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CHAPTER 1 

INTRODUCTION 

1.1 q- Calculus History  

q-Calculus is one of classical branch of mathematics. The quantum calculus (q- calculus) is 

an old, since it goes back to eighteen century, which can be traced back to Euler and Gauss 

(Ernst, 2000; Kupershmidt, 2000). With important contributions of Jackson a century ago 

(Jackson, 1903; Jackson, 1910). The original object as limits when q tends to 1, is q-

analogues of mathematical objects, we are searching in q-calculus. The Eigen function of 

q- derivative in combinatorial mathematics is a q- analogue of exponential function. They 

are many q-derivatives, for example, the classical q- derivative, the Askey Wilson 

operator, etc. (Exton, 1983). In eighteenth and nineteenth the q-Taylor formula 

encompasses many results of exponential function, Gauss’s q- binomial formula, and 

Heine’s formula for a q- hypergeometric function, Euler’s identities for q-exponential 

function, Jacobi triple-product identity celebrated by Euler’s identities. He had recurrent 

formula for the classical partition function and Hine’s formula leads to the remarkable 

Ramanujan product formula, Gauss’s formula for the number of sums of two squares while 

Jacobi’s formula for the number of sums of four squares. At beginning of the twentieth 

century q-calculus was developed by F. H. Jackson who was first introducing lot of 

theorems and definitions in this field. 

Definition 1.1: The q- analogue of m as a complex number is defined by (Kac and 

Cheung, 2001) 

        [ ]  
    

   
             | |                                                    (   ) 

Definition 1.2: The q- analogue of m-exponent of (   ), for any         | |    is 

defined by (Kac and Cheung, 2001)  

(   ) 
  {

                                                                                    
(   )(    ) (       )                      

     (   ) 

 

Definition 1.3: The q- shifted factorial defined by (Ernst, 2000) 
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              (   )       (   )  ∏(     )                                 (   )

   

   

 

         (   )  ∏(     )            | |                                               (   )

 

   

 

Definition 1.4: For any real or complex valued function we may define the q- differential 

as (Kac and Cheung, 2001) 

                       ( ( ))   (   )   ( )                                                         (   )    

Where g is a function and    is a q- derivative operator. 

1.2 q-Products for two Functions 

 The q- product rule for g and h as a complex valued function, can be expressed as (Ernst, 

2000)  

  ( ( ) ( ))   (  ) (  )   ( ) ( )                                            

  (  ) (  )   (  ) ( )   (  ) ( )   ( ) ( )  

We get 

                       ( ( ) ( ))   (  )   ( )   ( )   ( )                     (   )  

 

Definition 1.5: We can define the q- derivative of an arbitrary complex valued function as 

(Kac and Cheung, 2001) 

 

 
                             ( )   

   ( )

   
   

 (  )  ( )

(   ) 
                                            (   )

   

Note 1.1: We notice that 

   
   

   ( )   
  ( )

  
  

Property 1.1: The q- derivative is linear by the means of (Ernst, 2000) 
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        (  ( )    ( ))      ( )      ( )  

Example 1.1: In this example we will consider the simple function   ( )    ,
 
we have. 

                                     
  

(  )    

(   ) 
 [ ]  

                                 (   )  

Definition 1.6: We have two forms of quotient rules for q- derivatives both of them are 

true and useful  

(Kac and Cheung, 2001) 

                             (
 ( )

 ( )
)  

 ( )   ( )   ( )   ( )

 ( ) (  )
                     (   ) 

                             (
 ( )

 ( )
)  

 (  )   ( )   (  )   ( )

 ( ) (  )
             (    ) 

1.3 Generalization Taylor Expansion 

 Assume that   ( )   ( )      ( ) is sequence of polynomials and   be any scalar 

numbers, D is a linear operator, such that satisfy (Kac and Cheung, 2001) 

1) Q0 ( ) = 1 and    ( ) = 0      for    m   1; 

2) We assume that the degree of all polynomials equal to m; 

3) D (  ( )) = Qm-1(x) for any   m   1, and D (1) = 0. 

Then, for any polynomial F(x) of degree m, we have the generalized Taylor formula: 

                                         ( )  ∑(  

 

   

 )( )  ( )                             (    ) 

Example 1.2: Let 

  
 

  
                         ( )  

(   ) 

  
  

Then all conditions of theorem 1.12 are satisfied and the theorem provides the Taylor 

expansion about   of a polynomial. D is a linear operator of polynomial degree m onto the 

space polynomials of degree m - 1. 
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 1.4 Taylor Formula 

 Assume g is a real function on closed interval [   ], m is a positive integer      [   ] . 

Let     be distinct points of [   ], and define (Rudin, 1976) 

                             ( )  ∑
 ( ) ( )

  

   

   

(   )                                          (    ) 

Then there exist a point t between         such that 

 ( )   ( )  
   ( )

  
(   )   

Definition 1.7: We have the following q- analogue of m :  

         [ ]   {  
                                                                           
[ ] [   ]  [ ]                                     

     
   (    ) 

1.5 q-Derivative of Binomial Expression  

 The following formula is q-derivative of binomial expression (Kac and Cheung, 2001) 

                             (    ) 
  [ ](    ) 

                                             (    ) 

1.6  q- Taylor Expansion 

If Q(x) will be any polynomials such that degree (Q(x)) = m, and   be any scalar, the 

following q- Taylor expansion can be expressed. 

                                 ( )  ∑ (   
 

 

   
 )( )

(    ) 
 

[ ] 
                         (    ) 

Proof: we assume that      and   ( )  
(   ) 

 

[ ] 
 at theorem 1.4. 

