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ABSTRACT

Diagnosis of theung cancerthe most fatal cancer typavolves screeing the patients
initially by Computed Tomography (CTr the presence of lung lesions, which can be
malign or benignHoweverdiagnosing malignancy from just CT images is not an easy
task. In this regardfunctional imaging provided by thBositron Emission Tomography

(PET)is an invaluable solutiowhich enables nofinvasivelung cancerdiagnoss.

Researcherfrequentlydevelop and test proposedprovementsfor the PETusingrobust
simulaton environmentdike the GATE. Since PET scannemrequires several minutes to
complete thescanof a patient natural respiratory motion of thgatientis unavoidable

during thelung cancer imagingThis adverselyaffects theoverall image quality thus
motivaing researcherto establishmotion @rrectiontechniquedor increasinghe quality

of theimages. As the firstaim of this thesis, several different motion correction techraque
(based on image reconstruction) are developed and tested using a simulated torso phantom
(with lung lesions) in GATE simulation environment. Obtained results clearly demonstrate
the quality improvements that the correction of the respiratory motioredekatifacts

provide.

Additionally, radiologistsneed togo over large nhumberof image slices manually in order

to detectand diagnosdung lesions. This process is very time consuming and its
performance is very dependent on the performing radiologist. Thus assisting the
radiologists by developing an automated computer aided detection (CAD) system is an
interesting research goal. In shiegard as the second goal of this thesigpretrained
AlexNet (deep learning) framework tiansferredo develop and implemeatrobustCAD
systemfor the classificationof lung images dependingn whether they bear a lesion or

not High performancesf 98.72% sensitivity, 98.35% specificity and 98.48%curacyare
reported as a result

Keywords:Lung CancerPET; Respiratory Motion Correctip€AD; Deep Learning
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¥ZET

En ©°1 ¢ mcg¢l kanser ti pi i&blarakb iak g i foraografiklaégh s e r
(BT) il e mal i gn veya benign ol abmaegeek é
i -ermekBediunl a birlikte, sadece BT g°re¢nt ¢
bir ik dejil dir. Bu bajl amda, P o zajtlraoma nE mi
fonksiyonel geré¢nt ¢l eme, i nvaziv ol mayan a
dejer |l i bir -°z¢mdge¢r .

Ar akt ér macél ar , GATE gi bi g¢-RET sh aedialse/ro n

I yi | extsiérkmetlkdrai gel i ktiriTp ttags @tylEioéd me & s edn é

taramaséné tamamlamaséndenakoi per kkansgeaki kg?©

séravasdaneén doj al sol unuBm hdaurreukne t i g eknae-1é n
kalitesini ol umsuz etkitmgkrekjngaragrt g¢r ma
d¢zeltme y°ntemlerii geBukttiezmeny e | rho tainvaec ée tc
sim¢gl asyon ortaménda simgle edil mi ereRbi r ge°
kull anél arak -exitl: farKlgér pargkeevhldpket g
geli ktiril mick Ve test edi | mi ktir. El de e
artifaktlarén d¢gzeltilmesinin sajladeéejeée kal
Ayr éca, radyol oglaemakcivpet ekbzgorelt ame&neé - $ 1

dilimini eldent ar amal ar é ger ekmekt ediaupp @8ruf osr¢nraen-s é
ger-eklexktiren radyoloja bajledeéer. B°yl ece
Si st emi gel i kti deéemel rddywdkl oigll girm- yhairr ar i
bajl amda, bu tezin i ki nci amaceée ol ar ak, a

baréndérmadéejé y°n¢gnde sénéflandérma yapma

uygul amak amacé il déd exmMeeddrdeeijint i°lf] miexn mei) r -,
aktareéel mékt ér . Sonu- ol ar ak, % 98, 72 duyarl
y¢ksek performansl ar rapor edil mektedir.

Anahtar Kelimeler Akci J er Kanseri ; PET; Solunum Har

¥ renme
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CHAPTER 1
INTRODUCTION

Positron Emission Tomography (PET) is an established imaging technique in medicine for
obtaining functional images of the human body. Due to its property to obtain functional
images of the metabolic activity, PET is widely used in oncologiiegnostic imaging for

the detection of various cancerous tissues including detection and monitoring of tumors
located in the torso regiohung tumors aréhe most fataltumor types that can be widely
encountered in this regiorApart from oncological imging, neurological imaging to
diagnose disorders, cardiologic imaging to diagnose diseasegisaimdegration as an
imaging tool inradiation therapy planning can be considerethasther main uses of the

PET devicgChen, 2013Lin and Alavi, 2009; Fat et al.,2009)

PET imaging concept is based on injecting radioactive tracers to the patient. These radio
tracersrelease positrons which annihilate with the electrons of the tissues to generate two
back to back gamma photons which can be detduyetthe specialized detectors of the

PET device to generate diagnostic images using advanced image reconstruction
algorithms. Since radiolabeled tracer molecules are coupled with molecules, like sugars,
that can easily accumulate in metabolically active &ssihe detection of those released

photons is used to estimate the metabolic activity of the tissues, providing a competent

imaging tool for functional body imagin@lehmeh et al., 2002).

Most commonly used radiotracer @mcologicalPET imaging is'®F-fluorodeoxyglucose
(*®F-FDG). '®r-FDG is transported into the cells of the patient by the glucosebolitm

thus enabling it to be used in imaging of the glucose metabolic aativitye patientin

PET imaging Since cells in cancer tissues divide grdw far more rapidly than normal

body cells they require higher glucose metabolic activity to provide the necessary energy
in the processThus PET images usin§F-FDG radiotracers provide be a powerful tool

in imaging and locating cancer cellsApart from ‘°F-FDG, some other used PET
radiotracers and their corresponding involved biological processes can be seen in Table
1.1



Table 1.1 PET radiotracers used in medicine and their corresponding involved biological

processes
Name of the tracer Involved biological process
“F-FDG Glucose metabolism
BEMISO Hypoxia
HC-methionine Cellular amino acid uptake
H,"°0 Blood flow
¥F.dopa Dopamine storage

Due to its design and concept, the powerful functional imaging capability of the PET
device comes along with its poor spatial resolution and structural imaging capability with
respect tanore conventional medical imaging techniques such as Computed Toohggra

(CT) and Magnetic Resonance Imaging (MRI) devices. While these conventional imaging
modalities lack PET s functional metabolic imaging properties, they can provide detailed
high resoluton mages of the anatomical dsingthese ur e s
highly detailed structural images to precisely locate the anatomical positions of the high
metabolic activities,such as tumors, was the main driving force behind the recent

development of the hybrid functionsiructural imaging modalities.

PET/CT and PETMRI (as seen in Figure 1) are two of these hybrid devices that are used

in tumor imaging. PE/CT uses the high qualityigh resolutiorstructural hard tissue (like
bones and ligaments) imaging capabilities of CT device to precisely localize high
metabolic activitiesIn contrast, PE/MRI uses the high qualifyhigh resolutiorstructural

soft tissue (like muscles, brain tissue, lung #ssic.) imaging capabilities of the MRI
device. Due these powerful hybrid imaging capabilities BETand PETMRI devices
currently can be considered as the state of the art for detection, localization and diagnosis
of the cancerous tissu@s oncologicalimaging.Instead of using PET, CT or MRI alone,
using these hybrid devices for cancer diagnosis provides far more better diagnostic
accuracy(Antoch et al., 2003)Main drawbacks of these devices dheir very high cost

and very rare availability when cqrared to other medical imaging modalities. Rarity of

these devices (only 1 PEJT device waswvailablein North Cyprusas the time of writing,



Figure 1.1: a) CT scanb) MRI scan of lung tumormarked by arrows. Bottom row shows
the corresponding) PET/CTand g PET/MRI scangAppenzeller et al, 2013)

while therewere none PET/MRI devices) creates the need for the development and use of
powerful simulators, for the scientists to work on and develop new methods to improve the

imaging modality.

1.1Lung Cancerand PET

Lung cancer can be considered as the deadliest cancer type in the world. World Health
Organization (WHO) reported 06.000 deaths from lung cancer in year 2015. This
number is Dbelieved to increase to around 2.280.000 dedtlgs 2030
(http://www.who.int/healthinfo/global_burden_diseasej@ctions2002/en/Retrieved 10

February, 2017)In USA smoking tobacco products are the main reason behind lung
cancer with 90 percent of whole cag@dberg et al, 2007) Exposureto polluted air and
genetics can be considered as other fackasy diagnostics play a very important role in

the survival rates of the lung cancer patientspszise detection of the lung tumors by
using state of the art PET/CT or PET/MRI devices that implement the best quality, best

resolution imaging is very crucial.


http://www.who.int/healthinfo/global_burden_disease/projections2002/en/

Figure 1.2 Microscopic images of SCLC (left) and NSCLC (right)
(https://www.onhealth.com/content/1/lung_canRetrieved 7
February, 2018)

Small cell lung cancer (SCLC) and remall cell lung cancer (NSCLC) can be considered

as the two main types of lung cancer (see Figure 1.2). NSCLC is the most common type
but it isless aggressive, spreading to other tissues and organs far more slovihethess
common SCLCIn SCLC, cancer cells are very small when observed under microscope
and they are derived from epithelial cells to become solid tumors. On the other hand in
NSCLC, the cells are bigger when compared and they are also derived ftoetiamxells

to become solid tumor\\SCLC can be further divided into squamous cell carcinoma,
adenocarcinoma and large cell carcinoma subtypes. Most common indications of lung
cancer ca be considered as chest pain,sla$ weight, coughing up bloodand chronic
coughing. Although cancer cells from other organs can also spread to the lungs as
metastases, generally they are not classified as lung c&wree. common lung metastases

are breast cancer, prostate cancer, bladder cancer and colon cancer

Apart from the type, the stages, which is basically the scale that shows how much the
cancer has spread in the body, of the lung cancer is also important. SCLC can be
distinguished into two main stages. In its limited stage, cancer cells are limited toethe o
side of lungsor lymph nodes near the lung&/here in its extensive stage cancer cells are
spread to both lungs$o lymph nodes on the other sidied even to other parts of the body.
Different from SCLC, NSCLCan be distinguished into six stagestlinsi Afoccul t st

a


https://www.onhealth.com/content/1/lung_cancer

Table 1.2 Survival rates of the patients with NSCLC with different stages of the disease.
Table adapted frorfMountain, 1997).

Stage of the disease Survival rate in percentage after 5 years
of treatment
I %61
A %34
1B %24
A %13
B %5
v %1

tumor location cannot be identified and the cancers cells can only be detected in a sputum

cytol ogy exam. I n Aistage 00, cancer cell s
I n Astaegerilecada smoan | tumor can be detected.
the tumor size increases and it spread to |

has spread to the same side of the chest where it has started ooppdbkiee side of the
chest or above the coll ar bone. Finally, [
spread to the both sides of the lung, it camiéiected in the fluid surrounding the lungs or

it can be discovered in the fluid surrounding teart.Stages Il and Il are also divided

into two subclasses. Table 1.2 shows how the survival rate decreases dramatically in
NSCLC patients when the cancer stage incredges.clearly indicates the importance of

the early diagnosis of the lung cancer where PET imaging plays a crucial role.

