
DESIGN OF AMHARIC PROGRAMMING LANGUAGE

WITH A PROTOTYPE OF TOKENIZER AND PARSER

FOR SELECTED CONSTRUCTS

A THESIS SUBMITED TO THE GRADUATE

SCHOOL OF APPLIED SCIENCES

OF

NEAR EAST UNIVERSITY

By

ERMIAS TEFERA

In Partial Fulfilment of the Requirements for

 the Degree of Master of Science

in

 Software Engineering

NICOSIA, 2019

E

R
M

IA
S

 T
E

F
E

R
A

A
L

A
M

R
E

W

D
E

S
IG

N
 O

F
 A

M
H

A
R

IC
 P

R
O

G
R

A
M

M
IN

G
 L

A
N

G
U

A
G

E
 W

IT
H

 A
 P

R
O

T
O

T
Y

P
E

 O
F

T
O

K
E

N
IZ

E
R

 A
N

D
 P

A
R

S
E

R
 F

O
R

 S
E

L
E

C
T

E
D

 C
O

N
S

T
R

U
C

T
S

N
E

U

2
0
1
9

DESIGN OF AMHARIC PROGRAMMING LANGUAGE

WITH A PROTOTYPE OF TOKENIZER AND PARSER

FOR SELECTED CONSTRUCTS

A THESIS SUBMITED TO THE GRADUATE

SCHOOL OF APPLIED SCIENCES

OF

NEAR EAST UNIVERSITY

By

ERMIAS TEFERA ALAMREW

In Partial Fulfilment of the Requirements for

 the Degree of Master of Science

in

 Software Engineering

NICOSIA, 2019

ERMIAS TEFERA ALAMREW: DESIGN OF AMHARIC PROGRAMMING

LANGUAGE WITH A PROTOTYPE OF TOKENIZER AND PARSER FOR

SELECTED CONSTRUCTS

Approval of Director of Graduate School of

Applied Science

Prof. Dr. Nadire ÇAVUŞ

We certify this thesis is satisfactory for the award of the degree of Master of Science

in Software Engineering

Examining Committee in Charge:

Assoc. Prof. Dr. Yöney Kırsal EVER

Department of Software Engineering, NEU

Asst. Prof. Dr. Boran Şekeroğlu

Department of Information Systems Engineering,

NEU

Assoc. Prof. Dr. Kamil Dimililer

Supervisor, Department of Automotive Engineering,

NEU

I hereby declare that all information in this document has been obtained and presented in

accordance with academic rules and ethical conducts. I also declare that, as required by

these rules and conduct, I have fully cited and referenced all material and results that are not

original to this work.

Name, Surname: Ermias T. Alamrew

Signature:

Date:

ii

ACKNOWLEDGEMENTS

First off, I would like to extend my deepest gratitude to my thesis supervisor Assoc. Prof.

Dr. Kamil Dimililer, for his continuous and unwavering support, for his patience, motivation

and immense knowledge. I would also like to thank him for devoting his valuable time to

read and understand the core idea of the thesis at each and every stage of the process and

provided me with constructive and insightful comments which helped realize the thesis. I

couldn’t have Imagined having a better supervisor.

I would also like to thank my Academic advisor Assist. Prof. Dr. Boran Şekeroğlu who has

always been there whenever I need him, who prepared me for this time.

Last but not least I would like to thank my parents who has been in every step of the way on

my academic journey. I would also like to give enormous gratitude to my big sister Askale

Mariam Tefera without her support and motivation, I wouldn’t have gotten to this stage of

my life. This thesis and my life’s work wouldn’t have been possible without you, Thank you.

iii

To My Parents and My sister…

iv

ABSTRACT

Programming language is an important course in computer science and other computer-

related fields. A programming language can be employed in different sectors to program a

system that helps or replaces humans. Computer programming is very important that

different countries are teaching it from an early age. But this is difficult for non-English

speaking countries because most of the Programming language available is based on the

English language. That is even if languages allow programmers to write identifiers using

their native language all other important parts of the language are based on the English

language this include the keywords, the error generated by the compiler and all libraries and

their documentation. This made teaching Programming from a young age in non-English

speaking countries very difficult. This is also the case in Ethiopia. In Ethiopia, there is no a

single programming language that uses the Amharic language. The fact that there is no

Amharic programming language to programmer prevented schools to teach students

programming from a young age and to develop the native language. There is very little done

on the Amharic language on technology related areas. This thesis focuses on designing a

programming language that is based on the Amharic language that will help solve the

aforementioned problems. This thesis presents the design of an Amharic language’s

grammar by using EBNF (Extended Backus-Naur form) which is used to write context-free

grammars. The EBNF is used to write both the parser and lexer part of the grammar.The

thesis also includes the generation of the parser and the lexer by using an automatic language

translation tool called ANTLR. The grammars legality, the presence of unwanted production

rules and the efficiency of the parser has been tested using ANTLR. The thesis also presents

a sample debugger which is written by using Java and is used to evaluate the grammar.

Keywords: Amharic Programming language; Context-free grammar; parser; lexer;

Debugger; Extended Backus-Naur Forms

v

ÖZET

Programlama dili, bilgisayar bilimleri ve diğer bilgisayarla ilgili alanlarda önemli bir derstir.

Bir programlama dili, farklı sektörlerde insanlara yardım eden veya onun yerine geçen bir

sistemi programlamak için kullanılabilir. Bilgisayar programlama, farklı ülkelerin erken

yaşlardan itibaren öğretmeleri için çok önemlidir. Ancak bu İngilizce konuşamayan ülkeler

için zordur, çünkü mevcut Programlama dilinin çoğu İngilizce diline dayanmaktadır. Bu,

diller programcıların ana dillerini kullanarak tanımlayıcılar yazmasına izin verse bile dilin

diğer tüm önemli bölümleri İngilizce diline dayanmaktadır, bunlar arasında anahtar

kelimeler, derleyici tarafından oluşturulan hata ve tüm kütüphaneler ve bunların belgeleri

bulunur. Bu, İngilizce konuşamayan ülkelerde genç yaştan itibaren Programlamayı çok

zorlaştırdı. Etiyopya'da da durum böyle. Etiyopya'da, Amharca dilini kullanan tek bir

programlama dili yoktur. Programcı için Amharca programlama dili olmaması, okulların

genç yaşta programlama öğrencilere ders vermesini ve anadili geliştirmesini engelledi.

Amharca dilinde teknoloji ile ilgili alanlarda çok az şey var. Bu tez, yukarıda belirtilen

problemleri çözmeye yardımcı olacak Amharca diline dayanan bir programlama dili

tasarlamaya odaklanmaktadır. Bu tez, bağlamsız gramer yazmak için kullanılan EBNF

(Genişletilmiş Backus-Naur formu) kullanılarak bir Amharca dilinin gramerinin tasarımını

sunmaktadır. Tez aynı zamanda ANTLR adlı bir otomatik dil çeviri aracını kullanarak

çözümleyici ve sözcü oluşturulmasını da içermektedir. Tez ayrıca, Java kullanılarak yazılmış

ve dilbilgisini değerlendirmek için kullanılan örnek bir hata ayıklayıcıyı sunar.

Anahtar Kelimeler: Amharca Programlama dili; Bağlamsız gramer; ayrıştırıcı; lexer;

Debugger; Genişletilmiş Backus-Naur Formları

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii

ABSTRACT .. iv

ÖZET ... v

TABLE OF CONTENTS ... vi

LIST OF FIGURES ... ix

LIST OF ABRIVATIONS ... x

Chapter 1: INTRODUCTION

1.1 Background of the Study ... 3

1.2 Statement of the Problem ... 4

1.3 Motivation of the Study ... 5

1.4 Thesis Objective .. 6

1.4.1 General objective .. 6

1.4.2 Specific objective ... 6

1.5 Scope and Limitation of the Study .. 6

1.5.1 Scope .. 6

1.5.2 Limitation ... 7

1.6 Literature Review .. 7

1.7 Software Tools ... 8

1.8 Significance of the Study ... 8

Chapter 2: LITERATURE REVIEW

2.1 Programming Languages ... 9

2.2 Programming Paradigms ... 10

2.2.1 Imperative programming ... 11

2.2.2 Logic paradigm .. 11

2.2.3 Functional paradigm .. 12

2.2.4 Object-Oriented paradigm ... 12

2.3 English based Programming Language .. 14

2.4 Non-English Programming Languages ... 17

vii

2.5 The Amharic(አማርኛ) Language .. 23

2.5.1 Amharic characters .. 23

2.5.2 Geez numbers and punctuation.. 24

2.6 Context Free Grammar ... 24

2.7 Extended Backus–Naur Form ... 26

2.7.1 EBNF rules and descriptions ... 27

2.8 Design Principles .. 27

Chapter 3: Design Methods and Approach

3.1 Tools and Methods .. 29

3.1.1 ANTLR (Another Tool for Language Recognition).................................. 29

3.1.2 Grammar .. 30

3.2 Design of the Language .. 31

3.3 Construct Description ... 33

3.3.1 Types ... 33

3.3.2 Declaration... 35

3.3.3 Statements .. 37

3.4 Program Execution ... 39

3.5 Compilation and Run-time Errors ... 40

3.5.1 Compilation errors ... 40

3.5.2 Run-time errors .. 41

3.6 Sample Parser and Tokenizer ... 42

Chapter 4: Evaluation and Results

4.1 Grammar ... 44

4.2 Parse Time .. 46

4.3 Criteria .. 47

4.4 Simplicity .. 48

4.5 Readability .. 48

4.6 Writability ... 50

4.7 Expressiveness .. 51

4.8 Efficiency of Implementation ... 52

viii

4.9 Abstraction .. 53

4.10 Keyword .. 53

4.10.1 Sample ... 53

4.11 Parse Tree ... 55

Chapter 5: Conclusion and Recommendation

5.1 Conclusion .. 58

5.2 Recommendation .. 59

5.3 Future Work .. 59

REFERENCES .. 61

APPENDIX 1 GRAMMAR ... 65

ix

LIST OF FIGURES

Figure 2.1: Hello world using AxumLight taken from EthioCloud.com 18

Figure 4.1: Parse tree for the operation 1+2*3 ... 46

Figure 4.2: Hello world sample program written in Amharic programming Language . 54

Figure 4.3: Parse tree for English version of hello world program 55

Figure 4.4: If Else expression written using Amharic language and debugged using the

sample debugger. ... 56

x

LIST OF ABRIVATIONS

ANTLR:

ICT:

EBNF:

BNF:

GUI:

IDE:

LHS:

RHS:

BCPL:

ANSI:

Another Tool for Language Recognition

Information Communication Technology

Extended Backus-Naur Form

Backus-Naur Form

Graphical User Interface

Integrated Development Environment

Left Hand Side

Right Hand Side

Basic combined programming language

American National Standards Institute

1

CHAPTER 1

INTRODUCTION

Information and communication technologies(ICT) are a core element of the knowledge

based-society (Papaioannou & Dimelis, 2007). The use of computers and other computer-

aided devices are growing rapidly (Kirsal Ever & Dimililer, 2018). Engaging in information

technology in an extensive manner undoubtedly in Ethiopia was long overdue. A countries

security and development depend highly on the government’s willingness to invest vastly in

the technology sector. Countries all around the world have been raising their investment in

ICT to be competent and stay at the top of the technological advancement of the 21st century.

This has been done in countries like America and some members of the European Union like

England (Papaioannou & Dimelis, 2007).

Information technology has helped developed countries to improve their production

efficiency that has already been improved thanks to the industrial revolution. Even though

the technology is not the answer to every problem society faces but it can be used to solve a

considerable amount of the problem they are facing (Bekele, 2001).

Unfortunately, Ethiopia has done very little to advance ICT and its use (Bekele, 2001). Even

if information technology has been in Ethiopian curriculum for preparatory schools for a

long time the ICT sector has not shown a tangible change. This is mostly because the topics

included in the curriculum are rudimentary even for lower graders. This age group in most

countries is the time students engage in developing and implementing systems that will solve

the problems society is facing. This hasn’t been the case in Ethiopia for quite a long period

of time

It has been observed that the reason for the governments’ decision to not start teaching

students basics of computer and programming is the lack of resources that have been

localized in the language’s students understand from an early age. Ethiopia has as a country

been facing a big problem to localize technologically related material so that it can be

understood and used by many in the country. Many of the technologically related material

in the country are in a language that is not the countries official language which is Amharic

2

(አማርኛ) either in English or Chinese, this has made the life of the people unbearable when it

comes to technology and made it hard for students to be competent and contribute to their

country in computer-related areas and has been pulling the country backward.

Amharic(አማርኛ) is the working language of the government of Ethiopia and some of the

other Regional states. The Language is widely used in the Amhara regional state and the

capital of Ethiopia, Addis Ababa (Asfawwesen, 2016). Next to Arabic Amharic is the second

most spoken Semitic Language in the world (Gezmu et al., 2018). Amharic has 33 basic

characters, each of which has seven forms depending on which vowel to be pronounced.

Which makes the number of characters in the language 231 without the numbers and the

punctuation marks (Cowell & Hussain, 2003)

In the recent curriculum reform in Ethiopia, the government brought the information

technology course from preparatory school to high school. That has helped students to be

introduced to technology at least before students start their university preparation school.

But from other countries point of view, this is far from enough.

Many countries all around the world have been introducing or finishing up preparation to

introduction computer programing to lower grades. Many countries in Europe like England

and Italia has finished their preparation to introduce computer programing to lower grade

students of ranging from the age of 5-16. This student will be taught algorithm, coding and

debugging depending on their age.

Introducing students to computer programing at an early age will help students to be familiar

with advanced staffs when it comes to software development and artificial intelligence.

Bringing computer programming in lower grades in Ethiopia is very difficult, the reason

behind it is Ethiopia’s official language is different from the language used in technological-

related materials and software’s. Almost all computer programming related materials and

resources are written either in English or in a language other than Amharic. So, to introduce

computer programming the government and researchers in the country has to do more to

localize and make them suitable to students of early age who only speak a language that they

understand and is their first language, which is Amharic.

This thesis will be focusing on addressing this issue which has been looming in the country

for quite a long period of time. The thesis will be focusing on designing a computer

3

programming language, that uses the official language spoken in Ethiopia as a basis for the

keywords. The syntax and grammar of the language will be designed based on the

Amharic(አማርኛ) Language.

1.1 Background of the Study

The focus of this thesis is to design a programming language that uses keywords based on

Amharic which is the working language of the Ethiopian government. This thesis will try to

close the gap in technological advancement and the Amharic language. The design of the

language will also help students to programmer by using the language they understand well

and are using in their day to day activity.

Studies have indicated that students who learn any subject area by using their mother tongue

show a far better performance than students who learn by using non-native language. Walter,

(2012) in his study indicated that the use of mother tongue as a medium of instruction

increases the level of outcome. The other study conducted learning to code in a localized

programming language by Dasgupta & Hill, (2017) also showed that students who program

in localized language shows better-understanding programming features and develop new

programming concepts. So, this study will focus on designing programming that will help

students in Ethiopia learn to program in Amharic.