 

Note 1.2: There are several q- Taylor formulae that arise for the different aspect .The 

classical q- Taylor formula involves many results, Euler’s identities for q-exponential 

function and Gauss’s q- binomial formula and Heine’s formula for a q- hypergeometric 

function (Kac and Cheung, 2001). But the new q- Taylor formula is presented generalized 
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determinates, symmetric function and representation theory of symmetric group are treated 

(Ernst, 2000). 

Definition 1.8: The q- analogue of combination of two numbers ( 
 
)
 
can be expressed as 

                             (
 

   
)
 

 
[ ]  

[ ]  [   ]  
 (

 

 
)
 

                          (    ) 

Example 1.3: Consider Q(x) =     and   = 1, where m is a positive integer. For j   m, we 

can evaluate   
 
 ( ( )) by using induction. The first and second q-derivative will be 

[ ]  
    and [ ] [   ]  

    respectively and 

                    (   
 
   )( )  [ ] [     ]    [       ]  

            (    ) 

Thus, 

                      (   
 
 )( )   [ ] [    ]    [        ]               (    ) 

The q- Taylor formula for    about x = 1 then gives 

    ∑
[ ]  [     ] 

[ ]  
(   ) 

 

 

   

 ∑(
 

 
)
 

 

   

(   ) 
 
       (    ) 

 

Example 1.4: Let   ( )  (   ) 
 , x=0 and m be a nonnegative integer,   be a number, 

using q- Taylor’s formula to evaluate the expansion for g(x). For j   m 

 We have 

              (  
 
 )( )  [ ] [   ]   [       ] (    ) 

   
          (    )      

So, with x=0, (   ) 
   

         

( )(  ) (      )   
 (   )

    . 

Put this to (1.20) to get for j   m, 

(  
  
 )( )  [ ] [   ]  [     ]  

(   )(     )

     . 

Hence, the q- Taylor formula gives 
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                       (   ) 
  ∑(

 

 
)
 

 
(   )(     )

 

 

   

                       (    ) 

1.7  q- Analogue of Combination 

  The q- analogue of ( 
 
) has the following properties, where k<m are belongs to N. 

a) ( 
 
)
 

 
[ ]  

[ ]  [   ]  
 (  

   
 )

 
 

b) ( 
 
)
 

 (   
   

)
 
 (   

 
)
 
                . 

c) ( 
 
)
 

 (   
   

)
 
    (   

 
)
 
 

d) ( 
 
)
 

 ( 
 
)
 

  . 

Proof: All proofs are straight forward and can be reached directly from the definition. The 

detail of proof can found at (Kac and Cheung, 2001; Ernst, 2000). 

 

1.8 Hine’s Binomial Formula 

 Consider the function g(x) =  
 

(   ) 
 . It is production of some algebraic expression. Let us 

expand g(x) by q- Taylor’s formula about x=0.  

We have  

   ( )    

 

(   )  
 

 
[ ] 

(   ) 
      

And, by induction, 

  
 
 ( )  

[ ] [   ]  [     ] 

(   ) 
   

  

               
 
 ( )  [ ] [   ]  [     ]                  

This expansion of  
 

(   ) 
   is called Hine’s binomial formula which is 
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(   ) 
 

   ∑
[ ][   ] [     ]

[ ] 

 

   

                           (    ) 

Definition 1.9: The classical q- exponentials function can be described by (Ernst, 2000) 

  ( )  ∑
  

[ ]  
 ∏

 

  (   )     
       | |         | |  

 

|   |
 

 

   

 (    )

 

   

 

  ( )  ∑
 

 (   ) 
    

[ ]  

 

   

 ∏(  (   )   ) 

 

   

      | |              (    )  

1.9 The Product of the Heine’s Binomial Formula 

 The product of the expressions are evaluated by using the Heine’s binomial theorem when 

m    (Ernst, 2000) 

   
   

 

(   ) 
 

 ∏
 

(     )

 

   

  

The above formula is the left side of the Heine’s binomial formula when m  , but to 

proof right side we need (1.25) and (1.26) 

                                       
   

[ ]     
   

    

   
 

 

   
                          (    ) 

And 

          
   

(
 

 
)     

   

(      )(       ) (        )  

(   )(    ) (    )
      

 
 

(   )(    ) (    )
                                    (    ) 

Hence  

             ∑
[ ][   ] [     ]

[ ] 
   

 

   
 ∏

 

(     )
 

 

   

        (    ) 
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1.10 q-Exponential Functions Properties 

The q- exponential function has the following properties:  

1)   
   

                                                                                                (1.28) 

2)   
 ⁄

    
                                                                                              (1.29) 

3)   
   

 
   

   
                                                                                 (1.30) 

4)     
             

              
    

  
                                                       (1.31) 

Proof: the first and second properties are the direct corollary of definition of q-exponential 

function by products. The third one can be reached where we write the summation of q-

exponential function. In this case, we should care about the non-commutative condition. 

The q-exponential functions have not the same properties of exponential function in 

general. Last one can be calculated by taking q-derivatives from the 1.23 and 1.24. The 

detail of proof is available at (Kac and Cheung, 2001; Ernst, 2000). 

 

Definition 1.10: The production of two gives series ∑  and ∑   is defined by 

                                 ∑       

 

   

              (         )             (    ) 

This production sometimes called Cauchy product. (Rudin, 1976) 

Remark 1.1: The motivation of the definition (1.32) is coming from the following 

product 

(∑     

 

   

)(∑     

 

   

)  (          
  )(          

  )

      (         )  (              ) 
   

           
   

Putting z=1 we get the definition (1.32). 
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1.11 Abel Theorem 

 If the series ∑    ∑    ∑    converges to       and                 then   

  . 