As for the treatment optionfor early stages surgery usuallythe first option sometimes

followed by chemotherapy and radiotherappr advanced stages chemotherapy is the

main option sometimes followed by radiotherapy and may be sui@embination of all

these methods can be used together throughout the treatthant.i ent 6 s condi t

doctors directions play an important rakethe determination of the treatment options.

In hospital environment, when scanning for lung cancer, the first step for the patient is to
undertakeconventionalx-ray radiography or a more advanced CT scan. As a result of

these scans, abnormalities retlungsi.e. lesions can be detected. If the detected lesion is



smaller than 3cm it is generally identified asnodule. If it is largerit is generally
identified as a mas®etection of a lesion is not always an indication of a cancer. Other
diseasedike tuberculosis, inflammation of the lungs and pneumonia can also lead to the
formation of lesions in the lungs. In this regard proper diagnosis of the malignancy is of
great importance. Even though some morphological properties of the lesions observed
under conventional radiograph or CT scan can be useful to assess the malignancy of the
detected lesions, usually these properties alone are not sufficient enough to diagnose the
malignancy accuratelyErasmus et al.,, 2000)Invasive methods like biopsiesr o
thoracoscopic surgeries can be undertaken to carry out the diagnosis more accurately
(Rohrenet al, 2004) Disadvantages of such procedures are that invasive procedures carry
high risks and complication§o, because of these disadvantages, if iheasive methods

are skipped by the doctor, standard clinical routine involves falipwconventional
radiographs or CT scans over a course of 3 to 6 months to carry out radiological
assessment to diagnose malignancy of the lesion through its growth.

Sincemalignant lesion$iave an increased glucose metabolism when compared to benign
lesions,'®F-FDG PET scans have the ability to detect and diagnose malignant lesions early
on without the risks and potential complications of the invasive metBadswuse ofhis
increased gloose metabolism, lung cancer cells accumut&&eFDG, annihilating more
electronsn the cancerous tissue, which are in turn detected by the PET detetdtinsis
creating bright areas on the PET ima¢ese Figure 1.3)When coupledvith the precise
structural imaging provided b@T or MRI, PET scans provide cliniciamsth an effective
nonrinvasive method for early detection, localization and evaluation of lung lg8eysr

et al., 2000) This effective early diagnosis allows thatignt to start treatments earlier,

providing more treatment options and increasing survival rate dramatically

Standardized uptake value (SUV) is the standard measurement for the PET images and it is

calculated as follows:

"Y'Y@ (1.1)



Figure 1.3 Lung cancer appearas a bright area on tH&F-FDG PET scan, indicating a
high metabolic aregMahowald et al., 2015)

To distinguish lung cancer in PET images a SUV level of 2.5 is used. If SUV value is
above 2.5 a lung lesions can be considered as malignant, i.e. cancerous. If it is below 2.5 it
can be considered as benign. Alilgb this is true, sometimes partial volume effects (PVE)

in the image can cause miss diagnoses specifically for small lesions. In those cases, a small
lung lesion with a SUV value below 2.5 can also be a malignant lesion. So, effective use of
this measureent method along with the correct image reconstruction method is necessary

for proper diagnosis.

Because of the small size of lung tumors and the low spatial resolution nature of the PET
imagesthere is always a risk of faulty diagnosis. Thus, improving PET image quality is
one ofthe main research areas in the field. One of the main reasons of poor PET image
quality in pulmonary PET imaging is theea t i matural gnstion, such as breathing and
heart beating, during the scdburing a whole body PET scan, which last about 15 to 30
minutes, it is not possible to prevent involuntary and sometimes voluntary motion of the
patient. While voluntary motions can be classified as the slight movemetite bbdy,

limbs or the head, mostly the patient carries in order to relieve pain or pressure during the
scan, involuntary motions are the motions that the patient cannot control directly, such as
periodic movement of the organs during natural cycles ldeathing and heart beating.

Because of these motions, the position of the organshaarge byseveral centimeters



:

a) CT b) PET

Figure 1.4 Artifacts due tadhe movement of the liver during respiration
(Townsend, 2008)

a) Standard PET b) Respiratory gateBET

Figure 1.5 a) PET scarwith the almost notvisible blurred lesion (arrow) due to
respiratory motionb) Respiratory gateBET scan to eliminate
respiratorymotion blur effect. Arrow points the clearly detectable small
tumor (http://depts.washington.edu/imreslab/currentResearch.htmi
Retrieved 7 February, 2018
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duringthe acquisition (see Figure 1.4). Variation in the positions of the organs during the
scan leads to some spread of the radioactive activity in the field of view of the device over
an area proportional to the magnitude of the motion, worsening the rextedtPET

image quality and causing motion blur in the images (see Figure 1.5.a). In the special case
of PET imaging for lung cancer diagnosis, eliminating the respiratory motion during
breathing is the biggest challenge. As a result of the respirataignmeeveral adverse
effects are imposed on the lung PET images, thus creating an adverse impact on
consequent clinical diagnosis. Blurring of the images, degradation of the spatial resolution
and problems in attenuation correction of PET can be condidsréhe main effects. Due

to these, reduction in lesion intensity and overestimation of lesion size can be observed
(Devaraj, Cook and Hansell, 2007; Erdi et al., 2004)

Therefore, important efforts were taken by the researchers to solve the natticad mo
problem during lung PET acquisitions to improve the overall quality of the cancer
diagnosis (see Figure 1.5.8\hen carrying out researdbr eliminating natural motion
basedartifacts one important point to consider is to reduce the exposupaieits to
radioactivity which can result from the repeated intake of radioactive tracers during the
repeated scans undertaken that are necessary for the development and testing of new
methods.Use of powerful PET scan simulators to develop and test motimpensation
techniques is an effective approach in this regard.

1.2 Respiratory Motion Correction

During the natural inspiration and expiratiomypical volume of the thoracic space
changes. This volume change caubespositions of most organs found in tbhesbregion

such as lungs, liver, spleen, pancreas, kidneys, prostate and even the heart to move and
shift their locations alongwith possible pathologes inside those organssenerally
respirationis periodicbut in inspiration and expiration phases, the affecteghnsdoes not

follow a similar path

When a PET acquisition is performethese natural respiratory motions of tbegans
degrade th@nage quality andhave an adverse effect anquired datguantification This

is an important situation which can lead to faulty clinical diagnoses because of the



introducedblurring effect and theeduction of the reconstructed imagesntrastlevels

along with the measurement errors in radioactivity conceéotr@Yu et al., 2016).

Varioustechniquescan be appliedor carecting respiratory motiorartifacts (Rahminet

al., 2007).0f thesetechniqguesan accepte@pproach is gatingn gating technique,an
external devicdas coupled with the PETor the registiation of the respiratory motion
phasedn the imagedrgan then thesignal obtained from this device is used divide the
PET emission data intpartitions that are synchronized with thearious parts of the
respiratory cycldMcClelland et al., 201)3 Even though gating is an accepted approach it
usually generatesmageswith low signatto-noise ratio (SNR)(Li et al., 2006)and
separatalevices likespirometers, lrest beltawith pressure sensoend opticakystems for
tracking bodyposition areusually necessaryor recordng motion of the patient during
respiraion. Instead, other techniques that relydata driven methods can also usedfor
providing motion characterization After models regarding the respiratory motioare
obtained imagebased registratiorfFulton et al., 2002pr motioncompensated image
reconstructior{Lamare et al., 2007% used forcorrectingrespiratory motion

Common motion characterization techniques currently used in the field can be grouped as
PET-derived &chniques, MRbased techniques and jotediction techniques (Catana,
2015). These techniqu@svolve obtainingmotion fieldswhich give information about the

locaionsof the organshroughouthedifferentrespiratoryphases

PET-derived techniquemvolve deriving the motion fielddirectly from the PET images.

In these methods optical flow algorithrage implementedh which therespiratory cycle is
separatednto severalphasesand the transformations between the corresponding PET
images at each cyclghaseare predictedintensities of the image pixels after the motion
are related to the optical flows (velocities) in each direction along with the variations in
pixel intensitiedn the corresponding directions for carrying out tihedgction(Dawood et

al., 2008).Motion fields can also be obtained usiBgspline deformable registration

instead of using the optical flow technigiiBai and Brady, 2009).

In the recent years, a hyth configuration of the PET device, the PET/MRI become more
available for clinical use and researches developadious MRI-based motion

characterization techniquetong with it(Dutta et al., 2014)These techniques range from
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simple methods likegenerating respiratory motion models from repeated 2D MR image
acquisitions over several respiratory cyd@gurslin et al., 2013pr using 3D selpated
radial MRI gradient echo sequend&rimm et al., 2013jo more complex methods like
tagged MRI, phaseontrast MRI and pulse field gradient meth@@=zturk et al., 2003).
Additionally, in MRI-based method¢he disadvantage of the PET/CT in terms of the
imposed extra radiation dose by its CT component is eliminated witbrtizéng-radiation

free imagingcapabilities of the MRI

Also the information gathered from both PET and MRI can be combinachfdemening
the motion characterizationwhile PET presentghe respiratory surrogate signal for the
motion modelby applying principal component analysis (R, 2D multi-slice MRI
presentghe imaging input of the modéVanber et al., 2016).

After motion characterizatiois completedpne of the preeconstruction, reconstruction or
postreconstruction techniquesn bemplementedor carrying out the respiratory motion
correction of the PET image datdre-reconstruction methodsvolve compensating the
respiratorymotion before reconstructinge images from the raw PET daFor example,
each detected event in a pair of detectors is reassignanother pair of detectors based on
the derived motion fieldgLivieratos et al., 2005)Differently, in reconstruction based
motion compensation techniquéise obtained motion model imcorporatd in to the
reconstruction algorithnto modify the PET system matrix directly. Examples exist for
common reconstruction algorithmsjist-mode maximum likelihood expectation
maximization (MLEM) algorithm (Guerin et al., 2011)r listmode orderegubsets
expectation maximization (OSEM) algdmih (Chun et al., 2012)Iin these techniques,
motionwarping operator is interpolated from the motion fields asedfor modifying the
original system matrixSince all the detected events by the PET are counted in these
methods, they produce images withproved image quality fen compared tdhe
conventional gating technique§hus they can be considered as an ideal approach.
Moreover simultaneous image reconstruction andtion characterizatiofwhich reduce
the motion blur and increases the SN be implementedfor further improvel image
quality (Blume et al., 2010)Postreconstruction techniqguese another alternativier the

respiratory motiorcompensationMotion fields obtained either frolRET or MRIcan be
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used to ceegister the already renstructed images at variopbasesof the respiratory

cycle to a common reference fravgurslin et al., 2013; Lamare et al., 2014).

