -1po= Sm (2.83)
T T
In the second stage, we will obtain { pk}i’:—ll by formulas (2.78) and (2.83). Finally, in the third

M
stage, we will obtain {{uk} |~ by formulas (2.77) and (2.78).

n=
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In the same manner, we obtain algorithm for obtaining the solution of identification problem
M

(2.76) {uk}g:() = {{uﬁ}i’zo} . and {px }ivz_ll by three stages. The errors are computed by
n=

0<k<N

M-1 , 3
E, = max (Z|u(tk,xn)—uﬁ| h) ,

n=1

E, = max 1) — ,
p =, max |p () - pl

where u (¢, x),p(t) represent the exact solution, u’ represents the numerical solutions at
(tx, xn), and py represents the numerical solutions at #;. The numerical results are given in the

following Tables 2 and 3.

Table 2:Error analysis for difference scheme (2.75)

Error N=M=20 N=M=40 N=M=80 N=M =160

E, 0.0016 4.2029e — 04 1.0648¢ — 04 2.6796¢e — 05

E, 0.0027 7.0457e — 04 1.7835e — 04 4.4867e — 05

Table 3: Error analysis for difference scheme (2.76)

Error N=M=20 N=M=40 N=M=80 N=M =160

E, 0.0016 4.2011e — 04 1.0647e — 04 2.6795e — 05

E, 0.0033 8.5650e — 04 2.1690e — 04 5.4570e - 05

As can be seen in Tables 2 and 3, if N and M are doubled, the value of errors between the exact
solution and approximate solution decreases by a factor of approximately 4—{ for the second

order difference schemes (2.75) and (2.76), respectively.
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CHAPTER 3
STABILITY OF THE HYPERBOLIC DIFFERENTIAL AND DIFFERENCE
EQUATION WITH NONLOCAL CONDITIONS

3.1 Introduction In this chapter, we consider the source identification problem for a

one-dimensional hyperbolic equation with nonlocal conditions

82252,)0 0 ( (x )au(l‘ x)) su(t, x)

=p(®)q(x)+ f(t,x),x €(0,1),1 € (0,T),
| #(0,x) = ¢ (x),u (0,x) =y (x),x € [0,1],
u(t,0) =u(t,l),u, (t,0) = u, (t,1),
Ju(t,x)dx = £ (1), € [0.7],

where u(¢,x) and p(t) are unknown functions, a(x) > a > 0,a(l) = a(0),6 > O,

3.1)

f(t,x),l(t),¢(x) and ¥ (x) are given sufficiently smooth functions and ¢ (x) is a given

sufficiently smooth function assuming ¢ (0) = ¢ (I), ¢’ (0) = ¢’ (I) and fol q(x)dx #0.

3.2 Stability of the Differential Problem (3.1)

To formulate our results, we introduce the differential operator A defined by the formula

Ay — ( x )du(x)

) + ou(x) (3.2)
with the domain

D(A)={u:uu" € Ly[0,I],u(0)=u(l),u’ (0)=u"(l)}.
It is easy that A is the self-adjoint positive-definite operator in H = L, [0,[] . Actually, for all

u,v € L, [0,1] we have that

l l
(Au,v) = /0 Ay (x) dx = /0 [ 4 ( (x )du(x))+6u(x)]v(x)dx

!
( ) du (x) /0 (%) du (x) dv (x)dx

) (x) dx dx

l
+5/ u(x)v (x)dx
0
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du (l)

du (O) v(0) + / du (x) dv (x)

=—a() dx

v(l) +a(0)
!

+6/ u(x)v (x)dx
0

Since

a(l)=a(0),u(0)=u(),u’ (0)=u"(1),

we have that
du (l) v() + a (0) du (0)

—a(l) v(0) =

l l
(Au,v) = / a(x) db;ix) d‘;,(x)d + 6/ u(x)v (x)dx.
0

Therefore,

Using (3.3), we get

! !
(u, Av) :/0 u(x)A(v)dx :/0 u(x) [——( (x )dv( )) +5v(x)] dx

= — u(x) (a (x) dv (X)) ) + /Ol a(x) d\;’ix) db;ix) dx
I
+5/O v(x)u (x)dx
= -uta ) 20 4 u0)a 0 22O /0 MRELCEIC
_ /Oz ots )d\;ix) db;(x)d .\ 5/lv(x)u .

From that it follows

(Au,v) = {u, Av)

and

I !
(Au,uy = ‘/0 a(x) db;ix) db;—ix)dx + 5/0 u(x)u (x) dx

l
> 5/ u(x)u (x) dx
0

=06 (u,u).

We have the following theorem on the stability of problem (3.1).
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Theorem 3.2.1 Assume that ¢ € Wz2 [0,1],¢ € W21 [0,/] and f (¢, x) is a continuously
differentiable function in ¢ and square integrable in x, and  (¢) is a twice continuously
differentiable function. Suppose that ¢ (x) is a sufficiently smooth function assuming ¢ (0)
= q(l), ¢(0) = ¢’ (I) and /Olq(x) dx # 0. Then, for the solution of problem (3.1), the
following stability estimates hold:

u
or?

+ ||”||C(W22[O,l]) < K (g) [”‘P”WZZ[OJ] + ||‘//||W21[o,1] (3.5)
C(L2[0.])

af

IS O Il zopon + 15,

+ ||§”||C[0,T]] )

C(L2[01])
IPllcor) < K2 @) [Ielhwzon + 19 wigon *+ 1 cpoa (3.6)

af

0,.
+LF O, )l g0 + ER

C (Lz[OJ])]
Proof. We will use the following substitution

u(t,x)=w(t,x)+n(t)qg(x)), (3.7

where 7 (¢) is the function defined by formula

n () = /0 (t ) p(s)ds.n (0) = 1 (0) = 0. (3.8)

It is easy to see that w (t, x) is the solution of problem

Pw(t,x) 9 ow (1, x))
2o D g )

Sw(,
o2 ox ax | towe)

= £+ 70) | (@) () - 54 ()
X
x€(0,0),t € (0,7),

w(0,x) = ¢ (x),w; (0,x) =¥ (x),x € [0,1],
w(t,0) =w(t,1),w, (£,0) = wy (t,1),t € [0,T].

2

(3.9

Applying the integral overdetermined condition fol u(t,x)dx = £ (t) and substitution (3.7),

we get

£ty = o w(t,x)dx
/0[ q(x)dx .
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From that and p (t) = n” (¢) it follows

~ " (1) - /01 g—;w (t,x)dx

p(t)

I
Jo a(x)dx
Applying /01 q (x)dx # 0, we get estimate
. w(t,.)
lp (D] < K3(q) |17 ()] + o (3.10)
4 L0/
for all t € [0,T] . From that it follows
. 3w
IPllcror < K3 (@) |11E7 lejory + Fr ] - (3.11)
= Newsron)
Now, using substitution (3.7), we get
O%u(t,x) 0*w(t,x)
2 - ap +p(1)q(x).
Applying the triangle inequality, we obtain
0%u *w
Fre) o) <%z o) +Ipllcory 1all 0. - (3.12)
2[Ys 2 1Y,

Therefore, the proof of estimates (3.5) and (3.6) is based on equation (3.1), the triangle

inequality, estimates (3.11), (3.12) and on the following stability estimate

0w
‘ o2 < K(q.) | llellwzion + 19 lwyjon (3.13)
C(Lal0d)
of
+LF O M o + || 55 + 1" Negor |-
Ot {lcLyg00)

for the solution of problem (3.9). It was proved in Section 2.2 for the identification hyperbolic
problem with local boundary condition. The proof of (3.13) is carried out according to the

same approach. This completes the proof of Theorem 3.2.1.