Proof: details of proof are available at (Rudin, 1976). Actually, this theorem is not strong 

enough to guarantee that the production of two convergent series will be convergent. There 

is a discussion at (Rudin, 1976) about absolute convergent of at least one of these series. 

Also the counterexample of two convergent series that their product is not convergent is 

discussed (Rudin, 1976). 
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CHAPTER 2 

SOME q- EXPONENTIAL FUNCTIONS AND ITS PROPERTIES 

Introduction 

 The aim of this chapter is to extend the new q- exponential function such a way that we 

reach to new properties. The definition is the main part of these generalizations of q-

analogue of the exponential function. It should be mentioned that the new q- exponential 

function in our definition is based on the two q- exponential function which has been 

discussed in the previous chapter. In addition, we will discuss symmetric properties and the 

conditions for making the q-exponential convertible in the means of multiplication. First, 

we introduce some another q-exponential function and we will study their properties in this 

chapter. 

2.1 Improved q- Exponential Function 

Definition 2.1.1: The improved q- exponential function   
  is define as (Cieśliński, 2011) 

                                
     

 
   

 
  ∏

    (   )
 
 

    (   )
 
 

 

   

                             (   ) 

Where   
 ,   

  are standard q- exponential functions (and the finite product representation is 

valid for | |   ). 

2.1.1 Representation of improved q-exponential function by summation 

The introduced q-exponential function (improved one) can be expressed by the 

summation as follow 

                                     
    (

 

 
)   (

 

 
)  ∑

  

[ ]  

 

   

(    ) 

  
                  (   )       

              In addition the interval of convergence can be found as  

                                            

{
 

 
 

   
                

  

   
                  

                      

                      (   )                                  
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Therefore    ( ) is absolutely convergent where | |     (Cieśliński, 2011) 

Proof: We apply (1.32) Cauchy product of two summations for (1.23) and (1.24). In 

addition, according to the definition (1.24) we have 

  ( )    (
 

 
)  (

 

 
)  

But if we apply Cauchy product rule (1.32) and use (1.16) we get 

                                              ∑ ∑  
 (   )

 (
 

 
)
 

( ) 

  [ ]  

 

   

 

   

                        (   ) 

Put ∑   
 (   )

 ( 
 
)
 

 
   is equal to (    )  or (   ) 

  by (1.21). Thus 

                                    ( )  ∑  
(    )  

  

( ) 

[ ]  

 

   

                                     (   ) 

For the interval of convergent we will apply the ratio test then 

               
   

|
    

  
|    

   
|
(    )    

   

[   ]      
| |

[ ]   
   

(    )    
|                  (   ) 

 
 

 
   
   

(    )(   )| |

      
 

Let       then            and we have 

   
   

|
    

  
|  

|   || |

 
   

Or equally         
 

|   |
          | |  

 

|   |
                                                           (2.7) 

Let     then we have  

 
 

 
   
   

(    )(   )| |

      
 

 
 

 
  
|   || |

| |
   

Then 
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                                  | |  |
  

   
|  

  

   
                                               (   ) 

If q=1 then 

                                  
   

|
    

  
|                                                           (   ) 

So the interval convergent in this case is infinity.           

2.1.2 Relation between different factorial with different factors 

 For     we have the following formula 

                                       [ ] 
 
  [ ]   

 (  
 )                                              (    ) 

Proof: Use definition (1.2) to get the following result 

                    [ ] 
 ⁄

 
  (  ⁄ ) 

   
 ⁄

 
    

    (   )
     [ ]            (    ) 

Then by (2.11) we get 

[ ] 
 
      [ ]  

   [ ]   [ ]   
 

 (    )
   

Hence 

[ ] 
 
  [ ]   

 (   )                                  

2.1.3 Improved q-exponential functions properties  

The improved q-exponential function has the following properties: 

1.   
   (  

 )
  

                                                                                                   (    ) 

2.   
    

 ⁄   
                                                                                                          (    ) 

3.      
  〈  

 〉                                                                                                     (    )   

Where z     and x    and we use the notation 〈 ( )〉   
 ( )  (  )

 
. 

Proof: 1. from the definition (2.1) we can proof it 
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 (  
 )   

Thus, 

  
   (  

 )    

2. We can use the formula (2.2) as follow; in the aim of lemma (2.3) it’s easy to say 

  
 

  ∑
  

[ ] 
 
 

 

   

(      ) 

  
  

 ∑
  

[ ]   (  )

 

   

(   ) (  
 
 ) (  

 
  ) (  

 
    )

  
 

 ∑
    (  )

[ ] 
 

 

   

(   )(   )(    ) (      )

               
 

 ∑
  

[ ] 

 

   

(   ) 

  
   

                 

3. We can proof q-derivative of q-exponential function by using (1.7) as follow 

    
  

  
  

   
 

    
 

  
 

(   ) 
(
  (   )

 
 

  (   )
 
 

  )  
  
  

  (   )
 
 

                   

〈  
 〉  

 

 
(  

  
   

 )  
 

 
(
  (   )

 
 

  (   )
 
 

  )   
  

  
  

  (   )
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2.2 Exton q-Exponential Function 

In this section we will study the properties of another q-exponential function. This q-

exponential function is symmetric by the means of invariant by changing q to 
 

 
. We start 

our study by definition of q- exponential function. 

