N1V
W3TTVINIA A3HVA

JOVNONVY]
JIHVHIANY 04 SONIAd3IdINTG dJOM T1vdN3AN ONIHO1dX3

6T0¢
N3N

EXPLORING NEURAL WORD EMBEDDINGS
FOR AMHARIC LANGUAGE

A THESIS SUBMITTED TO THE GRADUATE
SCHOOL OF APPLIED SCIENCES
OF
NEAR EAST UNIVERSITY

By
YARED YENEALEM AKLILU

In Partial Fulfillment of the Requirements for
the Degree of Master of Science
in
Software Engineering

NICOSIA, 2019

EXPLORING NEURAL WORD EMBEDDINGS FOR
AMHARIC LANGUAGE

A THESIS SUBMITTED TO THE GRADUATE
SCHOOL OF APPLIED SCIENCES
OF
NEAR EAST UNIVERSITY

By
YARED YENEALEM AKLILU

In Partial Fulfillment of the Requirements for
the Degree of Master of Science
in
Software Engineering

NICOSIA, 2019

Yared Yenealem AKLILU: EXPLORING NEURAL WORD EMBEDDINGS FOR
AMHARIC LANGUAGE

Approval of Director of Graduate School of Applied Sciences

Prof. Dr. Nadire Cavus

We certify that this thesis is satisfactory for the award of the degree of Master of
Science
in Software Engineering

Examining Committee in Charge:

Asst. Prof. Dr. Boran Sekeroglu Department of Information Systems
Engineering, NEU

Assoc. Prof. Dr. Yoney Kirsal Ever Department of Software Engineering, NEU

Assoc. Prof. Dr. Kamil Dimililer Supervisor, Department of Automotive
Engineering, NEU

I hereby declare that this thesis has been composed solely by myself and all the information
in it has been obtained and presented in accordance with the academic rules and ethical
conducts. | also declare that, as required by these rules and conducts, | have fully cited and
referenced all materials and results that are not original to this work. | further declare that
this work has not been submitted, or will not be concurrently be submitted, in whole or in

part, for the award of any other degree in this institute or any other institute.
Name, Surname: Yared Yenealem, Aklilu
Signature:

Date:

To my beloved late elder brother...

ACKNOWLEDGEMENT

Foremost, let the Most High be praised and honored as he had led me beside the still waters.
My supervisor Assoc. Prof. Dr. Kamil Dimililier: Your guidance, continuous support and
the patience and love you showed towards me had helped me a lot to carry out this work.
You have been fully supportive from day one till the end. I thank you very much.

My special respect and gratitude should go to Asst. Prof. Dr. Boran Sekeroglu for his
unreserved support starting from the very first day of my graduate class till this work. You

were very helping, caring and inspiring during my stay in Near East University.

| also very much grateful to the Ethiopian Ministry of Science and Technology (now
rebranded as: Ministry of Science and Higher Education) for giving me the opportunity to

pursue my masters here in this institute.

It will be a great omission not to thank my families (Sister Mastewal and Brother

Dejazmach), friends and fellows.

It would be against the will and conscience of my mind not to render my heartfelt and
warmest gratitude and thanks to my late elder brother, Habtamu Yenealem. May the

Almighty God grant you the surest mercies of David.

ABSTRACT

Word embeddings are recent developments in natural language processing where words are
mapped to real numbers for ease of operations on characters, words, subwords and sentences.
Word embeddings for many world languages have been generated and a study is underway.
Though Ambharic is one of the most widely spoken language in Ethiopia, it is lagging behind

in computational analysis including word embeddings.

Word embeddings capture different linguistic characteristics, which are intrinsic, such as
word analogy, word similarity, out-of-vocabulary words and odd-word out operations. In
this thesis, these characteristics and operations were explored and analyzed on Amharic
language. Besides these intrinsic evaluations, the word embedding was evaluated on

multiclass Amharic text classification task as an extrinsic evaluation.

FastText, a recent method to generate and evaluate word embeddings was utilized. This was
used because of the morphologically richness of Amharic and the features of fastText in

capturing sub-word information.

The resulting embedding using fastText showed that words that are similar or analogous to
each other happen together or closer in space. Related Amharic words were found closer to
each other in the vector space. Morphological relatedness took the highest stake. The word
embedding has also learned the vector representation, “7r#’(King) - @7&(man) +
a-+(woman)” resulting in a vector closer to the word “7<1”(queen)”. Out-of-vocabulary
words were also entertained. Multiclass text classification on the model attained 97.8% F1-

score; result being fluctuated based on parameters.

Keywords: Word embedding; text classification; word relatedness; word analogy; Amharic

language; fastText

OZET

Kelime gomme iglemleri, dogal dil islemede, karakterlerin, kelimelerin, alt kelimelerin ve
ciimlelerin kullanim kolaylig1 icin kelimelerin gergek sayilarla eslestirildigi son
gelismelerdir. Bir¢ok diinya dili i¢in kelime yerlestirmeleri yapildi ve bir ¢alisma devam
ediyor. Amharca Etiyopya'da en ¢ok konusulan dilden biri olmasina ragmen, kelime gomme

islemleri de dahil olmak {izere hesaplama analizlerinde geride kalmaktadir.

Sozciik yerlestirmeleri, sozclik analojisi, sdzciik benzerligi, sozciik dis1 sdzciikler ve garip
sozciik ¢ikarma islemleri gibi kendine 6zgii farkli dil karakteristiklerini yakalar. Bu tez
calismasinda, bu 6zellikler ve islemler Amharca dilinde arastirilmig ve analiz edilmistir. Bu
icsel degerlendirmelerin yani sira, gomme kelimesi ¢ok sinifli Amharca metin siniflandirma

gorevinde dissal bir degerlendirme olarak degerlendirilmistir.

FastText, kelime gdmme islemlerini iiretmek ve degerlendirmek i¢in yeni bir yontem
kullanildi. Amharic'in morfolojik olarak zengin olmasi ve alt-kelime bilgisinin

yakalanmasinda fastText'in 6zellikleri nedeniyle kullanilmistir.

FastText kullanilarak elde edilen sonu¢ gomme, birbirine benzer veya birbirine benzeyen
kelimelerin bir arada veya uzayda daha yakim oldugunu gosterdi. lgili Amharca kelimeler
vektor uzayinda birbirlerine daha yakin bulundu. Morfolojik iliski en yliksek tehlikeyi aldi.
Gomme kelimesi ayn1 zamanda “7+#(Kral) - @78: (erkek) + (vt (kadin)” vektor gosterimini
de “71t (kralige)” kelimesine daha yakin bir vektorle sonuglamigtir. Kelime dis1 kelimeler
de agirlandi. Model iizerindeki ¢oklu sinif metin siniflamasi% 97.8 F1 puanina ulagmstir;

Sonug parametrelere gore dalgalanma.

Anahtar Kelimeler: Sozcik gomme; metin siniflandirmasi; kelime iliskililigi; kelime

benzetmesi; Amharca dili; Fasttext

TABLE OF CONTENTS

ACKNOWLEDGEMENT ..ottt snaeenee s i
AB ST R A CT et a et nneeeres ii
L 4 N SRR v
LIST OF TABLESottt sttt be e ne e tee e viii
LIST OF FIGURES.......c ottt st IX
LIST OF ABBREVIATIONSottt Xi

CHAPTER 1: INTRODUCTION

1.1 Statement of the ProbIEmMS..........c.ooieiiiiicce s 1
1.2 THESIS ODJECLIVES.ocivieiicic et ettt nas 2
1.2.1 GeNEral ODJECTIVEScc.oiuiiiiiiieiieie et 2
1.2.2 SPECITIC ODJECLIVESccviiiieciece e 3
1.3 Methods and TEChNIQUESc.ooiiiiiiie e 3
1.3.1 LILEIatUr FEVIEW.eveviiiieieeieeieesie ettt sttt ettt ettt nnenreas 3
IR T o To] Y= 1= ot 1 o] O 4
1.3.3 Data collection and preparation.............coeieeeeieierenese s 4
G T 1V T o 1= £SO 4
1.3.5 Evaluation and analySiSccereiiiiiiiiiiiicee e 4
1.4 Scope and LiMItation..........cccoveiiiiieiic et 5
1.5 Significance OF the STUY........ccooiiiiiiier e 5
1.6 THESIS OULIINE....eeie ettt e st e e nneenes 5

CHAPTER 2: LITERATURE REVIEW AND RELATED WORKS

2.1 OVEBIVIEBW ...ttt sttt ettt bttt se e bt e b e sb e bt e s bt et e be e bt e nbeeneenneebeenee e 7
2.1.1 Named entity reCOGNITIONc.ooveiviiiiiiiieieeeie e 7
2.1.2 SENtIMENT ANAIYSIS ...oovvieiie e 8
2.1.3 TeXt ClaSSIFICALION.ccuiiieiieee e et 9

2.2 WOrd EMBDEATING.......ciiiiiiiiiie s 18
2.2.1 Types of word embeddingc.covveeiiiieie e 21

2.3 Word Embedding Based MOGEIS..........cccoveiiiieiieiice e 24

2.4 Amharic and Amharic Word EmBeddingscccevvieiiireninnieniie e 26
2.4.1 OVErVieW OF AMRNAIICcoiviiiiiieciee s 26
2.4.2 Amharic word embedadings.........coviiiieiieiie e 27
2.4.3 Works on Amharic text classification ... 29

2.5 Word Embeddings Evaluation Methods...........c.ccoueiiiieiieiiiiesecre e 31

CHAPTER 3: METHODOLOGY AND APPROACH

3.1 WOrds and WOrd VECTOISc.cviuiieieiisieieese sttt 32
3. 1.1 WOrdS and CONEEXESvvvireuieiirieieiisie ettt 32
3.1.2 VecCtors and WOIT VECTOIScoueirierieieiinieieesi ettt 33

3.2 WOrd REPIESENTALIONc.viviiiieiieiie ettt 34
B2 L WOIUZVEC.......eieieeiei ettt bbbt 34
BL2.2 GIOVE ..ot rs 38
BL2. 3 TASTTEXE 1.ttt bbbttt bbb 40

3.3 Word Representation for AMNariccccoeviieiieci e 45
3.3.1 The corpus for word embedding..........cccccveveiieiicii e 45
3.3.2 Pre-processing the corpus for word embeddingcccoevveivccciicie e, 46
3.3.3 Amharic word embeddingcccveviiiiiicie e 48
3.3.4 Dataset for text ClasSifiCation ..o 52

3.4 Visualizing Word EmBedadings.........cccooiiiiiiiiieieie e 55

CHAPTER 4: EXPERIMENTATION AND RESULTS

A1 INTFOAUCTION .. 56
4.2 Evaluation and Experimentation SEtUPccoeivieiieiie e 56
4.3 EVAIUALION IMBITICS ..o eeeeeeeeeeeeeeee e, 57
4.3.1 INtrinSIC EVAIUALION ..coooeeeeeeeeeeeeeee 57
4.3.2 EXININSIC @VAIUALION ..o, 73
A4 SUMIMAIY ...ttt e et e e e bt e ehe e e be e e he e e abe e ea b e e be e eae e e sbeeambeeabeeanteennneenbeennnas 77

Vi

CHAPTER 5: CONCLUSION, RECOMMENDATION AND FUTURE WORKS

T8 A 0 0 Tod (1157 o] o TS UURRRTRPRON 78
5.2 RECOMMENAALION ...ttt sttt esbe et e sneesreentesneesreennens 79
B.3 FULUIE WOTKS ...ttt bbbttt bbb 79
REFERENCES ...ttt bbb 81
Appendix 1: Amharic Punctuation Marks and Basic Ethiopic Numbers................... 89

vii

LIST OF TABLES

Table 3.1: Parameters used for training fastText word embeddingsccccocvvvnvviieiienn. 51
Table 3.2: The ten categories and the number of articles belonging to each category 53
Table 4.1: Similarity scores between terms t1 and t2..........ccccoovvevviie i, 58
Table 4.2: Most similar words for words: Ao-&(Prince), a@<(Human) 1w (Reign) 60
Table 4.3: SEMaNtiC ANAI0GY........ccoviiiiieii e 62
Table 4.4: SyNtactiC aNalOgYcceieiiriiiiiiieee e 62
Table 4.5: Top 5 Nearest neighbors for a Word: (Acceoeieeiiinieie i 63
Table 4.6: Analogical reasoning with varying Window SIZ€............cccovevveveiiieseese s, 64
Table 4.7: Word relatedness with the two models: CBOW and SG............cccocvvviiniininnnn, 66
Table 4.8: Corpus size and WOrd relatedness.........coviueiiereeieiieene e 68
Table 4.9: Dimension and WOrd relateadnesscoovieeiierieieiieseee e 69
Table 4.10: Nearest neighbors for OOV words and their cosine distance...............c.......... 72
Table 4.11: Odd WOrd QUL FESUIES.cveieiiiiiiiicieee e 72
Table 4.12: Number of datasets in each group and ratiocccccevevvieiieieciiese e, 73
Table 4.13: Precision and recall at K=2, and F1-score using different epochs 74
Table 4.14: F1-score at K=1 using different poChS...........coovriiiniiiiienciesseseeeee 74

Table 4.15: Example from a validation set obtained with 100,000 epochs on 80/20

sample, label predictions included.............cccooveiiiiiicicc e 75

viii

LIST OF FIGURES

Figure 2.1: Text classification fIOW ... 10
Figure 2.2: Classification block diagram...........cccceoiiiiiiiiiiiicee e 11
Figure 2.3: Steps in machine learning based Classificationccccoccvveviviieiiicieeenene 13
Figure 2.4: SUppOort VECTOr MACKINESccveiiieie e 15
Figure 2.5: The CBOW arChiteCtUIE..........cccviiiiiieieee e 23
Figure 2.6: Continuous skip-gram architeCtureocooeiiriniiicicee e 24
Figure 3.1: (a): a left neighborhood context with parameter =-n; (b): a right

neighborhood context with parameter t=+n, where n > 0.c.cccoevevvenenne. 33
Figure 3.2: CBOW model diagram..........cccueiiiieiieiieese ettt 36
Figure 3.3: SKIip-gram mMOEl..........c.cooiiiiiiiie e 38
Figure 3.4: Character n-grams example using the word "going"ccccocvvnineniinieennen, 41
Figure 3.5: fastTeXt MOEL............ccoveiiie e 42
Figure 3.6: A more elaborated fastText classifier with hidden-layerc..cccoovevvennane. 44
Figure 3.7: Sample corpora before preproCesSINGcovvererererieiieriese e 46
Figure 3.8: Preprocessing algorithm pseudo COUE...........oovviririiieieiee e 47
Figure 3.9: Preprocessed dataset SAMPIEccveoveiieiiiic e 48
Figure 3.10: Model probability of a context word given a word w(colored red) 49
Figure 3.11: Proposed architecture and approach...........ccoceerereiieiienene e 52
Figure 3.12: Sample dataset with fastText labeling format.............cccoeviiiiiiicc 53
Figure 4.1: t-SNE cosine distance between words that are put in the right side of the

Figure 4.2:

Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:

picture. The words are names of people, languages, places, animals and
L0013 SSSRSS 59

Magnified version of Figure 4.1 to show how names of languages are closer

T0 BACH OTNEY ... 59
2-D projection of 300-dimensional vectors of countries and cities 61
PCA visualization showing both morphological and semantic relatedness..... 65
t-SNE embedding of top 500 words (using default parameters)...........ccccoc.... 66
Magnified clusters clipped from Figure 4.5........cccoccoveiiieiie i, 67
t-SNE embedding of top 300 WOIAS.........cccooeiiiriiiieiieiesee e 67
PCA visualization showing word relationship.........cccccocvvieniiiiicve e, 70

iX

file:///E:/Masters%20Thesis/Ubuntu/Chapter%201-2-3-4-5%20Exploring%20Neural%20Word%20Embeddings%20for%20Amharic-VER%207.docx%23_Toc9033415
file:///E:/Masters%20Thesis/Ubuntu/Chapter%201-2-3-4-5%20Exploring%20Neural%20Word%20Embeddings%20for%20Amharic-VER%207.docx%23_Toc9033416
file:///E:/Masters%20Thesis/Ubuntu/Chapter%201-2-3-4-5%20Exploring%20Neural%20Word%20Embeddings%20for%20Amharic-VER%207.docx%23_Toc9033417
file:///E:/Masters%20Thesis/Ubuntu/Chapter%201-2-3-4-5%20Exploring%20Neural%20Word%20Embeddings%20for%20Amharic-VER%207.docx%23_Toc9033419
file:///E:/Masters%20Thesis/Ubuntu/Chapter%201-2-3-4-5%20Exploring%20Neural%20Word%20Embeddings%20for%20Amharic-VER%207.docx%23_Toc9033420
file:///E:/Masters%20Thesis/Ubuntu/Chapter%201-2-3-4-5%20Exploring%20Neural%20Word%20Embeddings%20for%20Amharic-VER%207.docx%23_Toc9033421
file:///E:/Masters%20Thesis/Ubuntu/Chapter%201-2-3-4-5%20Exploring%20Neural%20Word%20Embeddings%20for%20Amharic-VER%207.docx%23_Toc9033422
file:///E:/Masters%20Thesis/Ubuntu/Chapter%201-2-3-4-5%20Exploring%20Neural%20Word%20Embeddings%20for%20Amharic-VER%207.docx%23_Toc9033423
file:///E:/Masters%20Thesis/Ubuntu/Chapter%201-2-3-4-5%20Exploring%20Neural%20Word%20Embeddings%20for%20Amharic-VER%207.docx%23_Toc9033424
file:///E:/Masters%20Thesis/Ubuntu/Chapter%201-2-3-4-5%20Exploring%20Neural%20Word%20Embeddings%20for%20Amharic-VER%207.docx%23_Toc9033426
file:///E:/Masters%20Thesis/Ubuntu/Chapter%201-2-3-4-5%20Exploring%20Neural%20Word%20Embeddings%20for%20Amharic-VER%207.docx%23_Toc9033427
file:///E:/Masters%20Thesis/Ubuntu/Chapter%201-2-3-4-5%20Exploring%20Neural%20Word%20Embeddings%20for%20Amharic-VER%207.docx%23_Toc9033429

Figure 4.9: 100-dimensional WE of OOV word-a0cA-9°o¢-...
Figure 4.10: 100-dimensional WE of OOV word-¢£&03-9°4t

ANN:

CBOW:

CNN:
GloVe:
IDF:
NER:
NLP:
NN:
OooV:
PCA:
POS:
RNN:
SG:
SVM:
TF:
t-SNE:
WE:
XML:

LIST OF ABBREVIATIONS

Artificial Neural Network
Continuous Bag of words
Convolutional Neural Network
Global Vector

Inverse Document Frequency
Named Entity Recognition
Natural Language Processing
Neural Network
Out-of-vocabulary

Principal Component Analysis
Part of speech

Recurrent Neural Network
Skip-gram

Support Vector Machine
Term-frequency

t-Distributed Stochastic Neighbor Embedding
Word Embedding

Extensible Markup Language

Xi

CHAPTER 1
INTRODUCTION

The distributional representation of words plays a crucial role in many natural language
processing approaches. Words of a certain language, to be processed and understood by
machines, need to be represented or converted into real numbers. As numbers are easier for
operations by machines, words are mapped to real numbers. Those number representations
are formed from different complex mathematical operations with a given dimension. This

representation is called word embeddings or word vectors.

