
A COMPARATIVE ANALYSIS OF RELATIONAL

AND NON-RELATIONAL DATABASES FOR WEB

APPLICATION

A THESIS SUBMITTED TO THE GRADUATE
SCHOOL OF APPLIED SCIENCES

OF
NEAR EAST UNIVERSITY

By
WONDWESSEN HAILE ADDAL

In Partial Fulfillment of the Requirements

for the Degree of Master of Science

in
Software Engineering

NICOSIA, 2019

A
 C

O
M

P
A

R
A

T
IV

E
 A

N
A

L
Y

S
IS

 O
F

R
E

L
A

T
IO

N
A

L

A COMPARATIVE ANALYSIS OF RELATIONAL

AND NON-RELATIONAL DATABASES FOR WEB

APPLICATION

A THESIS SUBMITTED TO THE GRADUATE
SCHOOL OF APPLIED SCIENCES

OF
NEAR EAST UNIVERSITY

By
WONDWESSEN HAILE ADDAL

In Partial Fulfillment of the Requirements

for the Degree of Master of Science

in
Software Engineering

NICOSIA, 2019

Wondwessen Haile Addal: A COMPARATIVE ANALYSIS OF RELATIONAL AND

NON-RELATIONAL DATABASES FOR WEB APPLICATION

Approval of Director of Graduate School of Applied

Sciences

Prof. Dr. Nadire ÇAVUŞ

We certify this thesis is satisfactory for the award of the degree of Masters of Science

in Software Engineering

Examining Committee in Charge:

Assist. Prof. Dr. Kaan UYAR Committee Chairman, Computer Engineering

Department, NEU

Assist. Prof. Dr. Erkut İnan İŞERİ Committee Member, Electrical and Electronic

Engineering Department, NEU

Assist. Prof. Dr. Ümit İLHAN Supervisor, Committee Member, Computer

Engineering Department, NEU

I hereby declare that all information in this document has been obtained and presented in

accordance with academic rules and ethical conduct. I also declare that, as required by these

rules and conduct, I have fully cited and referenced all material and results that are not

original to this work.

Name, Last name: Wondwessen Haile

Signature:

Date:

ii

ACKNOWLEDGEMENT

I am very grateful to my advisor, Assist. Prof. Dr. Umit Ilhan for his continuous follow up,

advisory and encouragement in planning and implementation of my master’s thesis, without

his encouragement and motivation finalization in time wouldn’t have been a reality.

The moral and financial support from my sister Agernesh Terefe, specially during periods

of my acclimatization in Northern Cyprus was also of big value for her gratefulness that has

helped me to be successful in my stay in near east university.

The special memory of my Dad and Mama, seeing your strength is also with considerable

place in my life as memorizing your parenthood gives me special vigor.

iii

ABSTRACT

For the past several years, the data storage technology has been developed to store various

types information with different specification. Manly relational database has been the

default choice for data storage, especially for commercial applications. But now many other

database technologies are emerged with high performance, scalability, security, speed to

retrieve data in different form. Because of having many database applications, it is difficult

task to choose the appropriate database technology for enterprise applications. This paper

aims to provide theoretical and the extensive experimental comparisons on four databases

technologies MYSQL, PostgreSQL, MongoDB and Cassandra. Due to those database

technologies are currently used in different enterprise system, this research provides a

possible much investigation and report faster and more detailed analysis based on the

concrete examination and test cases. The test cases for research includes several key

elements such as the nature of data modeling, data, scalability and speed. We can measure

and analyze the performance of databases based on CRUD (create, read, update and delete)

operations. Moreover, the study includes the difference among those databases regarding

with their popularity and community support. At last, the performance of the databases

explained based on CRUD operations. This factor helps web application architects and

designers to choose the suitable database software for their commercial applications.

Keywords: SQL; NoSQL; MYSQL, PostgreSQL; MongoDB; CASSANDRA; Database

iv

ÖZET

Geçtiğimiz birkaç yıl boyunca, veri depolama teknolojisi, farklı özelliklere sahip çeşitli

tiplerdeki bilgileri depolamak için geliştirilmiştir. Manly ilişkisel veritabanı, özellikle ticari

uygulamalar için ve veri depolama için varsayılan seçenek olmuştur. Ancak şimdi birçok

başka veritabanı teknolojisi, yüksek performans, ölçeklenebilirlik, güvenlik ve farklı

formlarda veri alma hızı ile ortaya çıkmıştır. Birçok veritabanı uygulamasından dolayı,

kurumsal uygulamalar için uygun veritabanı teknolojisini seçmek zor bir iştir. Bu makale,

dört veritabanı teknolojisi MYSQL, PostgreSQL, MongoDB ve MongoDB ile ilgili teorik

ve kapsamlı deneysel karşılaştırmalar sunmayı amaçlamaktadır. Çünkü bu veritabanı

teknolojileri şu anda ertelenmiş kurumsal sistemde kullanıldığından, bu araştırma olası bir

incelemeyi mümkün kılıyor ve somut incelemeye ve test durumlarına dayanarak daha hızlı

ve daha ayrıntılı analizler sunuyor. Araştırma için test senaryoları, veri modellemenin

doğası, veri, ölçeklenebilirlik ve hız gibi temel unsurları içerir. Veritabanlarının

performansını CRUD (oluşturma, okuma, güncelleme ve silme) işlemlerine dayanarak

ölçebilir ve analiz edebiliriz. Ayrıca, çalışma, popülariteleri ve topluluk desteği ile ilgili

olarak bu veritabanları arasındaki farkı içermektedir. her birinin artılarını ve eksilerini

belirleyebiliriz. Son olarak, veritabanlarının performansı CRUD işlemlerine dayanarak

açıklanmıştır. Bu faktör web uygulama mimarlarının ve tasarımcılarının ticari uygulamaları

için uygun veritabanı yazılımını tercih etmelerine yardımcı olur.

Anahtar Kelimeler: SQL; NoSQL; MYSQL, PostgreSQL; MongoDB; CASSANDRA;

Veritabanı

v

TABLE OF CONTENTS

ACKNOWLEDGMENT .. ii

ABSTRACT .. iii

ÖZET .. iv

TABLE OF CONTENTS .. v

LIST OF FIGURES .. …....... ... viii

LIST OF TABLES ... ix

LIST OF ABBREVIATIONS ... x

CHAPTER 1:INTRODUCTION

1.1 Motivation ... 2

1.2 Research Objectives .. 3

1.3 Scope of The Research.. 3

1.4 Thesis Structure and Outline ... 4

CHAPTER 2: BASIC OVERVIEW AND LITERATURE REVIEW

2.1 CAP Theorem .. 7

2.2 ACID Properties... 8

2.3 Database Scalability .. 10

2.4 Sharding .. 11

2.5 Data Replication.. 12

CHAPTER 3: METHODOLOGY

3.1 Methods... 14

3.2 General Concept of SQL And NoSQL Database ... 14

3.3 Databases Selection .. 16

3.4 Criteria for Database Comparison .. 18

3.5 Data Sets ... 19

3.6 Resources .. 20

3.7 Process .. 20

vi

CHAPTER 4: INVESTIGATED DATABASES COMPARISON

4.1 MYSQL ... 21

 4.1. Data model .. 21

 4.1.2 Supported languages and Platforms ... 25

 4.1.2 Documentation, community and support.. 25

4.2 PostgreSQL .. 25

 4.2.1 Data model ... 26

 4.2.2 Supported languages and platforms ... 28

 4.2.2 Documentation, community and support... 28

4.3 Cassandra ... 30

 4.3.1 Data model ... 31

 4.3.2 Supported languages and platforms ... 36

 4.3.2 Documentation, community and support... 36

 4.4 MongoDB .. 36

 4.4.1 Data model .. 37

 4.3.2 Supported languages and platforms .. 41

 4.3.2 Documentation, community and support.. 41

CHAPTER 5: IMPLEMENTATIONS

 5.1 Query Execution Time ... 41

 5.2 MySQL and PostgreSQL Query ... 42

 5.3 MongoDB Operations... 43

 5.4 Cassandra Operations ... 44

 5.5 Testing Results ... 45

 5.5.1 Result for INSERT Operation ... 46

 5.5.2 Result for SELECT Operation ... 47

 5.5.3 Result for UPDATE Operation.. 49

 5.5.4 Result for DELETE Operation ... 50

CHAPTER 6: EVALUATION

 6.1 Data Model 52

vii

 6.2 Database Speed Comparison .. 54

 6.3 Community and Support .. 54

CHAPTER 7: CONCLUSION .. 56

REFERENCES ... 58

APPENDICES

Appendix 1: Code for Elapsed Time of CRUD Operations... 63

Appendix 2: Execution of MySQL query in PHP... 65

Appendix 3: Execution of PostgreSQL query in PHP... 67

Appendix 4: Execution of MongoDB query in PHP... 70

Appendix 5: Execution of Cassandra query in PHP.. 72

viii

LIST OF FIGURES

Figure 2.1: CAP theorem .. 7

Figure 2.2: Vertical and horizontal scaling example .. 12

Figure 2.3: A Sharding Example. ... 13

Figure 2.4: A Replication Example. ... 13

Figure 3.1: Popularity of SQL and NoSQL database. .. 16

Figure 3.2: Popularity of database .. 17

Figure 3.3: Show overview of CRUD operations ... 19

Figure 4.1: Shows a logical view of MySQL’s architecture. ... 22

Figure 4.2: MySQL replication example .. 23

Figure 4.3: MySQL scalability ... 24

Figure 4.4: Shows architectures of the PostgreSQL database .. 27

Figure 4.5: Shows replication in PostgreSQL .. 28

Figure 4.6: Relational table example .. 29

Figure 4.7: Relationship between tables relational databases example 30

Figure 4.8: Keyspace architecture in Cassandra. .. 32

Figure 4.9: A Column family. .. 33

Figure 4.10: Cassandra ring replication example ... 34

Figure 4.11: Cassandra scalability example ... 35

Figure 4.12: MongoDB collection example ... 37

Figure 4.13: Denormalized document structure ... 38

Figure 4.14: Replication in mongo ... 39

Figure 4.15: MongoDB scalability example .. 40

Figure 5.1: Average performance of INSERT operation in seconds 47

Figure 5.2: Average performance of SELECT operation in seconds 48

Figure 5.3: Average Performance of UPDATE Operation in Seconds 50

Figure 5.4: Average performance of DELETE operation in seconds 51

ix

LIST OF TABLES

Table 3.1: Overview of SQL vs. NoSQL database………...………………………….... 15

Table 5.1 : Database versions ... 41

Table 5.2: Average Execution Time in seconds for the INSERT Operation 46

Table 5.3: Average Execution Time in seconds for the SELECT Operation 48

Table 5.4: Average Execution Time in seconds for the UPDATE Operation 49

Table 5.5: Average Execution Time in seconds for the DELETE Operation 51

Table 6.1: Evaluation of Selected Databases .. 55

x

LIST OF ABBREVIATIONS

ACID: Atomicity, Consistency, Isolation, and Durability

BSD: Berkeley Software Distribution

BSON: Binary Structure Object Notation

CAP: Consistency, Availability and Partition Tolerance

CPU: Central Processing Unit

CRUD: Create, Read, Update, Delete

DB: Database

DBMS: Database Management System

GPA: General Public License

IT: Information Technology

JSON: JavaScript Object Notation

NOSQL: Not Only SQL

PC: Personal Computer

RAM: Random Access Memory

RDBMS: Relational Database Management System

SQL: Structured Query Language

SSTABLE: Static and Sorted Table

UUID: Universally Unique Identifier

WAL: Write Ahead Log

1

CHAPTER 1

INTRODUCTION

The Database is a kind of data collections. It is the backbone of many software systems and

choosing the appropriate technology needs an elaborate process. Though when using the

word database, we mean to the entire database system, the term basically mentions only to

the collection and data. The system which stores Big data, transactions, complications or any

other feature of the database is the Database Management System (DBMS). What follows is

an enlightenment of the two database types which will be contrasted in this thesis. The focus

of this thesis is to explore Relational and non-relational database systems

Relational database model has been serving the web community from 1970 up to now with

a higher degree of consistency and functionality. This is because of their powerful futures in

terms of data modeling, rich query capability. However, in the late 90s, the data that is to be

manipulated in various web applications are constantly changed and becomes more

sophisticated to manage in the traditional way. especially, the relational database system has

limitations when it approaches big data, non-structured and large amount of data. These leads

the web community and software architectures to focus on the new way of data handling

system with higher consistency and scalability compared with the traditional database

system. Not only SQL or NoSQL is a new conventional database technology that has

developed in the recent past as another alternative solution to relational databases.

