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ABSTRACT

The present thesis deals with strongly positive operators with nonlocal conditions and their

applications. The structure of fractional powers of positive operators in fractional spaces are

given. The well-posedness of the abstract nonlocal boundary value problem for differential

equation of the elliptic type

−v′′(t) + Av(t) = f (t) (0 ≤ t ≤ T ), v(0) = v(T ) + ϕ,

T∫
0

v(s)ds = ψ

in an arbitrary Banach space E with the positive operator A is established. The coercive

stability estimates in Hölder norms for the solution of three type elliptic problems are

obtained. The second order of approximation two-step difference scheme for the numerical

solution of a nonlocal boundary value problem is presented. The well-posedness of

difference problems in Banach spaces is established. The stability, almost coercive stability

and coercive stability estimates for the solutions of difference schemes for the numerical

solution of elliptic problems are obtained. Illustrative numerical results for two and three

dimensional case are provided.

Keywords: Fractional powers; interpolation spaces; fractional derivatives; positive operators;

elliptic operators; well-posedness; coercive stability; difference scheme
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ÖZET

Bu tez, yerel olmayan koşullar ve bunların uygulamaları ile birlikte güçlü pozitif operatörler

ile ilgilidir. Kesirli uzaylarda pozitif operatörlerin kesirli mertebelerinin yapısı verilmiştir.

Eliptik tipin diferansiyel denklemi için yerel olmayan sınır değer probleminin iyi kuruluşu

−v′′(t) + Av(t) = f (t) (0 ≤ t ≤ T ), v(0) = v(T ) + ϕ,

T∫
0

v(s)ds = ψ

keyfi bir Banach uzayında E pozitif operatör A ile kurulur. Üç tip eliptik problemin çözümü

için Hölder normlarında zorunlu olarak istikrarlı tahminler elde edilmiştir. Yerel olmayan

bir sınır değer probleminin sayısal çözümü için yakınsak iki aşamalı fark şemasının ikinci

mertebesi sunulmuştur. Banach uzaylarındaki farklılık sorunlarının iyi oluşu kurulmuştur.

Kararlılık, neredeyse zorlayıcı kararlılık tahminleriyle, eliptik problemlerin sayısal çözümü

için fark şemalarının çözümlerinin tahminleri elde edilmiştir. İki ve üç boyutlu durumlar için

açıklayıcı sayısal sonuçlar verilmiştir.

Anahtar Kelimeler: Kesirli mertebeler; interpolasyon uzayları; kesirli türevler; pozitif

operatörler; eliptik operatörler; iyi konumlanmışlık; zorlayıcı kararlılık; fark şemaları
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CHAPTER 1

INTRODUCTION

The method of operators as a tool for the investigation of the solution to partial differential

equations in Hilbert and Banach spaces, has been systematically developed by many

authors. It is well-known that various local and nonlocal problems for partial differential

equations can be reduced to local and problems for ordinary differential equations in Hilbert

or Banach spaces with unbounded positive operator. The role played by positivity property

of differential and difference operators in Hilbert and Banach spaces in the study of various

properties of boundary value problems for partial differential equations, of stability of

difference schemes for partial differential equations, and of summation Fourier series is

well-known (Ashyralyev & Sobolevskii, 1994; Ashyralyev& Sobolevskii, 2004;

Krasnosel’skii, et al., 1966; Sobolevskii, 2005).

Important progress has been made in the study of positive operators from the view-point of

the stability analysis of difference schemes for partial differential equations. It is well

known that the most useful methods for stability analysis of difference schemes are

difference analogue of maximum principle and energy method. The application of theory of

positive difference operators allows us to investigate the stability and coercive stability

properties of difference schemes in various norms for partial differential equations

especially when one can not use a maximum principle and energy method. Moreover, the

structure of fractional spaces generated by positive differential and difference operators and

its applications to partial differential equations has been investigated by many researchers.

Finally, a survey of results in fractional spaces generated by positive operators and their

applications to partial differential equations was given in paper of Ashyralyev, 2015.

Nevertheless, structure of fractional powers generated by differential and difference

operators and its applications to partial differential equations has not been investigated a

sufficiently.

The present work is devoted to the study of applications of second order differential
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operator with nonlocal conditions. Investigation of the structure of fractional spaces

generated by positive operator with nonlocal conditions in a Banach space. It consists five

chapters. The first chapter is introduction. In the second chapter we consider the definitions

of positive operator in a Banach space, of fractional power of positive operator, of fractional

spaces genareted by positive opaters and essential statements and estimates which will be

useful in the sequel. The simply two differential positive operators in Banach and Hilbert

spaces are considered. The structure of fractional spaces generated by positive operator in a

Banach space is investigated. In applications, we give the structure of fractional powers of

elliptic operators in Banach norms. In the third chapter five nonlocal boundary value

problems are solved analytically by Fourier series, Fourier transform and Laplace transform

methods. We consider the nonlocal boundary value problem for elliptic equations in a

Banach space. The well-posedness of the differential problem in various Banach spaces is

established. In applications, the new coercive stability estimates in Hölder norms for the

solutions of the mixed type nonlocal boundary value problems for elliptic equations are

obtained. In the fourth chapter we present second order of accuracy two-step difference

scheme for the approximate solution of the nonlocal boundary value problem for elliptic

equations in a Banach space. The well-posedness of the difference problem in various

Banach spaces is established. In applications, the new stability, almost coercive stability

and coercive stability estimates in Hölder norms for the solutions of the difference schemes

for the approximate solution of the nonlocal boundary value problem for elliptic equations

are obtained. Numerical analysis is given. The fifth chapter is conclusions. Basic results of

this thesis have been published by the following papers (Ashyralyev and Hamad, 2017;

Ashyralyev and Hamad, 2018a, 2018b, 2018c; Ashyralyev and Hamad, 2019). Some results

of this work were presented in seminar “Analysis and Applied Mathematics Seminar

Series” of Department of Mathematics, Near East University and in VI congress of Turkic

World Mathematical Society (TWMS 2017), and Fourth International Conference on

Analysis and Applied Mathematics (ICAAM 2018), and in 2nd International Conference of

Mathematical Sciences, Maltepe University, Istanbul in International summer mathematical

school in memoriam V.A. Plotnikov, Odessa National University, Odessa, Ukraine.
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CHAPTER 2

STRUCTURE OF FRACTIONAL SPACES AND THEIR APPLICATIONS

This chapter consists three sections, In the first section we consider the definition of positive

operators, the fractional power of positive operator, statements and estimates concerning the

semigroup exp{−tA}(t ≥ 0) from (Ashyralyev and Sobolevskii, 2012; Krasnosel’skii et al.,

1966) which will be useful in the sequel. The some examples are given for explanation their.

In the second, the main Theorem on the structure of fractional spaces D(Aβ,Eα,q(E,A)) is

proved. Applications of this theorem are included in the third section.

2.1 INTRODUCTION

Definition. The operator A is said to be strongly positive if its spectrum σ (A) lies in the

interior of the sector of angle φ, 0 < 2φ < π, symmetric with respect to the real axis and if

on the edges of this sector, S 1 (φ) = {ρeiφ : 0 ≤ ρ < ∞} and S 2 (φ) = {ρe−iφ : 0 ≤ ρ < ∞} and

outside of it, the resolvent (λ − A)−1 is subject to the bound∥∥∥(λ − A)−1
∥∥∥

E→E
≤

M (φ)
1 + |λ|

. (2.1)

The infimum of all such angles φ is called the spectral angle of the strongly positive operator

A and is denoted by φ (A) = φ (A, E). Since the spectrum σ (A) is a closed set, it lies inside

the sector formed by the rays S 1 (φ (A)) and S 2 (φ (A)) and some neighborhood of the apex

of this sector does not intersect σ (A). We shall consider contours Γ = Γ (φ, r) composed by

the rays S 1 (φ), S 2 (φ) and an arc of circle of radius r centered at the origin; φ and r will be

chosen so that φ (A) < |φ| < π/2 and the arc of circle of radius r lies in the resolvent set ρ (A)

of the operator A.

Let f (z) be an analytic function on the set bounded by such a contour Γ and suppose that f

satisfies estimate

| f (z)| ≤ M |z|−ε

for some ε > 0. Then the operator Cauchy-Riesz integral

f (A) =
1

2πi

∫
Γ

f (z) (z − A)−1 dz (2.2)

3



converges in the operator norm and defines a bounded linear operator f (A) which is a

function of the strongly positive operator A. If f (z) is continuous in a neighbourhood of the

origin, then in (2.2) we shall consider that r = 0, i.e., Γ = S 1 (φ) ∪ S 2 (φ).

As in the case of a bounded operator A one shows that f (A) does not depend on the choice of

the contour Γ in the domain of analyticalness of the function f (z) and that the correspondence

between the function f (z) and the operator f (A) is linear and multiplicative.

The function f (z) = z−α defines a bounded operator A−α whenever α > 0. Here the contour Γ

is chosen with r > 0. By the multiplicative property, A−(α+β) = A−αA−β = A−βA−α is satisfied

for any powers of the strongly positive operator A and not only for negative integer ones.

From this identity it follows (when α + β is an integer) that the equation A−αx = 0 has the

unique solution x = 0. Hence, the positive powers Aα = (A−α)−1 of the strongly positive

operator are defined. The operators Aα (α > 0) are unbounded if A is unbounded; they have

dense domains D (Aα) and one has the continuous embeddings D (Aα) ⊂ D
(
Aβ

)
if β < α.

Now let us consider the function f (z) = e−tz. For any t > 0 this function tends to zero

faster any power z−α as |z| → ∞ and its values lie inside any sector bounded by a contour Γ.

Therefore, formula (2.2) can be used to define the function exp {−tA} of the strongly positive

operator A. By multiplicative, the semigroup property holds:

exp {− (t1 + t2) A} = exp {−t1A} exp {−t2A} , t1, t2 > 0.

Consider the function Ψ (z) = zαe−tz for some α > 0 and t > 0. Since, obviously, Ψ (z) → 0

faster than any negative power of z as |z| → ∞, Ψ (z) defines the operator function

Ψ (A) =
1

2πi

∫
Γ

zαe−tz (z − A)−1 dz. (2.3)

Let us show that the operator exp {−tA} maps E into D (Aα) and Aα exp {−tA} = Ψ (A). Let x

be an arbitrary element of E. By the multiplicativity property, (2.3) implies that

A−αΨ (A) x =
1

2πi

∫
Γ

e−tz (z − A)−1 xdz = exp {−tA} x

which proves our assertion. Thus, we have the formula

Aα exp {−tA} =
1

2πi

∫
Γ

zαe−tz (z − A)−1 dz. (2.4)
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In the above argument we must assume that the contour Γ contains an arc of radius r, since

we applied the operator A−α, which corresponds to the function z−α. The final formula (2.4)

is valid for any (small) r > 0. Since the integrand in (2.4) is continuous at the point z = 0,

letting z→ 0 we obtain the formula

Aα exp {−tA} =
1

2πi

[∫ 0

∞

ραeiαφe−tρeiφ (
ρeiφ − A

)−1
dρ

+

∫ ∞

0
ραe−iαφe−tρe−iφ (

ρe−iφ − A
)−1

dρ
]

for some 0 < φ < π/2. From this and the estimate (2.1) it follows that

∥∥∥Aα exp {−tA}
∥∥∥

E→E
≤

M (φ)
π

∫ ∞

0
ρα−1e−tρ cos φdρ =

M (φ) Γ(α)
π(cos φ)α

t−α.

In particular, we have the estimate

∥∥∥exp {−tA}
∥∥∥

E→E
≤

M (φ)
π

. (2.5)

Let us show that the estimate (2.5) can be sharpened by a factor that decays exponentially

when t → +∞.

Let A be a strongly positive operator. We claim that for sufficiently small δ > 0 the operator

A − δ is also strongly positive and φ (A − δ) = φ (A). Indeed, let λ ∈ Γ (φ). Consider the

equation λx − (A − δ) x = y for an arbitrary y. ∈ E. The substitution λx − Ax = z yields the

equation z + δ (λ − A)−1 z = y. Since

∥∥∥δ (λ − A)−1
∥∥∥

E→E
≤ δM (φ)

if λ ∈ Γ (φ), we see that for δ ≤
[
2M (φ)

]−1the equation for z has a unique solution and

‖z‖ ≤ 2 ‖y‖. Consequently, the equation for x has a unique solution and

‖x‖ ≤ M (φ) [|λ| + 1]−1
‖z‖ ≤ 2M (φ) [|λ| + 1]−1

‖y‖ .

This means that the operator λ − (A + δ) has a bounded inverse for

0 < δ ≤
[
2M (φ)

]−1 and

∥∥∥[λ − (A − δ)]−1
∥∥∥

E→E
≤ 2M (φ) [|λ| + 1]−1 .

5



Thus, we have shown that A − δ is a strongly positive operator. Hence, by (2.5), we have the

estimate

∥∥∥exp {− (A − δ) t}
∥∥∥

E→E
≤

2M (φ)
π

.

This obviously yields

∥∥∥exp {−At}
∥∥∥

E→E
≤

2M (φ)
π

e−δt, (2.6)

where we can put δ =
[
2M (φ)

]−1.

Let t > 1. Then, using the semigroup property, we can write

exp {−tA} = exp {−A} exp {− (t − 1) A} .

Next, applying the estimates (2.5) with t = 1 and (2.6), we obtain

∥∥∥Aα exp {−tA}
∥∥∥

E→E
≤

M (φ)
π (cos φ)α

2M (φ)
π

e−δ(t−1).

Hence, the following estimate holds for t > 1:

∥∥∥Aα exp {−tA}
∥∥∥

E→E
≤ M1 (φ) e−δt.

If 0 < t ≤ 1, then estimate (2.5) trevails. Combining these two estimates, we conclude that

∥∥∥Aα exp {−tA}
∥∥∥

E→E
≤ M̃ (φ) e−δtt−α (2.7)

for some M̃ (φ) > 0 and δ > 0.

Further, formula (2.2) allows us to establish that the operator- valued function exp {−tA} is

differentiable in the operator norm for t > 0 and

d
dt

exp {−tA} = −A exp {−tA} . (2.8)

In particular, this implies that exp {−tA} is continuous in the operator norm. Using the

semigroup property we deduce that the derivative of exp {−tA} is also continuous in the

operator norm for t > 0. Finally, formula (2.8) shows that the operator-valued function

exp {−tA} has derivative of arbitrary order in the operator norm for t > 0.

6



Now, let x ∈ D (A). Then the (E−valued) function exp {−tA} x has a derivative for t > 0 and,

by (2.8),

d
dt

exp {−tA} x = − exp {−tA} Ax.

Next, for x as above we can write

(z − A)−1 x = z−1x + z−1 (z − A)−1 Ax.

Using formula (2.2), we obtain

exp {−tA} x =
1

2πi

∫
Γ

e−tz
[
z−1x + z−1 (z − A)−1 Ax

]
dz.

Here the contour Γ has the form

Using the Cauchy theorem, we get

exp {−tA} x =
1

2πi

∫
Γ

e−tzz−1 (z − A)−1 Axdz + x.

The estimate (2.1) shows that in the last equality one can pass to the limit under the integral

sign when t → +0. Hence, the limit

lim
t→+0

exp {−tA} x = x +
1

2πi

∫
Γ

z−1 (z − A)−1 Axdz.

exists (in the norm of E). By Cauchy’s theorem, the integral

ϑ =
1

2πi

∫
Γ

z−1 (z − A)−1 Axdz =
1

2πi

∫ −σ+i∞

−σ−i∞
z−1 (z − A)−1 Axdz.

for some σ > 0. Hence, by (2.1),

‖ϑ‖E ≤
M
2π

∫ ∞

−∞

dt
σ2 + t2 ‖Ax‖E .

7



Since ϑ does not depend on σ, it follows that ϑ ≡ 0. Hence, we proved that

lim
t→+0

exp {−tA} x = x (2.9)

for any x ∈ D (A). Since the norm
∥∥∥exp {−tA}

∥∥∥
E→E

is uniformly bounded for t > 0, the

limit relation (2.9) holds for any x ∈ E. Thus, if we extend the operator- valued function

U (t) = exp {−tA}, t > 0, at t = 0 by U (0) = I, we obtain a strongly continuous semigroup.

From the estimate (2.7) (with α = 0) it follows that this semigroup is analytic. Finally, let

us show that its generator is U′ (0) = −A. From (2.6) and the estimate (2.7) we derive the

identity

U (t) x − x = −

∫ t

0
U (s) Axds

for x ∈ D (A). Since U (t) is strongly continuous to the left at the point t = 0, this implies

that x ∈ D (U′ (0)) and U′ (0) x = −Ax. Hence, U′ (0) is an extension of the operator −A. By

the estimate(2.6), the operator U′ (0) + λ and −A + λ have bounded inverses for any λ < 0.

Therefore, U′ (0) = −A.

We have shown that the operator-valued function exp {−tA} is an analytic semigroup with

generator −A and with an exponentially decaying norm. Operators −A that generate such

semigroups were called strongly positive operators.

With the help of a strongly positive operator A we introduce the Banach space Eα,q(E, A),

0 < α < 1, consisting of all v ∈ E for which the following norms are finite:

‖v‖Eα,q =

(∫ ∞

0

∥∥∥λ1−αA exp{−λA}v
∥∥∥q

E

dλ
λ

)1
q
, 1 ≤ q < ∞,

‖v‖Eα = ‖v‖Eα,∞ = sup
λ>0

∥∥∥λ1−αA exp{−λA}v
∥∥∥

E
.

For all v ∈ E with a strongly positive operator A and −1 < α < 0, the following norms are

finite

‖v‖Eα,q =

(∫ ∞

0

∥∥∥λ−α exp{−λA}v
∥∥∥q

E

dλ
λ

)1
q
, 1 ≤ q < ∞,

‖v‖Eα,∞ = ‖v‖Eα = sup
λ>0

∥∥∥λ−α exp{−λA}v
∥∥∥

E
,
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we define the fractional space Eα,q(E, A),−1 < α < 0. The replenishment of space E in this

norm forms a Banach space Eα,q(E, A),−1 < α < 0, 1 ≤ q ≤ ∞.

Clearly, the positive operator commutes A and its resolvent (A − λ)−1. By the definition of

the norm in the fractional space Eα = Eα(E, A), Eα,p = Eα,p(E, A), 1 ≤ p < ∞, (−1 < α < 1),

we get

‖(A − λ)−1‖Eα→Eα , ‖(A − λ)−1‖Eα,p→Eα,p ≤ ‖(A − λ)−1‖E→E.

Thus, from the positivity of operator A in the Banach space E it follows the positivity of this

operator in fractional spaces Eα = Eα(E, A), Eα,p = Eα,p(E, A), 1 ≤ p < ∞, (−1 < α < 1).

Let us consider the selfadjoint positive definite operator A in a Hilbert space H with dense

domain D(A) = H. That means there exists δ > 0 such that A = A∗ ≥ δI. Then, applying the

spectral representation of the selfadjoint positive definite operator, we can get∥∥∥(A − λ)−1
∥∥∥

H→E
≤ sup

δ≤µ<∞

1
|µ − λ|

. (2.10)

It is easy to see that from (2.10) it follows that the selfadjoint positive definite operator A

in a Hilbert space H is the strongly positive operator with the spectral angle ϕ(A,H) = 0.

Therefore, the positivity of operators in a Banach space is the generalization of the notion of

selfadjoint positive definite operators in a Hilbert space.

Now, let us consider two examples of positive operators in Banach spaces.

1. Let C(R1) be the Banach space of continuous scalar functions f (x) on R1 = (−∞,∞)

satisfying condition f (x) → 0 as |x| → ∞, with the norm ‖ f ‖C(R1) = supx∈R1 | f (x)| . Let A be

the operator acting in C(R1) according to the rule Av(x) = −v′′(x) + v(x), so that we also

have v′′(x) ∈ C(R1). It is easy that A is the self-adjoint positive-definite operator in L2(R1).

Here L2(R1) is the Hilbert space of square-interability scalar functions f (x) on R1 with the

norm

‖ f ‖2L2(R1) =

∫
x∈R1

| f (x)|2 dx.

Actually, for all u, v ∈ L2(R1) we have that

〈Au, v〉 =

∫ ∞

−∞

Au(x)v (x) dx = −

∫ ∞

−∞

d
dx

(
du (x)

dx

)
v (x) dx +

∫ ∞

−∞

u(x)v (x) dx

9



−

(
du (x)

dx

)
v(x)

∣∣∣∣∣∣∞
−∞

+

∫ ∞

−∞

du (x)
dx

dv (x)
dx

dx +

∫ ∞

−∞

u(x)v (x) dx

=

∫ ∞

−∞

du (x)
dx

dv (x)
dx

dx +

∫ ∞

−∞

u(x)v (x) dx,

〈u, Av〉 =

∫ ∞

−∞

u (x) Av(x)dx = −

∫ ∞

−∞

u (x)
d
dx

(
dv (x)

dx

)
dx +

∫ ∞

−∞

u(x)v (x) dx

− u(x)
(
dv (x)

dx

)∣∣∣∣∣∣∞
−∞

+

∫ ∞

−∞

dv (x)
dx

du (x)
dx

dx +

∫ ∞

−∞

u(x)v (x) dx

=

∫ ∞

−∞

a (x)
dv (x)

dx
du (x)

dx
dx +

∫ ∞

−∞

u(x)v (x) dx.