1.3Computer Aided Tumor Detection

In addition tothe aforementioned important roles of PET imaging in laagcer diagnosis,

one other main application area of PET imaging is in planning for lung cancer radiation
theray (Feng et al., 2009)During radiation therapy to treat cancerous lung tumors,
implementation of advanced techniques like, image guided maditdterapy (IGRT), 3D
conformal radiotherapy (3DRT), intensityodulated radiation therapy (IMRT) and
computer assisted 3D plannirgof great importance. Implementation of such techniques
guides radiation therapy devices, such as medical linear acoedefaiNACS), to focus
destructive high radiation dosenly to the unwantedumor tissue while keeping the
damage to healthy tissues at minimal le&lsicManus et al, 2009)In order to achieve

this with high precision, very accuradetection andgegmeration of the lung tumor tissue
from the surrounding tissues is very important. With accurate segmentathation
therapy device can focus high radiation dose to the segmented tumor region, destroying

cancer cells without causing unwanted harm to tineanding cells of the healthy tissues.

Before the widespread of PET devices in hospitals, structural imaging devices, like CT and
MRI, were mainly used to detect and segment the anatomical perimeters of the lung
tumors. With PET becoming more common, it is combined with structural methods to
provide additional functional information to improve the segmentation of the lung tumors
from surrounding tissues. Functional information provided by the PET allows the
segmentation of the functional perimeters of the tumor, providing accurate information
about the active parts of the tumors. With this addition, clinicians can segment tumors,
evaluate treatment responses and predict survivals with far more preésthret al.,
2002).

In commonclinical routine,detection andgegmentation of lung tumois carried out by
clinicians mainly radiologistsmanually or semautomatically. First, doctor goes over
series of PET/CT or PET/MRI images of the patigitde by sliceto accurately detect the
presence and the location of the lung lesions. Then pdiagnosis is carried out based on
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the prior knowledge of the doctand sometimeghe additional information provided by
other pathologal examinations After lung tumors are detected and diagnosédician
either manually delineatebe tumorboundaries, i.e. manually draws the tumor regions
carefully, or guides the semautomatic systems of the imaging or therapy modaltbes
obtain the segmented tum@btained results are manually annotated and presertes.
procedure is far more samenmost of the othemedicalpathologicalimagesegmentation

tasks, like brain tumor segmentation and so on.

Cliniciands manual i nvol vement in these pt
subjectivei.e. radiologist dependerdand highly dependent on pri&nowledge, expertise

and manuavisual capabilities of the clinician performing the procedumethis regard

results of such manual segmentations are subjeetrtos andarge intra and inter rater

variability. Because of these concerns, developmé&mbbust computer aided automatic

tumor detection and segmentation methaés computer aided detection (CAD) systems,

to provide efficient and objectiveletection andsegmentation results, became a very
interesting and popular research area irohlinedical imaging fields in the recent years

(Ik éenal., 2016).

In lung cancer detection and segmentation, manual segmentation can be far more
challenging for the clinician. Small lung lesions can cover areas as small as 2 or 3 voxel
diameter on the imageAlso their contrast levels can be very insignificant when compared
to the contrast levels of the surrounding tiss(g=e Figure 1.6)These make visual
detection and manual delineation by the clini@arery tough process, resulting in missed
tumors diring detection. Therefore, automatic detection provides invaluable assistance to
the clinicians for accurately reading and analyzing oncological images, thus ensuring

excellence in diagnosis and treatment of lung cancer.

In fully automatic tumor detction and segmentation techniques, no user interaction is
required. Mainly, almost all weknown image processing techniques along with machine
learning and artificial intelligence methods can be implemented to carry out the automatic
detection and segmgtions. Even in some methods prior knowledge is combined to solve
the problemAutomatic detection and segmentation methods can be mainly classified as
discriminative or generative methods (&enal., 2016).
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Figure 1.6: a) & b) PET images of an 8mm lung lesion at different locations of the lung.
Arrows show lesion locations. Due to small sirel insignificant contrast these
lesions can be easily missed by the radiologist during manual/visual inspection.
c) An example CAD system, representing segmentation performance of different
techniqueghttp://medicalphysicsweb.org/cws/article/research/5(Re#ieved
7 February, 2018)

Discriminative methods require ground truth data to learn the relationship between input
images containing the tumors with the ground truth to carry out decisions. Generally these
methods involve extracting features from the images using different imagespmg

techniques.

Deciding which features to use is of great importance in these techniquesst cases
final decision is made by using supervised machine learning techniques imhicter to
perform well, require large image datasets wahcurate groundruth data In contrast,
generative method®quire prior knowledge, such as location and spatial extent of healthy
tissues to generate probabilistic models, whichycaut the final segmentation. Prior

obtained maps of healthy tissues ianplemented to segment the unknown tumors areas.
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Figure 1.7: Example of a common processing pipeline for tumor detection and
segmentation

Developing suitable probabilistic models by using prior knowledge is however a

complicated task.

In application, almost all discriminative methods employ a similar process, named as a
processing pipeline (see Figure 1.7). Typical processing pipelin@rfartdetection and
segmentation starts with ppeocessing followed by feature extraction, classification and

postprocessing procedures.

In the first step of prprocessing, filtering operation to remove possible noises from the
images and operations dikintensity bias corrections can be carried out. In feature
extraction step, most of the wddhown and common image processing techniquedean
implemented to extract different features to define the differences in target tumor tissues
and healthy normalssues. Many different features including, asymmegigited features,
contrast levelsjntensity gradientssize information, first order statistical features, raw
intensities, local image textures and edge based features can be extracted from the image
for both healthy and tumor tissues, which is used to make a classification in the next step.
In classification step, different types of classifiers like, artificial neural networks (ANN), k
nearest neighbor classifiefkNN), selforganizing maps (SOM}upport vector machines
(SVM) and random forests (RFare implemented to make the decision of assigning an
image pixel either to healthy tissue class or to tumor tissue class. Some applications require

the results of the previous steps to be refined twrease overall detection and
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segmentation performancelechniques like conditional random fields (CRF) and

connected components (CC) are used to carry out thigppmstssinglk éenal., 2016).

Despitethe aforementioned CAD methods for tumor detection and segmentation were very
common and successful in previogsars;an emerging technique of deep learning began

to replace them in the recent years. As the main deep learning method, convolutional
neuralnetworks (CNN) obtained staté-the-art performances in many of the wktown

object recognition challenge&rizhevsky et al., 2012)These marginal performances
allowed deep learning methods tocbmehighly recognized also in the field of medical
image processing. In previous research, by obtaining record performances, application of
the deep learning methods to the most complex medical tumor detection and segmentation
tasks proved to be very effectiylx éehal., 2016)The main advantage of CNNstisat,

due to their very deep.e. many in numbercomputational layers, they leatrighly
representative complex features directly from the input images given to them. Oppositely,
in traditional automatic classification applications, features representing the differences in
tissue classes need to be extracted by hand using the aforementiawed grocessing
techniques. Extracting highly representative features from the input images to be used for
the classifier has the most powerful effect on the performafhamputerized tumor
detection and segmentation applications. However, handcrafiggg tfeatures requires

high skill and knowledge. It is also very tinsensuming, involving most of the work and
generally selected features are not robust with respect to the variations in the image data.
Since CNNs automatically learn these complex repredive features, the burden of
feature handcrafting is eliminated and the performance of the classification is greatly
enhanced.As a result of this, instead of trying to develop better image processing
techniques for bettefeature extraction, currentesearch on developing CNN based
techniques for tumor detection and segmentation greatly focuses on designing new and
better network architectures. Figure 1.8 illustrates an example deep learning architecture

for tumor detection.

Despite its clear improvemes over traditional methods, implementing deep learning
techniques also have some hassles. Training a deep convolutional neural network requires
very large annotated training image dataset for improving performance by increasing the

number of convolutiordayers. Alsgincreasinghenetwork depth increases the
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Figure 1.8 Example deep learning architecture for brain tumor dete@tamaei et al.,
2017)

computationalcost due to an increase in the complex operations carried out in the deep
convolutional layers. In this regard, designing and training deep convolutional neural
networks require powerful GPU powered computers, and even in some cases GPU
powered super compers. Scarcity of PET, PET/CT and PET/MRI modalities makes the

availability of such large annotated image databases even a more difficult task.

An adaptation of deep learning, namely transfer learning (and its variation transfer learning
with fine tuning)(Tajbakhsh et al., 201@yesents an effective solution for this problem. In
conditions wherdimited training image data, not enough machine learning expertise and
limited computational resources are available, researchers can use transfer learning as an
efficient deep learning application. Basically, transfer learning means that;tiipes

deep learning system imported to be used as an efficient feature extractor for the desired
application in questioflk € n  a nild 200ry. Todbé moreexplanative, a deep learning
framework, such as a convolutional neural network, that is previously trained on a large
annotated general image datagktes not need to be medicalhere it has obtained high
performance can be imported for a medical imagapmplication like lung cancer
classification. This imported piteained CNN can be used as an automatic feature
extractor for extracting highly representative features from the PET lung cancer images.
Automatically extracted features are then deliveredragput into a more conventional,
computationally more cost effectieand easier to implementassifierfor carrying out the

final classification between normal healthy and cancerous tissues. One step further, one or

more convolutional layers of this pteined network can be trained again, i.e. fimeed,
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with the PET lung cancer image data in question. This method is then called transfer

learning with fine tuning.

Implementation of such transfer learning technique to detect and segment lung cancers in
PET imagess feasible for developing robustand efficientlung cancer CAD system to
provide preciseand objective segmentations for radiation thenalayning and to provide
automatic diagnosis assistance to the cliniciavigh this achievement, tougbrocess of

visual detection and manual delineation of the lung tumors by the clinicians, which can
result in missed tumors, can be assisted by the automatic detection system which in turn
provides invaluable assistance to the clinicians for accurateljingeaand analyzing

oncological images, thus ensuring excellence in diagnosis and treatment of lung cancer.