The relational database is widely used technology in the history of the web industry that has

been developed for the last 30 years(Mohamed, et al., 2014). Lots relational databases have

come and gone, and presently, there are only a few possibilities to choose from. On the other

hand, advanced database technologies such as NoSQL technology provides masses of

options through various classifications including key-value, document-oriented, wide-

column and graph databases. Each database is designed for particular use cases and has its

own strengths and weaknesses.

In this thesis, we explore these two major types of databases systems, relational databases

(SQL) and non-relational databases (NoSQL) to investigate their features, benefits, and

2

weaknesses based on the data model and query capability. Selecting the appropriate database

for web applications is a very long-term decision that can have severe effects if the business

logic cannot be supported easily by the selected database system.

This investigation basically helps the software architectures and developers to look across

the possibility to choose the right database system based on analyzing the advantage and

disadvantages of those databases before starting their business.

1.1 Motivation

Development of applications is now continuously shifting. Every year software developers

discover a new application that tries to make our lives more convenient. And the

development of the software industry is mainly depending on the design and architectures of

software to provide a solution for the given problem domain. The quality of the software

system can be measured from different parameters, parallel to those parameters we have to

consider the right database technologies to maximize the performance of the software

products, so providing quality products for the community is directly related to the process

of selecting appropriate database technology. Choosing the right database technology for the

right application is a time-consuming activity.

In addition, the size of the data is continuously increasing. The huge volume of data is getting

collected evaluated, and processed in different business enterprises today, and it becomes

required to collect several kinds of structured, semi-structured and unstructured data and its

use grow into an integral part and this shows the size of the data richness to applications,

widely known as big data.

In order to provide quality products to the community and to address these issues related to

a large volume of data, the scalability and data processing capability of database technologies

needs to be improved. currently, there are various types of database, such as Relational

databases, and widely accepted NoSQL databases. This day, there are a lot of computation

among several databases, and each database has own advantages and disadvantages.

 RDBMS have been viewed as a standard for web applications compared with other storage

technologies. they represent and hold data in tables and rows. They're grounded on an outlet

3

of algebraic set theory which is acknowledged as relational algebra. Although the current

software products are consuming large volumes of data with varying structures, they are

straggling to meet the demands of modern applications. Relational databases use Structured

Querying Language (SQL), which is mostly used in different applications mainly involves

the management of several. Meanwhile, A non-relational database is a modern storage

system that stores and represent complex data in a flexible structure. this makes them more

acceptable for advanced web applications than relational databases systems. additionally, the

data model of NoSQL databases is highly enhanced to manipulate non-structured data.

NoSQL databases like MongoDB represent data in collections of JSON documents.

1.2 Research Objectives

The objective of this study is to compare SQL based and NoSQL based databases in three

parameters. The research will present the positive and negative impacts of all selected

database technologies on web applications. The assessment of these two databases are based

on data model and query performance of each database technologies.

The tree parameters to accomplish in this study are:

❖ To study the nature of those databases by assessing various literature including

• Programming language support, documentation and community support

• Popularity among IT people

❖ To investigate the data model of each database using relatively similar data.

❖ To Contrast the performance of each database by writing queries on a single node

1.3 Scope of The Research

This research assesses non-relational and relational databases from the perspective of data

model and performance use cases. The analysis depends on how the given data should be

represented, manipulated, structured on those databases and Examining the query

performance of each database based on read and write query operations. Based on the result

of examination we present the advantage and disadvantage of those technologies. These are

important points for analyzing the characteristics of data, which is to be supported by

4

databases that help system architecture and developers to choose the right database system

for their web applications

1.4 Thesis Structure and Outline

The first two chapters of the study provide the introductory, purpose of the research and

literature review part. The remaining part of the research describes the main features and

capabilities of the investigated Databases with data modeling and query performance test.

Chapter 2 Basic Overviews and Literature Review: This chapter focused on reviewing

materials related to the study, such as related journals, websites, and books etc.

Chapter 3 Research methodology: This chapter States the research methodologies used to

achieve this research including selecting the databases required to perform the experiment,

the key construct identification, the data model along with choosing databases technologies.

Chapter 4 Investigated Databases Comparison: This chapter states data model of the

selected databases based on comparatively related data

Chapter 5 Implementation: This chapter emphasizes on experimental testing on each

database based on CRUD operations with evaluation of the results of the experiment

Chapter 6 Evaluation: Assesses the difference among the selected databases based on the

information from chapter 4 and 5

Chapter 7 Conclusion: summary of the entire research

5

CHAPTER 2

BASIC OVERVIEWS AND LITERATURE REVIEW

There have been enormous researches done to compare and assess existing relational and

non-relational databases. experiments targeting on a variety of aspects such as performance,

scalability, transaction model. Performance and scalability are the two most significant

features to compare database technologies. Therefore, it has been covered thoroughly in

many researches work (Tudorica & Bucur, 2011).Few scholars have also enlisted the

advantage and disadvantages of both SQL and NoSQL databases. This chapter will focus on

the basic concepts of both relational and non-relational databases from the perspectives of

different related scholars and literature articles. This articles and related concepts will help

the readers to get the right track to know how the remaining activities of research will going

on.

The SQL and NoSQL databases are evaluated to measure the performance of the two

categories of the databases. The evaluation was done by testing MySQL database from

RDBMS category and contrast with MongoDB of the NoSQL database. Based on the authors

implementation, they realize that MongoDB is more efficient than MySQL.(Gyorodi, et al.,

2015)

Similarly, the performance of relational and non-relational databases was examined by

writing large queries and calculating the scalability and efficiency of the selected databases.

In this scholar, the authors come up with the challenges, results and the summery from

performance test of two NoSQL databases and one relational database systems. They

compare 4 databases Cassandra, MongoDB, Couch base Server, and MS SQL Server, based

on performance and scalability benchmarks to measure the efficiency of those databases

when behaving bulky write requests from real-world organization data. The experiment was

held on assessing database efficiency by execution large queries over mostly realistic data

(Lourenço, et al., 2018). Based on the result of the test they provide conclusions for real-

world system.it is one of the most visible ways of characterizing the performance of

databases. Furthermore, other authors examine the performance of NoSQL and SQL

6

databases based on key-value stores, This article contrasts key-value store implementations

on NoSQL and SQL databases. Though NoSQL databases are mostly enhanced for key-

value stores, SQL databases are not optimized like NoSQL databases. The author’s presence,

not all NoSQL databases perform better than the SQL databases They compare read, write,

delete, and instantiate operations on the key-value storage. They detect that even within non-

relational databases there is a wide variation in the performance of these operations. This

article also presents the selection of NoSQL databases provides an experimental setup to

measure the performance of each database based on the operations. Experimental outcomes

measure the timing of these operations and they summarize their findings of how the

databases stack up against each other (Li & Manoharan, 2013).

 As well as, the performance of MongoDB and MySQL database is examined based on

insertion and retrieval operations using a web/android application to explore load balancing

(Patil, Hanni, Tejeshwar, & Patil, 2017). This article answers how the data obtained from

the various input and output sources should be treated in the several steps to prevent data

loss, various strategies were implemented corresponding to prevent the data losses, for

implementation purpose the authors used NoSQL and MongoDB databases. Mongo DB is a

cross-platform, document-oriented database that provides, high performance and easy

scalability confirming effective data management with its noticeable feature of auto-

sharding. This paper examines the time taken by the system to read/ insert the data into a

MySQL database and MongoDB. The retrieval time or total time is taken by MySQL

database to validate user by fetching data is more than a total time taken by MongoDB.

Another similar research was performed by Jain and Upadhyay to analyze the transition from

relational to non-relational databases (Jain & Upadhyay, 2017). In this paper, the authors

explain the modeling about the changes from SQL to NoSQL database also carrying out its

pros and cons. They conclude that a NoSQL database is faster and better than the SQL

database in many ways, ranging from speed to flexibility. This is the reasons many enterprise

organizations are ever-changing their projects so as to use MongoDB instead of traditional

SQL database NoSQL is also called the future of data economy. They also suggest some

drawbacks of NoSQL databases from the perspective of data security.

7

2.1 CAP Theorem

Almost nineteen years ago, in 2000, Eric Brewer announced the idea that there is a vital

trade-off between consistency, availability, and partition tolerance. This trade-off, which has

become recognized as the CAP Theorem, has been broadly discussed ever since.

CAP Theorem is very vital in the Big Data world, especially when we want to make trade-

offs between the three, primarily based on our special use case

Figure 2.1: CAP theorem(Syed Sadat Nazrul, 2018)

The cap theorem is a tool that helps system designers to make them attentive on the changes

while designing distributed web systems. many distributed systems are directly influenced

by CAP theorem. It made designers attentive of extensive range of tradeoffs to consider

while designing distributed web systems. A web service is executed by a set of servers,

possibly distributed over a set of various data centers in different geographical area. Clients

make requests of the service and the server respond back to the clients

According to Eric Brewer, in any networked distributed-data system there is an essential

trade-off between consistency, availability, and partition tolerance (Brewer, 2003). The

8

theorem states that networked distributed-data systems can only guarantee/strongly support

two of the following three parameters:

Consistency - A guarantee that every server in a distributed system returns the right, most

recent, similar, and successful write. Consistency refers to every client having the identical

view of the data. There are many types of consistency models. Consistency in CAP refers to

linearizability or sequential consistency, a very strong form of consistency.

Availability - The second requirement of the CAP Theorem is that the service assures

availability. Every server (non-failing) returns a response for all read and write requests in a

reasonable amount of time. a fast response is relevant than a slow response, but for the

purpose of CAP, it turns out that even needing a subsequent response is sufficient to create

problems. The key point here is every non-failing server in the networked environment. To

be accessible, every sever must be able to respond in a reasonable amount of time. In real

world implementation, certainly, a response that is sufficiently late is just as bad as a

response that never occurs

Partition Tolerant - The third requirement of the CAP theorem is that the service be partition

tolerant. This characteristic can be seen when communication among servers is not reliable,

and the servers may be portioned into numerous clusters that cannot communicate with each

other. The system remains on providing a service and upholds its consistency guarantees in

spite of network partitions. Network partitions are common in real system. Distributed

systems assuring partition tolerance can graciously recover from partitions when the

partition heals.

2.2 ACID Properties

ACID properties are a vital idea for databases. The abbreviation stands for Atomicity,

consistency, Isolation, and Durability. explanation of ACID properties for distributed

database system is that it is a set of characteristics that assures the reliability of database

transactions. transaction is the most important unit of a program that allows the system to

share data across

9

the globe. it may contain several low-level tasks. Without those ACID properties, everyday

transaction such as buy and sale products would be problematic and the potential for

wrongness would be massive while using computer systems (Douglas K Barry, 2019).

Atomicity

The phrase "all or nothing" briefly defines the first ACID property of atomicity. Atomicity

refers to the ability of the distributed database system to assure that either all of the

responsibilities of a transaction are performed or none of them are done. Atomicity states

that database transaction modification must track based on “all or nothing” rules. When

modification happens to a database, either entire or none of the modification would be

presented to anyone. These atomicity properties are very important role in almost all real-

world business enterprises.

Consistency

The Consistency property guarantees that the database system keeps in a consistent

condition, whether the transaction is well performed or letdown and both before the start of

the transaction and after the transaction is ended. Consistency ensures that the change in the

value of one instance are consistent with the change in other values in the similar instance.

consistency limitation is a predicate on data which serves as a precondition, post-condition,

and transformation condition on any transaction.

Isolation

The isolation portion of the ACID Properties refers to the requirement that other set of

activates cannot access or see the data in a midway state during a transaction. Isolation

property can assist to make concurrency of database. Basically, this property is required

when there are concurrent transactions. Concurrent transactions are transactions that happen

at the same time.

Durability

Durability property refers that once a transaction is done, its effects are guaranteed to

continue even in situations where the system experiences frequent failures. This means if the

10

transaction is committed once, the operation can’t be undone and survive from system

failure.

2.3 Database Scalability

Scalability of the database can be defined as the ability to increase the computer resources

to store huge amount of works. It refers to the system’s ability to handle a growing in load

by increasing its potential to achieve more total work in the same elapsed time when

resources are added. A system is said to be scalable if it can promote increasing workload

and data when extra resources are added.it also assures the capability of the system to scaling

up and down as per requirement Additionally, it makes the database system to grow to a

huge size to support more transactions and operations as the volume of the enterprise

business and customer amount increases(Tony Branson, 2016). Figure 2.2 shows how

vertical and horizontal scaling works

There are two types of database scalability:

1. Vertical Scaling or Scale-up

In a database world vertical scaling is the process of adding more physical resources to an

existing server for improving the performance. the performance of the database server is

directly related to the physical resources (memory, storage and CPU) Vertical scaling has

been a standard approach of scaling for relational database management system that are

designed on a single-server type model.