From that it follows 〈Au, v〉 = 〈u, Av〉 and

〈Au, u〉 =

∫ ∞

−∞

du (x)
dx

du (x)
dx

dx +

∫ ∞

−∞

u(x)u (x) dx ≥
∫ ∞

−∞

u(x)u (x) dx = 〈u, u〉 . (2.11)

For the self adjoint positive definite operator A we will introduce the operator-valued function

exp {−tA} defined by formula u(t) = exp {−tA}ϕ, where abstract function u(t) is the solution

of the following Cauchy problem in a Hilbert space H = L2(R1)

u′(t) + Au(t) = 0, t > 0, u(0) = ϕ. (2.12)

and the following estimates hold∥∥∥exp {−tA}
∥∥∥

H→H
≤ e−t,

∥∥∥tA exp {−tA}
∥∥∥

H→H
≤ e. (2.13)

It is based on the spectral represents of unit self adjoint positive definite operator A and

‖ f (A)‖H→H ≤ sup
δ≤λ<∞

| f (λ)| .

Here f is the bounded function on [δ,∞) . Therefore, the operator A in a Hilbert space H =

L2(R1) is the strongly positive operator with the spectral angle ϕ(A,H) = 0.

Moreover, this differential operator A is the strongly positive operator in Banach spaces

E = Lp

(
R1

)
, 1 ≤ p < ∞, Cα

(
R1

)
, 0 ≤ α < 1.

It is based on the triangle inequality and formula

exp {−tA}ϕ(x) =
e−t

2
√
πt

∞∫
−∞

e
−

(x − y)2

4t ϕ(y)dy, (2.14)

10



First, we will proof the formula (2.14). Using the definition of operator function exp {−tA} ,

we can write

u(t, x) = exp {−tA}ϕ(x),

where u(t, x) is the solution of the following Cauchy problem

ut(t, x) − uxx(t, x) + u(t, x) = 0, t > 0, u(0, x) = ϕ(x), x ∈ R1 (2.15)

for the parabolic equation with smooth ϕ(x). Assume that ϕ(±∞) = 0. Taking the Fourier

transform, we get the following Cauchy problem

ut(t, s) + s2u(t, s) + u(t, s) = 0, t > 0, u(0, s) = F {ϕ(x)}

for the first order ordinary differential equation. Taking the Laplace transform, we get

µu(µ, s) − F {ϕ(x)} + s2u(µ, s) + u(µ, s) = 0

or

u(µ, s) =
1

µ + s2 + 1
F {ϕ(x)} .

Applying the inverse Laplace transform, we get

u(t, s) = e−(s2+1)tF {ϕ(x)} = e−te−s2tF {ϕ(x)} = e−t 1
2
√
πt

F

e
−

(x)2

4t

 F {ϕ(x)} .

Applying the inverse Fourier transform, we get formula (2.14). Applying formula (2.14), we

can get the following estimates

∥∥∥e−tA
∥∥∥

C(R1)→C(R1)
≤ e−t, t ≥ 0, (2.16)

∥∥∥Ae−tA
∥∥∥

C(R1)→C(R1)
≤

2e−1

√
πt
, t > 0. (2.17)

11



2. Now, let C(R1+) be the Banach space of continuous scalar functions f (x) on R1+ = [0,∞)

satisfying condition f (x)→ 0 as x→ ∞, with the norm

‖ f ‖C(R1+) = sup
x∈R1+

| f (x)| .

Let A be the operator acting in C(R1+) according to the rule Av(x) = −v′(x)+v(x), so that we

also have v′(x) ∈ C(R1+). It is easy that A is not self-adjoint, but positive-definite operator in

L2(R1+).

Here, L2(R1+) is the Hilbert space of square-interability scalar functions f (x) on R1+ with

the norm

‖ f ‖2L2(R1+) =

∫
x∈R1+

| f (x)|2 dx.

Actually, for all u, v ∈ L2(R1+) we have that

〈Au, v〉 =

∫ ∞

0
A(u)v (x) dx = −

∫ ∞

0

du (x)
dx

v (x) dx +

∫ ∞

0
u(x)v (x) dx

− u(x)v(x)|∞0 +

∫ ∞

0
u

dv (x)
dx

dx +

∫ ∞

0
u(x)v (x) dx

=

∫ ∞

0
u

dv (x)
dx

dx +

∫ ∞

0
u(x)v (x) dx + u(0)v(0),

〈u, Av〉 =

∫ ∞

0
u (x) A(v)dx = −

∫ ∞

0
u (x)

dv (x)
dx

dx +

∫ ∞

0
u(x)v (x) dx

− u(x)v(x)|∞0 +

∫ ∞

0

du (x)
dx

v(x)dx +

∫ ∞

0
u(x)v (x) dx

=

∫ ∞

0

du (x)
dx

v(x)dx +

∫ ∞

0
u(x)v (x) dx + u(0)v(0).

From that it follows 〈Au, v〉 , 〈u, Av〉 . Moreover,

〈Au, u〉 = −

∫ ∞

0

du (x)
dx

udx +

∫ ∞

0
u(x)u (x) dx

= −
u2(x)

2

∣∣∣∣∣∣∞
0

+

∫ ∞

0
u(x)u (x) dx =

∫ ∞

0
u(x)u (x) dx +

u2(0)
2
≥ 〈u, u〉 .

That means A is not self-adjoint, but positive-definite operator in L2(R1+).

Moreover, this differential operator A is the positive operator in Banach spaces

E = Lp

(
R1+

)
, 1 ≤ p < ∞, Cα

(
R1+

)
, 0 ≤ α < 1.
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It is based on the triangle inequality and formula

exp {−tA}ϕ(x) = e−tϕ(x + t). (2.18)

First, we will proof the formula (2.18). Using the definition of operator function exp {−tA} ,

we can write

u(t, x) = exp {−tA}ϕ(x),

where u(t, x) is the solution of the following Cauchy problem

ut(t, x) − ux(t, x) + u(t, x) = 0, t > 0, u(0, x) = ϕ(x), x ∈ R1+ (2.19)

for the transport equation with smooth ϕ(x). Assume that ϕ(∞) = 0.

The associated system of equations are

dt
1

=
dx
−1

=
du
−u

.

Applying
dt
1

=
dx
−1

, we get

t + x = c1.

Similarly, applying
dt
1

=
du
−u

, we get

−t = ln u − ln c2

or

u = c2e−t.

Therefore,

etu = c2.

Then, using Lagrange’s method, we get

c2 = f (c1) .

13



The general solution of the given equation is

u(t, x) = e−t f (t + x).

Using the initial condition, we get

u(0, x) = f (x) = ϕ(x).

Then f (t + x) = ϕ(t + x) and

u(t, x) = e−tϕ(t + x).

The formula (2.18) is proved. Applying formula (2.18), we can get the following estimate

∥∥∥e−tA
∥∥∥

C(R1+)→C(R1+)
≤ e−t, t ≥ 0. (2.20)

The theory of fractional powers of operators can be constructed for a wider class of positive

operatorse (even for a more extensive class-weakly positive operators (Krasnosel’skii and

Sobolevskii, 1959). For such operators the estimate (2.1) is required to hold for some φ

and not only from the interval [0, π/2], but from the larger interval [0, π). Their domains

of definition D(Aα, E) are closely connected with the spaces Eα(E, A). In fact, for arbitrary

small ε > 0 the following continuous embeddings hold.

Theorem 2.1.1. (see for example, Ashyralyev & Sobolevskii, 1994) .

D(Aα, E) ⊂ Eα(E, A) ⊂ D(Aα−ε, E),

D(Aα+ε, E) ⊂ Eα,q(E, A) ⊂ D(Aα−ε, E), 1 ≤ q < ∞

for all 0 < α < 1.

The main aim of this chapter is study structure of fractional powers of positive operators.

2.2 STRUCTURE OF FRACTIONAL SPACES D(Aβ, Eα,Q(E, A))

In (Sobolevskii, 1966) embedding theorems were obtained for the domains of definition of

fractional powers of elliptic operators. These theorems and embeddings allow one to obtain

14



almost the same (up to ε) embedding theorems for the spaces Eα(Lp, A). In (Smirnitskii and

Sobolevskii, 1974) precisely the same embedding theorems for the spaces Eα(Lp, A) as for

D(Aα, Lp).

Let us prove the main theorem in this chapter which deal with structure of fractional spaces

D(Aβ, Eα,q(E, A)) generated by a strongly positive operator A in a Banach space.

Theorem 2.2.1. D(Aβ, Eα,q(E, A)) = Eα+β,q(E, A) for all 1 ≤ q ≤ ∞ and

0 < |α| < 1, |β| < 1, 0 < |α + β| < 1.

Proof. It is clear for β = 0. Therefore, we will put β , 0. To prove this statement we

examine separately the six cases

0 < α, β < 1, 0 < α + β < 1;

−1 < α, β < 0, − 1 < α + β < 0;

0 < α < 1, − 1 < β < 0, 0 < α + β < 1;

0 < α < 1, − 1 < β < 0, − 1 < α + β < 0;

−1 < α < 0, 0 < β < 1, 0 < α + β < 1;

−1 < α < 0, 0 < β < 1,−1 < α + β < 0.

let u ∈ D(Aβ, Eα,q(E, A)). Then we will prove that u ∈ Eα+β,q(E, A) and the following

statement holds

D(Aβ, Eα,q(E, A)) ⊂ Eα+β,q(E, A). (2.21)

In the first case 0 < α, β < 1. Applying formula (see Ashyralyev and Sobolevskii, 1994)

A−β =
1

G (β)

∫ ∞

0
λβ−1 exp {−λA} dλ (2.22)

and the definition of fractional spaces Eα,∞(E, A) and D(Aβ, E), we get

µ1−α−β
∥∥∥A exp {−µA} u

∥∥∥
E

= µ1−α−β
∥∥∥A−βA exp {−µA} Aβu

∥∥∥
E

≤
µ1−α−β

G (β)

∫ ∞

0
λβ−1

∥∥∥A exp {− (λ + µ) A} Aβu
∥∥∥

E
dλ

15



≤ M
µ1−α−β

G (β)

∫ ∞

0

λβ−1

(λ + µ)1−αdλ ‖u‖Eα,∞(D(Aβ,E),A) .

Since ∫ ∞

0

µ1−α−βλβ−1

(λ + µ)1−α dλ =

∫ ∞

0

ρβ−1

(ρ + 1)1−αdρ

≤

∫ 1

0
ρβ−1dρ +

∫ ∞

1
ρα+β−2dρ =

1 − α
β (1 − α − β)

it follows that

µ1−α−β
∥∥∥A exp {−µA} u

∥∥∥
E
≤ M1(α, β) ‖u‖Eα,∞(D(Aβ,E),A)

for any µ > 0. Here and in future M1(α, β) = M
1 − α

G (β + 1) (1 − α − β)
. Therefore,

‖u‖Eα+β,∞(E,A) ≤ M1(α, β) ‖u‖Eα,∞(D(Aβ,E),A)

which completes the proof of statement (2.21) for q = ∞. In the case 1 ≤ q < ∞, applying

formula (2.22) and the triangle inequality, we get

∥∥∥µ1−α−βA exp {−µA} u
∥∥∥

E
=

∥∥∥µ1−α−βA−βA exp {−µA} Aβu
∥∥∥

E

≤
µ1−α−β

G (β)

∫ ∞

0
λβ−1

∥∥∥A exp {− (λ + µ) A} Aβu
∥∥∥

E
dλ

≤
µ1−α

G (β)

∫ ∞

0
ρβ−1

∥∥∥A exp {−µ (ρ + 1) A} Aβu
∥∥∥

E
dρ

for any µ > 0. Therefore, applying the definition of fractional spaces Eα,q(E, A) and D(Aβ, E)

and using this estimate and Minkowski’s inequality, we get

‖u‖Eα+β,q(E,A) ≤

(∫ ∞

0

(
µ1−α

G (β)

∫ ∞

0
ρβ−1

∥∥∥A exp {−µ (ρ + 1) A} Aβu
∥∥∥

E
dρ

)q dµ
µ

)1
q (2.23)

≤
1

G (β)

∫ ∞

0
ρβ−1

(∫ ∞

0

(
µ1−α

∥∥∥A exp {−µ (ρ + 1) A} Aβu
∥∥∥

E

)q dµ
µ

)1
q dρ(2.24)

≤
1

G (β)

∫ ∞

0

ρβ−1dρ
(ρ + 1)1−α

(∫ ∞

0

(
z1−α

∥∥∥A exp {−zA} Aβu
∥∥∥

E

)q dz
z

)1
q
.
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Using estimate (2.7), we get

‖u‖Eα+β,q(E,A) ≤ M(α, β) ‖u‖D(Aβ,Eα,q(E,A))

which completes the proof of statement (2.21) for 1 ≤ q < ∞. In the second case −1 < α, β <

0. Applying estimate (2.7) and the definition of fractional spaces Eα,∞(E, A) and D(Aβ, E),

we get∥∥∥µ−α−β exp {−µA} u
∥∥∥

E

≤

∥∥∥∥∥A−β exp
{
−
µ

2
A
}∥∥∥∥∥

E→E

∥∥∥∥∥µ−α−β exp
{
−
µ

2
A
}

Aβu
∥∥∥∥∥

E

≤ M2−β
∥∥∥∥∥µ−α exp

{
−
µ

2
A
}

Aβu
∥∥∥∥∥

E
≤ M2−β−α ‖u‖Eα,∞(D(Aβ,E),A)

for any µ > 0. Therefore,

‖u‖Eα+β,∞(E,A) ≤ M2−β−α ‖u‖Eα,∞(D(Aβ,E),A)

which completes the proof of statement (2.21) for q = ∞. In the case 1 ≤ q < ∞, applying

formula (2.22), the triangle inequality, and estimate (2.7), we get∥∥∥µ−α−β exp {−µA} u
∥∥∥

E

≤

∥∥∥∥∥A−β exp
{
−
µ

2
A
}∥∥∥∥∥

E→E

∥∥∥∥∥µ−α−β exp
{
−
µ

2
A
}

Aβu
∥∥∥∥∥

E

≤ M2−β
∥∥∥∥∥µ−α exp

{
−
µ

2
A
}

Aβu
∥∥∥∥∥

E

for any µ > 0. Therefore, applying the definition of fractional spaces Eα,q(E, A) and D(Aβ, E),

we get

‖u‖Eα+β,q(E,A) ≤ M2−β
(∫ ∞

0

(
µ−α

∥∥∥∥∥exp
{
−
µ

2
A
}

Aβu
∥∥∥∥∥

E

)q dµ
µ

)1
q

= M2−β−α ‖u‖D(Aβ,Eα,q(E,A))

which completes the proof of statement (2.21) for 1 ≤ q < ∞. In the third case 0 < α < 1,

−1 < β < 0, 0 < α + β < 1. Using estimate (2.7) and the definition of fractional spaces

Eα,∞(E, A) and D(Aβ, E), we get∥∥∥µ1−α−βA exp {−µA} u
∥∥∥

E
=

∥∥∥µ1−α−βA1−β exp {−µA} Aβu
∥∥∥

E
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≤

∥∥∥∥∥A−β exp
{
−
µ

2
A
}∥∥∥∥∥

E→E

∥∥∥∥∥µ1−α−βA exp
{
−
µ

2
A
}

Aβu
∥∥∥∥∥

E

≤ M2−β
∥∥∥∥∥µ1−αA exp

{
−
µ

2
A
}

Aβu
∥∥∥∥∥

E
≤ M21−α−β ‖u‖D(Aβ,Eα,∞(E,A))

for any µ > 0. From that it follows

‖u‖Eα+β,∞(E,A) ≤ M21−α−β ‖u‖D(Aβ,Eα,∞(E,A))

which completes the proof of statement (2.21) for q = ∞. In the case 1 ≤ q < ∞, using

formula (2.22) and estimate (2.7), and the definition of fractional spaces Eα,q(E, A) and

D(Aβ, E), we get

‖u‖Eα+β,q(E,A) =

(∫ ∞

0

(
µ1−α−β

∥∥∥A exp {−µA} u
∥∥∥

E

)q dµ
µ

)1
q

≤

(∫ ∞

0

(
µ1−α−β

∥∥∥∥∥A−β exp
{
−
µ

2
A
}∥∥∥∥∥

E→E

∥∥∥∥∥A exp
{
−
µ

2
A
}

Aβu
∥∥∥∥∥

E

)q dµ
µ

)1
q

≤ M2−β
(∫ ∞

0

(
µ1−α

∥∥∥∥∥A exp
{
−
µ

2
A
}

Aβu
∥∥∥∥∥

E

)q dµ
µ

)1
q

= M21−α−β ‖u‖D(Aβ,Eα,q(E,A))

which completes the proof of statement (2.21) for 1 ≤ q < ∞. In the fourth case 0 < α < 1,

−1 < β < 0, −1 < α + β < 0. Using formula (2.22), estimate (2.7) and the definition of

fractional spaces Eα,∞(E, A) and D(Aβ, E), we get

µ−α−β
∥∥∥exp {−µA} u

∥∥∥
E

= µ−α−β
∥∥∥A−(β+1)A exp {−µA} Aβu

∥∥∥
E

≤
µ−α−β

G (β + 1)

∫ ∞

0
λβ

∥∥∥A exp {− (λ + µ) A} Aβu
∥∥∥

E
dλ

≤
µ−α−β

G (β + 1)

∫ ∞

0

λβ

(λ + µ)1−αdλ ‖u‖D(Aβ,Eα,∞(E,A))

for any µ > 0. Since∫ ∞

0

µ−α−βλβ

(λ + µ)1−αdλ =

∫ ∞

0

ρβ

(ρ + 1)1−αdρ
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≤

∫ 1

0
ρβdρ +

∫ ∞

1
ρβ+α−1dρ =

α − 1
(β + 1) (α + β)

, (2.25)

it follows that

‖u‖Eα+β,∞(E,A) ≤
1

G (β + 1)
α − 1

(β + 1) (α + β)
‖u‖D(Aβ,Eα,∞(E,A))

which completes the proof of statement (2.21) for q = ∞. In the case 1 ≤ q < ∞, using

formula (2.22) and estimate (2.7), we get

µ−α−β
∥∥∥exp {−µA} u

∥∥∥
E
≤

µ−α−β

G (β + 1)

∫ ∞

0
λβ

∥∥∥A exp {− (λ + µ) A} Aβu
∥∥∥

E
dλ

≤
µ1−α

G (β + 1)

∫ ∞

0
ρβ

∥∥∥A exp {−µ (ρ + 1) A} Aβu
∥∥∥

E
dρ

for any µ > 0. Therefore, applying the definition of fractional spaces Eα,q(E, A) and D(Aβ, E),

and Minkowski’s inequality, we get

‖u‖Eα+β,q(E,A) =

(∫ ∞

0

(
µ−α−β

∥∥∥exp {−µA} u
∥∥∥

E

)q dµ
µ

)1
q

≤
1

G (β + 1)

∫ ∞

0
ρβ

(∫ ∞

0

(
µ1−α

∥∥∥A exp {−µ (ρ + 1) A} Aβu
∥∥∥

E

)q dµ
µ

)1
q dρ

≤
1

G (β + 1)

∫ ∞

0

ρβdρ
(ρ + 1)1−α

(∫ ∞

0

(
z1−α

∥∥∥A exp {−zA} Aβu
∥∥∥

E

)q dz
z

)1
q
.