3.3 Stability of the Difference Scheme
To formulate our results for the differential operator A defined by (3.2), we introduce the

difference operator A; defined by the formula

M-1

1 n - ¥n n~— ¥n-—
Ang" (x) = {7 (@ Coner) L= — () L) (m} ,
n=1
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acting in the space of grid functions ¢" (x) = {go,,}fy: o defined on [0,/], satisfying the

conditions ¢g = @, Y1 — Y0 = OM — PM-1-

It is easy that A, is the self-adjoint positive-definite operator in H = Ly, = L, [0,1];, . Actually,

we have that

<Ahuh,vh>: Z A (W' (x)h

XE[O,[]h
M-l A
= Z - (a(xn+l)n+—_a( n) )+6un vnh
h h
n=1
& un+1
= a(xpe)) ——— n+Za(xn) vn+5Zunvn
n=1
M
= Za(xn) vn1+Za(xn) vn+52unvn
n=2
Upy — Up—1 Uiy —Uuo
= —a(xy) %VM—I +a(xy) o
_Za(xn) Vn I+Za(xn) Vn+5zunvn
=-a (XM) _huM_l vy +a(xy) L
— Uy Vy,—V Ml
+Za(xn) n-l Zn "1h+6Zunvn
n=1
Since
a(xy) =a(x1), 00 = oM, @1 — €0 = OM — PM-1 (3.14)
we have that
—a (xp) i~ t-l v +a(xy) i MovO =0.
h h
M v — M-1
(Ahu vh> = Z a(xn) nlin T e lp g s Z Upvph.
n=2 n=1

Using (3.14), we get
(uh,Ahvh> = Z u(x) Ay (x)h

XE[O,[]h
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M-1

tn | == (@ (o) 22 () 222200 4,
- S|4 ; )

n=1

h

3 _MZI 11 () L0 vn+1 n L Z Uy (xn) Lys Z u,vph
—Z

= Uy 1a(xn) + Z U,a (xn) +0 Z u,v,h
\% % Mo]
M — VM-1 -1
= —up-1a(xpy) ; + Mla(xl) a(xn) ——Up1
n=2
V-1
+Za(x,,)un h+(52unvn
u u y v M- Uy, — Up_1 Vy— V
M —UM-1 VM — VM-1 n — Up—1Vn — Vpn-1
=a(x + Z a(x h
n=2
M-1
+0 Z Uyv,h
M — Uy 1 Vy—V M-l
Z xn) n-ln hnlh+62unvn
n=2 n=1

From that it follows
<Ahuh, Vh> = (uh, Ahvh>

and

<Ahuh uh> Z a(xn) un L his Z Uy h

3.3.1 The first order of accuracy difference scheme

M
For the numerical solution {{u’,ﬁ}i{vzo} o of problem (3.1), we consider the first order of
n:

accuracy difference scheme

70



u5+1 2u +uk 1 B ( ) rliill _ l;+l B ( ) k+1 ulrifll
2 a\Xp+1 2 al\Xy 2
+(5u,’;+1 = prq (x2) + [ (tr, %) , 1 = k7, x, = nh,
J1<k<N-LI<n<M-1N7=T, (3.15)

1_,,0
u) = (), == =y (x,),0 <n < M.Mh =,

k+1 _  k+1  k+1 _  k+1 _  k+1 _ k+1
Uy =~ = Uy Uy Uy =ty Uy g

por utth = (ten), -1 <k <N -1

Here, it is assumed that
q90 = 4dmM>91 — 40 = dM — qM-1

and ZM . ¢i # 0. We have the following theorem on the stability of difference scheme (3.15).

Theorem 3.3.1 For the solution of difference scheme (3.15)

N-1
u]]:+1 B 2”2 + ull;l—l 3 16
{uk+1} C, (Wz) ( : )

T2 k=1
G (Lop)

<10 [l o

fk fk 1
T
k=2 e, (L)

HMhMmT\%@MMW+W%wHMMh (3.17)

e
T

Here and throughout this subsection fkh (x)=Af (tk,xn)}nM: 0,1 <k<N-1.

1

+ | Ces1 = 28k + Lk }N_

72

k=1

clor],

{§k+1 - 20 + Qk- 1} Nl

2
T k=1

k=2 Cr(Lop) clorl

Proof. We will use the following substitution
Uy = Wy + 11k, (3.18)

where

=q(xn),
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and
k

et = (k+1=i)pr 1 <k <N =1Lng=m =0, (3.19)
i=1

M
: N . . .
It is easy to see that {{w,]j} k:O} o 18 the solution of difference problem
n=

whktl ok k=1 ;‘:11 — wk+! wk+l wi‘jll
2 - Z a (xp+1) —h a (xn) T
1 - G
WS = f (1) + o @ Gone) P — o) AL — g | i,
] 1<k<N-Ll<n<M-1, (3.20)
1_ .0

w w
wd = ¢ (x,), "T %=y (x,),0<n <M,

k+1 _  Jk+1  k+1 _ . k+1 _  k+1 _ . k+1 -1<kg<N-1

Wo =Wy oW Wo =Wum “Wuop

Applying the overdetermined condition Zfz 1_1 uf”h = { (tx+1) and substitution ( 3.18), one

can obtain that M—1 k 1
Cka1 = 2imy Wi h

wal gih

M1 — 20k + M1
)

Mk+1 = (3.2

Then, using formulas py = and (3.21), we get

Jert =28 + Lo — I (WEHL = 2wk 4wk

72 ZlMl qih

Dk =

—2w +w
2

h
Wi -1

=20 + &
ol < Ko (q) Lk+1 é;k Ck-1 N -

] (3.22)
Loy

forall 1 < k£ < N — 1. From that it follows

1

||{Pk}§<v=_11||0[0,r]r < K7(q) -2

H{flm T }N_
k=

1
clo0.T];

h h n YN-1
wil o =2wl +w

k=Ulle, (L)
Now, using substitution (3.18), we get

k+1 k=1 k+1 k k-1
uk+l — ok w, " =2w; + wy

2 = T2 +pk‘] (xl’l)

T
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Applying the triangle inequality, we obtain

N-1\M

uf“ - Zuf + uf‘l

= (3.24)
k=1

n=0llc, (L)

M
N-1
whtl _ ok k-1
< l l l
2
k=1

n=0llc, (L)

+ ”{Pk}g:_ll”do,ﬂf ||{q (xn)}y:_IIHLzh '

Therefore, the proof of estimates (3.16) and (3.17) is based on equation (3.15), the triangle

inequality, estimates (3.23), (3.24) and on the following stability estimate

wh 2wl 4w N

k=Ulle, (Lon)

< K@) [nwnwz 1y 17,

fk fk 1
T

for the solution of difference problem (3.20). It was proved in Section 2.3 for the identification

1

+ H Cks1 = 280 + Lk }N_

72

k=2 lc (Lan) “=tlcror,
hyperbolic problem with local boundary condition. The proof of (3.25) is carried out according

to the same approach. This completes the proof of Theorem 3.3.1.

3.3.2 The second order of accuracy difference scheme

We have the following approximate formulas

—u(2h) + 4u(h) — 3u(0)

> — u:(0) = o(h),

(3.26)
3u(l) —4u(l — h) + u(l — 2h)

T —u (1) = o(h?).

M
Applying (3.26) for the numerical solution {{u,’; }Ikvzo} . of problem (3.1), we consider the
n=

second order of accuracy difference scheme
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i 2k vl 1 s )u’rjﬂ—u,’; a(x)uk_ukl
T2 2 n+1 h n h
1 “5111 k+1 +uk 11 uﬁ—l
_E a(xn41) A
k+1 _ k+1 k=1 _ k-1 Wk 4 k!
Uy R 1 + U,
- + =6ul + 52
a(xy) h ) 5 uy ,
= piqn + f (tk, Xn) , Xn = nh,ty = kT,
Nr=T,1<sn<M-1Mh=Lt, =kt,1 <k<<N-1,
ud = ¢ (x,),0<n <M, (3.27)
u,i _ug T rlz+1 _u2+1 _ufll +u’(’)l
- % a(xp+1) h
Uy, = ) — U, | ”2—1 0_ 1
—a (xn) h + 5/’1(14,1 - un) (xn) + = [f (0 xn) + qun]
0 0 0_,0
| 1 u . —u U, —u
—5 [—E (a(xnﬂ)% a(xn)Tl)+6u2 I <n<M-1,
u’é“ = uﬁl,— k+l 4 4uk+] 3u’6+1 = 31/1:;1 - 4u§/;“_11 + u[’i;_lz,
ST h = ¢ (t41), -1 <k <N -1
Here, it is assumed that
qm = q0,—q2 +4q1 —3q0 = 3qm — 4qm-1 + qu-2 (3.28)

and YV
(3.27):

gi # 0. We have the following theorem on the stability of the difference scheme

Theorem 3.3.2 For the solution of difference scheme (3.27), the following stability estimates

hold:

N-1
h ~h oy h
R
)

k=1l ey (L)

IRt
N wp o+ 2u) g
4 —

=Hlee(ws,)

< My (q) [”wh“W2 + ||t//h||W21h + ||f0h||L2h

R-r e
T
k=1l cp (L)

< 0@ Iz, +16"g + 1571,

{§k+1—2§k+{k 1} B
k=1
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Cclor],

||{Pk}1/;[:_11||C[0,T]T
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-1

{§k+1 =20 + Gk- 1}

2
T k=1

{fk A } ‘
! k=tHle (L)

Here and throughout this subsection fk (x)=A{f (tk,xn)}n 0:1 <k<N-1.