2. Horizontal Scaling or Scale-Out

Horizontal scaling, is the process of adding many hardware to a system. which means adding

new servers to an existing system. When there are more servers with less RAM and

processors, it is called horizontal scaling. It increases the performance of the database system

by networked many more computers together. Scaling out works based on partitioning the

data and spreading the load on multiple RAM and processors

11

Figure 2.2: Vertical and horizontal scaling example (Georgi Georgiev, 2016)

2.4 Sharding

Sharding is a database architectural pattern which associated to horizontal partitioning. it is

very important idea when the system needs very high scalability and absolute availability.

In practice, the term is frequently used to mention to any database partitioning that is meant

to make a very huge database more manageable. Figure 2.2. shows how data is shared from

central cluster to four smaller cluster. This makes the database system more manageable and

cost-effective. The central thought behind sharding is based on the concept that as the size

of a database and the number of transactions per unit of time made on the database grown

up linearly, the response time for querying the database increases exponentially.

12

Figure 2.3: A Sharding Example (Eugen Hoble, 2016)

2.5 Data Replication

Data Replication is the process of copying data from central database to one or more

databases. It is useful in improving the availability of applications and data. It is simply

storing the coped data from one database to other databases. Depending on the replication

type the data would be distributed across the server and it allows the users to share the same

data without any inconsistency(Arts, 2013). Figure 2.4 shows how replication usually works

on.

13

Figure 2.4: A replication Example

14

CHAPTER 3

METHODOLOGY

The goal of this chapter is describing the steps followed to complete this thesis. The leading

step is describing the research methods and conditions which are required to compare the

databases. The second step is picking the databases technology that helps us to explore

throughout the study and the reasons for selecting it. Then the key ideas that would be

necessary to explore each data storage technologies are identified. Lastly, we will select data

model which will be used by the selected databases to compare some queries from the web.

3.1 Methods

there are many possible ways to compare those database technologies, the first possibility is

exploring the data models of each technology and evaluate based on their data model. The

second possibility is by practical experimental approach including to measure the speed

and latency based on CRUD operations. finally, the research will come up with the

comparison of those databases from the perspectives of speed, programming language

support, popularity among various enterprises and IT people.

3.2 General Concept of SQL And NoSQL Database

Fundamentally, before selecting the particular databases from the two cariologies, there are

prerequisite to be viewed and analyzed about the difference between SQL and NoSQL

databases from the perspectives of IT People and organizations to choose the right database

for research.

SQL Databases: the concept of relational database is hangs on relationship between entity’s

or objects and the data are represented and stored in structured query languages. This

property makes them the most preferable to store structured data due to their nature of

organizing elements and build relationship among entities (Luke P. Issac, 2014).

NoSQL Databases: An exciting feature of NoSQL database is using a dynamic schema and

scalability. in NoSQL database cases, the data is stored and retrieved in the form of

15

documents. It is also the most preferable databases for storing and retrieving big data

including structured, semi-structured and unstructured data easily(Luke P. Issac, 2014). Data

can be represented flexibly in a different structure like it can be in the form document, graph,

column, or Key Value. Table 3.1 shows the difference between relational and non-relational

database from various perspectives

Table 3.1: Overview of SQL vs. NoSQL database

3.2.1 Popularity of SQL and NoSQL

According to world DB-engine ranking, SQL based databases have been used by many

enterprises for decades without competitors, but now days NoSQL is rapidly getting

approaches to SQL with advanced storage technologies such as MongoDB, and Cassandra.

 SQL NoSQL

Data storage Store data in the form of table,

data represented in a relational

model, with rows and columns.

Rows keep unique information

about one entity or objects and

columns are all the separate data

points

 The term NoSQL include the mass

of databases, each with diverse data

storage models.

 The predominant ones are:

document, columnar, key-value and

graph.

Schemas and Flexibility Each record follows to static

schema, this means the columns

have to be absolute and

inaccessible before data entry and

each row must keep data for each

column. This can be modified;

however, it involves altering the

entire database and going down.

Schemas are dynamic and regularly

data are represented in document

mode which means doesn’t have to

hold data for each column and

records can be added easily.

Scalability In almost all circumstances SQL

databases are vertically scalable.

this states that we can load data on

a single server through increasing

the size the hardware resources.

in essence, it is feasible to scale

RDMS throughout many nodes,

but this is a difficult and time-

consuming process.

Scaling is horizontal, which means

adding extra servers on NoSQL

database.

This many server can be affordable

hardware, making it a lot extra cost-

effective than vertical scaling.

ACID Compliancy

(Atomicity, Consistency,

Isolation, Durability)

The vast majority of relational

databases allows ACID

properties.

Varies between technologies, but

many NoSQL solutions sacrifice

ACID properties for availability and

scalability.

16

and various enterprises are taking decisions to change from relational database to NoSQL

based databases. figure 3.1 shows popularity of both SQL and NoSQL

Figure 3.1: Popularity of SQL and NoSQL database(solid IT, 2019)

3.3 Databases Selection

There are many approaches to categorize database systems. A basic classification is based

on the database data model, schema, scalability and community support. this research targets

on the following 4 database technologies from relational and non-relational categories. The

reason to choose those database technologies from many types of database system is based

on the popularity of the databases from the viewpoints of software developers, engineers,

software architects, dev teams, and IT leaders and grades of the DB-engines ranking. figure

3.2 show popular database technologies in 2019.

➢ MySQL

➢ PostgreSQL

➢ MongoDB

➢ Cassandra

17

Figure 3.2: popularity of database(solid IT, 2019)

PostgreSQL and MySQL

 PostgreSQL and MySQL are two of the most frequently used relational databases

technologies. both stores data in tables, these tables are organized into rows and columns to

store the data. MySQL is a well-known large-scale relational database. it is a vertically

scalable database that helps the database system to manipulate the data by adding more

physical resource to the system.

it's an ASCII text file system that powers a huge variety of applications and websites in

different sectors It is very flexible that making it a widespread choice for multiple

applications. Some additional features regarding the accessibility of detailed security

features, ACID properties, and ease of access to support.

PostgreSQL is also one of the most available open source databases and designed by the

PostgreSQL Global development group, since it is one of the non-relational database

categories, it is also vertically scalable like MySQL databases Both PostgreSQL and

MySQL support many operating system such as window, Unix and Linux versions, and

supports a number of programming languages

MongoDB and Cassandra

In NoSQL database category we found MongoDB and Cassandra databases more flexible

than another non-relational database. MongoDB is classified under a document-based

18

database whereas Cassandra is classified under column-based databases due to the nature of

the structure. These technologies are mostly distributed and schema free database systems

and holds the data in the form of documents instead of tables.

MongoDB stores data using JSON-like documents that supports multiple data types with

multiple data structures. It uses a document like structured query language to manipulate

data. Since it is schema-free, it allows developers to create documents without having to

create a structure for the document first.

Cassandra is one of the distributed types of database system that stores data in columns

instead of storing data in rows. Generally, this database is designed to store data as parts of

columns of data. While this indicates that it is the reverse of a relational databases such as

MySQL and PostgreSQL.

This popularity and the ability to handle loads of applications makes them used by different

companies. for instance, MongoDB has been used by Google, Facebook, Cisco, eBay and

Forbes where we came to Cassandra it has been used by Facebook, IBM, Instagram, Spotify,

Netflix, And really anymore. In general, non-relational databases are will become the first

alternatives of standard database system in the future due to their ability of scalability and

their distributive nature

 3.4 Criteria for Database Comparison

The comparison criteria for selected databases will be based on the following significant

concepts.

 Data model

 Performance evaluation

 Scalability

 Programming language support and popularity among IT people.

 Available resources such as documentation and community

the performance test for all databases is done on the CRUD test benchmarks. CRUD testing

is a black box testing. CRUD is an abbreviation for Create, Read, Update, Delete. CRUD

testing is one of the testing procedures that allowed us to view the performance of a given

19

database management system. This chapter shows the performance test of all selected

databases based on testing benchmarks figure 5.1 shows How the general overviews the crud

operations.

Figure 3.3: Show an overview of CRUD operations (Software Testing Help, 2019)

CRUD describes the basic functionality of database systems from the viewpoint of users. It

is consisting of the following operations

 Create: refers to create any new transaction

 Read: describes reading or viewing any transaction.

 Update: modifying the data in the database.

 Delete: refers to removing a certain data from the databases.

3.5 Data Sets

for evaluating the selected databases, we use real-world data which is generated from the

web-based customer information system that has seven column sections to evaluate the

performance of all databases. the evaluation process is done by executing CRUD (create

read, update, delete) operation multiple times to get the average execution time taken by the

databases. the size of the data is divided into different sections to examine the result of the

execution we used. the size of the data is ranging from 1000 number of records to 100000

number of records. including 1000,5000,10000, 20000, 40000,60000,80000, 100000 records

respectively.

20

3.6 Resources

for experimental part of this study we use:

✓ PHP programming language:

✓ Apache Web Server, developed by apache foundation.

✓ The UNIX timestamp to calculate the speed of the selected query on each

database. This helps to know How long did it take the criteria query script to run

from start to finish; based on the timestamp we could measure the speed CRUD

(create, read, update and delete) operations.

✓ For comparisons purpose, we use currently available versions of the database.

✓ For testing there is multiple sources of data, however, we use customer

information data sets which is the same for all databases.

3.7 Process

This part describes how the study will proceed to compare these 4 database technologies.

the leading step is exploring each technologies, MySQL, PostgreSQL MongoDB and

Cassandra, from the perspective of data model and query languages as the whole structures,

before we go to the practical section. then after the data model of each database we will

proceed on the experimental part of the research. finally, the research will explore those

storage systems from the outlook of programming language support, popularity among IT

people and organizations. This is to offers a detailed description and summary of the selected

technologies.

21

CHAPTER 4

INVESTIGATED DATABASES COMPARISON

This section starts with an outline of the most imperative ideas from the database system and

after that dives into the data model and basic terminologies of MySQL, PostgreSQL,

Cassandra, MongoDB databases

4.1 MYSQL

MySQL is the leading and the most optimized open source database management tool among

all other relational database management systems. it is written in C and C++ and owned by

Oracle Corporation (Kofler & Kramer, 2005).

The project of MySQL was begun in 1979. A significant number of the world's biggest and

quickest developing companies including Facebook, Google, Adobe, Lucent, and Zappos

depend on MySQL to spare time and cash controlling their high-volume Websites, business-

basic frameworks, and bundled applications. As new and diverse requisites and needs rose

with the web service, MySQL turned into the default for web architectures. From that point

forward, the execution and versatility, unwavering quality, and convenience of the world's

most well-known open source database, qualities that settle MySQL the first for web

applications. due to the service of the web continues developing with driving web properties,

for example, Facebook and Google are spearheading better approaches to control the

massive amount of data, MySQL is additionally advancing to settled on the heading position

on the web industry

4.1.1 Data model

4.1.1.1 MySQL architecture

MySQL is designed based on a client-server framework. There is a database server (MySQL)

and subjectively numerous clients (application programs), which connect with the server;

that allows them to inquiry information and spare changes. The clients can keep running on

the same PC. MySQL architecture is very different from other database servers, and its

22

design qualities make it valuable for a wide scope of purposes just as making it a poor choice

for other relational database management systems. MySQL isn't perfect, however, it is

sufficiently adaptable to function admirably in extremely requesting conditions, for example,

web applications. In the meantime, MySQL can control inserted applications, information

distribution centers, content ordering and conveyance programming, profoundly accessible

repetitive frameworks, online transaction processing (OLTP), and considerably more. Figure

4.1 shows a logical view of MySQL’s architecture.

Figure 4.1: Shows a logical view of MySQL’s architecture (Safari Books Online, 2019)

.

The top layer is a collection of administrative issues regarding the connection between clients

with the server which is not unique to MySQL. it deals on the authentication security and

focused on how the second layer contains significant activities of MySQL. Including quite

a bit of MySQL's minds are here it comprises the code for query parsing caching searching

optimization reserving and all built-in functions e.g. dates times math and encryption any

usefulness gave crosswise over storage engine lives at this dimension: handling

methodology triggers and perspective. to handle the connection since MySQL is it is a

23

networked-based system. The third layer is responsible for data holding and retrieving data

which is stored in the database.