Using estimate (2.25), we get

‖u‖Eα+β,q(E,A) ≤
1

G (β + 1)
α − 1

(β + 1) (α + β)
‖u‖D(Aβ,Eα,q(E,A))

which completes the proof of statement (2.21) for 1 ≤ q < ∞. In the fifth case −1 < α < 0,

0 < β < 1, 0 < α + β < 1. Using estimate (2.7) and the definition of fractional spaces

Eα,∞(E, A) and D(Aβ, E), we get∥∥∥µ1−α−βA exp {−µA} u
∥∥∥

E

≤ µ1−α−β
∥∥∥∥∥A1−β exp

{
−
µ

2
A
}∥∥∥∥∥

E→E

∥∥∥∥∥exp
{
−
µ

2
A
}

Aβu
∥∥∥∥∥

E
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≤ M21−β sup
µ>0

∥∥∥∥∥µ−α exp
{
−
µ

2
A
}

Aβu
∥∥∥∥∥

E
≤ M21−β−α ‖u‖Eα(D(Aβ,E),A)

for any µ > 0. From that it follows

‖u‖Eα+β,∞(E,A) ≤ M21−α−β ‖u‖D(Aβ,Eα,∞(E,A))

which completes the proof of statement (2.21) for q = ∞. In the case 1 ≤ q < ∞, using

estimate (2.7) and the definition of fractional spaces Eα,q(E, A) and D(Aβ, E), we get

‖u‖Eα+β,q(E,A) =

(∫ ∞

0

(
µ1−α−β

∥∥∥A1−β exp {−µA} Aβu
∥∥∥

E

)q dµ
µ

)1
q

≤

(∫ ∞

0

(
µ1−α−β

∥∥∥∥∥A1−β exp
{
−
µ

2
A
}∥∥∥∥∥

E→E

∥∥∥∥∥exp
{
−
µ

2
A
}

Aβu
∥∥∥∥∥

E

)q dµ
µ

)1
q

≤ M21−β
(∫ ∞

0

(
µ−α

∥∥∥∥∥exp
{
−
µ

2
A
}

Aβu
∥∥∥∥∥

E

)q dµ
µ

)1
q

= M21−α−β ‖u‖D(Aβ,Eα,q(E,A))

which completes the proof of statement (2.21) for 1 ≤ q < ∞. In the sixth case −1 < α < 0,

0 < β < 1, −1 < α + β < 0. Using formula (2.22) and the definition of fractional spaces

Eα,∞(E, A) and D(Aβ, E), we get

µ−α−β
∥∥∥exp {−µA} u

∥∥∥
E

= µ−α−β
∥∥∥A−β exp {−µA} Aβu

∥∥∥
E

≤
µ−α−β

G (β)

∫ ∞

0
λβ−1

∥∥∥exp {− (λ + µ) A} Aβu
∥∥∥

E
dλ

≤
µ−α−β

G (β)

∫ ∞

0

λβ−1

(λ + µ)−α
dλ ‖u‖D(Aβ,Eα,q(E,A)) .

Since ∫ ∞

0

µ−α−βλβ−1

(λ + µ)−α
dλ =

∫ ∞

0

ρβ−1

(ρ + 1)−α
dρ

≤

∫ 1

0
ρβ−1dρ +

∫ ∞

1
ρβ+α−1dρ =

α

(β + 1) (α + β)
, (2.26)

it follows that

‖u‖Eα+β,∞(E,A) ≤
1

G (β)
α

(β + 1) (α + β)
‖u‖D(Aβ,Eα,∞(E,A))
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which completes the proof of statement (2.21) for q = ∞. In the case 1 ≤ q < ∞, using

formula (2.22) and estimate (2.7), we get

µ−α−β
∥∥∥exp {−µA} u

∥∥∥
E
≤ µ−α−β

∥∥∥A−β exp {−µA} Aβu
∥∥∥

E

≤
µ−α−β

G (β)

∫ ∞

0
λβ−1

∥∥∥exp {− (λ + µ) A} Aβu
∥∥∥

E
dλ

≤
µ−α

G (β)

∫ ∞

0
ρβ−1

∥∥∥exp {−µ (ρ + 1) A} Aβu
∥∥∥

E
dρ

for any µ > 0. Therefore, applying the definition of fractional spaces Eα,q(E, A) and D(Aβ, E),

and Minkowski’s inequality, we get

‖u‖Eα+β,q(E,A) =

(∫ ∞

0

(
µ−α−β

∥∥∥exp {−µA} u
∥∥∥

E

)q dµ
µ

)1
q

≤
1

G (β)

∫ ∞

0
ρβ−1

(∫ ∞

0

(
µ−α

∥∥∥exp {−µ (ρ + 1) A} Aβu
∥∥∥

E

)q dµ
µ

)1
q dρ

≤
1

G (β)

∫ ∞

0

ρβ−1dρ
(ρ + 1)−α

(∫ ∞

0

(
z−α

∥∥∥exp {−zA} Aβu
∥∥∥

E

)q dz
z

)1
q
.

Using estimate (2.26), we get

‖u‖Eα+β,q(E,A) ≤
1

G (β + 1)
α

(β + 1) (α + β)
‖u‖D(Aβ,Eα,q(E,A))

which completes the proof of statement (2.21) for 1 ≤ q < ∞. Now, we will prove the

opposite inequality. Actually, Let u ∈ Eα+β,q(E, A). Then we will prove that

u ∈ D(Aβ, Eα,q(E, A)) and the following statement

Eα+β,q(E, A) ⊂ D(Aβ, Eα,q(E, A)). (2.27)

In the first case 0 < α, β < 1, 0 < α + β < 1. Applying estimate (2.7) and the definition of

fractional spaces Eα,∞(E, A) and D(Aβ, E), we get

∥∥∥µ1−αA exp {−µA} Aβu
∥∥∥

E

≤

∥∥∥∥∥Aβ exp
{
−
µ

2
A
}∥∥∥∥∥

E→E
µ1−α

∥∥∥∥∥A exp
{
−
µ

2
A
}

u
∥∥∥∥∥

E
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≤ Mµ1−α−β
∥∥∥∥∥A exp

{
−
µ

2
A
}

u
∥∥∥∥∥

E
≤ M21−α−β ‖u‖Eα+β,∞(E,A)

for any µ > 0. From that it follows

‖u‖D(Aβ,Eα,∞(E,A)) ≤ M21−α−β ‖u‖Eα+β,∞(E,A)

which completes the proof of statement (2.27) for q = ∞. In the case 1 ≤ q < ∞, applying

estimate (2.7), and the definition of fractional spaces Eα,q(E, A) and D(Aβ, E), we get

‖u‖D(Aβ,Eα,q(E,A)) =

(∫ ∞

0

(
µ1−α

∥∥∥A exp {−µA} Aβu
∥∥∥

E

)q dµ
µ

)1
q

≤

(∫ ∞

0

(
µ1−α

∥∥∥∥∥Aβ exp
{
−
µ

2
A
}∥∥∥∥∥

E→E

∥∥∥∥∥A exp
{
−
µ

2
A
}

u
∥∥∥∥∥

E

)q dµ
µ

)1
q

≤ M
(∫ ∞

0

(
µ1−α−β

∥∥∥∥∥A exp
{
−
µ

2
A
}

u
∥∥∥∥∥

E

)q dµ
µ

)1
q

= M21−α−β ‖u‖Eα+β,q(E,A)

which completes the proof of statement (2.27) for 1 ≤ q < ∞. In the second case −1 <

α, β < 0. Applying formula (2.22) and estimate (2.7) and the definition of fractional spaces

Eα,∞(E, A) and D(Aβ, E), we get

µ−α
∥∥∥exp {−µA} Aβu

∥∥∥
E
≤

µ−α

G (−β)

∫ ∞

0
λ−β−1

∥∥∥exp {− (λ + µ) A} u
∥∥∥

E
dλ

≤
µ−α

G (−β)

∫ ∞

0

λ−β−1

(λ + µ)−(α+β) dλ ‖u‖Eα+β,∞(E,A)

for any µ > 0.Since∫ ∞

0

µ−αλ−β−1

(λ + µ)−(α+β) dλ =

∫ ∞

0

z−β−1

(z + 1)−(α+β) dz

≤

∫ 1

0
z−β−1dz +

∫ ∞

1
zα−1dz =

− (α + β)
βα

, (2.28)

it follows that

µ−α
∥∥∥exp {−µA} Aβu

∥∥∥
E
≤ M(α, β) ‖u‖Eα+β,∞(E,A)
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for any µ > 0. Here and in future M(α, β) =
1

G (−β)
− (α + β)

βα
. Therefore,

‖u‖D(Aβ,Eα,q(E,A)) ≤ M(α, β) ‖u‖Eα+β,∞(E,A)

which completes the proof of statement (2.27) for q = ∞. In the case 1 ≤ q < ∞, applying

formula (2.22) and estimate (2.7), we get

∥∥∥µ−α exp {−µA} Aβu
∥∥∥ ≤ µ−α

G (−β)

∫ ∞

0
λ−β−1

∥∥∥exp {− (µ + λ) A} u
∥∥∥

E
dλ.

≤
µ−α−β

G (−β)

∫ ∞

0
ρ−β−1

∥∥∥exp {−µ (1 + ρ) A} u
∥∥∥

E
dρ

for any µ > 0. Therefore, applying the definition of fractional spaces Eα,q(E, A) and D(Aβ, E),

we get

‖u‖D(Aβ,Eα,q(E,A)) =

(∫ ∞

0

∥∥∥µ−α exp {−µA} Aβu
∥∥∥q

E

dµ
µ

)1
q

≤
1

G (−β)

∫ ∞

0
ρ−β−1

(∫ ∞

0

(
µ−α−β

∥∥∥exp {−µ (1 + ρ) A} u
∥∥∥

E

)q dµ
µ

)1
q dρ

=
1

G (−β)

(∫ ∞

0

ρ−β−1

(1 + ρ)−α−β
dρ

) (∫ ∞

0

(
z−α−β

∥∥∥exp {−zA} u
∥∥∥

E

)q dz
z

)1
q
.

Using estimate (2.28), we get

‖u‖D(Aβ,Eα,q(E,A)) ≤ M(α, β) ‖u‖Eα+β,q(E,A)

which completes the proof of statement (2.27) for 1 ≤ q < ∞. In the third case 0 < α < 1,

−1 < β < 0.0 < α + β < 1. Using formula (2.22) ,the triangle inequality and the definition of

fractional spaces Eα,∞(E, A) and D(Aβ, E), we get

µ1−α
∥∥∥A exp {−µA} Aβu

∥∥∥
E

≤
µ1−α

G (−β)

∫ ∞

0
λ−β−1

∥∥∥A exp {− (λ + µ) A} u
∥∥∥

E
dλ

≤
µ1−α

G (−β)

∫ ∞

0

λ−β−1

(λ + µ)1−α−βdλ ‖u‖Eα+β,∞(E,A)
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for any µ > 0. Since∫ ∞

0

µ1−αλ−β−1

(λ + µ)1−α−βdλ =

∫ ∞

0

ρ−β−1

(ρ + 1)1−α−βdρ

≤

∫ 1

0
ρ−β−1dρ +

∫ ∞

1
ρα−2dρ =

α + β − 1
(1 − α) β

, (2.29)

it follows that

‖u‖D(Aβ,Eα,q(E,A)) ≤
1 − α − β

G (−β + 1) (1 − α)
‖u‖Eα+β,∞(E,A)

which completes the proof of statement (2.27) for q = ∞. In the case 1 ≤ q < ∞, applying

formula (2.22) and the triangle inequality, we get

µ1−α
∥∥∥A exp {−µA} Aβu

∥∥∥
E
≤

µ1−α

G (−β)

∫ ∞

0
λ−β−1

∥∥∥A exp {− (λ + µ) A} u
∥∥∥

E
dλ

≤
µ1−α−β

G (−β)

∫ ∞

0
ρ−β−1

∥∥∥A exp {−µ (ρ + 1) A} u
∥∥∥

E
dρ

for any µ > 0. Therefore, applying the definition of fractional spaces Eα,q(E, A) and D(Aβ, E)

and using estimate (2.29) and Minkowski’s inequality, we get

‖u‖D(Aβ,Eα,∞(E,A))

≤
1

G (−β)

∫ ∞

0
ρ−β−1

(∫ ∞

0

(
µ1−α−β

∥∥∥A exp {−µ (ρ + 1) A} u
∥∥∥

E

)q dµ
µ

)1
q dρ

=
1

G (−β)

∫ ∞

0

ρ−β−1

(ρ + 1)1−α−βdρ
(∫ ∞

0

(
z1−α−β

∥∥∥A exp {−zA} u
∥∥∥

E

)q dz
z

)1
q

≤
1 − α − β

G (−β + 1) (1 − α)
‖u‖Eα+β,q(E,A)

which completes the proof of statement (2.27) for 1 ≤ q < ∞. In the fourth case 0 < α < 1,

−1 < β < 0, −1 < α + β < 0. Using estimate (2.7) and the definition of fractional spaces

Eα,∞(E, A) and D(Aβ, E), we get

∥∥∥µ1−αA exp {−µA} Aβu
∥∥∥

E
≤ µ1−α

∥∥∥∥∥A1+β exp
{
−
µ

2
A
}∥∥∥∥∥

E→E

∥∥∥∥∥exp
{
−
µ

2
A
}

u
∥∥∥∥∥

E
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≤ M21+β sup
µ>0

∥∥∥∥∥µ−α−β exp
{
−
µ

2
A
}

u
∥∥∥∥∥

E
= M21−α ‖u‖Eα+β,∞(E,A)

for any µ > 0. From that it follows

‖u‖D(Aβ,Eα,∞(E,A)) ≤ M21−α ‖u‖Eα+β,∞(E,A)

which completes the proof of statement (2.27) for q = ∞. In the case 1 ≤ q < ∞, using

formula (2.22) and estimate (2.7), we get

∥∥∥µ1−αA exp {−µA} Aβu
∥∥∥

E
≤ µ1−α

∥∥∥∥∥A1+β exp
{
−
µ

2
A
}∥∥∥∥∥

E→E

∥∥∥∥∥exp
{
−
µ

2
A
}

u
∥∥∥∥∥

E

≤ M21+β

∥∥∥∥∥µ−α−β exp
{
−
µ

2
A
}

u
∥∥∥∥∥

E

for any µ > 0. Using the definition of fractional spaces Eα,q(E, A) and D(Aβ, E), we get

‖u‖D(Aβ,Eα,∞(E,A)) ≤ M21+β

(∫ ∞

0

(
µ−α−β

∥∥∥∥∥exp
{
−
µ

2
A
}

u
∥∥∥∥∥

E

)q dµ
µ

)1
q

≤ M21−α ‖u‖Eα+β,q(E,A)

which completes the proof of statement (2.27) for 1 ≤ q < ∞. In the fifth case −1 < α < 0,

0 < β < 1, 0 < α + β < 1. Using formula (2.22) and the definition of fractional spaces

Eα,∞(E, A) and D(Aβ, E), we get

µ−α
∥∥∥exp {−µA} Aβu

∥∥∥
E

= µ−α
∥∥∥A−(1−β)A exp {−µA} u

∥∥∥
E

≤
µ−α

G (1 − β)

∫ ∞

0
λ−β

∥∥∥A exp {− (λ + µ) A} u
∥∥∥

E
dλ

≤
µ−α

G (1 − β)

∫ ∞

0

λ−β

(λ + µ)1−α−βdλ ‖u‖Eα+β,∞(E,A)

for any µ > 0. Since∫ ∞

0

µ−αλ−β

(λ + µ)1−α−βdλ =

∫ ∞

0

ρ−β

(ρ + 1)1−α−βdρ

≤

∫ 1

0
ρ−βdρ +

∫ ∞

1
ρα−1dρ ≤

α + β − 1
(1 − β)α

, (2.30)
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it follows that

‖u‖D(Aβ,Eα,∞(E,A)) ≤
α + β − 1

G (2 − β)α
‖u‖Eα+β,∞(E,A)

which completes the proof of statement (2.27) for q = ∞. In the case 1 ≤ q < ∞, using

formula (2.22) , we get

µ−α
∥∥∥exp {−µA} Aβu

∥∥∥
E
≤

µ−α

G (1 − β)

∫ ∞

0
λ−β

∥∥∥A exp {− (λ + µ) A} u
∥∥∥

E
dλ

=
µ1−α−β

G (1 − β)

∫ ∞

0
ρ−β

∥∥∥A exp {−µ (ρ + 1) A} u
∥∥∥

E
dρ

for any µ > 0. Therefore, applying the definition of fractional spaces Eα,q(E, A) and D(Aβ, E),

using estimate (2.29) and Minkowski’s inequality, we get

‖u‖D(Aβ,Eα,∞(E,A))

≤
1

G (1 − β)

∫ ∞

0
ρ−β

(∫ ∞

0

(
µ1−α−β

∥∥∥A exp {−µ (ρ + 1) A} u
∥∥∥

E

)q dµ
µ

)1
q dρ

=
1

G (1 − β)

∫ ∞

0

ρ−β

(ρ + 1)1−α−βdρ
(∫ ∞

0

(
z1−α−β

∥∥∥A exp {−zA} u
∥∥∥

E

)q dz
z

)1
q

=
α + β − 1

G (2 − β)α
‖u‖Eα+β,q(E,A)

which completes the proof of statement (2.27) for 1 ≤ q < ∞. In the sixth case −1 < α < 0,

0 < β < 1, −1 < α + β < 0. Using estimate (2.7) and the definition of fractional spaces

Eα,∞(E, A) and D(Aβ, E), we get∥∥∥µ−α exp {−µA} Aβu
∥∥∥

E
≤ µ−α

∥∥∥∥∥Aβ exp
{
−
µ

2
A
}∥∥∥∥∥

E→E

∥∥∥∥∥exp
{
−
µ

2
A
}

u
∥∥∥∥∥

E

≤ M2β sup
µ>0

∥∥∥∥∥µ−α−β exp
{
−
µ

2
A
}

Aβu
∥∥∥∥∥

E
≤ M2−α ‖u‖Eα+β(E,A)

for any µ > 0. From that it follows

‖u‖D(Aβ,Eα,∞(E,A)) ≤ M2−α ‖u‖Eα+β,∞(E,A)

which completes the proof of statement (2.27) for q = ∞. In the case 1 ≤ q < ∞, using

estimate (2.7) and the definition of fractional spaces Eα,q(E, A) and D(Aβ, E), we get

‖u‖D(Aβ,Eα,∞(E,A)) =

(∫ ∞

0

(
µ−α

∥∥∥exp {−µA} Aβu
∥∥∥

E

)q dµ
µ

)1
q

26



=

(∫ ∞

0

(
µ−α

∥∥∥Aβ exp {−µA} u
∥∥∥

E

)q dµ
µ

)1
q

≤

(∫ ∞

0

(
µ−α

∥∥∥∥∥Aβ exp
{
−
µ

2
A
}∥∥∥∥∥

E→E

∥∥∥∥∥exp
{
−
µ

2
A
}

u
∥∥∥∥∥

E

)q dµ
µ

)1
q

≤ M2β
(∫ ∞

0

(
µ−α−β

∥∥∥∥∥exp
{
−
µ

2
A
}

u
∥∥∥∥∥

E

)q dµ
µ

)1
q
≤ M2−α ‖u‖Eα+β,q(E,A)

which completes the proof of statement (2.27) for 1 ≤ q < ∞. Therefore, Theorem 2.2.1 is

proved. �

With the help of a positive operator A, we introduce the Banach space E′α,q(E, A), 0 < α < 1,

consisting of all v ∈ E for which the following norms are finite:

‖v‖E′α,q =

(∫ ∞

0

∥∥∥λαA (λ + A)−1 v
∥∥∥q

E

dλ
λ

)1
q
, 1 ≤ q < ∞,

‖v‖E′α,∞ = sup
λ>0

∥∥∥λαA (λ + A)−1 v
∥∥∥

E
.

Applying the positive operator A, for all v ∈ E and −1 < α < 0, the following norms are

finite

‖v‖E′α,q =

(∫ ∞

0

∥∥∥λα−1 (λ + A)−1 v
∥∥∥q

E

dλ
λ

)1
q
, 1 ≤ q < ∞,

‖v‖E′α,∞ = sup
λ>0

∥∥∥λα−1 (λ + A)−1 v
∥∥∥

E
,

we define the fractional space E′α,q(E, A),−1 < α < 0. The replenishment of space E in this

norm forms a Banach space E′α,q(E, A),−1 < α < 0, 1 ≤ q ≤ ∞.

The fractional power and structure of fractional spaces generated by the wider class of

differential and difference positive operators and their related applications have been

investigated by many researchers (see, for example, Simirnitskii, 1983; Bekir, Aksoy and

Guner, 2014; Agmon, 1962; Ashyralyev, 2009; Ashyralyev, 2015 and the references given

therein).

Theorem 2.2.2. (see, for example, Ashyralyev and Sobolevskii, 1994).

E′α,q(E, A) = Eα,q(E, A) for all 0 < |α| < 1, 1 ≤ q ≤ ∞.
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Applying Theorems 2.2.1 and 2.2.2 we get the following result.

Theorem 2.2.3. D(Aβ, E′α,q(E, A)) = E′α+β,q(E, A) for all 1 ≤ q ≤ ∞ and 0 < |α| < 1, |β| <

1, 0 < |α + β| < 1.

Note that positive fractional powers of positive operators in a Banach space and the structure

of positive fractional powers of positive operators in fractional spaces E′α,q(E, A), 1 ≤ q ≤ ∞

for α > 0 were investigated by Sobolevskii P.E. in papers (Sobolevskii, 1966; Sobolevskii,

1967; Sobolevskii, 1974).