Ccl0T],

Proof. We will use the substitution

k _ _ k
Uy, =Wy + Nkqn,

where

k . .

S {l=Dpi = D

Ng = {( l)p+(2 (l ))p 1}T2,1<k<N,770:O,
i=1

M
. N . . .
It is easy to see that {{w,’i} kzo} o is the solution of the difference problem
n=

= - 57 @ Goen) 22— — ) ——
-t

k+1 k-1 k _ Lk k _ .k
Wy 2W +W 1 Wn+1 Wn Wi Wn—l)

k+1 _ | k+1 k—
M (A o
-7 a(xn+1)

4h h

WhH gkt ket Wﬁj) 1 e

—a (x,) . n-l +26w +6 ,

h

1 n — Yn n~— Yn-
=+ | Crue) I — ) BT — g,

+f(txn), 1 <SkSN-1,1<n<M-1,

1
] 7 (Mk+1 + 20k + M—1)

wl =0 (x,),0<n <M,

1 0 1 0
Wl}l_wl(’)l_z a(x )Wn+1_wn+1_wn+wn
T h n+l A
1 0 1 0
w, —w, —Ww +w —
—a () L~ 5hg ) = 0 () + 3 (0.3)
0 0 0 0
1 Wl —-w w, —w-
—% [—% (a(x,,H)% —a(xn)"T“) +owl|, l<n<M-1,
W16+1 — Wl[i/;—l’ W§+1 + 4W{€+1 3wk+1 — 3wk+1 4Wk+_1 + W}l:;—_lz,
-1<k<N-1L

Now, we will take an estimate for |py| .Using the overdetermined condition Zl 1
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(3.31)

(3.32)

(3.33)

luk+1h —



{ (tr+1) and substitution (3.31), one can obtain

Ge = 2 wh
wal Qt

Mk = (3.34)

Then, using the formulas p; = w and (3.34), we get

l
72 ZMl gih

Then, applying the discrete analogue of the Cauchy—Schwarz inequality and the triangle

Jert =28 + Lot = 7T (WEH = 2wk 4wkt

Pk =

inequality, we obtain

A ~h oy ok
Wi 2wl w

-2 _
Ckv1 — 20k + Q-1 N .

72

T

Ipkl < M11(q) [ ] (3.35)
Loy

forall 1 < kK < N — 1. From that, it follows

N-1
Skl — 28k + k1
S ooy, < Kii (@) H{ . = (3.36)
k=1lcrom,
h h n \N-L
{Wk+1 — 2w+ W, }
+ 2
T
k=Ulle, (Lo
Now, using substitution (3.31), we get
u,];” — 2u,’j + u,’j_l w,]f“ - 2w£§ + w,’,f_l
Tz = T2 + pkq (xl’l) .
Applying the triangle inequality, we obtain
N-1 N-1
- 2u wh —2wh 4 w
T T

k=1 CT(Lzh) k=1 CT(LZh)

+ ||{Pk}£]=_1]||C[0,T], ||{q (x")}r[:iOHLzh :

Therefore, the proof of estimates (3.29) and (3.30) is based on equation (3.27), the triangle

inequality, estimates (3.36), (3.37) and on the following stability estimate

N-1
Wlil+l B 2wl}<l + W/}él—l <M " " 338
. < Mix(@) [ll¢"llyz + 19"l (:39)

k=1l (L)

76



-1

{§k+1 =20 + Gk- 1}

2
T k=1

o, 22 }

k=Ulc (L) ‘ cloT]

for the solution of difference problem (3.33). It was proved in Section 2.3 for the identification

hyperbolic problem with local boundary condition. The proof of (3.38) is carried out according

to the same approach. This completes the proof of Theorem 3.3.2.

Applying ( 3.26) and same approach with this work we can study another the second order of

accuracy difference scheme

1 1 1 -1
uyt = 2uy w1 (toa) o ) -y
— 57 |4 (Xn+1
72 2h " h
k+1 k+1 k-1 _ k-1 k+1 k-1
un—l T, un—l 5”}1 +u,
—a (xn) h + D)

= pign + [ (tks Xn) s qn = q (xn), X, = nh,NT =T,
l1<sns<M-1Mh=Lty=kt,1 <k<N-1,

ul(’)l ()O(xn) O M’
1 0 1 0
rlz_”g T a(x )Mn+1_un+1 — U Uy
T h n+1 A
1 0 1 0
U, — U, —u, . +u T
—a () =B 4 SR — )| = ¢ () + 5 [F (0,0) + poga]
0 0 0 0
T 1 u —-Uu U, —u
—5 [—% (a(xnﬂ)% —a(xn) Tl) +6l/l2 ,1 <n< M - 1,
u16+1 — ulﬁ'l,—ukﬂ + 4uk+1 _ 3uk+1 — 3uk+1 4uk+1 + uﬁ}'lz,
2 h = (), 1 Sk SN =1

(3.39)

Here, it is assumed that the formula (3.28) holds and Z?;I 1_1 gi # 0. We have the following

theorem on the stability of the difference scheme (3.39):

Theorem 3.3.3 For the solution of difference scheme (3.39), the following stability estimates

hold:

N-1 N-1
{k+1_2” kl} N {k+1+uk1}
72 2
k=UleeLan =i (ws,)

< M4 (q) [”‘Ph”WZzh + ||Wh||wzlh + ||f0h||L2h

7



-1

72

H Skl — 248k + Qi 1}

k=tlcror,

fk fk 1
T
k=Ullc, (L)

II{pk}k”;‘llqo,n < M15.9) {16 s, + 1"y, + 15,

{fk i §k+1 =20 + k- 1}
T k=1 = k=1
Cr(Lop)

clor],

Now, we consider one more the second order of accuracy difference scheme

uy ! - 2”2 iy - % (a (%+1)M a(xn)% + ouk
T

+TZ2 {%a(x,m) % l% (a (Xn+2) M —a(xp+1) M)

—% (a (Xn+1) M —a(x,) %)]

—%a(xn) 7 a(xp41) Lh—u’,i —a(x,.) o _h”§—1

5 ( (5 B, ) )]

—25% a(xn+1)w a(x,) %) +62u§+1}

(3.40)
= piqn + f (tks Xn) s qn = q (xn), X, = nh,NT =T,

l<n<M-1,Mh=1Lt =kt,1 <k <N-1,
=p(x,),0<n< M,

1 0 1 _,0 _ 1 0

Up, — Uy _ z a (X l) Uyl Uy ~ Un Uy
T h " h
y = Uy — Uy _y + Uy 0_ 1
—a (xn) h + 6h(”n - un) lﬁ (xn) + = [f (0 xn) + pOQn]
0 0 0 0

T 1 u . —u u, —u . _
-3 [—E (a(xnﬁ)% —a(xy,) nT”l) +oul|,1<n<M-1,

k+1 _  k+1 _ k+1 k+1 k+1 _ k+1 _ k+1 k+1
Uy = Uy, Uy + 4u 3u0 = 3uM 4uM_1 + Uy,

MW = (), -1 < k<N -1
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Here, it is assumed that formula (3.28) holds and Zf‘;’ 1_1 gi # 0. We have the following theorem

on the stability of the difference scheme (3.40):

Theorem 3.3.4 For the solution of difference scheme (3.40), the following stability estimates

h ho, b N1
Uy~ 2u +ug | h}
2 “elk=tle, w,)

k=1 CT(LZh)

hold:

< Mi4(q) [HSDhHszh + ||‘ﬁh||wzlh + ||f()h||L2h

fk fkl}

-1

-

2
T k=1

H Ckv1 — 248k + Gi- 1}

k=1 {lc, (L) clor],

1o e, < Mis @) [l he +10lhs + 120,

-1

{fk i 1} H §k+1—2§k+§k 1}
’ k= le, (L) =

clorl],

3.4 Numerical Experiments
In this section, we study the numerical solution of the identification problem
0%u(t, x) %u(t, x)

ot? 0x2
x € (0,m),t €(0,1),

u(0,x) =1+sin2x,u, (0,x) = =2 (1 +sin2x),x € [0, 7],
M(I,O) = l/l(l',ﬂ'),l/tx (I,O) = ux (taﬂ)t € [0’1]7
foﬂu(t,x) dx = e .t € [0,1]

p(t) (4 + 4sin 2x) + 4e~* sin 2x,

(3.41)

for a hyperbolic differential equation with non-local conditions. The exact solution pair of this

problem is (u (t,x),p (1)) = (e7 (1 + sin2x),e™%).