Vector representation of words will create a link between the two prominent fields of studies:
mathematics and linguistics. This linkage and relationship between the two studies enables

analysis of words and other linguistic features easier using algebraic methodologies.

Word embeddings, as a distributional representation of words in a variable sized dimension,
capture different linguistic characteristics such as word similarity and word analogy.

The fact that related words will have a related representation vector gives us the chance to
find similar words. That is, semantically similar, related words are mapped in the vector

space very closer to each other.

The other characteristics that would be caught in using word embeddings is word analogy.
Words that are represented as vectors are easier for mathematical operations. Amongst the
mathematical operations that are usefully employed in this case are addition and subtraction
of vectors of words. The famous relation: KING — MAN + WOMAN ==QUEEN s pulled
from the beauty of vectors to lend themselves for operations. The analogy goes like this: As
a KING is to MAN, QUEEN is to WOMAN. As studied by (Mikolov et al., 2013a)
proportional analogies can be drawn from hypothetical vector operations. In this thesis,

intrinsic and extrinsic evaluation of word embeddings for Amharic are explored thoroughly.
1.1 Statement of the Problems

Amharic is one of the morphologically rich Semitic language. Although it's the most widely

spoken language, in terms of computational linguistic, it's lagging behind.

Word representation of almost all languages in the globe have been proposed by (Mikolov
et al., 2016) through the Facebook's Al Research (FAIR) lab. This lab released an open-
source library and a model called fastText, which is dedicated to the task of word
representation and text classification. It uses neural network for word embedding and the lab
makes available pre-trained models for 294 languages, among these languages Amharic

being one of them.

fastText can be used to make word vectors using either CBOW or skip-gram (SG) models,
plus it is also an efficient method for text classification. Because of the complex nature of
Semitic languages in terms of morphology, a number of inflected forms, that often cause
unknown words to appear (Tedla & Yamamoto, 2017) in the word representation, are
generated. This case is even worse for low resource languages with no or little support of
annotated resources like Amharic. For this reason, fastText algorithm is chosen for Amharic

word embeddings.

Word embedding analysis involves both qualitative analysis and non-qualitative analysis. In
qualitative analysis, the linguistic properties of languages like word similarity, word
analogies and nearest neighborhood etc. are studied. On the other hand, other downstream
tasks and non-qualitative factors such as text classification and NER are part of the analysis

in the NLP arena.

Works on analysis and exploration of word embeddings on different languages exist but as
Ambharic is a low-resource language, in regards to digitization, there is little attempt on this

topic.

Therefore, in this work the performance of fastText word embedding algorithms on Amharic
language is analyzed and explored. Qualitative analysis using Word Similarities, Word
analogies and nearest neighbor features, and non-qualitative analysis using multiclass

Ambharic text classification on Amharic Word Embeddings are the focus of the paper.
1.2 Thesis Objectives
1.2.1 General objectives

The general objective of this study is to investigate, analyze and explore Word Embeddings

for Amharic language.

1.2.2 Specific objectives
The specific objectives of this study to achieve the overall objective are:

e Analyzing how different hyper-parameters on Word Embeddings can achieve

different accuracy levels in relation to non-qualitative tasks

e To explore the morphological linguistic feature of Amharic on Word Embeddings

such as: - Word similarity, Word analogy and Nearest neighbors
e Study Amharic Sentence embedding as a sideline on the given model
e Collection and Preprocessing of unlabeled Amharic dataset.
e Train multiclass Amharic texts

e Experiment and Review on different hyper-parameters on Amharic multiclass

classification

e Investigating problematic cases such as how embeddings reflect cultural bias and

stereotype
e Show how word embeddings act as a window onto history.
1.3 Methods and Techniques

In this paper work, fastText model is chosen for training word vector representation and
Ambharic multiclass text classification. The following methods will be applied in the progress

of the research.
1.3.1 Literature review

Extensive literature review has been conducted on concepts, tools, models, architectures and
algorithms related to word embeddings and text classification. Related works on the subject,
focus being on word representation and multiclass classification, and a brief overview and

introduction about the Amharic language is taken into consideration.

1.3.2 Tool selection

In this work fastText, a library for efficient learning for distributed word representations and
text classification from Facebook Al Research (FAIR) lab, Word2Vec by (Mikolov et al.,
2013a), GloVe by (Pennington et al., 2014), PCA and t-SNE for dimension reduction and
word embedding visualization, Gensim which is a powerful NLP toolkit, matplot for plotting
have been used. Other Python libraries are deployed in the backend such as Tensorflow,

Keras, NumPy, and Scikit-learn.
1.3.3 Data collection and preparation

An Amharic news dataset is collected from the web from different websites including
Ambharic Wikipedia and Amhara Mass Media Agency, a local media in Ethiopia, which
mainly serves in Amharic. The dataset will be manually annotated, preprocessed and

cleaned.
1.3.4 Models

In this work latest and popular models have been used for generating and experimenting with
word embeddings. Neural network based models CBOW and SG (Mikolov et al., 2013a)
from fastText tool are used. CBOW (Continuous Bag-of-words) tries to predict the target
word according to the context window size from the surrounding words. While SG (Skip-
gram) tries to do the reverse - predicting the surrounding words known as context based on
the target word (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013).

1.3.5 Evaluation and analysis

For evaluation and analysis, two types of dimensionality reduction techniques are used. The
first technique is called PCA (Principal Component Analysis), which focuses on capturing
the component and dimension of data during visualization. It's a linear deterministic
algorithm (Feng, Xu, & Yan, 2012). The second technique is t-SNE (t-distributed Stochastic
Neighbor Embedding) which is another popular dimensionality reduction technique that
focuses on preserving local neighborhoods in the data. It's non-linear nondeterministic

algorithm.

1.4 Scope and Limitation

A manually annotated Amharic news dataset, prepared by the Author, has been used for the
multiclass text classification task. This dataset is small in size due to the absence of pre-
annotated Amharic corpus. For the rest of the tasks such as qualitative analysis, both pre-
trained word vectors and newly trained vectors from an Amharic Wikipedia and Amharic

books are used.

The work focuses on how models perform on Amharic language datasets. One extrinsic

evaluation on downstream tasks is chosen for this work, i.e., text classification.
1.5 Significance of the Study

Word embeddings are recent research areas in the NLP community. It’s because word
embeddings are crucial for various downstream tasks such as POS tagging, Sentiment
Analysis, NER, Text Classification, Syntax Parsing and so on. Therefore, in order to study,

design, analyze and improve those tasks, word embeddings should be thoroughly explored.

Therefore, this work will be an eye-opening for Amharic NLP research areas such as
Sentiment Analysis. It will pave the path for improved text classification for many domains

such as customer service, Spam detection, document classification.
1.6 Thesis Outline

In this outline, a cursory glance of the topics presented in different chapters of this thesis is

provided.

Chapter 1 presents the introductory and overall background of the thesis. It begins with a
background study to give a brief glance about the what of the works presented. The
motivation behind the work, the objectives to be met and the questions to be raised and
addressed along with the methodologies and tools required are discussed in this chapter. The
theoretical and brief historical background of word embeddings and related topics, works of
other researchers on different languages and the state-of-the-art methodologies,
architectures, tools are reviewed, analyzed and presented in Chapter 2. The types, models,
application and usage of word embeddings in various NLP tasks are also given a space in

this second chapter. A very brief overview about Amharic language and works on the

language related to NLP is conducted as well.

The third chapter focuses on methodologies, architectures and approaches that are planned
to be utilized in carrying out this work. The ways to represent words in vectors, depth
analysis of models chosen, corpus preparation and training, and methods of evaluation are

the core concepts covered here.

After making ready all the tools, techniques, models and training requirements,
experimentation and result analysis is the work presented in Chapter 4. Here experimental

setups, evaluation metrics and the analysis of the results obtained are discussed.

Finally, Chapter 5 concludes the thesis by providing insightful recommendations and future

works.

CHAPTER 2
LITERATURE REVIEW AND RELATED WORKS

In this section, relevant concepts on and related literatures about word embeddings are
reviewed. Characteristics of languages in distributional representation, the focus being on

Ambharic language, are widely recalled.
2.1 Overview

The advent of deep learning in the scientific arena has had a significant effect on natural
language processing (NLP). NLP enables machines draw meaning from natural languages
(Farzindar & Inkpen, 2015). It’s a multidisciplinary area where software that analyze,
interpret, understand and generate useful information from natural languages used by
humans are designed and built. Though the area has been around for long time as trending
topics for research and studies, important developments and impressive milestones in NLP
have been observed in recent years. Amongst the many milestones that are capturing
attention are Named Entity Recognition, Sentiment Analysis, Text Classification. These

areas are briefly introduced below.
2.1.1 Named entity recognition

Named Entity Recognition (NER) is an Information Extraction task where important entities
of a certain text, sentence, document or corpora are identified. Phrases that indicate person,
organization, quantities, times, location are identified for the purpose of data mining and
machine translation (Fu, 2009). The task of NER is, in short, to identify entities like person,

location and organization.

The process in identifying those entities starts by identifying relevant nouns such as names
and locations, and important facts such as dates and numbers that are mentioned in the given

document. For example, given a statement S:

“Asrat Woldeyes was an Ethiopian surgeon, a professor of medicine at Addis Ababa
University, and the founder and leader of the All-Amhara People's Organization.” In this

statement, named entities are:

[Asrat Woldeyes]person, [Addis Ababa University]location, and [All-Amhara People’s

Organization]organization.

The role of word vectors in NER emanates from the fact that NER requires the task of
annotation which requires human time, cost and time (Sienc™nik, 2015) and word vectors do
not require pre-annotated dataset. Word vectors can be obtained from a training on large
unannotated corpora, which can aid in augmenting the training of small annotated data in
downstream tasks such as NER. This in turn reduces the amount of annotated dataset

necessary and enhances the classification accuracy.
2.1.2 Sentiment analysis

The explosive nature of social medias, and the advance of technology brought the interaction
of people on the Internet viable and inevitable. While playing with social medias and other
streaming sites, people leave their opinions, reviews, tags, ratings etc. People give their
opinions and sentiments for different reasons. They give opinions for products they use,
about groups they are fan for, about institutions they are part of, their governments and social
organizations, and others. People on social medias also reviews products and services etc.
Companies and organizations always push their users to react and give feedbacks on the
services and products they offer to know the opinion of their users. Reviews and opinions
have tremendous effect on individuals for taking decision, say in choosing political
candidates, buying branded items, and other every day activities. These reviews and opinions
can, nowadays, be found in commentaries, blogs, micro-blogs, social media comments,

reactions and postings.

The reviews, opinions and other activities of the users have polarities, either negative,
positive, or neutral. Every word written, every utterance spoken holds sentiment information
along with the context. The question now is how can those polarities are identified and

analyzed for different usages.

Sentiment analysis, also called opinion mining, solved this problem by collecting,
identifying, analyzing, synthesizing contextual polarity of texts, reviews, tags, and other
activities of users. As the name clearly dictates, sentiment analysis is the process of analyzing

intentions and sentiments in a given text, document or word. It might be to classify negative

and positive senses (binary sentiment analysis) or might include neutral sentiments. This has
tremendously been used for opinion mining, customer reviews, product reviews (Turney,

2002), document classification (Pang et al., 2002) and so on.

Before the advent of deep learning models, sentiment analysis approaches were using
traditional classification models such as Naive Bayes (Narayanan, Arora, & Bhatia, 2013)
and Support Vector Machines (Cortes & Vapnik, 1995). The later model, Support Vector
Machines, is also used in pattern recognition (Kirsal Ever & Dimililer, 2018). But now deep
learning models are doing well for NLP tasks.

Now, all of the above tasks and others not listed here already are using linguistic elements
like words. Be it sentiment analysis, or NER or any other natural language processing tasks
always strive to manipulate words. Humans can understand raw formatted words and texts
quite intuitively. Words, when spoken or written, are easier for humans but difficult for
machines to understand, analyze and operate with them. These words should somehow be
converted into machine-readable formats for ease of manipulation and calculation. The
words, texts or documents should be represented, without altering their semantic, syntactic
and contexts, by machine-readable representation so that machines can handle operations
such as classification, analysis, recognition. According to (Firth, 1935) and (Harris, 1954),
contexts of a word are essential to infer its meaning. Plus, the contexts in which two similar
words are used is also observed to be very similar. To exploit concepts, properties and other
features of texts, words, documents, and corpora at large, word embedding is the most widely

used natural language tool (Bengio et al., 2003; Mikolov et al., 2010; Mikolov et al., 2013c).
2.1.3 Text classification

Text classification dates back to the early 60's, but got popular in the early 90's (Sebastiani,
2002). With the fast growth of online data, text classification is becoming one of the task of
NLP. Information that is flowing over the social medias, or through different medias such as
books, videos, and so on should be handled and organized. For efficient usage of data, for
classifying news stories either by author or topic, to classify support tickets by urgency, to
tag products by categories, to ease search in storages, and other related tasks are tackled

using text classification.

Text classification is among the fundamental tasks in NLP to areas like sentiment analysis,
intent detection and smart replies. The goal of text classification is to classify documents
(such as review, opinions, news, messages, posts, replies, emails, etc...) to specified
categories. It involves assigning predefined tags to free-text documents (Zhang et al., 2015).
The tags or categories can vary from two (binary-classification) to n (multi-label or multi-

class classification).

We can find unstructured and unlabeled raw data in the form of text anywhere in social
networking sites and media, chat conversations, email messages, web pages and more. Due
to its unstructured nature, however, extracting insights and useful information from those
raw data takes time and energy. These days, text classification is used by businesses for
structuring, automatic labelling and extraction, balancing documents and texts in a cost-

efficient way for automation processes and enhancement of decision-making.

For example, given a text t, a classifier can take the content of the text t, analyze its content

and then automatically assigns relevant categories.

Input (text) Text Classification Model Output

‘ E Text Classifier Tag
—— ——

Figure 2.1: Text classification flow

2.1.3.1 General definition of classification

The general text classification problem can formally be defined as the process of predicting
a new category assignment function F : D X C — {0,1}, where D is the set of all possible
data and C is the set of predefined categories. The value of F(d, c¢) is 1 if the text or document
or data d belongs to the category ¢ and O otherwise (Feldman & Sanger, 2007). The
predicting function F: D x C - {0,1}is a classifier, that produces results as "close" as

possible to the actual category assignment function F.

10

Training data with labels

Supervised &
fastText
Unzupervized algorithms
New data Predictive model Prediction

Figure 2.2: Classification Block Diagram

2.1.3.2 Multilabel versus multiclass classification

Based on the properties of function F in Section 2.1.3.1, classifications can be distinguished
as multilabel and multiclass classification. In multilabel classification, labels might overlap
and data may belong to any number of labels. It assigns to each sample a set of target labels.
It is like predicting properties of a data-point which are mutually exclusive such as topics
that are relevant for a sample. A text might be about any of football, athletics, baseball or
chess at the same time or none of these. In general, multilabel classification assigns a text,

data, or sample to one or more than one, or no label at all.

However, if the text, data, or sample or document belongs to exactly one class or label, it is
known as multiclass classification. Here each sample belongs to exactly one category as the

classes or labels are mutually exclusive. It assigns each sample to one and only one label.

In this work, the second type, i.e., multiclass classification is chosen for evaluation

technique.
2.1.3.3 Approaches to text classification

In text classification (sometimes called text categorization) different approaches were
evolved through the ages in the field. Before automation day-to-day tasks in the life of man

were manual. Text classification was not an exception. The first successful approach used

11

for text classification was to manually build classifiers based on knowledge engineering
(KE) techniques (Krabben, 2010). This technique requires manual annotation, parsing,
syntax check and syntactic rules or patterns. The drawback of this approach is, however, that
it depends on knowledge of the expert to hand-craft rules. This will hinder portability and

maintenance of the system.

According to (Krabben, 2010), Machine Learning techniques became increasingly popular
in text classification task in the 90's. This technique automates the task of classification by
automatically building a classifier which learns the characteristics of each category from a
set of labeled datasets. This approach is also not without drawbacks. Machine learning
approaches do need to be trained on predefined categories and their efficiency depends on

the quality of the training datasets.

In general text classification can be done either manually or automatically. In the former, it's
a human that annotates, interprets and categorizes the text. This gives quality results with
time trade-off. It's expensive, time-consuming and laborious. The speed, diligence and
efficiency of humans affect the result. The latter applies NLP, deep learning and other
methods to automate classification in a faster and more cost-effective approach. In this
second ways, there are different approaches to classify text automatically. They range from
rule-based systems to machine learning based systems. Some are even in between, called
hybrid systems.

In rule based approaches, handcrafted linguistic rules articulated by linguists are used to
organize text. The system uses those rule to semantically or syntactically identify relevant
tags based on contents. As the rules are articulated by men, these types of approaches can be
improved over time. The problem with these models are they are dependent on the skill of
the linguist and the systems depend on knowledge of the domain. Most of the time experts

and knowledgeable persons are required to use rule-based approaches.

With the machines learning ability, the need of manually crafted rules is questioned.
machines can learn and classify texts based on previous observations. Machines are given
pre-labeled training data so that machine learning algorithms can learn various correlations

in texts and that a particular tag is expected for a particular input.

12

In machine learning based systems, before training a classifier, feature extraction is
conducted. Feature extraction is the process of transforming the data into a numerical
representation or into vectors. Different approaches such as bag of words and n-gram model
can be used for transformation. Then the machine learning algorithm is fed with the vector

and the tags to produce a classification model.

% ——p| Feature Extractlonl——p | | [|—]
Input Transfarms each text Features - : :
(text) to a feature set Machine Learning Text Classification
in the form of a vector algorithm Model

Features and tags are

)] fed into the algorithm

Expected tags to create a model

for this input

Figure 2.3: Steps in machine learning based Classification

2.1.3.4 Text classification algorithms

There are various machine learning algorithms for text classification modeling. The popular

ones are: Naive Bayes, SVM and deep learning.
a) Naive Bayes

Naive Bayes is a statistical algorithm based on Bayes’ theorem. In this model, each feature
is considered independent and the conditional probabilities of occurrence of words are
computed. In text classification, the Bayes' Theorem calculates the probability of each label
for a given text and then output the label with the highest one (Pawar & Gawande, 2012).

Among the Naive Bayes family of algorithms, Multinomial Naive Bayes (MNB) is the one
which focuses on a multinomial distribution of features. MNB is a probabilistic model that
computes class probabilities for a given dataset using Bayes' rule. Assume there are N
vocabularies and C set of classes. Then MNB assigns a test sample di to the class that has

the highest probability P(c|d;), which is given by:

P(C) x P(d;|c)

Pleld) =——pay € @2.1)

13

where,

[cl

P(d) =) PU)P(dilK) 2.2)
k=1 .