2.3 APPLICATION

Now, we consider the applications of Theorems 2.2.1 and 2.2.3. First, we consider the

differential operator Ax defined by the formula

Axu = −uxx(x) + δu(x), δ > 0 (2.31)

with domain

D(Ax) =

u(x) : u(x), u′(x), u′′(x) ∈ C[0, 2π], u(x) = u(x + 2π),

2π∫
0

u(x)dx = 0

 .
The resolvent of the operator Ax, i.e.

Axu + λu = ϕ (2.32)

or 
−u′′(x) + (δ + λ) u(x) = ϕ(x), 0 < x < 2π,

u(0) = u(2π),
2π∫
0

u(x)dx = 0

(2.33)

was investigated in paper (Ashyralyev and Tetikoğlu, 2017). We introduce the Banach

spaces Cβ[0, 2π] (0 < β < 1) of all continuous functions ϕ(x) satisfying a Hölder condition

for which the following norms are finite

‖ ϕ ‖Cβ[0,2π]=‖ ϕ ‖C[0,2π] + sup
0≤x<x+τ≤2π

|ϕ(x + τ) − ϕ(x)|
τβ

,
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where C[0, 2π] is the space of the all continuous functions ϕ(x) defined on [0, 2π] with the

usual norm

‖ ϕ ‖C[0,2π]= max
0≤x≤2π

|ϕ(x)|.

The positivity of the operator Ax in the Banach space C [0, 2π] was established in paper

(Sobolevskii, 2005). In paper (Ashyralyev and Tetikoğlu, 2017), it was proved that for any

α ∈ (0,
1
2

) the norms in space Eα(C [0, 2π] , A) and C2α [0, 2π] are equivalent. The positivity

of Ax in the Hölder spaces of C2α [0, 2π] , α ∈ (0,
1
2

) was proved. Theorem on the structure

of Eα(C [0, 2π] , A) of paper (Ashyralyev and Tetikoğlu, 2017) and Theorem 2.2.1 implies

the following result.

Theorem 2.3.1. D(Aβ, Eα(C [0, 2π] , A)) = C2(α+β) [0, 2π] for all 0 < α < 1
2 , |β| < 1

2 , 0 <

α + β <
1
2

.

Now, we introduce the Banach space Wµ
p [0, 2π] (0 < µ < 1) of all integrable functions ϕ(x)

defined on [0, 2π] and satisfying a Hölder condition for which the following norm is finite:

‖ϕ‖Wµ
p [0,2π] =


2π∫

0

2π∫
0

|ϕ (x + y) − ϕ (x)|p

|y|1+µp dydx + ‖ϕ‖
p
Lp[0,2π]


1
p
, 1 ≤ p < ∞.

Here, Lp [0, 2π] , 1 ≤ p < ∞ is the space of the all integrable functions ϕ(x) defined on [0, 2π]

with the norm

‖ϕ‖Lp[0,2π] =


2π∫

0

|ϕ (x)|p dx


1
p
.

Theorem on the structure of Eα,q(Lq [0, 2π] , A) of paper (Ashyralyev and Tetikoğlu, 2017)

and Theorem 2.2.1 imply the following result.

Theorem 2.3.2. W2(α+β+ε)
q [0, 2π] ⊂ D(Aβ,Wα

p [0, 2π]) ⊂ W2(α+β−ε)
q [0, 2π] , 1 ≤ q < ∞ for all

0 < α <
1
2
, |β| <

1
2
, 0 < α + β ± ε <

1
2
.

Second, we consider the differential operator with constant coefficients of the form

B =
∑
|r|=2m

br
∂|r|

∂xr1
1
...∂xrn

n
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acting on functions defined on the entire space Rn. Here r ∈ Rn is a vector with nonnegative

integer components, |r| = r1 + ... + rn. If ϕ (y) (y = (y1, ..., yn) ∈ Rn) is an infinitely

differentiable function that decays at infinity together with all its derivatives, then by means

of the Fourier transformation one establishes the equality

F
(
Bϕ

)
(ξ) = B (ξ) F (ϕ) (ξ) .

Here the Fourier transform operator is defined by the rule

F (ϕ) (ξ) = (2π)−n/2
∫
Rn

exp {−i (y, ξ)}ϕ (y) dy,

(y, ξ) = y1ξ1 + ... + ynξn.

The function B (ξ) is called the symbol of the operator B and is given by

B (ξ) =
∑
|r|=2m

br (iξ1)r1 ... (iξn)rn .

We will assume that the symbol

Bx(ξ) =
∑
|r|=2m

ar(x) (iξ1)r1 ... (iξn)rn , ξ = (ξ1, · · ·, ξn) ∈ Rn

of the differential operator of the form

Bx =
∑
|r|=2m

ar(x)
∂|r|

∂xr1
1 . . . ∂xrn

n
(2.34)

acting on functions defined on the space Rn, satisfies the inequalities

0 < M1|ξ|
2m ≤ (−1)mBx(ξ) ≤ M2|ξ|

2m < ∞

for ξ , 0.

Then, for sufficiently large positive δ, an elliptic operator A = Bx + δI is a strongly positive

operator in Banach spaces C(Rn) and Lp(Rn), 1 ≤ p < ∞. Here C(Rn) is the space of all

continuous functions ϕ(x) defined on Rn with the usual norm

‖ϕ‖C(Rn) = sup
x∈Rn
|ϕ (x)| ,
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Lp(Rn) is the space of the all integrable functions ϕ(x) defined on Rn with the norm

‖ϕ‖Lp(Rn) =


∫

x∈Rn

|ϕ (x)|p dx


1
p
.

We will introduce the Banach space Cµ(Rn) (0 < µ < 1) of all continuous functions ϕ(x)

defined on Rn and satisfying a Hölder condition for which the following norm is finite:

‖ϕ‖Cµ(Rn) = sup
x∈Rn
|ϕ (x)| + sup

x,y∈Rn

y,0

|ϕ (x + y) − ϕ (x)|
|y|µ

,

the Banach space Wµ
p(Rn) (0 < µ < 1) of all integrable functions ϕ(x) defined on Rn and

satisfying a Hölder condition for which the following norm is finite:

‖ϕ‖Wµ
p (Rn) =


∫

x∈Rn

∫
y∈Rn

y,0

|ϕ (x + y) − ϕ (x)|p

|y|n+µp dydx + ‖ϕ‖
p
Lp(Rn)


1
p

, 1 ≤ p < ∞.

Theorem 2.3.3. (Ashyralyev & Sobolevskii, 1994; Triebel, 1978).

Eα(C(Rn), A) = C2mα(Rn),

Eα,p(Lp(Rn), A) = W2mα
p (Rn), 1 ≤ p < ∞ for all 0 < 2mα < 1.

Theorem 2.3.3 on the structure of Eα(C(Rn), A) and Eα,p(Lp(Rn), A), 1 ≤ p < ∞ of papers

(Ashyralyev and Sobolevskii, 1994; Triebel, 1978) and Theorem 2.2.1 imply the following

results.

Theorem 2.3.4. D(Aβ,Cα(Rn)) = C2m(α+β)(Rn) for all 0 < α <
1

2m
, |β| <

1
2m

, 0 < α + β <

1
2m

.

Theorem 2.3.5. W2m(α+β+ε)
q (Rn) ⊂ D(Aβ,Wα

p (Rn)) ⊂ W2m(α+β−ε)
q (Rn), 1 ≤ q < ∞ for all

0 < α <
1

2m
, |β| <

1
2m

, 0 < α + β ± ε <
1

2m
.
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CHAPTER 3

WELL-POSEDNESS OF ELLIPTIC DIFFERENTIAL EQUATIONS WITH

NONLOCAL BOUNDARY CONDITIONS

3.1 INTRODUCTION

In mathematical modeling, elliptic equations are used together with local boundary

conditions specifying the solution on the boundary of the domain. In some cases, classical

boundary conditions cannot describe process or phenomenon precisely. Therefore,

mathematical models of various physical, chemical, biological or environmental processes

often involve nonclassical conditions. Such conditions usually are identified as nonlocal

boundary conditions and reflect situations when the data on the domain boundary cannot be

measured directly, or when the data on the boundary depend on the data inside the domain.

The well-posedness of various nonlocal boundary value problems for partial differential and

difference equations has been studied extensively by many researchers, see for example,

(Ashyralyev, 2008; Ashyralyev, 2003; Ashyralyev et al., 2004; Ashyralyev & Tetikoglu,

2012; Ashyralyev & Ozturk, 2013; Ashyralyyev, 2017; Ashyralyyev & Akkan, 2015;

Kadirkulov & Kirane, 2015; Kirane & Torebek, 2016; Sapagovas et al., 2017; Sapagovas et

al., 2016; Shakhmurov & Musaev, 2017; Čiupaila et al., 2013; Wang & Zheng, 2009) and

the references given therein.

It is known that the mixed problem for elliptic equations can be solved analytically by

Fourier series, Fourier transform and Laplace transform methods. Now, let us illustrate

these different analytical methods by examples.

Example 3.1.1. Obtain the Fourier series solution of the nonlocal boundary value problem

−
∂2u
∂t2 −

∂2u
∂x2 + u = 3 sin t sin x, 0 < t < 2π, 0 < x < π,

u (0, x) = u (2π, x) ,
∫ 2π

0
u (s, x) ds = 0, 0 ≤ x ≤ π,

u (t, 0) = u (t, π) = 0, 0 ≤ t ≤ 2π

(3.1)
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for the elliptic equation.

Solution. In order to solve this problem, we consider the Sturm-Liouville problem

−u′′ (x) + u (x) − λu (x) = 0, 0 < x < π, u (0) = u (π) = 0.

generated by the space operator of problem (3.1). So, the nontrivial solutions of this Sturm-

Liouville problem are given by formulas

uk(x) = sin kx, λk = k2 + 1 where k = 1, 2, 3, · · ·.

Then, we will obtain the Fourier series solution of problem(3.1) by formula

u (t, x) =

∞∑
k=1

Ak (t) sin kx,

where Ak (t) , k = 1, 2, 3, ... are unknown functions. Putting u(t, x) into the equation (3.1) and

nonlocal boundary conditions

u (0, x) = u (2π, x) ,
∫ 2π

0
u (s, x) ds = 0, 0 ≤ x ≤ π, (3.2)

we obtain

−

∞∑
k=1

A′′k (t) sin kx + k2
∞∑

k=1

Ak (t) sin kx +

∞∑
k=1

Ak (t) sin kx

= 3 sin t sin x, 0 < t < 2π, 0 < x < π,

and

∞∑
k=1

Ak (0) sin kx =

∞∑
k=1

Ak (2π) sin kx, 0 ≤ x ≤ π,

∫ 2π

0

∞∑
k=1

Ak (s) sin kxds =

∞∑
k=1

sin kx
∫ 2π

0
Ak (s) ds = 0, 0 ≤ x ≤ π.

Equating coefficients sin kx, k = 1, ... to zero, we get

−A′′1 (t) + 2A1 (t) = 3 sin t, 0 < t < 2π,

−A′′k (t) +
(
k2 + 1

)
Ak (t) = 0, k , 1, 0 < t < 2π,
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Ak (0) = Ak (2π) ,
∫ 2π

0
Ak (s) ds = 0, k = 1, 2, 3, ....

We will obtain Ak(t), k = 1, 2, .... Firstly, for k = 1,we have the following problem
−A′′1 (t) + 2A1 (t) = 3 sin t, 0 < t < 2π,

A1 (0) = A1 (2π) ,
∫ 2π

0
A1 (s) ds = 0.

It is easy to obtain that A1 (t) = sin t. Secondly, for k , 1, we have the following problem
−A′′k (t) +

(
k2 + 1

)
Ak (t) = 0, 0 < t < 2π,

Ak (0) = Ak (2π) ,
∫ 2π

0
Ak (s) ds = 0.

It is easy to obtain that Ak (t) = 0. Thus, the solution of (3.1) is u (t, x) = sin t sin x.

Note that using similar procedure one can obtain the solution of the following mixed problem

−
∂2u
∂t2 −

n∑
r=1
αr
∂2u(t, x)
∂x2

r
= f (t, x),

0 < t < 2π, x = (x1, ..., xn) ∈ Ω,

u (0, x) = u (2π, x) + ϕ(x),
∫ 2π

0
u (s, x) ds = ψ(x),

x = (x1, ..., xn) ∈ Ω,

u(t, x) = 0, x ∈ S , 0 ≤ t ≤ 2π

(3.3)

for the multidimensional elliptic differential equation. Assume that αr > α > 0 and

f (t, x)
(
t ∈ (0, 2π) , x ∈ Ω

)
, ϕ(x), ψ(x)

(
x ∈ Ω

)
are given smooth functions. Here and in

future Ω is the unit open cube in the n−dimensional Euclidean space

Rn (0 < xk < 1, 1 ≤ k ≤ n) with the boundaryS ,Ω = Ω ∪ S .

However Fourier series method described in solving (3.3) can be used only in the case when

(3.3) has constant coefficients.
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Example 3.1.2. Obtain the Fourier series solution of the nonlocal boundary value problem

−
∂2u
∂t2 −

∂2u
∂x2 + u = 3 cos t cos x, 0 < t < 2π, 0 < x < π,

u (0, x) = u (2π, x) ,
∫ 2π

0
u (s, x) ds = 0, 0 ≤ x ≤ π,

ux (t, 0) = ux (t, π) = 0, 0 ≤ t ≤ 2π

(3.4)

for the elliptic equation.

Solution. In order to solve this problem, we consider the Sturm-Liouville problem

−u′′ (x) + u (x) − λu (x) = 0, 0 < x < π, u′ (0) = u′ (π) = 0.

generated by the space operator of problem (3.4). So, the nontrivial solutions of this Sturm-

Liouville problem are given by formulas

uk(x) = cos kx, λk = k2 + 1, k = 0, 1, 2, 3, · · ·.

Therefore, we will obtain the Fourier series solution of problem (3.4) by formula

u (t, x) =

∞∑
k=0

Ak (t) cos kx,

where Ak (t) , k = 0, 1, 2, 3, ... are unknown functions. Putting u(t, x) into the equation (3.4)

and nonlocal boundary conditions (3.2), we obtain

−

∞∑
k=0

A′′k (t) cos kx + k2
∞∑

k=0

Ak (t) cos kx +

∞∑
k=0

Ak (t) cos kx

= 3 cos t cos x, 0 < t < 2π, 0 < x < π,
∞∑

k=0

Ak (0) cos kx =

∞∑
k=0

Ak (2π) cos kx, 0 ≤ x ≤ π,

∫ 2π

0

∞∑
k=0

Ak (s) cos kxds =

∞∑
k=0

cos kx
∫ 2π

0
Ak (s) ds = 0, 0 ≤ x ≤ π.

Equating coefficients cos kx, k = 0, 1, ... to zero , we get

−A′′1 (t) + 2A1 (t) = 3 cos t, 0 < t < 2π,
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−A′′k (t) +
(
k2 + 1

)
Ak (t) = 0, k , 1, 0 < t < 2π,

Ak (0) = Ak (2π) ,
∫ 2π

0
Ak (s) ds = 0, k = 0, 1, 2, 3, ....

We will obtain Ak(t), k = 0, 1, .... Firstly, for k = 1,we have the following problem
−A′′1 (t) + 2A1 (t) = 3 cos t, 0 < t < 2π,

A1 (0) = A1 (2π) ,
∫ 2π

0
A1 (s) ds = 0.

It is easy to obtain that A1 (t) = cos t. Secondly, for k , 1,we have the following problem
−A′′k (t) +

(
k2 + 1

)
Ak (t) = 0, 0 < t < 2π,

Ak (0) = Ak (2π) ,
∫ 2π

0
Ak (s) ds = 0.

It is easy to obtain that Ak (t) = 0. Thus the solution of (3.4) is u (t, x) = cos t cos x.

Note that using similar procedure one can obtain the solution of the following mixed problem

−
∂2u
∂t2 −

n∑
r=1
αr
∂2u(t, x)
∂x2

r
= f (t, x),

0 < t < 2π, x = (x1, ..., xn) ∈ Ω,

u (0, x) = u (2π, x) + ϕ(x),
∫ 2π

0
u (s, x) ds = ψ(x),

x = (x1, ..., xn) ∈ Ω,

∂u(t, x)
∂m

= 0, x ∈ S , 0 ≤ t ≤ 2π

(3.5)

for the multidimensional elliptic differential equation. Assume that αr > α > 0 and

f (t, x)
(
t ∈ (0, 2π) , x ∈ Ω

)
, ϕ(x), ψ(x)

(
x ∈ Ω

)
are given smooth functions. Here and in

future m is the normal vector to S .

However Fourier series method described in solving (3.5) can be used only in the case when

(3.5) has constant coefficients.
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Example 3.1.3. Obtain the Fourier series solution of the nonlocal boundary value problem

−
∂2u
∂t2 −

∂2u
∂x2 + u = 6 cos t cos 2x, 0 < t < 2π, 0 < x < π,

u (0, x) = u (2π, x) ,
∫ 2π

0
u (s, x) ds = 0, 0 ≤ x ≤ π,

u (t, 0) = u (t, π) , ux (t, 0) = ux (t, π) 0 ≤ t ≤ 2π

(3.6)

for the elliptic equation.

Solution. In order to solve this problem, we consider the Sturm-Liouville problem

−u′′ (x) + u (x) − λu (x) = 0, 0 < x < π, u (0) = u (π) , u′ (0) = u′ (π) .

generated by the space operator of problem (3.6). So, the nontrivial solutions of this Sturm-

Liouville problem are given by formulas

λk = 4k2 + 1, uk(x) = cos kx, k = 0, 1, 2, 3, · · ·, uk(x) = sin kx, k = 1, 2, 3, · · ·.

Therefore, we will obtain the Fourier series solution of problem(3.6) by formula

u (t, x) =

∞∑
k=0

Ak (t) cos 2kx +

∞∑
k=1

Bk (t) sin 2kx,

where Ak (t) , k = 0, 1, 2, 3, ... and Bk (t) , k = 1, 2, 3, ... are unknown functions. Putting u(t, x)

into the equation (3.6) and nonlocal boundary conditions (3.2), we obtain

−

∞∑
k=0

A′′k (t) cos 2kx −
∞∑

k=1

B′′k (t) sin 2kx + 4k2
∞∑

k=0

Ak (t) cos 2kx + 4k2
∞∑

k=1

Bk (t) sin 2kx

+

∞∑
k=0

Ak (t) cos 2kx +

∞∑
k=1

Bk (t) sin 2kx = 6 cos t cos 2x, 0 < t < 2π, 0 < x < π,

∞∑
k=0

Ak (0) cos 2kx +

∞∑
k=1

Bk (0) sin 2kx =

∞∑
k=0

Ak (2π) cos 2kx

+

∞∑
k=1

Bk (2π) sin 2kx, 0 ≤ x ≤ π,
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∫ 2π

0

 ∞∑
k=0

Ak (s) cos 2kx +

∞∑
k=1

Bk (s) sin 2kx

 ds (3.7)

=

∞∑
k=0

cos 2kx
∫ 2π

0
Ak (s) ds +

∞∑
k=1

sin 2kx
∫ 2π

0
Bk (s) ds = 0, 0 ≤ x ≤ π.

Equating coefficients sin kx, k = 1, ...,and cos kx, k = 0, 1, ... to zero, we get

−A′′1 (t) + 5A1 (t) = 6 cos t, 0 < t < 2π,

−A′′k (t) +
(
4k2 + 1

)
Ak (t) = 0, k , 1, 0 < t < 2π,

Ak (0) = Ak (2π) ,
∫ 2π

0
Ak (s) ds = 0, k = 0, 1, 2, 3, ...,

−B′′k (t) +
(
4k2 + 1

)
Bk (t) = 0, 0 < t < 2π,

Bk (0) = Bk (2π) ,
∫ 2π

0
Bk (s) ds = 0, k = 1, 2, 3, ....

that is

Ak (0) = Ak (2π) ,
∫ 2π

0
Ak (s) ds = 0, k = 0, 1, 2, 3, ...,

Bk (0) = Bk (2π) ,
∫ 2π

0
Bk (s) ds = 0, k = 1, 2, 3, ....

We will obtain Ak(t), k = 0, 1, .... Firstly, for k = 1,we have the following problem
−A′′1 (t) + 5A1 (t) = 6 cos t, 0 < t < 2π,

A1 (0) = A1 (2π) ,
∫ 2π

0
A1 (s) ds = 0.

It is easy to obtain that A1 (t) = cos t. Secondly, for k , 1,we have the following problem
−A′′k (t) +

(
4k2 + 1

)
Ak (t) = 0, 0 < t < 2π,

Ak (0) = Ak (2π) ,
∫ 2π

0
Ak (s) ds = 0.

It is easy to obtain that Ak (t) = 0.