 

Definition 2.2.1: The Exton q- exponential function is defined by  

                                         
  ∑

  

[ ]  
 

( 
 )

                                                 (    )

 

   

 

2.2.1 Exton q-exponential functions properties 

For Exton q- exponential function the following relation holds true: 

                                                    
      

                                                      (    ) 

By another words, Exton q- exponential function is invariant for changing q to    . 

Proof: we can use the definition (2.1) to prove this relation  

    
  ∑

  

[ ]    
 

 (  )

 

 

   

 

And by (2.3) we get 

∑
  

[ ]  
 ( 

 ) 
 (  )

 

 

   

 

∑
  

[ ]  
 

(  )

    
 

 

   

         

 

 

 

In this chapter we introduced two different q- exponential functions. Actually, there are 

many q- exponential functions. For making a generating function, we will use this q- 
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exponential. We could reach to a lot of forms of q- exponential function form different 

aspects. For instance, solving any suitable q- difference equation makes a new q- 

exponential function. At chapter four, we will unify all of them by using one extra 

parameter. 
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CHAPTER 3 

SOME q-NUMBER AND q-POLYNOMIALS AND THEIR PROPERTIES 

3.1  q- Bernoulli Number and Polynomials 

Bernoulli numbers were raised from the Archimedes times. They try to find the summation  

              
 

 
 (   )(  +1) 

The main question was about making a formula for  ∑     
    to achieve this, The Bernoulli 

made a general case. For this reason let us assume that 

  ( )  ∑         

   

   

   (   )  

We make the generator for this summation means  

∑   ( )
  

  

 

   

   ∑(   

 

   

     (   ) )
  

  
 

                                           ∑
  

  

 

   

 ∑
(  ) 

  

 

   

   ∑
((   ) ) 

  

 

   

 

             (   )  

So by geometric series we get 

                                             
     

    
 

     

 
  

 

    
                              (   )  

Therefore let us define the generating function for Bernoulli numbers as follow: 
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Definition 3.1.1: The Bernoulli numbers are defined by the means of generating function 

as follow: 

                                            ∑   

  

  

 

   

 
 

    
                                            (   ) 

This definition is made by the means of generating functions and we will apply this to 

evaluate    ( )   

According to (3.1) we have: 

∑   

 

   

( )
  

  
 (∑

      

(   ) 

 

   

)(∑   

  

   

 

   

) 

Now, we apply the Cauchy product for two series, 

Then 

∑   ( )
  

  

 

   

 ∑ ∑   

  

  

 

   

 

   

 
          

(     ) 
 

∑ ∑ ((
   

 
)     

     )
  

  

 

   

 

   

 
 

   
 

Therefore, if we equal the coefficient then we have; 

  ( )  
 

   
∑ (

   

 
)

 

   

   
      

Thus, this summation can be written in terms of Bernoulli numbers. Let us evaluate some 

Bernoulli numbers by following lemma: 
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3.1.1 Recurrence formula for Bernoulli numbers  

Bernoulli numbers can be expressed by recurrence formula as 

                             ∑ (
   

 
)                                                (   )

        

 

   

 

Proof: According to the definition of Bernoulli numbers we have  

∑   

  

  
 

 

    

 

   

 

Now, we write the Taylor expansion of    and applying Cauchy product  

(∑   

  

  

 

   

)(∑
  

  

 

   

)    

∑ ∑   

  

  

      

(     ) 
  

 

   

 

   

 

∑(∑ (
   

 
)  

 

   

 

   

)
    

  
   

Therefore by making the coefficient of both sides equal, we reach to (3.3), clearly 

 

{
 
 

 
 ∑ (

   

 
)

 

   

                                   

  ∑ (
   

 
)  

 

   

                                   

 

 

                     But if n=1 
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∑ (
 

 
)

 

   

        

(
 

 
)   (

 

 
)                       

 

 
 

If n=2 

∑ (
 

 
)

 

   

        

(
 

 
)   (

 

 
)   (

 

 
)                      

 

 
 

 

So, by the same way we get,             
 

  
                 

3.1.2 Determining odd coefficient of    

All the odd coefficient of    are zero except     Means that 

                                   

Proof: Let define g (t) as follow 

                    ( )  ∑   

 

   

  

  
     

 

    
 

 

 
 

 

 
(
    

    
)          (   ) 

Then g (t) is even function, because   

 (  )  
  

 
(
     

     
)   

 

 
(
    

    
)  

 

 
(
    

    
)   ( ) 

Therefore, the odd coefficient of Taylor expansion of even function is zero.  
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3.1.3 Bernoulli numbers properties 

The classical Bernoulli numbers has some properties which is (Elias and Dennis, 1990)  

1. 
 

 
    (

 

 
)  ∑    

   

(  ) 
 
                                      [    ]                         (   ) 

2.     ( )  ∑ (  )    
(  )       

(  ) 
 
                         [    ]                           (   ) 

3.    ( )  ∑ (  )  (    )   (  )    

(  ) 
 
                ( 

 

 
 
 

 
)                     (   ) 

4.     ( )  ∑
 (    )   (  )    

(  ) 
                     ( 

 

 
 
 

 
)                       (   )  

    

Proof: the relation between trigonometric function and Bernoulli numbers can be found by 

using the following identity 

                 
 

    
 

 

 
 

    (    )

 (    )
 

 

 
(
      

    
)                                                

 
 

 
(
    

    
)  

 

 
    (

 

 
)                

Now let us definition (3.1) to reach (1) 

(∑  

  

  

 

   

)  (    )  
 

 
    (

 

 
)  

Thus (1) is proved and for (2) we should replace t by 2it in (1) as follow  

           
   

      
 

   

 
 

       (      )

 (      )
 

   