Most of the previous research for developing such CAD systesimg PET imagesor

lung tumor detectiomelies on private PET data acquiredectly from patientsn clinics

and the ground truths are prepared manually by expdiblogistsin that institutions
(Wang et al., 201ManzouliBenet al, 2017; Kopriva et al., 2017Unfortunately,at the

time of applicationthere were no publiglavailable PET lungancerimage databases with
extensive ground truth presehat could be used in the proposed transferred deep learning
based CAD systenDue to there is only one PET/CT device available in North Cyprus and
getting the acquired imagewvaluated by expert radiologist would be costly and would
require so much timehe option of creating our own databageas not available to us in

this study.Using simulation data is another option but that wdugdnot representative
enough for the obseable variations in real clinical cases and also waaljlire expert
annotations and delineations. this regard, to develop a CAD system #atecting lung
cancer we decided to use lung CT databases already available with expert annotations.
However, since CT lacks the functional metabolic activity information, which can be
provided by the PET, detecting and deciding about the pathology of lung lesions with
automated systems by only using lung CT images is a very difficult task and most of th
time not possibléBaker et al., 2017)Although morphological information of the lesions
detected in CT images can gitke radiologists hints about the pathology, further
pathological analysjsas mentioned previously, and/or motorization ofdbeebpment of

the lesion with followup scans over a long period of tingserequired to achieve accurate

diagnosis.So instead, detecting lung lesions/nodulethout diving into pathologys a
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more feasible task. At a later stage, with the availability oliplRET databases or with

the development of our private datahasenctional information of the PET can be

incorporated to the system to gieeditional diagnosisassistancen that detected lung

lesions

1.4 Contributions

In this thesis théollowing contributions are made:

T

Simulation of a PET/MRI device is performed in GATE environment using a
computerized lung lesion induced XCAT phantom.

Several motion correction methods are developed, incorporated into OSEM
reconstruction algorithm and tested in the GATE simulation environment for the
compensation of respiratory motion artifacts in PET images for lung cancer
imaging.

AlexNet deep learnigp framework is transferred into the medical imaging task of
lung lesion detection.

Transferred AlexNet is used as an automatic hierarchical feature extractor for
extracting features from lung CT images.

Two other nordeep learning based feature extractiethods are developed for
comparing transferred deep learning method.

Developed feature extraction methods are used in the development of a high

performing CAD system for the detection of lung lesions from lung CT images.
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CHAPTER 2
THEORETICAL BACKGROUND

This chapter presents tlietailed technicabackgroundon the main imaging modalities
usedfor lung cancer imagingl'echnical details of deep learningethods for CAD system

development aralsointroduced

Imaging modalitiesised in medicinean be classified as the devices that provide structural
information or functional information or hybrid devices which provide both types of
information. Devices that give images of anatomical structures inside the bodyraye: x
radiography, CT and MRIPET provides functional information about the metabolic
activities inside the patientds body wher ¢

combines both structural and functional imaging.

2.1 Conventional X-Ray Radiography

Conventional Xray radiographys based on the principle that, when they deliveradyé

can penetrate through the human bodyilévihey penetrate through timanbody they

lose some of their energy, i.e. attenyattue to interactions with the tissue material
Attenuation propertie of the different types of tissues are different from each ofthés.is

mainly due to their density propertiddard tissues like bones attenuate the most, while air
and fluids inside the body attenuate the IeBists allows the intensity difference$the x

rays after penetratioand attenuatiothrough the body to be mapped on plain fluorescent
films or on digital detectorsreating the xay image(Bettinardi et al., 2002)Since less
attenuation means the passed throughyxhas more energy, ainé fluids appear darker

on the xray image. High energy-x ay A b u r n, $uthingtithtoedarkeri ténenin
contrast, boneand other calcified structur@dlow less xray energy to pass through them,

in turn appearing whitand well definedn the film.Low energyxr ay cannot dAbur
film leaving it white. Soft tissues, which have medium attenuation properties, appear grey
on the xray image Fat tissue is an exception, which appears little darker. See Figure 2.1

for an example Xay image.
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Figure 2.1: An example chest-rxay image(https://radiopaedia.org/cases/norrmhestx-
ray Retrieved 10 February, 2018

Due to these properties;ray radiography is mainly used for imaging bories the
purpose of detecting fractures. Abdominal scans and scanning chest for lung cancer and

pneumonia detection are among other common uses.

Generally, xray radiographs are taken along a defined projection angle which maps the x
ray attenuation through the body. Three projection angles of posteroanterior (PA),
anteroposterior (AP) and lateral scans are commonly used for chest scans. Caailyention
x-ray images are recorded using fluorescent films. These films require processing by
liquids in film baths before image can be formed. However, in modern radiography, digital
electronic detectors anesed to detect the incomingrays and turn themrmto electrical
signals, where output signal level of each detector element is directly proportional to the x
ray energyincoming to that particulardetectorelement.Digital images can easily be
processed, stored and viewed by computers without the neextéonalprocessing.

Conventional xray radiographyf the chests alow cost, easy to perform and very quick
imaging technique. Typical scans rarely lasts longer than 10 minutes and does not require
extensive preparations of the patient. Becausbasfe advantages it is generally preferred

as an initial examinatiofor the medical diagnostic procedures. However due to low soft
tissue contrast and not including three dimensional information (image is presented as one
slice of information on two dimeonal plane from the chosen projection angle), proper
evaluation is difficult and further scans using more advanced imaging modalities are
usually required for precise diagnosti@g@mstrong et al., 200). It should also be noted

that, xrays used in radgraphy imaging are classified as ionizing radiation. So frequent or
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lengthy exposures to-pays are dangerous for the health and can increase the risk of cancer
for the undertaking patients. Especialhregnant women are not recommended to

undertake xay scansof any form.

Conventional xray radiography is performed using amay device. While there are many
different adaptations, like fluoroscopy devices, dentahys, mammography devices,
angiography devices and so on, main components and wapkingples are far more

similar.

The xray device is made up from four main compongtiits xray tube, the high voltage
generator and film or flat panel detectédl of these components play important roles
during the generation of-says delivered tohe patient and during the formation of the

final x-ray radiograph.

2.1.1X-ray tube

In order for the xray device to generate medical images x-ray source with the
following properties is required; it should produce necessaays in short exposuténe,

it should allow user to vary thenay energy, it should producerays in a reproducible

way and it should be safe and cost effectiYespite there are other practicatay sources

like radioactive isotopes, nuclear reactions such as fission asionf and particle
accelerators, only-kay tubes (which are special purpose particle accelerators) meet all the

aforementioned requirements.

In medical xray tubes there are two main parts. A cathausgdtivelycharged), which
houses the filament thagroduces the free electrons, and an anode (pdgitolerged)

target where the free electrons are accelerated towards to gerexgse X

During operation, cathode filametitat ismade from tungsten material is heated veith
electric current, callethe filament current, which causes electrons to be emitted from the
filaments surface. Amount of electrons emitted is directly related to the amount of filament
current applied. When very high positive voltage is applied to the anode with respect to the

cahode(called the tube voltagejree electronsaccumulated around the filament surface
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are accelerated towards the anode target, producing a current inside the tube which is

called the tube current.

Anode part of the device is a metal target electrodéhiaccelerated electrons to hit and
it is kept at a positive voltage relative to the cathode. Accelerated electrons of the tube
current hit the anode material, depositing most of their energy as heat. Small fraction of the

remaining energy is emitted gagays which is directed and focused towards the patient.

The relationship between the tube and the filament current is directly dependent upon the
tube voltage. The usaran adjusthe tube voltage and the filament currémtgenerate

desired xray energ levels for the desired medical imaging application.

2.1.2 High voltage generator

The main function of the high voltage generator is to generate and deliver current at a high
voltage to the xay tube for the generation of the tube voltage. Due tdrelakcpower
available in hospital can be around 480 Volts at maximum, which way lower than up to
150.000 Volts required by theray tube to accelerate electrons, high voltage generator is

used to step up low input voltage into the required high voltagssing transformers.

Another property of the high voltage generator is that it converts alternating current
produced by the transformers into direct currdiie reason for this conversion is that x

ray tube operates with a direct current. If an alternating current is applied to the tube, back
propagation of the electrons could occur during the part of the alternating current cycle
when the cathode is positivend anode is negative. If anode is very hot at that stage,
electrons can be released from the anode surface and accelerated towards the filament,
which can destroy the filament causing theayx tube to malfunction. High voltage
generator uses rectifi@ircuits, made up from diodes, to convert alternating current into

direct current,

2.1.3 Film or flat panel detector

This is the part where the attenuated @y s comi ng through the pat

and converted into imagdn conventional xray devicesfilms, that are similar to a
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photographic film, are wused to form the image. These films require
developmeriprocessingvith chemical fluids in order for the image to be produced. While
development takes time and requires chemical fluids, the fdetif iis inexpensive when
compared to the flat panel detectdssit it should be noted that at least one or more films
are used per patient.

In modern devices, flat panel detectors are usedigital radiographyto detect the
incoming xrays.In indirectflat panel detectors,-)ays react with thacintillator crystals
(caesium iodide or gadolinium oxysulfide) the detector creating visible light which in
turn detected by theemiconductors, i.eamorphous silicorphotodiodes, and converted
into electri@l signals.There are also direct conversion detectors wherayxenergyis
directly converted into electrical signal without the need-cdyto light conversionLevel

of the generated electrical signabm each detector elemeid directly related tahe
energy of the incoming-ray to that elemenenabling the generation of an image by the
computer electronically. Use of the flat panel detecawesmore sensitive than film and
enable fast imaginglusthe image data can lvewed,stored and procesd quite easily.

In addition it requires lower-rkay dosethan the filmto produce a similar quality image.
However, flat panel detectors are very expensive and can be easily damaged if dropped by

the user, rendering tltetector and the-ray deviceunusble.
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Figure 2.2: X-ray tuke (http://www.wikiradiography.net/page/Physics+of+the+X
Ray+TubeRetrieved 18 March, 2018)
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2.2Computed Tomography (CT)

In conventionalx-ray radiography, patierg three dimensional anatomy is reduced into a
two dimensional projection image. Intensity of a pixel on a radiograph represents the
attenuation properties of the tissues and other structures within the patient along the
projectian line, i.e. a line between the focal spot of the tube and the point on the flat panel
detector or film corresponding to that pixel point. Because of this, all anatomical
information that lies parallel to theray beam cannot be represented on the imige.
clinical practice, to overcome this disadvantage, two images with perpendicular projection
angles can be takeRor example, in chest scans a lateral projection image of the patient
can be taken to provide depth information to a standard PA imagepvisles better
speciallocalization for the objects that can be identified in both projections. However, for

the diagnosis of complex medical pathology this technique is not sufficient.

Basic principle behind tomography is that, image of an unknown otgedbe obtained by

taking infinite projections through that object. To provide more location information,
instead oftaking two projections, severgrojectionimages (to be specific, 360) can be

acquired with 1degree angular intervals around the pafient chest . Wit h t hi s
could be possible to obtain a similar d&taa chest CT scan. Although it is possible in

theory, that data would present anatomical information in a way that it would be
impossible for a clinician to interpret. Howevef,all that data is transferred into a

powerful computer, the computer can reformat the data to reconstruct a chest CT

examination.