The class prior P(c) is the number of samples belonging to class to the total number of

samples ratio. The probability of obtaining a sample like d; in class c is represented as:
P (wp|c)/mi
P@dile) =) []
| < fnl) nl! (2l3)

where f,,; is the number of word n in our test sample d; and P(w,|c)is the probability of

word n given class ¢ and P(wy]|c) can be computed using

1+F
P(wy,|c) = —_ nc
N + 331 Fec (2.4)
where F,. is the number of word x in all the training samples belonging to class ¢, and the
Laplace smoothing technique is used to prime each word's count with one to avoid the zero-
frequency problem (Kibriya et al., 2004). The final normalized computationally inexpensive

equation would be:

Pdile) = a| [P (waleym o5

where « is a constant diminished due to the normalization using Laplace estimator.
b) Support vector machines

Support Vector Machines are algorithms that divides a space into subspaces and its objective
is to find the line or the hyperplane that has the maximum margin in an N-dimensional space

that uniquely classifies the data points.

SVM determines the optimal decision boundary between vectors that belong to a given tag

and vectors that do not belong to it. This algorithm draws the best "line™ or hyperplane that

14

divides the vector space into two subspaces: one for the vectors belonging to the given tag

and the other which do not belong to it.

SVMs try to maximally position a separating line in a high-dimensional feature space such
that it divides the data points belonging to various classes, projected into the space from

input very well using kernel functions (Cortes & Vapnik, 1995).

A

R &
O O

Maximum.
*« ¥ margin
‘ N

> e
X4 X,

Figure 2.4: Support vector machines

In Figure 2.4 there are data represented by circles and squares. New, unclassified data can
be assigned to either circles or squares (both used as labels or tags) using SVMs. To do this,
SVMs use a separating line (hyperplane if multi-dimensional) to split the space into a circle
zone and a square zone (see the second figure in Figure 2.4). The distance to the nearest
point on either side of the separating line is known as the margin, and SVM tries to maximize
the margin. The separating line or the hyperplane needs to satisfy two requirements to be
optimal: (1) Cleanly separating the data, with circles to one side of the line and squares on
the other side, and (2) maximize the margin. The first constraint, i.e., clean separation of
data, is not easy in the real world. Therefore, SVM deals with this problem by softening the
definition of "separate”. This is done by allowing a few mistakes, hence loss function by
adding a cost for misclassification. The other way is by increasing the number of dimensions

to create a non-linear classifier.

15

SVM is a binary classifier developed by (Cortes & Vapnik, 1995). The algorithm maps input
vectors to a very high-dimensional feature space, where the data can be optimally separated
by a single hyperplane. By optimal it means widest possible margin is selected for the
separating hyperplane to any of the training datasets. The two most important issues SVM
takes into consideration are high dimensional input space and linearly separable

classification problems.
c) Deep learning

Different deep learning models such as Convolutional Neural Network(CNN), Recurrent
Neural Networks (RNN) and Hierarchical Attention Networks (HAN) are found very
effective in the work of text classification.

Deep learning models have gained popularity in computer vision (Krizhevsky et al., 2012)
and speech recognition (Graves et al., 2013) in recent years. Within NLP, much of the work
with deep learning methods has involved learning word vector representations through
neural language models (Bengio et al., 2003; Mikolov et al., 2013b) and performing

composition over the learned word vectors for classification (Collobert et al., 2011).

CNN is a class of deep learning, feedforward ANNSs that uses a variation of multilayer
perceptron designed to require minimal preprocessing. ANNSs are nowadays vastly used not
only in text processing but also in image processing applications. Implementing ANNS in
image processing applications is now trending (Khashman & Dimililer, 2008). This network
exploits the spatial structure of data to learn about it so that useful output can be obtained.
CNN models, originally invented for computer vision, utilize layers in word vectors to
extract local features. In NLP, the features as an input usually take the form of word vectors.
The input to a CNN, given a tokenized text T = {t,, ... ty}, is a text matrix A where the i"
row is the word vector representations of the i‘" token in T. The matrix A can be denoted as

A € RN*4 where d is the dimensionality of the word vectors.

CNNs use convolutional layers which are like a sliding window over a matrix. CNNs are
many layers of convolutions with non-linear activation functions. In CNNs the output is
computed over the input layer from local connections and then each layer applies different

kernels, usually thousands of filters, to then combine their results.

16

According to (Kim, 2014) CNNs perform remarkably well for classification by using
different tuning of hyperparameters. CNNs utilized the distributed representation of words
after converting the tokens comprising each sentence into a vector which forms a matrix to
be an input. However, these models require setting hyperparameters and regularization of
parameters (Zhang & Wallace, 2015). Other issues like the higher training time, expensive
configuration cost, vast space of possible model architectures and hyperparameter settings
etc. are counted as downside of CNNs (Zhang & Wallace, 2015).

The other family of deep learning methods is the Recurrent Neural Network (RNN). RNN
is a class of ANN where connections form a recurrent node (or a directed graph) along a
sequence. They are networks with loops that aids in persistence of information. RNNs
improved the traditional Neural Networks which considers all inputs as independent to each
other by gaining memory and capturing information in arbitrary long sequences and
predicting the previous and next sequences in the networks. They are deep in temporal
dimension and used in time sequence modeling. The role of RNNSs in text classification is to
recurrently and sequentially process words in a sentence and map a dense and low-

dimensional representation of words into a low-dimensional vector.

One of the feature of RNNs is their capability to improve time complexity and analyze texts
word by word there by preserving the context of texts. This ability arises from their way of
capturing the statistics of a long text. In this perspective RNNs has fall short of balancing
the role of both earlier words and recent words. This issue can be overcome by introducing

long short-term memory(LSTM) model.

Hierarchical Attention Network(HAN) was designed to capture document hierarchies
(words— sentences— paragraphs— articles— document) and context of the words and
sentences in a document. But the whole words in a document are not treated equal; as the
word “attention” says it all, and since all words do not equally contribute to the
representation of sentences meaning, the importance of words should be weighed by
introducing an attention mechanism. The attention mechanism is effected to reward those

sentences that hold strong features so as to properly classify a document.

Generally deep learning approaches start with sequence of word as an input in which the

words are presented as a 1-hot vector. The words in the sequence are then projected into a
17

contentious vector space after multiplied by a weight matrix which forms a sequence of real
value. The sequences are then fed into a deep NN, which processes the word sequence in
multiple layers resulting in a prediction probability. “This whole network is tuned jointly to
maximize the classification accuracy on a training set. However, one-hot-vector makes no
assumption about the similarity of words, and is also a very high dimensional” (Hassan &
Mahmood, 2017, p. 1108).

The above mentioned models such as by (Kim, 2014) achieve a good performance in
practice, but they are slow at training and testing time (Joulin et al., 2016). To alleviate this
limitation (Joulin et al., 2016) came up with another approach called fastText. This approach

can be used both for sentence, document or text classification and word representation.
2.2 Word Embedding

The idea of word embeddings and representations has its roots in linguistics and language
philosophy, especially in the works of (Harris, 1954) and (Firth, 1935) in 1950s. For
example, (Osgood, 1964) used feature representations to quantify semantic similarity using
hand-crafted features. In the early 1950s scholars used the semantic differentials technique

to measure the meaning of concepts.

Methods for using contextual features were later devised in 1990s in different thematic study
areas. The most known one was Latent Semantic Analysis(LSA). LSA is a technigue, in
NLP in general and in distributional semantics in particular, used to analyze relationships
between documents and the words inside them by making a set of concepts related to the
documents and words. This technique assumes the distributional hypothesis which states that
related words occur in similar pieces of text and constructs a matrix that has word counts per
paragraph from a corpus. It utilizes a technique called Singular Value Decomposition(SVD)
to reduction of the number of rows in the matrix while making the linguistic features intact.
The linguistic features such as the contextual-usage meaning of words are extracted and
represented by statistical computations applied to a corpus of text. This helps to estimate the

continuous representations of words.

At roughly the same time, Latent Dirichlet Allocation(LDA) was proposed by (Pritchard et

al., 2000) in the context of population genetics. This scheme was rediscovered in 2003 in the

18

context of machine learning by (Blei, 2003). LDA is a generative probabilistic model of a
collection of documents and words and/or phrases. According to the authors, LDA can be
used for collections of any discrete data, be it DNA and nucleotides, molecules and atoms

or keyboards and crumbs.

Another well-known models developed on neural networks that used contextual
representations are Self Organizing Maps(SOM) and Simple Recurrent Networks(SRN).
The former, developed by (Kohonen, 1982), uses unsupervised, competitive learning to
produce low-dimensional representation of high-dimensional data, while keeping, at the
same time, similarity relations between data items intact. The later was conceived and used
by (Elman, 1990). This is a version of the backpropagation NN that processes sequential
input and output. It is a 3-layer NN where the hidden layer activations are potentially used
as input. First the copy of the hidden layer functions is prepared and saved. Their results and
their copy is used as input to the hidden layer in the next time step. In this case, the previous
hidden layer from which its copy is saved and its results are transferred to the next is fully
connected to the layer next to it. Since the network has only the copy, backpropagation
algorithm is used for training. SRN “can be trained to read a sequence of inputs into a target
output pattern, to generate a sequence of outputs from a given input pattern, or to map an

input sequence to an output sequence” (Miikkulainen, 2010).

Though the idea behind word embeddings were found in the early works of (Harris, 1954)
and (Firth, 1935), the appearance of automatically generated contextual features, and deep
learning methods for NLP gives word embeddings the chance to be the most popular research
areas in the early 2010's (Mandelbaum & Shalev, 2016). Since then various developments
and different embedding models were evolved.

Latent Semantic Analysis(LSA) for information retrieval, Self-Organizing Maps (SOM) - a
distributional way to map words to 2-dimensions, such that similar words are closer to each
other (Ritter & Kohonen, 1989) - for competitive learning and visualization, Simple
Recurrent Networks (SRN) for contextual representations, Hyperspace Analogue to
Language (HAL) for inducing word representations (Lund & Burgess, 1996) etc. were

developed both in computational linguistics and ANNSs. Later developments use these

19

models as a basis. The various refined models vary based on the type of contextual

information they employ. Some use documents as contexts, others use words etc.

Later (Collobert & Weston, 2008) show the power of pre-trained word vectors as a tool for
downstream tasks ranging from structural linguistic features, such as POS tagging to
meanings and logic behind languages, such as word-sense disambiguation. The authors also

introduced a single CNN architecture that defies older systems.

However, it was (Mikolov, Chen, et al., 2013) who made the eventual popularization of word
embeddings after they released word2vec. Following the release of the word2vec toolkit,
word embeddings became the latest in natural language processing. This sparked a huge

amount of interest in the topic.

In 2014, Pennington et al. released GloVe, another model for unsupervised learning of word
representations, which brought word embeddings to the mainstream NLP. This model
develops a co-occurrence matrix using the global statistics of word-word co-occurrence.
GloVe (stands for Global Vectors) uses the strengths of word2vec skip-gram model for word

analogy tasks and matrix factorization methods for global statistical information

(Bengio et al., 2003) was the first person to coin the term Word Embeddings. As per the
terminology, word embedding has different names like distributional semantic model,
distributed representation, semantic vector space and so on. On this paper, the popular term

- word embedding- will be used.

Word embedding is the task of converting words, strings, or characters into machine-
readable formats specifically vectors. It is a means of representing a word as a low
dimensional vector which preserves the contextual property of words (Mikolov, Sutskever,
etal., 2013).

A word embedding as the name indicates embeds words into a vector space. It associates
each word with a vector in a manner that relationship between words are preserved.
Relatedness between words are reflected through the relations between vectors. In this vector
representation, “similar words are associated with similar vectors” (Collobert & Weston,

2008; Mikolov et al., 2013c). The vectors associated with words are called word

20

embeddings, also known as word vectors (Basirat, 2018). Words are converted into real

numbers. Therefore, word embedding can be described as vector representation of a word.

It's used in various tasks in deep learning and natural language processing (NLP), such as
sentiment analysis, caption generation (Devlin et al., 2015), named entity relationship
(Turian, Bengio, Ratinov, & Roth, 2010), machine translation (Bahdanau et al., 2014).

2.2.1 Types of word embedding
Word embeddings are classified into two broad categories: -

a) Frequency based embedding and; b) Prediction based embedding. These types are

discussed as follows.
a) Frequency based embedding

In frequency-based embedding, various vectorization methods are employed. Amongst the
methods the widely known are count vector, TF-IDF (Term Frequency-Inverse Document

Frequency) vector and co-occurrence vector.

In count vector method, the number of times each word appears in each document is
assessed. For example, suppose there are D documents, T number of different words from

all documents (called vocabulary). Then the size of the count vector matrix will be DxT.

This method faces primarily two problems. First, the size of the vocabulary and the
dimension (after multiplication) would be very huge for bigger corpus. For big data, with
millions of documents, hundreds of millions of unique words can be extracted. Therefore,
the matrix would be very sparse and inefficient for computation. Second, there is no clear
way to count each words, whether using frequency method or just based the words presence.
In this second point, if frequency of words is considered, in real life corpus, the least
important words like stop words, punctuation marks etc. are the most frequent ones. This

poses another problem. For this case, TF-IDF vectorization is the solution.

TF-IDF stands for Term-frequency - Inverse Document Frequency. Term frequency(TF)

shows the number of times a term or a word occurs or just frequency of occurrence (Salton

& Buckley, 1988) in a document. Term frequency, still, cannot the problem that count vector

faces due to most frequent-least relevant terms in documents. IDF just diminishes the
21

occurrence of most frequent terms in a document and increases the weight of terms that are
rare. IDF takes into account the totality of a word by measuring how importantly rich a word
is or whether the word is a common word or not. It is the logarithm of the quotient of the
ratio of the total number of documents to the number of documents where the term t appears,

as shown in the following equation.

idf (t,d) = logl{d eD:ted) (2.6)

where N is number of documents in the corpus N = |D|
|{d €D : t e d}| — number of documents where term t is part of (¢tf(t,d) # 0).

If term t is not part of the corpus, the denominator will be adjustedto 1 + |{d € D : t € d}|to

avoid division by zero.

Then

tf —idf(t,d,D) = tf(t,d).idf (¢t,D)
2.7
The other method worthy to discuss is the co-occurrence matrix. This captures the extent
words occur together so that relationships between words are also captured. This is done

simply by counting how words occur or found together in a corpus.
b) Prediction based embedding

Frequency based methods have been used for many natural language tasks such as sentiment
analysis and text classification. However, after the introduction of word2vec (Mikolov, et
al., 2013b) to the NLP community, the frequency based methods are proven to have
limitations. Vo & Zhang (2016) have, in their work about learning sentiment lexicons,
pledged not to count, but to predict. Therefore, prediction based methods are becoming the
state of the art for tasks performed using word embeddings such as word similarities and

word analogies (Mikolov et al., 2013c).

These methods are associated with the advent of neural network architectures. In this

perspective, (Mikolov et al., 2013c) introduced two neural network architectures for word

22

vector computation. The authors aim was to introduce methods for learning high-quality
word vectors from big data sets. According to the Authors, these model architectures are
very effective in minimizing computational complexity by optimizing the hidden-layer in
the model. The model, to boost performance, has been designed with a simple projection
layer instead of the hidden layer.

One of the architectures proposed is a feed-forward NN like the language model of (Bengio
et al., 2003) by removing the non-linear hidden layers. This model is known as a continuous
bag-of-words (CBOW) model. This method learns an embedding by predicting the target
word based on nearby words. The nearby words are surrounding words which determine the
context. Basically, in CBOW model, the average of the vectors of the surrounding words is
given to the neural network for predicting the target word, which appears in the output layer.
The architecture is dubbed a bag-of-words model as the order in which words occur does not
influence the prediction. Words before the target, history and words after the target, future,
are evaluated (their vectors are averaged). The model architecture is shown below at Figure
2.5.

INPUT PROJECTION ouUTPUT

wit-2)

wit-1)
sSUM

——— w(t)

\J

wit+1)

wit+2)

Figure 2.5: The CBOW architecture

The second architecture introduced by (Mikolov et al., 2013c) is the continuous SG model.
This method is almost the inverse of the above method, but instead of predicting the target

word, it predicts the surrounding words. This method, given the target word, tries to predict

23

the context, or nearby words. For a sequence of words, the continuous SG model takes the
word in the middle of the sequence as input and predicts the words within a window size
range before or after the input word (Basirat, 2018). The architecture of continuous SG

model is depicted at Figure 2.6.

INPUT PROJECTION OuUTPUT
wit-2)
% wit-1)
wi(t) - |
\ wit+1)
|| wit+2)

Figure 2.6: Continuous skip-gram architecture

Amongst the two architectures, CBOW model performs better in tasks involving small
datasets because the model treats the entire context as one observation and it smooths over
the distributional data at the averaging stage. On the other hand, for huge dataset, SG model
is better and fine-grained and essentially outperforms every other method. Mikolov et al.

(2013c) showed that skip-gram works better on semantics and worse on syntactic tasks.
2.3 Word Embedding Based Models

In literatures, several techniques are proposed to build word embedding models (Basirat,
2018). The most popular are word2vec, GloVe and fastText. Each embedding models are

discussed thoroughly in Chapter 3 in Section 3.2. Here a brief overview is provided.
a) Word2vec

Word2vec, a shallow model developed by (Mikolov, Chen, et al., 2013), was one of the first

neural model for efficient training of word embeddings. It learns low dimensional vectors
24

and predicts words based on their context using the two famous neural models: CBOW and
SG. The introduction of these two simple log-linear models drastically reduces the time
complexity, increases scalability and reliability of training word embeddings. Word2vec
starts with a set of word vectors that are random. It scans the dataset in orderly fashion,
always keeping a context window around each word it is neighboring with. Word2vec uses
target words and context very tightly to observe how they behave throughout the corpus. The
algorithm computes the dot product between the target word and the context words and tries
to minimize this metric performing Stochastic Gradient Descent (SGD). Each time two
words are encountered in in a similar context, their link, or spacial distance, is reinforced.
The more evidence is found while scanning the corpus that two words are similar, the closer

they will be.

The problem here is that the model only provides positive reinforcement to make vectors
closer. This leads, with a huge corpus at minimum state, to the state that all vectors would
be concentrated in the same position. To address this issue Word2Vec initially proposed a
Hierarchical Softmax regulator at first then a Negative Sampling later. The latter is simpler
and has been shown to be more effective. The basic premise is that each time the distance
between to vectors is minimized, a few random words are sampled and their distance to the
target vector is maximized. This way, it is ensured that nonsimilar words stay far from each

other.
b) GloVe

Amongst word embedding models, like word2vec, GloVe is a well-known algorithm. The
aim of GloVe is basically creating word vectors that capture meaning in vector space and
taking advantage of the global count statistics instead of only local information. Glove learns

embedding through a co-occurrence matrix and weights loss based on word frequency.
b) fastText

fastText is one of the text classification and word representation models that utilizes
unsupervised learning techniques to make word representations. It is an extension of
word2vec which views word representation from a different angle. The problem of

predicting context words by Skip-gram can be tackled with a classification tasks. Thereby,

25

fastText model takes into account the real essence of words, such as literals and characters
from which a word is composed of and introduced the idea of modular embeddings. fastText
represents sentences as bag of words and train a classifier (Joulin et al., 2016). One of the
peculiar feature of fastText is its ability to generate vectors for out-of-vocabulary words
including unknown words and tokens. fastText considers not only the word itself but also
groups of characters from that word and the subword information such as character unigram,

bigram, trigrams etc. during learning word representations
2.4 Amharic and Amharic Word Embeddings

In this section, the Amharic language with respect to word embeddings and natural language
in general will be discussed. Some aspects of the language, history and background of
Ambharic is also included.