A programming language specific to a particular language has been an area of study long

ago. Countries like Russia, China, and France have a programming language developed

based on the respective countries working language. But in Ethiopia, there are not any

programming language developed using Amharic. There is a language named AxumLight

which is developed by Ethiocloud according to their official website but it is not accessible

for download either for free or premium.

When it comes to the design of non-English programming language there are two suggested

ways to go about it. The first one is a direct translation of an already existing programming

language. An example of translate language is Chinese python which is a Python 2.1.3

programming language in the Chinese language. The second and obvious way of design is

to design a new programming language. This thesis follows the second way of programming

language design

4

1.2 Statement of the Problem

There is an obvious lack of resource that is localized in Amharic, Ethiopians working

language. And this has been a great impair for a long time in the technology industry.

Ethiopia has been at the back of the technological advancement that has been happening all

around the world. We haven’t contributed to the innovation and we didn’t also engage in the

localization of the new technologies.

As stated in the previous section programming has been employed extensively in almost

every sector imaginable to make it better, easy and productive than it was before.

Programming has helped reduce the effort we dispense to do a task by letting the machine

do it for us.

In Ethiopia there, a lack of technological tools customized into the local language. Almost

everything that is out there has to come as it is and be used by professionals and those who

attended school.

Mostly the problem lays on the lack of programming language in the local language. One-

third of the programming language in use is designed by using English as the base for the

keywords used in the language’s syntax. This has prevented countries whose working

language is other than English and their children don’t speak English at an early age from

teaching programming language in lower grades.

According to a study on how well students respond to learning programming in their mother

tongue, students who have been taught to program using a programming language where the

keywords are constructed by using their mother tongue has shown far better achievement

and has developed new programming concepts in quite a short time than those students who

start programming with a programming language that have English as a base for the

keywords used in the syntax (Dasgupta & Hill, 2017). So not teaching students computer

coding in their own language is not effective but not teaching them at all is problematic.

The lack programming language has also contributed to the lack of software’s developed by

programmers who are from Ethiopia who understand the society and the culture better than

anyone and also contributed to the lack of software that takes input and shows output in the

working language.

5

The problem with programing language written in a foreign language is not just the fact that

the keywords used in the language are not understandable it is that the language used to write

the documentation of the language, the errors displayed when compile time or run time errors

happen, and almost any other related materials are in a language that students don’t

understand.

There is a way to solve this problem at least halfway, that is to translate the materials in a

language student that they understand and change a programming language word by word

in to the local language, but that will hinder the student’s performance because the mere

translation of the words in programming language will result in the generation of words that

are unrelated to the things they do.

Many countries have either modified already existing programming languages developed

elsewhere into the language that is more suited to students learning in the country or

developed a new programming language taking the goods from different programming

languages. These are some of the countries that have a programming language in their

working language, Russia, China, France, Arab countries and others.

1.3 Motivation of the Study

It is observed that many of the children in school don’t have access to computers even when

they do there is no way that they can relate to it as easily as they do if it was in a language

they understand. Solving this problem to some extent is the first reason for this thesis. The

lack of material and resource in the local language to teach students the basics of computer

and computer programming is the other reason to start designing a programming language

in Ethiopia’s official working language, Amharic. Because there is great benefit teaching

students about the basics of computer and coding using the language they are already used

to and easily understand I chose to undertake research about the design of programming

language with Amharic. This research when implemented in the future will help students in

an early age learn computer programming without the need to learn the English language to

understand what the keywords mean or to understand the documentation and figure out the

errors that occur during programming and fix it.

6

1.4 Thesis Objective

1.4.1 General objective

The General objective of the thesis is to design a programming language that uses Amharic

keywords.

1.4.2 Specific objective

To achieve this thesis there are lots of specific objectives. The specific objectives are listed

here

- The first part of the design of this programming language is to identify the

keywords of the language in Amharic(አማርኛ) and also identify the data types,

characters, numbers and so on.

- Next using the keywords identified to the design of the Grammar of the

language using Extended Backus-Naur Form. The grammar of the language

will guide the overall structure of the language and will help us identify all

necessary components.

- The next is by using the grammar developed to show the syntax of the

language. How a program written in this language will look like

- Write the prototype of the Tokenizer by using Java’s Regular expression for

selected constructs of the language to show what tokens are identified in the

language

- Write a parser to show how a program construct is identified in the language

- Handle characters that are different in form but have the same pronunciation

and usage as አ and ዓ

1.5 Scope and Limitation of the Study

1.5.1 Scope

This study will focus on designing a programming language in the official working

languages of Ethiopia (አማርኛ). The research will focus on identifying easily understandable

Amharic (አማርኛ) keywords that will be used in designing the language. As keywords are the

basic and unchangeable part of the language due focus will be given to make the keywords

understandability high. The other thing this thesis will focus on is developing the grammar

7

of the language by using EBNF (Extended Backus-Naur Form) which is a family of meta-

syntax notation which can be used to express a context-free grammar.

The other focus is on the syntax of the grammar, as programming languages are a structured

way of giving instruction to computers the syntax of the language that is being designed will

be designed keeping in mind the easiness to be understood, simplicity clearness and a higher

degree of resemblance to existing high-level programming language’s in English. The reason

for that is to help make easy the transition from this language which is introductory by its

nature to other languages that are complex and have been used to design existing software

in the world.

Even if this thesis does not include implementation of the programing language, there will

be a sample tokenizer included to show how the tokens, the simplest chunk of data in the

language, are identified during implementation. So, a tokenizer of the languages selected

basic construct will be included in this thesis. The other thing is, a continuation of the

tokenizer which is parsing that will take the tokenized data and process to check if the

sequence of words that matches any of the languages constructs that is included in the

grammar. Tokenizing and paring are part of the compiler design. They are the front end of

the compiler design. The parsing part, which also is a prototype like a tokenizer to show how

the basic selected constructs of the language are parsed and identified as a meaningful part

of the language’s syntax.

1.5.2 Limitation

The focus of this study is on the design of an Amharic programming language as such it will

not include the implementation of the language. The sample tokenizer and parser are not

written for the programming construct. The thesis will not talk in detail about the compiler

design of the language. It will only give a highlight on what to consider when designing the

compiler in the future.

1.6 Literature Review

In the next chapter, an extensive review of topics that are relevant to the success of the thesis

will be conducted. Some of the topics that will be reviewed are Programming Languages

from its history to what they are intended to do, Non-English Programming Languages

8

which will include a review of literature that relates to a programming language with non-

English keywords.

1.7 Software Tools

To design the Amharic(አማርኛ) programming language different software tools will be

employed based on their relevance to the design. The first thing we use is a met-syntax

Language used to write the Grammar of the Language. Meta-syntax Languages are

Languages which have their own grammar, syntax, and keywords, like programming

languages, to write the grammars of a programming language.

The thesis will include also a prototype of the tokenizer and the parser, which will be

implemented by using Java SE. To write the sample tokenizer and parser a java regular

expression library will be used. There is also a sample code editor which will be used to

show how the syntax of the language looks like. This part of the thesis will be done by using

JavaFX. According to sun JavaFX is a new platform to write rich client application(Topley,

2011).

1.8 Significance of the Study

This thesis upon completion will lay the groundwork for a new programming language that

will fully accept input in Amharic (አማርኛ), display both output and error, and also have

documentation that is written using Ethiopia’s working Language Amharic. The thesis will

help programmers to dive street into the implementation of the programming language

without the need to worry about the design of the language. It will also help other researchers

to have the confidence to research on programming language in advance.

9

CHAPTER 2

LITERATURE REVIEW

2.1 Programming Languages

When we want to control and instruct computers to perform a task or solve a problem, we

need a way of communicating with it. That way of communication happens by using

programs, which is a piece of text, that has its own structure and dictionary (Allain, 2013).

Programming is the process of writing an algorithm and converting it into a form computer

understand. The language a machine understands and execute is called Machine language.

Programming is a human activity that is a great challenge, involving the design of machine

behavior that at times assist humans in their work and at times replace humans in intellectual

tasks (Kitchenham & Carn, 1990).

Programs quite often are written as a humanly understandable language which is a series of

words to instruct computers to do what and how we want to solve our problems. Computers

don’t understand human languages; internal applications don’t communicate as humans do.

Computers do have their own way of understanding each other. The software’s in a computer

communicate by sending messages to one another. Since we humans have a hard time

writing a computer program using a language computer understand and also machines don’t

understand the language we use, we develop a programming language to help us with that

problem. So, the program that is written in a language humans understand must first be

translated into a form that computers are able to understand and execute (Liang, 2013).

To write a humanly understandable program we use programming languages. Programming

language is a set of instruction comprised of human understandable text used to write

computer programs and then converts them in a form that the machine can understand easily.

In other terms, a programming language is used by programmers to write and provide

specific sets of instruction to the computer which the computer read the instruction, process

it and then execute to produce what the programmer wanted to happen (Allain, 2013).

10

Programming languages have been in use for quite a long period of time and they have shown

us how effective and helpful they can be when handling difficult works. Programming

languages while they are human understandable and unorganized, they rather are structured

and with specific vocabulary. The vocabulary even if it is small it is used to write programs

that are more sophisticated and thousands of lines of code.

There are thousands of programming languages designed and implemented. Each of the

programming languages designed after the other shown great improvement that was better

in one way or the other than the languages that preceded it. But that high number of

programming languages doesn’t mean that a programmer has to study all or most of them.

In practice, most programmers do not tend to use more than a few languages (Terrence W.

Pratt, 2000).

Programming languages are versatile and of great importance. Different Programming

Languages perform different task depending on the functionality they provide. Some

programming languages are more suited to accomplish mathematically related tasks, others

are good for building software’s and some others are used to do simulation for architectures.

Finding a programming Language that does all the task is impractical and impossible. There

are no ideally suited programming languages (MacLennan, 1986).

2.2 Programming Paradigms

As stated, above programming language can be used to do different tasks that can be used to

reduce human workloads. A programming paradigm is a way of grouping programming

language based on their features. A paradigm is an approach that is preferred for

programming that programming language support.

Different problems are better suited to different paradigms. Some programming language

support different paradigms (Fernández-Villaverde et al., 2018). For example, Python

programming language supports both functional and object-oriented type of programming.

There are different programming paradigms that are applied in programming. The division

between the different programming paradigms sometimes is not clear. Sometime one

programming paradigm may have an aspect of another paradigm. But the general aspect of

11

the paradigms is quite different and determine how we design programs(Pfenning, 2006).

An overview of the four basic and widely used programming paradigms are explained here.

2.2.1 Imperative programming

Imperative programming is the oldest programming paradigm that is mostly used for small

programs (Fernández-Villaverde et al., 2018). Imperative programming is a programming

paradigm which uses statement’s that change the program’s state. It focuses on describing

how programs operate (Gurbani et al., 2008).

Nørmarks (2011) define imperative as asking for something to be done. It is a paradigm that

closely models computers, it works based on moving bits and changing states. Imperative

uses natural language to pass instruction to the computer. Its basic unit of abstraction is a

procedure, there are a group of statements inside the procedure and are executed

sequentially. The sequential flow can be modified using conditional and looping statements.

Procedures are a named sequence commands and the name can be used to invoke the

procedure. When this happens, it is called procedural programming. Some languages that

support imperative programming is Pascal, Cobol, Fortran (Vujošević-Janičić & Tošić,

2008). One characteristic of imperative programming is the incremental change of the

program state with time. It is very similar to the day-to-day routine description, like food

recipes.

2.2.2 Logic paradigm

Logic programming is one way of approaching programming(Pfenning, 2006). Logic

programming is a type of programming paradigm which is based on formal logic and

declarative programming. It is a set of sentences in logic form, which focuses on expressing

rules of a specific problem rather than the decomposition of the problem into an algorithmic

description. Logic paradigm is designed for theorem proof and artificial intelligence but

allows the general computation (Şehitoğlu, 2008). A logical program is a collection of

logical declarations describing the problem to be solved. It consists of

- Axioms ---define facts about objects

- Rules --- define a way for inferencing facts

- A goal statements---define a theorem provable by axioms or rules

12

The rule of inference is applied on axioms and a goal statement is produced. Examples of

programming languages that follow logical programming are Prolog and Gödel (Vujošević-

Janičić & Tošić, 2008)

2.2.3 Functional paradigm

An Introduction to Functional programming book defines Functional programming as

programming consists of building definitions and functions and using computers to evaluate

expressions(Bird & Wadler, 1988). In functional programming, computation proceeds by

rewriting functions and not by changing states like imperative programming. The

fundamental characteristics of programs written using this programming paradigm is that of

not possessing the concepts of memory (Maurizio & Simone, 2012).

Programs written in Functional paradigm are a collection named functions invoked inside

other function using the name. It allows programmers to think in a higher level of abstraction

it encourages thinking about the nature of the problem rather than the sequence of actions.

It uses two fundamental mechanisms, namely binding which is associations of values with

names and applications which computes new values. One example of functional

programming is Lisp (Vujošević-Janičić & Tošić, 2008).

2.2.4 Object-Oriented paradigm

The conceptual model of this paradigm is developed from the simulation of the real world

we live in. Object-oriented programming is based on objects that exist in the real world and

encapsulate property and operations. As real-world objects interact, objects in object-

oriented programming use message passing to capture interactions between objects

(Vujošević-Janičić & Tošić, 2008).

In his paper in 1987 Wagner defined “Object-oriented” as a culmination of objects, classes,

and inheritance(Wegner, 1987). This is a good definition of object-oriented programming.

Object-oriented programming is all about constructing the building blocks of objects, which

is classes and instantiating them. Objects in object-oriented programming share property by

using inheritance. Inheritance is the backbone of object-oriented programming, which lets

codes to be reused by organizing similar operation and data’s in the same class called parent

class. Wagner also stated that to call a programming object-oriented programming its class

13

must be able to instantiate objects and the classes are structured in hierarchical in an

inheritance manner (Wegner, 1987).

According to Wenger Objects are an autonomous entity that responds to messages or

operations and share properties. Classes classify objects based on the operation they perform

and properties. Data abstraction is used to hide data and operation implementation in the

object.

Another definition is given by Kendal in this object-oriented programming in Java book,

which states that object-oriented paradigm is based on the ideas of Encapsulation,

Inheritance, Generalization, and polymorphism and help the development of software and

system that models both the operation in the software and the data associated with it.

Proponents of this paradigm argue that this leads to the re-use of codes thus saving

significant development time and cost (Kendal, 2009)

Encapsulation is the foundation of the object-oriented approach. It is the process of hiding

the property and methods in a single unit. It helps protect the code or the detail in a unite

from being changed. Encapsulation only allows other class to use not modify the details.

Daniel Liang in his book on Java programming put Inheritance as an important and powerful

feature of reusing software (Liang, 2013). Inheritance is another characteristic of object-

oriented programming. It is a very important part of any object-oriented programming

system. It is characterized by sharing resources. In inheritance, similar properties and

operation are grouped in a single class called parent classes and other classes, usually called

child classes will inherit properties and operation from the parent class.