Similar tox-ray radiography, CT imaging also usesays as a sourc&echnical principles

of the xray tube,high voltagegenerator and detector are similar with some modifications

and improvements in designBifference isin that CT provides 3D image dhe x-ray
attenuation properties of t he patientds k
conventional radiography. In bagidnciple, a similar xay tube taadiographemits the x

rays which are detected by the semégletectors positioned at the opposite side of the

patient. Then the tube and the detectors rotate around the patient in a synchronized manner,

as shown in ljure 2.3 s0 thatattenuation information at different projections is acquired.
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X-RAY TUBE

Figure 2.3: Representation of the operation of CT scanieray tube and
detector arrayotates around the patient in synchronized manner
(Beutel et al., 2000)

All these acquired data is then processed by powerful computers and CT images are
reconstructed by using reconstruction algorithms. A CT image is a picture of a very thin

slice (0.5 to 10mm) through patient’'s anatomy. Every two dimensional CT image slice
provides ifiormation about a very thin three dimensiosattion of the patient. In that

regard, a 2D pixel on a CT image corresponds to a 3D voxel withm thé¢ i ent 6 s anat
Intensity of each pixel provides information about the averagg attenuation propees

of the tissue/tissues in the corresponding voxel (see Figlire 2.

In earlier CT designs, acquisition is carried out by using rati@erotateprinciple. X-ray
tubeand the detectonotate around the patient to acquire information related to a single
CT sliceand then information is translated to the computer. The patiblgthen moves

by a step and the tube rotates again to scan the next slice. This procedure continues until
the desird field is scanned completely. However in modern helical/spiral CT scanners,
tube rotation and the table movement are simultaneous. With this type of moverhent

and detectors follow a helical path around the patient, as shown in Figukéeical CT
scanners cover greater volume than the earlier designs for the same acquisition time. Since

it is no longer required to translate the patient table movenodalt acquisition time
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Figure 2.4: a) Relationship of a CT image pixel and the corresponding voxel in the

patient’s anatomy. b) Full series of CT brain scan s(Beatel et al., 2000)

Figure 2.5: Helical pathfollowed by the xray tube and the detector artiiyough patient

table movement in helical/spiral CT scanng@sps://pocketdentistry.com/14

otherimagingmodalities/Retrieved7 February, 2018
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requiredto image the patient is reduced to a great extent along with the total radiation dose
that the patient is exposed during the acquisition. One important parameter to consider in
helical scanners is the detector pitch, which is basically the relationginpdrethe table
movement speed and the CT gantry rotatidaditionally, instead of using one detector
array, multiple detector arrays can be incorporated into helical CT scanners to obtain
multiple slices of images in single tube rotat{gee Figure 2.6)These mlti-slice/ multi-
detector helical CT scanrsause more than onelosely spaced detector arrays. With each
tube rotation and nehelical movement, each of the detector arrays can acquire a separate
image slice. When helical acquisition is addeaylti-slice CT devices can achieve
increased table speeds, increased pitch and increased coverage for a given period of time.
This allows the tube output to be used more efficiently, scan time to be reduced to a great

extent and longitudinal spatial regtibn to be improve@Beutel et al., 2000).

CT scanners are frequently used in clinical environment for lung cancer diagnosis and
follow ups. When any suspicious lesion or other condition is detected throuay X
radiography, CT scans are performed tovmle more precise detection and diagnosis due

to the previously mentioned limitations of theay radiographyAlberts., 2007)CT scans

have better tissue contrast than conventionahyx radiography and provides three
dimensionalimaging thus more information for the clinical diagnosis. However, since
repeated projections are required over a longer period, CT scanners deliver more radiation
dose to the patient than theray radiography. Where chestradiography has a radiation

dose around 0.1 mSv, a chest CT scan radiation dose can be as high agTom$end,
2008).When it is compared to the annual worldwide average dose as a result of natural
backgroundradiation which is around 2.4 mSv, performing CT scans frequently for
potential cancer candidates can have debatable benefits over potential harms due to excess
radiation. To overcome thisimaging modalities like MRI, which does not impose any
radiation dose to thpatient,can be preferred for providing anatomical imagingdancer
diagnosis over xay based method#&dditionally, for imaging of themore complicated
cancer typegin terms of morphology and imagindike brain tumors, even though CT can

also providenitial imaging soft tissue contrast of the CT is not asdjas the MRI's and

it fails to provide detailed information about the extent and the sub regions of the complex

brain tumors.
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Figure 2.6: Representation ofreearlyMulti-Slice/Multi-detector CT scanné¢Beutel et
al., 2000)

In the following two subsections, more technical details regarding the tomographic
acquisition and reconstruction processes will be introduced briefly to provide better
understanding of the concepts before moving to the introduction of the other imaging

modalities used in capc diagnosis.

2.2.1Tomographic acquisition

In tomographic image acquisition, a single measuremeniray xattenuation transmission

made by a single element of the CT detector is referred as a ray. When several rays are
transmitted through the patient with the same tube angle, this is referrgmasction or

view. Parallel beam and fan beam geometries are the two main projection geometries that
are commonly used in CT scanners. In parallel beam geometry all delivered rays in a

projection are parallel to each other and in fan beam geonhetyyliverge from the tube

and resembles to a fan shaptwst modern CT devices use fan beam geometry for image

acquisition and reconstruction.

CT scanners take multiple transmission recordings through the patient at different
projection angles. Thus a singld§ @nage slice can involve total of 800,000 transmission

records, with 800 rays delivered at each 1000 distinct projection angles. Depending on the
device configurations and number of detector arrays these number can increase

significantly. After themagng of the sl ice iIis completed,

s

axiso of the device and the process i s repe
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2.2.2Tomographic reconstruction

With each ray measuremer€T detector measures anray intensityvalue I, which
corresponds to the attenuateday beam intensity through the patieftibong with this, un
attenuated intensitylo, is also recorded by a reference detector. Relationship of these

parameters is as following;

I Toro * o (2.1)

where,t is the thickness of the patient ands the average linear attenuation coefficient
along the raylt is important to note that whilg and o depends on the CT devicepis

directly related to the anatomical properties of the patient along the measured ray path.
This preprocessing calculation allows CT image to not depend heavily on device
parameters, but to depend mainly on the anatomical propditissgives the CT scanners

their high clinical utility(Beutel et al., 2000).

Further, attenuation coefficient is converted into Hounsfield units (HU) and used in the
representation of each pixel value on the image. HU conversion assumes the attenuation
value of water as 0, attenuation value of ai-H300 and attenuation value of bone as
1000. This linear transformation is expressed as;

o7y m m<AOAQ 22
T AGABESP T (22)

After the processing of the raw data, one of the numerous reconstruction algorithms is used
to reconstruct the image. Most common one is filtered dpagjection (FBP). This
technique forms the CT image by reversing the image acquisition steps. Thet@attenua
coefficient mof each ray is projected back along the same path onto the image matrix.
When data from the wholeys are baclrojected, high attenuation areas reinforce each

other, as the low attenuation areas do, forming ufibeCT image (see Figure 2.7).
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Figure 2.7:a) Acquisitionphase b) ReconstructiophasgBeutel et al., 2000)

2.3Magnetic Resonance ImagingMRI)

While x-ray radiography and CT depends on the usemafyxattenuation propertiex the
tissuesto acquire the images of the internal anatostiactures of the patients, magnetic
resonance imaging depends on the atomic scale magnetism and eagientry (RF)
resonance properties of the tissues to form the im&jase, MRI uses more sensitive
information ofthe tissue nuclei properties, rather than the attenuation properties, to form
the tissue contrast in images, MRI images have far more lisgae contrast, as seen in
Figure 2.8, with comparison to CT aneray radiographyAlso since it does not rely on
ionizing radiation it can be considered safer to dise imaging cancer patients.
Additionally, images can be obtained in any anatomic pleitteout the need to move the

patient.

AXIAL VIEW OF cO-REGISTERED NORMAL CT AND MRI scans
cT T . FLAIR
ey ’(\\ Is : -

Figure 2.8:Brain CTimage (left) and several MRhages for comparison (right)
(https.//healthcareplesom/mrivs-ct-scan/Retrieved 10 February, 2018)
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Main working principle of the MRI device is based on nuclear magnetic resonance (NMR).
It involves using very strong electromagnetic fields to align hydrogen nuclei in the tissues
and analyzing their magnetic spin properties by delivering RF signals tte éRem
(Hashemi et al., 2004Main components of the MRI scanner are; main magnet coil that is
used for generating the powerful large magnetic field (from 1.5 Tesla (T) to 3T in clinical
use) required for aligning the nuclei; gradient magnet coils dmatrequired to obtain
images from different anatomic planes (i.e. sagittal, coronal or transverse); RF coils to
deliver RF signals required to excite hydrogertlei in the tissues and receive the echoes
back as a result of the resonance; and a powesfupater system to reconstruct, process,

store and present the final image.

2.3.1 Magnetic characteristics of the nuclei involved in MRI

The nucleus of the elements shows magnetic properties that are determined by the spin and
charge distributions inherent to the proton and neutron. Positively charged protons generate

a magnetic dipole when they spin. On the other hand neutrons genesaie &tsength
magnetic field withthe opposite direction. Magnetic field characteristics of the nucleus are
defined by the magnetic momen®ositively charged hydrogen ion, simply referred as
proton, is mainly used as a target element in MRk the mst common element inside

the human bodydue to waterand it has the largest magnetic moméfthen the proton

spins, which issimplyr ef erred as fAspino, it acts 1ike
poles(Beutel et al., 2000).

When the protons areegt under the influence of the strong external magnetic field
generated by the scanner spinspewither dligned witta g n e t
(parallel) the scanners magnetic field at a-kwergy level or against (argarallel) the

scanners magtic field at a marginally higher energy level as it can be seen in Figure 2.9.
However, at this statepinscannot be polarized statically and they wobble around the axis

of the magnetic field. This is referred as precession and the frequency of teisspyeds

given by the Larmor equatiqilashemi et al., 2004)

1 16 (2.3)
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where w;, is the Larmorfrequency (angular frequency of the precession) @nsl the

gyromagnetic ratio.Every different atom has different gyromagnetic ratio and the

gyromagnetic ratio of hydrogeatom is used in MRI imaging.

2.3.2MRI image production

In MRI, to produce images a RF signal, generated by the RF coils of the scanner, with a
frequency same as the Larmor frequency is focused on the targeted body part of the
patient.Since the RF signal has the same frequency with the precession frequéiney of
hydrogen atom, it excites the hydrogen atoms in the targeted body area and causes them to
resonate. This resonance effect causes spinning protons to gain ershijyng low
energy state protons in to the higher energy-pautallel state. Additionsl, precession of

each individual proton twists by a certain angle with the implementation of the RF signal,
bringingthe collective precession of the protons in phase with each dtileen the MRI
system cuts off the RF delivery, energized protons umdenggitudinal and transverse
relaxation returning back to the original state of low energy and out of phase precession.
This loss of energy is released back as RF signal during the relaxation period, which in
turn detected by the RF coils of the system ased to reconstruct the imadgeutel et al.,

2000).
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Figure 2.9:a) Protons spin naturally in the tissue. b) When the tissue is under the influence
of the powerful magnetic field, spins align themselves as parallel or anti
parallel to the main magnetic fie{8eutel et al., 2000).
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Gradient coils of the scanner arsed at this stage to encode spatial information into the

RF signals, which enables 3D image reconstruction.