2.4.1 Overview of Amharic

Ambharic (Amharic: A71¢%, Amarafifia) is the official language of Ethiopia. It is the Semitic
language that is second most spoken Semitic language in the world next to Arabic. In
Ethiopia, it's the first largest language, with a rich literature history, and has its own

alphabets.

The alphabet of Amharic is called Fidel, which is, unlike Arabic, run from left to right and
consists of 34 basic characters each having seven forms for each consonant-vowel
combination. It has 4 characters (though variants of other characters are also used nowadays)
with labiovelars. Other labialized consonants that are extended from basic characters are
about 20. In total Amharic has more than 270 characters. Each character represents a

consonant+vowel sequence.

Amharic is spoken by more than 90 million (Negga, 2000) people as their first and the rest
population as their second language. The majority of monolingual Amharic speakers are the
Ambhara people (the name Amharic or Amarafifia is derived from the name of the people of
Amhara -’ Amohéara®) of the Ethiopia. Furthermore, a great number of monolingual Ambharic

speakers live in bigger town and administrative centers all over the country (Appleyard: cited

! Amhara means free or independent people.

26

in Meyer, 2006). As more Ethiopians are living outside their home, the Amharic language
speakers in different countries of the world is also growing. In Washington DC, Amharic

has got the status to be one of the six non-English languages (Bernstein et al., 2014).

Ambharic became the royal language of Ethiopia and was made the national (vernacular)
language of the state during the reign of Emperor Yekuno Amlak, c., 1270 AD. Amharic is
influenced by both Ge'ez (the language liturgy of the Ethiopian Orthodox Tewahedo Church-
an ancient Christian Church established in 34 AD.) and the Cushitic languages such as the

Agew.

Ethio-Semitic languages are Semitic languages spoken mainly in Ethiopia and modern day
Eritrea. It includes Amharic, Geez, Tigre, Tigrinya, Argobba (closely related to Amharic),
Harari (or Adare, spoken in Harar), Gurage (a cluster of at least twelve dialects) and Gafat

(almost extinct).

According to (Woodard, 2008), most of the languages now spoken in Ethiopia as Semitic
language are considered sister (or rather niece) languages. The Author put Amharic, Geez
and Tigrinya and other Semitic languages under an Ethio-Semitic family. More clearly,
according to (Armbruster, 1908), Amharic is niece to Geez (sometimes called Ethiopic). The
Author further expressed that Proto-Ethiopic-Semitic evolved and split into Southern
Semitic (Ambharic) and Norther Semitic (Geez) or their intermediaries. Amharic and Geez

come from the same root and are offspring of a common Ethiosemitic proto-language.

Though the language has tremendous resources in terms of resources, literatures, novels and
other linguistic features and the abundance of both electronic and non-electronic documents,
it’s considered one of the low-resource languages for natural language processing tasks. It

has very low computational linguistic resources.

Amharic is under-resourced and has very few computational linguistic tools or corpora.
According to (Gamback et al., 2009), Amharic is spoken nation-wide and is the lingua-franca
of Ethiopians (Weninger, 2011).

2.4.2 Amharic word embeddings

Word embeddings for different languages have been done. Experimenting on the word

embeddings are mainly done by different techniques. Tripodi & Pira (2017) analyzed the
27

performance of skip-gram and continuous bag of words on Italian language, training being
taken from Italian Wikipedia. They adopted a word analogy test and evaluated the generated
word embeddings. The experiment is conducted by fine-tuning different hyper-parameters
such as the size of the vectors, the window size of the words context, the minimum number
word occurrences and the number of negative samples. They found out that due to the rich
morphological complexity of Italian language, increasing the number of dimensions and
negative examples improve performance of the two models in terms of semantic
relationships and on the contrary the syntactical relationship is negatively affected by the
low frequency of number of terms. Their work investigated major ideas like how different
hyper-parameters can achieve different accuracy levels in relation recovery tasks; morpho-

syntactic and semantic analysis and qualitative analysis to investigate problematic issues.

A work on Croatian language, one of the morphologically rich language spoken in the
Republic of Croatia, by (Vasic & Brajkovic, 2018) showed that pre-trained fastText model
results best output and fine tuning the parameters can even provide greater results. The
authors used the Croatian Wikipedia and other corpuses for training and an experiment on
latest models like word2vec and fastText showed that the results are bad for morphology
rich languages such as Croatia. They showed that fastText (pretrained CBOW) approach
produced better results, may be because the subword information used by fastText takes care
of the morphology in the words (Vasic & Brajkovic, 2018). On this same language (Svoboda
& Beliga, 2018) performed an evaluation but now adding specific linguistic aspects of the
Croatian language. They did a comparative study of word embeddings for Croatian and
English languages. The comparison in their experiment showed that the models for Croatian

does not render a good result as for English.

The word embeddings of Polish, a highly inflectional language spoken primarily in Poland,
was tested by (Mykowiecka et al.,, 2017) using word2vec tool by adjusting various
parameters for tasks like synonym and analogy identification. They reported that word
embeddings can be used for linguistic analysis such as similarity and analogy for Polish

words and that the efficiency of the method highly depends on dataset and parameter tuning.

Arabic is one of the most spoken Semitic language in the world. It is highly related with

Ambharic language. Many researchers have tried to analyze and evaluate the Arabic word

28

embeddings. One is the work of (Elrazzaz et al., 2017) to perform a methodical evaluation
of the Arabic word embeddings. They have performed both intrinsic and extrinsic evaluation
on the embeddings. They described intrinsic evaluation as an evaluation that mostly relies
on word similarity correlation datasets and analogy questions and describe the linguistic
features in the low-dimensional embedding space while extrinsic evaluation is an evaluation
that assesses the quality of the embeddings as features in models for downstream tasks like
POS tagging and text classification. The authors compared CBOW and SG with another
word embedding model called Polyglot, contributed by (Al-Rfou et al., 2013), in which the
former models were found superior. (Soliman et al., 2017) also have crafted a set of Arabic
word embedding models using data from twitter, the WWW and Wikipedia. They used
Gensim to build the models and evaluate their models both qualitatively and quantitatively.

Their models achieved well in both cases.

Tigrinya, a very close Semitic language to Amharic, spoken in Ethiopia and Eritrea was
analyzed for its word embeddings to improve POS tagger by (Tedla & Yamamoto, 2017).
The authors constructed a new text corpus, as Tigrinya has very little support of annotated
resources, and investigated the optimal hyperparameters for generating word vectors for
Tigrinya. They showed that the dimension of context affects the quality of semantic and
syntactic relatedness of words. While wider context gives better semantic relatedness,

shorter context renders syntactic relatedness.

As far as the author of the paper knows, there is no Amharic word embedding analysis so
far. However, for downstream tasks such as NER, (Demissie, 2017) used Amharic neural
vectors as a feature to design Amharic Named Entity Recognition system. Word vectors
have just been used for classification and the author has left a recommendation for readers
to investigate the impact of using word embeddings on Amharic Named Entity Recognition

system.
2.4.3 Works on Amharic text classification

Researches on Amharic Text classification have been done by many researchers. Different
methodologies and approaches have been utilized and experimented. Relevant works of

those researchers are presented here.

29

(Gamback et al., 2014) applied machine learning to Amharic text classification and
examined the effect of operations like stemming and POS tagging on text classification
performance for Amharic. They utilized a medium-sized, hand-tagged Amharic corpus and
found out that stemming has no significant influence on the performance of Amharic text
classification. In their work, bag-of-words approach was used for text classification
experiment. The approach they utilized suffers a big sparsity which is resulted from the very
nature of the way bag-of-words do word representations. The model faces the challenge of
harnessing very little information as the vector-space is too huge. Using this approach also
has another effect: the probability of finding vectors for out-of-vocabulary words and the
absence of context.

Kelemework (2009) carried out a neural network approach on 9 categories of with a total
size of 1,762 items in the dataset using LVQ (Learning Vector Quantization) for an
automatic Amharic news classification. The issue with LVQ is that processing required for

classification takes time as more hidden units are often required.

A paper by Habte (as cited in Gambéck et al., 2014) used ANN approach, called SOM (Self-
Organizing Maps) on a corpus of 100 news items for document classification. Eyassu &
Gambéck (2005) on the other hand utilized a set of queries for classifying news items taking
the queries as class labels. They experimented on a 206 document corpus after converted to
a term-document matrix and reduced using dimensionality reduction method called SVD

(Singular Value Decomposition).

Zelalem (as cited in Kelemework, 2009) used statistical method and Cosine Similarity
function as a matching technique for classification on a total of 1,481 news items, while
(Weldesellassie, 2003) used 11,024 news articles and employed Naive Bayes and KNN and
found out that classification accuracy using Naive Bayes and KNN decreases if fewer
documents are used in training. Weldeselassie further noticed that classifiers work well if

news items are evenly distributed in the categories.

Hierarchical classification on Amharic news was carried out by (Tegegnie, 2010) and
experimented on a total of 16,075 news items. Tegegnie found out that the increase in the
number of classes and documents or features has a reverse effect on the accuracy of flat

classification and at the peak of features, the flat classifier accuracy also diminishes.
30

2.5 Word Embeddings Evaluation Methods

In the NLP community there are two evaluation methods that are often used: Intrinsic and
Extrinsic evaluation methods. Intrinsic evaluations are experiments in which word
embeddings are evaluated based on human judgements or their visual results on words
relations. word semantic similarity and word analogy, are the most popular method of word
embeddings evaluation. Extrinsic evaluation methods, on the other hand, are based on the
ability of a certain word embeddings to be used as the feature vectors of supervised machine
learning algorithms used in other downstream NLP tasks (Bakarov, 2018). The performance
or efficiency of the supervised model measured on a dataset for a given NLP task functions
as a measure of the quality of WEs. WEs can be used in natural language processing tasks

such as Text Classification for extrinsic evaluation.

31

CHAPTER 3
METHODOLOGY AND APPROACH

In this chapter, the methodology, approaches, algorithms and tools that are utilized in this
thesis are discussed. Since word embeddings require a dataset for training, the process of
dataset preparation is presented in detail. Selected Techniques to evaluate the word
embeddings in Amharic are presented. The general architecture of the work and the ways to
visualize the expected results are among the issues raised.

3.1 Words and Word Vectors

Words are fundamental units of language formed from letters. They represent sounds using
a sequence of characters that can be easily understood by humans. In linguistic syntax
hierarchy, words are the atomic units of syntax which cannot be subdivided into smaller
units (Basirat, 2018). For example, the Amharic sentence 4“7 h1l¢- hae i@-::is composed
of the words PA“7+, h1ls h4e, i@ and the final punctuation ::. (Look Appendix XX for
Ambharic Punctuation marks). In most NLP tasks and computer systems, punctuation marks

are taken as a word form.

During forming a sentence words are separated, in most languages including Amharic, by a
space character. The boundary between words in a sentence are marked by the space

character (exceptions are some languages such as Chinese with no word boundary).
3.1.1 Words and contexts

Context is a connection between elements of a paragraph or a dataset or a corpus. The
surrounding words woven together to attain a certain meaning forms context. For a given
corpus E as a set of elements (e), context is defined as a function C: E —-P(E), where P(E) is
the power set of E. This function is called a context function (Basirat, 2018). However, the
context type that is customarily used in word embedding is the neighborhood context of
words. This is referred to as a window-based context of a word which is formed by all words
in a sequence (or window) of surrounding words. Let E = {1, ..., ey} be a corpus of size T;

then the neighborhood context of word say e; € E with parameter t € Z is :

32

el t+1<1 (3.1)

Onle; T) =€t 1<t4r<r
er t+1t>T

Depending on the sign of parameter 7, the neighborhood context returns the word at the "
position before or after e;. The neighborhood context with T < 0 is called history or backward
neighborhood context and the neighborhood context with T >0 is called future or forward

neighborhood context.

Cien - & e B - Bitp

(a) (b)

Figure 3.1: (2): a left neighborhood context with parameter t=-n; (b): a right neighborhood

context with parameter t=+n, where n > 0.
3.1.2 Vectors and word vectors

Mathematically speaking, a vector is a quantity that determines the position of one point in
space relative to another. They are characterized by magnitude and direction. As vectors are
physical quantities, they can be compared with each other in different ways. The two famous
methods are Euclidean distance and cosine of the angle. While Euclidean distance is the
actual distance between vectors in N-dimensional space, the cosine distance is the angle
between vectors in space. The Euclidean distance between two vectors a = (a4, ..., a,) and

b = (b4, ..., by) is computed as:

[la—bl| = (3.2)

The cosine of the angle between the above vectors is computed using dot and cross product

of the two vectors as shown in the formula below.

33

ie1a;b; (3.3)

cosf = ———
|lal| |1b]|

Vectors can be formed from different objects such as images, videos, numbers and words.
Before the advent of the introduction of vectors into NLP, the notions of phonemes,
morphemes, syntax and semantics etc. were used to grasp the structure of words. Soon after
the introduction of machine learning and deep learning, the need to represent words in a way
that can enable machines understand words come into existence. The representation of words
should retain meanings, semantic relationships and other linguistic features of words
including context among words. The ideal proposed way to represent words is then using
vectors. Word vectors represent words as multi-dimensional continuous floating point
numbers where semantically related words are mapped to adjoining points in spacial space.
This representation of words using vectors lends the capability to calculate distance, be it

Euclidean or Cosine, as a measure of the relationship between words.
3.2 Word Representation

The relationships of words can be addressed either in morphological analyzer or in vector
form. The morphological analyzer determines the morphological (structure and forms of
words) relationships between words. In the vector form, words are mapped to a real-valued
numbers called vectors. A word vector is a real value number where words are captured and
represented in a way semantically related words will come closer in space and have similar

vectors.

In order to represent words with vectors, there are many popular models and algorithms
along with the approaches. Among them Word2Vec, GloVe and fastText have gained

tremendous popularity and effectiveness in the NLP arena.
3.2.1 Word2Vec

Word2Vec is a neural network with single input, output and hidden layer. Mikolov et al.,
(2013c) proposed this shallow word embedding model. The model uses the neural models
discussed in Section 2.3. It predicts words based on their context using CBOW and SG
models. Hyper parameters such as embedding size and windows width are fine-tuned during

creating word vectors using word2vec.The window width is just how many words should be

34

as history and future to the target word, while the embedding size specifies the number of

neurons in the hidden lawyer. The embedding size is the dimensionality.

Word2vec, proposed by Mikolov et al. at Google, is a shallow, two-layered NN that is used
in processing texts and produce word embeddings. It has a single hidden layer and a fully

connected feedforward network. In word2vec, non-linearity of neural networks is removed.

Word2vec takes in large corpus and takes out a word embedding or a vector space. As it's
used in representing words in distributional word embeddings, the representation keeps the
semantic relationship among words. Words are represented in the form of vectors such that
words with similar meaning appear closer. Word2vec is grouped under the predictive model
(see Section 2.2.1).

According to (Mikolov et al., 2013a), this model for learning distributed representations of
words lessen computational complexity caused by the non-linearity of hidden layers in
traditional language models like Recurrent Neural Net Language Model (RNNLM). The
authors preferred data efficiency, simplicity, and accuracy of representation of words that
can help to guess about words linguistic relationship based on past appearances. It generates

word embeddings by sliding a window over a large corpus of text.

Word2vec appears in 2 flavors, the CBOW and the SG model (highlight made on Section
2.3). These two model architectures pretty much are similar algorithmically except that their

predicting method is opposite.
a) Continuous Bag-of-words Model

This model architecture learns an embedding by predicting the focus word based on nearby
words, called context. The surrounding words determine the context. The context is
represented by multiple words for a given probe word based on the size of the window. This
model actually uses those surrounding words and try to predict the target words. Given words
Wy, Wy, ..., w;, CBOW model learns to predict all words wg from their nearby words (wk-1,

cery Wi-1, Wit 1,0y Wit1).

For example, take the sentence: Amhara have engineered Ethiopia from South to North
through its love and fist. As word2vec uses the history and future of the target word (that is

words before and after the word based on their position) which is named as window, let the
35

window be 3 words. To predict, say the target word is Ethiopia, the surrounding words are
then {Amhara, have, engineered, from}. What CBOW basically does is predicting the target
word after the surrounding words. The idea, is given a context, to predict which words is

most likely to appear along with the target.

Input layer

O == O0O0]

[O

Hidden layer Output layer

[eXoXe]|

&
O LR

e)

A

=500l
z
z

Q =

Xk

O CxV-dim

Figure 3.2: CBOW model diagram

The model diagram above (Figure 3.2) clearly depicts the CBOW architecture. Let C be size
of window; V be size of vocabulary. The input is 1-hot encoded context words
{X1,X2,...,Xc} in an N-dimensional vector h, the output would be 1-hot encoded word .
The input vectors are fully connected to the hidden layer viaa V x N weight matrix W and

the hidden layer is connected to the output layer viaa N x V weight matrix W'.

This model is dubbed continuous because it modifies the property of bag-of-words that the

order of words does not matter. Now in CBOW, it matters. It matters because the order of

36

words is highly related with the context. And the context of words or sentences is the
substance of every communication in NLP. On the other side, by continuous, it means the

model is using continuous distributed representation of the context (Mikolov et al., 2013a).
b) Continuous Skip-gram Model

This architecture is similar to the first CBOW (Mikolov et al., 2013a) but in the reversed
way. It predicts the nearby words given the target word. Given words w1, W, ..., wi, SKip-
gram model learns to predict nearby words of the current target word wk (Mikolov et al.,
2013b). According to the authors, the model uses other adjacent words that are with the
target word in the same sentence to maximize classification of words. Each current word
being used as an input to the classifier with continuous projection layer, hence the name

continuous skip-gram, then words are predicted within a range of window size.

In this architecture, the objective is to find word representations that are useful for predicting
context given a target word. Context refers to words nearby the target word or the

surrounding words.

Consider the sentence: | want to teach about word vector representation, and let the window
be of size 1. The skip-gram model will break the sentence into (context, target) pairs, like:

([1, to], want), ([want, teach], to), ([to, about], teach), ([teach, word], about), ([about, vector],
word), ([word, representation], vector)

37

0 OQutput layer
Yij
Input layer
X, Y2y
V-dim
Yej
CxV-dim

Figure 3.3: Skip-gram model

As shown in the above model (Figure 3.3), the input of the model is a word w; and the output
is the adjacent words in wa's context {wO,1,..., wO,C} where ¢ is the window size. Taking
the previous example once again, the potential training instance could be the word "vector"

as an input and the words {"1", "want", "to", "teach", "representation"} as outputs. All these

words are vectors of length V, which is the size of the vocabulary.
3.2.2 GloVe

Global Vectors is another popular method for learning word representations proposed by
(Pennington et al., 2014). Global Vectors, GloVe for short, is an approach to perceive and
seize the meaning of a word with the structure of the whole corpus. The model uses co-
occurrence counts of words and do a statistic to minimize errors. GloVe constructs co-
occurrence matrix that is used to calculate the probability the appearance of a word in the
context of another word. That probability can be articulated as P(i/j), which shows
relationships between words. GloVe then uses the ratio of co-occurrence probabilities

between words to predict target word by training the word-word co-occurrence matrix.