 
(
        

      
)                                                

   (
      

      
)       ( )                    

3. We can use the following identity 

tan (t) =cot (t) -2cot (2t) 

Then we have 
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   ( )  ∑
(  )       

(  ) 

 

   

       ∑
(  )       

(  ) 

 

   

(  )      

               ∑
(  )       

(  ) 

 

   

      ∑
(  )       

(  ) 

 

   

( )      

∑
(  )       (    )

(  ) 

 

   

      

Thus 

   ( )  ∑
(  )  (    )   

(  ) 

 

   

(  )                              | |  
 

 
               

Thus (3) is proved and for (4) we should replace t by it in (3) as follow  

    ( )  ∑
(  )       

(  ) 

 

   

(  )      ∑
(  )       

(  ) 

 

   

(   )      

               ∑
(  )       

(  ) 

 

   

(  )     ∑
(  )       

(  ) 

 

   

(  )      

∑
      ( 

   )

(  ) 

 

   

      

Thus 

    ( )  ∑
 (    )   

(  ) 

 

   

(  )                              | |  
 

 
                

Definition 3.1.4: The Bernoulli polynomial is defined by the following generating 

function. (Ernst, 2000) 

                                             
    

    
 ∑   ( )

  

  

 

   

                                     (   ) 
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Note 3.1.1: The Bernoulli numbers can be evaluated when we put x=0 at (3.9). 

3.1.4 Bernoulli polynomials properties 

 Bernoulli polynomial has the following properties 

a)   
 ( )       ( )                                                                                         (    ) 

b)   (   )    ( )                                                                              (    ) 

c)   ( )  ∑ ( 
 
)   

                                                                                  (    ) 
    

d) ∑ ( 
 
)  ( )                                                                                          (    )   

    

Proof: a) by taking derivative from generating function (3.9) we can easily reach it 

     

    
 ∑   

 

 

   

( )
  

  
 ∑   

 

   

( )
    

  
 

In this result we get 

∑   
 

 

   

( )
  

  
 ∑   

 

   

( )
    

  
 

So 

 

∑   
 

 

   

( )
  

  
 ∑     

 

   

( )
  

(   ) 
 

Equating the coefficient of    

  
 ( )

  
 

    ( )

(   ) 
 

Hence 

  
 ( )       ( )           

b) To proof this we start left hand sides follow 
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  (   )    ( )  ∑
  (   )

  

 

   

   ∑
  ( )

  

 

   

   

          

    
 

    (    )

(    )
      

Which is a derivative of    respect to x, where 

    ∑
(  ) 

  
 

 

   

 

We have 

  (   )    ( )  
 

  
                         

c) Since the Bernoulli functions uniquely characterize by two properties, we can show that 

  ( )  ∑ ( 
 
)   

    
    has these properties, then   ( ) should be as the same as   ( )   

these properties are    ( )     and   
 ( )      ( )           

d) We prove that by induction. If n=1 then it is trivial. If we assume that (3.13) is true for 

k    we take the left side by (3.10) to get the right side as follow:                                  

 

  
∑(

   

 
)   ( )  ∑ (

   

 
)     ( )

 

   

 (   )∑(
 

   
)    

 

   

( )

 

   

 (   )∑ (
 

 
)   

   

   

( )  (   )      (   )
 

  
                            

Thus by mathematical induction, (3.13) is true for any positive integer number.       

  

Remark 3.1.1: Some Bernoulli polynomials listed below, (hint: we can get evaluates 

          at (3.2)) 

If n=0 

  ( )  ∑(
 

 
)
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 (
 

 
)   

       

If n=1 

  ( )  ∑(
 

 
)   

   

 

   

              

 (
 

 
)   

    (
 

 
)   

      
 

 
 

If n=2 

  ( )  ∑(
 

 
)   

   

 

   

 

 (
 

 
)   

    (
 

 
)    

    (
 

 
)   

    

   
              

 

 
 

If n=3 

  ( )  ∑(
 

 
)   

   

 

   

 

 (
 

 
)   

    (
 

 
)   

    (
 

 
)   

    (
 

 
)   
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Definition 3.1.2: We can define Bernoulli polynomials with more than one variable. For 

this, let us define 2D –Bernoulli polynomial as follow 

                              
       

    
 ∑   

 

   

(   )
  

  
                                            (    ) 

Note 3.1.2: The Bernoulli polynomial of one variable can be found by putting y=0, 

   (   )    ( )  

 

3.2. q-Bernoulli Number and Polynomials and their Properties 

The q-Bernoulli polynomials     ( ) are introduced and studied from different approaches. 

These polynomials arise in numerous problems of applied mathematics, theoretical 

physics, approximation theory and several others mathematical majority. These classes of 

q- class of q- Bernoulli numbers were introduced by Carlitz at the beginning of 19 century 

(Carlitz, 1948). If we use the different forms of q- exponential functions which are 

introduced at the last chapter, then we can reach to the several forms of q- Bernoulli 

numbers and polynomials.    