Now will obtain Bk(t), k = 1, .... We have the following problem
−B′′k (t) +

(
4k2 + 1

)
Bk (t) = 0, 0 < t < 2π,

Bk (0) = Bk (2π) ,
∫ 2π

0
Bk (s) ds = 0.
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It is easy to obtain that Bk (t) = 0. Thus the solution of problem (3.6) is u (t, x) = cos t cos 2x.

Note that using similar procedure one can obtain the solution of the following mixed problem

−
∂2u
∂t2 −

n∑
r=1
αr
∂2u(t, x)
∂x2

r
= f (t, x),

0 < t < 2π, x = (x1, ..., xn) ∈ Ω,

u (0, x) = u (2π, x) + ϕ(x),
∫ 2π

0
u (s, x) ds = ψ(x),

x = (x1, ..., xn) ∈ Ω,

u(t, x)|S 1
= u(t, x)|S 2

,
∂u(t, x)
∂m

∣∣∣∣∣
S 1

=
∂u(t, x)
∂m

∣∣∣∣∣
S 2

, 0 ≤ t ≤ 2π

(3.8)

for the multidimensional elliptic differential equation. Assume that αr > α > 0 and

f (t, x)
(
t ∈ (0, 2π) , x ∈ Ω

)
, ϕ(x), ψ(x)

(
x ∈ Ω

)
are given smooth functions. Here

S = S 1 ∪ S 2,∅ = S 1 ∩ S 2.

However Fourier series method described in solving (3.8) can be used only in the case when

(3.8) has constant coefficients.

Now, we consider Laplace transform solution of nonlocal problems for elliptic differential

equations.

Example 3.1.4. Obtain the Laplace transform solution of the initial-boundary-value problem



−
∂2u
∂t2 −

∂2u
∂x2 + u = sin t e−x, 0 < t < 2π, 0 < x < ∞,

u (0, x) = u (2π, x) ,
∫ 2π

0
u (s, x) ds = 0, 0 ≤ x < ∞,

u (t, 0) = sin t, ux (t, 0) = − sin t, 0 ≤ t ≤ 2π

(3.9)

for the elliptic equation.
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Solution.We will denote L {u(t, x)} = u(t, s). Using formula

L
{
e−x} =

1
s + 1

and taking the Laplace transform of both sides of partial differential equations and u (0, x) =

u (2π, x) ,
∫ 2π

0
u (s, x) ds = 0 and using conditions u (t, 0) = sin t, ux (t, 0) = − sin t, 0 ≤ t ≤

2π, we obtain

−utt (t, s) −
(
s2 − 1

)
u (t, s) =

2 − s2

1 + s
sin t, 0 < t < 2π,

u (0, s) = u (2π, s) ,
∫ 2π

0
u (y, s) dy = 0.

It is easy to obtain that

u (t, s) =
1

1 + s
sin t.

Finally, taking the inverse Laplace transform of this equation, we obtain

u (t, x) = e−x sin t.

Note that using similar procedure one can obtain the solution of the following initial

boundary value problem

−
∂2u
∂t2 −

n∑
r=1
αr
∂2u(t, x)
∂x2

r
= f (t, x),

x = (x1, ..., xn) ∈ Ω+, 0 < t < 2π,

u (0, x) = u (2π, x) + ϕ(x),
∫ 2π

0
u (s, x) ds = ψ(x),

x = (x1, ..., xn) ∈ Ω
+
,

u(t, x) = α (t, x) , uxr (t, x) = β (t, x) ,

1 ≤ r ≤ n, 0 ≤ t ≤ 2π, x ∈ S +

(3.10)
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for the multidimensional elliptic differential equation. Assume that αr > α > 0 and

f (t, x) (t ∈ (0, 2π) , x ∈ Ω+) , ϕ(x), ψ (x)
(
x ∈ Ω

+)
, α (t, x) , β (t, x) (t ∈ [0, 2π] , x ∈ S +) are

given smooth functions. Here Ω+ is the open cube in the n-dimensional Euclidean space

Rn (0 < xk < ∞, 1 ≤ k ≤ n) with the boundary S + and Ω
+

= Ω+ ∪ S +.

However Laplace transform method described in solving (3.10) can be used only in the case

when (3.10) has ar(x) polynomials coefficients.

Finally, we consider the Fourier transform solution of the nonlocal boundary value problem

for elliptic differential equations.

Example 3.1.5. Obtain the Fourier transform solution of the nonlocal boundary value

problem
−
∂2u
∂t2 −

∂2u
∂x2 + u =

(
−4x2 + 4

)
e−x2

sin t , 0 < t < 2π, −∞ < x < ∞,

u (0, x) = u (2π, x) ,
∫ 2π

0
u (s, x) ds = 0,−∞ ≤ x < ∞

(3.11)

for the elliptic differential equation.

Solution. We denote F {u (t, x)} = u (t, µ) . Then, applying the formula

(
e−x2)′′

=
(
4x2 − 2

)
e−x2

,

and taking the Fourier transform from both sides of (3.11) and boundary conditions

u (0, x) = u (2π, x) ,
∫ 2π

0
u (s, x) ds = 0,

we get

−utt (t, µ) +
(
µ2 + 1

)
u (t, µ) =

(
µ2 + 2

)
F

{
e−x2}

sin t, 0 < t < 2π,

u (0, µ) = u (2π, µ) ,
∫ 2π

0
u (s, µ) ds = 0. (3.12)
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The general solution of this equation is given by formula

u (t, µ) = c1e
√
µ2+1t + c1e−

√
µ2+1t + F

{
e−x2}

sin t.

Then, using the nonlocal boundary conditions (3.12), we get

u (t, µ) = F
{
e−x2}

sin t.

Finally, taking the inverse Fourier transform, we get

u (t, x) = e−x2
sin t.

Note that using similar procedure one can obtain the solution of the following initial

boundary value problem

−
∂2u
∂t2 −

n∑
r=1
αr
∂2u(t, x)
∂x2

r
= f (t, x),

x = (x1, ..., xn) ∈ Rn, 0 < t < 2π,

u (0, x) = u (2π, x) + ϕ(x),
∫ 2π

0
u (s, x) ds = ψ(x),

x = (x1, ..., xn) ∈ Rn

(3.13)

for the multidimensional elliptic differential equation. Assume that αr > α > 0 and

f (t, x) (t ∈ (0, 2π) , x ∈ Rn) , ϕ(x), ψ (x) (x ∈ Rn) are given smooth functions.

However Fourier transform method described in solving (3.13) can be used only in the case

when (3.13) has constant coefficients.

So, all analytical methods described above, namely the Fourier series method, Laplace

transform method and the Fourier transform method can be used only in the case when the

differential equation has constant or polynomial coefficients. It is well-known that the most

general method for solving partial differential equation with dependent in t and in the space

variables is operator method.
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In Chapter 3, we will study well-posedness of the nonlocal boundary value problem for

elliptic equations. Note that the well-posedness of the local boundary value problem for the

elliptic equation

−v′′(t) + Av(t) = f (t) (0 ≤ t ≤ T ), v(0) = v0, v(T ) = vT (3.14)

in an arbitrary Banach space E with the positive operator A and its related applications have

been investigated by many researchers, see for example, (Ashyralyev & Sobolevskii, 2004;

Lunardi, 1995; Skubachevskii, 1997) and the references given therein.

Here, the abstract nonlocal boundary value problem for differential equation of elliptic type

−v′′(t) + Av(t) = f (t) (0 ≤ t ≤ T ), v(0) = v(T ) + ϕ,

T∫
0

v(s)ds = ψ (3.15)

in an arbitrary Banach space E with the positive operator A is considered. A function v(t) is

called a solution of the problem (3.15 ) if the following conditions are satisfied:

i. v(t) is a twice continuously differentiable on the segment [0,T ]. The derivatives at the

endpoints of the segment are understood as the appropriate unilateral derivatives.

ii. The element v(t) belongs to D(A) for all t ∈ [0,T ] , and the function Av(t) is continuous

on the segment [0,T ].

iii. v(t) satisfies the equation and boundary conditions (3.15 ).

A solution of problem (3.15) defined in this manner will from now on be referred to as

a solution of problem (3.15) in the space C(E) = C([0,T ], E). Here C(E) stands for the

Banach space of all continuous functions ϕ(t) defined on [0,T ] with values in E equipped

with the norm

||ϕ||C(E) = max
t∈[0,T ]

‖ϕ(t)‖E.

The well-posedness of the problem (3.15) in various Banach spaces is established. In

applications, the new coercive stability estimates in Hölder norms for the solutions of the

mixed type nonlocal boundary value problems for elliptic equations are obtained.
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3.2 AUXILIARY RESULTS FOR PROBLEM (3.14)

In this section, we give some auxiliary statements from (Ashyralyev & Sobolevskii, 2004)

which will be useful in the sequel. The operator B = A
1
2 has better spectral properties than

the positive operator A. Indeed, the operator −B is a generator of an analytic semigroup

exp{−tB} (t ≥ 0) with exponentially decreasing norm, when t −→ +∞, i. e. the following

estimates

∥∥∥exp (−tB)
∥∥∥

E→E
,
∥∥∥tB exp(−tB)

∥∥∥
E→E
≤ M(B)e−α(B)t(t > 0) (3.16)

hold for some M(B) ∈ [1,+∞), a(B) ∈ (0,+∞). From that it follows that the operator

I − e−2T B has the bounded inverse and the following estimate holds:

‖(I − e−2T B)−1 ‖E→E≤ M(B)(1 − e−2Tα(B))−1. (3.17)

The following formula

v(t) = (I − e−2T B)−1{(e−tB − e−(2T−t)B)v0 + (e−(T−t)B − e−(T+t)B)vT

−(e−(T−t)B − e−(T+t)B)(2B)−1
∫ T

0
(e−(T−s)B − e−(T+s)B) f (s)ds}

+(2B)−1
∫ T

0
(e−|t−s|B − e−(t+s)B) f (s)ds (3.18)

holds for the exact solution of problem (3.14) under sufficiently smooth data v0, vT and f (t).

We denote by Cα(E), (0 < α < 1), the Banach space obtained by completion of the set of all

smooth E-valued functions ϕ(t) on [0, T] in the norm

‖ ϕ ‖Cα(E)= max
0≤t≤T

||ϕ(t)||E + sup
0≤t<t+τ≤T

‖ ϕ(t + τ) − ϕ(t) ‖E
τα

.

Theorem 3.2.1. Suppose v′′0 , v′′T ∈ Eα, f (t) ∈ Cα(E)(0 < α < 1). Then the boundary value

problem (3.14) is well-posed in Hölder space Cα(E), if A is the positive operator in Banach

space E. For the solution v(t) in Cα(E) of the boundary value problem the coercive inequality

‖v′′‖Cα(E) + ‖Av‖Cα(E) + ‖v′′‖C(Eα) ≤
M

α(1 − α)
‖ f ‖Cα(E) +

M
α

[‖ v′′0 ||Eα + ||v′′T ||Eα]

holds, where M does not depend on α, v0, vT and f (t)
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Here, the Banach space Eα = Eα(B, E) (0 < α < 1) consists of those v ∈ E for which the

norm

‖ v ‖Eα= sup
z>0

z1−α ‖ Bexp{−zB}v ‖E + ‖ v ‖E

is finite. Moreover, the positivity of A is a necessary condition for well-posedness of problem

(3.14) in C(E). However, the problem (3.14) is not well posed in C(E) for all positive

operators. It turns out that a Banach space E can be restricted to a Banach space E′ in such

a manner that the restricted problem (3.14) in E′ will be well posed in C(E′). The role of E′

will be played here by the fractional spaces Eα = Eα(B, E)(0 < α < 1).

Theorem 3.2.2. Let A be the positive operator in a Banach space E and f (t) ∈ C(Eα)

(0 < α < 1). Then for the solution v(t) in C(Eα) of the boundary value problem (3.14) the

coercive inequality

‖ v′′ ‖C(Eα) + ‖ Av ‖C(Eα)≤ M[‖ Av0 ‖Eα + ‖ AvT ‖Eα +α−1(1 − α)−1 ‖ f ‖C(Eα)]

holds, where M does not depend on α, v0, vT and f (t).

3.3 WELL-POSEDNESS OF PROBLEM (3.15)

We consider the problem (3.15). Using formula (3.18) and nonlocal conditions, v(0) =

v(T ) + ϕ and
T∫

0
v(s)ds = ψ, we get

v(0) =
1
2

(
I − e−T B

)−1 (
I + e−T B

) (
Bψ − B−1

∫ T

0
f (s) ds

)
+

1
2
ϕ

+
1
2

(
I − e−T B

)−1
B−1

(∫ T

0
e−(T−s)B f (s) ds +

∫ T

0
e−sB f (s) ds

)
, (3.19)

v(T ) =
1
2

(
I − e−T B

)−1 (
I + e−T B

) (
Bψ − B−1

∫ T

0
f (s) ds

)
−

1
2
ϕ

+
1
2

(
I − e−T B

)−1
B−1

(∫ T

0
e−(T−s)B f (s) ds +

∫ T

0
e−sB f (s) ds

)
. (3.20)
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Actually, applying formula (3.18), we get∫ T

0
v (y) dy =

(
I − e−2T B

)−1
∫ T

0

(
e−yB − e−(2T−y)B

)
dyv(0)

+
(
I − e−2T B

)−1
∫ T

0

(
e−(T−y)B − e−(T+y)B

)
dyv(T )

−
(
I − e−2T B

)−1
(2B)−1

(∫ T

0

(
e−(T−y)B − e−(T+y)B

)
dy

)
(∫ T

0

(
e−(T−s)B − e−(T+s)B

)
f (s) ds

)
+ (2B)−1

∫ T

0

∫ T

0

(
e−|y−s|B − e−(y+s)B

)
f (s) dsdy.

By computing and interchanging of the order of integration the following formula yields∫ T

0
v (y) dy = B−1

(
I − e−2T B

)−1 (
I − e−T B

)2
v(0)

+B−1
(
I − e−2T B

)−1 (
I − e−T B

)2
v(T )

−
1
2

A−1
(
I − e−2T B

)−1 (
I − e−T B

)2
∫ T

0

(
e−(T−s)B − e−(T+s)B

)
f (s) ds

+ (2B)−1
∫ T

0

(∫ s

0

(
e−(s−y)B − e−(y+s)B

)
dy

+

∫ T

s

(
e−(y−s)B − e−(y+s)B

)
dy

)
f (s) ds.

It follows that

ψ = B−1
(
I − e−T B

) (
I + e−T B

)−1
v(0)

+B−1
(
I − e−T B

) (
I + e−T B

)−1
v(T )

−
1
2

A−1
(
I − e−T B

) (
I + e−T B

)−1
∫ T

0

(
e−(T−s)B − e−(T+s)B

)
f (s) ds

+
1
2

A−1
∫ T

0

(
2I − 2e−sB − e−(T−s)B + e−(T+s)B

)
f (s) ds.

Thus

ψ = B−1
(
I − e−T B

) (
I + e−T B

)−1
v(0)
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+B−1
(
I − e−T B

) (
I + e−T B

)−1
v(T )

−A−1
(
I + e−T B

)−1
(∫ T

0
e−(T−s)B f (s) ds +

∫ T

0
e−sB f (s) ds

)
+A−1

∫ T

0
f (s) ds.

Applying the nonlocal condition v(0) = v(T ) + ϕ, we get

ψ = 2B−1
(
I − e−T B

) (
I + e−T B

)−1
v(0) − B−1

(
I − e−T B

) (
I + e−T B

)−1
ϕ

−A−1
(
I + e−T B

)−1
(∫ T

0
e−(T−s)B f (s) ds +

∫ T

0
e−sB f (s) ds

)
+A−1

∫ T

0
f (s) ds.

From that they follow formulas (3.19) and (3.20).

It is easy to show that v(t) defined on [0,T ] by formulas (3.18), (3.19 ), and (3.20) is a unique

solution in C(E) of problem (3.15) if, for example, ϕ ∈ D(A2), ψ ∈ D(A3) and A f (t) ∈ C(E)

or f ′ (t) ∈ C(E). Sufficient conditions for the well-posedness of the nonlocal boundary value

problem (3.15) can be established if one considers this problem in certain spaces of smooth

E−valued functions defined on [0,T ].

Note that for the solution of problem (3.15) the coercivity inequality

‖v′′‖Cα(E) + ‖Av‖Cα(E) ≤ MC[‖ f ‖Cα(E) + ||Aϕ||E + ||Aψ||E]

fails. Nevertheless, we have the following result.

Theorem 3.3.1. Suppose Aψ −
∫ T

0
f (s) ds = 0, Aϕ − f (0) + f (T ) ∈ Eα, f (t) ∈ Cα(E) (0 <

α < 1). Then the boundary value problem (3.15) is well-posed in Hölder space Cα(E), if A

is the positive operator in Banach space E. For the solution v(t) in Cα(E) of the boundary

value problem the coercive inequality

‖v′′‖Cα(E) + ‖Av‖Cα(E) + ‖v′′‖C(Eα) ≤
M

α(1 − α)
‖ f ‖Cα(E) +

M
α
‖Aϕ − f (0) + f (T )‖Eα

holds, where M does not depend on α, ϕ and f (t).
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Proof. By Theorem 3.2.1 we have the following estimate

‖v′′‖Cα(E) + ‖Av‖Cα(E) + ‖v′′‖C(Eα)

≤
M

α(1 − α)
‖ f ‖Cα(E) +

M
α

[
‖Av(0) − f (0)‖Eα + ‖Av(T ) − f (T )‖Eα

]
for the solution of problem (3.15). Therefore, to prove the theorem it suffices to establish the

estimates for ‖Av(0) − f (0)‖Eα and ‖Av(T ) − f (T )‖Eα . Applying formula (3.19), we get

Av(0) − f (0) =
1
2

(Aϕ − f (0) + f (T )) +
1
2

(
I − e−T B

)−1

×

(∫ T

0
Be−(T−s)B ( f (s) − f (T )) ds +

∫ T

0
Be−sB ( f (s) − f (0)) ds

)
.

Then using the triangle inequality, the estimates (3.16), (3.17) and the definition of the spaces

Cα (E) and Eα, we get

∥∥∥λ1−αBe−λB (Av(0) − f (0))
∥∥∥

E

≤
1
2

∥∥∥λ1−αBe−λB (Aϕ − f (0) + f (T ))
∥∥∥

E
+

1
2

∥∥∥∥(I − e−T B
)−1∥∥∥∥

E→E

×λ1−α
(∫ T

0

∥∥∥B2e−(λ+(T−s))B
∥∥∥

E→E
‖ f (s) − f (T )‖E ds

+

∫ T

0

∥∥∥B2e−(λ+s)B
∥∥∥

E→E
‖ f (s) − f (0)‖E ds

)
≤

1
2

sup
λ>0

∥∥∥λ1−αBe−λB (Aϕ − f (0) + f (T ))
∥∥∥

E

+
M
2
λ1−α

(∫ T

0

(T − s)α

(λ + (T − s))2 ds sup
0≤s<T

‖ f (s) − f (T )‖E
(T − s)α

+

∫ T

0

sα

(λ + s)2 ds sup
0<s≤T

‖ f (s) − f (0)‖E
sα

)
≤

1
2
‖Aϕ − f (0) + f (T )‖Eα

+
M
2
λ1−α

(∫ T

0

(T − s)α

(λ + (T − s))2 ds +

∫ T

0

sα

(λ + s)2 ds
)
‖ f ‖Cα(E)

≤
1
2
‖Aϕ − f (0) + f (T )‖Eα + M

∫ T

0

λ1−αsα

(λ + s)2 ds ‖ f ‖Cα(E)
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for any λ > 0. Since∫ T

0

λ1−αsα

(λ + s)2 ds ≤
∫ ∞

0

pα

(1 + p)2 dp ≤
2

(1 + α) (1 − α)
,

we have that

∥∥∥λ1−αBe−λB (Av(0) − f (0))
∥∥∥

E

≤
1
2
‖Aϕ − f (0) + f (T )‖Eα + M

2
(1 + α) (1 − α)

‖ f ‖Cα(E)

for any λ > 0. Therefore

‖Av(0) − f (0)‖Eα ≤
1
2
‖Aϕ − f (0) + f (T )‖Eα +

2M
1 − α

‖ f ‖Cα(E) . (3.21)

Applying v(0) = v(T ) + ϕ, we get

Av(T ) − f (T ) = Av(0) − Aϕ − f (T ) .

Using the triangle inequality and the estimate (3.21), we get

‖Av(T ) − f (T )‖Eα ≤ ‖Av(0) − f (0)‖Eα + ‖ f (0) − Aϕ − f (T )‖Eα

≤
3
2
‖Aϕ − f (0) + f (T )‖Eα +

2M
1 − α

‖ f ‖Cα(E) .