Firstly, for the numerical solution of problem (3.41), we present the following first order of

accuracy difference scheme for the approximate solution for problem (3.41):
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Y R e R AR

TZ h2
= pi (4 + 4sin2x,) + 4e~ 241 gin 2x,,

tr=kt,x,=nh,1<k<N-1,1<n<<M-1,

1 0
u, —u,

10 = 1+ sin 2x,, = 2(1 +sin2x,), (3.42)
T

Osn<MMh=nNt=1,

k+1 _  k+1 k+1 _ k+1 _ k+1 _ k+1
Uy~ = Uy Uy Uy = Uy — Uy p

Z,{Z]_l uf‘“h =me M+ 1 <k <N-1.

Algorithm for obtaining the solution of identification problem (3.42) contains three stages.

Actually, let us define

uk = wk +4n, (1 +sin2x,),0 <k <N,0<n <M, (3.43)

Applying difference scheme (3.42) and formula (3.43), we will obtain formula

et _ M-1 k+1
me et — 3T with

4311 +sin2x) h

Mesl = ~l1<k<N-1 (3.44)

and the difference scheme

k+1 k k-1 k+1 _ k+1
W 2w T Wi 2w, +w

12 h2
N S wkp gy 20820~ 1)
Xn——————————
SMN(L + sin2x) B h?
2 2h—1
= ]:[T(TOS ) + 4| e+ gin 2x,,,
h2 Y00 (1 +sin2x;) h

I<k<SN-L1<n<M-1,

k+1
n—1

(3.45)

1 0
. W, — .
w0 = 1 + sin 2x,, = . T =-2(1+sin2x,),0<n< M,
k+1 _ | k+1 | k+1 _  k+1 _  k+1 _ o k+1
Wo =Wm oW Wo =W TWyn-r
-1<k<N-1.

M

In the first stage, we find numerical solution {{wﬁ}szo} . of corresponding first order of
n=

accuracy auxiliary difference scheme (3.45). For obtaining the solution of difference scheme

(3.45), we will write it in the matrix form as
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AWl Bk 4wkl = ok 1 < k< N -1,
(3.46)
w® = {1 +sin2x,}Y ,w! = (1 - 27) {1 +sin2x,}Y,
where A, B,C are (M + 1) X (M + 1) square matrices, w®,s = k,k + l,fk are (M +1)x1

column matrices and

1 0 0 . 0 0 -1
b a+c b+c - c1 c1 0
0 b+cr a+cr - c) ) 0
A= ,
0 cynr cy—nr - a+cy—r b+cy—n 0O
0 CM-1 cm-1 - b+cey-1 a+cy—1 b
-1 1 0 . 0 1 -1
| “(M+1)x(M+1)
0 0O 000 0 00 0 00
0 e O 0020 0 0 0 0O
0 0 e 0020 0 g 0 0O
B = C = ’
0 0O e 00 0 00 00
000 0 e O 000 0
0 0O 0020 000 0 0
S (M+1)x(M+1) - S (M+1)x(M+1)
0 0
‘plf Wi
(pk: ) ws = . ,for s=k k1.
k
Pr-1 W1
0 0
- (M+1)x1 - < (M+1)x1
Here,
1 2 1 2(cos2h—1) |
a:ﬁ-'_ﬁ’b:_ﬁ’c":—( ¥ )sm2xn,
M-1 . 5 1
d= (1+sm2x,-)h,e=——2,g:—2,
T T

i=1
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2n(cos2h — 1)
B3 M1+ sin2x;)

So, we have the initial value problem for the second order difference equation (3.46) with

k

@, = +4 e_2tk+lsin2xn,1<k<N—1,1<n<M—l.

respect to k with matrix coefficients A, B and C. Since wland w!are given, we can obtain

{{w,’g}fzo}MO by (3.46).

n=

Now, applying formula (3.32), we can obtain

— 2Nk + k-

pr= B TIRTI ) <k <N-1. (3.47)
.

In the second stage, we will obtain {py }1,;’:'11 by formulas (3.44) and (3.47). Finally, in the third

M
stage, we will obtain {{uﬁ}ﬁio} o by formulas (3.43) and (3.44). The errors are computed by

n=

M-1 3
E, = max (Z |u (tr, xn) — u’,f|2 h) ,
n=1

0<k<N

E, = max ) — ,
p =, max |p () - prl

where u (¢, x), p(t) represent the exact solution, u* represent the numerical solutions at (fy, x,,)
and py represent the numerical solutions at #;. The numerical results are given in the following

table.

Table 4: Error analysis for difference scheme (3.42)

Error N=M=20 N=M=40 N=M=S80 N=M =160

E, 0.0560 0.0289 0.0147 0.0075

E, 0.0476 0.0244 0.0123 0.0062

As can be seen in Table 4, if N and M are doubled, the value of errors between the exact
solution and approximate solution decreases by a factor of approximately 1/2 for the first

order difference scheme (3.42).
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Secondly, for the numerical solution of problem (3.41), we present the following second order

of accuracy difference scheme for the approximate solution for problem (3.41):

i Rt S U R TR
k+‘[i2 k+1 2;{+1 kfll2 k-1 k-1
LU 2up, " +u, T s u, = 2w, +u,",
4 h? h?

= pr (4 + 48in 2x,,) + de™ 2+ 8in 2x,,,

th =kt,x, =nh,1 <k<N-1,,1<n<M-1,

u® =1+ sin 2x,,
1_,0
§ U Uy T (g 0 1 0, 1 0 (3.48)
- - - - 7 (”n+1 ~ Uy 2yt Uy U, - ”n—1)
0 0, ,0
B : T Uy~ 22U Uy
——2(1+s1n2xn)+5{ e
+4po (1 +sin2x,) + 4sin2x,} 0 <n < M,Mh =n,Nt =1,
k+l _ o k+1
ugt = uy

o k+1 k+1 _ k+1 _ k+1 _ k+1 k+1
U, + 4u1 3u0 = 3uM 4uM_1 +uy, s,

S Ukt h = re, 1 <k <N -1

The algorithm for obtaining the solution of identification problem (3.48) contains three stages.

Actually, let us define

uk = wk +4n (1 +sin2x,),0 <k <N,0<n< M, (3.49)

Applying the second order of accuracy difference scheme(2.75) and formula (2.77), we will
obtain
e 2 — Zf‘;’l_l wl.kh

- 42?;’1_1 (1 +sin2x;) h’

Nk 0<k<N (3.50)

and the difference scheme
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k
n—1

k+1 k k-1 ko _ k
Wy = — 2Wn +wy, _ lwn+l 2Wn W
2 2 12

-
| [whH] — 2kt kel Wk—ll —owkl 4 Wk_ﬂ

n+1 n—1 n+ n—
+
4 h? h?
+1 (cos2h —1)
223 M0 (1 + sinxg) B
X (ST ke e 2 ST whh + S wE )

sin 2x;,

= 4e~ % gin x,, + [e‘2’k+1 + e 2k 4 e‘Ztk—l] X
1 nm(cos2h — 1)

- sin2x,, ]l <k<N-1,1<n<<M-1,
22y M A wsinx)h

w) =1 +5sin2x,,0 < n < M, (3.51)
1 0
Wn = Wy T 1 1 1
) (Wn+l - 2Wn + Wn—l)