In this thesis, Object-oriented programing is the selected paradigm. The reason for that is

most of the popular programming languages in use are in one way or the other object based.

The Amharic programming Language will support Class, object creation and inheritance.

Doing this will make the transition as easy as possible for students who learn this

programming to other widely used programming languages like Java, C++, and Python

14

2.3 English based Programming Language

Programming has a long history, but a notable resemblance of the programming we know

now started in the years of Charles Babbage, who designed two mechanical computational

machines during the years(1820-50), The Difference machine which was based on finite

difference theory, and the Analytical machine which has a lot of similarity with a modern

computer (Georgatos, 2002).

After Charles Babbage’s introduction those mechanical machines the programming world

has shown very promising advancement. But the most interesting discovery happened in the

early ’50s of the 20th century with the introduction of a programming language called

Fortran. According to (MacLennan, 1986) Fortran was introduced by Backus and his

colleagues in the office of Naval Research Symposium as a paper focused on speed coding.

Speed coding was aimed at designing a programming language using mathematical notation.

By 1954 a preliminary the external specification of FORTRAN (which is short for Formula

Translation) was produced.

Until the introduction of Object-oriented programming language, quite a lot of programming

languages has been introduced to the world. From those languages, Algol60, Pascal, Ada,

and Lisp were some of them. These programming languages were designed keeping in mind

the professionals and also were designed by professionals. Allan Kay developed the first

object-oriented programing Language, Smalltalk. It is a language that can be used by anyone

interested and can be incorporated into personal computers (MacLennan, 1986).

Smalltalk design and existence were realized because there was a notion that there is a way

to describe by composing a single kind from different building blocks and hide state and

process inside itself and can interact with other by exchanging messages. Allan Kay called

this Object-Oriented. Smalltalk by doing so improved the efficiency of modeling and

compositions in designing programming (Kay, 1993).

The other widely used programming Language after Smalltalk was C. C followed the

programming Language B and BCPL. It was developed in the year 1970 by Daniel M.

Ritchie. C has often been referred to as false high-level language or middle-level language.

15

It was designed to replace Assembler, Cobol, and Fortran as the language of choice in the

mainframe world (Lindstorm, 2005).

C Programming Language has the capability of accessing the low-level functionality of the

computer. Which makes it powerful and fast. (Ritchie, 2005). In 1983 the C programming

Language becomes standardized by the American National Standards Institute. ANSI

compiled a committee to work on a version of C that is the machine-independent definition

of the language (Brian W. Kernighan, 1978). C popularity exceeded the expectation of the

founders.

Here is a Hello world code written using the C Language

#include <stdio.h>

main() {

 printf(“Hello, world!\n”)

}

This is a very simple example which we see in most programming languages. This code

snippet includes the #include statement to include the necessary library, in this case, the

standard Input Output. Then followed with the main function where any C program starts

executing. This function is a must for all C programs. The printf function inside the curly

brace is used to display/write the string inside the bracket.

The C programming language was then followed by the widely accepted C++, Python, and

Java. These Languages are high-level Languages. Python is a powerful and easy-to-learn

programing language that is based on previous programming languages and it has been

developed to be more suited to the current operating system, networks and hardware

(Lindstorm, 2005). It was developed in Netherland which is a Non-English-speaking country

by Guido Van Rossum. The reason python was developed using English as a base for its

keyword was for internationalizing purposes.

 Python was designed to realize readability and easy typing. It is powerful that it has been in

use in a wide area of application. Python provides programmers with very important

16

capability like simple text processing, file processing, network operations, and most

importantly it provides a very rich library to GUI programming (Lindstorm, 2005). Python

runs every where and can be used by anyone since it is open source. It is the first choice of

programming for novice programmers.

Unlike most programming languages in use, Python is an interpreted language i.e. a language

that are stored the same as how the programmer wrote it and converted to machine code at

runtime so that the computer understands it. Which lets a program be run without the need

to compile the whole program. If there is some erroneous code in python, the interpreter will

interpret the one that works fine until it finds the error. But if the error is at the beginning of

the program it will return an Exception. Python also takes advantage of the underlying C

libraries found on most computers. This makes python more powerful and rich in libraries.

Python also combined its simple syntax with Java libraries and created JPython (Lindstorm,

2005).

Java programming language is a well-known, object-oriented, general purpose programming

Language. It is a lot similar to C and C++ with its syntax but it avoided parts that are

confusing, complex and unsafe(Lindholm et al., 2015). The Java programming language is

an indispensable resource for everyone, from novice programmers to advanced programmers

(Arnold et al., 2013).

Java was developed by Sun Microsystems in 1995 which then is incorporated by Oracle

Corporation, which manages the famous Oracle Database. Java has a wide range of use and

application. The major ones are Desktop application, Graphical User interface, Server-side,

and Client-side web applications. Java like python and other object-oriented programming

languages is a write once, run everywhere language. Which means a program written using

Java can be run in any operating system. There are lots of websites and applications that are

dependents on Java and don’t work unless Java is installed. Java applications are compiled

to bytecode that can be run using virtual machine.

As an object-oriented programming language, Java programs are built using classes. Using

the classes in the program, it is possible to create a great number of objects where each of

them can have a different property and perform a different operation. Objects are called an

instance of a class (Arnold et al., 2013).

17

2.4 Non-English Programming Languages

The fact that many of the programming language in use today are developed basing the

English language for their keyword had a significant effect on the growth of technology-

related areas in Non-English-speaking countries. To solve those problems researchers in

different country developed a programming language using their own native language as the

base for the languages keyword. In this part of the document different non-programming

languages are studied in detail. Unfortunately, at the time of writing this document, there are

no programming languages that are developed in Ethiopia. But a programming language in

Amharic which is in development has been reviewed lightly. The language is named

AxumLight even if the programming language is not available for download it has been tried

to assess and review by using online document and other resources.

From the official page of AxumLight it is a programming language written using the

Amharic lexicon (EthioCloud, n.d.). Which lets Ethiopian developers develop programs by

using their native language. It is built and runs using the .NET framework . It is based on

the Amharic alphabet and uses Semitic based Geez characters native to Ethiopian languages.

The purpose of AxumLight is to enable users to learn how to program and develop Amharic

software components and applications. Users can use both English and Amharic in the editor.

The editor also supports code highlighting. Like stated above the programming language

that is described in the Ethiocloud is not available for download so there is no way to check

its performance. The next picture is taken from the official website and it somehow enable

us to see how the language looks like

18

Figure 2.1: Hello world using AxumLight taken from EthioCloud.com

In the figure above is a HelloWorld code written using AxumLight, the language first uses

an import which is designated using the Amharic word ተጠቀም to include libraries that are

used in showing the hello world text to the console. Next, the program wrote the class

declaration like

 ገሀድ ክፍል ፍርገም

its translation in English is

 public class <identifier>

this declaration is followed by the delimiter ‘{‘curly brace which shows the start of the class

scope then it is followed by the main method declaration

 ገሀድ አይለወጤ ሀሰት ዐብይ () {

its equivalent English translation

public static void main () {

19

this is where code execution commences. Then inside the main block, there is a system

method to display Strings into the console

 ሰሌዳ.መስመርፃፍ(“ዓለም አንደምነሽ”)

the English equivalent is

 Console. WriteLine (“hello world”)

When the system is run the text inside a quotation will be displayed in the console. From the

way the syntax is constructed, we can most certainly say that the language is a direct

translation of the high-level language c#. For languages that are a direct translation of

another high-level language, it is good to use a source-to-source compiler or trans compiler

also known as a transpiler.

Until now it has been tried to show how a programming language that is in development in

Amharic is structured. We have used the information provided in the official page of

AxumLight and a snapshot by the developers. In the next part, other non-English

programming languages will be looked at.

According to an article written by (Bingöl et al., 2018) chameleon is a Turkish programming

language written using the Turkish language. The goal of this programming language is to

solve the problem that is being faced in teaching Turkish students at early age computer

programming. As a study conducted on the usage of local or first language to teach students

has indicated students who have been taught computer coding using their local language can

learn to program faster and develop new programming concepts that those students who

learn computer coding using English, when English is their second language(Dasgupta &

Hill, 2017).

Chameleon is a language which was developed to let Turkish speaking students and

developers create an application with Turkish coding structure on windows operating system

and mobiles. Chameleon is used to write a portable program. Once a program is written

using Chameleon and compiled it will run in any platform mobile or computer. The program

has four transitions from source code, which is a text file with a dot but extension to the final

portable form which is a dot munf file. According to study conduct on students from high

school on the chameleon programming language, students found it easy to program.

20

Here is a sample source code as a figure taken from (Bingöl et al., 2018). For readability

purpose the sample code is written in its English form.

 Class Hello

{

 Function start ()

 {

 Print (“Hello world with chameleon”)

 }

}

In the above code snippet, the first line is a class declaration

 class Hello

the third line is the main function which is where the programs start execution

 Function start

Then print will display the text inside quotation on the command line.

Like Chameleon, there are a couple of programming languages designed in Arabic. The

most notable ones are قلب roughly pronounced as QALB and ARABIAN. QALB which

means heart in English is an Arabic programming language developed by Ramsey Nasser

that fully uses Arabic keywords(Nasser, 2012). QALB is a programming language that

explores the human role in coding. It is implemented using JavaScript.

 ARABIAN is a programming Language that is designed using the Arabic language as the

base for the keywords in the language. It is a simple and imperative language, designed for

educational purposes. The syntax in the language is emphasized on efficiency and simplicity.

There is no dynamic storage allocation and parameter passing happens using value and

references. The Language shows Compilation and runs time errors in a simple and

understandable Arabic language. The evaluation on the design showed that simplicity and

21

efficiency were achieved by removing the parts which will be inefficient in the

implementation of the language as well (Al-A’Ali & Hamid, 1995).

There are some programming languages that are developed using the Spanish language.

Some of them are GarGar, Latino, RoboMind, and Tango. GarGar is a procedural

programming language based on the Pascal for learning purpose. Latino is another

programing language with a syntax based fully on the Spanish language (Zegiestowsky,

2017). These programming languages are not the purview of this review.

Tango is another programming language that is similar to that of the above-mentioned

programming languages. This programming language like any other non-English

programming languages is aimed at solving the language difficulty in writing programs

using languages with English based keyword. The language is designed to make

programming easy and effective for the Spanish speaking society. The language includes

Spanish language accents and also uses cross-compilation to java to generate codes. Tango

requires java to be installed on the computer in order to use it (Zegiestowsky, 2017).

Tango differs from the Latino and RoboMind in three basic ways. First Tango supports usage

of special characters, it supports accent markers and tildes in both the keywords and other

language parts. The second difference is that it uses Transcompiler. That is the languages

source code will be translated into Java source code which facilitates simple installation and

usage. The language generates a java executable file. For tango to function properly there

must be a stable version of Java to be installed in the system. The final difference is that the

languages keyword has a java like flavour.

Similarity between Java and Tango

 Java version

public void func_name (int param1, int param2) {…}

Tango version

func func_name públic@ vaci@ (ent param1, ent param2) {…}

English has also been a problem for students in China who wants to learn to program.

Because students are new to English and the words are not familiar to non-native speaker

22

made learning programming harder and took them too much time. This problem is prevalent

mostly to young students and programmers who don’t have exposure to English. There are

millions of experienced programmers in China who program using English.

There are different programming languages designed using Chinese language as the base for

the keyword. Some of the major programming languages that are common among novice

Chinese programmers. Basic Chinese programming language is a name given to a different

version of the basic programming language. It was developed in the 1980s. The other

programming language is ChinesePython which is the Chinese version of the well-known

programming language. The other programming language used to develop 3D animation and

game is Mama. Mama was designed to help young students engage in the animation and

game development world using their native language.

The other programming language that uses chinse language is RoboMind. RoboMind is a

programming language that is available in many different programming including Chinese.

RoboMind is an educational programming environment that has its own scripting language

that teaches the student to know the basics of computer by developing a simulated robot.

Eyuyan literally translated as “Easy Language” is one of the rare programming languages in

China which uses Chinese characters and punctuation fully. According to its creators “Easy

Language” is a functional development tool. This language was created by a person name

Wu Tao.

Eyuyan start as a free programming language that can be used by everyone but after the

internet revolution in China, i.e. after the coming of Baidu, Alibaba and Tencent, Wu started

charging for the IDE (Integrated Development Environment). The language even if it

charges its users it helped the test integrity on the Chinese language compatibility with

modern technology.

But Eyuyan (Easy) Programming language has also a drawback that affected the usage of

the language. This programming language wasn’t just developed to write programs that are

legal, it was also used to write hacking tools and game cheating scripts. The reason for that

is the language has a powerful library. This has opened the gates to write malicious

programs. Most online tutorials written for this language teaches “account stealing tools”,

like the Chinese version of w3schools (Zhang, 2017).

23

Chinese python is a programming language that is a bit different from the above mentions

programming languages. The reason is that Chinese python is a Chinese translated form

python 2.1.3 programming language. This language contains Chinese translated python

keywords. In addition to that, it is possible to use Chinese characters for variable names and

pythons’ built-in functions can also be operated in Chinese.

All the above mentioned Non-English programming Languages were aimed at solving the

problem that has been faced by students of different level when it comes to computer

programming. All the aforementioned languages achieved simplicity, easy understandability

and development of their respective countries’ language in technology.

2.5 The Amharic(አማርኛ) Language

Amharic is the official language of Ethiopia, which belongs to the Semitic language groups.

Next to Arabic Amharic has the largest speaker in the Semitic language group (Gezmu et al,

2018) Even if the Amharic language was in use in Ethiopia for a long period of time its

availability when it comes to the technology related area it is surprisingly not good. The use

of the language in computers and mobile phone is rare. There are not a lot of study on the

Amharic languages but it is stepping up in recent days. Researchers in a university tried to

study the application of Amharic language in different areas like Amharic character

recognition, Amharic speech recognition and so on. There were different studies on natural

language processing on Amharic and Amharic letter recognition. This thesis focuses on the

application of Amharic language in the design of programming language.

2.5.1 Amharic characters

The Amharic language has 33 characters and each character has 7 making the basic letters

to 231. Which is quite a lot number of letters. The Amharic orthography contains

inconsistency, where some letters represent the same phoneme or have the same

pronunciation. The overrepresentation phonemes or the user of different letters to represent

the same phoneme is because the Amharic language is descended or evolved from Geez and

in Geez the letters that are redundant in Amharic represent different phonemes (Negesse &

Ado, 2016). This representation of redundant letter for the same phonemes makes a word in

Amharic to be represented in a different collection of letters but with the same pronunciation

24

and meaning. For example, the Amharic equivalent for the English word ‘work can be

represented in two ways one as ‘ሥራ’ or ‘ስር’. The two Amharic words have the same

pronunciation and also have the same meaning. In Amharic, unlike English there are no

cases, there is only a single case. Amharic language in addition to the 231 characters

Amharic also has characters that are the production of the fourth form of the base characters.