Therefore, Theorem 3.3.1 is proved. �

Theorem 3.3.2. Suppose Aψ −
∫ T

0
f (s) ds = 0, A is the positive operator in a Banach space

E and f (t) ∈ C(Eα) (0 < α < 1). Then for the solution v(t) in C(Eα) of the boundary value

problem (3.15) the coercive inequality

‖ v′′ ‖C(Eα) + ‖ Av ‖C(Eα)≤ M[‖ Aϕ ‖Eα +α−1(1 − α)−1 ‖ f ‖C(Eα)]

holds, where M does not depend on α, ϕ and f (t).

Proof. By Theorem 3.2.2 we have the following estimate

‖ v′′ ‖C(Eα) + ‖ Av ‖C(Eα)≤ M[‖ Av(0) ‖Eα + ‖ Av(T ) ‖Eα +α−1(1 − α)−1 ‖ f ‖C(Eα)]
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for the solution of problem (3.15). Therefore, to prove the theorem it suffices to establish the

estimates for ‖Av(0)‖Eα and ‖Av(T )‖Eα . Applying formula (3.19), we get

Av(0) =
1
2

Aϕ +
1
2

(
I − e−T B

)−1
(∫ T

0
Be−(T−s)B f (s) ds +

∫ T

0
Be−sB f (s) ds

)
.

Using the triangle inequality, the estimates (3.16), (3.17) and the definition of the spaces Eα,

we get

∥∥∥λ1−αBe−λBAv(0)
∥∥∥

E
≤

1
2

∥∥∥λ1−αBe−λBAϕ
∥∥∥

E
+

1
2

∥∥∥∥(I − e−T B
)−1∥∥∥∥

E→E

×λ1−α
(∫ T

0

∥∥∥B2e−(λ+(T−s))B f (s)
∥∥∥

E
ds +

∫ T

0

∥∥∥B2e−(λ+s)B f (s)
∥∥∥

E
ds

)
≤

1
2
‖Aϕ‖Eα + Mλ1−α

(∫ T

0

ds
(λ + T − s) (T − s)1−α ‖ f (s)‖Eα

+

∫ T

0

ds
(λ + s) s1−α ‖ f (s)‖Eα

)

≤
1
2
‖Aϕ‖Eα + 2M

∫ T

0

λ1−αds
(λ + s) s1−α ‖ f ‖C(Eα)

for any λ > 0. Since∫ T

0

λ1−αds
(λ + s) s1−α ≤

∫ ∞

0

pα−1

p + 1
dp ≤

1
α (1 − α)

,

we have that

∥∥∥λ1−αBe−λBAv(0)
∥∥∥

E
≤

1
2
‖Aϕ‖Eα +

2M
α (1 − α)

‖ f ‖C(Eα) .

for any λ > 0. Therefore

‖Av(0)‖Eα ≤
1
2
‖Aϕ‖Eα +

2M
α (1 − α)

‖ f ‖C(Eα) . (3.22)

Applying v(0) = v(T ) + ϕ, the triangle inequality and the estimate (3.22), we get

‖Av(T )‖Eα ≤ ‖Av(0)‖Eα + ‖Aϕ‖Eα ≤
3
2
‖Aϕ‖Eα +

2M
1 − α

‖ f ‖Cα(E) .

Therefore, Theorem 3.3.2 is proved. �
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3.4 APPLICATIONS

Finally, we consider the applications of Theorems 3.3.1 and 3.3.2 to the elliptic equations.

First, we consider the boundary value problems for two dimensional elliptic equations

−
∂2u
∂y2 − a(x)

∂2u
∂x2 + δu = f (y, x), 0 < y < T, 0 < x < 1,

u(0, x) = u(T, x) + ϕ(x),
T∫

0
u(s, x)ds = 0, 0 ≤ x ≤ 1,

u(y, 0) = u(y, 1), ux(y, 0) = ux(y, 1), 0 ≤ y ≤ T,

(3.23)

where a(x), ϕ(x) and f (y, x) are given sufficiently smooth functions and

a(x) > 0, δ > 0 is a sufficiently large number. We introduce the Banach spaces Cβ[0, 1] (0 <

β < 1) of all continuous functions ϕ(x) satisfying a Hölder condition for which the following

norms are finite

‖ ϕ ‖Cβ[0,1]=‖ ϕ ‖C[0,1] + sup
0≤x<x+τ≤1

|ϕ(x + τ) − ϕ(x)|
τβ

,

where C[0, 1] is the space of the all continuous functions ϕ(x) defined on [0, 1] with the usual

norm

‖ ϕ ‖C[0,1]= max
0≤x≤1

|ϕ(x)|.

It is known that the differential expression

Axv = −a(x)v′′(x) + δv(x)

define a positive operator Ax acting in Cβ[0, 1] with domain Cβ+2[0, 1] and satisfying the

conditions v(0) = v(1), vx(0) = vx(1). Therefore, we can replace boundary value problems

(3.23) by the abstract boundary value problem (3.15). Using the results of Theorems 3.3.1

and 3.3.2, we can obtain that

Theorem 3.4.1. Assume that
T∫

0
f (s, x)ds = 0, 0 ≤ x ≤ 1. Then, for the solution of the

boundary value problem (3.23) the following coercive inequalities are valid:

‖ u ‖C2+α(Cµ[0,1]) + ‖ u ‖Cα(C2+µ[0,1])

51



≤ M(α)
[
‖ f ‖Cα(Cµ[0,1]) +|| − a(·)ϕ′′ (·) + δϕ (·) − f (0, ·) + f (T, ·)||C2α+µ[0,1]

]
,

‖ u ‖C2(C2α+µ[0,1]) + ‖ u ‖C(C2+2α+µ[0,1])

≤ M(α)
[
‖ f ‖C(C2α+µ[0,1]) +||ϕ||C2+2α+µ[0,1]

]
, 0 < 2α + µ < 1.

Here M(α) is independent of ϕ(x) and f (y, x).

Second, let Ω be the unit open cube in the n−dimensional Euclidean space Rn (0 < xk <

1, 1 ≤ k ≤ n) with boundary S , Ω = Ω ∪ S . In [0,T ] × Ω we consider the mixed boundary

value problem for the multidimensional elliptic equation

−
∂2u(y, x)
∂y2 −

n∑
r=1
αr(x)

∂2u(y, x)
∂x2

r
+ δu(y, x) = f (y, x),

x = (x1, . . . , xn) ∈ Ω, 0 < y < T,

u(0, x) = u(T, x) + ϕ(x),
T∫

0
u(s, x)ds = 0, x ∈ Ω,

u(y, x) = 0, x ∈ S ,

(3.24)

where αr(x) (x ∈ Ω) and f (y, x) (y ∈ (0,T ), x ∈ Ω), ϕ(x)(x ∈ Ω) are given smooth functions

and αr(x) > 0, δ > 0 is a sufficiently large number. We introduce the Banach spaces

Cβ
01(Ω) (β = (β1, . . . , βn), 0 < xk < 1, k = 1, . . . , n) of all continuous functions satisfying a

Hölder condition with the indicator β = (β1, . . . , βn), βk ∈ (0, 1), 1 ≤ k ≤ n and with weight

xβk
k (1 − xk − hk)βk , 0 ≤ xk < xk + hk ≤ 1, 1 ≤ k ≤ n which equipped with the norm

‖ f ‖Cβ
01(Ω)=‖ f ‖C(Ω)

+ sup
0≤xk<xk+hk≤1,1≤k≤n

| f (x1, . . . , xn) − f (x1 + h1, . . . , xn + hn)|

×

n∏
k=1

h−βk
k xβk

k (1 − xk − hk)βk ,

where C(Ω)-is the space of the all continuous functions defined on Ω, equipped with the

norm

‖ f ‖C(Ω)= max
x∈Ω
| f (x)|.
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It is known that the differential expression

Axv = −

n∑
r=1

αr(x)
∂2v(y, x)
∂x2 + δv(y, x)

defines a positive operator Ax acting on Cβ
01(Ω) with domain D(Ax) ⊂ C2+β

01 (Ω) and satisfying

the condition v = 0 on S . Therefore, we can replace boundary value problems (3.24) by the

abstract boundary value problems (3.15). Using the results of Theorems 3.3.1, we can obtain

that

Theorem 3.4.2. Assume that

T∫
0

f (s, x)ds = 0, −
n∑

r=1

αr(x)
∂2ϕ(x)
∂x2 + δϕ(x) − f (0, x) + f (T, x) = 0, x ∈ Ω.

Then, for the solution of the boundary value problem (3.24) the following coercive inequality

is valid:

‖u‖C2+α
(
Cµ

01(Ω)
) +

n∑
r=1

∥∥∥∥∥∥∂2u
∂x2

r

∥∥∥∥∥∥
Cα

(
Cµ

01(Ω)
) ≤ M(α) ‖ f ‖Cα

(
Cµ

01(Ω)
)
,

0 < α < 1, µ = {µ1, · · ·, µn}, 0 < µk < 1, 1 ≤ k ≤ n,

where M(α) is independent of f (y, x).

Third, we consider the boundary value problem on the range

{0 ≤ y ≤ T, x ∈ Rn}

for 2m−order multidimensional elliptic equations

−
∂2u
∂y2 +

∑
|r|=2m

ar(x)
∂|τ|u

∂xr1
1 ...∂xrn

n
+ δu(y, x) = f (y, x),

0 < y < T, x, r ∈ Rn, |r| = r1 + · · · + rn,

u(0, x) = u(T, x) + ϕ(x),
T∫

0
v(s, x)ds = 0, x ∈ Rn,

(3.25)
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where ar(x) and f (y, x), ϕ(x) are given sufficiently smooth functions and

αr(x) > 0, δ > 0 is the sufficiently large number . We will assume that the symbol

Bx(ξ) =
∑
|r|=2m

ar(x) (iξ1)r1 ... (iξn)rn , ξ = (ξ1, · · ·, ξn) ∈ Rn

of the differential operator of the form

Bx =
∑
|r|=2m

ar(x)
∂|r|

∂xr1
1 . . . ∂xrn

n
(3.26)

acting on functions defined on the space Rn, satisfies the inequalities

0 < M1|ξ|
2m ≤ (−1)mBx(ξ) ≤ M2|ξ|

2m < ∞

for ξ , 0. The problem (3.25) has a unique smooth solution. This allows us to reduce

the boundary value problem (3.25) to the boundary value problem (3.15) in a Banach space

E = Cµ(Rn) of all continuous bounded functions defined on Rnsatisfying a H ölder condition

with the indicator µ ∈ (0, 1) with a strongly positive operator Ax = Bx + δI defined by (3.26).

Theorem 3.4.3. Assume that
T∫

0
f (s, x)ds = 0, x ∈ Rn. Then, for the solution of the boundary

value problem (3.25) the following coercivity inequalities are satisfied

‖ u ‖C2+α(Cµ(Rn)) +
∑
|τ|=2m

∥∥∥∥∥∥ ∂|r|u
∂xr1

1 . . . ∂xrn
n

∥∥∥∥∥∥
Cα(Cµ(Rn))

≤ M(α)
[
‖ f ‖Cα(Cµ(Rn))

+

∥∥∥∥∥∥∥ ∑
|r|=2m

ar(·)
∂|τ|ϕ(·)

∂xr1
1 ...∂xrn

n
+ δϕ(·) − f (0, ·) + f (T, ·)

∥∥∥∥∥∥∥
C2mα+µ(Rn)

 ,
‖ u ‖C2(C2mα+µ(Rn)) +

∑
|τ|=2m

∥∥∥∥∥∥ ∂|r|u
∂xr1

1 . . . ∂xrn
n

∥∥∥∥∥∥
C(C2mα+µ(Rn))

≤ M(α)

‖ f ‖C(C2mα+µ(Rn)) +
∑
|τ|=2m

∥∥∥∥∥∥ ∂|r|ϕ

∂xr1
1 . . . ∂xrn

n

∥∥∥∥∥∥
C(C2mα+µ(Rn))

 , 0 < 2mα + µ < 1,

where M(α) does not depend on ϕ(x) and f (y, x).

The proof of Theorem 3.4.3 is based on the abstract Theorems 3.3.1 and 3.3.2, the positivity

of the operator Ax in Cµ(Rn), the structure of the fractional spaces Eα((Ax)
1
2 ,C(Rn)) and the

coercivity inequality for an elliptic operator Ax in Cµ(Rn).
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CHAPTER 4

WELL-POSEDNESS OF ELLIPTIC DIFFERENCE EQUATIONS WITH

NONLOCAL BOUNDARY CONDITIONS

4.1 INTRODUCTION

In the present thesis, second order of approximation two-step difference scheme
−

uk+1 − 2uk + uk−1

τ2 + Auk = fk, fk = f (tk), tk = kτ, 1 ≤ k ≤ N − 1,Nτ = T,

u0 = uN + ϕ,
N∑

i=1
uiτ = ψ

(4.1)

for the approximate solution of problem (3.15) is presented. The well-posedness of the

difference scheme (4.1) in Banach spaces is established. In applications, the stability, almost

coercive stability and coercive stability estimates in Hölder norms in one variable for the

solutions of difference schemes for numerical solution of two type elliptic problems are

obtained.

4.2 AUXILIARY RESULTS

In this section, we give some auxiliary statements from (Ashyralyev & Sobolevskii, 2004)

which will be useful in the sequel. We consider the second order of accuracy difference

scheme

−
uk+1 − 2uk + uk−1

τ2 + Auk = fk, fk = f (tk), tk = kτ, 1 ≤ k ≤ N − 1, Nτ = T, (4.2)

u0 = v0, uN = vT .

of approximation solution of the boundary value problem (3.15). This problem is uniquely

solvable, and the following formula holds

uk = (I − R2N)−1
{
(Rk − R2N−k)u0 + (RN−k − RN+k)uN (4.3)

−(RN−k − RN+k)(I + τB)(2I + τB)−1B−1
N−1∑
i=1

(RN−i − RN+i) fiτ


55



+(I + τB)(2I + τB)−1B−1
N−1∑
i=1

(R|k−i| − Rk+i) fiτ, 1 ≤ k ≤ N − 1,

where

B = B(τ, A) =
τA
2

+

√(
τA
2

)2

+ A, R = (I + τB)−1.

Note that B(τ, A) , A
1
2 but then B(τ, A)→ A

1
2 as τ→ 0 and it has same spectral properties of

A
1
2 under the some assumption for A.

Let us denote by Fτ(E) = F([0,T ]τ, E) the space of grid functions ϕτ = {ϕk}
N−1
k=1 for fixed

τ = T
N . Thus, Fτ(E) is the vector space whose elements are ordered (N−1)-tuples of elements

of E. The space Fτ(E) can be equipped with various norms and thus become a normed space.

Thus, for instance, the vector space Fτ(E) generates the normed space Cτ(E) = C([0,T ]τ, E)

with the norm

‖ ϕτ‖Cτ(E) = max
1≤k≤N−1

‖ ϕk ‖E.

Let us reduce the difference scheme (4.2) to an operator problem in the space Fτ(E). In

addition to the operator D2
τ, acting from the space E × Fτ(E)× E of vectors wτ = {wk}

N
k=0 into

the space Fτ(E) of vectors vτ = {vk}
N−1
k=1 by the rule

vτ = D2
τu

τ, vk =
1
τ2 (wk+1 − 2wk + wk−1), k = 1, · · ·,N − 1,

define an operator Aτ from the space E × Fτ(E) × E of vectors wτ = {wk}
N
k=0 into the space

Fτ(E) of vectors vτ = {vk}
N−1
k=1 by the rule

vτ = Aτuτ, vk = Awk, k = 1, · · ·,N − 1.

Then the difference scheme (4.2) can obviously be rewritten as the equivalent operator

equation

−D2
τΠ(u0, uN)uτ + AτΠ(u0, uN)uτ = f τ.

Here f τ is defined by the formula

f τ = ( f1, · · ·, fN−1).
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The last operator problem will be considered in the space Fτ(E). From its unique solvability

for any u0, uN ∈ E and f τ ∈ Fτ(E) it follows that its solution uτ defines an additive and

homogeneous operator uτ( f τ, u0, uN) is continuous.

The boundary value problem (4.2) is said to be stable in Fτ(E) if we have the inequality

‖ uτ( f τ, u0, uN) ‖Fτ(E) ≤ M[ ‖ f τ ‖Fτ(E) + ‖ u0‖E + ||uN‖E],

where M is independent not only of f τ, u0, uN , but also of τ.

The boundary value difference problem (4.2) is said to be well-posed (coercively stable) in

Fτ(E) if we have the coercive inequality

‖ {τ−2(uk+1 − 2uk + uk−1)}N−1
1 ‖Fτ(E) + ‖ {Auk}

N−1
1 ‖Fτ(E)

≤ M[‖ f τ ‖Fτ(E) + ‖ Au0 ‖E + ||AuN‖E],

where M is independent not only of f τ, u0, uN , but also of τ.

From the formula (4.3) it follows that the investigation of the stability and well-posedness of

difference scheme (4.2) relies in an essential manner on a number of properties of the powers

of the operator R = (I +τB)−1 in the general cases of operator A. We begin by deriving some

estimates for powers of the operator (I + τB)−1 a strongly positive operator A in a Banach

space E ( Sobolevskii, 2005).

Lemma 4.2.1. Let A be a strongly positive operator in a Banach space E. Then, −A is a

generator of the analitic semigroup exp{−tA} (t ≥ 0) with exponentially decreasing norm,

when t −→ +∞, i. e. we have the following estimates∥∥∥exp{−tA}
∥∥∥

E−→E
≤ M e−tδ (t > 0),∥∥∥tA exp{−tA}

∥∥∥
E−→E

≤ M e−tδ(t > 0)

for some 1 ≤ M < +∞, 0 < δ < +∞. Here M does not depend on τ.

Lemma 4.2.2. Let −A be a generator of the analytic semigroup exp{−tA} (t ≥ 0) with

exponentially decreasing norm, when t −→ +∞. Then the following estimates hold for any

k ≥ 1 :∥∥∥(λI + τB)−k
∥∥∥

E→E
≤ M[λ + τa(A)]−k,
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||kτB(I + τB)−k||E→E ≤ M,

where M does not depend on τ.

Let −A be a generator of the analytic semigroup exp{−tA} (t ≥ 0) with exponentially

decreasing norm, when t −→ +∞. Then the following estimates hold for any k ≥ 1 :∥∥∥(λI + τB)−k
∥∥∥

E→E
≤ M[λ + τa(A)]−k, (4.4)

||kτB(I + τB)−k||E→E ≤ M, (4.5)

where M does not depend on τ.

We have the following results.

Theorem 4.2.3. Let A be a strongly positive operator in a Banach space E. Then, difference

problem (4.2) is stable in Cτ(E). For the solutions of the difference problem (4.2) satisfy the

stability inequalities

‖ uτ ‖Cτ(E)≤ M[‖ f τ ‖Cτ(E) + ‖ u0‖E + ||uN ‖E],

where M does not depend on f τ, u0, uN and τ.

Theorem 4.2.4. Let A be a strongly positive operator in a Banach space E and u0, uN ∈

D(A). Then, the solutions of the difference problem (4.2) in Cτ(E) obey the almost coercivity

inequality

‖ {τ−2(uk+1 − 2uk + uk−1)}N−1
1 ‖Cτ(E)+ ‖ {Auk}

N−1
1 ‖Cτ(E)

≤ M[min
{

ln
1
τ
, |ln ‖A‖E→E |

}
‖ f τ ‖Cτ(E) + ‖ Au0‖E + ||AuN ‖E],

where M is independent not only of f τ, u0, uN but also of τ.

Theorem 4.2.5. Let A be a strongly positive operator in a Banach space E and

(I − R)2τ−2u0 − f1, (I − R)2τ−2uN − fN−1 ∈ E′α. Then, the solutions of the difference problem

(4.2) in Cα
τ (E) obey the coercivity inequality

‖ {τ−2(uk+1 − 2uk + uk−1)}N−1
1 ‖Cα

τ (E) + ‖ {Auk}
N−1
1 ‖Cα

τ (E)
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+ ‖ {τ−2(uk+1 − 2uk + uk−1)}N−1
1 ‖Cτ(E′α)

≤
M

α(1 − α)
[‖ f τ ‖Cα

τ (E) + ‖ (I − R)2τ−2u0 − f1 ‖E′α

+||(I − R)2τ−2uN − fN−1‖E′α],

where M1 is independent not only of f τ, u0, uN , α, but also of τ. Here, the Banach space

E′α = E′α(B, E) (0 < α < 1) consists of those v ∈ E for which the norm

‖ v ‖E′α= sup
z>0

zα ‖ B(zI + B)−1v ‖E + ‖ v ‖E

is finite.