ET(COSh -1)

r2 Y M sin x;h
+# (WSH - 2wy + Wg_l) = 27sin2x, — 2 (1 + sin2x;,)
. 2rme 1 (cos2h — 1)
R2Y MM (1 +sinx;) h

k+1 _ | k+1
o ~Wum

sin 2x, Z?;II_I wl.1 h

sin2x,,0 < n < M,

w

1 2 kel _ gkt kel

ok +1 k+1 _
W, +4w1 3W0

-1<k<N-1

M
In the first stage, we find the solution {{w,’f}]kvzo} . of the corresponding second-order-of-
accuracy difference scheme (3.51). For obtaining it, we will write difference scheme (3.51),

in matrix form as

Awk+1 +BWk+ka_1 = (pk :,1 < k < N_ 17
(3.52)

wO, wl are given,

where A, B,C are (M + 1) X (M + 1) square matrices, w',s = k,k + 1,k are (M +1) x 1

column matrices and
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(1 0 o - 0 0
b a+cy b+c - C1 C1
0 b+tcy a+cy - 1653 (69}
A=
0 cys cy—2 + a+cy—n b+cy
0 cy-1 cy-1 - b+cey_1 a+cy—q
00 0 . 0 0
0 O 0 0 0
r qg+e r+e - el el
0 r+e g+e - e e
B =
0 eyo ey2 - gteyo r+eys
0 em—1 ey-1 - r+ey-1 qg+ey—i
00 0 . 0 0
0 O 0 0 0
b a+ci b+c - c1 C1
0 b+cy a+cy - [653 (o)
C =
0 cy—rs cy—2 - a+cy—nr b+cy—
0 cy-1 cy—1 + b+cecy-1 a+cy-—q
i 0 O 0 . 0 0
— 0 0
¢ Wi
¢t = , ow=
90]54_1 Wi
i 0 l(m+1)x1 ! 0 I(m+1)x1
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I(M+1)x(M+1)

€l

€2

I(M+1)x(M+1)

I(M+1)x(M+1)

JdJors =k k+1.



Here,

1+ 1 b 1 1 1 2
a=— N~ = ——F,..r=—-——" = -5 " 5>
2 22" T T TR T
1 (cos2h—-1) (cos2h—1)
Cn = 5 sinxy o e, = sinx, ah ,
M-1
d= (I+sinx)hl<n<M-1,
i=1
(cos2h —1)

sin 2x;,,

@~ = de™ ' sin x,, + (e‘zrk“ +2e7 2k 4 e‘z”ﬂ) T _
h? Y00 (1 +sinx) h

I<k<N-L1<n<M-1.

Finally, we obtain w!.Applying the formula

0
wh —wo T (Wl — 2wl + W1_1) N 27(cos2h — 1)
T h? " R2YM (1 +sinxg) h

. M-1 1
] sin2x, 2,2, w; h

2rme 1 (cos2h — 1)

T 0 O 0 ) _ . . .
+— 2w, + =271sin2x, —2(1 + sin2x;,) + sin 2x;,,
202 (W"+1 W W) = 2T sina =2 Wt VT rsina)h
and conditions wy = w,,, w| —wy = w,, — w,,_ We get
Ew' + Fw =y, (3.53)
Here
1 0 0 . 0 0 0
y x+z21 y+tz1 - 21 21 0
0 y+2 x+20 - 22 22 0
E= :
0 zm—2 zm—2 - x+zy2 y+zy—2 O
0 zm—1 zm-1 - y+zm-1 x+zm-1 Yy
0 0 0 . 0 0 1
L I(M+1)x(M+1)
27 N 1 T 2t(cos2h—1) . )
X=——+—-y=—,7,= ————5in2x,,
YT T dh "
T 1 N T 3 2T ‘1
= V=t V= - — 41,
2h? T h? 2t h?
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M+ 1)xM+1)
— 0
A
Y = 5
\/S
| 0 Jm+1)x1

2rme M (cos 2h — 1
V, = 27sin2x, — 2 (1 + 5in2x,) + ——o (cos ) sin2x,
h2 Y00 (1 +sinxg) h

From that, it follows
wl = E- (7 Fw ) (3.54)

So, we have the initial value problem for the second-order difference equation (3.52) with

respect to k with the matrix coefficients A, B and C. Since wYand w!are given, we can obtain
M

{{ws}fzo} o by (3.52). Now, applying formula (3.32), we can obtain

Mkl = 20k + Nk
- 2

2
A<k <N-1py=m (3.55)
T T

In the second stage, we will obtain { pk}g:_f by formulas (3.50) and (3.55). Finally, in the third
M
stage, we will obtain {{ufl };cv:o} o by formulas (3.49) and (3.50).

The errors are computed by

1

M
E, = réna,< (Z u(tk,xn)—u| h) ,

E, = max |P(tk) Pil,
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where u (¢, x), p(t) represent the exact solution, u’ represents the numerical solutions at
(tx, xn), and py represents the numerical solutions at #;. The numerical results are given in the

following Table.

Table S: Error analysis for difference scheme (3.48)

Error N=M=20 N=M=40 N=M=80 N=M-=160

E, 0.00254 6.355¢ - 04 1.5675e — 04 3.9723e - 05

E, 0.0028 7.0523e — 04 1.76857e — 04 4.4758e - 05

As can be seen in Table 5, if N and M are doubled, the value of errors between the exact
solution and approximate solution decreases by a factor of approximately ;11 for the second-order

difference scheme (3.48).
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CHAPTER 4
CONCLUSION

This thesis is devoted to study the source identification problem for hyperbolic differential
equations with unknown parameter p(z). The following results are obtained:

e The history of direct and inverse boundary value problems for hyperbolic differential
equations are studied.

e Fourier series, Laplace transform and Fourier transform methods are applied for the
solution of several identification problems for hyperbolic differential equations.

e The theorem on the stability estimates for the solution of the source identification
problem for hyperbolic differential equations with local and nonlocal conditions is proved.

o The first and second order of accuracy difference schemes for the approximate solution
of the one dimensional identification problem for hyperbolic differential equation with local
and nonlocal conditions are presented.

e The theorem on the stability estimates for these difference schemes for the numerical
solution of identification problems for hyperbolic differential equations with local and nonlocal
conditions is established.

e The Matlab implementation of these difference schemes is presented.

e The theoretical statements for the solution of these difference schemes are supported

by the results of numerical examples.
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APPENDICES



Appendix 1
Matlab Programming

Matlab Implementation of Difference Schemes (2.69)

clc; clear all ; close all;
N=160;

M=160;

h=pi/M; tau=1/N;
a=(1/(tau"2))+(2/(h"2));
e=-2/(tau"2);
b=-1/(h"2);

g=1/(tau"2);

d=0;

for i=1:M-1;
d=d+h*sin(i*h);

end,;
z=2*(cos(h)-1)/(d*h);
A=zeros(M+1,M+1);
for i=2:M;

for j=2:M;
A(i,j)=z*sin((i-1)*h);
end;

end,;

for i=2:M
A(i,i)=a+(z*sin((i-1)*h));
end,

for i=2:M-1,
A(i,i+1)=b+(z*sin((i-1)*h));
end,;

for i=3:M;
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A(i,i-1)=b+(z*sin((i-1)*h));
end;
A(1,1)=1;A(M+1,M+1)=1;A(2,1)=b;A(M,M+1)=b;
A;

B=zeros(M+1,M+1);

for n=2:M;

B(n,n)=¢e;

end;

B;

C=zeros(M+1,M+1);

for n=2:M;

C(n.,n)=g;

end,

C

fii=zeros(M+1,1);

for j=1:M+1;

for k=2:N;
fii(j,k)=((4*(cos(h)-1)/(d*(h"2)))+1)*exp(-k*tau)*sin((j-1)*h);
end;

end;

fii;

G=inv(A);
W=zeros(M+1,1);

for j=1:M+1;
W(j.1)=sin((j-1)*h);
W(j,2)=(1-tau)*sin((j-1)*h);
for k=3:N+1,;
W(:,K)=G*(-(B*W(:,k-1))-(C*W(:,k-2))+fii(: k-1));
end;

end;

for k=2:N;
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D=0;

for j=1:M-1,
S(j)=D+W(j,k+1)-2*(W(j,k))+W(j,k-1);
D=5(j);

end;
p(k)=(2*exp(-(k+1)*tau)-4*exp(-k*tau)+2*exp(-(k-1)*tau)-(h*D))/(d*(tau"2));
end,

p(k);
L=zeros(M+1,M+1);
for i=2:M;

for j=2:M;

L(i.j)=0;

end

end;

for i=2:M;

L(i,i)=3;

end;

for i=2:M-1;
L(i,i+1)=b;

end;

for i=3:M;
L(i,i-1)=b;

end;

L(1,1)=1;
L(M+1,M+1)=1,;