The final appearance of the MRI image is adjustedcostrolling the timing of the
delivered RF pulses to the patient, referred as the repetition time (TR) and timing of the
echo signals released back from the body, referred as the echo tim&@\@iEglifferent
relaxation times, T1 and T2, are measured a&tl .lalong with the proton densiy the
corresponding tissu® decide about the final intensity of a voxel on the MRI imddss

the longitudinal relaxation time which is governed by the characteristics of the tissue
regarding spininteraction with thelattice (molecular arrangement and structure of the
tissue) It measures the time it takes the proton spins to lose externally RF induced energy
and return back to the original direction of precession (which is the direction of the main
magnetic field ofthe scanner). On the other han@ i$ the transverse relaxatidime

which is governed by the characteristics of the tissue regardingsgipininteractions
which cause loss of phase alignment due to magnetic properties of theltisseasures

the timeit takes for the protons to lose their phase integrity, gained after the applied RF
energy, and return back to their original out of phase precession. Both T1 and T2 reflect
natural tissue characteristi(differ greatly from one tissue type to anothamyl are fixed

for a specific tissue undea given magnetic field strength enabling the Mé&thnnerto
distinguisheasily between different types of tissues, granéircellent softissue contrast

to the scannefBeutel et al., 2000)Along with this spatial resolution of the MRI is also

superiorwhen compared to-ray based modalities

Final MRI image comes ithe form ofdifferent modalities (in other words weightedage

types) . AWei ghtingo of the i mageisheawdyns t ha
affected by either one of the, T1, T2 or proton dend®) measurements These T1

weighted, T2weighted and PD weighted images can be obtained by the scanner by
implementing different RF pulse sequences. One ofrdguentlyused sequenceas the

spinecho sequence, where proton magnetic field vectors are shifted by 90 to 180 degrees.

Signal intensity of a spi#acho sequence is approximately calculated as fellow

'Y 0808p Q T a 7 (24)
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where [H] is the PD and K is a factor for scaling the calculation. It can be seen from the
calculation that T1 effects on the image wkatedto TR and T2 effects areelatedto TE,

where [H] effects are present all the time. Acliogly, when TR and TE arkeept short

image becomes Fleighted. In contrast, when TR and TE keptlong, image becomes

T2 weighted. On the other hand, when TR is long and TE is short, image becomes PD
weighted imagd€see Figure 2.10)This multi-modality acquisition capability of the MRI
allows pathological structures or other tissues that cannot appear clearly on one of the
modalities to be seen clearly on other modaliti®s only performing one patient scan,
equipping MRI scanner with greairakal utility (see Figure 2.11As an example, tumors

tend to appear as bright signal on T2 images where on T1 images they appear darker
(Armstrong et al., 200).

Excellent soft tissue contrast of the MRI enables high clinical utility in pathological
diagnosis. Diagnosis of cancer, multiple sclerosis and hematoma are among the main
applications. In cancer diagnosis, MRI is used as the primary imaging modality for brain
tumor imaging. Although it is also used for lung cancer imaging, it is not useadnasaco

as CT (Armstrong et al., 200). However when combined with PET it can provide
excellent soft tissue localization for the high metabolic activity areas. Additionally,

contrast agents, like

Short TR Long TR

Short TE

Long TE : o

Figure 2.10: Shows the relations of TR and TE with differeméighted MRI images
(Beutel et al., 2000)
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Figure 2.11: a) T1 weighted brain image) T2 weighted brain image. Notice that the
braintumor (marked by arrow) and its surrounding edema tissue can be seen
in more detail in T2 image, whereas T1 image does not provide clear details
of the tumor(lk € n ., 2016) a |

gadolinium, that accumulate metabolicallyactive areas of tumors can b&ed toincrease

the MRI signal intensity received from those regions, enabling better imaging and thus
enhanced diagnostic capabilities. For example, gadolinium enhanegdigiited imaging

is used heavily for imaging brain tumdiig € n ., 2316).@dddinium contrast agent is
accumulated in the active regions of the brain tumor, producing strong relaxation that
appears as a bright signal on the-wdighted imagesThis provides a higher level of
diagnostic capability, providing information about notyothe tumor but also its sub
compartmentslf the contrast agens not used, it is very hartbr the radiologistto
distinguish active and neactive subregions of the tumor corby just looking atplain

norncontrast MRI images.

2.4 Positron Emission Tomography (PET)

In its basic definitionin PET imaging a biological radiotracer, which is a specific kind of
radionuclide attached to a chemical compoul
it emits a positron to annihilate with an @l®n in the tissue generating two back to back

gamma rays that are detected by the PET scc:

36



This process is illustrated in Figure 2.¥2specific radiotracer is selected for the desired
application, so that iaccumulates in the regions that the clinicians are interested in
imaging. When the positreglectron annihilation process occurs at the desired anatomic
region, the detected photahstribution by the detectors i®constructed into the final
image which orresponds to the radiotracer distribution inside the patient with the

accumulated regions represented by high intengBiaka, 205).

There are many different radionuclides that can be used to emit positrons. Some of these
common radionuclides are given in Table 2.1 with their-lifalfand energy propertie$F

is the most common one amdclinical PET imagingt is generally combing with glucose
basedchemical compound, as introduced in Chapter 1, to form fluorodeoxyglucose or
simply ®F-FDG. Clinical application of the FDG PET imaging provides clinicians with a
functional image that reflects the distribution of the glucose metabatiside the targeted

body part. Since cancer cells have higher metabolic activity and tend to absorb more

glucose in that process than healthy cells, cancer cell regions generate higher intensity

Table 2.2 Some of the common radionuclides that canubed as positron emitters.
Adapted from(Saha, 2@5).

Radionuclide Half-life Energy of the Emitted Positron (MeV)
5k 110 min 0.64
13N 10 min 1.20
e 20.4 min 0.97
%0 2 min 1.74
*Rb 75 sec 3.55
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Figure 2.12: lllustration of the psitronelectron annihilation procesRadiotracer emits a
positron which annihilates with a nearby electron producing two back to back
(180 opposite direction) gamma photofBaha, 215).

signals on the FD@®ET image providing very important informati to the clinicians for

cancer diagnosis.

The two back to back 51KeV gamma photons that are generated after the annihilation
process travels through the patient body and hit to a corresponding pair of detectors where
recorded as aoincidence pair. The line of response (LOR)ecorded as a line between

the pair of detectors where the coincidence pair is detected and the position of the occurred
annihilation lies on this LOR. Total number of emitted positrons along the LOR is
measired by counting the number of coincidence instances detected by the detector pair
(see Figure 2.13)n the PET device, a detector ring is formed by connecting the individual
detectors with each other and multiple detector rings are combined to form the whole
scanner detectoi.he whole ring shaped PET scanner detector is used to medisinme
incomingcoincidence events from LORs of different angbesr time (allowing dynamic
imaging) then coincidence data is grouped into parallel projections for tomographic

reconstruction beforeecording allLORs as sinograms or as list mode data. the first
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methal, the number of coincidence events recorded by each detector pair are counted and
presented as a histogram. In list mode method, each recorded coincidence event is
accompanied by additional LOR and occurrence time éditer. all these stepgine of the

FBP, OSEM orMLEM reconstruction algorithms is used to form the final image of the
metabolic distribution of the radiotracer.

When detecting incoming coincidence events, detectors of the PET scanner search for
simultaneous (within 5 to 10 ns) gammnag absorptions at the detectorsis time window

is called the coincidence timing windo®our different types of coincidence events can be
recorded (Bailey et al., 2005)as illustrated in Figure 2.14 First one is the true
coincidence. In this type of everipth of thetwo gamma photonsgenerated by the
annihilation reach opposite detectors of the detector ring. Important point here is that there
iS no serious interaction between the photons aedstirrounding tissue atoms and the
detection is made within the coincidence window. Second type of event is called a
scattered coincidence. This happens when one or both of the gamma photons from a single
annihilation interacts with the surrounding tissti@ms and scatter, resulting in energy loss
and direction change of the photon. Detecting such an event causes the LOR to shift from
the actual position of the annihilation, resulting in decreased contrast and inaccurate
localization in the final PETmage. Third type is the random coincidence, which occurs
when two different positroelectron annihilations happen almost simultaneously. If two of
these photons from different annihilations are recorded within the coincidence timing
window and the other twoannot reach the detectors, this event is counted as a valid event
but it presents information which becomes spatially unrelated to the tracer distribution.
There are also multiple coincidence events, as the final type, where similar to random
events, inhis type three events from the two different annihilations are detected within the
coincidence timing windowln contrast to random events, these can be distinguished easily
and discarded. Some times during a single event, one of the photons can belabsbebe
patient tissues or can escape from the detector. In these cases these events are considered
as single lost events and discarded similarly. As a result, total recorded projection signal
includes the true signal from the true events plus the nmjeals from the scattered and
random eventsln order to obtain a clear signal, noise signals need to be estimated and

removed.
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Figure 2.13: Two back to back gamma photons are detected by a pair of detectors of the
scanner on a LOR as a coincideesgent(https://www.radiologycafe.com/radiology
trainees/frciphysicsnotes/peimagingRetrieved22 February, 2018)
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Figure 2.14: Four different types otoincidence events. The black circle is the place of
annihilation. Dotted lines indicate the false assigned LORs in the case of
scattered and random eve(Bailey et al., 2005)
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While random event estimation is usually accurate and efficient, scatterestenation

can have significant errors (Bailey et al., 2005).

Every PET scanner can acquire images in two different dimendiorZD acquisition

mode, each individual detector ring is separated from each other by using collimation
techniques. In this s&p, gamma photon pairs that are traveling with large angles towards
the opposite detectors that belong to different detector rings are blocked by lead or
tungsten collimator leafs. Even though this technique can block some scattered and random
coincidencs it also blocks some true coincidences reducing the overall image quality. In
contrast, in 3D acquisition mode there is no such collimation, increasing the number of
detectedrue coincidence events, increasing the overall image quality. Else, cliogmn

also opt for a similar image quality like 2D acquisition, but with almost half the scan time
(Strobel et al., 2007).

Apart from 2D/3D acquisition optiond®?ET scanners canlso obtain both static and
dynamic imageseven though fothe imaging of lungcancers static acquisition is the
preferred one. In static acquisition, a single image frame is taken odefiredtime
period after the distribution of the radiotracer concentration becomes far more static
(approximately 2840 mins after the injection)On the other hand, in dynamic imaging,
series of image frames are acquitesinningjust after the delivery of the radiotracer to

the patientDynamic images normally tend to have inferior image quality when compared
to static images but dynamic imagicgn provide radioactivity distribution information
over time which has uses in other clinical applications like studies involving

neuropsychiatryGee, 2003).