Theorem 4.2.6. Let A be a strongly positive operator in a Banach space E and Au0, AuN ∈

E′α. Then the solutions of the difference problem (4.2) in Cτ(E′α) obey the coercivity inequality

‖ {τ−2(uk+1 − 2uk + uk−1)}N−1
1 ‖Cτ(E′α) + ‖ {Auk}

N−1
1 ‖Cτ(E′α)

≤ M
[

1
α(1 − α)

‖ f τ ‖Cτ(E′α) + ‖Au0‖E′α + ‖AuN‖E′α

]
,

where M is independent not only of f τ, u0, uN , α, but also of τ. Here, the Banach space

E′α = E′α(B, E) (0 < α < 1) consists of those v ∈ E for which the norm

‖ v ‖E′α= sup
z>0

zα ‖ B(zI + B)−1v ‖E + ‖ v ‖E

is finite.

4.3 WELL-POSEDNESS OF DIFFERENCE PROBLEM (4.1)

We consider the difference problem (4.1). Using formula ( 4.3) and nonlocal conditions

u0 = uN + ϕ,

N∑
i=1

uiτ = ψ,

we get

u0 = (2I + τB)−1(I + RN)
(
I − RN

)−1
Bψ − B−1(I + τB)

N−1∑
i=1

fiτ

 (4.6)

+ (I + τB)(2I + τB)−1
(
I − RN

)−1 (
I − RN+1

)
ϕ

+ B−1(I + τB)(2I + τB)−1
(
I − RN

)−1
N−1∑

i=1

RN−i fiτ +

N−1∑
i=1

Ri fiτ

 ,
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uN = (2I + τB)−1(I + RN)
(
I − RN

)−1
Bψ − B−1(I + τB)

N−1∑
i=1

fiτ

 (4.7)

− (2I + τB)−1
(
I − RN

)−1 (
I − RN−1

)
ϕ

+ B−1(I + τB)(2I + τB)−1
(
I − RN

)−1
N−1∑

i=1

RN−i fiτ +

N−1∑
i=1

Ri fiτ

 .
Actually, applying formula (4.3), we get

ψ = uNτ +

N−1∑
k=1

ukτ = (I − R2N)−1

N−1∑
k=1

(Rk − R2N−k)u0τ +

N∑
k=1

(RN−k − RN+k)uNτ

−

N−1∑
k=1

(RN−k − RN+k)(I + τB)(2I + τB)−1B−1
N−1∑
i=1

(RN−i − RN+i) fiτ
2


+(I + τB)(2I + τB)−1B−1

N−1∑
k=1

N−1∑
i=1

(R|k−i| − Rk+i) fiτ
2.

By computing and interchange of the order of summation, we obtain

ψ = (I − R2N)−1
{
R

(
I + ... + RN−2

)
− RN+1

(
RN−2 + ... + I

)}
u0τ

+ (I − R2N)−1
{(

RN−1 + ... + I
)
− RN+1

(
I + ... + RN−1

)}
uNτ

− (I − R2N)−1
{
R

(
RN−2 + ... + I

)
− RN+1

(
I + ... + RN−2

)}
× (I + τB)(2I + τB)−1B−1

N−1∑
i=1

(RN−i − RN+i) fiτ
2 + (I + τB)(2I + τB)−1B−1

×

N−1∑
i=1

{(
Ri−1 + ... + I

)
+

(
R + ... + RN−i−1

)
−

(
R1+i + ... + RN+i−1

)}
fiτ

2.

Therefore,

ψ = (I − R2N)−1R
(
I − RN

)
(I − R)−1

(
I − RN−1

)
u0τ

+ (I − R2N)−1
(
I − RN+1

)
(I − R)−1

(
I − RN

)
uNτ

− (I − R2N)−1R
(
I − RN

)
(I − R)−1

(
I − RN−1

)
(I + τB)(2I + τB)−1B−1

×

N−1∑
i=1

(RN−i − RN+i) fiτ
2 + (I + τB)(2I + τB)−1B−1 (I − R)−1

×

N−1∑
i=1

{(
I − Ri

)
+ R

(
I − RN−i−1

)
− R1+i

(
I − RN−1

)}
fiτ

2.
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From that it follows that

ψ = (I + RN)−1R (I − R)−1
(
I − RN−1

)
u0τ + (I + RN)−1

(
I − RN+1

)
(I − R)−1 uNτ

− (I + RN)−1 (I − R)−1
(
I − RN−1

)
(2I + τB)−1B−1

N−1∑
i=1

(RN−i − RN+i) fiτ
2

+ (I + τB)(2I + τB)−1B−1 (I − R)−1
N−1∑
i=1

(
I − Ri + R − RN−i − Ri+1 + RN+i

)
fiτ

2.

Thus

ψ = (I + RN)−1R (I − R)−1
(
I − RN−1

)
u0τ + (I + RN)−1

(
I − RN+1

)
(I − R)−1 uNτ

− B−1 (I − R)−1 (I + RN)−1

N−1∑
i=1

RN−i fiτ
2 +

N−1∑
i=1

Ri fiτ
2


+ B−1(I + τB)(2I + τB)−1 (I − R)−1 (I + R)

N−1∑
i=1

fiτ
2.

Since uN = u0 − ϕ, we have that

ψ = (I − R)−1 (I + RN)−1 (I + R)
(
I − RN

)
u0τ − (I − R)−1 (I + RN)−1

(
I − RN+1

)
ϕτ

− B−1 (I − R)−1 (I + RN)−1

N−1∑
i=1

RN−i fiτ
2 +

N−1∑
i=1

Ri fiτ
2

 + B−1 (I − R)−1
N−1∑
i=1

fiτ
2.

From that they follow formulas (4.6), (4.7).

Theorem 4.3.1. Let A be a strongly positive operator in a Banach space E and

ψ = A−1
N−1∑
i=1

fiτ. Then, difference problem (4.1) is stable in Cτ(E). For the solutions of the

difference problem (4.1) satisfy the stability inequality

‖ uτ ‖Cτ(E)≤ M
[
‖ f τ ‖Cτ(E) + ‖ ϕ ‖E

]
,

where M1 does not depend on f τ, ϕ and τ.

Proof. By Theorem 4.2.3, we have the following estimate

‖ uτ ‖Cτ(E)≤ M[‖ f τ ‖Cτ(E) + ‖ u0‖E + ||uN ‖E]
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for solution of problem (4.2). Therefore, to prove the theorem it suffices to establish the

estimate for ||u0‖E and ||uN‖E. Applying condition ψ = A−1
N−1∑
i=1

fiτ, formula (4.6), we get

u0 = (I + τB)(2I + τB)−1
(
I − RN+1

) (
I − RN

)−1
ϕ (4.8)

+ B−1(I + τB)(2I + τB)−1
(
I − RN

)−1
N−1∑

i=1

RN−i fiτ +

N−1∑
i=1

Ri fiτ

 .
Using formula (4.8) and the triangle inequality, we get

‖u0‖E ≤

∥∥∥∥(I + τB)(2I + τB)−1
(
I − RN+1

) (
I − RN

)−1∥∥∥∥
E→E
‖ϕ‖E

+
∥∥∥∥B−1(I + τB)(2I + τB)−1

(
I − RN

)−1∥∥∥∥
E→E

×

N−1∑
i=1

∥∥∥RN−i
∥∥∥

E→E
‖ fi‖E τ +

N−1∑
i=1

∥∥∥Ri
∥∥∥

E→E
‖ fi‖E τ.

Using estimate (4.4), (4.5), we get

‖u0‖E ≤ M1 ‖ϕ‖E + M2 max
1≤i≤N−1

‖ fi‖E

N−1∑
i=1

(
1

1 + τa (A)

)i

τ

≤ M3

(
‖ f τ ‖Cτ(E) + ‖ϕ‖E

)
.

From that and formula u0 = uN + ϕ it follows

||uN‖E ≤ M3‖ f τ ‖Cτ(E) + (M3 + 1) ‖ ϕ ‖E.

Therefore, Theorem 4.3.1 is proved. �

Note that for the solution of difference problem (4.1) the coercivity inequality

‖ {τ−2(uk+1 − 2uk + uk−1)}N−1
1 ‖Cτ(E) + ‖ {Auk}

N−1
1 ‖Cτ(E)

≤ MC[‖ f ‖Cτ(E) + ||Aϕ||E + ||Aψ||E]

fails. Nevertheless, we have the following results.

Theorem 4.3.2. Let A be a strongly positive operator in a Banach space E and

ψ = A−1
N−1∑
i=1

fiτ. Then, the solutions of the difference problem (4.1) in Cτ(E) obey the almost

coercivity inequality

‖ {τ−2(uk+1 − 2uk + uk−1)}N−1
1 ‖Cτ(E)+ ‖ {Auk}

N−1
1 ‖Cτ(E)
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≤ M
[
min

{
ln

1
τ
, |ln ‖A‖E→E |

}
‖ f τ ‖Cτ(E) + ‖ Aϕ ‖E

]
,

where M4 is independent not only of f τ, ϕ but also of τ.

Proof. By Theorem 4.2.4, we have the following estimate

‖ Auτ ‖Cτ(E)≤ M[min
{

ln
1
τ
, |ln ‖A‖E→E |

}
‖ f τ ‖Cτ(E) + ‖ Au0‖E + ||AuN‖E]

for solution of problem (4.2). Therefore, to prove the theorem it suffices to establish the

estimate for ||Au0‖E and ||A uN‖E. Using formula (4.8), and formula A = B2R, we get

Au0 = (I + τB)(2I + τB)−1
(
I − RN+1

) (
I − RN

)−1
Aϕ (4.9)

+ (2I + τB)−1
(
I − RN

)−1
N−1∑

i=1

BRN−i fiτ +

N−1∑
i=1

BRi fiτ

 .
Applying the triangle inequality, we get

||Au0‖E ≤ ||(I + τB)(2I + τB)−1
(
I − RN+1

) (
I − RN

)−1
‖E→E ||Aϕ‖E

+ ||(2I + τB)−1
(
I − RN

)−1
‖E→E

N−1∑
i=1

∥∥∥BRN−i
∥∥∥

E→E
‖ fi‖E τ +

N−1∑
i=1

∥∥∥BRi
∥∥∥

E→E
‖ fi‖E τ

 .
Using estimate (4.4), (4.5), we get

||Au0‖E ≤ M5||Aϕ‖E + M6 max
1≤i≤N−1

‖ fi‖E ln
1
τ
,

||Au0‖E ≤ M5||Aϕ‖E + M6 max
1≤i≤N−1

‖ fi‖E [1 + |ln ‖B‖E→E |] .

Hence

‖ Au0‖E ≤ M7

[
‖ Aϕ ‖E + min

{
ln

1
τ
, 1 + |ln ‖B‖E→E |

}
‖ f τ ‖Cτ(E)

]
.

From that and formula uN = u0 − ϕ it follows

||AuN‖E ≤ (M7 + 1) ‖ Aϕ ‖E + M7 min
{

ln
1
τ
, 1 + |ln ‖B‖E→E |

}
‖ f τ ‖Cτ(E).

Therefore, Theorem 4.3.2 is proved. �

Note that for the solution of difference problem (4.1) the coercivity inequality

‖ {τ−2(uk+1 − 2uk + uk−1)}N−1
1 ‖Cα

τ (E) + ‖ {Auk}
N−1
1 ‖Cα

τ (E)

≤ MC[‖ f ‖Cα(E) + ||Aϕ||E + ||Aψ||E]

fails. Nevertheless, we have the following result.

63



Theorem 4.3.3. Let A be a strongly positive operator in a Banach space E and

ψ = A−1
N−1∑
i=1

fiτ. Then the solutions of the difference problem (4.1) in Cα
τ (E) obey the

coercivity inequality

‖ {τ−2(uk+1 − 2uk + uk−1)}N−1
1 ‖Cα

τ (E) + ‖ {Auk}
N−1
1 ‖Cα

τ (E)

+ ‖ {τ−2(uk+1 − 2uk + uk−1)}N−1
1 ‖Cτ(E′α) ≤

M8

α(1 − α)
‖ f τ ‖Cα

τ (E)

+M8

[
||Aϕ + R fN−1 − (I + 3τB + (τB)2)R f1||E′α + ||Aϕ − R f1 + (I + 3τB + (τB)2)R fN−1||E′α

]
,

where M8 is independent not only of f τ, ϕ, α, but also of τ.

Proof. By Theorem 4.2.5 we have the following estimate

‖ {Auk}
N−1
1 ‖Cα

τ (E)

≤
M

α(1 − α)
[‖ f τ ‖Cα

τ (E) + ‖ (I − R)2τ−2u0 − f1 ‖E′α + ||(I − R)2τ−2uN − fN−1‖E′α],

for solution of problem (4.2). Therefore, to prove the theorem it suffices to establish the

estimates for ‖ (I − R)2τ−2u0 − f1 ‖E′α and ||(I − R)2τ−2uN − fN−1‖E′α . Applying formula (4.8)

and (I − R)2τ−2 =AR , we get

(I − R)2 τ−2u0 − f1 = (2I + τB)−1
(
I − RN

)−1 (
I − RN+1

)
Aϕ

+(2I + τB)−1
(
I − RN

)−1
R

N−1∑
i=1

BRN−i fiτ +

N−1∑
i=1

BRi fiτ

 − f1

asd

(I − R)2 τ−2u0− f1 = (2I+τB)−1
(
I − RN

)−1 (
I − RN+1

) [
Aϕ + R fN−1 −

(
I + 3τB + (τB)2

)
R f1

]
+(2I + τB)−1

(
I − RN

)−1
R2

N−1∑
i=1

BRN−i−1 ( fi − fN−1) τ +

N−1∑
i=1

BRi−1 ( fi − f1) τ


+(2I + τB)−1

(
I − RN

)−1
RN−1 (I − R)

(
I − R2

)
f1

−(2I + τB)−1
(
I − RN

)−1
RN

(
I − R2

)
fN−1 =

5∑
m=1

Hm,
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where

H1 = (2I + τB)−1
(
I − RN

)−1 (
I − RN+1

) {
Aϕ + R fN−1 − (I + 3τB + (τB)2)R f1

}
,

H2 = (2I + τB)−1
(
I − RN

)−1
N−1∑
i=1

BRN−i+1 ( fi − fN−1) τ,

H3 = (2I + τB)−1
(
I − RN

)−1
N−1∑
i=1

BRi+1 ( fi − f1) τ,

H4 = (2I + τB)−1
(
I − RN

)−1
RN−1 (I − R)

(
I − R2

)
f1,

H5 = −(2I + τB)−1
(
I − RN

)−1
RN

(
I − R2

)
fN−1.

Now, let us estimate Hm for any m = 1, 2, 3, 4, 5 in E′α, separately. We start with H1. Using

estimate (4.5) and the definition of the spaces E′α,we get

||H1||E′α ≤ ||(2I + τB)−1
(
I − RN

)−1 (
I − RN+1

)
||E→E

×||Aϕ + R fN−1 − (I + 3τB + (τB)2)R f1||E′α ≤ M||Aϕ + R fN−1 − (I + 3τB + (τB)2)R f1||E′α .

Thus, we have proved that

||H1||E′α ≤ M||Aϕ + R fN−1 − (I + 3τB + (τB)2)R f1||E′α .

Using estimates (4.4) , (4.5) ,

||B2(λ + B)−1RN+1−i(τB)||E→E ≤ M min
{

1
tN−i

,
1

λt2
N−i

}
,

and the definition of fractional spaces E′α (B, E) and normed space Cα
τ (E), we get

‖ λαB(λ + B)−1H2 ‖E

≤ λα
∥∥∥∥(2I + τB)−1

(
I − RN

)−1∥∥∥∥
E→E

∥∥∥∥∥∥∥
N−1∑
i=1

B2(λ + B)−1RN−i+1 ( fi − fN−1) τ

∥∥∥∥∥∥∥
≤ M1λ

α
N−1∑
i=1

(tN − ti)ατmin
{

1
tN−i

,
1

λt2
N−i

}
‖ f τ ‖Cα

τ (E)

≤ M2λ
α

N−1∑
i=1

τ

ti
1−α(1 + λti)

 ‖ f τ ‖Cα
τ (E)
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for all λ, λ > 0. The sum enclosed in the right-hand side square brackets is the lower Darboux

integral sum for the integral

tN∫
0

ds
s1−α(1 + sλ)

.

Since

λα
tN∫

0

ds
s1−α(1 + sλ)

≤

∞∫
0

dp
p1−α(1 + p)

,

it follows that

‖ λαB(λ + B)−1H2 ‖E≤
M3

α(1 − α)
‖ f τ ‖Cα

τ (E)

for all λ, λ > 0. From that it follows

||H2||E′α ≤
M3

α(1 − α)
‖ f τ ‖Cα

τ (E).

In a similar manner we can show that

||H3||E′α ≤
M3

α(1 − α)
‖ f τ ‖Cα

τ (E).

Now, we will estimate ||H2||E′α .Using estimates (4.4) , (4.5) ,we get

‖ λαB(λ + B)−1H4 ‖E

≤

∥∥∥∥λαB(λ + B)−1(2I + τB)−1
(
I − RN

)−1
RN−1 (I − R)

(
I − R2

)
f1

∥∥∥∥
E

≤ λα
∥∥∥∥(λ + B)−1(2I + τB)−1 (I + τB)

(
I − RN

)−1
(I − R)

(
I − R2

)
f1

∥∥∥∥
E→E

∥∥∥BRN f1

∥∥∥
E

for all λ, λ > 0. From that it follows

||H4||E′α ≤ M2 ‖ f1‖E .

In a similar manner we can show that

||H5||E′α ≤ M3‖ fN−1 ‖E.
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Finally, applying the triangle estimate and estimates for Hm for any m = 1, 2, 3, 4, 5 in E′α,

we get

‖ (I − R)2τ−2u0 − f1 ‖E′α

≤
M4

α(1 − α)
‖ f τ ‖Cα

τ (E) + M||Aϕ + R fN−1 − (I + 3τB + (τB)2)R f1||E′α .

In a similar manner we can show that

∥∥∥(I − R)2 τ−2uN − fN−1

∥∥∥
E′α

≤
M4

α(1 − α)
‖ f τ ‖Cα

τ (E) + M||Aϕ − R f1 + (I + 3τB + (τB)2)R fN−1||E′α .

Therefore, Theorem 4.3.3 is proved. �

Theorem 4.3.4. Let A be a strongly positive operator in a Banach space E and

ψ = A−1
N−1∑
i=1

fiτ. Then the solutions of the difference problem (4.1) in Cτ(E′α) obey the

coercivity inequality

‖ {τ−2(uk+1 − 2uk + uk−1)}N−1
1 ‖Cτ(E′α) + ‖ {Auk}

N−1
1 ‖Cτ(E′α)

≤ M
[

1
α(1 − α)

‖ f τ ‖Cτ(E′α) + ‖Aϕ‖E′α

]
,

where M5 is independent not only of f τ, ϕ, α, but also of τ.

Proof. By Theorem 4.2.6 we have the following estimate

‖ {Auk}
N−1
1 ‖Cτ(E′α) ≤ M

[
1

α(1 − α)
‖ f τ ‖Cτ(E′α) + ‖Au0‖E′α + ‖AuN‖E′α

]
,

for solution of problem (4.2). Therefore, to prove the theorem it suffices to establish the

estimate ‖Au0‖E′α , ‖AuN‖E′α . Applying formula (4.9), the triangle inequality and estimates

(4.4), (4.5), we get

Au0 = (I + τB)(2I + τB)−1
(
I − RN

)−1 (
I − RN+1

)
Aϕ

+ (2I + τB)−1
(
I − RN

)−1
N−1∑

i=1

(I − R) RN−i−1 fi +

N−1∑
i=1

(I − R) Ri−1 fi

 .
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Applying the triangle inequality, we get

∥∥∥λαB(λI + B)−1Au0

∥∥∥
E
≤

∥∥∥∥(I + τB)(2I + τB)−1
(
I − RN

)−1 (
I − RN+1

)∥∥∥∥
E→E

∥∥∥λαB(λI + B)−1Aϕ
∥∥∥

E

+
∥∥∥∥(2I + τB)−1

(
I − RN

)−1∥∥∥∥
E→E

×

N−1∑
i=1

∥∥∥λαB(λI + B)−1 (I − R) RN−i−1 fi

∥∥∥
E

+

N−1∑
i=1

∥∥∥λαB(λI + B)−1 (I − R) Ri−1 fi

∥∥∥
E

 .
To estimate the last two sums we use the following Cauchy-Riesz representation formula

for these two operators λαB(λI + B)−1 (I − R (τB)) RN−i−1 (τB) fi,

λαB(λI + B)−1 (I − R (τB)) Ri−1 (τB) fi.