GloVe takes advantages from two major models: global matrix factorization and local

context windows methods (Pennington et al., 2014). Global matrix factorization is the

38

process of decomposing a matrix to the product of several matrices. This factorization
method is a generalized coordinate matrix factor table. These matrices represent either the
frequencies of a term in a document, or the co-occurrence of terms. The other major model
the authors analyzed is local context environment methods. In this method the model learns
by observing the contexts around target words or the vice versa. They scan context windows

in the corpus.

Pennington et al., further noted that those major models suffer from disadvantages. While
global matrix factorization methods efficiently leverage statistical information, they do not
perform better on word analogy task though. On the other hand, context window methods

act poorly on statistics of corpus and do better on analogy task.

So, the GloVe model takes the strengths of the two model families. From the global matrix
factorization models, instead of learning raw co-occurrence probabilities or frequencies, the
ratios of the co-occurrence probabilities are taken. GloVe gives numerical vectors for a huge

corpus of words.

To illustrate how GloVe works the co-occurrence probability, suppose we want to study the

relationship between two words, i and j.
Co-occurrence probability

Let word-word co-occurrence counts matrix be X, and Xij be the number of times word j

appears in the context of word i.

Let k be a probe word.

Pij = P(jli) = Xij/Xi (3.4)

Pij = probability that word j appears in the context of word i.

Xi=number of times any word occurs in the context of word i.

For words K related to i but not to j: Pik/ij will be large.

For words k that are either related to both i and j, or to neither, the ratio Pik/ij ~ 1.

39

Therefore, co-occurrence probability is better in distinguishing relevant words from

irrelevant ones.

In GloVe model, the idea is, given a corpus and words, to take data from that corpus in the
form of global statistics and learn a function that gives information about the relationship
between words. Now the authors have discovered that the ratios of co-occurrence
probabilities render a good result in distinguishing relevant words, so it would be nice if
context of the words is taken into account. So let the function the model is learning be F. A
naive interpretation of the desired model is given by the authors as,

o _ Pik
F(wi,wj, wk) = Pk (3.5)

where w € R%are word vectors and @ € R¢ are separate context word vectors. Note that the

w's are real-valued word vectors.

The above two models rely on the substance of words, be it their occurrence or frequency or
by their context. The essence of the word itself, its linguistic properties such as morphology
of the words were not taken into account. The other recent technique that takes those issues
into consideration to represent words to vectors is fastText (Joulin et al., 2016).

3.2.3 fastText

fastText combines the concepts of CBOW architectures and represents sentences using bag-
of-words and bag-of-n-grams, as well as using subword information, and sharing
information across classes via a hidden layer. fastText is not just for word representation,

which is to be discussed soon, but also for text classification.

fastText is used as a classification model that can produce fast, efficient and accurate results
which can put it comparable to other known deep NN classifiers and embedding models.
The training and classification by fastText is very fast (Joulin et al., 2016). As a linear based
and scalable model, fastText uses a hierarchical Softmax function to lessen computational
complexity. The lesser the computational complexity, the faster the search to predict classes
for text classification and producing word representation. fastText uses both bag of words
and bag of n-grams, the latter for word ordering. To produce efficient outputs in using bag

of n-grams, a hashing technique to map n-grams is utilized.

40

fastText for Word Representation

T

(

\
!
/

character 3-grams

Figure 3.4: Character n-grams example using the word "going”

fastText, being an extension of the continuous SG model (Bojanowski et al, 2017; Mikolov
et al., 2013) is a robust embeddings and text classifier using subword information. GloVe
and Word2vec mainly focus on words for learning embeddings. As a result, words that are
not incorporated with the vocabulary or new words that are created or formed anew are
usually represented by a vector of zeros or simply ignored. According to the authors popular
models that learn representation of words do not take into account the morphology of words
and the parameter sharing. For morphologically rich languages such as Amharic and
Turkish, ignoring the internal structure of words by just assigning a distinct vector to each

word will have a limitation on the representation.

Therefore, fastText goes one level down from word to character n-gram level information.
fastText takes each word as a sum of n-gram characters and words are represented in word
embedding as the sum of those n-gram characters' vectors. In fastText, each word is broken
down to an n-gram constituents in addition to the word itself. For example, take the n-gram

41

be 3 characters and take the following words: going, matter, apple, where and oo¢n. e+

(Ambharic: squabble).

Taking those words and n=3 as an example, the words in fastText embedding word
representation will be represented by the character n-grams:

= going: <go, goi, oin,ing, ng> and the special sequence <going>
= matter: <ma, mat, att, tte, ter, er> and the special sequence <matter>
= apple: <ap, app, ppl, ple,le> and the special sequence <apple>

" oo, Pend: <A, IR, P, 6BhPeh, PeRbP, eh P> and the special sequence
<avgn, P>

Each word w is represented as a bag of subword n-grams and the word w itself is also
included in the set of n-grams (Bojanowski et al., 2017).For a given word, n-gram is taken
from 3 to 6 grams and the word is represented by the sum of the vector representations of its

n-grams. The n-grams are called subwords.

This fastText, because it considers subword information, fills the gap created by other
models like word2vec and GloVe. It lets the reliable representation of new words, out-of-

vocabulary words and rare words in the corpus.

The overall description about fastText and related concepts are discussed on Section 2.3.

Here the text classification side of fastText is presented.

Qutput

hidden

Xy Xz R Xnia Xn

Figure 3.5: fastText model

fastText is a library for learning of word representation and text classification (Mikolov et
al., 2016). As shown in the Figure 3.5 above, the model for fastText has three parts: the

inputs (sequence of words, a piece of text or a sentence), the hidden layer(Softmax function

42

to compute the probability distribution) and the output (the probability that the word
sequence belongs to a certain category). The probability distribution over prelabelled classes

can be computed using a Softmax function:
t t
PAI = 7wy * Ty (36)

Count,,
total no of tokens (3.7)

Where,

fw) =

Each vocabulary in fastText is mapped to a real-valued vector, with new and out-of-
vocabulary (OOV) words getting a special unique vocabulary ID. The structure of a more
elaborated fastText classifier is shown in Figure 3.6. Text (or document) words w; are
represented with n-dimensional word vectors Xi. The vector for a text (document) y is

computed as average of the vector of a linear bag of words of the document, as:

1 N
y = N-Z Xi (3.8)
l=

Here N is the number of words document Xi is a word occurrence in the document.

43

Document classes O . * .an
5 - e

e N e e
[/
e
Softmax \ ‘QT ";j:;"“';“-“&- /

L N

~ _z
Hidden linear layer P
Document vector L N]

Averaging

Word Word ° ° Word
vector x, vector x, * vector x,,
A f T

Document

Figure 3.6: A more elaborated fastText classifier with hidden-layer

The vector y is input to the hidden layer, where it is multiplied by the matrix M of the hidden
linear layer to get a classification vector Z:

zZy Mgy Myp 0 My yy

2= (i) P10) = M.
(Zm)[mm,l S—— mm'n](yn) y (3.9)

where Z is an m-directional vector, M is an m X n matrix, m is the number of labels and y is
an n-dimensional vector. To do the classification the following Softmax function is used to
compute class/label probabilities:

Zj

e
b=sm (3.10)

where P; is the predicted probability that the text or sentence belongs to the j™ label; z; and
ziare the components of the classification vector Z. fastText classifier calculates the

sentence vector as the average of the word vectors (normalized by their length). The

44

described classification model computes the document vector y by averaging vectors of all

word occurrences.
3.3 Word Representation for Amharic

In this section word representation of Amharic dataset, ways of evaluation of the word
embeddings formed, the process of preparing the training corpus and the overall phases are
discussed thoroughly. For training word representation, an Amharic corpus containing about
1.5 million words is prepared.

3.3.1 The corpus for word embedding

In NLP tasks, the role of Corpora is very immense. The success or failure of most NLP
applications depends on the quality of appropriate data. The data used in NLP tasks usually
take the form of corpora. Corpora can be annotated or unannotated. Raw data that is simple
plain where the linguistic information is implicit is unannotated corpora. Annotated corpora,
on the other hand, adds extra explicit information to the text such as categories, part-of-

speech tags and so on.

The corpus utilized here is unannotated one. Part of it is taken from a multilingual parallel
corpus created from translations of the Bible by (Christodouloupoulos & Steedman,
2015).The corpus is aligned (almost) at a sentence level and the document was formatted as
an XML file, containing nested <div>and <seg> elements. Each sentences were marked with
an ID. The other content of the corpus was collected from different Amharic books. Figure
3.7 shows the sample corpus before pre-processing taken from the work of
(Christodouloupoulos & Steedman, 2015).

45

v<div id="b.GEN.1" type="chapter"=
<seg 1d="b.GEN.1.1" type="verse"=NeEmass A Mhi0hc O7193T F°LCH dmdu</segs
v<seg id="b.GEN.1.2" type="verse">
ORIt 08 WS APETIS AAWMIA0-PT AT (TA: AR WP PATIHANGCT® sodfl No-d AL (G Wce
</seqg=>
<seg 1d="b.GEN.1.3" type="verse"=A"MLAdhcI™n ACY? f03 AAE ACY39° rhnc/seg>
v<seg i1d="b.GEN.1.4" type="verse"s
AT A G G e e AR 0y AP ATIHAlRCTT AICYRYT AT AP
=/seq>
v<seg id="b.GEN.1.5" type="verse"=
AMANGCT cY Ry 7 he mdat Ao AAT Aoz TR gy TR ks AT 4o
</seg=>
v<seg 1d="b.GEN.1.6" type="verse"s
AL CIPr Nowid oohd md L0034 M@ (o3 oohNAF® PHLA Ad:
=/seqg=
v<seg 1d="b.GEN.1.7" type="verse"s
AIHANACT mdc? AELT Imdc 0TS Imdc NAR PAP3F® @wf AFD A0 Fhn
=/seg=>
<seg 1d="b.GEN.1.8" type="verse"=ATiihC mdC? O7TF A mdo-z "R 1y PPRFT 0y AT duc/segs
v<seg id="b.GEN.1.9" type="verse">
AMHANRCT e TR N PAo @0 MRS Ded PO00E SO0 PTAT AR ABEDFT rhe
=/seg=>
v<seg 1d="b.GEN.1.1@" type="verse">
AIHLANACT® P03 FRC Al mdmd Poed el™TF@39® i Adod AHAGCTS P wdhf™ ABE 0y AP=
</seg>
v<seg id="b.GEN.1.11" type="verse">
AMAhCP s P8 HCY PTIOT “ICT (kRFS N7°SCT AR ATE @1k He FANTY S47 (TIPS HET Ada AAT ABA0-F° rys
</seg=>
v<seg 1d="b.GEN.1.12" type="verse">
FoLCI® HCY PTLOT UICHT (b3 AL @1k HeF® PANEY Ga% PTLPLL HEY ABE o1k AeAT o AMHANACT € wAhd® AL 0y Ao
</seqg>
<seg 1d="b.GEN.1.13" type="verse"=774# v} TPLI® s Phild $3e</sege
v<seg 1d="b.GEN.1.14" type="verse">
AIHANACT® hie 3% AAPT PAR 03 CY5E 07T mdc Podi ATANET AHoes T AdASd ASonddd® Faredki
</seg>
<seg 1d="b.GEN.1.15" type="verse"=Nf&c AR fle 03l 007 mdc NcYsd Po-ki A0 orhe</segs
v<seg 1d="b.GEN.1.16" type="verse">
AMHANRCT® AT FAART NCYSEs AR dd Y 04 ASRwATI BRI CY? DA AMSOATH DP9 29T AR]n
=/seq>

Figure 3.7: Sample corpora before preprocessing
3.3.2 Pre-processing the corpus for word embedding

Pre-processing involves preparing the corpus or dataset into a format that is suitable for
training and evaluation process. As shown in Figure 3.7, the Corpus is formatted in an XML
format and it should be processed, cleaned and made ready for further work. fastText can
take the corpus intact but the garbage characters that are part of the XML syntax and
delimiters such as < and > might affect the result of the embedding. They are useless for the

Ambharic text in the first place.

The other characters that should be removed are the punctuation marks. Amharic has its own
punctuation marks such as # (imA aZH - Amharic comma), (A<t 10 - Amharic semi-
colon), :: (a¢-t 10 - Amharic Full stop) (see Appendix Il for full list of Amharic
Punctuation Marks) and white space. White space between words is important but a space

between paragraphs is of no value for the dataset. Numbers that were part of the corpus also

46

do not play a role in the training. These punctuation marks and numbers are also not

important to our training dataset. Therefore, a prior pre-processing is required.

To preprocess and get a cleaned dataset from the corpus of (Christodouloupoulos &
Steedman, 2015), a small script is crafted in python to remove the unwanted characters,
punctuation marks including spaces between paragraphs and numbers in the corpus. The
script supported by a library called EelementTree which is a library package to parse,

explore, modify and populate XML files with python.

Preprocessing algorithm pseudo code

For each text in the corpus
Check for the presence of XML chars OR a numeral OR a punctuation mark
If opening AND closing XML chars present
Remove data between marks
If numerals OR punctuation marks present
Remove
While size of removed chars <> 0
Move words to the left
If while space greater than one tab
Move words to the left or remove

End

Figure 3.8: Preprocessing algorithm pseudo code

After preprocessing the dataset looks like the following script shown in Figure 3.9.

47

NeoEan P AMHAlhC NTTLS5 FOECT dmé TPECT° 02 M1 ATST° AT
EATTIC I TA® AL ¥E PATTHANGCI® a0 Fd0l Q-5 AL NFE MG A TLANRCI® -NCY7S
£ AN ACTTI" Y ATTILAN A CI® AICY - oo AW T™ ATE 1P AT AIHoAVh CI° 0335
AT AP ANLAAh CI° AICY +F ¢ Al M AT @-39° AAT AA@- 797 11y
TPEI 0T ATE ¢ AMANRCT Q@71 eehhd mé.C B0 No-5%5 Na-D eehhd ™
£had A A M CI° mAC? ALET hmdC N5 hmd.C NAE Phe 139" a7 AP

A G0 s WML b € MACF ATTE A= Mo TIHI° 1Py TPTIC Uy UAFT 49
AMANRCI® heET e N1 PAD- @5 NATE D94 BONON PO0-T° 20T AR AT50-9° 1Y
AT AAh. CI° -3 I8 C Al M-+ P-35 avh™] F-39° (1hC Aha- AT b CI° £
aAhI® ATE 1P AP AMLANACT® F8C HCY P7L0T IG5 (k23 NF°ECT° AP AL @
He- PAMFTY §da? PTLEL & HES ANFA AA ATS50-9° 1Py o8 CI° HEF PTLOT Y075 (k9%
ATE @ HeF® FANTY Todod FTLEL 4 HTT ATE @10 ANPAT AMACI® £ oo AP AT E
e A TII° 0 TPy Pt ¢ NMANGCI® A 7T AT BAR HTE NCYST
778 mé.C B0k AT ARE T AHoe T AdAT ASeo - 1F° L1k NT°EC AL PN HTE
778 M.C ANCYST B0k AP0 1P A A O CF° DA FAAS T AICY 517 hELT Tah
ACYF (bF APSOATT 3070 YT DAAT ATSO0ATS hPhA39° £719° hBLT

Figure 3.9: Preprocessed dataset sample

3.3.3 Amharic word embedding

After preprocessing the corpus, the next step is training. The library fastText is used to train
the corpus. FastText provides two modes of computing word representations: CBOW and
skipgram. Both ways of architectures were discussed in Section 2.3 and are employed here

for training.

Both model architectures are used in fastText to lean a high-dimensional dense
representation for each vocabulary term in the corpus. The representation is distributional
and it tries to learn from surrounding context as well. In both model architectures, the

network is a two-layer, shallow neural network.

In skipgram, as discussed in Sections 2.3 and 3.2.1, a context windows of K is considered
and other parts are skipped. The relationship between the window or panel and the target
word is explored. This is done by feeding the two-layer shallow neural network a 1-hot
encoding of the target word. As the input is 1-hot encoded, the hidden layer consists of only

48

one row of input hidden weight matrix. Therefore, the task of the network is to predict the

i" context given the target.

AMANAC QD379 £0F HIL LELCENT ATT4 1T AKT @I LU HYE L4.CENFA

Target word w s AR
/
L

8 p O@<%

R g 2UY
R L H? &

78 p OL4CROT

Figure 3.10: Model probability of a context word given a word w(colored red)

feature for word w: X,,
classifier for word c: v,
The scores for each word are computed using the equation:

— T
v=W"h (3.12)

Here, h is a vector in the hidden layer and W is the hidden output weight matrix. After
computing the score u, ¢ multinomial weight distributions are computed, where c is the
window size. In the Figure 3.10 above, the window size is 3 for example. The distributions
are computed as:

exp U j

Plw,.: =wo,, W]) = ————
(cJ c |) Z}{’zl exp Ujl (312)

where w is the j" word on the ¢ windows of the output layer, wo,.is the actual ¢ word
in the output context words, wl is the input word, and v, ; is the net input of the j™ unit on

the ™" panel of the output layer.

The second model of architecture which have been discussed thoroughly in Section 3.2.1 is

CBOW. CBOW is technically the opposite of skipgram, where the specific word is taken as

the target given the context (Bhattacharjee, 2018). Therefore, in CBOW, given the previous

sentence: "AMANMC QD7 19 LT B8 ALLLENT A% LA (BT @78 ST 8 £4.CL&NFA!"
49

the word "19" can be generated given the context ["aciLANAC", "a@<7", "7, "H2L",
"fécent" 1. CBOW takes the 1-hot vectors of all the words (context). The algorithm is
pretty much the same as skipgram, but the hidden layer's output is generated using the

following equation:

1 (o4
h=cw. (Z 0 (3.13)

L
The score in CBOW is generated with the same equation used in skipgram.

For training using fastText, there are different parameters to tune with. The parameters and

their descriptions are detailed below in Table 3.1 as described in fastText library.

Parameters can be fine-tuned to adjust to more robust models. With different optimization
and parameter tuning, accuracy of models can be adjusted. One of the features of fastText is
its ability in capturing subword information. It takes into account not only the word itself,
but also the constituent parts of the word or its sub-characters. The length of n-grams can be
controlled using the -minn and -maxn flags for minimum and maximum number of
characters during training. These parameters control the range of values to get n-grams for

words.

fastText controls the size of the vocabulary using a -minCount parameter. It shows the
minimum count for words that need to be part of the vocabulary. The windows size that

words that are around a target word is taken is controlled by -ws.

The number of times fastText visits the dataset during training is controlled by -epoch
parameter. By default, fastText takes a look at each data point 5 times. Another parameter
that is used to control how fast the model updates during training is -Ir. This parameter

controls the size of the update that is applied to the parameters of the models.

Dim represented the dimension of the hidden layer in the training, and thus the dimension of

the embeddings, and is set via the -dim flag. This is set to 100 by default.

50

Table 3.1: Parameters used for training fastText word embeddings

Parameter Description Default value
minCount minimal number of word occurrences 5
wordNgrams max length of word ngram 1
Minn min length of char ngram (min char ngrams) 3
Maxn max length of char ngram (maxx char ngrams) 6

Lr learning rate 0.05
Dim size of word vectors (dimension) 100
Ws size of the context window (context window) 5
Epoch number of epochs 5
Neg number of negatives sampled 5
Loss loss function {ns, hs, softmax} ns

Loss function is the other key parameter that can help to compare the difference between the
cost of the present model and the actual data distribution. In machine learning and related
fields, error is computed by subtracting the predicted output from the actual one using a
function called Loss Function. Choosing a loss function and an optimizing algorithm along
with it is one of the key methods of machine learning (Bhattacharjee, 2018). The idea is that
for specific loss function, optimizing algorithm pair, it would be possible to optimize the
parameters of the model to make them mimic the real data as closely as possible. This
function has three options that are currently supported by fastText: negative sampling (ns),

softmax or hierarchical softmax(hs).