4.1.1.2 Availability

Replication in MySQL is done on the bases of master-slave configurations and master-

master configuration, which makes duplicate data distributed from one database to multiple

storages slaves. It helps to reduce the workloads of the main server master-slave it is

normally done to distribute read access on various servers for availability and also it can be

utilized for different purposes it also empowers data accessibility by allowing clients to

access the shared data from different slaves.

The master-slave configuration is always work in one direction so the master slave is the

only node that is responsible for data write and read operation but the other nodes are

dedicated for only reading purpose. Distributing the data on different servers help to

improve the performance of the system and data is always available if one data center fails

the other will continue to operate the activities. The communication between the master

server and the slaves are managed by load manager and finally announce the clients about

the current state of the servers. Figure 4.2 shows MySQL replication works.

\

Figure 4.2: MySQL replication example

24

4.1.1.3 Scalability

MySQL support vertical scaling. Scaling in MySQL is directly related to sharding of data

over multiple servers. sharding is commonly used by many databases to share data across

the connected servers. and it additionally encourages dynamic failover. Singular shards are

comprised of a copy set comprising of no less than two nodes. MySQL uses auto-sharding

techniques to guarantee automatic recovery with no single point failure. MySQL shares the

read and write workloads over shards in the cluster, enabling every shard to process a subpart

of sharded cluster activity.in this case, the workloads of read and write operation are scaling

out horizontally in the cluster.

The rows from some random table are straightforwardly part into different sections. For each

section, there will be a data center that stores the majority of its data and handles all read

and write on that data. Every datum server likewise has a pal and together they structure a

hub gathering; the pal holds an auxiliary duplicate of the section just as its very own essential

piece.

Figure 4.3: MySQL scalability

25

4.1.2 Supported languages and Platforms

MySQL database supports many structural and object-oriented programming language.

Since it is designed for server-client architecture. it supports all web server programming

languages and cloud-oriented design and platforms. It also supports many old and new

operating systems. programming languages such as Ada, C, C#, C++, Delphi, Java,

JavaScript (Node.js), Objective-C, OCaml, Perl, PHP, Python Ruby are supported by

MySQL server. FreeBSD, Linux, OS X, Solaris, Windows are some of the operating systems

which are supported by MySQL

4.1.2 Documentation, community and support

MySQL community edition is the most downloadable edition of the world's most well-

known open source servers. it is accessible under the General Public License (GPA) global

permit and is encouraged by an immense and dynamic network of open source

designers(Oracle, 2019). The documentation provides the whole bunch of different sorts of

executions, operations, drivers, and commands, it also provides consulting and training on

new releases and new futures to developers and designers. it provides two licensing futures.

open source and commercial license. since MySQL is an open source venture, the complete

source code is freely accessible and maintainable regularly. The Open source project is free

for all without cost. it is also free for locally used and it provides developers to fix or to

implement some futures which are not yet implemented in MySQL or they can request help

to the community. commercial license of MySQL requests a payment fee for some futures.

Documentation of MySQL server is a broadly acceptable and preferable for developers than

the documentation in MongoDB and Cassandra.

4.2 PostgreSQL

PostgreSQL is one of the well-known full featured open source relational database

management system. It is written in C programming language and created by PostgreSQL

Global Development Group, different organizations and many individual funders(Edition,

2006). It is sometimes categorized as an object-oriented database system that stores data in

the form of tables. it is a super implementation of an object-oriented RDBMS which is

completely included and allowed to use freely. It can deal with outstanding burdens running

from single-machine applications to Web administrations or information warehousing with

26

numerous simultaneous clients and supports many operating systems including macOS,

UNIX, FreeBSD, OpenBSD, window. PostgreSQL is the most preferable programs to deal

with an extensive amount of data and supporting various datatypes. It is ranked as the 4th

most used database system among the entire relational database management system based

on the DB-Engines Ranking analysis(solid IT, 2019).

4.2.1 Data model

4.2.1.1 Architecture

In the database world, PostgreSQL works based on client/server architecture like MySQL

relational database system(Edition, 2006). its architecture session comprises of three main

procedures (programs)

1. server process: it is also called Postgres program which deals with the files,

acknowledges a connection with the database from users’ applications and executes

activities in the interest of the users.

2. client's processor: it is front-end applications which need to perform operations. Users

can be various forms including applications, another server, tools that get to the database to

display pages. Some users’ applications are incorporated with the PostgreSQL

3. shard memory: users’ applications send a request to the server. the read and write

operation will be processed in the shard memory for performance issues before it processed

to or from disk files. Rather, it cushions them in a mutual memory zone which is recognized

as the shard memory. figure 4.4 shows how those three components work together in the

PostgreSQL database.

27

Figure 4.4: Shows architectures of the PostgreSQL database

4.2.1.2 Availability

PostgreSQL supports higher read execution and high-accessibility, by means of a component

known as streaming replication. this could be achieved by copying records from the primary

database server to other multiple data servers (slave nodes) which would then be able to be

utilized as read-only servers. to achieve scalability for reading operations. Rather than using

a different framework to implement replication, PostgreSQL usually uses the Write Ahead

log to copy the written file from primary node to slave nodes. Write ahead log (WAL) is a

sequential instruction that holds the transaction change records for guarantee of atomicity

and durability of PostgreSQL. figure 4.5 show the communication between primary node

and replica nodes. The primary node is responsible for holding almost all operations

including with their schema changes (read, write, delete, and update). The replica node

receives instar action from WAL in primary nodes to copy the files throughout the replica

nodes and those replica nodes are responsible for read only operations.

28

Figure 4.5: Shows replication in PostgreSQL (Timescale, 2018)

4.2.1.3 Scalability

since PostgreSQL is implemented based on a client-server architecture, it supports vertical

scaling by adding more hardware resources on the single server to maximize performance

issues. PostgreSQL achieved higher scalability on read operation after the release of

PostgreSQL version 9.6, it supports parallel processing to achieve higher queries speed

(performance) on a single to get a lot quicker while CPUs are expanding in cores instead of

raw speed.

4.2.2 Supported languages and Platforms

PostgreSQL supports for many structural and object-oriented programming language. Like

another relational database system, it is also designed for server-client architecture. it

supports for many web server programming languages and cloud-oriented platforms,

operating systems, and web API., programming languages such as C, C++, Delphi, Java info,

JavaScript (Node.js), Perl, PHP, Python are supported by PostgreSQL. FreeBSD, HP-UX

Linux, NetBSD, OpenBSD, OS X, Solaris, Unix, Windows are among the operating systems

which are supported by this server.

4.2.2 Documentation, community and support

PostgreSQL is one of the most supported servers by huge web community. it provides

different procedures to assist and consult developers by providing more than twelve mailing

services for updating users about the new futures and developments(PostgreSQL, 2019) .

29

Trainings and consultations are mostly given by active communities around the world with

different languages.

It is free, open source and accessible under the PostgreSQL license global permit and

supported by many developers(PostgreSQL, 2019b). its documentation is poor compared

with the documentation of MySQL, it provides the current version information such us

upgraded futures that are available now and report the progress of those new versions. since

PostgreSQL is an open source project, the complete source code is freely accessible and

maintainable regularly. The Open source project is free for all without cost. it is also free

for locally and web development

Common terminologies of relational database

Although MySQL and PostgreSQL have different behaviors on some parts of data model

properties, they have also supported relatively the same data models on the following

terminologies.

Database: it is the basic elements in all relational database management system that

comprises tables with their rows and fields

Table: the data in a relational database management system is stored in the tables. tables

have columns and rows. this makes the relational database system easy to access the data.

Figure 4.6 shows how data represent in columns and rows inside the table. Every single row

is associated with unique records and the columns represent the single entity values

Figure 4.6: Relational table example

SQL query language: the acronym SQL stands for Structured Query Language; it is the

standard language in all relational database management system so both MySQL and

30

PostgreSQL support SQL as a query language for data manipulations. SQL is associated

with the SELECT, UPDATE, INSERT, and DELETE commands to retrieve data based on

the requirements from the data model.

Schema and relationship

Relational database systems are always relying on the relationship between objects or tables.

It governs the relationship between 2 or more tables. There are three types of relationship in

RDBMS.

➢ one to one relationship: it refers the association between only two objects

➢ if one entity associated with the many objects the relationship is called one to

many

➢ If many objects associated with many objects in different group, there relations

are called many to many

Figure 4.7 shows the relationship between 3 entity in website forum webpages a single post

is associated with many comments and many tag lists

Figure 4.7: Relationship between tables relational databases example

4.3 Cassandra

Apache Cassandra is an open source distributed database system (Hewitt, 2016). It is

intended to deal with a lot of information spread crosswise over numerous servers while

providing high availability and performance. it was initially created at Facebook in 2008 to

control Facebook's in-box search highlight. In the wake of being underway at Facebook for

31

some time, apache Cassandra was settled as an open-source project on Google Code in July

of 2008. In Spring of 2009, it was acknowledged to the Apache Establishment as a hatchery

project. In February of 2010, it turned into a top-level Apache venture. As of the season of

this announcement, the latest release of Apache Cassandra is the 1.2 version. Cassandra has

made some amazing progress since the main significant discharge after its advancement to

a top-level Apache project. It has grabbed support for Hadoop, content pursuit joining

through Solr, CQL, zero-downtime upgrades, virtual nodes. Cassandra is still in consistent

overwhelming advancement, and new futures are continually being included and tested

(Hewitt, 2016).

Cassandra currently widely accessed by many enterprises, and is usage developing

constantly. Business and social network Organizations like Netflix, eBay, Twitter, Reddit,

and Ooyala all use Cassandra to control bits of their design, and it is basic to the everyday

tasks of those company. To date, the biggest freely realized Cassandra group by machine

tally has over 300TB of information traversing 400 machines. Due to Cassandra's capacity

to deal with high-volume information, it functions admirably for large number of

applications. This implies it's appropriate to taking care of activities from the fast universe

of promoting innovation progressively to the high-volume universe of big data analysis and

everything in the middle.

4.3.1 Data model

4.3.1.1 Architecture

The data model of Cassandra is fundamentally unique compared to what we typically find

in a RDBMS. This part gives a review of how Cassandra handles its data.

Cluster: Cassandra database is distributed on more than a few machines that work together.

The outlying compartment is known as the Cluster. For failures taking care of, each node

contains a replica, and if there should arise an occurrence of a failure, the copy undertakes

responsibility in another node. Cassandra masterminds the nodes in a cluster, in a ring design,

and doles out data to them.

Keyspace: A cluster is a compartment for keyspaces ordinarily a single keyspace. A

keyspace is the outlying compartment for data in Cassandra, matching nearly to a relational

32

database. Like relational database, a keyspace has a name and attributes that characterize

keyspace-wide conduct. The fundamental properties of a Keyspace in Cassandra are listed

next. Figure 4.8 shows keyspace architecture in Cassandra.

Replication factor: in most straightforward terms, the replication factor indicates to the

quantity of nodes that will demonstration as duplicates (replicas) of each rows of data. In the

event that your replication factor is 4, at that point four nodes in the ring will have duplicates

of each line, and this replication is straightforward to clients. The replication factor basically

enables you to choose the amount you need to pay in execution to acquire consistency. That

is, your consistency level for perusing what’s more, composing data depends on the

replication factor.

Replica placement strategy: It is only the procedure to put replications in the ring. We

have procedures, for example, simple strategy (rack-mindful system), old network topology

strategy (rack-mindful procedure), and system topology system (datacenter-shared system)

(Hewitt, 2016).

Column families: Similarly, that a database is a compartment for tables, a keyspace is a

holder for a column family. A column family is generally equivalent to a table in the relation

model, and is a compartment for a gathering of lines. Each line contains requested columns.

Column families characterizes the structure of your data. Each keyspace has no less than one

and regularly numerous column families. Cassandra characterizes a column family to be a

bright division that associates analogous data (Hewitt, 2016).

Figure 4.8: Keyspace architecture in Cassandra(Hewitt, 2016)

33

Assembling many column families, allow us to get the fundamental Cassandra data

structures: the column, in relational databases, we're accustomed to putting column names

as strings just—there's nothing more to it we're permitted. In any case, in Cassandra, we

don't have that constraint. Both row keys and column names can be strings, as relational

names, yet they can likewise belong numbers, UUIDs, or any sort of byte array. So, there's

some assortment to how your key names can be set. This uncovers another fascinating

quality to Cassandra's columns: they don't need to be as basic as predefined name/values

sets; you can store helpful data in the key itself, not just in the value. This is fairly regular

while making records in Cassandra. Figure 4.9 show how data represent as a column family

in Cassandra databases.