If we modify the form of equation (3.3) then we can rewrite it as follow: 

                                          ∑ (
 

 
)                                               (     )

 

   

 

Where     is delta kroneker function.by using (3.15) equation and adding q parameter, we 

may reach to the q-analogue of Bernoulli numbers. This is done by Carlitz at (Mahmudov 

and Momenzadeh, 2014). He introduced the following formula  

                                          ∑(
 

 
)     

                                     (    )

 

   

 

But in this study, we apply the generating function with different q- exponentials and we 

reach to the more natural forms of q- Bernoulli polynomials and numbers. 
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Our study is based on making q- Bernoulli numbers and polynomials by using the 

generating function. The properties of q- Bernoulli, q-Euler and q-Genocchi numbers and 

polynomials are investigated at (Mahmudov and Momenzadeh, 2014) by using q- 

improved exponential function.  In the next chapter, we will unify the q- exponential 

function and we will reach to q- analogue of the properties that were discussed in this 

chapter. 
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CHAPTER 4 

ON A CLASS OF UNIFICATION OF q-EXPONENTIAL FUNCTIONS 

4.1 Unification of q- Exponential Function and Related q- Numbers and Polynomials 

In this chapter we introduce the general form of q-exponential function by using an extra 

parameter. We investigate the related properties of this function and the relation between 

this parameter and related properties of q- numbers. First of all we define this q- 

exponential function as follow. 

Definition 4.1.1: The unification of q- exponential function is define as  

                                        ( )  ∑
  

[ ]  
  (   )                                     (   )

 

   

 

When z is any complex number and  (   ) is a function of q and n. In addition  (   ) 

approaches to 1, where q tends one from the left side. 

4.1.1 Ratio test 

The q-exponential function      ( ) is analytic in the disc | |  ( )    if 

      |
    

[   ]    
|  does exist and is equal to    

Proof: we can use d’Alembert’s test to obtain the radius of convergence as follow    

   
   

|
        

[   ]  
| |

[ ]  

    
|     

   
|

    

[   ]  
| | | 

Then, we get for  (   ) the radius of convergence. 

Example 4.1.1: The special case of this q-exponential function can be found as follow 

If  (   )   , then by definition (1.23) 

                                           
         

                                                                     (   )      
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If  (   )   (  )  then by definition (1.24) 

                                       
         

                                                                    (   )  

If  (   )  
(    ) 

  
, then by definition (2.2) 

                                      
  ∑

  

[ ]  
   

(    ) 

  
                                              (   )       

 

   

 

If  (   )   
(  )

   then by definition (2.15) 

                                         
  ∑

  

[ ]  
  

(  )

                                                 (   )

 

   

 

Then the interval of convergent is as the some as the discussion of each q- exponential 

function at chapter 1 and 2. 

Definition 4.1.2: Supposes q belongs to the complex number and the magnitude of q 

which is between zero and one. The q- Genocchi numbers and polynomials and q- Euler 

numbers and polynomials and q- Bernoulli number and polynomials in two variables x, y 

respectively are defined as follow: 

  
  

    ( )   
 ∑       

  

[ ]  
              | |                                          (  

 

   

 ) 

  
  

    ( )   
    (  )    (  )  ∑       (  )

  

[ ]  
           | |        (   )

 

   

 

 

    ( )   
 ∑       

  

[ ]  
              | |                                            (  

 

   

 ) 

 

    ( )   
    (  )    (  )  ∑       (   )

  

[ ]  
          | |         (   )

 

   

 

 

    ( )   
 ∑       

  

[ ]  
              | |                                         (    )
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    ( )   
    (  )    (  )  ∑       (   )

  

[ ]  
       | |        (    )

 

   

 

 

4.2 Unification of q- Exponential Functions Properties 

In this section, we investigate the classical properties of Bernoulli, Euler and Genocchi 

numbers and polynomial for new generating function.  Let us started by the following 

lemma shows the condition for inversing q to         

4.2.1 Some relation for      

For unification of q- exponential function we have  

                    ( )        ( )    (  ) (     )   (   )                    (    ) 

Proof: It’s straight forward and by using (2.15) we can achieve it.  

In the remind part, we try to investigate the classic properties of Bernoulli numbers and 

polynomials by using q- exponential unification. For this reason, let us start it by the 

following proposition: 

4.2.2 Difference equation 

For the new q-Bernoulli numbers and polynomials, the following relation holds true:  

                        (   )        ( )  [ ]      
                              (    ) 

Proof: we will use the following identities for generating function  

∑       (   )
  

[ ]  

 

   

 ∑       ( )
  

[ ]  

 

   

 

 
     (  )    ( )

    ( )   
 

     (  )

    ( )   
 

 
     (  )

    ( )   
(    ( )   ) 
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 ∑
   

     

[ ]  

 

   

 

Comparing the coefficients leads to (4.13). 

In a similar way, we can reach to the formula for q- Euler and q- Genocchi polynomial as 

well: 

                            (   )        (   )      
                                      (    ) 

                          (   )        (   )   [ ]      
                         (    ) 

These relations hold true, Because of the following identities:  

∑       (   )
  

[ ]  

 

   

 ∑       ( )
  

[ ]  

 

   

 

 
     (  )    ( )

    ( )   
 

     (  )

    ( )   
 

 
     (  )

    ( )   
(    ( )   ) 

  ∑
     

[ ]  

 

   

   

In addition for q- Genocchi polynomials we have:  

∑       (   )
  

[ ]  

 

   

 ∑       ( )
  

[ ]  

 

   

 

 
      (  )    ( )

    ( )   
 

      (  )

    ( )   
 

 
      (  )

    ( )   
(    ( )   ) 

  ∑
       

[ ]  
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Most of the properties are satisfying by a condition that q- exponential function should be 

invertible in a means of multiplication. Means that, these properties are true if     (  )  

 

    ( )
 . One of these examples is the next proposition. 

4.2.3 Recurrence formula of q- Bernoulli polynomial 

The q- Bernoulli polynomials can be presented as following  

                                    ( )  ∑(
 

 
)
 
      (  )                        (    )

 

   

 

This statement is true if   is chosen such that       (  )  
 

    ( )
 .  We will discuss about 

this condition later on. 