These characters make up part of the Amharic words and are also part of the Amharic

Unicode in the Ethiopic block.

2.5.2 Geez numbers and punctuation

Even if the number used in Mathematical calculation and another day to day activity of the

people is the Arabic numbering system which represents numbers that range from 0 to 9,

Amharic also uses Geez numbers to represent numbering, years and other. The Geez

numbers, unlike Arabic numbers, don’t start from 0, it starts from 1, which is represented by

፩.

There are also punctuation marks used in the Amharic language. There is word separator ‘:’

punctuation mark now a time they are replaced by space. There is also punctuation used to

separate lists like comma which is designated by ‘፣’. Punctuation marks are not used in this

language design because punctuation tends to affect the readability. The only Amharic

punctuation mark that is used in the grammar is a statement terminating symbol in Amharic

which is represented by ‘።’. This symbol is used to write a multi-line comment

2.6 Context Free Grammar

Context Free Grammar is a more powerful method to describe languages. It is used to

describe features like optional substitutions, features that are recursive in nature and others.

The basic definition of context-free grammar is given below

A grammar consists of a set of production which is collection of substitution rules. Each rule

appears as a line in the grammar, comprising a symbol and a string separated by an arrow.

The symbol is called a variable. The string consists of terminal symbol which comprises

variables and other symbols. The variable symbols often are represented by capital letters.

The terminals are analogous to the input alphabet and often are represented by lowercase

25

letters, numbers, or special symbols. One variable is designated as the start variable. It

usually occurs on the left-hand side of the topmost rule (Sipser, 2012).

Context-Free Grammar is a set of production rules to generate a word. It consists of the

following components

- A set of terminal symbols, which are the characters of the string of the generated

word. This symbols as the name indicates are terminal. They will not be part of the

substitution.

- A set of Non-terminal symbols, these are placeholders for the terminal symbols.

Non-terminal symbols will be replaced by a pattern of terminal symbols at some

point of the production.

- A set of productions, which are rules that guides how the non-terminal symbols will

be replaced by a terminal symbol or other non-terminal symbols

- A start symbol, which is an unreplaceable non-terminal symbol that shows the start

of the grammar.

The purpose of context-free grammars is providing rules from which a syntactically valid

string is generated

Each rule in production takes the form X → γ

Where X is a non-terminal symbol and γ represents a set of the terminal or non-terminal

symbols (possibly empty)

A representation of an arithmetic expression using context-free grammar definition is given

below

expression → number

expression → expression

expression → expression + expression

expression → expression - expression

expression → expression / expression

expression → expression * expression

26

Here the terminal symbols can be identified as (+, -, / and *) whereas the non-terminal

symbols are expression and numbers. The first production rule used in the above snippet

states that expression can be replaced by numbers, we can also define a number as a list that

contains the number 0 up to 9. In the above production rule, an expression can also be

replaced with another expression.

2.7 Extended Backus–Naur Form

Extended Backus-Naur form is similar to that of Backus-Naur form with a little

modification. A context-free grammar was used in a programming language for the first time

in the design of ALGOL60 programming language by Backus. It was named Backus-Naur

form, after the members of the ALGOL60 committee John Backus, who previously was

involved with Fortran and Peter Naur. BNF, unlike context free grammar, doesn’t have a

large set. Some of the changes in BNF

Arrows ‘->’ to ‘::=’

Non-terminals are written surrounded by angle brackets <NT>. This is different in Extended

BNF which writes both terminals and non-terminals as they appear without angle brackets

or quotations.

Terminals or non-terminals with the same head are grouped by a vertical bar ‘|’, like 1|2|3|4

Extended Backus-Naur Form is a notation to describe the syntax of a programming language.

Syntax shows the way to write features in a given programming language (Feyman, n.d.).

Different programming languages do have related but different syntax. A program written

using a syntax of one programming language cannot be understood by a compiler of another

language. The control forms in EBNF are sequence, decision, repetition, and recursion.

The extensions in EBNF are

‘*’ Kleene star: means zero or more occurrence

‘+’ Kleene cross: means one or more occurrence

‘?’: means zero or more occurrence

Use of parenthesis for grouping

27

2.7.1 EBNF rules and descriptions

An EBNF is an order list of EBNF description. Each EBNF rule like Backus-Naur form

has three parts: left-hand side, right-hand side, and separator. The separator can be::=, = or

<= and it can be read as ‘is defined as’

 LHS:: = RHS or

 LHS = RHS

 LHS <= RHS

In this paper the equal separator is used.

Following is an example of integers in EBNF

EBNF description: integer

digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

integer = [+ | -] digit {digit}

2.8 Design Principles

In early times due to the scarcity of memory and speed of the machine are slow the primary

worry of programmers was speed and memory usage. This principle is called the efficiency

of execution. This criterion still matters because as the programmer gets bigger the execution

tends to slow. So, designing a programming language with better efficiency for execution is

appealing for programmers. In this section, principles of programming language design are

included

In most programming language abstraction is a principle of avoiding details. Abstraction is

a way that helps avoid something’s to be described or written more than once. It is a way to

avoid recurring patterns. Most languages support different unit of abstraction (MacLennan,

1986). In object-oriented language class and method is the common unit of abstraction. On

the other hand, for functional programming language, the unit of abstraction are functions

or procedures. Abstraction will also help with simplicity, readability, and writability of a

programming language by avoid repetition of concepts.

28

A programming language should be efficient. The efficiency of a programming language

can be described as the ability to allow translators to generate efficient executable code.

There are different design decision that helps in creating an efficient programming language.

To have an efficient executable code for instance programming language designers choose

static data type typing. Having a statically typed data will help speed up the run time because

there is no need for checks during runtime since the types of data are checked by the

compiler. On the contrary using dynamic typing like python does will force the runtime to

check the type. This cause execution to be slow.

Efficiency in addition to creating efficiently executable code can also be defined as

programmer efficiency. The ability of a person to easily read and write programs in the

language also determine the efficiency of the language. How easily can a programmer

express a complex structure using small number of constructs. How concise is the syntax of

the language? These traits also contribute to the efficiency of a programming language

(Louden & Lambert, 2011).

Integration of programming features is also another issue when designing a programming

language. How well programming language features are integrated is known us regularity.

When a programming language allow greater integrity among constructs means there are

less restrictions. Regularity has three aspects generality, orthogonality and uniformity.

Orthogonal design allows programming constructs to be combined with no or minimum

restrictions. Uniformity of a programming language design means similar constructs must

look and function similarly and different constructs must look different and function

differently.

The last principle included in this document is extensibility. Extensibility is a programming

languages ability to allow users to add features. An example of extensibility in programming

language is to define new data types and new operations(functions). There are few

programming languages that allows users to add new syntax and semantics. Lisp is a

programming language that allows programmer to add syntax and semantics in addition to

adding functions and data types.

29

CHAPTER 3

 DESIGN METHODS AND APPROACH

3.1 Tools and Methods

3.1.1 ANTLR (Another Tool for Language Recognition)

Parsing is an important part of compiler design which is an area of study in universities. But

writing parser by hand is of a tedious and error-prone process (T Parr & Fisher, 2011). To

solve that problem there are different and effective parser generators. In this document, a

language recognition tool named ANTLR (Another Tool for Language Recognition) is used

to generate the parsers, laxer and other necessary data. Here this ANTLR is used to check

the validity of the grammar, the generate code is not used to implement the prototype of the

parse or laxer. The sample tokenizer and parser has been written by hand so that to only

include the parts that we need.

ANTLR v4 is a computer-based language recognition tool. It generates a parser by taking a

grammar as an input. The tool will read the grammar which is a structed text file written by

using a meta-syntax notation called Extended Backus-Naur Form (EBNF), process it,

execute and translate it (Terence Parr, 2013). It is written in java and generates a parser and

Abstract Syntax Tree (AST) of the grammar. ANTLR generates an LL (*) parser for a given

grammar.

 It also provides syntax highlighting and syntax error checking mechanism to make sure the

grammar written complies with standards and doesn’t cause problem during translation. The

other nice feature utilized from ANTLR is its Live grammar interpreter for grammar

preview. This feature provides a preview of how the grammar reacts to a given data.

LL parser is a top down parser for context-free grammars. The parser parse form left to right,

performing leftmost derivations.

ANTLR has been used to parse twitters search queries which host more than 2 billion queries

a day. The other major use of ANTLR is in NetBeans IDE. NetBeans IDE uses ANTLR to

30

parse C++. It has a feature that can be used to test the grammar. ANTLR notifies errors that

could cause problems when the grammar is translated to parser.

ANTLR v4 deals with left recursion correctly unless it is indirect left recursion. Examples

of a grammar with indirect recursion is given below

leftRecurssion: indirectRecursion;

indirectRecursion: leftRecurssion

This type of grammar is using indirect recursion which is confusing during translation. To

avoid any confusion that happens because of indirect recursion it has been decided to not

use indirect recursion.

The other issue that has been handled by ANTLR v4 is arithmetic precedence. Dealing with

arithmetic precedence is confusing and error prone. For instance, in the int x = 4 + 5 * 6 the

value of x can be different depending on how the compiler gives precedence. The value of x

can be either 54 if the addition operation precedes the multiplication operation or it can be

34 if it is done in the reverse. The grammar has been written in a way it follows usual

mathematical arithmetic operation precedence’s. the grammar also deals with operation of

equal precedence. The precedence and the syntax tree of arithmetic operation are shown in

in the next chapter.

3.1.2 Grammar

ANTLR uses grammar written using Extended Backus-Naur Form as input. The Grammar

of the language used latest standard so that developers who intend to use the grammar can

use it without major modifications (Tio & Niekerk, 2001). Extended Backus-Naur Form has

been used to write the grammar language. The Grammar defines all necessary rules of the

language. The complete production rules of the language is given in Appendix 1.

The grammar of the language has been tested by using ANTLR. Data’s has been given to

the grammar and the generated parser and laxer has checked the data’s conformity to the

syntax of the language and a syntax tree has been generated to who the hierarchy of the

tokens in the given sample source code.

The grammar for the Amharic language is a two-part file. The first part of the grammar is a

parser grammar which contains the necessary symbols and the production rules. All the

31

grammar rules are included in this file. The second part of the file is the lexer grammar which

contains the keywords and all the literals. The file is separated for clarity purposes.

3.2 Design of the Language

There has been a design decision that has been taken when designing this Amharic

programming language. The design decisions are made to make the language as simple as

possible as it is meant for beginners. In addition to simplicity, the language decisions are

made to make the language resemble widely used high-level languages. Due to the fact that

most of the widely used programming languages are high level and to make the transition to

other languages smooth, the language designed here is also a high-level language. The

language is an object-oriented language, by which students are able to create objects of

different properties and operations. Because it is an object-oriented language it will introduce

students to widely known programming language concepts and help understand other object-

oriented programming languages easily.

The language gives due considerations to students who are in lower grade who don’t have

the chance to learn English, those who don’t attend school but want to learn programming

without the need to wait to learn English first and for computer science students who want

to research in using Amharic language in technological-related areas and also develop

advanced Amharic programming languages with great capabilities. The language is

supposed to be implemented to only windows operating system. The reason behind it is that

almost all computers that are available in schools at this time run windows. Since this is a

programming language most lower grade students can be easily familiar with. After the first

version of the language is implemented, the next version will include portability.

It has been tried to make the language as simple as possible. When we talk about simplicity

it is to mean the language is easy to learn and easy to use. Even if we will talk about this part

in detail later on, to reduce the complexity of the language access modifiers, modifiers, in

general, are not included. The other thing is to reduce the hierarchy of class and minimize

confusion among beginners’ students’ class and method recursion has been left out of the

design. This will help avoid the confusion of stairs of class and methods to novice students.

In order to make the language easy to learn, it has been tried to remove most the delimiters

32

available in most programming languages like Java and C++ and give it a python like

structure without the colon delimiter used after block structures like method and if blocks.

This will make the grammar clean and only include necessary tokens.

To make learning the program easy, it has been tried to reduce the number of keywords in

the language. Making the number of keywords in the language smaller will reduce the

number of concepts they have to remember when programming. The other design decision

taken when designing the language was to avoid using the direct translation of keywords that

are prevalent in a most programming language. The direct translation of keywords that are

common in most languages doesn’t make sense when it comes to the Amharic language. For

example, if we take one of the keywords that exist in object-oriented programing languages

‘class’, is translated as one of this two Amharic words ‘ክፍል’ and ’መደብ’.

An attempt has been made to make the words as much as possible words that are common

to most of the people rather than choosing words which are not common on day to day

speech. This makes the keywords easy to remember and will guide programmers to make

use of names that are familiar to others and easily understandable when writing class and

methods. It has also been tried to make the keywords appropriate and relate to the meaning

of the things they do. In addition to the familiarity of the keywords, there is also as object-

oriented support of abstraction. That with a small number of keywords will help to write

clear code and that will improve readability.

The regularity of a programming language is the other principle that is considered to be

incorporated in this language. Regularity is a measure of language integrity. For a regularity

to be achieved in a programming language features integrity should have a minimum of

special cases or exception. Regularity can also be defined in layman’s term as to how human-

friendly a language is. There are three aspects of regularity which are generality,

orthogonality, uniformity. Generality is having closely related constructs in one general

construct. Whereas orthogonality is the ability to combine constructs without unexpected

restrictions. Orthogonality is the ability to use programming features with a different

structure. The last aspect regularity is uniformity. Uniformity is a measure of how similarly

looking are similar features. Similar items must have similar meanings and look similar and

33

on the other hand, different things must have different meaning and look (Louden &

Lambert, 2011).

The other design decision taken was to choose between the two type of variable typing, static

and dynamic typing. Dynamic typing is a process of assigning the data type of a variable at

run time i.e. to create a variable a programmer only needs to include the name of the variable

and the value of that variable. This to some extent reduces the programmers coding time.

The other type of typing is static typing, this is when we give the type of a variable during

declaration. Which means a programmer has to tell the compiler what type of data he wants

and the compiler will handle the rest. To create a variable in this method a programmer will

need to provide the compiler with the name of the data type, the name of the variable and

the value of that variable. Even if using dynamic typing reduce the effort made by the

programmer in this programming language static typing has been used. The reason behind it

is it will help early detection of programming mistakes, help in creating more opportunities

for compiler optimization. It also helps increase runtime efficiency by performing type check

during compilation time.

The language also supports for increment and decrement operations. There are two different

types of this kind of expression which are pre and post expression. The pre-increment and

decrement operations are designated by a preceding ++ or – operator and an expression. This

type of expression is evaluated before other expressions. The post-increment and decrement

operations on the other hand have expression followed by ++ or --. This will shorten

expressions which will otherwise make use of redundant operands to do a simple increment

and decrement. This feature is added to make the language as simple as possible.

In addition to the afore mentioned reasons, as the language is intended to novice

programmers or students it will teach them about data types and it will also help handle data

type related errors before doing operation on the variable.