In general, a lot of hyperparameters can be used to optimized and find the right balance of

models in fastText.
51

Word Embedding Corpus Text Classification dataset
i | —_—

| Corpus ||| » . | Dataset
Preprocessing ‘

N ¢ Remove punctuation marks |«
¢ Remove numerals

¢ Remove XML characters
& elements

I 4 ——

Preprocessed
corpus and dataset

‘ Feature extraction
¥ i

Word 1 '
(1]21...]300 |

Wordn [1]2 . [300]

!) |
Training classifier ' " fastText word vector \

model

|

Label 0 ‘ ‘ vec
Label 1 bin
Label 2 -

Label3

Predicting category Result J

Figure 3.11: Proposed architecture and approach

3.3.4 Dataset for text classification

A manually prepared and labelled datasets is used to build the fastText classification model.

A total of 900 news dataset is collected from the web is collected from Amhara Mass Media

52

Agency(AMMA?). The dataset contains a total of approximately 210.000 words and has
been labelled manually after preprocessing. During data preprocessing, stop words,
numerals, punctuations marks and symbols were eliminated and clean before the training
and testing processes. Each line has a list of labels, followed by the corresponding
data/document. All the labels start by the __label _ prefix, which is how fastText recognize

what is a label or what is a text. The data format for FastText is as follows:
__label__<X> __label__<Y> ... <Text>

where X and Y represent the class labels. A sample from a training data file is given below.

__label 1 ArAAd NCYE AR Eidl AL ML @ 199 ¢ AT T ...
__label 4 nAdLL? N-h2em- ¢FH AMef™ L L8 AL NG T o-md Povme AT PR @5
__label 2 ##29 spshny 947 ¢7Le15% o0 718 AF 0. 1@ o718 o p1E: ..

.....

__label 3 nasn a0 b7 07L1F 04 A 20 "IN eohhd PTLNLE PATIC DN @£ 8 C 1 Fond, ...

Figure 3.12: Sample Dataset with fastText labeling format

As shown in Figure 3.12, there are 4 classes, where __label 1 is news related to Athletics,

__label 2 isabout Chess, label 3 isabout Football and _ label 4 is about others.

Each article has been manually classified as belonging to one of the four predefined classes.

The four classes are presented in Table 3.2 below.

Table 3.2: The ten categories and the number of articles belonging to each category

Category Label Count
Athletics 1 154
Football 3 332
Chess 4 21
Others(agriculture, 2 393

economics, etc...)

2Amhara Mass Media Agency is a government owned news and information service located in Bahir Dar,
Ethiopia. At its web site www.amharaweb.com, it provides Ethiopia related news.

53

To get training data which are labeled four category -- Athletics, football, chess and others,
the news site called AMMA is scraped. Each line of the text file contains a list of labels,

followed by the corresponding content, as it is the default setup by fastText.

The preprocessing tasks in this dataset is more or less the same as described in Section 3.3.2.
However, there are unique tasks that are taken place in preparing text classification datasets.
The first one is labeling which is discussed above. As fastText expects a certain format for

classification training, the dataset is prepared likewise. The other task is shuffling the data.

Shuffling the data before training the classifier is important. If the labels for the data are
clustered, then the precision and recall, and hence the quality and performance of the model,
will be poor and low. This is due to fastText’s way of learning the model. fastText uses the
stochastic gradient descent® based optimization. The training data from the training set is

processed in order.

The other task which is obvious in text classification is dividing the dataset into training and
testing sets. Model performance evaluation should always be done on independent data.

Therefore, the whole dataset is separated out into training and testing sets.

To evaluate the performance of a classification model, the training dataset would be divided
into test and train sets. Only the train set is used for model training. Once done, the test set
is classified and comparison of the predictions with the actual ones and measuring the
performance is performed. The portion of correctly classified sample to the portion of actual
sample is called accuracy. Accuracy is the most natural performance measure and is the ratio
of correctly predicted observation to the total observations. This measure is great but only
when there are symmetric datasets where values of false positive and false negative are
almost the same. Therefore, other performance measures are required to correctly quantify

the performance.

One is the recall, which means the percentage of all the correct labels that are recalled as
opposed to the labels that actually existed. This is the measure of what proportion of actual
positives were identified correctly. The other measure is precision, which means answers the

question: what proportion of all the predicted labels are the actual labels? It is the measure

3Gradient descent is basically an optimization algorithm that is meant for minimizing a function

54

of what proportion of positive identifications were actually correct. The weighted average
of the above two measures: recall and precision is called F1 score. This score takes both false

positives and false negatives into account.

(Recall X Precision)

veore (Recall + Precision) (3.14)

3.4 Visualizing Word Embeddings

Visualizing the vectors and the embeddings in space is an effective way to understand and
explore distributional properties of models. An embedding is a mapping from discrete
objects, such as words, to vectors of real numbers. In its simplest way, word embeddings are
matrices of XY coordinates. However, since the dimensions of the vectors are 300, which is
quite high, a dimensionality reduction techniques are required so that the vectors can be
visible in a 2-dimensional frame. Therefore, to visualize word embeddings there are two
mainly used and popular algorithms: PCA (Principal Component Analysis) and t-SNE (t-
distributed stochastic neighbor embedding).

The t-SNE and PCA are popular techniques for dimensionality reduction and are usually
used for visualization of high-dimensional datasets. The idea in this case is to keep related
words as close together as possible, while maximizing the distance between dissimilar

words.

55

CHAPTER 4
EXPERIMENTATION AND RESULTS

4.1 Introduction

Natural Language Processing tasks are seriously taken in the research communities because
of their role in solving real problems in our lives and the results they provide accordingly.
Be it POS tagging, Sentiment Analysis, or text classification or the focus of this work -Word
Embeddings, there are vital roles to play in addressing issues depending on the way we face

them.

However, there is a little hardship here: the data-intensiveness of NLP tasks. NLP and other
related fields like machine learning require big and rich data to produce the results we aspire.
The availability of this data does not end the problem. The quality of the data is also another

challenge in these fields.

When the data, in any useful form, quality and quantity, is available, as each NLP tasks are
expected to throw an important output, experimenting with designed models and
architectures are required to be carried out. By fine-tuning different parameters, levels and
various features, different quality outputs and results are produced. Yet, the measure of

accuracy of the results, the criteria of quality outputs in NLP are undergoing research areas.

In this chapter, word vector representation for Amharic language, the evaluation of the word
embeddings using intrinsic and extrinsic evaluation methods are discussed. While linguistic
relationships: word similarities, nearest neighbors, and word analogies are chosen for
intrinsic evaluation, multi-class text classification on Amharic dataset is tested as an extrinsic

evaluation.
4.2 Evaluation and Experimentation Setup

We used an Amharic corpus gathered from Wiki sources, local media sources and books as
discussed in section 3.3. FastText library along with related models like word2vec and
Gensim are employed both for experimentation and value visualization. While most of the
parameters of fastText is used, some parameters are fine-tuned and used as follows. The

embedding produced has a size of 100 or 300 (300 is default).
56

The experimental parameters are summarized in the previous section 3.3 in Table 3.1.
The machine used for training and experimentation has the following specifications: -
e Central Processing Unit(CPU): Intel(R) Core(TM) i3-2348M CPU @ 2.30GHz
e Random Access Memory(RAM): 4GB
e Operating System(OS): Ubuntu 16.04

For evaluation of our trained embeddings, we used two evaluation metrics. These evaluation

metrics are intrinsic and extrinsic and are presented in the next section.
4.3 Evaluation Metrics

In word embeddings, there are two evaluation methods that are commonly employed:
Intrinsic and Extrinsic evaluation methods. Intrinsic evaluations are experiments in which
word embeddings are evaluated based on human judgments or their visual results on words
relations. Word semantic similarity, nearest neighbors, and word analogy relations are the
most popular method of word embeddings evaluation. Extrinsic evaluation methods measure
on the ability of a word embedding to be used as the feature vectors of supervised machine

learning algorithms used in other downstream NLP tasks such as Text Classification.
We explored both evaluation methods using the fastText library and the corpus prepared.
4.3.1 Intrinsic Evaluation

In neural word embeddings, as it is part of NLP tasks and it is highly related with language
studies, taking the embeddings as tools to understand features of a certain language is
common. It assesses how well the vectors capture the linguistic relationships (similarities,
analogies) between words. This task is used to measure the quality of a word vector directly
using different features. Among these features, the following three linguistic features are

used to evaluate the word embeddings produced.
4.3.1.1 Word similarities and relatedness

This task involves finding related words with the query word in meaning or syntax. We used

SG model to find near matches between terms. The similarity between say tl1 and t2 is

57

calculated using cosine similarity. Table 4.1 below shows how similar two words are as

generated form our embedding and their similarity score.

Table 4.1: Similarity scores between terms t1 and t2

Terml Term2 Similarity score
wAg°(Peace) wAge(Peace) 1.0
ava)(he comes) %2£(he goes) 0.693
nA(he eats) A¢-(he works) 0.519
ava)(he comes) ezacat(university) 0.199

From the above table, let’s see the three terms @ (he comes), 22 (he goes) and ¢zacat:

(university), and computer their similarity scores suing the cosine distance measure.
sim(evm, L) = cos(vec(arm), vec(%L)) == 0.693
sim(aem, eacht) = cos(vec(erm), vec(®racat)) ==0.199

Therefore, as the results show the words evm (he comes) and %£ (he goes) are semantically
closer than %£ (he goes) and ®zacivt: (university). The similarity score of a word with itself

is obviously a unit as clearly put in the first row of Table 4.1.

The cosine distance between words defines how much related two words are. It describes
the similarity level and relatedness between words and how they go and found together in
the corpus. The Figure 4.1 below shows words in t-SNE visualization method and their
neighborhood. The figure depicts places, languages, people names and foods based on their
relatedness. The languages are closer to each other than others. This is separately put in

Figure 4.2 as a magnified version focusing on the clustered languages names of Figure 4.1.

58

® Ei Lah
200 LNt MEd
AN T ¢ b
® L] Mk] ,?,'3
N 'y A BT
100 goy sl heod-n ooy g i
e Lot o ﬁ Pl
, Ade 30 e ?‘-i LY
1CoLN) . e LECL0
A K,:mﬁ [Ak A T
o : 5 GFa ﬁ (W
-1 iy e AP ® aa
AVE - ne min @ M e LN
) U P
_200 ® ® 15 g ;?.Ia AT B]
M Y1 C] . G
P LN e S nc
—a00 L ® fa o
ATICH By | A (W
=200 -100 0 100 200 300

Figure 4.1: t-SNE cosine distance between words that are put in the right side of the picture.

The words are names of people, languages, places, animals and foods.

A
50

O—xrrom®

-50

-100

EHIL

halad [M

T

NA LI

50

?al N

A
Aa

-
gi U

hm

v o)

Ll

a
Aa
2
Aa
Aa

a
Aa

2
e

F
o

.'rpl' P“-
i
W
Ay

S ' (M

Figure 4.2: Magnified version of Figure 4.1 to show how names of languages are closer to

each other

Word similarity also includes nearest neighbor searches to evaluate how well k-nearest
neighbors are generated (more on this in Section 4.3.1.3), where k is an integer number.
Embeddings capture proximity relationships between objects. In word embeddings, related

words are put nearer to each other. Nearest neighborhood refers to closest neighbors to a

59

given word in an embedding space. This task helps to see if a word vector captures

morphological, syntactic and/or semantic relations of words correctly.

Table 4.2: Most similar words for words: ao-& (Prince), a@- (Human) ‘1w (Reign)

Ao-\(Prince) a@<(Human) T (Reign)
A0 (for prince) hao- (from people) e (if he reigned))
NAC-A (by prince) @ (you man) 1w (she reigned)
AND®Z0 (crown prince) @5 (human and) h+hJ¢ (from his follower/s)
(A (heir) aa-79°(and human) ¢Pheq (next and)
AONT (princess) £aaa@- (without human) T (King)
@7 (the people) 2t (queen)

As the above table shows words with their morphological variations and their variances
based on POS tags are put as related words. As Amharic has more inflected forms, the
retrieved results for similarity quest is more of inflected forms of the words in question. For
example, the results in table above in second column to the word “a@- Human” are all related
to people/human. Moreover, all words in the response share the root word “a@-” which can

show that the result is a combination of both semantic and morphological relatedness.
4.3.1.2 Word analogy relation

When a large dataset is used in training for word embeddings to represent words in vectors,
the resulting vectors have the ability to learn subtle relations between the words (Mikolov et
al., 2013a). Figure 4.3 below illustrates this claim. The figure demonstrates city-country

relationships

60

RICS 8S PI°Lt
country and captial vectors projected by PCA

3
MR @
2 4
1 4
8 4.L1ME
0 57 gy
h.',.e [é hcg‘;‘c
TN e e S LN
X & AN hAexee
._2 4
_3 T T T T
-2 -1 0 1 2 3

Figure 4.3: 2-D projection of 300-dimensional vectors of countries and cities

The figure shows the ability of the word embedding produced, though not supplied with any
supervised information about what a city means to a country, to automatically organize
concepts and catch relationships between them. In word analogy, the task is to find a word

w1 for a given word w2 so that wl: w2 best resembles a sample relationship w3: w4.

Word analogy relation is a good way of examining and evaluating the quality and goodness
of a word embedding. This linguistic property of words is manifested in word embeddings.
For example, according to (Mikolov et al., year), the correlation “if man is to king, woman
is to what?” is an analogy that word embeddings can solve. The answer is queen which is
logically correct. Say, a tuple like “a&(Egypt) : hec(Cairo) :: aste&2(Ethiopia) :
~2.0a00(Addis Ababa)”, the embedding model should produce correct results if the nearest
vector representations to vector(-1&) - vector(hgc) + vector(aAFe%#) is vector(aA%.0400).
In word analogies the task is to find a vector v such that vector(v) is closest to vector(101&)

- vector(he) + vector(a-t¢-&¢) according to the cosine distance.

61

The relationships for the analogy might vary due to various reasons. One of the reasons is
the size of the dataset or the corpus. The result of word analogy is heavily influenced by the
quality and quantity of the corpus used during the training. A minimal corpus might not give
the desired analogy. As the main factor is the distances between vectors representing the
words in competition, semantics and logic does not involve in the output. How word analogy
in word embedding works is based on the experimented truth that two groups of words that

have similar relationships should be located similar distances apart in the vector space.
This analogical reasoning task has two categories: the semantic and syntactic analogies.

Table 4.3: Semantic analogy

Relatedness Word pair 1 Word pair 2

Capital-country 7s0(Paris) — 4.7 (France) hc-kge(Khartoum) — a-472(Sudan)

(-4%(Sudan) — hc-+7%(Khartoum) N (Egypt) - .27 (Pharaoh)

Country-continent A +¢&¢(Ethiopia) — A&¢P(Africa) -kch(Turkey) - Aa.2(Asia)
Man-woman o78(man) — 7r#(king) (w(woman) — 791°(queen)

Opposite AeirC(short) — Z1rge(tall) 1s(white) - P&c(black)

Table 4.4: Syntactic analogy

Relatedness Word pair 1 Word pair 2

Plural suffixes AG+(mother) — AG-+F(mothers) ant(father) — aAn-tF(fathers)

Passive voice suffixes 12a(he killed) — -+12A(he was Killed) a=i(he listened) — -+ae7(he was listened)

Pronoun/verb suffixes am(he gave) — am-(they gave) +99(he plundered) — sav+(they plundered)

aoap(listening) — eeaet-k(him listening) oog1c(speaking) — @2514-(him speaking)

62

4.3.1.3 Observations from intrinsic evaluations

We experimented with the word vector by tuning fastText parameters to evaluate the
embedding obtained from the corpus. Several test words for similarities (nearest
neighborhood), analogy and OOV were selected. As tables Table 4.2 and Table 4.5 show,
the results were more concentrated on inflected forms of Amharic words. This happens due
to the richness of morphology in Amharic. Amharic is a morphologically rich language and
there is a high rate of morphological production in it. Since there are plenty of inflected
forms for a given word in Amharic, the possibility of having inflected forms of a single word

in a single cluster or contiguously is high.

We noticed that syntactic and morphological relatedness gets improved with shorter window
size. Table 4.5 compares the top 5 nearest neighbors of the word naA (he eats) both using
window size (ws) 2 and 5. Note that the underlined words in the table are words that do not

have correlation to the task.

Table 4.5: Top 5 nearest neighbors for a word: naA

Ws Word:0A (he eats). Top 5 Nearest neighbors

5 A.nA(to eat), AhzseAhire out), naTF(she eats), am (he who drinks), hn(if he drinks)

2 nat(she eats), nav~(l ate), r&(stomach), 24f(over him/it), nav(you ate)

As the window size or context size is shorter, the result gets finer. However, a careful
investigation of semantic relationship in different parameters vary accordingly. For example,
semantic relatedness, in contrast with the analogical variations related to syntax and
morphology, gets improved when the context is longer. The following table compares the
results of analogical reasoning related to semantics like “city-country” and “man-woman”

with two values of window size: 2 and 5.

63

Table 4.6: Analogical reasoning with varying window size

Semantic relatedness Ws=2 Ws=5
o72(man)-7r#2(king) 1~t(queen) - 1~1(queen) -
ao7L(for male) ao7L:(for male)
f@72£:(to male) a.0t (wife)
o7L:9°(and male) o7£:5(male and)
o724 (male and) a1 (woman)
@791 (your brother) ho7ze:(from male)
o729°q(brother and) @72:9°P(her brother)
(- +(woman) e@72:(to male)
Jéa(paris)-d.Lre(France) (-47(Sudan) - (+47(Sudan) -
o0 P(eastern) qec. (Nairobi)
¢ (map) nsecn(by Nairobi)
0n-47%(by Sudan) (hnave- (by Asmara)
agehe-2e(in eastern) ek (Khartoum)
o027 (the east) 024 (they flew)
Al.P(Arabia) +hd-t(opened)
ez (km) ha-47 (from Sudan)

In this table the male-female relationship is better learned when context is 2 than when
context is 5. Therefore, the vector operation man(@72£)-King(7r#)+ queen(7°1/”F) results
in a vector close to woman(t) given a wider window size. Wider context or larger window
size improves semantic relatedness while narrow context or small window size generates

more inflected forms and is better for morphological relatedness.

64

N 2C P91 L-40 FATT 91,08

20

131 nr: e APHCT o

10 1

ATI°hCT @

oANT ®
/0T e

0.5 A

0.0 1

ke ATI°UCT
-1.0 1

.1t e nro9°vct e

-1.5 4

Figure 4.4: PCA visualization showing both morphological and semantic relatedness

Semantic and morphological relatedness do not happen exclusively. These relationships
occur together as shown in Figure 4.4. Both semantic and morphologically related words
with the word: 0.7 (House) is displayed and visualized using a dimensional reduction method
PCA.