It should also be taken into consideration that the gamma rays generated after the positron
eledron annihilationcan bealso harmful for the patient if exposed over increased
durations because of the ionizing properties of the gamma rays. However, diagnostic
advantages of the PET device are greater so clinicians negdwrtts of a proper scan

(one whole body PET scan can produce almost similar dose to a chest CT scan) for the

positives of theccuratecancer diagnosis.
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2.4.1PET detector configurations, designs and materials

Earlier developed PET scanners incorporated simple gantry degiyecis used only two
opposing detectors to detect the incoming gamma photons. Although, some later designs
usedpartial ring designs with more detectorsdaven geometrically polygonal shaped
designs, currently fulting PET scanners are the standard for clinical applications. Since,
PET devices do not require the imaging source to be generated by theigelfi¢e CT

the xray tube and in MRI RF coilshd magnets are necessarygin technology and cost

of the equipment comes with the detector materials, technology and design. Due the
amount of detector elements needed for producingifdl scanners, cost of the fulhg

devices are the highesmplementation of more detector elements in -fillg system

design comes with superior spatial resolution as a result of high event detection ability and

coincidence count rate effectiveness when compared to other d@dngtis 2010).

Clinical PET scannergse photomultiplier tubeMT) coupled with scintillation crystals

as individual detector elementqsee Figure 2.15) There arealso stateof-the-art
semiconductor detector desigtigat use silicon photomultipliers (SiPMalthough they

allow realization of high gain with low voltage and fast response detectors with compact
design, use of SiPMs instead of PMTsin producing fullring scannerscomes with
optimization, signal amplification and digitalization problems amzteases the cost of
already very expensive PET scanigerationto a level thatbecomesnot feasiblefor

many institutions. Each detector block of the clinical scanners, implements a number of
PMTs at the low layer to read the information generated by thaqus layer made up

from an array of scintillation crystals. Incoming gamma photon to the detector passes
through the scintillation crystal where it is converted into light, a process called
scintillation. There is optical isolation between each scitibiha crystal by applying
reflective material between each array element, which prevents the passage of the
generated light signals from one crystal element to another, dramatically increasing
detection performance of the following PMT layer. The generaggd signal is then
detected by the photocathode of the PMT and converted into-pleativons which further
multiplied by the dynodes of the PMT until they reach the anode part and recorded as an

electrical signal.
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Figure 2.15: a) PET detector block. A block of scintillator crystal arnajth discrete
elementsis followed by four PMTs b) illustration of the scintillation
process in discrete elematgsign(Khalil, 2010).

Crystals with high mass density, which enhances crystal stopping power for better
radiation detection, are preferred as scintillator material. Additionally, light output and
speed properties of the crystal are also important. Increased light output afysked
means that the noiggenerated in the scintillation process is decreased and a fast crystal
allows for a faster radiation detection enabling the system to use shorter coincidence
timing period. Although earlier designs adopted thalldoped sodiumodide (Nal(Tl))
crystals for scintillator layershismuth germanate (BGO), gadolinium oxyorthosilicate
(GSO) and ceriurdoped lutetium oxyorthosilicate (LSO) crystals provide better stopping
power due to higher mass densities and they (especially L®@inieethe preferred choice

for the recent clinical PET scannékhalil, 2010).

However use of crystal scintillator elements in detector blocks also comes alorspmveh
intrinsic limitations.Large paralix erroris one of the main limitations. Due toetimatural
characteristicsand the minimally achievable thicknes$ each individualscintillation
crystal, the exact entry point of thencoming photonto the crystal elementannot be
distinguished over the single crystal element volamé thus depth ahteraction (DOI)
information become insufficient. Detectorassumes thahe photon is entering from the

midpoint of the individual crystal elemestirfaceand assigns the LOR from that point to
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the midpoint of the corresponding opposite detector that received the other photon of the
back to back pair. Thigesults ina cleardifference between the assigned and actual LORs
creating the parallax errand causing the detector to miscalculate tteeeposition of the
annihilation High parallax error causes the PET scanner to have low-plass or
horizontal resolutionLow signal purity due to high noise from scattered events and
limitations in sensitivity of the scanner due to the thicknegsaoh crystal element and the
gaps formed between the detector blockstlaeeothemain limitations. Designing organ
specific PET devices or using pixelated semiconductor detectors can be a possible solution

for these limitationslue to the use of scinakor crystals

2.4.2PET scanner performance characteristics

Overall performance of a PET scanner can be measured by analyzing several characteristic
parameters. Improvement of these parameters can have dramatic effects on the PET

scanner performance and on the overall quality of the final diagnostic image.
SystemSensitivity

Sensitivity of the PET system is a very important parantbsgrdirectly affects the overall

image quality and noise percenta@gnatto-noise ratio)of a PET scan with apecific
radioactivity distribution over aefinedacquisition time. Ascanner \ith high sensitivity

can collect more information (event data) in a shorter timeather words have better
detection efficiency. High sensitivity means, better sigoadoise ratio, better counting

data and better spatial resolution thus rowed overall image qualityKhalil, 2010).
Geometric and intrinsic properties of the scanner have direct influence on the scanner
sensitivity. Geometric design of the detector is very importantmaximizing the
sensitivity of the scanner. Sineensitivity is directly related to the amount of photons
detected by the detectors in a given time period, the less photons escape from the detector
elements the higher becomes the sensitivity. To assure this, geometric design of the
scanner should be imgrhented in such a way that all detector elements are tightly packed
together, so that the angular coverage of the detector surface area becomes large enough
and fewer photons can escape from the detector ring without getting absorbed in a detector

element. This geometric sensitivity characteristic of the commercial PET scanners is
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quantified by the ringpacking fraction. It is simply the ratio between the detector rings
true detection area and the total circumferential detector ring dwwa. different
appioaches can be implemented to increase the geometric sensitivity. First approach
involves the implementation of narrower detector ring diameter and the second approach
involves increasing the axial field coverage of the scanner. When the diametey of
detector ring is decreased, solid angle of the detectors increase, allowing the detectors to
detect incoming gamma photons more efficiently. However, this implementation also
introduces parallax DOI errors reducing the systems spatial resolution. Altempadixiel

field coverage of the scanner can be increased to increase the sensitivity by adding extra
detector ring layers in axial direction. Even though this increases volume sensitivity by a
significant margin (since more photons will be absorbed in ¥ direction), adding

extra detector material to the scanner increases the cost of the system dran(idktiaél]y

2010).

Different from the geometric sensitivity properties, intrinsic sensitivity of the scanner is
defined by the typecomposition andhicknessof the scintillation crystal material used in
individual detector elementsA scintillation crystalwith high stopping powercan stop
most of the incominggammaphotons thusproviding efficient scintillation, which in turn
increases detection efficiency. Therefore, as mentiangatevious sectiondensity and
effective atomic numbepof the preferredcrystal materialplays animportant rolein
intrinsic sensitivity Additiondly, increasing the thickness of the scintillation crysigdin
improvesthe intrinsic sensitivity, however using thick crystals in detector elenasis
increases thparallaxDOI errors Apart fromintrinsic and geometric factors, energy and
time windov properties alsaffectthe overall scanner sensitivifithalil, 2010).

Additionally, choiceof 2D or 3D acquisition modef®r imagingalso have an impact on
system sensitivity, as mentioned #ection 2.4. In 3D acquisition since there is no
collimation between detector planes, there is no limitation for the incoming photons to
reach the detector plane on their direction. This enables almost five times increase in
sensitivity with regards to 2D acquisition. 3D imaging also enables rapid scanning
decreasig the potential motion artifacts. Tradeoff here is the increased introduction of
signal noise from random events, scatter events, single events coming from the outside of

the covered field and high count rates. Because of this, efficient scatter andnrando
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correction techniques along with detectors that can provide high count rate performance
should be implemented to enable efficient 3D acquisition with high sensi(Kitslil,
2010).

Noiseequivalent count rate (NECR)

Another performance characteristic of a PET scanner is its count rate respmogtain

better quality PET images increasing the counting rates of the scanner is preferable.
Although, increasing injected radioactivity dose and incregsatgntscanningimes can
increase counting rates turn, increasing the formeaalsoincreases the exposed radiation

dose of the patient which is not desired regarding safety and protection measures and
increasing the latteallsoincreases the motion artifacts and daees the patient odort.

In addition, issues regarding to the dramatic increase in the random and scatter event rates
would also arise, countering the gained image quality advantages through increasing count
rates.In this regard, noisequivalent countate (NECR), that also takes all the above
mentioned factors into consideration, is used instead to measure the count rate performance
of the PET scanner&halil, 2010). As a result, the noisequivalent count value that
provides the highest true event otaiand lowest undesired events, like random and scatter

events, is considered as the final performance measure.
Coincidence timing window

Different from other nuclear imaging devices, where collimators are used to decide
whether to accept an incomipdoton or not, in PET imaging an electronically controlled
timing window is used to decide whether an event is true and accepted or undesired and
rejected. By implementing a narrow timing window, undesired contributiorarmdaom
events is diminished, inasing the NECR thus the performance of the scatlser of fast
scintillator crystal materials enablethe implementation of detectors with short
coincidence timing windows, even leading to the development of advancedftiiight

(TOF) PET scanner@halil, 2010). TOF scanners use the information regarding the time
difference measurementof the arrival of two back to back gamma photons to
corresponding detector elements to determine the exact location of pes#cton
annihilation.Using a sanner wih very short coincidence timing window is key for precise

localization using TOF.
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Spatial resolution

Spatial resolution is one of the most important performance characteristics of the PET
scanners that have great effect on the overall intagdity; hence improving spatial
resolution is of utmost importancedaving high spatial resolution provides better
functional imaging of small lesions with high metabolic activity, more accurate
guantitative measurements and better overall diagnostic capablieésctor properties
photon acollinerarityand positron range are among the main factors affecting spatial
resolutionin PET imagingKhalil, 2010).

Generally, spatial resolution performance of the PET device is determined by the full width
half maximum(FWHM) of the point spread function. FWHM is defined by:

0000 U @  1@imoc | (2.5)

whered represents the width of the detectbrepresents the secondary parameters that
contribute to the loss in spatial resolution due to either photon detection process or block
detector effect. Acollinearity is defined {9.0022D)where D is the diameter of the
scanner detector and finally pareterr? corresponds to blurring effects due to positron

range.