3.3 Construct Description

3.3.1 Types

Data types are a data which tells the compiler how to interpret and use a particular data. In

programming there are different operation performed on a variable of a particular data type,

34

because of that it is wise to tell the compiler what type of data it is dealing with. Telling the

compiler what type of data it is dealing with will decrease the number of errors handling a

compiler should deal with. There are three basic data types in this language.

 Basic types (መሰረታዊ መደብ)

Integers ቁጥር

Float ነጥብ

Boolean እዉነታ

These are the three data types. Each data type represents different data collections. Integers

represent numbers. But there are two type of number system in Amharic language, one is

the Hindu-Arabic number which ranges from 0 to 9 and Geez numerals which contains a

range of numbers but it doesn’t start with zero. Geez numbering system is not used as a

numeral for instruction in any schools except religious schools. The geez number is mostly

used to represent years and numberings. Because of that Geez numbers are not used for

calculation purpose in this language. The limit to the size of integer is unlimited it is decided

by the memory size of the operating system.

Floating number represents numbers that contains decimal numbers like 1.1, .4 . Floating

numbers are represented in Amharic keyword ‘ነጥብ’. This data type will be used to represent

numbers with fractional parts (it is expressed with a decimal point). The other basic keyword

is Boolean which represents a logic which can be represented as true or false. These

keywords are represented in the Amharic programming language using ‘እዉነታ’. These basic

keywords represent Amharic statements that can be either ‘እዉነት’ or ‘ሐሰት’. This basic type

can be used to represent variables that can be used to hold expression which can be transferred

to true or false.

There are other data types that can be create by the user using the basic data type like Integer.

These other data types which can be created by the programmers are Strings and Lists. In

this language we have avoided using char as a data type of its own because it will help

remove one more keyword from the keywords list. Strings are data types that are used to

store character sequence starting from one. Strings represent any and all characters of any

type or language that are enclosed with in quotation mark. The other data type that can be

35

created by the programmers is Lists which is a data type that holds a list of things which is

enclosed by this ‘{}’ two delimiters. This will allow users to create their own list of things

and use them the way they want.

3.3.2 Declaration

In this part of the document decision regarding different declaration parts of the language. It

details with reason in deciding how to structure different declaration. Since the language is

an intermediary language for other high-level languages the declarations are constructed to

make them have a very close resemblance and at the same time become simple enough to be

understood by a beginner.

Declarations introduce names in to a program, such as variable names, method names and

class names. There are different attributes associated to declaration in addition to the name

of the construct. The most common attribute related to declaration is type. Type will tell how

the compiler reads the data associated with that specific name. Amharic programming

language contain three basic parts: the first and smallest part of it are statements which

ranges from variable declaration up to constructor declaration, the second one is methods,

which represents operation of a class. Method declaration is different from variable

declaration. The last and final part is class which encloses everything. Both properties and

methods are enclosing inside of a method and can be accessed by using the statement class

name dot property or operation names.

3.3.2.1 Class declarations

The class declaration component of this programming language declares the name of the

class one more attribute which is optional, the class’s superclass. The minimum and simple

declaration of class must contain the ‘ስብስብ’ keywords and the name of the ‘ስብስብ’ that is

being defined. The simplest declaration of a class looks like this

Class <class name> ስብስብ <የስብስቡ ስም>

 <block> <ሌሎች>

For example, the following code snippet creates a class named calculations

Class calculations ስብስብ ስሌቶች

 <block> <ሌሎች>

One thing to note here is there is not visible delimiter that separates the class from the rest

36

of the code. To make the looks of the code smooth to readers it has been decided that new

line and INDENT’s are used to separate one construct from the other. The end of a construct

will be recognized with DEDENT’s. It has been tried to handle whitespace differently in this

language.

There is also one more attribute that can be include with a class declaration, it is the import

attribute. The extend attribute will be used to include functionalities inside of another class.

The extend declaration will take the form keyword + the parent class name.

 class child extend parent. ስብስብ ወራሽ ውርስ አውራሽ

3.3.2.2 Constructor declaration

A class contains constructors that later will be used to create objects of different property

and operations. Constructor declaration vary from languages to languages. Each language

has their own constructor declaration signature. In this language it has been decided that the

constructor only contains the name of the class and parameters. It is possible to declare a

constructor more than once but the constructor must have a different parameter or else an

error will be thrown by the compiler for declaring the same constructors. Here is an example

of constructor declaration with one parameter

Class example ስብስብ ምስሌ

 example (int x) ምሳሌ(ቁጥር ሀ)

 In the following example there is a class name example and the class have a

constructor called with one parameter. This constructor will be used to create objects,

object creation will take the form

class object = new(parameters) ስብስብ_ስም ስም = አዲስ(parameter)

 Here object creation only uses the “አዲስ” keyword. In this language polymorphism is not

supported. The new keyword will take the parameters of the constructor.

3.3.2.3 Method declarations

The other construct that is represent in this language is Methods which designates the

operation performed by an object. The method declaration component declares the return

type of the method, the name which has to be different from other methods declared inside

37

the class and are not keywords, it also declares a bracketed list of parameters. A simple

method declaration contains the return type, the name of the method and an empty bracket.

A simple method declaration is shown below

<type> <name> () <አይነት> <ስም>()

 <block <ሌሎች>

Methods also take parameters(ግብዓት) inside of the bracket and calculation can be performed.

An example of a method declaration is given below with parameters

int add (int x, int y) ቁጥር ድምር (ቁጥር ሀ, ቁጥር ለ)

 <block> <ሌሎች>

The above example contains a declaration of class which will be seen in the next topic. Like

state above there are different return types that can be used when declaring including list.

This will help code reusability and abstraction.

3.3.2.4 Variable declaration

In programming we include many variables with which we store a value that can change. In

this language every object created has access to class variables. Variable declaration

component contains the name declaration. The name declaration is preceded by the type of

the variable which is followed by assign sign ‘=’ then a value. A simple variable declaration

is shown here

String name = “Ermias” ሐረግ ስም = “ኤርምያስ”
There is also another way of declaring variable, i.e. to only declare the name of the variable

and the type of the variable. A declared variable can be instantiated later on the program.

This will give the programmer flexibility of assigning variables depending on a specified

condition. Here is how we declare a variable

 int x ቁጥር x

3.3.3 Statements

There are different statements inside of a program: assignment statement, selection

statement, repetition statement, control statement and input/output statement

3.3.3.1 Import statement

The first but optional statement written in programming using this language is the import

statement. Importing is a very import part of programing the reason for that is importing

38

enables class to take advantage of functionalities that are in other class. When a program

calls the import statement the compiler will look on a specified location to look for that

particular module. Here is how import statement is written

 import <file path> ተጠቀም <የፋይል አቅጣጫ>

3.3.3.2 Assignment statement

Assignment is a way of storing a value in a variable. Assignment statement uses the

assignment operator to store a value to the specified variable. Assignment statement is part

of the variable declaration which has two parts. Variable declaration and assignment can be

written separately first a variable can be declared with the type specified with it and then the

assignment will follow. If the two parts are in reverse order the compiler will issue assigning

undeclared variable error.

variableName = expression ስም = “አበበ”

3.3.3.3 Selection statement

Selection statement is a statement that directs the flow a program in a specified direction

based on whether a certain condition is true or false. There are different selection statements

that are part of different programming language. The well-known selection statements are

the if-else statement and switch statement. There is one way of handling selection statement

in this language and it is done by using the keywords ‘ከሆነ’, ‘ካልሆነግን’ and ‘ካልሆነ’. The

selection statement always starts with the ‘ከሆነ’ keyword. A selection statement without the

‘’ will be terminated during compilation. This selection statement looks a lot like this

 (expression) if

 statement

 (expression) elseif

 statement

 else

 statement

A simple example which check age is given below

39

(እድሜ > 18) ከሆነ

 <አረፍተነገር>

ጨርስ

(እድሜ == 18) ከሆነግን

 <አረፍተነገር>

ጨርስ

ካልሆነ

 <አረፍተነገር>

ጨርስ

This means if age is greater than 18 execute the statement inside of it but if age equals 18

execute the statement inside the elseif but if the expression is not mate then else will be

executed. In this case the reason the Amharic keyword for ‘if’ is at the end is because this is

how selection statement are spoken and written in Amharic grammar. It could have come in

the beginning of the sentence but because it is easy for the language to be understood by

novice students if it mimics the spoken Amharic language.

3.3.3.4 Repetition statement

Repetition statements are statements that performs an action as long as a particular

expression is true. It is used to repeat an operation for a certain period of time. In Amharic

language we can use the “እስከሆነ” keyword to declare a repetition statement like if-else while

statement has the same structure.

(ድምር > 0) እስከሆነ

 <ዓረፍተነገር>

This is to mean while sum is greater than zero perform a statement inside of it. The while

loop must have a way of terminating itself or else it will cause infinity loop that will result

in system malfunction.

3.4 Program Execution

In every programming language there is a place where program execution commences.

Every statement and method to be executed in a program it has to be called inside of the

main method or be inside of a method that is called in the main method. Unless that is the

40

case a method will not be executed. The overall program will not also start execution unless

there is an entry point to the program execution.

In this language program execution starts when the compiler finds the method ‘መጀምረያ’

which signals the compiler to start executing the program. If there is nothing inside of the

main program, the program will not return anything. The method that is used as an entry

point to program execution is like any other method it can have everything method have. It

can declare variables that can be only be used inside of the method, it can also declare

selection statements, it can declare control statements. Statements inside of the main method

will start executing automatically without the need to be called by other method.

መጀምረያ()

 <ዓረፍተነገር>

In the above code snippet when the program finds ‘መጀምረያ’ statement, statements and

method calls inside of it will be executed.

3.5 Compilation and Run-time Errors

Compile and Runtime error are programming term that shows different level of

programming. The process of compiling a source code written in a particular programming

language. An error that happen during compile time of a program is called compiler time

error. The design of the language focuses on giving students who learn this programming a

clear and helpful error message. Because the clearness of an error message will help

programmers understand the error very easily and reduce the time spent in understanding the

error and spent more time on solving the error.

3.5.1 Compilation errors

The proposal for handling compilation errors is done by developing a compiler which

handles errors that occur during compilation. Compilation errors happen when the source

code doesn’t follow the proper syntax and semantics the languages grammar. A compile

time error can happen because of missing brackets, missing comma or over use of delimiters,

mistyping keywords and the likes.

41

ስብስብ ስህተት

 መጀመርያ()

 (ሀ == ለ ከሆነ

 ፃፍ(ሀ)
 ጨርስ
 ካልሆነ

 ፃፍ(ለ)
 ጨርስ

For example, in this piece of code there is a syntax error at line three, to display such an error

it. It has been tried to make the information provided about the error as clear as possible and

make it easily understandable. The compilation error information contains the number where

the error occurred, what type of error happened and suggestion on how to fix it. At compile

time the following message will be generated.

Error

In class Error at line

3: There is a missing bracket when

declaring if

Here is how if statement is declared

(expression) If

 <statement>

ችግር

በ ስህተት ስብስብ ዉስጥ መስመር 3 ላይ ስህተት

ተፈጥሯል፡

ከ ከሆነ ዓረፍተነገር ሲፃፍ የመዝጊያ ቅንፍ ይቀረዋል

ትክክለኛ ከሆነ ዓረፍተነገር ለመፃፍ ይህን መገድ

ይከተሉ

 (እዉነት/ሐሰት) ከሆነ

 <ዓረፍት ነገር>

The error message will include the name of the class the error occurred because the error

may be from the parent class in case of inheritance. The message also includes the line where

the error occurred and description of the error that occurred. It also includes suggestion on

how to fix the error.

3.5.2 Run-time errors

Runtime errors are programming errors that happen while the programming is running.

Runtime errors encompasses a variety of more specific error’s types such as IOErrors, logic

errors, division by zero errors and other errors that are not compilation errors. The best and

informative runtime error which is division by zero is used to show how this programming

language handles runtime errors.

42

 Here is a division code snippet

ቁጥር ክፋይ(ቁጥር ሀ, ቁጥር ለ)
 ቁጥር መ = ሀ / ለ

 መልስ(መ)

For instance, in the above code there is no problem in the syntax, if this code is compiled by

the compiler there will not be an error because all the requirements for writing a valid syntax

are met. But an error will occur when executing the code if we pass zero to the second

parameter. This type of error is called division by zero.

Error

In class name of class at line X:

Divisionbyzero: denominator must

be different from zero

ችግር

በስብስብ የስብስብ ስም ዉስጥ መስመር መ ላይ፡

በዜሮማካፈል፡ ታእታይ ከ ዜሮ የተለየ መሆን አለበት

Here the error message shows the class name and the line number where the error happened

and the type of error happened and what to do about it.

3.6 Sample Parser and Tokenizer

The sample parser and tokenizer are written by hand using java. This sample is used to show

how different constructs in the language works. Java’s regular expression has been

extensively used in to parse the source code provided.

 Regular expression is a sequence of characters that is used to match other strings or sets of

strings. It is a way of describing strings in a general term (Bruce Eckel, 2003) In the sample

it has been tried to show how the language will be read by a compiler, how the source code

is broken in to small but understandable pieces of text, how the tokenized data are used by

the parser to identify the different constructs of the language.

The sample also have an interactive code editor written using JavaFx. The code editor is

used to stream the necessary codes to the debugger. The code editor extensively used JavaFx

library but there are also other libraries used in addition to JavaFx. One of the nice parts of

43

using JavaFx is its capability let programmer use cascading style sheet (CSS) to style text

and background. The editor has also used cascading style sheet to highlight the source code.

44

CHAPTER 4

EVALUATION AND RESULTS

4.1 Grammar

The final result of the design of the Amharic programming language is the grammar of the

language. A lot of design decisions have been made to make sure the languages grammar is

all encompassing and easy to implement. After all the decisions made on the design of the

language that is the structure of the languages constructs the grammar of the language has

been written by using Extended Backus-Naur Form. The full Grammar Specification has

been included in this document in Appendix 1 which contains both the Amharic and English

version of the grammar.

The result part of this document has a couple of grammar snippets to show how the grammar

of the language has been structured. The grammar of the language has been tested for

unwanted and unused production rules by using a language translation tool called ANTLR

(Another tool for Language Recognition). Using ANTLR the validity of the grammar has

been tested and a parser and lexer has been generated.

The grammar of the language consists two parts. The first part which is parser grammar

contains the production rules of the language and the second part which contains the datatype

of the language is the lexer grammar. Unused production rules have been found on the

grammar of the language. Unused production rules were identified by ANTLR. All identified

unused production rules have been dealt with and the grammar are made to contain only

necessary production rules.

The grammar is written using EBNF, a meta syntax used to write context free grammars.

The grammar is then passed to an automated grammar translator called ANTLR which takes

grammar and translate it to parser and lexer. The grammar doesn’t support backtracking

because backtracking makes debugging a grammar hard by parsing the same input multiple

45

times. The other reason for it is it doesn’t give a good and instructive error message when

given invalid input.