Proof: write the generating function for q- Bernoulli polynomials then we have 

∑       ( )
  

[ ]  

 

   

 
 

    ( )   
    (   ) 

Multiplying by 
    (  )

    (  )
 we get 

      (  )

    (  )   
    (  ) 

 (∑       

(  ) 

[ ]  

 

   

)(∑
(  ) 

[ ]  

 

   

    ) 

If we apply the Cauchy product rule then  

∑ (∑ (
 

 
)
 
      

 

   

(  )         )
  

[ ]  

 

   

 ∑       

 

   

( )
  

[ ]  
 

Now, equating the coefficient to find (4.16) 

In the next lemma we will show that how much the condition   (  )  
 

  ( )
  is important 

and this condition is strong as well. 
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4.2.4 Relation between normal derivatives of q-Bernoulli polynomials 

The q-analogue of the property which is given at (3.10) can be written as follow  

                                     
 ( )  ∑ (

 

 
)
 
             

 

   

                           (    ) 

Proof: we can write the generating function for q- Bernoulli polynomial       ( ) as 

follow. 

                                 ∑       ( )
  

[ ]  

  

   

 
     (  )

    ( )   
                              (    ) 

Now take the derivative respect to x, from both sides of (4.18) then we have 

∑       
 ( )

  

[ ]  

 

   

 
 

    ( )   
[    (  )]  

But           (  )  ∑
        

[ ]  
 
             

 

  
       (  )  ∑

           

[ ]  
 
    

In the lead of that derivative, we have 

∑       
 ( )

  

[ ]  

 

   

 (∑       

  

[ ]  
 

 

   

)(∑
           

[ ]  

 

   

) 

Use the Cauchy product of the right hand side and making the coefficients equal reach to 

(4.17). 

Definition 4.2.5: Anew q- addition and q- subtraction similar to Daehee formula is defined 

by 

                            (    )  ∑(
 

 
)
 
     

                              (    )

 

   

 

                     (    )  ∑(
 

 
)
 
     

 (  )                            (    )
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4.2.5 Addition formula 

We can evaluate     ( )    ( )  by using the last notation. By the another words, we have  

                          ( )    ( )      (    )                                            (    ) 

Proof: we can write the definition of     ( ), the reminds are straight forward 

    ( )    ( )  (∑
    

[ ]  
 

 

   

)(∑
    

[ ]  

 

   

) 

∑ (∑ (
 

 
)
 
            

 

   

)

 

   

 

[ ]  
 

∑
(    ) 

[ ]  
 

 

   

    (    )  

 

4.2.6 Addition theorem 

For all      , the following relation hold true (assume that   ( 
  )  

 

  ( )
 ) 

                     (   )  ∑ (
 

 
)
 
      (    )   

 

   

                            (    ) 

                     (   )  ∑ (
 

 
)
 
      (    )   

 

   

                              (    )   

                        (   )  ∑ (
 

 
)
 
      (    )   

 

   

                               (    )        

Proof: Since the proofs are similar, we just prove the relation for q- Bernoulli polynomials. 

According to the generating function of        we have: 

∑       (   )
  

[ ]  
 

 

  ( )   

 

   

  (  )  (  ) 

 
 

  ( )   
  (  )     (  ) 
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 (∑       

  

[ ]  
 

 

   

)(∑
(      ) 

[ ]  

 

   

) 

We can prove that  (       )    (    ) . For proving this we only need to substitute 

it at definition (4.23). Therefore 

∑       (   )
  

[ ]  

 

   

 ∑ (∑       (    )   (
 

 
)
 

 

   

)

 

   

  

[ ]  
                

 

Corollary 4.2.1: In particular, setting y=0 at addition theorem give the following relations 

                          ( )  ∑ (
 

 
)
 
                                            (    )

 

   

 

                         ( )  ∑ (
 

 
)
 
       

                                      (    )

 

   

 

                          ( )  ∑ (
 

 
)
 
                                            (    )

 

   

 

Comparing the result with proposition (4.14) shows the rule for inversing    (  ). 
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CHAPTER 5 

DISCUSSION FOR THE CASE THAT     ( ) IS INVERTIBLE 

In this section we study the condition that make the unification of q- exponential function, 

invertible. Since this property leads to a lot of classical theorems, we study this in a 

separated section. In addition, we will discuss about q-derivative of     ( ) .  

5.1 Formula for Nonlinear System of Equations 

    ( ) Satisfies      (  )      ( )     if and only if  (   )         ∑ ( 
 
)
 
(  )    

    

       ( 
 
)
 
(  )      

    where n=2s & s=1, 2... 

Proof: Because      (  )     ( )     must be hold, we compose the extension for this 

condition. 

    (  )     ( )  ∑ (∑ (
 

 
)
 

 

   

(  )       )
  

[ ]  

 

   

   

Assume that the expression on a bracket as     . If n is an odd number then  

       (   
 

)
 
(  )    (   ) (     )   ( 

 
)
 
(  )  (   ) (     )         

Where k = 0, 1 … 

For n is an odd number is trivial because(   
 

)
 

 ( 
 
)
 
, the same discussion for even and 

equating   -coefficient together lead us to the proof. 

Remark 5.1: We notice that                           and we can write a 

condition for    in the following system so the proposition (5.1) can be written as 

following system of nonlinear equation 

                           ( 
 
)
 
       

                           (
 

 
)
 
     (

 

 
)
 
       

                          (
 

 
)
 
      (

 

 
)
 
      (

 

 
)
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. 

.  

. 