L;
B=zeros(M+1,M+1);
for n=2:M;

B(n,n)=e;

end;

B;
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C=zeros(M+1,M+1);

for n=2:M;

C(n,n)=g;

end;

C

fii=zeros(M+1,1) ;

for j=1:M+1;

for k=2:N;

x=(j-1)*h;
fii(j,k)=exp(-k*tau)*sin(x)+(p(k)*sin(x));
end;

end;

fii;

G=inv(L);

u=zeros(M+1,1);

for j=1:M+1;

x=(j-1)*h;

u(j,1)=sin(x);

u(j,2)=(1-tau)*sin(x);

end;

for k=3:N+1,;
u(;,k)=G*(-(B*u(:,k-1))-(C*u(:,k-2))+fii(:,k-1));
end;

%\%\%\%\%\%'EXACT SOLUTION OF THIS PDE' \%\%\%\%\%\%\%\%
for j=1:M+1;

for k=1:N+1;

t=(k-1)*tau;

x=(j-1)*h;

es(j,k)=(1-t)*sin(x);
eu(j,k)=exp(-t)*sin(x);

end;
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end;

for k=2:N;
t=(k-1)*tau;
ep(K)=exp(-t);
end;

% ABSOLUTE DIFFERENCES;;

absdiff=max(max(abs(es-W)))
absdiff=max(max(abs(ep-p)))

absdiff=max(max(abs(eu-u)))
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Appendix 2
Matlab Programming

Matlab Implementation of Difference Schemes (2.75)

clc; clear all ; close all;

N=20;M=20;

h=pi/M; tau=1/N;

d=0;

for j=1:M-1,

d=d+h*sin((j)*h);

end,;
a=1/(tau"2)+1/(2*(h"2));q=1/(h"2)-2/(tau”2);
b=-1/(4*(h"2));r=-1/(2*(h"2));
c=(cos(h)-1)/(2*d*h);e=(cos(h)-1)/(d*h);
A=zeros(M+1,M+1);

for i=2:M;

for j=2:M;

A(i,j)=c*sin((i-1)*h);

end;

end,

fori=2:M

A(i,i)=a+c*sin((i-1)*h);

end,;

for i=2:M-1;

A(i,i+1)=b+c*sin((i-1)*h);

end,

for i=3:M;

A(i,i-1)=b+c*sin((i-1)*h);

end,;
A(1,1)=1;A(M+1,M+1)=1;A(2,1)=b;A(M,M+1)=b;
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A;

B=zeros(M+1,M+1);
for i=2:M;

for j=2:M;
B(i,j)=e*sin((i-1)*h);
end;

end,

for i=2:M
B(i,i)=q+e*sin((i-1)*h);
end,

for i=2:M-1;
B(i,i+1)=r+e*sin((i-1)*h);
end;

for i=3:M;
B(i,i-1)=r+e*sin((i-1)*h);
end,
B(2,1)=r;B(M,M+1)=r;
B;

C=zeros(M+1,M+1);
for i=2:M;

for j=2:M;
C(i,j)=c*sin((i-1)*h);
end;

end;

for i=2:M
C(i,i)=a+c*sin((i-1)*h);
end,

for i=2:M-1,
C(i,i+1)=b+c*sin((i-1)*h);
end;

for i=3:M;
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C(i,i-1)=b+c*sin((i-1)*h);

end;

C(2,1)=b;C(M,M+1)=b;

G,

fii=zeros(M+1,1);

for j=1:M+1;

for k=2:N;

fii(j,k)=exp(-(k-1)*tau)*sin((j-1)*h)+(exp(-k*tau)+2*exp(-(k-1)*tau)+exp(- (k-
2)*tau))*sin((G-1)*h)*((cos(h)-1)/(d*(h"2)));

end,

end;

el=-tau/(h"2);e2=(2*tau)/(h"2)+1/tau;

y=(2*tau*(cos(h)-1))/(d*h);

E=zeros(M+1,M+1);

for i=2:M;

for j=2:M;

E(i.j)=y*sin((i-1)*h);

end;

end;

for i=2:M

E(i,i)=e2+y*sin((i-1)*h);

end,

for i=2:M-1;

E(i,i+1)=el+y*sin((i-1)*h);

end;

for i=3:M;

E(i,i-1)=e1+y*sin((i-1)*h);

end,

E(1,1)=1;E(M+1,M+1)=1:E(2,1)=e1;E(M,M+1)=el;

E;

fl=tau/(2*(h"2));f2=-tau/(h"2)-1/tau;

102



F=zeros(M+1,M+1);

for i=2:M

F(i,1)=f2;

end,

for i=2:M-1;

F(i,i+1)=f1;

end,

for i=3:M;

F(i,i-1)=f1;

end,
F(2,1)=f1;F(M,M+1)=f1;
F;

phy=zeros(M+1,1);

for j=1:M+1;
phy(j)=(tau/2-1)*sin((j-1)*h)+((2*y)/h)*(exp(-tau)*sin((j-1)*h));
end,

Z=inv(E);G=inv(A);
W=zeros(M+1,1);

for j=1:M+1;
W(j,1)=sin((j-1)*h);

end,
W(:,2)=Z*(phy-F*W(:,1));
for k=3:N+1;
W(,K)=G*(-(B*W(:,k-1))-(C*W(:,k-2))+fii(:,k-1));
end;

for k=2:N;

D=0;

for j=1:M-1;
S()=D+W(j,k+1)-2*(W(j k))+W(j k-1);
D=S(j);
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end;
p(K)=(2*exp(-(k)*tau)-(4*exp(-(k-1)*tau))+(2*exp(-(k-2)*tau))-(h*D))/(d*(tau"2));
end;

p(k);
R=zeros(M+1,M+1);
for i=2:M

R(i,i)=3;

end;

for i=2:M-1;
R(i,i+1)=b;

end,;

for i=3:M;
R(i,i-1)=b;

end;
R(1,1)=1;R(M+1,M+1)=1;R(2,1)=b;R(M,M+1)=b;
R;
L=zeros(M+1,M+1);
for i=2:M;

for j=2:M;

L(i.j)=0;

end,

end,

for i=2:M

L(i.i)=q;

end;

for i=2:M;
L(i,i+1)=r;

end,

for i=3:M;
L(i,i-1)=r;

end;
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L(2,1)=r;L(M,M+1);

L;

Q=zeros(M+1,M+1);

fori=2:M

Q(ii)=a;

end,;

for i=2:M-1,

Q(i,i+1)=b;

end,

for i=3:M;

Q(i,i-1)=b;

end,;

Q(2,1)=b;Q(M,M+1)=b;

Q;

fii=zeros(M+1,1) ;

for j=2:M;

for k=2:N;

x=(j-1)*h;
fii(j,K)=exp(-(k-1)*tau)*sin(x)+(p(k)*sin(x));
end;

end,

G=inv(R);

u=zeros(M+1,1);

for k=3:N+1,;

for j=1:M+1;

x=(j-1)*h;

u(j,1)=sin(x);
u(j,2)=(1-tau+((tau2)/(2)))*sin((j-1)*h);
u(;,k)=G*(-(L*u(:,k-1))-(Q*u(:,k-2))+fii(:,k-1));
end,;

end;
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%\%\%\%\%\%'EXACT SOLUTION OF THIS PDE' \%\%\%\%\%\%\%\%
for j=1:M+1;

for k=1:N+1,;

t=(k-1)*tau; x=(j-1)*h;
es(j,k)=(1-t)*sin(x);
eu(j,k)=exp(-t)*sin(x);

end;

end;

for k=2:N;

t=(k-1)*tau;

ep(K)=exp(-t);

end

% ABSOLUTE DIFFERENCES ;
absdiff=max(max(abs(es-W)))
absdiff=max(max(abs(ep-p)))

absdiff=max(max(abs(eu-u)))
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Appendix 3
Matlab Programming

Matlab Implementation of Difference Schemes (2.76)

clc; clear all ; close all;
N=160;

M=160;

h=pi/M; tau=1/N;

d=0;

for i=1:M-1;
d=d+h*sin(i*h);

end;
a=(1/(tau"2))+(1/(h"2));b=-1/(2*(h"2));g=-2/(tau2);c=(cos(h)-1)/(d*h);
A=zeros(M+1,M+1);

for i=2:M;

for j=2:M;
A(i,j)=c*sin((i-1)*h);

end;

end;

fori=2:M
A(i,i)=a+(c*sin((i-1)*h));
end;

for i=2:M-1;
A(i,i+1)=b+(c*sin((i-1)*h));
end;

for i=3:M;
A(i,i-1)=b+(c*sin((i-1)*h));
end;