The top level of the grammar is the class declaration of the language. As class is a parent

block that holds all other constructs of the language the class declaration grammar

specification a good way to show the result of the design. The following grammar snippet

shows how the class declaration of the language has been handled.

classDecl : CLASS Identifier superClass? classBody;

superClass : EXTENDS Identifier;

classBody : classBodyDecl*;

classBodyDecl : mememberDecl | staticInitializer

 | constructorDecl;

mememberDecl : fieldDecl

 | methodDecl

 | arrayDecl;

 The above grammar snippet shows how a class has been structed in the grammar by using

Extended Backus-Naur Form. The class declaration production contains the name of the

class the identifier and to operational non-terminal symbol.

Operational precedence handling is part of the grammar. ANTLR v4 handles the operation

precedence in the Grammar with greater accuracy. By using left recursion operation

precedence was handled in a neat way. The grammar snippet of addition and multiplication

statements is provided here to show how operator precedence work.

addExpr : multExpr

 | addExpr ADD multExpr

 | addExpr SUB multExpr;

multExpr : unaryExpr

 | multExpr MUL unaryExpr

 | multExpr DIV unaryExpr

 | multExpr MOD unaryExpr;

as shown in this grammar the multiplication expression takes

46

Below is a screenshot of a sample operation and the operation precedence displayed by using

parse tree. For the operation 1 + 2 * 3, the parser handles the precedence easily like shown

in the following figure

Figure 4.1: Parse tree for the operation 1+2*3

The above figure shows the syntax tree of the operation 1 + 2 * 3. As it’s shown in the figure

the parsers first calculated the product of 2 and 3 because as stated in the grammar snippet

the multiplication operation takes precedence. The parser then takes the result of the product

and add it with 1 and return the correct result.

4.2 Parse Time

In this part of the document the time it took to parse different part of the different constructs

of the language. The parse time of the constructs has been tested by using ANTLR’s preview

tool. A sample code for each of the constructs are given both in English and Amharic and

the parse time with the syntax tree of the code are given below

In the following the parse time of a class with two variable and a single addition method is

given. The parse time is calculated by using the number of tokens that are the result of the

lexer

47

class test

 int x = 4

 int y = 3

 int sum ()

 int w = x + y

 return w

ስብስብ ሙከር

 ቁጥር ሀ = 3

 ቁጥር ለ = 4

 ቁጥር ድምር ()

 ቁጥር መ = ሀ + ለ
 መልስ

The above example is a class declaration that contains to variable declaration and one method

that returns int and a declaration and assignment of declaration. In the above example the

code has been tokenized and the parser has parsed the code. The time it took to parse the

code given by the generated parser is 11ms. Prediction time of a parser is the time a take to

predict the next token. The average prediction time in the following code snippet is 12ms.

The other language construct that is include is If else language construct which is a bit

different form existing if else statements because the if keyword appear at the end of the

expression. The parse time of a sample if else code is given here. The prediction time of the

code has also been calculated.

(x > 3) if

 ++x

end

else

 --x

end

(ሀ > 3) ከሆነ

 ++ሀ
ጨርስ
ካልሆነ

 --ሀ
ጨርስ

The above if else code has been given to ANTLR grammar tester. The previewer then

tokenized the code and calculate the time it took to parse the language construct. The average

prediction time has also been calculated in addition to the parse time. The parse time

according to ANTLR previewer is 10ms and the prediction time is 6ms.

Even if the parse time is not the measure of the overall compile time but knowing the parse

time help us to optimize the compile time of the language.

4.3 Criteria

Most of the design principles mentioned in this document are not quantitatively measurable.

Because of that it was hard to measure the design of a programming language quantitatively.

This part of the document contains the evaluation of the design of the programming language

48

by comparing the grammar of the language with other existing programming languages.

There are different aspects of the designed programming language that has been the center

of evaluation. The evaluation focused on the design criteria’s that can affect the language in

the long run, principles that make the language easy to use and implement.

To evaluate the language, the languages prototype of basic constructs has been implemented

and used. The evaluation has been done during the implementation of a prototype of the

language. The aim of the evaluation was to figure out how much and how well the design

criteria are met?

The design criteria test can be broken down into the following questions: how readability is

the in comparison with other existing programming language? What functionalities make

the language hard to write? How simple are the language features? How delimiters affected

parsing? As there are no preliminary version of the language that can be used to evaluate the

language, the language is evaluated by trying to implement the tokenizer and parser of the

language. This and other questions were the focus of the evaluation and the design problems

and the fix that has been done are included in this chapter.

4.4 Simplicity

The design has been evaluated for simplicity and modification have been made to solve some

of the design problems and complexity. The design problems and complexities are found

when implementing a sample for the programming language. Simplicity of the language can

be achieved by a compromise between the factors that enhance readability and those features

that enhance the writability of the language. The language grammar also has tried to achieve

high expressiveness to make it easy to use. It also helps reading and writing of the language

easier. The support of greater abstraction helps the simplicity of the language by not

redundantly writing codes.

4.5 Readability

Most of a programmer’s time is spent by reading a program written themselves and by other

programs when codes are being written and are being debugged. So, the time a programmer

spent by reading a program written by other programmers shouldn’t be high because the

49

time spent for reading a should be used by the programmer to do what they want. If a

program written by other programmers a difficult to read and understand it will make

incorporating it to one’s own code becomes difficult.

So, during evaluation factors that affect the readability of the language has been identified

and modifications has been made on the grammar of the language to make sure programs

written in the language has a better readability.

The first Readability problem identified was the first design decision made on if else clauses.

In the first design of if else clause the bracket that encloses the expression was left out of the

grammar to reduce the error that occur due to unmatched brackets. But the absence of the

brackets greatly affects the readability of the language. The brackets were first of all left on

purpose to help writability and avoid syntax error because of mismatched brackets.

The other issue with respect to if else clause was the position of the “ከሆነ” keyword. First it

was conceived for reason to smooth transition to other high-level languages positioning the

“ከሆነ” keyword before the expression. But comparing this design decision with other

programming languages it is identified that this decision will affect the readability and easy

understandability of the language because this structure is in direction opposition of how the

Amharic language uses conditional expression. All most all high-level programming

languages up to date tried to mimic the language used to base their keyword.

The other factor that affects readability of the language the unrestricted length of identifiers.

The reason the length of identifiers is unrestricted is because programmers should be free

when choosing identifiers. Comments also affect the readability of the syntax specially

comments that are inside methods and other blocks which eclipse the important structures.

Declaration and instantiation also contribute to problem in readability. Writing declaration

and instantiation separately will affect readability and also make it hard for beginners to

understand. The extensive use of indents and dedents are included to help readability if the

source code. Almost all constructs in this Amharic programming language use indents to

separate themselves from other constructs and to enclose their members. The indent will

help structure the code and help improve the readability by avoiding unnecessary delimiters.

50

There is an exception when it comes too if else statements. If else statements use the end

keyword to terminate themselves. The reason if else statements are made to use a terminating

keyword is because it helps for making the readability better by giving the block a separation

so that the source code avoid confusion between parts of the constructs. The other reason for

making it this way is to make implementation easier.

4.6 Writability

Writability is a measure of easy is a source code to write. During evaluation it’s found that

the writability of the language was not only affected by the languages of the grammar but

also the Amharic language input tools. Currently available input tools make a bit hard to

write. Some of the available language input tools are PowerGeez, Google input tools and

others. Google input tools uses transliteration which uses English letters to write Amharic

words.

Writability of the language can be affected by the use of concise and regular syntactic

structure. Concise and regular syntactic structures help the writability of the language. The

grammar also makes some things optional so that structure of the syntax can be flexible and

programmers can leave some parts to make writing and reading the source code easier.

Having simple statements also affects the languages writability. The programmer contains

statements that are simple which makes the writability and readability if the language better.

Removing delimiters that are not necessary. Delimiters are replaced by white space this

makes writing in this language will be easier and readability better.

Evaluation also identify the presence of redundant structure affects the writability of the

language. Due to that the language also tried to avoid redundancy in the languages grammar

as such making the language concise.

Having limited length of identifiers greatly helps the readability if the language. But this part

is left for the programmer to handle. The reason for this is user should not be affected by the

restrictions imposed on identifiers. They should be free to choose any length of identifier as

long as it is what is best for the programmer they write. When conflicts happen the one item

that matters the most must be given priority over the other item. There is only guidance for

51

choosing identifiers, where users are able to choose appropriate identifiers to help readability

and writability.

The keywords chosen and included in the grammar of the language are words that do not

include a letter(ፊደል) that are difficult to be written by using the currently available Amharic

language input tools. The reason this affects writability of the language is that there are letters

in Amharic which is difficult to write and as such time consuming.

In addition to readability of the language, Amharic punctuation marks are left unused to

avoid writability issues. One punctuation mark that is used in this language is the Amharic

equivalent for full stop ‘።’. Data types of a method can also be left unspecified to help both

the readability and writability of the language.

4.7 Expressiveness

The expressiveness of the language will also affect the simplicity, readability and writability

of the language. The evaluation of the expressiveness of the language was also done by

allowing the team to write things they want to do. But without the availability of built-in

libraries it has been difficult to figure out the expressiveness of the language. The language’s

grammar has the necessary constructs to express things.

The grammar supports arrays which allow users to express a list of objects as easily as

possible. Arrays are expressed using the keyword “ድርድር” which allow the creation of a list

of objects. when creating arrays, the type of the array and the size of the array must be first

specified. When creating objects ‘Arrays are a curly brace enclosed list of objects separated

by comma. Arrays can be accessed by using the index of the elements inside the array

Expressiveness also evaluated with respect to already existing programming languages that

are widely used in the programming world. The grammar of the language contains most of

the features used in existing programming languages. There are some features that are left

to avoid complication when using the languages to teach in primary school. The grammar

only included one of the looping ways which is while loop. Since it is possible to express

all necessary loops by using while loop.

52

The language also enables to create objects by using class. It also enables to express the

operations that can be performed on the objects. It also enables to express inheritance of

previous declared class. This enables class to share properties and operation instead of

declaring them over and over again. This will help the reuse of object which will increase

the abstraction of the language. There also an import functionality which will enable to reuse

codes written and compiled by other programmers.

4.8 Efficiency of Implementation

To assist the efficiency of the implementation of the language and to not make compiling

slow features that are known to be inefficient are identified during evaluation. Left recursion

in syntax description of a programming language which is the grammar sometimes leads to

an endless loop. Since including left recursion in the grammar of the language results in an

endless loop which greatly affects the efficiency of the implementation efforts has been made

to avoid left recursion as much as possible but when it is must to include them ANTR v4

will handle it and make sure that the parser doesn’t stumble into a loop that it can get out

off.

Production rules are rules which handles how we replace non-terminal symbol with a

combination of terminal and non-terminal symbols. Even if production rules in general are

as useful as it comes there are times where a useless production included in the grammar of

a programming language. The presence of useless production rules increases the parsing

time of the compiler as such making the language in general slow compared to when there

is no useless production included in the grammar. The evaluation has indicated the presence

of useless production rules which affect the efficiency of the parser. All useless production

rules found during evaluation has been removed from the grammar.

To help the efficiency of the language the declaration of variables includes the type of value

the variable hold. This is called static typing. static typing helps type checking be handled

during compilation of the source code which in turn makes the runtime faster. Static typing

is chosen in expense of readability and writability.

53

There are a huge set of data structures in money programing languages. Handling this huge

sets of data structure takes time to process. As a programming language intended to be given

as a first programming language it is necessary to include a must have data structure sees in

the language. This makes handling the data structure faster as such making the program

faster.

4.9 Abstraction

Abstraction is an important part of programming especially object-oriented paradigm.

Abstraction help the programmer access functionalities without the need to know the nitty-

gritty of how its implemented internally. Abstraction hides all data inside the structure except

the data that are relevant in order to reduce complexity of the program and increase the

efficiency.

There are different levels of abstraction included in Amharic programming language. The

highest level of abstraction is classes. Abstraction helps the readability and writability of the

language by hiding implementation details of programing constructs.

4.10 Keyword

Keywords also known as reserved words are identifiers that are frequently used words when

programming. So, the choice of keywords was part of the readability and writability test of

the language. Choosing keywords that are easy to write and to read as part of the Amharic

programming language.

4.10.1 Sample

In this part of the document, a sample program written by Amharic programming language

and debugged by using a prototype debugger. The sample program is a hello world program

written in the simplest combination of constructs. This part in addition to the source code

program contains the tokens and parse tree. The parse tree is for the English version of the

grammar. This part also contains the screenshot of a prototype of the programming language

debugger. The debugger contains three parts the side bar which shows the list of files in the

particular directory, the code editor part which also has a code highlighting feature is used

54

to write the source code of the language to the debugger so that it is examined for conformity

two the grammar of the language, the last and final part of the debugger is a console to show

the output of the code after.

The debugger doesn’t contain a code generation feature. The debugger is used to show how

a piece of code is tokenized and parsed. It has not been used to test user interaction because

it only contains a couple of constructers implemented and it is deemed ineffective to test

with just only a couple of constructs. The source code written in the code editor is passed to

the debugger’s tokenizer so that the tokens in the program are identified and passed to the

parser. The parser then checks if the tokens identified by the tokenizer makes up a

meaningful construct. Then it is interpreted by using Java to show how the result are

displayed. Following is a screen shoot of the sample hello world program an English

equivalent of the source code is given below.

Figure 4.2: Hello world sample program written in Amharic programming Language

55

The figure shows a hello world sample code written using the prototype. In this sample code

there are different levels of parsing class declaration, method declaration and method

invocation parsing. The prototype takes a couple of steps to execute this sample code. The

English equivalent of for the code in the figure is given here

class variable

 void start ()

 write (“Hello world”)

4.11 Parse Tree

The parse tree of a code shows the hierarchical structure of the tokens. It’s a tree that

represents the syntactic structure of a text based on a context free grammar. The root of the

syntax tree is the always the start production rule which shows the start of the parsing. After

the start root node there are two child nodes which encloses the rest of the child nodes. The

first child nodes of the start production rule are the import production rules which contains

the paths of the import class as a child. The second child node of the start production rule is

the class Declaration production rule which contains the class declaration and everything in

it.

Figure 4.3: Parse tree for English version of hello world program

56

This figure shows the hierarchy of the hello world program. The parser takes the code and

checks if it matches the grammar rules of the language. This figure for example shows the

code starts with the class keyword followed by the class names. As the class follows the

correct grammar rules the syntax tree doesn’t show any error.

The other sample included here is a program written to show how if else is implemented in

Amharic programming language. If lese statements are constructed so that it has a

resemblance to the Amharic language. In Amharic language the expression to be evaluated

comes before the if keyword. Overall the language is made to look like the formal Amharic

language.

Figure 4.4:If Else expression written using Amharic language and debugged using

the sample debugger

57

The if else expression example above shows how an if else statement is structured in

Amharic programming language. The above code snippet contains the declaration and

instantiation of a variable እድሜ. If else declaration as shown shows an expression a head of

the if keyword.

58

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

Computers have become a very essential part in our day to day activities. They help

accomplish tasks in a fast, better and effective manner. We humans use programming

languages to instruct computers to do specific tasks. Programming is a way of instructing a

computer to do tasks. Most Programming languages are human understandable to make them

easy to program.