Figure 4.9: A column family (Hewitt, 2016)

4.3.1.2 Availability

 Ring Structure: Cassandra clusters work in a Ring fashion, which is in a peer to peer

architecture. every node has equal responsibility in the connection, as it were, all nodes are

the equal and there are no central nodes that control different nodes (Hewitt, 2016). In this

manner, there is no single point of failure due to the replication of data on different nodes.

Cassandra, additionally, come up with adaptable replication system, which makes it to

handles excess duplicates of data, crosswise over nodes, this implies if any node in the cluster

fails, at least one duplicates of that server's data is accessible on different machines in the

34

cluster. Additionally, this replication mechanism works in a big data center, data could be

duplicated over multiple data center too and accessible in any one of the data centers when

frailer is happening in the ring. Figure 4.10 show how Cassandra distribute all data to

individual connected servers.

Figure 4.10: Cassandra ring replication example (DZONE, 2016)

Gossip and Failure Detection: To help decentralization and partition tolerance, Cassandra

utilizes a Gossip protocol for entire node communication in the cluster with the goal that

every node can have state information about other nodes. The gossiper runs each second on

a clock.

4.3.1.3 Scalability

Cassandra is predominantly guaranteeing availability and linear scalability at a higher level.

It implies that scalability can be expanded by adding new servers/resources or nodes in the

cluster. Cassandra supports both scaling up and scaling out. This makes Cassandra structure

truly versatile and profoundly accessible. This distributed architecture Improves the general

versatility since every one of the nodes in a cluster can serve read or write operations and it

promises availability almost 99%. Since all nodes can serve read and compose demands,

35

scaling the framework is as basic as adding new nodes to the group. This makes Cassandra

flexibly adaptable in both vertical and horizontal scaling.

Figure 4.11 shows the scalability in Cassandra, the first 2 hubs can deal with 1000

transactions for each second, the second 4 hubs will bolster 2000 transactions/sec and the

third 8 hubs will handle 4000 transactions/sec:

Figure 4.11: Cassandra scalability example(RapidValue, 2015)

CQL: it endeavors to be as a near structural query language could reasonably be expected.

Given that Cassandra is a NoSQL database management system, a completely included SQL

build is beyond the realm of imagination. The primary concern to note about CQL is that it

has no idea of GROUP or JOIN, and an extremely restricted usage of ORDER BY. Clients

can get to Cassandra through its nodes accessing Cassandra Inquiry Language (CQL). CQL

treats the Keyspace as a holder of tables. Software engineers use cqlsh, a command prompt

to deal with CQL or along with separate programming language drivers.to make a read and

write operation we use a node (facilitator) play an intermediary between the users and the

nodes holding the data.

Data types: CQL gives a multi collection of built-in data types, including collection types

(list, map, set), UUID, timestamp. Combined with these data types, clients can likewise make

their very own custom data types.

36

Write data: Each writes operations of the server are caught by the commit logs written in

the nodes. after that, the data will be caught and put in the mem-table. if the mem-table is

full, data will be composed into the table data files. All are dynamically partitioned and

reproduced all through the cluster.

Data read: In read actions, Cassandra gets values from the mem-table and checks the

blossom filter to locate the suitable SSTable that stores the appropriate data.

4.3.2 Supported languages and Platforms

Cassandra supports for many programming languages. it supports for many web server

programming languages and cloud-oriented platforms, operating systems, programming

languages such as C#, C++, Java, JavaScript info, Perl, PHP, Python, Ruby are supported by

MongoDB. BSD, Linux, OS X, Windows are among the operating systems which are

supported by this server.

4.3.2 Documentation, community and support

Cassandra support is provided by Datastax and other companies to assist the developers. The

documentation provides about the whole bunch of concepts about the data model, query

model conflagration and tools of Cassandra (Apache Cassandra, 2016). Due to the Cassandra

has multiple advantages on modern web technologies by processing and holding a large

amount of information, many users and technology groups are open their eye to Cassandra.

The development of Cassandra is radical and supported by active communities. It provides

a platform for training, discussion forum, and mailing service to assist users and developers

to know how to design and architecture non-relational databases for dominating web

industry. since Cassandra is an open source distributed database system, the complete source

code is freely accessible and maintainable regularly (Apache Cassandra, 2016).

4.4 MongoBD

MongoDB is one of the leading NoSQL storage advances which emerged in the mid-2000s

with the ability of advanced scale out features.it is written in C++ programming language (solid IT,

2019). MongoDB is an open source non-relational database management framework

(DBMS) that utilizes A document-based database program which runs different types of data

(Chodorow, 2013). additionally, MongoDB is promptly interesting, not only in light of its

37

scaling procedure but instead in light of its instinctive data modeling. document-based data

model makes it preferable to manipulate complex, unstructured data without the needs of

tables and join operation which is mostly available in almost all traditional relational

databases management system. Data representation procedure in MongoDB is very simple

and easy for almost all types of data compared with other database systems. This is due to

the help of its document-based nature of data model for storing different types of data

(structured or unstructured). the idea of rows in the traditional database system is changed

into a document in MongoDB which is highly dynamic, schema-free and conceivable to

store complex and various leveled data with a single record (Chodorow, 2013) .

4.4.1 Data Model

Database: a database in MongoDB is a compartment for collections. A single server

frequently has various databases.

Collections: collections are the group of documents in MongoDB which is equivalent to

table in traditional relational database management system. figure 4.12 shows the how

documents represented in a single collection.

Documents: document in MongoDB is equivalent to rows in the relational database system.

MongoDB stores data in BSON format which is quick and exceedingly navigable. This

implies MongoDB gives clients the convenience and adaptability of JSON documents

together with the speed and powerful lightweight binary object (Chodorow, 2013).

Figure 4.12: MongoDB collection example (MongoDB, 2008a)

Document

38

Embedded documents

Since MongoDB does not support JOIN operation like other relational database

management system. It has other means of representing multiple embedded objects in the

documents to make relationship between those documents. This embedded document is

stored in the form of arrays and can be easily retrieved by simple query operation. Figure

4.13 show the denormalized embedded documents stored in a single document

Figure 4.13: Denormalized document structure (MongoDB, 2008a)

4.4.1.2 Availability

MongoDB supports data availability using data replication techniques which is always done

based on the master-slave configuration like in traditional relational database management

system MongoDB manages database replication by using a topology called replica set. The

data spread over all nodes in the network by replica set for redundancy and dynamic

availability of the replica data on the server. Furthermore, replication is utilized to scale

database reads. Specially for read concentrated web application, as is generally the situation

on the web, it's conceivable to spread database reads over machine in the replicas set cluster.

always the replica set comprises of relatively one primary node and many more secondary

nodes in the network. Primary node has permission to accessing both read and write, but

secondary nodes are read only. in the event that the primary node stops working or having a

failure to continue, the cluster will select and assign one node as a primary node from

secondary nodes and consequently advance it and continue the operations. At the point when

the previous primary node avoids failure and returns on normal working condition, it will be

39

used as a secondary node since the time the location of the primary nodes has taken by

another nodes. figure 4.14 shows how replication works in MongoDB

Figure 4.14: Replication in MongoDB(MongoDB, 2008b)

4.3.1.2 Scalability

MongoDB support horizontal scaling. Scaling in MongoDB is directly related to sharding of

data over multiple servers. sharding is commonly used by many databases to share data

across the connected servers. and it additionally encourages dynamic failover. Singular

shards are comprised of a copy set comprising of no less than two nodes. MongoDB uses

auto-sharding techniques to guarantee automatic recovery with no single point failure

MongoDB shares the read and write workloads over shards in the cluster, enabling every

shard to process a subpart of sharded cluster activity.in this case, the workloads of read and

write operation are scaling out horizontally in the cluster. Figure 4.15 shows how sharding

works in the database with the combination of sharded and unsharded cluster. ShardA has

two collections, collection 1 and collection2. Collection1 is distributed over shardA and

shardB. Both read and write is possible for collection1 but shardB has no permission to read

and write for collection2.

40

Figure 4.15: MongoDB scalability example(MongoDB, 2008b)

4.3.2 Supported languages and Platforms

MongoDB supports for many programming languages. this database is more compatible with

many programming languages than all non-relational databases.it supports for many web

server programming languages and cloud-oriented platforms, operating systems,

programming languages such as C, C#, C++, D info, Dart info, Java, JavaScript, MATLAB,

Perl, PHP, PowerShell info, Python R info, Ruby, Scala, Smalltalk info are supported by

MongoDB. Linux, OS X, Solaris, Windows are among the operating systems which are

supported by this server.

4.3.2 Documentation, community and support

MongoDB documentation is large and easy compared with Cassandra documentation. It

provides deep explanation about the configuration process, libraries, drivers required to

manage MongoDB servers(MongoDB, 2019). the documentation also includes all operations

with specific examples and use cases to clarify every part of the server. this makes MongoDB

more preferable by many developers. It is also supported by many active community and

organization. it is accessible under the General Public License (GPA) global permit

and is encouraged by immense and dynamic network of open source designers (MongoDB,

2019)

41

CHAPTER 5

IMPLEMENTATIONS

This chapter deals on implementation of CRUD test for MYSQL, PostgreSQL MongoDB

and Cassandra databases. the Test is designed to compare the databases based on computing

the execution time taken to perform the CRUD operation on the individual database. the test

is incorporated with CRUD commands to manipulate the data to the given database

Test Environment

The experimental platform used for implementing those databases is a 1.6GHz processor

with 4 GB memory and 500GB SATA disk drive. The operating system is MacOS Mojave

10.14.

Database software version.

Comparison among database are done based on the current versions. table 5.1 summaries

the versions of the database deployed for testing.

 Table 5.1 : Database versions

Database name Version

MYSQL 10.0.4

PostgreSQL 11

Cassandra 3.11.4

MongoDB 4.0.6

5.1 Query Execution Time

For testing purpose, we use UNIX timestamp to measure the time taken by each CRUD

operation and the time is represented in seconds. It is essential time estimation techniques

applied to manage the execution of code in the program and helps programmers to get the

exact amount of time taken by each database to perform all four operations. appendix 1

42

shows the time counter code that manages the execution of each query in the implementation

of database server and the execution of all queries beneath relies upon evaluating and

estimating execution time using the strategies depicted here.

5.2 MySQL And PostgreSQL Query

This part represents both MySQL and PostgreSQL query used for testing query capabilities.

the execution time of all operations for both databases are executed using PHP programming

language in appendix 2 and appendix 3 respectively

Create Table Query

" CREATE TABLE IF NOT EXISTS data_table2 (

Id int(11) NOTNULL, auto-increment,

customer_name VARCHAR(25),

customer_lastname VARCHAR(25),

customer_address VARCHAR (25),

phone INT,

email VARCHAR (25),

zip INT,

state VARCHAR (25),

country VARCHAR (25),

car_model VARCHAR (25),

car_price double,

PRIMARY KEY (id))";

Insert Query

"INSERT INTO data_table2 (customer_name,customer_lastname,customer_address,

phone, email, zip, state, country, car_model, car_price) VALUES ('Saron', 'Addal','Addis

Ababa', '200195838' , 'Saron0918gmail.com','34533', 'Amhara', 'Ethiopa', '2018 Toyota

Avalon', '250000');"

43

"INSERT INTO data_table2 (customer_name,customer_lastname,customer_address,

phone, email, zip, state, country, car_model, car_price) VALUES('Helen',

'Danial','bahirdar', '200195838','helene123gmail.com','1186', 'Amhara', 'Ethiopa', '2018

Toyota Avalon', '30000');"

Select Query

'SELECT * FROM data_table2 WHERE id=1232 ';

'SELECT * FROM data_table2 ';

Update Query

"UPDATE data_table2 SET customer_name='Wondwessen', customer_lastname='Haile',

customer_address ='Nicosia', phone='53382238', email='wondwessen@gmail.com',

zip='4556', state='North Cyprus', country='Turkey',car_model='2011 Lexus RX

350',car_price='3002330' WHERE id=12333");

"UPDATE data_table2 SET customer_name='biruk',customer_lastname='addal',

customer_address='Paris',phone='53382238',email='biruk333434@gmail.com',zip='5552'

,state='NorthCyprus',country='Turkey',car_model='1999toyota350',car_price='5700000'

WHERE id=1667");

Delete Query

' DELETE * FROM data_table2 WHERE id=1232';