A(1,1)=1;

A(M+1,M+1)=1;
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A(2,1)=b;

A(M,M+1)=b;

A,

B=zeros(M+1,M+1);

for n=2:M;

B(n,n)=g;

end,

B;

C=zeros(M+1,M+1);

for i=2:M;

for j=2:M;
C(i,j)=c*sin((i-1)*h);

end;

end;

for i=2:M
C(i,i)=a+(c*sin((i-1)*h));
end,;

for i=2:M-1;
C(i,i+1)=b+(c*sin((i-1)*h));
end;

for i=3:M;
C(i,i-1)=b+(c*sin((i-1)*h));
end;

C(2,1)=b;

C(M,M+1)=b;

C

fii=zeros(M+1,1);

for j=1:M+1;

for k=2:N;
fii(j,K)=(exp(-(k-1)*tau)+((2*c)/h)*exp(-k*tau)+((2*c)/h) *exp(-(k-2)*tau)) *sin((j-1)*h);
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end;

end;

el=-tau/(h"2);
e2=(2*tau)/(h"2)+1/tau;
y=(2*tau*(cos(h)-1))/(d*h);
E=zeros(M+1,M+1);

for i=2:M;

for j=2:M;
E(i.j)=y*sin((i-1)*h);

end,

end,;

for i=2:M
E(i,i)=e2+y*sin((i-1)*h);
end;

for i=2:M-1;
E(i,i+1)=el+y*sin((i-1)*h);
end,;

for i=3:M;
E(i,i-1)=e1+y*sin((i-1)*h);
end;

E(1,1)=1;

E(M+1,M+1)=1,
E(2,1)=el;

E(M,M+1)=el,

E;

fl=tau/(2*(h"2));
f2=-tau/(h"2)-1/tau;
F=zeros(M+1,M+1);

fori=2:M
F(i,i)=f2;
end;
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for i=2:M-1;

F(i,i+1)=f1;

end;

for i=3:M;

F(i,i-1)=f1;

end;

F(2,1)=f1,

F(M,M+1)=f1;

F;

phy=zeros(M+1,1);

for j=1:M+1;
phy(j)=(tau/2-1)*sin((j-1)*h)+((2*y)/h)*(exp(-tau)*sin((j-1)*h));
end;

Z=inv(E);

G=inv(A);

W=zeros(M+1,1);

for j=1:M+1;

W(j,1)=sin((-1)*h);

end;

W(:,2)=Z*(phy-F*W(:,1));

for k=3:N+1,;
W(,K)=G*(-(B*W(:,k-1))-(C*W(:,k-2))+fii(:,k-1));
end;

for k=2:N;

D=0;

for j=1:M-1,
S()=D+W(j,k+1)-2*(W(j k))+W(j k-1);

D=5());

end;
p(k)=(2*exp(-(K)*tau)-(4*exp(-(k-1)*tau))+(2*exp(-(k-2)*tau))-(h*D))/(d* (tau"2));

end;
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p(k);
R=zeros(M+1,M+1);
fori=2:M
R(i,i)=a;

end;

for i=2:M-1;
R(i,i+1)=b;

end;

for i=3:M;
R(i,i-1)=b;

end;

R(1,1)=1,;
R(M+1,M+1)=1,
R(2,1)=b;
R(M,M+1)=b;
R;
B=zeros(M+1,M+1);
for n=2:M;
B(n,n)=g;

end;

B;

Q=zeros(M+1,M+1);

for i=2:M
Q(i,i)=a;
end;

for i=2:M-1;
Q(i,i+1)=b;
end,

for i=3:M;
Q(i,i-1)=b;

end;
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Q(2,1)=b;

Q(M,M+1)=b;

Q;

fii=zeros(M+1,1) ;

for j=2:M;

for k=2:N;

x=(j-1)*h;
fii(j,k)=exp(-(k-1)*tau)*sin(x)+(p(k)*sin(x));
end;

end,

G=inv(R);

u=zeros(M+1,1);

for k=3:N+1;

for j=1:M+1;

x=(j-1)*h;

u(j,1)=sin(x);
u(j,2)=(1-tau+((tau2)/(2)))*sin((j-1)*h);
u(;,k)=G*(-(B*u(:,k-1))-(Q*u(:,k-2))+fii(:,k-1));
end;

end;

%\%\%\%\%\%'EXACT SOLUTION OF THIS PDE' \%\%\%\%\%\%\%\%
for j=1:M+1;

for k=1:N+1;

t=(k-1)*tau;

x=(j-1)*h;

es(j,k)=(1-t)*sin(x);

% ep(k)=exp(-t);

eu(j,k)=exp(-t)*sin(x);

end;

end;

for k=2:N;
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t=(k-1)*tau;

ep(k)=exp(-t);
end

% ABSOLUTE DIFFERENCES ;

absdiff=max(max(abs(es-W)))
absdiff=max(max(abs(ep-p)))

absdiff=max(max(abs(eu-u)))
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Appendix 4
Matlab Programming

Matlab Implementation of Difference Schemes (3.42)

N=160;M=160;

h=pi/M; tau=1/N;
a=(1/(tau"2))+(2/(h"2));e=-2/(tau"2);b=-1/(h"2);g=1/(tau”2);
r=0;

for i=1:M-1,
r=r+h*(1+sin(2*(i)*h));

end;

r

z=2*(cos(2*h)-1)/(r*(h));
A=zeros(M+1,M+1);

for i=2:M;

for j=2:M;
A(i,J)=z*sin(2*(i-1)*h);

end;

end;

for i=2:M;
A(i,i)=a+(z*sin(2*(i-1)*h));
end;

for i=2:M-1;
A(i,i+1)=b+(z*sin(2*(i-1)*h));
end;

for i=3:M;
A(i,i-1)=b+(z*sin(2*(i-1)*h));
end;

A(1,1)=1; A(M+1,M+1)=-1; A(1,M+1)=-1; A(M+1,1)=-1; A(M+1,M)=1; A(M+1,2)=1,;
A(2,1)=b; A(M,M+1)=Db;A,
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B=zeros(M+1,M+1);

for n=2:M;

B(n,n)=e;

end,

B;

C=zeros(M+1,M+1);

for n=2:M;

C(n,n)=g;

end,

G,

fii=zeros(M+1,1) ;

for j=2:M;

for k=2:N;

t=(k)*tau; x=(j-1)*h;
fii(j,k)=((2*(pi)*(cos(2*h)-1)/(r*(h"2)))+4)*exp(-2*(k)*tau)*sin(2*(j-1)*h);
end,

end,;

fii;

G=inv(A);
W=zeros(M+1,1);
forj=1:M+1,

x=(j-1)*h;
W(j,1)=1+sin(2*(j-1)*h);
W(j,2)=(1-2*tau)*(1+sin(2*(j-1)*h));
for k=3:N+1;
W(:,K)=G*(-(B*W(:,k-1))-(C*W(:,k-2))+fii(;,k-1));
end,

end,

D=0;

for k=2:N;

for j=1:M-1;
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S(j)=D+(W(j,k+1)-2*(W(j,k))+W(j,k-1));
D=5());

end;
p(K)=(pi)*(exp(-2*(k-1)*tau))*(1/r)-((h*D)/(4*r)*(tau"2));
end;

p(k);
L=zeros(M+1,M+1);
for i=2:M;

L(i,i)=a;

end,

for i=2:M;
L(i,i+1)=b;

end;

for i=2:M;

L(i,i-1)=b;

end,

L(1,1)=1; L(M+1,M+1)=-1; L(1,M+1)=-1;L(M+1,1)=-1; L(M+1,M)=1; L(M+1,2)=1,
L;
B=zeros(M+1,M+1);
for n=2:M;

B(n,n)=e;

end,

B;
C=zeros(M+1,M+1);
for n=2:M;

C(n,n)=g;

end,

G,
fii=zeros(M+1,M+1) ;
for j=2:M;

for k=2:N;
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x=(j-1)*h; t=(k)*tau;
fii(j,K)=4*exp(-2*t)*sin(2*(j-1)*h)+p(kK)*(4+4*sin(2*(j-1)*h));
end;

end;

fii;