       (
 

 
)
 
        (

 

 
)
 
         (  )

 
 (

 
 
 
)

 

  
 
  

 
   

 

For even n we can found n unknown variable and  
 

 
 equation, by recurrence equation we 

can find     respect to  
 

 
 parameters by the following case 

 

          

        
   

 
 
 

  
 

         
[ ] 

   
 ([ ]    

[ ]  

   
) 

         (
 

 
)
 
 (

 

 
)
 
 

 

 
(  (

 

 
)
 
(
   

 
 
 

  
) (

[ ] 

   
 ([ ]    

[ ]  

   
))) 

 

This  (   ) leads us to the improved exponential function. The familiar solution of this 

system is   (   )  
(    ) 

  
 . On the other hand, we can assume that all k for odd k are 1. 

. Then by solving the system for these parameters, we reach another exponential function 

that satisfies     (  )  (    ( ))
  .   
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5.2  q- Derivative of      ( ) 

If  
 (     )

 (   )
 can be represented as a polynomial of q. that means 

 (     )

 (   )
 ∑    

  
   , then 

  (    ( ))  ∑
    

[   ]  
 (   )

 

   

 ∑
  

[ ]  
( (   )∑   

 

 

   

)

 

   

 ∑  

(  
 
 )

[ ]  
 (   )  ∑      (  

 
 )

 

   

 

   

                 

Example 5.1: The ratio 
 (     )

 (   )
 becomes 1,    and 

     

 
 respectively for  (   )  

   (  )     
(     ) 

  , then the following derivatives holds true 

   (  ( ))    ( ) 

   (  ( ))    (  ) 

   (  ( ))  
  ( )   (  )

 
 . 

. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORKS 

There is a large class of q-Numbers that gathered all the forms. The q-Appell polynomials 

    ( ) are defined as following by means of generating function: 

                    ( )    (  )  ∑       ( )
  

[ ]  

 

   

                       (   ) 

In this case 

    ( )  ∑       

  

[ ]  

 

   

                             ( )    

It is clear that     ( )  is analytic function at      and       ( )         and these 

numbers are called the q-Appell numbers. Based on appropriate selection for the 

function     ( ), we can obtain different members belonging to the family of q-Appell 

polynomials. The q-Bernoulli, q-Euler and q-Genocchi numbers can be obtained from this 

class of function in general case. 

The classical Appell polynomials are generalized as q-Appell polynomials. The classic 

forms can be determined by   ( ) (Appell, 1880) which can be expressed as a power 

series expansion  

 (   )   ( )    ∑   ( )
  

[ ]  

 

   

 

Sequence of polynomials   ( ) has a generating function in the form of  ( )   . The 

properties of these classes of functions are studied at (Appell, 1880; Douak, 1996; Khan 

and Raza, 2013; Raza, 2013). Recently, certain mixed special polynomial families 

corresponded to the Appell number sequences are studied in a systematic way, see for 

example, (Özarslan, 2013). This field is interested due to their applications in various fields 

of mathematics, physics and engineering. There are several approaches for finding this 

class on polynomials. One of these approaches is using the generating function and since 
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we unify q-exponential function so we can lead to this class of functions in a general case.  

A lot of classical properties and their q-analogues are investigated.  The unification of q-

exponential functions leads to the general class of q-Appell functions. The form of the 

definition and important rule of exponential function in generating function show the 

importance of unifying the q-exponential functions. Several forms of these polynomials 

with more than one variable are introduced before, the degenerated and different order of 

these polynomials and their properties were investigated. This new approach of this 

numbers encourages us to investigate the corresponding properties and finding the q-

analogues of them. 

There are numerous formulae and relations that can be rewrite by unification of q-

exponential function. In this case, the implicit relations by q-trigonometric function and 

some classical properties should be discovered. We can focus on the properties of q-

exponential function which help us to reach to these equations. In addition, we introduced 

two conditions on unification of q-exponential function that can be helpful to achieve q-

analogue of classical relations. There exist more conditions and properties which can be 

studied.  

The matrix presentation and algebraic properties of these classes of polynomials were 

investigated (Momenzadeh and Kakangi, 2017) and can be rewrite in the terms of an extra 

parameter   and we can use this unification to find the reason of these properties. 
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ABSTRACT 

 

The several q-Analogues of exponential function were introduced since the last century. In 

this thesis, we study most of important q-exponential functions and we unify them by using 

an extra parameter. We apply the unification of q-exponential function as a generator of 

different q-Euler, q-Genocchi and q-Bernoulli numbers and polynomials. Some conditions 

at this unification will be studied. The addition theorem and q-analogue of some classical 

results are studied as well.   

 

Keywords:  -calculus; q-Bernoulli; q-Euler; q-Exponential function; q-Gennochi; Cauchy 

product; generating function; unification; q-Appell 
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ÖZET 

 

Üstel  fonksiyonun  birkaç q-Analogları geçen yüzyıldan beri tanıtılmıştır. Bu tezde, 

önemli q-üstel fonksiyonların çoğunu inceliyoruz ve bunları ek bir parametre kullanarak 

birleştiriyoruz. Farklı q-Euler, q-Genocchi ve q-Bernoulli sayıları ve polinomlarının bir 

jeneratörü olarak q-üstel fonksiyonun birleşmesini uygularız. Bu birleşmede bazı koşullar 

incelenecektir. Bazı klasik sonuçların ek teoremi ve q-analoğu da incelenmiştir. 

 

Anahtar Kelimeler: q-calculus; q-Bernoulli; q-Euler; q-Üstel fonksiyon; q-Gennochi; 

Cauchy ürünü; üretim fonksiyonu; birleşme; q-Appell 
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