' DELETE * FROM data_table2 WHERE id <= 1232';

5.3 MongoDB Operations

This part represents MongoDB query used for testing query capabilities. the execution

time of all operations for MongoDB is executed using PHP programming language in

appendix 4

Create collection

 $client = new MongoDB\client;

 $database = (new MongoDB\Client)->customerinfo;

 $database->customer;

Insert Query

insertOne(['customer_name'=>'wondwessen','customer_lastname'=>'haile','customer_add

ress'=>'north_cyprus','phone'=>5338223089,'email'=>'wondwessen533@gmail.com','zip'

=>1234,'state'=>'northCyprus','country'=>'turkey','car_model'=>'Toyota2010','car_price'=

>23434]);

44

insertOne(['customer_name'=>'wondwessen','customer_lastname'=>'haile','customer_add

ress'=>'north_cyprus','phone'=>5338223089,'email'=>'wondwessen533@gmail.com','zip'

=>1234,'state'=>'northCyprus','country'=>'turkey','car_model'=>'Toyota2010','car_price'=

>23434]);

insertOne(['customer_name'=>'wondwessen','customer_lastname'=>'haile','customer_add

ress'=>'north_cyprus','phone'=>5338223089,'email'=>'wondwessen533@gmail.com','zip'

=>1234,'state'=>'northCyprus','country'=>'turkey','car_model'=>'Toyota2010','car_price'=

>23434]);

Select Query

 $customercollection->find();

Update Query

$customercollection>updateMany(['$set'=>['customer_name'=>'Anteneh','customer_lastna

me'=>'addal','customer_address'=>'addisababa','phone'=>'9182','email'=>'yohanse@gmial.c

om','zip' => '1322','state' => 'amhara','country' => 'Ethiopia','car_model' => '2011 Lexus RX

350', 'car_price' =>'3233']]);

Delete Query

$customercollection->deleteMany();

5.4 Cassandra Operation

This section represents Cassandra query used for testing query capabilities. the execution

time of all operations for Cassandra is executed using PHP programming language in

appendix 5.

Create Table Query

"CREATE TABLE IF NOT EXISTS data_table5 (id SERIAL PRIMARY

KEY, customer_name VARCHAR(25),

customer_lastname VARCHAR(25),

customer address VARCHAR(25),

phone INT,

email VARCHAR(25),

zip INT,

state VARCHAR(25),

country VARCHAR(25),

car_modal VARCHAR(25),

45

car_price INT)";

Insert Query:

" INSERT INTO data_table5 (customer_name,customer_lastname,customer_address,

phone, email, zip, state, country, car_modal, car_price) VALUES ('Saron', 'Addal','Addis

ababa university', '200195838' , 'Saron0918gmail.com','34533', 'Amhara', 'Ethiopa', '2018

Toyota Avalon', '250000');");

" INSERT INTO data_table5 (customer_name,customer_lastname,customer_address,

phone, email, zip, state, country, car_modal, car_price) VALUES ('mohammed',

'Hassen','Addis ababa university', '200195838' , 'Saron0918gmail.com','34533', 'Amhara',

'Ethiopa', '2018 Toyota Avalon', '250000');");

Select Query

 SELECT * FROM data_table5;

Update Query

"UPDATE data_table5 SET customer_name='Wondwessen',customer_lastname='Haile',

customer_address='Nikosia',phone='53382238',email='wondwessen@gmail.com',zip='43

4556', state='NorthCyprus',country='Turkey',car_modal='2011 Lexus RX 350’,

car_price='3002330'"

"UPDATE data_table5 SET customer_name='saron',customer_lastname='Haile',

customer_address='Nikosia',phone='53382238',email='wondwessen@gmail.com',zip='43

4556', state='NorthCyprus',country='Turkey',car_modal='2011 Lexus RX 350’,

car_price='3002330'"

Delete Query

DELETE FROM customerinfo.customer_name;

5.5 Testing Results

Testing was implemented based on batch processing on a single node and it follows serial

way: INSERT, SELECT UPDATE, DELETE. Each batch of tests was run 5 times for 1000,

5000, 10000,20000,40000,60000,80000 and 100000 records. The performance of the

database will measure based on the average execution time of each operation correspond to

each database. Lastly, we presented the performance of each database based on graphs and

tables

46

5.5.1 Result for INSERT Operation

Table 5.2 show the average execution times of insert operation for each database server in

single node. it shows the number of operations with the time taken to execute by the

databases servers of MYSQL, PostgreSQL, MongoDB and Cassandra respectively. Based

on this analysis, the performance of non-relational databases is more powerful than relational

database management system. among all database servers, the performance of MongoDB for

insert operation is higher than all other database servers.in the reverse, the performance

PostgreSQL databases for insert operation is slower than all database servers. in this case the

performance of Cassandra database server is relatively close to MongoDB database server

compared with MySQL and PostgreSQL databases. Figure 5.2 shows the performance of all

databases for all records. based on this analysis the rank of those databases is shown here

1. MongoDB

2. Cassandra

3. MYSQL

4. PostgreSQL

Table 5.2: Average Execution Time in seconds for the INSERT Operation

Number of Records MYSQL PostgreSQL MongoDB Cassandra

1000 0.339 0.5 0.287 0.316

5000 1.628 2.079 0.995 1.577

10000 2.986 4.192 2.134 3.038

20000 6.01 8.586 4.159 5.732

40000 12.651 17.501 8.286 10.859

60000 19.105 24.515 12.132 15.631

80000 26.686 33.203 17.937 23.585

100000 32.243 42.282 19.778 26.509

47

Figure 5.1: Average performance of INSERT operation in seconds

5.5.2 Result for SELECT Operation

The SELECT average time (table5.3) execution times of select operation for each database

server in a single node. it shows the number of operations with the time taken to execute by

the databases servers of MYSQL, PostgreSQL, MongoDB and Cassandra respectively. in

this analysis, the performance of non-relational databases is also more powerful than

relational database management system. among all database servers, the performance of

MongoDB for select operation is higher than all other database servers.in the reverse, the

performance PostgreSQL databases for insert operation is slower than all database servers.

In this case the performance of MongoDB is twice higher than the performance PostgreSQL

databases. Cassandra and MySQL database have relatively similar performance for 1000-

20000 number of records. Figure 5.3 shows the performance of all databases for all records.

based on this analysis the rank of those databases is shown here.

1. MongoDB

2. Cassandra

0,000

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

1000 5000 10000 20000 40000 60000 80000 100000

Ti
m

e
 in

 s
e

co
n

d
s

Number of records

INSERT Comparison

MYSQL postgreSQL MongoDB Cassandra

48

3. MYSQL

4. PostgreSQL

Table 5.3: Average Execution Time in seconds for the SELECT Operation

Number of records MYSQL PostgreSQL MongoDB Cassandra

1000 0.345 0.501 0.308 0.327

5000 1.657 2.082 1.034 1.621

10000 3.044 4.193 2.229 3.137

20000 6.132 8.593 4.313 5.875

40000 12.871 17.502 8.591 11.013

60000 19.466 24.527 12.61 15.744

80000 27.155 33.204 17.374 23.913

100000 32.846 42.283 20.555 26.630

Figure 5.2: Average performance of the SELECT operation in seconds

0,000

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

1000 5000 10000 20000 40000 60000 80000 100000

ti
m

e
 in

 s
e

co
n

d
s

Number of records

READ Comparison

MYSQL postgreSQL MongoDB Cassandra

49

5.5.3 Result for UPDATE Operation

Table 5.4 presents the performance result of all databases corresponding with a number of

records. The same way like insert and select operations, the performance of PostgreSQL for

update operation is lower than all other database servers, although it has relatively similar

performance with MySQL database server. The performance of MongoDB and Cassandra

have almost the same performance for all number of records. The different thing here is the

performance of Cassandra for update operation is higher than its performance for insert,

select and delete operation. Figure 5.3 shows the performance of all databases for update

operation. based on this analysis, the rank of those database divided in two groups.

 For inputs less than 40000 number of records is

1. Cassandra

2. MongoDB

3. MYSQL

4. PostgreSQL

For inputs greater than 40000 number of records

1. MongoDB

2. Cassandra

3. MYSQL

4. PostgreSQL

Table 5. 4: Average Execution Time in seconds for the UPDATE Operation

Number of records MYSQL PostgreSQL MongoDB Cassandra

1000 0.387 0.511 0.381 0.328

5000 1.746 2.124 1.288 1.623

10000 3.204 4.268 2.808 3.139

20000 6.931 8.798 5.343 5.877

40000 14.533 17.970 11.036 11.015

60000 21.989 25.361 15.989 15.745

80000 30.769 34.233 22.405 23.915

100000 37.254 44.059 26.261 26.632

50

Figure 5.3: Average Performance of the UPDATE Operation in Seconds.

5.5.4 Result for DELETE Operation

Among all database servers, Cassandra has highest performance for the DELETE operation

(Figure 5.5) In this case, MySQL, Cassandra and MongoDB have relatively similar

performance. the performance of PostgreSQL for delete operation is worse than all

operations. Almost all database servers have took similar execution time for records less than

1000. Table 5.4 shows the average execution time of all databases for delete operation. based

on this analysis the rank of those databases is shown here.

1. Cassandra

2. MongoDB

3. MYSQL

4. PostgreSQL

5.

0,000

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

1000 5000 10000 20000 40000 60000 80000 100000

Ti
m

e
 in

 s
e

co
n

d
s

Number of records

UPDATE Comparison

MYSQL postgreSQL MongoDB Cassandra

51

Table 5. 4: Average Execution Time in seconds for the DELETE Operation

Number of operations MYSQL PostgreSQL MongoDB Cassandra

1000 0.404 0.513 0.415 0.490

5000 1.783 2.131 1.418 1.913

10000 3.260 4.283 3.153 3.331

20000 7.026 8.822 5.844 6.105

40000 15.203 18.014 12.196 11.290

60000 22.547 25.490 17.588 16.013

80000 31.971 34.328 26.552 24.300

100000 38.667 43.568 29.581 26.934

Figure 5.4: Average performance of the DELETE operation in seconds

0,000

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

1000 5000 10000 20000 40000 60000 80000 100000

T
im

e
in

 s
ec

o
n

d
s

Number of records

DELETE Comparison

MYSQL postgreSQL MongoDB Cassandra

52

CHAPTER 6

EVALUATION

chapter 4 and 5 presented about the data model and performance of those 4 databases for

CRUD operations as frameworks together with their basics and highlights.in this part, we

assess our examination work based on the previous chapters along with new concepts and

terminologies regarding the qualities and shortages of all database servers in the web

industry. Lastly, we examined all database systems from their community support and area

of used.

6.1 Data Model

a data model demonstrate indicates to the legitimate between connections along with data

stream among various information components engaged with the different enterprises and

organizations.dat model also mainly used as a technique that governs how the given data

should be handled and manipulated in different storage systems. data models guarantee

strong reliability for various organizations who needs specialized advancement to make the

requirements managed properly and matched with the goal of the business. data models assist

developers and business by facilitating the communication between the cooperated team and

available resources.

As we have seen in chapter 4, MySQL has derived from the SQL standards and trends, new

variances in the way certain queries operate on multiple systems. it stores and retrieve data

on structured tables, which has columns and rows. it encourages fixed schema since the

design of the database depends on tables. MySQL supports complex query in the form of

joining multiple tables and making relationship between complex entity’s based on entity

relationship model. this leads the performance problem compared to non-relational database

management system which supports dynamic schema and few relationships. the data is

structured in the form of a spreadsheet. And it supports master-slave configurations and

master- master configuration to achieve high availability. It supports vertical scalability and used

sharding to achieve scalability. Read operation is highly scalable than write operation. the

53

primary server has ability to provides read and write operation all the time. But Slave or

secondary nodes can only access the read operations.

PostgreSQL: is a strong ACID compliant, ACID property is a standard for whether or not

the data integrity is applied on across all types of queries and robust enough in order to return

the same results without false information. Like other relational database, PostgreSQL is a

fixed schema-based database system that stores data in the form of spreadsheet. Complex

queries also manipulated by GROUP and JOIN operation this makes to sacrifices it

performance quality. only supports master-slave configuration to achieve higher availability.

unlike MYSQL, PostgreSQL usually uses the Write Ahead (WAL) log to copy the written

file from primary node to slave nodes. the primary server has ability to provides read and

write operation all the time. But Slave or secondary nodes can only access the read

operations.