G=inv(L);

u=zeros(M+1,1);

for j=1:M+1;

x=(j-1)*h;

u(j,1)=(1+sin(2*(-1)*h));
u(j,2)=(1-2*tau)*(1+sin(2*(j-1)*h));

for k=3:N+1,;
u(:,k)=G*(-(B*u(:,k-1))-(C*u(:,k-2))+fii(:,k-1));
end;

end;

%\%\%\%\%\%'EXACT SOLUTION OF THIS PDE' \%\%\%\%\%\%\%\%
for j=1:M+1;

for k=1:N+1,;

t=(k-1)*tau; x=(j-1)*h;
es(j,k)=(-2*t+1)*(1+sin(2*(j-1)*h));
eu(j,k)=exp(-2*t)*(1+sin(2*(j-1)*h));

end;

end;

for k=2:N;

t=(k-1)*tau;

ep(K)=exp(-2*1);

end;

% ABSOLUTE DIFFERENCES ;
absdiff=max(max(abs(es-W)))
absdiff=max(max(abs(ep-p)))

absdiff=max(max(abs(eu-u)))
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Appendix 5
Matlab Programming

Matlab Implementation of Difference Schemes (3.48)

clc; clear all ; close all;
N=80;M=80;

h=pi/M; tau=1/N;

d=0;

for i=1:M;
d=d+h*(1+sin(2*(i-1)*h));
end,;
a=(1/(tau"2))+(1/(2*(h"2)));
b=-1/(4*(h"2));
q=(1/(h"2))-(2/(tau"2));
r=-1/(2*(h"2));
e=(cos(2*h)-1)/(d*h);
c=(cos(2*h)-1)/(2*d*h);
A=zeros(M+1,M+1);

for i=2:M;

for j=2:M;
A(i,j)=c*sin(2*(i-1)*h);
end;

end,;

for i=2:M
A(i,i)=a+c*sin(2*(i-1)*h);
end,

for i=2:M-1,
A(i,i+1)=b+c*sin(2*(i-1)*h);
end,;

for i=3:M;
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A(i,i-1)=b+c*sin(2*(i-1)*h);

end;

A(1,1)=1; A(1,M+1)=-1; A(2,1)=b; A(M,M+1)=b;
A(M+1,1)=-3; A(M+1,2)=4; A(M+1,3)=-1;
A(M+1,M-1)=-1,A(M+1,M)=4;A(M+1,M+1)=-3;
B=zeros(M+1,M+1);

for i=2:M;

for j=2:M;

B(i,j)=e*sin(2*(i-1)*h);

end,

end,;

for i=2:M

B(i,i)=q+(e*sin(2*(i-1)*h));

end;

for i=2:M-1;

B(i,i+1)=r+(e*sin(2*(i-1)*h));

end,;

for i=3:M;

B(i,i-1)=r+(e*sin(2*(i-1)*h));

end;

B(2,1)=r;B(M,M+1)=r;

B;

C=zeros(M+1,M+1);

for i=2:M;

for j=2:M;

C(i,j)=c*sin(2*(i-1)*h);

end,

end,

for i=2:M

C(i,i)=a+(c*sin(2*(i-1)*h));

end;
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for i=2:M-1;
C(i,i+1)=b+(c*sin(2*(i-1)*h));
end;

for i=3:M;
C(i,i-1)=b+(c*sin(2*(i-1)*h));
end,;

C(2,1)=b;C(M,M+1)=b;
fii=zeros(M+1,1);

for j=2:M;

for k=1:N+1,
fii(j,k)=(4*exp(-2*(k-1)*tau))*sin(2*(j-1)*h)
+((c*(pi))/h)*(exp(-2* (k) *tau)+2*exp(-2* (k-1)*tau)+exp(-2*(k-2)*tau))*sin(2*(j-1)*h);
end;

end;

eel=-tau/(h"2);
ee2=(2*tau)/(h"2)+1/tau;
y=((2*tau)*(cos(2*h)-1))/(d*h);
E=zeros(M+1,M+1);
fori=2:M;

for j=2:M;
E(i.))=y*sin(2*(i-1)*h);

end,

end;

for i=2:M
E(i,i)=ee2+y*sin(2*(i-1)*h);
end;

for i=2:M-1;
E(i,i+1)=eel+y*sin(2*(i-1)*h);
end,;

for i=3:M;
E(i,i-1)=eel+y*sin(2*(i-1)*h);
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end;

E(1,1)=1; E(1,M+1)=-1; E(2,1)=eel; E(M,M+1)=ee2;

E(M+1,1)=-3; E(M+1,2)=4;E(M+1,3)=-1;

E(M+1,M-1)=-1;E(M+1,M)=4;E(M+1,M+1)=-3;

fl=tau/(2*(h"2));f2=-tau/(h"2)-1/tau;

F=zeros(M+1,M+1);

for i=2:M

F(i,i)=f2;

end,

for i=2:M-1,

F(i,i+1)=f1;

end;

for i=3:M;

F(i,i-1)=f1;

end;

F(2,1)=f1,

F(M,M+1)=f1

phy=zeros(M+1,1);

for j=1:M+1;

phy(j)=-2*(1+sin(2*(j-1)*h))+(2*tau)*sin(2*(j-1)*h)+((y*pi)/h)*(exp(-2*tau)) *sin(2*(j-
1)*h);

end,

Z=inv(E);

G=inv(A);

W=zeros(M+1,1);

for j=1:M+1;

W(j,1)=1+sin(2*(j-1)*h);

end,

W(:,2)=Z*(phy-F*W(:,1));

for k=3:N+1,;

W(,K)=G*(-(B*W(:,k-1))-(C*W(:,k-2))+fii(:,k-1));
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end;

for k=2:N;

D=0;

for j=1:M-1;
S(j)=D+W(j,k+1)-2*(W(j,k))+W(j k-1);
D=3());

end,
p(K)=((pi)*(exp(-(k)*tau)-2*exp(-(k-1)*tau)+exp(-(k-2)*tau))-(h*D))/(4*d*(tau"2));
end,

p(k);
R=zeros(M+1,M+1);
for i=2:M

R(i,i)=a;

end;
for i=2:M-1;
R(i,i+1)=b;

end;
for i=3:M;
R(i,i-1)=b;

end;

R(1,1)=1;
R(M+1,M+1)=1;
R(2,1)=b;
R(M,M+1)=b;

R;
L=zeros(M+1,M+1);
for i=2:M;
for j=2: M,

L(i.j)=0;
end;

end;
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for i=2:M
L(i.i)=q;

end;

for i=2:M;
L(i,i+1)=r;
end,;

for i=3:M;
L(i,i-1)=r;
end,

L(2,1)=r;
L(M,M+1);

L;
Q=zeros(M+1,M+1);
for i=2:M
Q(i,i)=a;

end,

for i=2:M-1;
Q(i,i+1)=b;
end;

for i=3:M;
Q(i,i-1)=b;
end,
Q(2,1)=b;
Q(M,M+1)=b;
Q;
fii=zeros(M+1,M+1) ;
for j=2:M;

for k=2:N;
x=(j-1)*h;
t=(k)*tau;
fii(j,k)=4*exp(-2*t)*sin(2*(j-1)*h)+4*p(K)*(1+sin(2*(j-1)*h));
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end;

end;

fii;

G=inv(R);

u=zeros(M+1,1);

for k=3:N+1;

for j=1:M+1;

x=(j-1)*h;

u(j,1)=1+sin(2*(j-1)*h);
u(j,2)=(1-2*tau+2*(tau2))*(1+sin(2*(j-1)*h));
u(:,k)=G*(-(L*u(:,k-1))-(Q*u(:,k-2))+fii(:,k-1));
end;

end;

%\%\%\%\%\%'EXACT SOLUTION OF THIS PDE' \%\%\%\%\%\%\%\%
for j=1:M+1;

for k=1:N+1,

t=(k-1)*tau;

x=(j-1)*h;

es(j,K)=(-2*t+1)*(1+sin(2*(j-1)*h));
eu(j,k)=exp(-2*t)*(1+sin(2*(j-1)*h));

end;

end;

for k=2:N;

t=(k-1)*tau;

ep(k)=exp(-2*1);

end;

% ABSOLUTE DIFFERENCES;;
absdiff=max(max(abs(es-W)))
absdiff=max(max(abs(ep-p)))

absdiff=max(max(abs(eu-u)))
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