Programming language is an essential area in computer science. To advance the prevalence

of Amharic language in Technology related subjects, creating an Amharic programming

language is necessary because it is the fundamentals of computer science and almost

everything technology related areas are dependent on computers. Hence, leaning the

essential part of computer science using one’s mother tongue help understand the concept of

programming better. In addition to that students who learn programming using their native

language tend to learn programming concepts faster and better than those who learn using

foreign language.

In this paper an investigation has been conducted on the necessity of programming using

one’s native language. An extensive research has been done on non-English programming

languages. Programming languages that are created for Arabic, Chinese and Spanish

speaking countries are included in the research. The document includes a review of Extended

Backus-Naur Form which is used to write the grammar of the language. The design principle

which are the criteria’s of designing a programming language are included.

The design of Amharic programming language contains a keyword chosen by translating

keywords in other popular programming languages and choosing words based what they do

not direct translation to make them. The grammar of the language contains production rules

that signifies the different programming constructs.

59

In this thesis a grammar translator has been used to translate the grammar written by using

EBNF to their respective tokens and parser which recognize the different constructs in the

language. talks about the design of a programing language using keywords based on the

official working language of Ethiopian, Amharic. The paper focused on the design of the

programming language and the lexer and the parser part of the compiler.

This paper also has a simple prototype of the debugger of the language used for evaluating

the designed programming language. The prototype contains the basic constructs of the

programming language like declaring a class, method and variables

5.2 Recommendation

Now a time, countries are engaged in advancing computer related fields of study which are

the corner stone of a country’s development and security. Ethiopia is a lot behind in

programming and computer science that has a toll in the development of the country’s

economy. To help improve that it should engage extensively in advancing the science and

technology specially in computer programming.

This paper contains a design of an Amharic programing language other researchers who

wants to implement this design can use the following recommendations. There are two

implementation of the compiler one is trans compiler which translates the program written

in one language to another language which has its own compiler. The program will be

translated into equivalent of other programs and then it can be transformed into machine

without the need to write an independent compiler for the program. The drawback of this

approach is that the machine in addition to the performance of the language itself will also

inherit the performance of the other program as such making the language slower.

The other approach to implement the compiler of the language is to develop the compiler

itself from scratch. This paper included the first part of the compiler development which

tokenizing and parsing of the grammar of the language.

5.3 Future Work

The focus of the thesis is to design a programming language that uses keywords based on

the Amharic language and the implementation of the tokenizer and the parser. Future works

60

will include the full implementation of the compiler of the language with a rich integrated

development environment which helps the development of programs.

The compiler of the language will be written in a program that will help the speed of the

language and to make it portable so that it can be used by users who work on different

operating systems. The language will also be improved and grorw to support functionalities

that are not part of the original design of the program.

To make it also easy to use and help the advancement of the language future works will

include a future in the language that will help students to program by using only dragging

and dropping future.

61

REFERENCES

Al-A’Ali, M., & Hamid, M. (1995). Design of an arabic programming language

(ARABLAN). Computer Languages, 21(3–4), 191–201. https://doi.org/10.1016/0096-

0551(95)00006-2

Allain, A. (2013). Jumping into c++.

Arnold, K., Gosling, J., & Holmes, D. (2013). The Java programing language. Journal of

Chemical Information and Modeling (Vol. 53). https://doi.org/10.1017/

CBO9781107415324.004

Asfawwesen, D. (2016). The Inceptive Construction And Associated Topics In Amharic

And Related Languages.

Bekele, D. (2001). Impact of Government Policies on the Development of ICT in Ethiopia.

International Conference on African Development Archives. Retrieved from

http://scholarworks.wmich.edu/africancenter_icad_archive/17

Bingöl, O., Küçüksille, E. U., & Kuru, İ. (2018). Chameleon Turkish Programming

Language. European Journal of Science and Technology, (14), 77–82.

https://doi.org/10.31590/ejosat.442334

Bird, R., & Wadler, P. (1988). Introduction to Functional Programming. System. Prentice

Hal International(UK). Retrieved from http://www.di.uminho.pt/~jas/

Teaching/Courses/mp3/06-07/tp.pdf

Brian W. Kernighan, D. M. R. (1978). The C Programming Language (2nd ed.). Prentice

Hall.

Bruce Eckel. (2003). Thinking in Java , 3 rd Edition.

Cowell, J., & Hussain, F. (2003). Amharic character recognition using a fast signature based

algorithm. Proceedings of the International Conference on Information Visualisation,

2003-Janua, 384–389. https://doi.org/10.1109/IV.2003.1218014

Dasgupta, S., & Hill, B. M. (2017). Learning to Code in Localized Programming Languages.

Proceedings of the Fourth (2017) ACM Conference on Learning @ Scale - L@S ’17,

33–39. https://doi.org/10.1145/3051457.3051464

EthioCloud. (n.d.). AxumLight. Retrieved March 4, 2019, from

https://www.ethiocloud.com/axumlight.aspx

62

Fernández-Villaverde, J., Guerrón, P., & Valencia, D. . . (2018). Programming Paradigm.

Retrieved March 3, 2019, from https://www.sas.upenn.edu/ ~jesusfv/

Lecture_HPC_7_Programming_Paradigms.pdf%0A

Feyman, R. (n.d.). EBNF: A Notation to Describe Syntax. Retrieved March 2, 2019, from

https://www.ics.uci.edu/~pattis/ICS-33/lectures/ebnf.pdf

Georgatos. (2002). " How applicable is Python as first computer language for teaching

programming Fotis Georgatos, (June).

Gezmu, A. M., Seyoum, B. E., Gasser, M., & Nürnberger, A. (2018). Contemporary

Amharic Corpus : Automatically Morpho-Syntactically Tagged Amharic Corpus.

Proceedings of the First Workshop on Linguistic Resources for Natural Language

Processing, 65–70.

Gurbani, K., Shelar, S. R., & Jitesh, P. (2008). Imperative Programming. Himalaya

Publishing House.

Kay, A. C. (1993). The early history of Smalltalk. ACM SIGPLAN Notices, 28(3), 69–95.

https://doi.org/10.1145/155360.155364

Kendal, S. (2009). Object Oriented Programming using Java. Simon Kendal & Ventus

Publishing.

Kirsal Ever, Y., & Dimililer, K. (2018). The effectiveness of a new classification system in

higher education as a new e-learning tool. Quality and Quantity, 52(s1), 573–582.

https://doi.org/10.1007/s11135-017-0636-y

Kitchenham, B., & Carn, R. (1990). Psychology of Programming. Psychology of

Programming. https://doi.org/10.1016/B978-0-12-350772-3.50022-7

Liang, Y. D. (2013). Java Programming Comprehensive Version (9th ed.). PEARSON.

Lindholm, T., & et al. (2015). The Java Virtual Machine Specification Java SE 8 Edition.

Managing. Retrieved from http://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf

Lindstorm, G. (2005). Programming with Python. IT Professional, 7(5), 10–16.

https://doi.org/10.1109/MITP.2005.120

Louden, K. C., & Lambert, K. A. (2011). Programming Languages: Principles and

Practices (3rded.). Retrieved from

http://books.google.com/books?id=6MOiYFg1DoIC&pgis=1

63

MacLennan, B. J. (1986). Principles of Programming Language. (R. and W. Holt, Ed.) (2nd

ed.).

Maurizio, G., & Simone, M. (2012). Programming Languages : Principles and Paradigms.

Saudi Med J (Vol. 33). https://doi.org/10.1073/pnas.0703993104

Nasser, R. (2012). The قلب Programming Language. Retrieved March 4, 2019, from

https://github.com/nasser/---

Negesse, F., & Ado, D. (2016). visual recognition of graphic variants of amharic letters :

psycholinguistic experiments, 8(1), 173–200.

Nørmarks, K. (2011). Programming Paradigm. Retrieved March 3, 2019, from

http://people.cs.aau.dk/~normark/prog3-03/pdf/paradigms.pdf

Papaioannou, S. K., & Dimelis, S. P. (2007). Information Technology as a Factor of

Economic Development: Evidence from Developed and Developing Countries.

Economics of Innovation and New Technology, 16(3), 179–194.

https://doi.org/10.1080/10438590600661889

Parr, T, & Fisher, K. (2011). LL(*): The foundation of the ANTLR parser generator.

SIGPLAN Not. (USA), 46(6), 425–436.

Parr, Terence. (2013). The Definitive ANTLR 4 Reference. Climate Change 2013 - The

Physical Science Basis. https://doi.org/10.1088/1751-8113/44/8/085201

Pfenning, F. (2006). Logic Programming. Retrieved March 4, 2019, from

https://www.cs.cmu.edu/~fp/courses/lp/lectures/lp-all.pdf

Ritchie, D. M. (2005). The development of the C language. ACM SIGPLAN Notices, 28(3),

201–208. https://doi.org/10.1145/155360.155580

Şehitoğlu, O. . (2008). Programming Languages: Logic paradigm. Retrieved March 3, 2019,

from http://ocw.metu.edu.tr/pluginfile.php/2986/mod_resource/content/0/lectures/14-

lp-paradigm.pdf

Sipser, M. (2012). Introduction to the Theory of Computation. (M. Lee, Ed.) (3rd ed.).

Cengage Learning.

Terrence W. Pratt, M. V. Z. (2000). Programming Languages: Design and Implementation

(4th ed.). Prentice Hall.

Tio, H., & Niekerk, V. (2001). introductioin, (1974), 1999–2001.

64

Topley, K. (2011). JavaFX TM Developer’s Guide. Addison-Wesley.

Vujošević-Janičić, M., & Tošić, D. (2008). The Role of Programming Paradigms in the First

Programming Courses. The Teaching of Mathematics, 11(2), 63–83.

Walter, S. L. (2012). Mother Tongue-based Education in Developing Countries : Some

emerging insights, (February), 1–25.

Wegner, P. (1987). Dimensions of Object-Based Language Design, 10(3), 168–182.

Retrieved from http://dl.acm.org/citation.cfm?id=38823

Zegiestowsky, A. M. (2017). Tango : A Spanish-Based Programming Language Tango, 3.

Zhang, P. (2017). Chinese Programming Language : Practice and Context, 1–27.

65

APPENDIX 1

GRAMMAR

The following section contains the full grammar specification of the programming language

that has been the focus of study in this thesis.

primitiveType : numericType |

BOOLEAN;

numericType : integerType | floatingType;

integerType : INT;

floatingType: DOUBLE;

expressionName : Identifier

 | ambigousName

 DOT Identifier;

methodName : Identifier;

ambigousName : Identifier |

ambigousName DOT Identifier;

/* production unit*/

start : importDeclaration*

classDeclaration* EOF;

importDeclaration : IMPORT Identifier ('.'

Identifier)* NEWLINE;

መሠረታዊዓይነት ፡ ቁጥራዊዓይነት | እወነት;

ቁጥራዊዓይነት ፡ ሙሉቁጥርዓይነት | ክፍልፋይዓይነት;

ሙሉቁጥርዓይነት ፡ ቁጥር;

ክፍልፋይዓይነት ፡ ነጥብ;

የትዕዛዝስም ፡ መለያ

 | አወዛጋቢስም ‘.’ መለያ;

የትዕዛዝስም ፡ መለያ;

አውዛጋቢያስም ፡ መለያ | አውዛጋቢያስም ‘.’ መለያ;

መጀመርያ ፡ ተጠቀምትዕዛዝ* | ስብስብትዕዛዝ*

EOF;

ተጠቀምትዕዛዝ : ተጠቀም መለያ(‘.’ መለያ)*

ዓመስመር;

66

APPENDIX 1

/* production from class */

classDeclaration : CLASS Identifier

superClass? classBody;

superClass : EXTENDS Identifier

NEWLINE;

classBody : INDENT

classBodyDeclaration* DEDENT

NEWLINE;

classBodyDeclaration :

classMememberDeclaration

 | staticInitializer

 | constructorDeclaration;

classMememberDeclaration :

fieldDeclaration

 | methodDeclaration

 | arrayDecl;

fieldDeclaration : varType

variableDeclarationList;

variableDeclarationList : variableDecl

(COMMA variableDecl)*;

variableDecl : variableId (ASSIGN

variableInitializer)?;

variableId : Identifier dims?;

variableInitializer : expression;

Continued

ስብስብትዕዛዝ ፡ ስብስብ መለያ አዉራሽስብስብ?

ስብስቦች;

አዉራሽስብስብ፡ ዉርስ መለያ ዓመስመር;

ስብስቦች፡ ገባ ስብስብዝርዝር* ወጣ ዓመስመር;;

ስብስብዝርዝር ፡ ስብስብዓባላት

 | ፍፁምአፀፃፍ

 | መስራችአፀፃፍ;

ስብስብዓባላት:

 ዓባላትአፀፃፍ

 | ትዕዛዝፅተፃፍ

 | ድርድርአፀጻፍ;

ዓባላትአፀፃፍ ፡ ተለዋዋጭዓይነት

ተለዋዋጭአፀፃፍዝርዝር;

ተለዋዋጭአፀፃፍዝርዝር፡ ተለዋዋጭአፀፃፍ(‘,’

ተለዋዋጭአፀፃፍ)*;

ተለዋዋጭአፀፃፍ : ተለዋዋጭመለያ (‘=’

ተለዋዋጭመሰየምያ);

ተለዋዋጭመለያ ፡ መለያ (‘[‘’]’)?;

ተለዋዋጭመሰየምያ : ትዕዛዞች;

67

APPENDIX 1

varType : unPrimitiveType

 | unReferenceType;

unPrimitiveType : numericType

 | BOOLEAN;

unReferenceType : referenceType;

referenceType : classType

 | typeVariable

 | arrayType;

classType : Identifier typeArguments;

typeVariable : Identifier;

arrayType : primitiveType dims

 | classType dims

 | typeVariable dims;

dims : '['']' ('['']')*;

typeArguments : referenceType (COMMA

referenceType)*;

methodDeclaration : methodHeader block;

methodHeader : result methodDecl;

result : varType | VOID;

methodDecl : Identifier LPAREN

formalParameterList? RPAREN;

Continued

ተለዋዋጭመለያ ፡ የመሰረታዊዓይነት

 | የተወካይአይነት;

የመሰረታዊዓይነት ፡ ቁጥራዊዓይነት

 | እዉነታ;

የተወካይአይነት ፡ ዉክልዓይነት;

ዉክልዓይነት ፡ ስብስባይነት

 | ተለዋዋጭዓይነት

 |ድርድርዓይነት;

ስብስብዓይነት ፡ መለያ መተክያዓይነት;

ተለዋዋጭዓይነት ፡ መለያ;

ድርድርዓይነት ፡ መሠረታዊዓይነት ’[‘’]’

 | ስብስብዓይነት ’[‘’]’

 | ተለዋውጭዓይነት ’[‘’]’;

መተክያዓይነት ፡ ውክልዓይነት

 (‘,’ ውክልዓይነት);

ትዕዛዝአፀፃፍ ፡የትዕዛዝእራስጌ | የትእዛዝጥርቅሞ;

የትእዛዝእራስጌ : ውጤት ትእዛዝአፀፃፍ;

ውጤት : ተለዋዋጭአይነት | ባዶ;

ትእዛዝአፃፃፍ ፡ መለያ ግቅንፍ ቦታመያዣዎችዝርዝር?