MongoDB: It is a document-oriented database management system that stores data in the

form of documents. Unlike all relational database system uses SQL languages, MongoDB

uses Binary structure object notation (BSON) which is extended from JSON to store and

retrieve documents. MongoDB uses free and dynamic schema to make the data manipulation

process easy and flexible. Like MySQL and PostgreSQL database system, it supports master-

slave configuration to achieve higher data availability. it also supports horizontal scalability

and it is achieved by auto-sharding.

{

 '_id' : 1,

 'name' : { 'customer name ' : 'John', 'customer_lastname’: 'Backus' },

 'contribs' : ['Fortran', 'ALGOL', 'Backus-Naur Form', 'FP'],

 'awards' : [

 {

 'award' : 'W.W. McDowell Award',

 'year' : 1967,

 'by' : 'IEEE Computer Society'

 }, {

 'award' : 'Draper Prize',

 'year' : 1993,

 'by' : 'National Academy of Engineering'

54

 }

]

}

BSON like data representation example

Cassandra: it is a column based non-relational database system which uses Cassandra query

languages to store and retrieve data. The syntax of CQL is a bit closer to SQL in relational

database management system. It doesn’t support GROUP and JOIN operations. Cassandra

supports peer-to-peer configuration to achieve higher availability, which indicates that all

nodes in the network are the equivalent and there are no central nodes that control different

nodes. This makes Cassandra preferable for big data center applications. unlike MongoDB,

Cassandra supports both vertical and horizontal scaling. This makes Cassandra structure

truly versatile and profoundly accessible for different organizations.

6.2 Database Speed Comparison

A sequences of batch tests was undertaken to measure the performance of the overall

execution of MySQL, PostgreSQL, MongoDB, Cassandra. Based on the test results from

chapter 5, we comprehend the following points.

• Non-relational databases have better performance than non-relational database system

for all CRUD operations.

• MongoDB the first and the fastest database for all CRUD operations, and significantly

twice faster than PostgreSQL and database in almost all operations. The performance of

PostgreSQL has the worst performance than any other tested databases has.

• Cassandra is the second fastest databases after MongoDB and in some CRUD operations

the performance of Cassandra is twice faster that PostgreSQL database.

• MySQL is the fastest database and it is placed in the 3rd place in almost all CRUD tests

here.

6.3 Community and Support

Since relational databases has serving for many years, Both MySQL and PostgreSQL

databases has more community support than non-relational databases (MongoBD and

Cassandra).

55

Table 6.1: Evaluation of selected databases

Database

Name

MySQL PostgreSQL MongoDB Cassandra

data model and

data storage

Relational

data model

that stores

data in table

Relational

data model

that stores

data in table

Stores data in the

form of documents

Store data based on

column format

Scalability Supports

scaling in

Supports

scaling in

Supports scaling out Supports scaling

out

Availability/

replication

Supports

both master

to master

replication

and master to

slave

replications.

Supports only

master slave

replication

Read

operation is

highly

available

Supports master-

slave replication by

auto sharding. It has

built in replication

but need some

assistance in getting

it to setup

Cassandra supports

peer to pear

replications. And It

has built in

replication.

Cassandra

guarantees 99%

data availability

Acid compliant Acid

compliant

Strongly Acid

compliant

It is not acid

compliant

It is not acid

compliant

Data schema Rigid schema Rigid schema Flexible schema Dynamic and

flexible schema

syntax Easy to learn Easy to learn It is a little bet hard to

learn MongoDB than

learning other

languages like SQL

and CQL.

It is to learn

compared with

MongoDB

Architecture Server-client Client -server Distributed Distributed

Query language

and schema

SQL oriented

language

SQL oriented

query

language

BSON oriented query

language

Cassandra query

language (CQL)

Application

area

Designed for

large

applications

due to the

query

compared

with MySQL

It is suitable

for

transactions

and simple

websites and

others

 Due to its

accessibility ability it

is preferable for

distributed and big

data environment

Due to its

accessibility ability

it is preferable for

distributed and big

data environment

56

CHAPTER 7

CONCLUSION AND FUTURE WORKS

7.1 Conclusion

the main goal of this paper was to investigate and analyze four database management system

based on the data model and performance. therefore, this paper examined MySQL,

PostgreSQL, MongoDB and Cassandra databases to choose the right database technologies

to maximize the performance of the software products. Even if each database has their own

requirements and preferable situation to be chosen, we simply focused on testing

performance of the databases in a single server.

 from the data model perspective MongoDB and Cassandra has various advantages over

MySQL and PostgreSQL databases for various reasons. Both MongoDB and Cassandra

support horizontal scaling. Data representation procedure in MongoDB is very simple and

easy for almost all types of data compared with other database systems. this is due to the

help of its document-based nature of data model for storing different types of data (structured

or unstructured).

Cassandra is predominantly guaranteeing availability and linear scalability at a higher level

than other database systems. This makes Cassandra structure truly versatile and profoundly

accessible since every one of the nodes in a cluster can serve read or write operations and it

promises availability almost 99%. Cassandra use Cassandra query language.

Both MongoDB and Cassandra support schema free architecture to store and manipulate the

data. This helps developers to design the system freely and in flexible ways than designing

in MySQL and PostgreSQL.

from the performance result of all database systems, we recognize that the performance of

MongoDB and Cassandra databases is much faster than MySQL and PostgreSQL database

in all CRUD operations (create, read, update and delete). the most preferable server was the

non-relational MongoDB for most of the operations. the performance of MongoDB for

insert, select and update operation is better than all other database servers in a single node.

57

And also, Cassandra provides the highest performance for delete operations. for all

operations.

the performance of MySQL database is better than the performance of PostgreSQL database.

In select operation, the performance of MongoDB is twice higher than the performance

PostgreSQL databases. the performance PostgreSQL databases is slower than all databases

systems for all operations

in general, we can select non-relational database specially MongoDB instead of relational

databases for the web system which needs to support multiple data transactions. This is

mainly due to non-relational database system has the capability to support higher availability

and scalability of the data than relational database. and as we seen in the performance test,

MongoDB database has still better performance for all data manipulation operations than

most of the other databases. And Cassandra would be the second-choice database for all

operations in this study.

As enhancement for the future work of related study would continue on examining the

performance of relational and non-relational databases in multiple servers and many users

with huge number of transactions to realize the efficiency of the databases in concurrent

transactions. This helps developers to choose the best databases by analyzing and testing the

scalability, availability and performance of relational and non-relational databases

58

REFERENCES

Apache Cassandra. (2016). Documentation. Retrieved March 28,2019, at

http://cassandra.apache.org/doc/latest/

Arts, G. (2013). Data Replication for the Distributed Database using Decision Support

Systems. 69(3), 28–39.

Brewer, E. A. (2003). Towards robust distributed systems (abstract). (May),7.

https://doi.org/10.1145/343477.343502

Brittain, J. (2009). The Definitive Guide. In Eben Hewitt (Ed.), October (Vol. 7).

Chodorow, K. (2013). Mongodb_ the Definitive Guide - Kristina Chodorow_1401.

Douglas K Barry. (2019). ACID Properties. Retrieved April 24, 2019, at

https://www.service-architecture.com/articles/database/acid_properties.html

DZONE. (2016). Introduction to Apache Cassandra’s Architecture - DZone Database.

Retrieved March 4, 2019, at https:// dzone.com/articles/introduction-apache

cassandras

Edition, S. (2006). Beginning Databases with PostgreSQL. In Beginning Databases with

PostgreSQL. https://doi.org/10.1007/978-1-4302-0018-5

Eugen Hoble. (2016). Divide and Conquer: High Scalability With MongoDB Sharding -

DZone Database. Retrieved March 4, 2019, from https://dzone.com/articles/divide-and-

conquer-high-scalability-with-mongodb-t

Georgi Georgiev. (2016). What is Vertical scaling and Horizontal scaling - Vertical and

Horizontal hardware / services scaling, Retrieved February 14, 2019, at http://www.pc-

freak.net/blog/vertical-horizontal-server-services-scaling-vertical-horizontal-

hardware-scaling/

Gyorodi, C., Gyorodi, R., Pecherle, G., & Olah, A. (2015). A comparative study: MongoDB

vs. MySQL. 2015 13th International Conference on Engineering of Modern Electric

Systems, EMES 2015, 0–5. https://doi.org/10.1109/EMES.2015.7158433

59

Jain, V., & Upadhyay, A. (2017). MongoDB and NoSQL Databases. International Journal

of Computer Applications, 167(10), 16–20. https://doi.org/10.5120/ijca2017914385

Kofler, M., & Kramer, D. (2005). The definitive guide to MySQL 5: Third edition. In The

Definitive Guide to MySQL 5:Third Edition. https://doi.org/10.1007/978-1-4302-00710

Li, Y., & Manoharan, S. (2013). A performance comparison of SQL and NoSQL databases.

IEEE Pacific RIM Conference on Communications, Computers, and Signal Processing

- Proceedings, (November), 15–19. https://doi.org/10.1109/PACRIM.2013.6625441

Lourenço, J. R., Cabral, B., Bernardino, J., & Vieira, M. (2018). Comparing NoSQL

Databases with a Relational Database: Performance and Space. Services Transactions

on Big Data, 2(1), 1–14. https://doi.org/10.29268/stbd.2015.2.1.1

Mohamed, M. A., Mohamed, M. A., Altrafi, O. G., & Ismail, M. O. (2014). Relational Vs.

NoSQL databases: A survey. International Journal of Computer and Information

Technology, 03(03), 2279–0764. Retrieved at www.ijcit.com598

MongoDB, I. (2008a). Data Modeling Introduction — MongoDB Manual. Retrieved April

12, 2019, at https:// docs.mongodb.com/manual/core/data-modeling-introduction/

MongoDB, I. (2008b). Replication — MongoDB Manual. Retrieved June 9, 2019, at https:

//docs.mongodb.com/manual/replication/

MongoDB, I. (2019.-a). Community | MongoDB.Retrieved March 29, 2019, at

https://www.mongodb.com/community

MongoDB, I. (2019.-b). Technical Support — MongoDB Manual. Retrieved April 28, 2019,

at https://docs.mongodb.com/v3.4/support/

Oracle. (2019). MySQL :: MySQL Documentation. Retrieved March 19, 2019, at

https://dev.mysql.com/doc/

Patil, M. M., Hanni, A., Tejeshwar, C. H., & Patil, P. (2017). A qualitative analysis of the

performance of MongoDB vs MySQL database based on insertion and retriewal

operations using a web/android application to explore load balancing-Sharding in

MongoDB and its advantages. https://doi.org/10.1109/I-SMAC.2017.8058365

60

PostgreSQL. (2019a). PostgreSQL: Community. Retrieved March 24, 2019, at https://

www.postgresql.org/community

Pos Software Testing Help. (2019). Database CRUD Testing Through UI (with Sample Test

Cases). Retrieved February 28, 2019, at https://www.softwaretestinghelp.com/crud-

testing/

 postgreSQL. (2019b). PostgreSQL: Documentation. Retrieved March 25, 2019, at

https://www.postgresql.org/docs/

RapidValue. (2015). Cassandra – The Right Data Store for Scalability, Performance,

Availability and Maintainability-RapidValue. Retrieved April 6, 2019,at https://

www.rapidvaluesolutions.com/tech_blog/cassandra the right data store forscalability

performance-availability-and-maintainability/

Safari Books Online. (2019). 1. MySQL Architecture and History - High Performance

MySQL,3rd Edition [Book]. Retrieved April 9, 2019, at https://www.o reilly.com/

library /view/high-performance mysql/9781449332471/ch01.html

Software Testing Help. (2019). Database CRUD Testing Through UI (with Sample Test

Cases). Retrieved February 28, 2019, at https://www.softwaretestinghelp.com/crud-

testing/

solid IT. (2019). 2019 Database Trends – SQL vs. NoSQL, Top Databases, Single vs.

Multiple Database Use-High Scalability-.Retrieved April 28, 2019, at

http://highscalability.com/blog/2019/3/6/2019-database-trends-sql-vs-nosql-top-

databases-single-vs-mu.html

Syed Sadat Nazrul. (2018). CAP Theorem and Distributed Database Management Systems.

Retrieved April 3, 2019, at https://towardsdatascience.com/cap-theorem-and-

distributed-database-management-systems-5c2be977950e

Timescale. (2018). High availability and scalable reads in PostgreSQL. Retrieved April 1,

2019, at https://blog.timescale.com/scalable-postgresql-high-availability-read-

scalability-streaming-replication-fb95023e2af/

Tony Branson. (2016). Database Scalability : Vertical Scaling vs Horizontal Scaling.