Detector size or width, is a key parameter that affects the spatial resolu&@iiM of an
annihilation that is located at the mid distance between the two corresponding detectors
detecting the incoming photons is equaldtd. When annihilation source moves towards
either one of the detectors, spatial resolution decreases. Implegesttiaiwidth
scintillator crystal arrays in the detectors of the PET scanner is the key to improve spatial
resolution. However it is not easy to prodwseall sized crystal arrays and small sized
crystals can also limit the amount of light generatedhleycrystals for the PMTs to detect.
Additionally, the production cost can increase dramaticétthis regard using scintillator

crystals with improved light output and state of the art crystal cutting techniques is
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necessary to manufacture small sizagials which enable small sized detegmyduction
thus improving scanner spatial resoluti@@mmercial PET/CT scanners used in hospitals
generally implement detector crystal sizes of 4 to 6 mm. These sizes can decrease more in

dedicated and small anilrecanners.

Another important factor that affects spatial resolution is the positron rdihgge.is an
unpreventable physicalccurrence andirectly depends on thproperties of thgositron
sourceusedin the radiotracer. This effect causes blurring on the reconstructed PET
images. Most common clinical positron sour®&, luckily has very limited positron range
effect on overall spatial resolution of the reconstrucRET images. Using higher
resoluton detectors by implementing small sized crystals is one measure. Taking this
effect into consideration during reconstruction algorithms and even using the high
magnetic field of the MRI scanner in PET/MRI scanners are among the other measures that
can beconsidered to reduce the effect of positron range on spatial reso(itnatil,

2010).

As mentioned earlier, acollinearity of the scanner is determined by the detector ring
diameter, and its effects increase as the diameter of the scanner increagesiatisin
detector diameter can improve scanner resolution in terms of the adverse effects of
acollinearity. Additionally, reducing ring diameter will also increase system sensitivity;
however DOI errors will also be introduced as mentioned before. Simifarsitron range
effect, acollinearity effect can be taken into consideration during iterative reconstruction

algorithmsand its effects can be reduced by applying suitable corrections.

Parallax errorresulting from DOI errorgspecially in scannessith thicker crystals, also
negatively affects the spatial resolution of the PET scanner by introducing blurring effects
on the images. Different DOI and parallax error correction metbaalse implemented to
improve the spatial resolutiofror example, duble or more layers of scintillator crystals

of different materialsvhich coupled with two photo detectors can be used to decode depth
information of the incoming photons more efficientlyhis implementation reduces the
effects of parallax error increag the spatial resolution. Correcting parallax error
effectively with these methodsan also enable using thicker scintillator crystals which in

turn improves sensitivity of the scanner.
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2.4.3Data corrections in PET

For the PET scanner imagesrapresent functional information regarding the metabolic
activities of the patient’s tissues, the coincidence data that the scanner collects contain
several quantitative and qualitative properti@santitative properties of the collected data
presentnumeical values that cliniciansise to reach objective straightforward results
regarding the data. On the other hand qualitative data that the scanner collects is
represented by the radioactivity distribution images which the clinician needs to interpret
for accurate diagnosi§canner calibrations ané\eeral data correction techniques should

be applied to this collected data to ensure that the final image produced from the data
represents the true radioactivity distribution inside the patient’s tisBloesialization,

dead time correction, attenuation correction, scatter and random correction are the main

techniques that are used in PET data corrections.
Normalization

Unfortunately in PET scanners sensitivities of each individual detector elenaeatsot
homogeneous. This is partly because it is not possible to assemble a scanner with detector
elements that have exact same solid angles and detector pair distances. Also scintillation
crystals used in every single detector element cannot have the exact fsaarecgidue to
manufacturing reasongdditionally electronic drifts in the PMT circuitry also adg@ to

this norhomogeneity. This nehomogeneous sensitivity profile of the scanner results in
having variations in coincidence event detection sensisvite different LORs. If these
variations are not corrected effectively artifacts, poor uniformity and increased noise is
observed in the image this regard, in order to efficiently measure LORs with minimum
geometric and electronic adverse effects, a normalization procedure must be performed to

deal with the nofhomogeneous detector sensitivity.

Oneearly method for normalization requireslleding many count data for each LOR to
produce a statistically accurate normalization correction factor for each detector pair with
respect to the averaged acquired count data across all LORs. Since it is required to have
extended acquisition times to enswtatistical accuracy of the normalization factor and
biased results may be observed if gmirce hasio uniform activity distribution, this

method is not an optimal normalization solution.
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Alternatively componenbased normalization technigissimplemerniedin modern clinial
PET scannersThis technique accountsr both system geometry and efficiency of each
individual detector pair to deal with normalizatiddormalizationcorrectionfactors are
handled by dividingthem into detector efficiency and spatial resolution components
(Khalil, 2010). When compared to the previous method, this technique requires fewer
counts to be acquired hence reducing the total acquisition dimlecan be used in
normalizing 3D acquisitionther factors including intrinsic crystal efficiency, detector
geometric profile, block detector interference, time alignment factor and -catent
dependent block profile are added to this technique with modifications overtdime
improve the overall noralization performance(Khalil, 2010). Generally, with this
technique normalization factors for a specific clinical PET scaanedetermined in

factory stage and remain constant during clinical use.
Dead time correction

Dead time is the time period in vadhi a detector is dealing with one event where it cannot
handle any more successive events reaching to the detector during that Aehagh

activity concentrations, probability of the source emitting simultaneous or consecutive
(very close in time) phons is very high. Because of the dead time of the detector, signals
from these simultaneous or consecutive photons pileup so that the output signal of the
detector represents sum of all these signals rather than individual events. As a result, events
with greater amplitudes than the upper energy threshold of the system or signals whose
amplitudes are in the energy window can be detected. While the first type of events can be
rejected by the system, second type is generally accepted but with false pasitron a
energy determination(Khalil, 2010). Therefore at high activity levels, count rate
performance of the scanner is downgraded by count losses and signal pileups. If dead time
correction is not implemented, spatial resolution, sigoadoise ratio and queitative
accuracy of the system decreaBesause of these effects. In modern clinical PET scanners
fast scintillators coupled with fror@nd electronics with very fast signal processing and
transferring capabilities are used in order to process largauramof data in shorter times

to improve the digital time resolution of the system thus reducing the effects induced by

the dead time of the detector. Additionallgoftware basedmethod can also be
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implementedby mathematically modeling the count rate response of the PET scanner and

using that model to correct count losses observed on the actual measured count rates.
Attenuation correction

When photons generated by the posketectron annihilation travel inge the patient, they
interact with the patient’s tissuafong the pathosing their energy and even losing the
photon itself. Thiseffectis called attenuatiorBecause photons that are generateite

the patient’s body need to travel through more ¢issaterialuntil they reach the detectors
than the photons generated outside, the radioactivity distribution inside the patient is
underestimated if the attenuation effect is not corredéednuation along a LOR can be
calculated byhe probability of gophoton pair along a LOR to travel through the patient and

reach both corresponding detest@nd itis given by;
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wherell andlI2 are the paths of the two photohss the LOR and w is the attenuation
coefficient atx. This attenuation calculation is used as the foundation of the attenuation
correction methods, and the important point of this calculation is that theatitenis not
dependent on the location along the LORthe annihilation The two main attenuation

correction methods atbe measured ahthe calculated attenuation correctiorethods

In measured attenuation correctiorethod an attenuation map is generated by directly
measuring attenuatisrof a sourceplaced outside the patieahd taking two scans first
without the patient(blank scan)and secondwith the patient(transmission scan)As
mentioned earlier since the attenuatis not dependent on the location along the LOR,
placing the source outside or inside the patient does not affect the attenaéigorihe
scans are performedby taking the ratio of the count rate measuremehthe scarwith

the patientto that of without the patient attenuationfor each LOR is determined.
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Attenuation correction factors (ACF) are then calculated as the conjugates of the
attenuation.In order for this method to be statistically efficient many counts should be

collected for each LORNd performing two separate scans requires extra time.

In calculated attenuation correction method, attenuation map that is used to make
corrections on the PEdatais calculated using the Equation 2y assunng that the
attenuation coefficients along tlithe shape and the structure of the patient are known.
The shape and the structure of the patient is obtained either by segmenting
emission/transmission scan or by using the high resolution structural image of the CT scan
if hybrid PET/CT scanner is bajrused Statistical noise is not a problem in this method

but efficiency of the segmentation for shape and structure determination and the
attenuation coefficient assumption is very important for obtaining high perforntince,

very high spatial resotion of anatomicalCT images provide excellent patient shape and
structure determination, and since CT images can also be used for accurate attenuation
coefficient assumption (attenuation coefficients obtained on CT, which are at a different
energy levelcan be transposed for PET energy level), ACFs can be calculated with high
accuracymaking the Ctbased calculated attenuation correction the accepted method for

attenuation correction in PET imaging.
Scatter correction

As mentioned earlier, scattered mcidences are among the undesired effectscibratipt

the total count rate of thBET scannerAlthough, scattered events can be distinguished
from true events bytheir energy levels, due to PET detectors having limited energy
resolution and the fact thaome true events release only a portion of their energy in
detectors)evelingthem with scattered events in terms of energy, ithisot an easy task
for the PET scanneri this regardseveraimethods that are based differenttechniques

are developd to correct for the scattered events.

One of these methods is dwalergy window method. In this method two different energy
level windows are used to distinguish between photons with peak energy and scattered
eventsIn both of thewindows, thedetected events are considered to contain both true and
scattered eventisut it is assumed that the window withe lower energy band contains

mainly scattered eventfifference between these two windows are obtained kater
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scaled using phantom data approximate the distribution of scattered events in the total
patient data obtained. After the scatter event distribution is obtained it is subtracted from
the peak photon window data to finalize the correctiimalil, 2010). A slightly modified
versionof the dualenergy window method uses two energy windg¢arse standard level

and one high energy leveahat overlap with each other instead using two distinct ones.

In another type of methodt is considered that the distribution of the scattered events
differs gradually across the field of view of the scannmerthis analytic method, a
Gaussian fitting of the scattered evesdunts outside the patient is carried out to

approximate the scatteredemt distribution providing fast and smooth correction method

Using a Monte Carlo simulation to simulate the scattered event distribution is another
common approacfBarret et al., 2005)In this approach, image isitially reconstructed

and the attemation map is determined so that the scattered event distribcdiorbe
simulated based on the reconstruction. Monte Carlo simulation is an efficient method since
it accounts for the radioactivity distribution, the whole course of photons from their
emisson to the scattering interaction with the detector or their escape from the gantry,
other physical interactions and detector characteristics along with the attenuation
properties Thus Monte Carlo simulation method is considered as a very accurate method,
and standard for evaluation scatter correction techniques and a standard scattered event

correction method for commercial clinical PET scaniigralil, 2010).
Random correction

Similar to scattered events, random coincidence events alsapddsanoise to the true
event signal recorded by the detectdisus methods are also developed to deal with and

correctfor the random events.

In one approach, a coincidence window with a delayed timing is implemented to measure
random events directly. Whenighdelayed window is used, coincidence events detected by

a detector pair only contains random events. The probability distribution of these random
events when a delayed window is used is same with the probability distribution when a

usual coincidence wirmv is used. Thus by taking the difference of wieole PET data
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