The other case is model types: CBOW vs SG. FastText uses both models for production of
word vectors. Using the same parameters in both models, the results produced in the
embedding do not vary a lot. As the table below can show, skipgram model performs a little
better and gives a result which is reasonable. Therefore, skipgram and CBOW gives results
that are nearly equivalent or closer. Note that the underlined words in the table are words

that do not have correlation to the task.

65

Table 4.7: Word relatedness with the two models: CBOW and SG

Model Word:na (he eats). Top 5 Nearest neighbors

SG A.na(he-to eat), Ahz.e-Ahire out), naF(she eats), am (he who drinks), hann(if he drinks)

CBOW nat(she ate), ®aa(wound), nau~(l ate) , 22+9°(and his eye), nag(above him)

When we visualize our embedding using PCA and t-SNE, an interesting result are displayed.
To check the quality of the Amharic word embedding produced, the word vectors are

projected on a 2-dimensional space using a dimension reduction technique called t-SNE.

ATSAD o [Z ;
20 4 o 3
‘ .i;:;z%z.m S
,.(.&g(.é'&’-"l}f?? “‘%Qﬁ’?
o .xw‘?"“',"f"";;ﬂfm(
,”"ﬁ?‘, o7 R e
'M:ﬁ?ag\.~ k;}{ o

.. ..vL"'&/Aéunh C‘“ mfﬂ.?"o]""ﬂr})""v

Ina % Doty 2ae®r
9 _. W . ﬁ .%T#m' " ‘é;"}:',‘dift‘ L
ll)\f‘d P . ’%EI“:‘ e
1 @4' He ‘2&%&? A . i i 20e% oo
e _ o ¥ fha @ B "-'%J'f' it @ i

.umhh'hi ASD heeel:n

o . Or("'f)ﬂ/)‘b :

] J .
20 4 LNy
® .

T T T
-20 0 20

Figure 4.5: t-SNE embedding of top 500 words (using default parameters)

66

@ TE A
G)= @ G e
.III%"HS' & L
<) & -
7 C M (Lot T
B
andl®
£l
ATV
»
W A1 1A=~
ey)
@ ao 7101 1
—— .e -
AN o g™ £
] <] ({D'}_" » ol
T Ams .w'}a'"’f"’ 7 E7
ML UCTS - Mm
- ® IITUCT g ,,,.ggy,n:,
o uo/". €

[Llf% ha'h::

In{

Figure 4.6: Magnified clusters clipped from Figure 4.5

'l-m-.
® o

Jﬁmwﬁﬂ
0 | TRy

et o
® o Phgos

Ko e

® VIR *

T
-30

t T T t T T T t T T
20 -10 L] 10

Figure 4.7: t-SNE embedding of top 300 words

67

The subset of words from the dataset plotted using t-SNE is visualized in the above figure.

As expected, words with high similarity are clustered.

When Figure 4.5 is analyzed closely, we realize that semantically and morphologically
related words are clustered together. This can be observed in Figure 4.6 where the magnified
clusters are separately clipped. Semantically similar words like 42 (data) and avZ%
(information) got clustered together and morphologically related ones like a7+

(government) and ao71+7% (the government) are put closer to each other.
1) Effect of corpus size

To analyze the effect of data size, we trained a corpus (defaulted for the rest of the work in
this paper) and part of the corpus (segmented only for this issue) using the default fastText
parameters. We can see from Table 4.8 that when trained on a large dataset, the result tends

to move more toward morphological similarity vectors of the query words.

Table 4.8: Corpus size and word relatedness

Corpus:412K size Corpus: >1M size Pretrained size by fastText
NA(He ate) NA(He ate) NA(He ate)
A (you eat) A.0A (he-to eat) A.0A (he-to eat)
nAe (over him) ahg2-f (hire out) 20na (he would eat)
TP +g° (and morning) nAF (she ate) ana (while | eat)
ao-1A9° (and food) A.m (he-to drink) hoa (if he ate)
A.nA (he-to eat) i (if he drank) $4@-(the skin)
i) Dimension

The other parameter that needs attention is the size of dimension during training. In this case,
a comparison between three dimensions: 50,100, 200 and 300 shows that a little
improvement is observed as dimension increases. However, the difference in the output

between the two dimensions, 200 and 300, is found vague, as the table below shows.
68

Table 4.9: Dimension and word relatedness

dim

Words k-5 nearest neighbors of the word

50

100

200

300

NA(he eats) .A.nA(he-to eat), €MS(bread and), Ahe-g-f(hire out), 14.4(?),
em(he can drink)
aeri(creed) .angert(for creed), nager(from creed), A9°rta(creed and),

Oxagert(by creed and), ag°ri9° (and creed)

na A.NA | Ahe-2-F, AT (she ate), ama(for who drinks), han(if he drinks)
Kot ORFPTE, hIPTRI, ARTPYE, NATPTT, AIPTHG

nA 0AF, nav (you ate),nam-<(he ate it), nav~(l ate), mr4g°(and his hair)
Kot ARIPVE, RIPVEIP, NAIOTE, OAIPTE, hPYHG

0A 2%.4(?), 04T, 0AY, A.NA, hnD

hPrE ARTPTF, (WIPTF, NATPTE, A9PHH90, PhgorH(to creed)

69

20 Visualizing features with PCA

15 ® “IC PP
10

o5 TNt @ -

0.0

At e
Lo e NCAN T e

-1.5

-3 —‘2 —.1 (I) i I.! 3
Figure 4.8: PCA visualization showing word relationship

To summarize our observation on intrinsic evaluations, fastText Amharic word embedding
perform better on morphological similarities due to the language’s richness in morphemes

and fine-tuning hyper-parameters further improves word similarity results.
4.3.1.4 Out of vocabulary words and odd-word out

In fastText, one of the peculiar features compared to other models like GloVe and Word2vec
is its ability to handle new, unknown, rare, misspellings, and out-of-vocabulary words or
words that are not element of the training set. Given a word w, where the vocabulary being
V and w & Vis true, fastText enables us to harness a vector representation of w. Since the
constituent fragments of a word w in the range between the two parameters -minn and -maxn
are taken into account. The vector representation of w is then computed from the vectors
representations of those fragments. Summing up the n-gram vectors or subword vectors

would result in the vector representation of an OOV word w.

Figure 4.9 and Figure 4.10 below show a sample OOV words w1l = ¢£&0J-9°/+” and w2="

ANCA9°o¢”. These words are not part of the training set. They are not common Ambharic
70

words either. But their vector representation is computed from the constituent parts of each

word’s character n-grams from -minn to -maxn.

ANCH9°0¢- 0.01381 0.031092 0.15345 -0.011355 0.0069995 0.018374 -0.062125 0.29273
-0.020356 0.17866 -0.021407 0.21138 -0.069791 0.16038 0.011278 -0.12499 -0.041795
-0.069995 0.11394 -0.076855 -0.061951 0.057628 -0.040474 0.051963 -0.019947 0.13229
-0.0018167 -0.0075812 -0.038826 0.069382 0.015796 -0.2088 -0.0089751 -0.045485
-0.15086 0.027105 0.10465 -0.015037 0.12874 0.029723 -0.1178 0.02757 0.048747 0.090527
-0.066309 -0.068159 -0.094474 -0.096858 -0.10431 0.18052 -0.072714 -0.13328 0.020895
0.079501 -0.012261 -0.12004 0.16477 0.06596 -0.062981 -0.064671 0.12161 -0.035973
-0.1174 0.06206 0.082242 -0.0049566 -0.080851 0.087608 0.034911 -0.019961 0.064536
-0.00042392 -0.063841 -0.0699 -0.11976 0.073817 0.1046 0.039072 0.12566 -0.0082468
0.0057278 0.04015 -0.035422 0.022948 -0.0024329 0.082581 -0.046409 -0.013529 -0.16908
-0.10789 -0.044447 0.042518 -0.13819 -0.039012 0.027014 -0.11577 0.10309 -0.0043927
0.019521 -0.12061 |

Figure 4.9: 100-dimensional WE of OOV word-anc3-9°¢-

L0921 0.20387 -0.0421 0.48877 0.19518 0.0074648 0.28773 -0.078247 0.22169
-0.032241 0.019463 -0.065215 0.4459 0.004083 0.049548 0.032516 -0.28885 -0.1868
-0.11164 0.1807 }0.13786 0.055036 0.25408 -0.1141 -0.064542 0.051603 0.11028 -0.0058719
-0.072323 -0.31409 -0.077239 -0.054481 -0.041009 -0.097665 0.054513 -0.18776 -0.021605
-0.036004 0.096035 0.19971 0.26379 -0.11728 0.10722 0.02342 0.051091 -0.067696
-0.21259 0.0025359 -0.0024754 -0.18427 -0.065661 -0.16752 -0.28516 0.066955 0.30295
-0.068395 -0.14809 0.17084 -0.05676 -0.17094 -0.13214 0.22617 0.13048 -0.11647 -0.16817
0.065576 -0.12702 -0.05903 0.021755 -0.17308 -0.11157 0.095355 0.11693 0.0028697
-0.38409 0.041331 0.03782 -0.022261 0.014677 0.29242 -0.22107 -0.047805 -0.070465
0.033655 0.28743 -0.034899 -0.1532 -0.24032 0.097345 -0.29636 -0.050277 -0.035367
-0.041327 -0.029494 0.033729 -0.025552 -0.047065 0.03875 -0.012895 0.029472 -0.14482

Figure 4.10: 100-dimensional WE of OOV word-#£:03-9°4+

Since these unknown words are represented in vector forms, the linguistic properties of other
words are also their characteristics. They have neighbors that are both nearest or farthest,

similarities records, analogical relationships and so on.

Table 4.10 shows the nearest neighbors of those OOV words and the cosine distances

between the neighbors and the OOV words.

71

Table 4.10: Nearest neighbors for OOV words and their cosine distance

W1: Las9vit nn 114 emT9 Pt LGl Pk

cosdis 0.857 0.841 0.840 0.838 0.833

W2: ancr9°oc- nn (6L DLIPHEAE 9°00E NAtIPOP LO-NT

Cosdis 0.894 0.893 0.882 0.856 0.852

As the table shows, the nearest words for the OOV words, wl, and w2 can be found. nn
(nearest neighbor) shows words that are closer to w1l and w2. cosdis is the cosine distance

between each neighbor words and the two words w1, and w2.

Concepts and words that are related to w1 and w2 have closer cosine distance score to one

another.

Table 4.11: Odd word out results

I I Il v
7r#(King) Ac-a(prince) 7127+ (queen) aogoy(C(teacher)
Jéh(story) aAge(film) £¢(drama) +a4(student)

DSHM(gazette) 4.8 (radio) HOH(TV) wg(news)
+at(walk) ca(run) av71€:(road) art(urine)

Odd word out is not related to OOV but it is a task that can show the other useful feature of
word embeddings. Testing our word embeddings to identify words from a list which does
not go with the others gives promising results. It can easily pick words that do not belong to
a list (either semantically, syntactically, or morphologically). In Table 4.11 (above), words
at column IV are odd words in relation to the other three words in the same row. The words

in bold are results returned as odd by the model. The odd words are selected and isolated in
72

most part of the test excepting some instances like words in row I1. In this row, as J-¢h(story)
is more related to &ag°(film) and £¢-@1(drama) than -+994(student) is, the result should have
been +14(student) as odd word instead of F¢h(story).

4.3.2 Extrinsic evaluation

This is another evaluation method to investigate and analyze the contribution of word
embeddings in tackling downstream NLP problems such as text classification and POS

tagging. We used multi-class text classification for this evaluation task.

4.3.2.1 Text classification

We used our preprocessed news dataset for text classification purpose. Our dataset has four
labels: Athletics, Economy, Football and Chess. Each line of the news file contains

__label__prefix at its start so that fastText can recognize what is a word or what is a label.

Table 4.12: Number of datasets in each group and ratio

Label 70/30 80/20 90/10

Number of news Number of Number of Number Number of Number of

items in train news items in news items of news news items news items

group validation in train items in in train in
group group validatio group validation
n group group
Football 213 119 249 83 293 39
Athletics 134 20 152 2 152 2
Chess 12 9 12 9 12 9
Economy 271 122 307 86 353 40

Before training our classifier, the dataset has been split into train and validation. A number
of experiments were carried out both in 90/10, 80/20 and 70/30 proportions of the dataset,
where the proportion is the ratio of the train and validation sets (For example: 80/20 means

80% for training and 20% for validation/testing data). The train and validation datasets are
73

stored in text format. The number of news items in each group and in each ratio of the split
are presented in Table 4.13. We used different hyper-parameters on the dataset to train and
evaluate the precision, recall and accuracy in predicting and classifying a new item. The
following table shows the overall results of different tests conducted using default
parameters but with alternating epoch size.

Table 4.13: Precision and Recall at K=2, and F1-score using different epochs

Epoch 70/30 80/20 90/10
P@2 R@2 F1 P@2 R@2 F1 P@2 R@2 F1
5 0474 0948 0.632 0.472 0.944 0.629 0.444 0.889 0.592
25 0481 0963 0.641 0475 0950 0.633 0.450 0.900 0.600
50 0.493 0.985 0.657 0.483 0.967 0.644 0.467 0.933 0.622
100 0.498 0.996 0.640 0.500 1.000 0.666 0.500 1.000 0.666

Table 4.14: F1-score at K=1 using different epochs

Epoch 70/30 F1 80/20 F1 90/10 F1
5 0.722 0.689 0.833
25 0.952 0.944 0.889
50 0.948 0.944 0.889

100 0.959 0.961 0.922

On average, as the tables show, the precision increases as the epoch increases. We see that
on average the variables, precision, recall and F1-score gain an increment when the number

of epochs rise up. Take the 80/20 as example, the F1-score of our classifier has become 0.961

74

mailto:P@2
mailto:P@2
mailto:R@1
mailto:P@1
mailto:R@1
mailto:P@1
mailto:R@1

at epoch number 100. An increased value of epoch makes an improved classifier model. That

means increasing the number of epochs steadily improved the classifier quality.

Table 4.15: Example from a validation set obtained with 100,000 epochs on 80/20 sample,
label predictions included.

Input Prediction Evaluation

A8 W7eh 2AC G APEIP im P@-sB OIS SD-sB PPHAAA THCET OTh Economy Correct
aoNnA He TNLL P> 9OTHS NP AT A%Lsh 2AC A9The G ArEI avfim?

AFEXL N4 O7h A0 0P A7 He AlA 100 (ANE O7h aohhd FhEe: ea-sp

oS NP ARTE: A%D4h &AC P40 &S P NC ATEI® HPHT @< PO L9 G

ATEI® PEA (A QA L£9° NALA AN TTANAD- 109 HE GY 17Fd £4PG T

0230 Fal (16 PPl (7 AL AAAANT AQF @R (AdE TU 730 £4PG T

00 ol (49 HIDAN A28 4L0A Fa(l (4G AT PAlE A9TNE PO 19210

ATEI° AT £LP (G £9° C PSA

ATt P1a AR Athletics Correct

PAEREL TSIPPC AT +0rthne . PFPT (AL DT ThTOIPA NHEO- Football Correct
tortng . PF A% avPAS A0 ANO AL iV PTSIC AT e PP T

TNLLPA OHU A%97 AL NANN (LbA NF9.P9° P80 1LECLAT PAHGIRD- AT

07 0 A 0 P Ot RPFOT AMGRA AT 974 P40 1.8CLA hAdTT hrta]

IC PRLM- P HNFE OC LADT 1PN “I0dt LTLFANT 6£4 10C NATF

Pavgn,LA LB AL PILTT@ RL (LT aPp, AL aPhANST ANFGIL 3 A 0 OUPY

Omt FAIGA POHEO- 0TSO0 AL kg P (DAL S &FS (89T (G

avnd TR (AS0 ANO AF4.09° +NZL A HY Ou-Ats agert +irthng

MPHFD 187 (1S 2 A 1 (P Ot OALT &F7 WA 740

CTAL (1AL P Ak 20 ANO Football Correct
FH e PF NA714S LN hAdT APTHNBL avPr 11 Football Incorrect
avp, av(Iik 6/201 (11148 AGPEavs® 1, eHHOE hAd Ade OEH Chess Correct

O-LC HE (9o, hal FPavl (0-LL4 (AIC APs LL5 holPHe 5
AN 16 7 200 G ° A%O ANO AL ATTNZL®- PhANTS P90 APTES
O-L:2C hAX? OhAD: P99A+4 AT CHFPT AIRTLo4me H1ZN 1942
NAA BN 4.L607 NETE QAde@ AR hyag €47 AAFCXP HS ANt
A22706-F (hAx hHu $89° ¢EH OZ7CH Fhdt PHAm®- AAINLT®
O-L:249° NI LLE PAL OAPPr PHCE OZCH ALLl avPET mBaPPA
“H28C AHCS Otam@- Fhdt QhAd £4%5 12 hANTt +84E+Hm- @284

75

TEPZN” NAPA NhANE eohhd Adek POAT aPPF@7 106~ OAgo-Po-
M90S OhART avhhd AAT ¢7 07120 @-2&C 100 A7 CTHFT +Aadd
DPTFOT TGP KWL ANPLO 10K (@4 hah PATET LL5 NavfH
ATLeMGPE AAGLPT 09390 PPTBS PTIHAN AT 2NZnhFd
nt+o884PF avahh 0Nt 048 PACI® NAM® AT 7 O Ck

M @ts A7 Cr st Fhdt tam® QhAAS (UIC 845
PILONA FO88LPTT TIGeT RFAN ANAPA O APt thie A0hA,
“BH PANA PTNET ALY PhOIPC NPT PUlmeP PO CT hert 107
MAAT AOWZCE ARTE Hhedt AOT A2L91109° Om:d AdPAhF AT

£69P VPN 2/2010 NL6AP AAZS AT Ah%e P#P@- PhAnT hzo Chess
oot (I3F OFH APTET O-LLC (L7 P14L hAd ANSLrt +mGPd
L6GAPS A% (A PHNLLMT NANGLTE AMGPD- PPIBE POCP 8NP
A%, PIPA He TI9°A@7 (0%e@m- avHLe A1-/7Co%T AL (NARTH
O-£:£47 PmSPe O CHET (PMe VI1LFOT MAZCE NCE +ehhd
A91LL WIRUUNG AT AABA OTTHPA PATEXL BH 48407
N&&AP ANFRLC OC Nev+00C AHPE®- h20 %ot (T VIC A& OEH
APTEG O-22C AL £4&8PG ASO ANOT I°C PH1LL PhTil-

PLN-NG PACTLY hAAT +hEAPA hak 25 A H%°A 2 $7 2010
OHNZem (Hu- @-LLC PH48 (&7 OMWHG (078 L7 &L ET
0AZLTEE N9IMSPP PPTRG POCP aPBAS AT (0PPPF @04
N0ALTF AmSRA AT &7 O-LLC vATE A% OOHE L9 hCole
AUPr OOE PR LA ACULe VNS £&8P 00TT PIPA 094
POILT D-LLC PRGAP Tl W1L4LN NAL PT POCP aP8ALT PR
AA0T P77 QBT P AlGE PUPTTF@- PA%ls. hAA AZ°CHT avdplh Aol
ot QANTTE 21-C%T AL 0T OZ°CHE hNE9® NCh NAma-
AOEERT "hAATT AOTCE A% et AR (oP(ik OmdoT PIGA”
NN "0PMe 0167 Ah A28ATAERA. NAA® ALANEL P9IOMEt GATTIRY
ATt mThe AQCAUT AN TO-RL% Faed T QOAT A8AL ALCITA
A28 7 LGRPIWC I V1L OO CR WTPF@- W8I0 ALCOUT PAM« RAP
NOEF P90 O-£&C PNAL PT POCPS P78 HAATL PP+ “ic-h,
AI4LN 10 PATI hAAT OmI] PRLTT®- avp@i K9V, D884 T4G
mé $¢hhc 2120k ATRINGC mPa a7 CE LNAT avalt APA.mShC h2o
qavt (\FF APRt OORF FALE SHHIE® @-&&C ANLFF A2L9110
TGAUNT PAERS OFH 48407 VLt (Wt 2A4 At (L4 NALTY
AAZE A°PE thZem- 081 OMPF O-L&C AP (&7 PolavPh
PCT OZCHFPT WILHTTOF mPa® AIHY O7CETF e0AT @mJ)
AT NGt AITLOG 1ABPA AZCE SOAT APAmSNC (P02

76

Correct

AChE OChF @-L&CT AOTHDIS. PRI ALILOFO- i3 oot B9°C P
ONEF OTCENT AP Pé heFLLT PRY FGUPA (0PHLLPD: -
PCF AL ARNGLPE CHHO®7 eP7B, POCP PCS Picha aP8AL
PAATP; PL&AP ANTSLC OMPFG AZCE holi? holdic hec §.vYCS
M AT SF-

We tested the model with epoch number 100,000, other hyper-parameters being defaulted,
and it took about 2 hours to train on Intel® Core™ i3-64 core. This test produced 0.978 F1-
score on 80/20 sample of the dataset. Varying other parameters like window size and
dimension made a marginal improvement on the quality of the classifier. Further parameter
tuning gives us a significant boost on speed and quality. Overall, the Amharic word
embeddings can be used in text classification tasks with a better quality than other traditional

methods.
4.4 Summary

Word embeddings for Amharic is found to be a useful tool to analyze the language’s
linguistic properties and bring the concept of mathematics to the field. It captures properties
like context, semantics, syntactic, analogy and so on. The embedding is also found to be
helpful for downstream tasks such as Text classification. The embedding of words in a vector

form in space helps to learn features and patterns natural languages form.