61

Retrieved April 24, 2019, at http://www.vcloudnews.com/database-scalability-vertical-

scaling-vs-horizontal-scaling/

Tudorica, B. G., & Bucur, C. (2011). A comparison between several NoSQL databases with

comments and notes. Proceedings - RoEduNet IEEE International Conference, 1–5.

https://doi.org/ 10.1109/RoEduNet.2011.5993686

62

APPENDICES

63

APPENDIX 1

CODE FOR ELAPSED TIME OF CRUD OPERATIONS

The following code measures the time taken by each databases operation

<!--?

 <?php

class Timer

{

 private $start ;

 private $pause_time ;

 /* start the timer */

 public function __construct($start = 0)

 {

 if($start) { $this->start(); }

 }

 /* start the timer */

 public function start()

 {

 $this->start = $this->get_time();

 $this->pause_time = 0;

 }

 /* pause the timer */

 public function pause()

 {

 $this->pause_time = $this->get_time();

 }

 /* unpause the timer */

 public function unpause()

 {

 $this->start += ($this->get_time() - $this-

>pause_time);

 $this->pause_time = 0;

64

 }

 /* get the current timer value */

 public function get($decimals = 8)

 {

 return round(($this->get_time() - $this->start) ,

$decimals);

 }

 /* format the time in seconds */

 public function get_time()

 {

 list($usec,$sec) = explode(' ', microtime());

 return ((float)$usec + (float)$sec);

 }}

 ?>

65

APPENDIX 2

EXECUTION OF MYSQL QUERY IN PHP

The following php script shows the execution time of MySQL queries.

<?php

require_once('loadtime.php') ;

require_once('db_connect.php') ;

$timer = new Timer(1);

echo @$num_of_records = $_POST['query_length'];

//////////////////create database connection ///////////////

$mysqli = mysqli_connect("localhost","root","", "lab") or die ("could not

connect to mysql");

 $time1= $timer->get();

 $message1 = "Db connection established at:".$timer->get();

////////////////create table script/////////////////////////

$tableCreate = "CREATE TABLE IF NOT EXISTS data_table2 (id

int(11) NOT NULL auto_increment ,

customer_name VARCHAR(25),

customer_lastname VARCHAR(25),

customer_address VARCHAR(25),

phone INT,

email VARCHAR(25),

zip INT,

state VARCHAR(25),

country VARCHAR(25),

 car_model VARCHAR(25),

 car_price INT,

PRIMARY KEY (id))";

$queryResult = mysqli_query($mysqli , $tableCreate);

 $time2= $timer->get();

 $message2 = "Table created at : " . $timer->get();

/////////////////insert data into the table////////////////

 if ($queryResult === true) {

 for ($i = 1; $i <=$num_of_records; $i++)

 mysqli_query($mysqli, "INSERT INTO data_table2 (customer_name,

customer_lastname,customer_address,phone,email,zip,state,country,

car_model,car_price)VALUES('Saron','Addal','Addisababauniversity','200195

66

838',

'Saron0918gmail.com','34533','Amhara','Ethiopa','2018ToyotaAvalon','25000

0);");

 }

 } else {

 print "
No TABLE created. Check";

 }

 $time3= $timer->get();

///////////////////read data from the table //////////////////

 $message3 = "Data inserted into the table at: " . $timer->get();

 $result = mysqli_query($mysqli , 'SELECT * FROM data_table2') ;

 $arrayResults = array() ;

 while ($row = $result->fetch_assoc()) {

 array_push($arrayResults , $row['customer_name']); }

 $row['customer_name'];

$message4 = "Data is read from table and inserted into an array at:".

$timer->get();

//////////////update all the data in the table////////////////

$sql=mysqli_query($mysqli ,"UPDATE data_table2 SET

customer_name='Wondwessen',customer_lastname='Haile',customer_address='Ni

kosia',phone='53382238',email='wondwessen@gmail.com',zip='434556',state='

North_Cyprus',country='Turkey',car_model='2011LexusRX350',car_price='3002

330'";

 $time5= $timer->get();

 $message5="Data is compately updated at : ". $timer->get();

//////////delete all the data in the table//////////////////

$sql_delete = ' DELETE FROM data_table2';

 if (mysqli_query($conn, $sql_delete)) {

 $time6= $timer->get();

 $message6= "Record deleted successfully at: ". $timer->get();

 } else {

 echo "Error deleting record: ". mysqli_error($conn);

 mysqli_close($conn);

}

///////////////////////******END ///////////////////////////

?

67

APPENDIX 3

EXECUTION OF PostgreSQL QUERY IN PHP

The following php script shows the execution time of PostgreSQL queries.

<?php

require_once('loadtime.php') ;

$timer = new Timer(1);

/////////////database conneciton script/////////////////////

 @$query_length = $_POST['query_length'];

 $host = "host = 127.0.0.1";

 $port = "port = 5432";

 $dbname = "dbname = my_testdb";

 $credentials = "user = postgres password= ";

 $db = pg_connect("$host $port $dbname $credentials");

 if(!$db) {

 echo "Error : Unable to open database\n";

 } else {

 //echo "Opened database successfully\n";

 $time1 = $timer->get() ;

 $message1 ="Db connection established at: ". $timer->get();

 }

////////////////////////create table script////////////////////

$query = "CREATE TABLE IF NOT EXISTS data_table5 (id SERIAL

PRIMARY KEY,customer_name VARCHAR(25),

customer_lastname VARCHAR(25),

ustomer_address VARCHAR(25),

 phone INT,

email VARCHAR(25),

zip INT,

state VARCHAR(25),

country VARCHAR(25),

car_modal VARCHAR(25),

 car_price INT)";

pg_query($db, $query) or die("Cannot execute query: $query\n");

 if(!$db) {

 echo "Error : Unable to create the table \n";

68

 } else {

 $time2 = $timer->get();

 $message2 ="table created successfully at:". $timer->get();

 }

/////////////////write the data into the table////////////////

 for ($i = 1; $i <=$query_length; $i++) {

 $result=pg_Exec($db, "INSERT INTO data_table5 (customer_name,

customer_lastname,customer_addressphone,email,zip,state,country,car_modal

,car_price)VALUES('Saron','Addal','Addisababauniversity','200195838','Sar

on0918gmail.com','34533','Amhara','Ethiopa','2018ToyotaAvalon','250000');

");

 }

 if(!$result) {

 echo "Error : Unable to insert data \n";

 } else {

 $time3= $timer->get();

$message3 = "data inserted into database successfully at:". $timer-

>get();

 }

/////////////////////////read data from the table /////////////

 $sql =<<<EOF

 SELECT * from data_table5;

 EOF;

 $ret = pg_query($db, $sql);

 if(!$ret) {

 echo pg_last_error($db);

 exit;

 }

 while($row = pg_fetch_row($ret)) {

 "ID = ". $row[0] . "\n";

 "name = ". $row[1] ."\n";

 "price = ". $row[2] ."\n";

 }

 $time4= $timer->get();

 $message4= "Data is read from table at: ". $timer->get();

//////////////update all the data in the table////////////////

69

 $sql = "update data_table5 set

customer_name='Wondwessen',customer_lastname='Haile',customer_address='Ni

cosia',phone='53382238',email='wondwessen@gmail.com',zip='434556',state='

North_Cyprus',country='Turkey',car_modal='2011LexusRX

350',car_price='3002330'";

 $result = pg_query($db, $sql);

 if(!$result){

 echo pg_last_error($db);

 } else {

$time5= $timer->get(); "Data is successfully updated at : ". $timer-

>get();

 }

////////////////delete data from the table/////////////////////

 $sql = "delete from data_table5";

 $result = pg_query($db, $sql);

 if(!$result){

 echo pg_last_error($db);

 } else {

 $time6= $timer->get();

 }

 // Close the connection

 pg_close($db);

//////////////////////////////******END*******////////////////

?>

70

APPENDIX 4

EXECUTION OF MONGODB QUERY IN PHP

The following php script shows the execution time of MongoDB queries.

<?php

require 'vendor/autoload.php';

require_once('loadtime.php');

//$num_of_records=1;

@$num_of_records = $_POST['query_length'];

$client = new MongoDB\client;

$timer = new Timer(1);

try {

//$connection = new Mongo();

$client = new MongoDB\client;

$database = (new MongoDB\Client)->customerinfo;

$time1= $timer->get();

 $message1 = "Db connection established at : " . $timer->get() . "<br \>

<br \>" ;

} catch(MongoConnectionException $e) {

die("Failed to connect to database ".$e->getMessage());

}

$customercollection=$database->customer;

for ($i = 0; $i < $num_of_records; $i++){

$insertOneResult=$customercollection>insertOne(['customer_name'=>'wondwes

sen','customer_lastname'=>'haile','customer_address'=>'north_cyprus','pho

ne'=>5338223089,'email'=>'wondwessen533@gmail.com','zip'=>1234,'state'=>'

north_cyprus','country'=>'turkey','car_model'=>'Toyota

2010','car_price'=>23434]);

}

$time3= $timer->get();

 $message3 = "Data inserted into the table at:".$timer->get();

$document=$customercollection->find(['customer_name'=> 'wondwessen']);

foreach($document as $doc){

//var_dump($doc);

}

//var_dump($document);

71

$time4= $timer->get();

$message4 = "Data is read from table and inserted into an array at: ".

$timer->get();

try {

$updateResult=$customercollection>updateMany([],['$set'=>['customer_name'

=>'Anteneh','customer_lastname'=>'addal','customer_address'=>'addisababa'

,'phone'=>'9182','email'=>'yohanse@gmial.com','zip'=>'1322','state'=>'amh

ara','country'=>'ethiopia','car_model'=>'2011LexusRX350','car_price'=>'32

33']]);

$message5="Data is compately updated at : ". $timer->get();

 $time5= $timer->get();

 } catch(MongoConnectionException $e) {

 die("Failed to connect to database ".$e->getMessage());

}

$deleteResult=$customercollection>deleteMany(['customer_name'=>

'Anteneh']);

$time6= $timer->get();

 $message6= "Record deleted successfully at: ".$timer->get();

?>

72

APPENDIX 5

EXECUTION OF Cassandra QUERY IN PHP

The following php script shows the execution time of Cassandra queries

<?php

require_once('loadtime.php') ;

$timer = new Timer(1);

@$num_of_records = $_POST['query_length'];

//////////////////////create database connection

$cluster = Cassandra::cluster() -

->withContactPoints('127.0.0.1')

 ->build();

 $session = $cluster->connect()

 $session->execute("CREATE KEYSPACE IF NOT EXISTS customer_info WITH

replication = { 'class': 'SimpleStrategy', 'replication_factor': '3' }");

 $session->execute("USE customer_info");

 $time1= $timer->get();

 $message1 = "Db connection established at : " . $timer->get();

$session->execute("CREATE TABLE IF NOT EXISTS customer7 (id uuid,

 customer_name text,

 customer_lastname text,

 customer_address text,

 phone int,

 email text,

 zip int ,

 state text,

 country text,

 car_model text,

 car_price int,PRIMARY KEY(id))");

 $time2= $timer->get();

 $message2 = "table created successfully at : " . $timer->get();

/////////////////////insert data into the table/////////////////////////

$statement = $session->execute(new Cassandra\SimpleStatement("INSERT

INTOcustomer7(id,customer_name,customer_lastname,customer_address,phone,e

mail,zip,state,country,car_model,car_price)VALUES(uuid(),'wondwessen','ha

ile','nicosia',9012323,'wondwessen533@gmail',12323,'northcyprus','turkey'

,'toyota 123323',8922762)"

));

 $time3= $timer->get();

 $message3 = "data inserted successfully at : " . $timer->get();

73

////////////////////read data from the database

//////////////////////////

 $result = $session->execute("SELECT * FROM customer7");

foreach ($result as $row) { $row['customer_name'] . ": " .

$row['customer_lastname'] . " / " . $row['phone'] . " / " . $row['email']

." / " . $row['zip'] . " / ".$row['state'] . " / " . $row['country'] . "

/ ".$row['car_model'] . " / " . $row['car_price']."<br \> <br \>"

.PHP_EOL;

}

$time4= $timer->get();

 $message4= "data is selected successfully at: ".$timer->get();

 $schema = $session->schema();

///////////////////////////////////

$delete = $session->execute(new Cassandra\SimpleStatement

 ("TRUNCATE customer_info.customer7"));

 $time6= $timer->get();

 $message6 = "data deleted successfully at: ". $timer->get();

 /////////////////////////////******END*******/////////////////////

?>