ቀቅንፉ;

68

APPENDIX 1

formalParameterList : formalParameters

COMMA formalParameters

 |formalParameters;

formalParameters : formalParameter (','

formalParameter)*;

formalParameter : varType variableId;

staticInitializer : 'static' block;

constructorDeclaration : constructorDecl

constructorBody;

constructorDecl : Identifier LPAREN

formalParameterList? RPAREN;

constructorBody : INDENT blockStmts?

DEDENT;

/*production from Arrays */

arrayDecl : ARRAY Identifier ('='

arrayType arrayInitializer)?;

arrayInitializer : '{'

variableInitializerList'}';

variableInitializerList : variableInitializer

(',' variableInitializer)*;

Continued

ቦታመያዣዎችዝርዝር ፡ ቦታመያዣዎች

 ‘,’ ቦታመያዣዎች

 | ቦታመያዣዎች;

ቦታመያዣዎች : ቦታመያዣ (',‘ ቦታመያዣ)*;

ቦታመያዣ ፡ ተለዋዋጭዓይነት ተለዋዋጭመለያ;

ፍፁምአፀፃፍ ፡ ‘ፍፁም’ የትእዛዝጥርቅሞ;

መስራችአፀፃፍ ፡ መስራችእራስጌ መስራችአካል;

መስራችእራስጌ ፡ መለያ ግቅንፍ ቦታመያዣዎችዝርዝር?

ቀቅንፍ;

መስራችአካል ፡ ገብ ጥርዝዓረፍተነገሮች? ወጣ;

ድርድርአፀፃፍ ፡ ‘ድርድር’ መለያ (‘=’ ድርድርዓይነት

ድርድርመሰያሚያ)?;

ድርድርመሰየሚያ ፡ ‘{‘

ተለዋዋጭመሰየሚያዝርዝር’}’;

ተለዋዋጭመሰየሚያዝርዝር ፡ ተለዋዋጭመሰየሚያ (‘,’

ተለዋዋጭመሰየሚያ)*;

69

APPENDIX 1

/* production from blocks and stmts */

block : INDENT blockStmts? DEDENT;

blockStmts : blockStmt+;

blockStmt : localVariableDeclaration

NEWLINE

 | stmt;

localVariableDeclaration : varType

variableDeclarationList;

stmt : stmtWithoutTrailingSubstmt

 | ifStmt

 | ifElseStmt

 | whileStmt;

stmtFullIf : stmtWithoutTrailingSubstmt

 | ifElseStmtFullIf

 | whileStmtFullIf;

stmtWithoutTrailingSubstmt :

expressionStmt

 | breakStmt

 | continueStmt

 | returnStmt

 | tryStmt;

expressionStmt : stmtExpr;

stmtExpr : assignment

Continued

የትዕዛዝጥርቅም ፡ ገባ ጥርዝዓረፍተነገሮች? ወጣ;

ጥርዝዓረፍተነገሮች ፡ ጥርዝዓረፍተነገር+;

ጥርዝዓረፍተነገር ፡ ጊዜያዊተለዋዋጭአፀፃፍ

አዲስመስመር | ዓረፍተነገር;

ጊዜያዊተለዋዋጭአፀፃፍ ፡ ተለዋዋጭዓይነት

ተለዋዋጭአፀፃፍዝርዝር;

ዓረፍተነገር ፡ ተከታይየሌለውዓረፍተነገር

 | ከሆነዓረፍተነገር

 | ከሆነካልሆነዓረፍተነገር

 | እስከሆነዓረፍተነገር;

ሙሉከሆነዓረፍተነገር ፡ ተከታይየሌለውዓረፍተነገር

 | ከሆነካልሆነዓረፍተነገርሙሉከሆነ

;

 | እስከሆነዓረፍተነገርሙሉከሆነ;

ተከታይየሌለውዓረፍተነገር ፡ ትእዛዛዊዓረፍተነገር

 | አቋርጥዓረፍተነገር

 | ቀጥልአረፍተነገር

 | መልስዓረፍተነገር

 | ሞክርዓረፍተነገር

ትእዛዛዊዓረፍተነገር ፡ ትእዛዛዊዓ_ነገር

ትእዛዛዊዓ_ነገር ፡ ስያሜ

70

APPENDIX 1

 | preIncrExpr

 | preDecrExpr

 | postIncrExpr

 | postDecrExpr

 | methodInvocation

 | classCreationExpr;

ifStmt : LPAREN expression RPAREN

'if' stmt '\n' END;

ifElseStmt : LPAREN expression

RPAREN IF stmtFullIf END ELSE stmt

END;

ifElseStmtFullIf : LPAREN expression

RPAREN IF stmtFullIf END ELSE

stmtFullIf END;

whileStmt : LPAREN expression

RPAREN WHILE INDENT stmt

DEDENT;

whileStmtFullIf : LPAREN expression

RPAREN WHILE INDENT stmtFullIf

DEDENT;

breakStmt : BREAK;

returnStmt : RETURN expression?;

continueStmt : CONTINUE;

tryStmt : TRY block catches;

catches : catchClause catchClause*;

Continued

 | ቅድመጭመራትዕዛዝ

 | ቅድመቅነሳትዕዛዝ

 | ድህረጭመራትዕዛዝ

 | ድህረቅነሳትዕዛዝ

 | ስብስብምስረታትዕዛዝ

 | ትዕዛዝምስረታ;

ከሆነዓረፍተነገር ፡ ‘(‘ ትዕዛዝ ‘)’ ከሆነ ዓረፍተነገር

አዲስመስመር ጨርስ

ከሆነካልሆነአረፍተነገር ‘(‘ ትዕዛዝ ‘)’

ዓ_ነገርሙሉከሆነ ጨርስ ካልሆነ ዓረፍተነገር ጨርስ

ከሆነካልሆነዓረፍተነገርሙሉከሆነ ፡ ‘(‘ ትዕዛዝ ‘)’

ከሆነ ዓ_ነገርሙሉከሆነ ጨርስ ካልሆነ

ዓ_ነገርሙሉከሆነ ጨርስ

እስከሆነዓረፍተነገር ፡ ‘(‘ ትዕዛዝ ‘)’ እስከሆነ ገባ

ዓረፍተነገር ወጣ;

እስከሆነዓረፍተነገርሙሉከሆነ : '('ትዕዛዝ')' እስከሆነ

ገባ ዓ_ነገርሙሉከሆነ ወጣ;

አቋርጥዓረፍተነገር ፡ አቋርጥ;

መልስዓረፍተነገር ፡ መልስ ትዕዛዝ?;

ቀጥልአረፍተነገር ፡ ቀጥል;

ሞክርዓረፍተነገር ፡ ሞክር የትዕዛዝጥርቅም ቁጥጥር;

ቁጥጥር ፡ ስህተትቁጥጥር ስህተትቁጥጥር*;

71

APPENDIX 1

catchClause : CATCH LPAREN

catchFormalParameter RPAREN block;

catchFormalParameter : catchType

variableId;

catchType : classType*;

/* Expr */

primary : literal | '(' expression ')';

classCreationExpr : variableDecl ASSIGN

NEW LPAREN Identifier RPAREN;

methodInvocation : methodName

LPAREN argumentList?RPAREN;

argumentList : expression (COMMA

expression)*;

expression : assignmentExpr;

assignmentExpr : conditionalExpr |

assignment;

assignment : leftHandSide

assignmentOperator expression

leftHandSide : expressionName;

assignmentOperator : assign | mul_assign

Continued

ስህተትቁጥጥር ፡ ቁጥጥር ‘(‘ የስህተትዓይነት’)’

የትዕዛዝጥርቅም;

የስህተትዓይነት ፡ ስህተትዓይነት ስህተትመለያ;

ስህተትዓይነት ፡ ስብስብዓይነት*

/*ትዕዛዝ*/

ግብዓት ፡ ግብዓትጥርቅም | ‘(‘ ትዕዛዝ’)’

ስብስብምስረታትዕዛዝ ፡ ተለዋዋጭአፀፃፍ ‘=’

አዲስ’(‘መለያ’)’

ትዕዛዝምስረታ ፡ የትዕዛዝስም

‘(‘ቦታመያዣተለዋዋጭዝርዝር’)’

ቦታመያዣተለዋዋጭዝርዝር ፡ ትዕዛዝ (‘,’ ትዕዛዝ)*

ትዕዛዝ ፡ ስያሜትዕዛዝ

ስያሜትዕዛዝ ፡ ሁኔታዊትዕዛዝ |

 ስያሜ

ስያሜ ፡ የግራክፍል ስያሜምልክት

 ትዕዛዝ

የግራክፍል ፡ የትዕዛዝስም

ስያሜምልክት ፡ ስያሜ

 | ብዜት_ስያሜ

72

APPENDIX 1

 | div_assign

 | mod_assign | add_assign

 | sub_assign;

conditionalExpr : conditionalOrExpr ;

conditionalOrExpr : conditionalAndExpr

 | conditionalOrExpr OR

conditionalAndExpr;

conditionalAndExpr : andExpr

 | conditionalAndExpr AND

andExpr;

andExpr : equalityExpr

 | andExpr BITAND equalityExpr;

equalityExpr : relationExpr

 | equalityExpr EQUAL

relationExpr;

relationExpr : addExpr

 | relationExpr LT expression

 | relationExpr GT expression

 | relationExpr LE expression

| relationExpr GE expression;

addExpr : multExpr | addExpr ADD

multExpr

 | addExpr SUB multExpr;

 Continued

 | ማካፈል_ስያሜ

 | ቀሪ_ስያሜ | ድምር_ስያሜ

 | መቀነስ_ስያሜ

ሁኔታዊትዕዛዝ ፡ ሁኔታዊወይትዕዛዝ

ሁኔታዊወይትዕዛዝ ፡ ሁኔታዊእናትዕዛዝ |

ሁኔታዊወይትዕዛዝ ወይ ሁኔታዊእናትዕዛዝ

ሁኔታዊእናትዕዛዝ ፡ እናትዕዛዝ

 | ሁኔታዊእናትዕዛዝ

 እና እናትዕዛዝ

እናትዕዛዝ ፡ እኩሌታትዕዛዝ

 | እናትዕዛዝ

 ነጥለእና እኩሌታትዕዛዝ

እኩሌታትዕዛዝ ፡ ማወዳደሪያትዕዛዝ

 | እኩሌታትዕዛዝ እኩል

ማወዳደርያትዕዛዝ

ማወዳደርያትዕዛዝ ፡ ድምርትዕዛዝ

 | ማወዳደርያትዕዛዝ ያንሳል ትዕዛዝ

 | ማወዳደርያትዕዛዝ ይበልጣል ትዕዛዝ

 | ማወዳደርያትዕዛዝ ያንሳልእኩል ትዕዛዝ

 | ማወዳደርያትዕዛዝ ይበልጥእኩል ትዕዛዝ

ድምርትዕዛዝ ፡ ብዜትትዕዛዝ

 | ድምርትዕዛዝ ድምር ብዜትትዕዛዝ

 | ድምርትዕዛዝ ቀንስ ብዜትትዕዛዝ

73

APPENDIX 1

addExpr : multExpr

 | addExpr ADD multExpr

 | addExpr SUB multExpr;

multExpr : unaryExpr

 | multExpr MUL unaryExpr

 | multExpr DIV unaryExpr

 | multExpr MOD unaryExpr;

unaryExpr : preIncrExpr

 | preDecrExpr

 | ADD unaryExpr

 | SUB unaryExpr

 | postfixExpr;

preIncrExpr: INC unaryExpr;

preDecrExpr: DEC unaryExpr;

postfixExpr:(primary | expressionName)

 (INC | DEC)*;

postIncrExpr: postfixExpr INC;

postDecrExpr: postfixExpr DEC;

/* keywords */

Array: 'array'

BOOLEAN: 'boolean'

BREAK: 'break'

CATCH: 'catch'

CLASS: 'class'

Continued

ድምርትዕዛዝ ፡ ብዜትትዕዛዝ

 | ድምርትዕዛዝ ድምር ብዜትትዕዛዝ

 | ድምርትዕዛዝ ቀንስ ብዜትትዕዛዝ

ብዜትትዕዛዝ ፡ ነጠላትዕዛዝ

 | ብዜትትዕዛዝ ብዜት ነጥላትዕዛዝ

 | ብዜትትዕዛዝ ሲካፈል ነጥላትዕዛዝ

 | ብዜትትዕዛዝ ቀሪ ነጥላትዕዛዝ

ነጥላትዕዛዝ ፡ ቅድመጭመራትዕዛዝ

 | ቅድመቅነሳትዕዛዝ

 | ድምር ነጠላትዕዛዝ

 | ቀንስ ነጠላትዕዛዝ

 | ድህረቅፅልትዕዛዝ;

ቅድመጭመራትዕዛዝ ፡ ጭመሪ ነጥላትዕዛዝ;

ቅድመቅነሳትዕዛዝ ፡ ቅናሽ ነጥላትዕዛዝ;

ድህረቅፅልትዕዛዝ ፡ (ግብዓት | የትዕዛዝስም) (ጭማሪ |

ቅናሽ)*;

ድህረጭመራትዕዛዝ፡ ድህረቅፅልትዕዛዝ ጭማሪ

ድህረቅነሳትዕዛዝ፡ ድህረቅፅልትዕዛዝ ቅናሽ

/* አብይቃላት*/

ድርድር = 'ድርድር'

እዉነታ = 'እወነታ'

አቁርጥ = 'አቋርጥ'

ቁጥጥር = 'ቁጥጥር'

ስብስብ = 'ስብስብ'

አይለወጤ = 'አይለወጤ'

74

APPENDIX 1

CONST: 'const'

CONTINUE: 'continue'

DOUBLE: 'double'

ELSE: 'else'

END: 'end'

EXTENDS: 'extends'

If: 'if'

IMPORT: 'import'

INT: 'int'

NEW: 'new'

RETURN: 'return'

STATIC: 'static'

TRY: 'try'

VOID: 'void'

TRUE: 'true'

FALSE:’false’

Continued

ቀጥል = 'ቀጥል'

ነጥብ = 'ነጥብ'

ካልሆነ = 'ካልሆነ'

ጨርስ = 'ጨርስ'

ዉርስ ='ዉርስ'

ከሆነ = 'ከሆነ'

ተጠቀም = 'ተጠቀም'

ቁጥር = 'ቁጥር'

አዲስ = 'አዲስ'

መልስ = 'መልስ'

ፍፁም = 'ፍፁም'

ሞክር = 'ሞክር'

ባዶ = 'ባዶ'

እወነት = 'እወነት'

ሐሰት = ‘ሐሰት’