The word embeddings capture relationships not only for words that are part of the
vocabulary, but also for words that are rare, misspelled, typos, out-of-vocabulary etc... The
results obtained are very promising in learning language features, relationships and patterns
in Amharic language. The richness of Amharic inn morpheme has found influencing the

results, however.

77

CHAPTER 5
CONCLUSION, RECOMMENDATION AND FUTURE WORKS

5.1 Conclusion

In this work we explored word embeddings for Amharic language. A thorough discussion
on word embeddings in general, starting from their history to the current state-of-the-art
findings, methodologies and architectures were conducted. Word embeddings are analyzed
based on the properties of languages. Language properties like similarity, analogy and

relatedness based on syntax and morphology are issues considered.

As is common in NLP, datasets or corpus were prepared for use in preparing word
embedding for Amharic. The steps needed to make the corpus ready, called preprocessing,
were done and the training was conducted. In the preprocessing phase we omitted
punctuation marks, extra empty spaces, and numerals. Two datasets, one for extrinsic
evaluation and the other for intrinsic evaluation of the word embedding were utilized. For

the former, the format was prepared in a way to suit the library we used, which is fastText.

The resulting embedding was evaluated for quality and speed and their ability to capture
meaningful representations using evaluation techniques. Two evaluation techniques were
utilized: intrinsic and extrinsic. In the intrinsic evaluation, the question of how well the
vectors in the embedding capture linguistic relationships between words. The linguistic
relationships under consideration were word similarity, word analogy, OOV word and odd-
word out. In this method, we saw that words that are similar or analogous to each other
happen together or closer in the space. Related Amharic words are found contiguous to each
other in the vector space. The analogy relationships we found was quite congruent to the
works of other researchers on other languages. The word embedding has automatically
learned the vector representation, “7+#” - @78 + 17, resulting in a vector closer to the word
“r1~1”. It is also shown that words which were not part of the training or were rare or
misspellings were entertained in the vector representation. The extrinsic evaluation method
mainly focuses on the ability of word embeddings to contribute in the downstream tasks. For
this case, we used multiclass text classification. Experimental results vary as hyper-

parameters are tuned in various sizes and amounts. The precision, recall and F1-score
78

measures are also shown fluctuating based on parameters. However, as per the testing done
on various ample ratios and parameters, the word embedding can attain 97.8% F1-score in

text classification.
5.2 Recommendation

It’s known that word embeddings can be used in various tasks. Sentiment Analysis, NER,
co-reference resolution, semantic-role labeling (SRL), and other NLP tasks can utilize word
embeddings as a tool to tackle speed and efficiency issues. Since this work only focuses on
exploring how a word embedding in Amharic behaves in sample NLP tasks such as text
classification, we recommend that other NLP tasks be thoroughly studied using word
embeddings. Two challenges in this perspective are the scarcity of training data and the
morphological richness of Amharic.

Therefore, researchers who have the courage to prepare a huge Amharic dataset can
investigate morphological effect of Amharic on word embeddings and the role of Amharic
word embeddings in various NLP tasks.

This work can be used as a starting point for NLP works related with word embedding in
Ambharic language.

5.3 Future Works

There are issues that are highly linked to this work that needs to be addressed and studied in
the future. Since word embeddings have multiple usages, in the future exploring the ways
these embeddings can be used in various tasks is one area to listed in the “what to do in the

future” list.
Generally speaking, the following works are planned in the future:
e The impact of word embeddings on bias and stereotype

e The role of word embeddings in word sense disambiguation, NER, POS tagging and
SRL.

e Utilizing a big and rich corpus to experiment with Amharic Word embeddings.

79

e Studying character level word embedding and bilingual word embeddings with

Arabic or other Semitic languages.

80

REFERENCES
Al-Rfou, R., Perozzi, B., & Skiena, S. (2013). Polyglot: Distributed Word Representations
for Multilingual NLP. 10.

Armbruster. (1908). Initia Amharica, an introduction to spoken Amharic. 432.

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural Machine Translation by Jointly
Learning to Align and Translate. ArXiv:1409.0473 [Cs, Stat]. Retrieved from
http://arxiv.org/abs/1409.0473

Bakarov, A. (2018). A Survey of Word Embeddings Evaluation Methods. ArXiv:1801.09536
[Cs]. Retrieved from http://arxiv.org/abs/1801.09536

Basirat, A. (2018). Principal Word Vectors. Retrieved from

http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-353866

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic
Language Model. 19.

Bernstein, H., Gelatt, J., Hanson, D., & Monson, W. (2014). Ten Years of Language Access
in Washington, DC. 43.

Bhattacharjee, J. (2018). fastText quick start guide get started with Facebook'’s library for
text representation and classification. Retrieved from
http://proxy2.hec.ca/login?url=http://proquestcombo.safaribooksonline.com/?uiCod
e=hecmontreal&xmlld=9781789130997

Blei, D. M. (2003). Latent Dirichlet Allocation. 30.

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching Word Vectors with
Subword Information. Transactions of the Association for Computational
Linguistics, 5, 135-146. https://doi.org/10.1162/tacl_a 00051

Christodouloupoulos, C., & Steedman, M. (2015). A massively parallel corpus: the Bible in
100 languages. Language Resources and Evaluation, 49(2), 375-395.
https://doi.org/10.1007/s10579-014-9287-y

81

Collobert, R., & Weston, J. (2008). A4 Unified Architecture for Natural Language

Processing: Deep Neural Networks with Multitask Learning. 8.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011).
Natural Language Processing (Almost) from Scratch. NATURAL LANGUAGE
PROCESSING, 45.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273—
297. https://doi.org/10.1007/BF00994018

Demissie, D. (2017). Addis Ababa Institute of Technology School of Electrical and
Computer Engineering. 74.

Devlin, J., Cheng, H., Fang, H., Gupta, S., Deng, L., He, X., ... Mitchell, M. (2015).
Language Models for Image Captioning: The Quirks and What Works.
ArXiv:1505.01809 [Cs]. Retrieved from http://arxiv.org/abs/1505.01809

Elman, J. L. (1990). Finding Structure in Time. 16.

Elrazzaz, M., Elbassuoni, S., Shaban, K., & Helwe, C. (2017). Methodical Evaluation of
Arabic Word Embeddings. Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), 454-458.
Retrieved from http://aclweb.org/anthology/P17-2072

Eyassu, S., & Gamback, B. (2005). Classifying Amharic news text using self-organizing
maps. Proceedings of the ACL Workshop on Computational Approaches to Semitic
Languages - Semitic '05, 71. https://doi.org/10.3115/1621787.1621801

Farzindar, A., & Inkpen, D. (2015). Natural Language Processing for Social Media.
Synthesis Lectures on Human Language Technologies, 8(2), 1-166.
https://doi.org/10.2200/S00659ED1V01Y201508HLT030

Feng, J.,, Xu, H., & Yan, S. (2012). Robust PCA in High-dimension: A Deterministic
Approach. 8.

Firth, J. R. (1935). THE TECHNIQUE OF SEMANTICS. Transactions of the Philological
Society, 34(1), 36—73. https://doi.org/10.1111/j.1467-968X.1935.tb01254.x

82

Fu, G. (2009). Chinese Named Entity Recognition Using a Morpheme-Based Chunking
Tagger. 2009 International Conference on Asian Language Processing, 289-292.
https://doi.org/10.1109/1ALP.2009.68

Gambéck, B., Olsson, F., Alemu Argaw, A., & Asker, L. (2009). Methods for Amharic Part-
of-Speech Tagging. Proceedings of the First Workshop on Language Technologies
for African Languages, 104-111. Retrieved from
http://www.aclweb.org/anthology/W09-0715

Gambéck, B., Sahlgren, M., Alemu, Atelach, & Asker, Lars. (2014). Applying Machine

Learning to Amharic Text Classification.

Graves, A., Mohamed, A., & Hinton, G. (2013). Speech Recognition with Deep Recurrent
Neural Networks. ArXiv:1303.5778 [Cs]. Retrieved from
http://arxiv.org/abs/1303.5778

Harris, Z. S. (1954). Distributional Structure. WORD, 10(2-3), 146-162.
https://doi.org/10.1080/00437956.1954.11659520

Hassan, A., & Mahmood, A. (2017). Efficient Deep Learning Model for Text Classification
Based on Recurrent and Convolutional Layers. 2017 16th IEEE International
Conference on Machine Learning and Applications (ICMLA), 1108-1113.
https://doi.org/10.1109/ICMLA.2017.00009

Joulin, A., Grave, E., Bojanowski, P., & Mikolov, T. (2016). Bag of Tricks for Efficient Text
Classification. ArXiv:1607.01759 [Cs]. Retrieved from
http://arxiv.org/abs/1607.01759

Kelemework, W. (2009). AUTOMATIC AMHARIC TEXT NEWS CLASSIFICATION: A
NEURAL NETWORKS APPROACH. 139.

Khashman, A., & Dimililer, K. (2008). Image Compression using Neural Networks and
Haar Wavelet. 4(5), 10.

Kibriya, A. M., Frank, E., Pfahringer, B., & Holmes, G. (2004). Multinomial Naive Bayes
for Text Categorization Revisited. In G. I. Webb & X. Yu (Eds.), Al 2004: Advances

83

in Artificial Intelligence (Vol. 3339, pp. 488-499). https://doi.org/10.1007/978-3-
540-30549-1 43

Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 1746-1751. Retrieved from http://www.aclweb.org/anthology/D14-1181

Kirsal Ever, Y., & Dimililer, K. (2018). The effectiveness of a new classification system in
higher education as a new e-learning tool. Quality & Quantity, 52(S1), 573-582.
https://doi.org/10.1007/s11135-017-0636-y

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps.
Biological Cybernetics, 43(1), 59-69. https://doi.org/10.1007/BF00337288

Krabben, K. (2010). Machine Learning vs. Knowlegde Engineering in Classification of
Sentences in Dutch Law. 23.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep
Convolutional Neural Networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q.
Weinberger (Eds.), Advances in Neural Information Processing Systems 25 (pp.
1097-1105). Retrieved from http://papers.nips.cc/paper/4824-imagenet-

classification-with-deep-convolutional-neural-networks.pdf

Lund, K., & Burgess, C. (1996). Producing high-dimensional semantic spaces from lexical
co-occurrence. Behavior Research Methods, Instruments, & Computers, 28(2), 203—
208. https://doi.org/10.3758/BF03204766

Mandelbaum, A., & Shalev, A. (2016). Word Embeddings and Their Use In Sentence
Classification Tasks. ArXiv:1610.08229 [Cs]. Retrieved from
http://arxiv.org/abs/1610.08229

Meyer, R. (2006). Amharic as lingua franca in Ethiopia. Lissan: Journal of African
Languages and Linguistics 20,1/2: 117-131. Retrieved from
https://www.academia.edu/5514187/Amharic_as_lingua_franca_in_Ethiopia

84

Miikkulainen, R. (2010). Simple Recurrent Network. In C. Sammut & G. I. Webb (Eds.),
Encyclopedia of Machine Learning (pp. 906-906). https://doi.org/10.1007/978-0-
387-30164-8_762

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word
Representations in Vector Space. ArXiv:1301.3781 [Cs]. Retrieved from
http://arxiv.org/abs/1301.3781

Mikolov, T., Karafiat, M., Burget, L., Cernocky, J., & Khudanpur, S. (2010). Recurrent
Neural Network Based Language Model. 4.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed
Representations of Words and Phrases and their Compositionality. ArXiv:1310.4546
[Cs, Stat]. Retrieved from http://arxiv.org/abs/1310.4546

Mikolov, T., Yih, W., & Zweig, G. (2013). Linguistic Regularities in Continuous Space

Word Representations. 6.

Mykowiecka, A., Marciniak, M., & Rychlik, P. (2017). Testing word embeddings for Polish.
Cognitive Studies | Etudes Cognitives, (17). https://doi.org/10.11649/cs.1468

Narayanan, V., Arora, ., & Bhatia, A. (2013). Fast and accurate sentiment classification
using an enhanced Naive Bayes model. ArXiv:1305.6143 [Cs], 8206, 194-201.
https://doi.org/10.1007/978-3-642-41278-3 24

Negga, W. (2000). Wa zé ma. Croydon: W. Negga.

Osgood, C. E. (1964). Semantic Differential Technique in the Comparative Study of
Cultures. American Anthropologist, 66(3), 171-200. Retrieved from JSTOR.

Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? Sentiment Classification using
Machine Learning Techniques. Proceedings of the 2002 Conference on Empirical
Methods in Natural Language Processing, 79-86.
https://doi.org/10.3115/1118693.1118704

85

Pawar, P. Y., & Gawande, S. H. (2012). A Comparative Study on Different Types of
Approaches to Text Categorization. International Journal of Machine Learning and
Computing, 423-426. https://doi.org/10.7763/1JIMLC.2012.V2.158

Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global Vectors for Word
Representation. Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 1532-1543. Retrieved from
http://www.aclweb.org/anthology/D14-1162

Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of Population Structure
Using Multilocus Genotype Data. 15.

Ritter, H., & Kohonen, T. (1989). Self-organizing semantic maps. Biological Cybernetics,
61(4), 241-254. https://doi.org/10.1007/BF00203171

Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval.
Information Processing & Management, 24(5), 513-523.
https://doi.org/10.1016/0306-4573(88)90021-0

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing
Surveys, 34(1), 1-47. https://doi.org/10.1145/505282.505283

Sienc nik, S. K. (2015). Adapting word2vec to Named Entity Recognition. 5.

Soliman, A. B., Eissa, K., & El-Beltagy, S. R. (2017). AraVec: A set of Arabic Word
Embedding Models for use in Arabic NLP. Procedia Computer Science, 117, 256—
265. https://doi.org/10.1016/j.procs.2017.10.117

Svoboda, L., & Beliga, S. (2018). Evaluation of Croatian Word Embeddings. 7.

Tedla, Y., & Yamamoto, K. (2017). Analyzing word embeddings and improving POS tagger
of tigrinya. 2017 International Conference on Asian Language Processing (IALP),
115-118. https://doi.org/10.1109/1ALP.2017.8300559

Tegegnie, A. K. (2010). HIERARCHICAL AMHARIC NEWS TEXT CLASSIFICATION
HIERARCHICAL AMHARIC NEWS TEXT CLAS. 1109.

86

Tripodi, R., & Pira, S. L. (2017). Analysis of Italian Word Embeddings. ArXiv:1707.08783
[Cs]. Retrieved from http://arxiv.org/abs/1707.08783

Turian, J., Bengio, Y., Ratinov, L., & Roth, D. (2010). A preliminary evaluation of word
representations for named-entity recognition. 8.

Turney, P. D. (2002). Thumbs Up or Thumbs Down? Semantic Orientation Applied to
Unsupervised Classification of Reviews. ArXiv:Cs/0212032. Retrieved from
http://arxiv.org/abs/cs/0212032

Vasic, D., & Brajkovic, E. (2018). Development and Evaluation of Word Embeddings for
Morphologically Rich Languages. 2018 26th International Conference on Software,
Telecommunications and Computer Networks (SoftCOM), 1-5.
https://doi.org/10.23919/SOFTCOM.2018.8555822

Vo, D. T., & Zhang, Y. (2016). Don’t Count, Predict! An Automatic Approach to Learning
Sentiment Lexicons for Short Text. Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), 219-224.
Retrieved from http://anthology.aclweb.org/P16-2036

Weldesellassie. (2003). Automatic Categorization of Amharic news text: a machine learning
approach. Addis Ababa University, Addis Ababa, Ethopia.

Weninger. (2011). Stefan Weninger et al. (eds.): THE SEMITIC LANGUAGES: An
International Handbook | Stefan Weninger - Academia.edu. Retrieved March 3,
2019, from
https://www.academia.edu/6917762/Stefan_Weninger_et_al. eds. THE_SEMITIC
_LANGUAGES_AnN_International_Handbook

Woodard, R. D. (Ed.). (2008). The ancient languages of Mesopotamia, Egypt and Aksum.
Cambridge ; New York: Cambridge University Press.

Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level Convolutional Networks for Text
Classification. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett
(Eds.), Advances in Neural Information Processing Systems 28 (pp. 649-657).

87

Retrieved from http://papers.nips.cc/paper/5782-character-level-convolutional-

networks-for-text-classification.pdf

Zhang, Y., & Wallace, B. (2015). A Sensitivity Analysis of (and Practitioners’ Guide to)
Convolutional Neural Networks for Sentence Classification. ArXiv:1510.03820
[Cs]. Retrieved from http://arxiv.org/abs/1510.03820

88

APPENDIX 1
AMHARIC PUNCTUATION MARKS AND BASIC ETHIOPIC NUMBERS

Arabic | Ethiopic | Amharic Punctuation Marks and their
Number | Number | description
1 5 (Period)
2 g (Word space)
3 N (Ellipsis)
4 a (Full stop)
5 & for ¢+ (Comma)
6 z (Semi-colon)
7 Z - (Preface colon)
8 x (Question mark)
9 i % (Section mark)

89