B (λI + B)−1 (I − R (τB)) RN−i−1 (τB) fi

=

∫
S 1∪S 2

(λ + s)−1 (I − R (τs)) RN−i−1 (τs) B (sI − B)−1 fids

=

∫
S 1∪S 2

(λτ + z)−1 (I − R (z)) RN−i−1 (z) B
( z
τ

I − B
)−1

fidz

where S 1 =
{
ρeiψ, 0 ≤ ρ < ∞

}
and S 2 =

{
ρe−iψ, 0 ≤ ρ < ∞

}
, 0 ≤ ψ < π

2l . Since z = ρe±iψ,

with |ψ| < π
2l , from the strongly positivity of A it follows that∣∣∣∣∣ zτ

∣∣∣∣∣α ∥∥∥∥∥B
( z
τ

I − B
)−1

fi

∥∥∥∥∥
E
≤

∣∣∣∣∣ρτ
∣∣∣∣∣α ∥∥∥∥∥B

(
ρ

τ
I + B

)−1
fi

∥∥∥∥∥
E
.

From this estimate and the estimates

1
|λτ + z|

≤
M9

λτ + ρ
,

∣∣∣(I − R (z)) RN−i−1 (z)
∣∣∣ = ρ

(
1 + 2ρ cosψ + ρ2

) −N+i
2

it follows that

N−1∑
i=1

∥∥∥λαB(λI + B)−1 (I − R) RN−i−1 fi

∥∥∥
E

≤ M10

∫ ∞

0

N−1∑
i=1

ρ1−α(
1 + 2ρ cosψ + ρ2) N−i

2

(λτ)α

λτ + ρ

(
ρ

τ

)α ∥∥∥∥∥B
(
ρ

τ
I + B

)−1
fi

∥∥∥∥∥
E

dρ

≤ M10

∫ ∞

0

(
λτ
ρ

)α
λτ + ρ

dρ max
1≤i≤N−1

‖ fi‖E′α = M11
1

α(1 − α)
‖ f τ ‖Cτ(E′α).
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In a similar manner,
N−1∑
i=1

∥∥∥λαB(λI + B)−1 (I − R) Ri−1 fi

∥∥∥
E
≤ M12

1
α(1 − α)

‖ f τ ‖Cτ(E′α).

Hence∥∥∥λαB(λI + B)−1Au0

∥∥∥
E
≤ M13

{
‖Aϕ‖E′α +

1
α(1 − α)

‖ f τ ‖Cτ(E′α)

}
.

Thus

‖ Au0 ‖E′α ≤ M13

{
‖Aϕ‖E′α +

1
α(1 − α)

‖ f τ ‖Cτ(E′α)

}
.

From that and formula u0 = uN + ϕ it follows

‖ AuN ‖E′α ≤ M13
1

α(1 − α)
‖ f τ ‖Cτ(E′α) + (M13 + 1) ‖Aϕ‖E′α .

Therefore, Theorem 4.3.4 is proved. �

4.4 APPLICATIONS

Finally, we consider the applications of Theorems 4.3.1-4.3.4 to the elliptic equations. First,

we consider the nonlocal boundary value problem (3.23) for two dimensional elliptic

equations.

The discretization of problem (3.23) is carried out in two steps. In the first step, let us define

the grid sets

[0, 1]h = {xn = nh, 0 ≤ n ≤ M,Mh = 1} .

We introduce the Banach spaces Ch = C [0, 1]h and Cα
h = Cα [0, 1]h , 0 ≤ α ≤ 1 of the grid

functions ϕh(x) = {ϕn}
M
n=0 defined on [0, 1]h equipped with the norms∥∥∥ϕh

∥∥∥
Ch

= max
x∈[0,1]h

∣∣∣ϕh(x)
∣∣∣ ,

∥∥∥ϕh
∥∥∥

Cα
h

=
∥∥∥ϕh

∥∥∥
Ch

+ sup
0≤n<n+r≤M

|ϕn+r − ϕn|

rh
,

respectively. For the differential operator A defined by (3.23), we assign the difference

operator Ax
h defined by the formula

Ax
hϕ

h (x) =

{
−a (xn)

ϕn+1 − 2ϕn + ϕn−1

h2 + δϕn

}M−1

n=1
,
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acting in the space of grid functions ϕh (x) = {ϕn}
M
n=0 defined on [0, 1]h satisfying the

conditions ϕ0 = ϕM, ϕ1 − ϕ0 = ϕM − ϕM−1.

With the help of Ax
h, we arrive at the nonlocal boundary value problem

−
d2uh(y,x)

dy2 + Ax
huh(y, x) = f h(y, x),

x ∈ [0, 1]h , 0 < y < T,

uh(0, x) = uh(T, x) + ϕh(x),
T∫

0
uh(s, x)ds = 0, x ∈ [0, 1]h .

(4.10)

In the second step we replace problem (4.10) by the difference scheme

−
1
τ2 (uh

k+1(x) − 2uh
k(x) + uh

k−1(x)) + Ax
huh

k(x) = f h
k (x), f h

k (x) = f h(yk, x), yk = kτ,

1 ≤ k ≤ N − 1,Nτ = T, uh
0(x) = uh

N(x) + ϕh(x),
N∑

i=1

uh
i (x) = 0, x ∈ [0, 1]h . (4.11)

Theorem 4.4.1. Assume that
N∑

i=1
f h
i (x) = 0, x ∈ [0, 1]h . Let τ and h be sufficiently small

numbers. Then, the solutions of difference scheme (4.11) satisfy the following estimates

max
0≤k≤N

∥∥∥uh
k

∥∥∥
Ch
≤ M1

[
max

1≤k≤N−1

∥∥∥ f h
k

∥∥∥
Ch

+ ||ϕh||Ch

]
,

‖ {τ−2(uh
k+1 − 2uh

k + uh
k−1)}N−1

1 ‖Cτ(Ch) +||{Ax
huh

k}
N−1
1 ||

Cτ(Ch)

≤ M1

[
ln

1
τ + h

||{ f h
k }

N−1
1 ||

Cτ(Ch) + ||ϕh||C2
h

]
,

‖ {τ−2(uh
k+1 − 2uh

k + uh
k−1)}N−1

1 ‖Cα
τ (Ch) +||{D2

huh
k}

N−1
1 ||

Cατ (Ch)

≤ M2(α)||{ f h
k }

N−1
1 ||

Cατ (Ch) + M1||ϕ
h||C2+2α

h
, 0 < α <

1
2
,

‖ {τ−2(uh
k+1 − 2uh

k + uh
k−1)}N−1

1 ‖Cτ(C2α
h ) +||{Ax

huh
k}

N−1
1 ||

Cτ(C2α
h )

≤ M2(α)||{ f h
k }

N−1
1 ||

Cτ(C2α
h ) + M1||ϕ

h||C2+2α
h
, 0 < α <

1
2
.

Here M1,M2(α) do not depend on τ, h and f h
k , 1 ≤ k ≤ N − 1 and ϕh.Here, the difference

operator D2
h defined by the formula

D2
hϕ

h (x) =

{
−
ϕn+1 − 2ϕn + ϕn−1

h2 + δϕn

}M−1

n=1
,
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acting in the space of grid functions ϕh (x) = {ϕn}
M
n=0 defined on [0, 1]h satisfying the

conditions ϕ0 = ϕM, ϕ1 − ϕ0 = ϕM − ϕM−1.

Proof. It is known that Ax
h is a stronly positive operator in Ch . Therefore, we can replace

difference scheme (4.11) by difference problem (4.2). Then, the proof of Theorem 4.4.1

is based on the abstract Theorems 4.3.1- 4.3.4, the positivity of the operator Ax
h in Ch, the

structure of the fractional spaces E
′

α((Ax
h)

1
2 ,Ch) and the following estimate see (Ashyralyev

& Sobolevskii, 2004; Ashyralyev, 2015)

min
{

ln
1
τ
,
∣∣∣∣ln ∥∥∥Ax

h

∥∥∥
Ch→Ch

∣∣∣∣} ≤ M2 ln
1

τ + h
.

�

Second, we consider the boundary value problem (3.24) on the range {0 ≤ y ≤ T, x ∈ Rn}

for 2m−order multidimensional elliptic equations.

The discretization of problem (3.24) is carried out in two steps. Let us define the grid space

Rn
h (0 < h ≤ h0) as the set of all points of the Euclidean space Rn whose coordinates are given

by

xk = skh, sk = 0,±1,±2, · · ·, k = 1, · · ·, n.

We introduce the Banach spaces Ch = C
(
Rn

h

)
and Cα

h = Cα
(
Rn

h

)
, 0 ≤ α ≤ 1 of the grid

functions ϕh(x) defined on Rn
h equipped with the norms∥∥∥ϕh

∥∥∥
Ch

= max
x∈Rn

h

∣∣∣ϕh(x)
∣∣∣ ,

∥∥∥ϕh
∥∥∥

Cα
h

=
∥∥∥ϕh

∥∥∥
Ch

+ sup
x,y∈Rn

h,x,y

∣∣∣ϕh(x) − ϕh(y)
∣∣∣

|x − y|α
,

respectively. To the differential operator A let us give the difference operator Ax
h by the

formula

Ax
huh

x =
∑

2m≤|r|≤S

bx
r Dr

huh
x + δuh

x.

The coefficients are chosen in such a way that the operator Ax
h approximates in a specified

way the operator (Ashyralyev & Sobolevskii, 2004)∑
|r|=2m

ar(x)
∂|r|

∂xr1
1 ...∂xrn

n
+ δ.
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We shall assume that for |ξkh| ≤ π the symbol A(ξh, h) of the operator Ax
h − δ satisfies the

inequalities

(−1)mAx(ξh, h) ≥ M1|ξ|
2m, | arg Ax(ξh, h)| ≤ φ < φ0 ≤

π

2l
.

With the help of Ax
h we arrive at the boundary value problem

−
d2vh(y, x)

dy2 + Ax
hvh(y, x) = f h(y, x), 0 < y < T, (4.12)

vh(0, x) = vh(T, x) + ϕh(x),

T∫
0

vh(s, x)ds = 0, x ∈ Rn
h,

for an infinite system of ordinary differential equations. In the second step we replace

problem (4.12) by the difference scheme

−
1
τ2 (uh

k+1(x) − 2uh
k(x) + uh

k−1(x)) + Ax
huh

k(x) = f h
k (x), f h

k (x) = f h(yk, x), yk = kτ,

1 ≤ k ≤ N − 1,Nτ = T, uh
0(x) = uh

N(x) + ϕh(x),
N∑

i=1

uh
i (x) = 0, x ∈ Rn

h. (4.13)

Theorem 4.4.2. Assume that
N∑

i=1
f h
i (x) = 0, f h

1 (x) = f h
N−1(x) = 0, x ∈ Rn

h. Let τ and h

be sufficiently small numbers. Then, the solutions of difference scheme (4.13) satisfy the

following estimates

max
0≤k≤N

∥∥∥uh
k

∥∥∥
Ch
≤ M1

[
max

1≤k≤N−1

∥∥∥ f h
k

∥∥∥
Ch

+ ||ϕh||Ch

]
,

‖ {τ−2(uh
k+1 − 2uh

k + uh
k−1)}N−1

1 ‖Cτ(Ch) +||{Ax
huh

k}
N−1
1 ||

Cτ(Ch)

≤ M1

[
ln

1
τ + h

||{ f h
k }

N−1
1 ||

Cτ(Ch) + ln
1
h
||ϕh||C2m

h

]
,

‖ {τ−2(uh
k+1 − 2uh

k + uh
k−1)}N−1

1 ‖Cα
τ

(
Cβ

h

) +||{uh
k}

N−1
1 ||

Cατ
(
C2m+β

h

)

≤ M2(α)
[
||{ f h

k }
N−1
1 ||

Cατ (Ch) + ||ϕh||C2m+2mα
h

]
, 0 < α <

1
2m

, 0 < β < 1.

‖ {τ−2(uh
k+1 − 2uh

k + uh
k−1)}N−1

1 ‖Cτ(C2mα
h ) +||{Ax

huh
k}

N−1
1 ||

Cτ(C2mα
h )

≤ M2(α)
[
||{ f h

k }
N−1
1 ||

Cτ(C2mα
h ) + ||ϕh||C2m+2mα

h

]
, 0 < α <

1
2m

.

Here M1,M2(α) do not depend on τ, h and f h
k , 1 ≤ k ≤ N − 1 and ϕh.
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Proof. It is known that Ax
h is a stronly positive operator in Ch . Therefore, we can replace

difference scheme (4.13) by difference problem (4.2). Then, the proof of Theorem 4.4.2 is

based on the abstract Theorems 4.3.1- 4.3.4, the positivity of the operator Ax
h in Ch, and on

the almost coercivity inequality for an elliptic operator Ax
h in Chand the following estimate

min
{

ln
1
τ
,
∣∣∣∣ln ∥∥∥Ax

h

∥∥∥
Ch→Ch

∣∣∣∣} ≤ M2 ln
1

τ + h
,

and the structure of the fractional spaces E
′

α((Ax
h)

1
2 ,Ch) and on the coercivity inequality for

an elliptic operator Ax
h in Cβ

h, see (Ashyralyev & Sobolevskii, 2004; Triebel, 1978). �

Third, let Ω be the unit open cube in the n−dimensional Euclidean space Rn (0 < xk <

1, 1 ≤ k ≤ n) with boundary S , Ω = Ω∪S . In [0,T ]×Ω we consider the nonlocal boundary

value problem (3.25) for the multidimensional elliptic equation.

The discretization of problem (3.25) is also carried out in two steps. In the first step, let us

define the grid sets

Ωh =
{
x = x j = (h1 j1, ..., hm jm), j = ( j1, ..., jm),

0 ≤ jr ≤ Mr, hr Mr = 1, r = 1, ...,m, } ,

Ωh = Ωh ∩Ω, S h = Ωh ∩ S .

We introduce the Banach spaces L2h = L2(Ωh), Cβ
h = Cβ

01(Ωh) (β = (β1, . . . , βn), 0 < xk <

1, k = 1, . . . , n) and Ch = C(Ωh) of the grid functions ϕh(x) = {ϕ(h1 j1, ..., hm jm)} defined on

Ωh, equipped with the norms

∥∥∥ϕh
∥∥∥

L2h
=

∑
x∈Ωh

∣∣∣ϕh(x)
∣∣∣2 h1 · · · hm


1/2

,

and

‖ ϕh ‖Cβ
01(Ωh)=‖ ϕ

h ‖C(Ωh)

+ sup
0≤xk<xk+hk≤1,1≤k≤n

|ϕh(x1, . . . , xn) − ϕh(x1 + h1, . . . , xn + hn)|
n∏

k=1

h−βk
k xβk

k (1 − xk − hk)βk ,∥∥∥ϕh
∥∥∥

Ch
= sup

x∈Ωh

∣∣∣ϕh(x)
∣∣∣ ,
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respectively. To the differential operator A generated by problem (3.25), we assign the

difference operator Ax
h by the formula

Ax
huh(x) = −

m∑
r=1

(
ar(x)uh

xr

)
xr , jr

acting in the space of grid functions uh(x), satisfying the conditions uh(x) = 0 (∀ x ∈ S h).

It is known that Ax
h is a self-adjoint positive definite operator in L2(Ωh) and C(Ωh). With the

help of Ax
h, we arrive at the nonlocal boundary value problem

−
d2uh(y,x)

dy2 + Ax
huh(t, x) = f h(t, x),

x ∈ Ωh, , 0 < y < T,

uh(0, x) = uh(T, x),
T∫

0
uh(s, x)ds = 0, x ∈ Ωh,

uh (y, x) = 0, x ∈ S h.

(4.14)

In the second step, we replace problem (4.14) by second order of accuracy difference scheme

(4.1) 

−
uh

k+1(x)−2uh
k (x)+uh

k−1(x)
τ2 + Ax

huh
k(x) = f h

k (x), f h
k (x) = f h(yk, x),

yk = kτ, 1 ≤ k ≤ N − 1,Nτ = T,

uh
0(x) = uh

N(x),
N∑

i=1
uh

i (x)τ = 0, x ∈ Ωh.

(4.15)

Theorem 4.4.3. Assume that
N∑

i=1
f h
i (x) = 0, f h

1 (x) = f h
N−1(x) = 0, x ∈ Ωh.Let τ and |h|

be sufficiently small numbers. Then, the solutions of difference scheme (4.15) satisfy the

following estimates

‖ {τ−2(uh
k+1 − 2uh

k + uh
k−1)}N−1

1 ‖Cα
τ (L2h) +||{uh

k}
N−1
1 ||

Cατ (W2h)

≤ M2(α)||{ f h
k }

N−1
1 ||

Cατ (L2h) ,
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‖ {τ−2(uh
k+1 − 2uh

k + uh
k−1)}N−1

1 ‖Cα
τ

(
Cβ

h

) +||{uh
k}

N−1
1 ||

Cατ
(
C2+β

h

)
≤ M3(α, β)||{ f h

k }
N−1
1 ||

Cατ
(
Cβh

) ,
0 < α < 1, β = {β1, · · ·, βn}, 0 ≤ βk < 1, 1 ≤ k ≤ n.

Here M2(α),M3(α, β) do not depend on τ, h and f h
k , 1 ≤ k ≤ N − 1 and ϕh.

Proof. It is known that Ax
h is a stronly positive operator in Ch and L2h. Therefore, we can

replace difference scheme (4.13) by difference problem (4.2). Then, the proof of Theorem

4.4.3 is based on the abstract Theorem 4.4.1, the positivity of the operator Ax
h in Ch and

Lh and on the coercivity inequality for an elliptic operator Ax
h in L2h and Cβ

h (Ashyralyev &

Sobolevskii, 2004) �

4.5 THE ILLUSTRATIVE NUMERICAL RESULT

When the analytical methods do not work properly, the numerical methods for obtaining

approximate solutions of partial differential equations play an important role in applied

mathematics. Now, we give results for two and three dimensional NBVP. These numerical

results are carried out by using MATLAB program.

4.5.1 Two Dimensional Case

For the approximate solutions of nonlocal boundary problem for two dimensional elliptic

equation, the second order of accuracy difference schemes will be used, a procedure of

modified Gauss elimination method to solve the problem will be applied, and finally, the

error analysis of second order of accuracy difference schemes will be given in present

section.

First, we consider the nonlocal boundary problem for two dimensional elliptic equation with

Dirichlet boundary condition

−∂
2u
∂t2 −

∂2u
∂x2 + u = 3 cos t sin x, 0 < t < 2π, 0 < x < 2π,

u (0, x) = u (2π, x) ,
∫ 2π

0
u (s, x) ds = 0, 0 ≤ x ≤ 2π,

u (t, 0) = u (t, 2π) = 0, 0 ≤ t ≤ 2π.

(4.16)
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The exact solution of this problem is

u (t, x) = cos t sin x.

For the approximate solution of the nonlocal boundary problem (4.16), we consider the set

[0, 2π]τ × [0, 2π]h of a family of grid points depending on the small parameters τ and h

[0, 2π]τ×[0, 2π]h = {(tk, xn) : tk = kτ, 0 ≤ k ≤ N,Nτ = 2π, xn = nh, 0 ≤ n ≤ M,Mh = 2π} .

For the numerical solution, we consider the second order of approximation difference scheme



−
uk+1

n − 2uk
n + uk−1

n

τ2 −
uk

n+1 − 2uk
n + uk

n−1

h2 + uk
n = 3 cos tk sin xn,

1 ≤ k ≤ N − 1, 1 ≤ n ≤ M − 1,

u0
n = uN

n ,
∑N−1

i=0 ui
n = 0, 0 ≤ n ≤ M,

uk
0 = uk

M = 0, 0 ≤ k ≤ N.

(4.17)

It is the system of algebraic equations and it can be written in the matrix form
Aun+1 + Bun + Cun−1 = Dϕn, 1 ≤ n ≤ M − 1,

u0 = uM = 0.

(4.18)

Here,

A = C =



0 0 0 0 . 0 0 0 0

0 a 0 0 . 0 0 0 0

0 0 a 0 . 0 0 0 0

0 0 0 a . 0 0 0 0

. . . . . . . . .

0 0 0 0 . a 0 0 0

0 0 0 0 . 0 a 0 0

0 0 0 0 . 0 0 a 0

0 0 0 0 . 0 0 0 0


(N+1)×(N+1)

, B =



1 0 0 0 . 0 0 0 −1

c b c 0 . 0 0 0 0

0 c b c . 0 0 0 0

0 0 c b . 0 0 0 0

. . . . . . . . .

0 0 0 0 . b c 0 0

0 0 0 0 . c b c 0

0 0 0 0 . 0 c b c

0 1 1 1 . 1 1 1 1


(N+1)×(N+1)

,

76



where a = −1
h2 , b = 2

τ2 + 2
h2 + 1, c = −1

τ2 ,

ϕn =



ϕ0
n

ϕ1
n

.

ϕN−1
n

ϕN
n


(N+1)×1

=



0

3 cos t1 sin xn

.

3 cos tN−1 sin xn

0


(N+1)×1

,

D = IN+1 is the identity matrix and

us =



u0
s

u1
s

.

uN−1
s

uN
s


(N+1)×1

, s = n − 1, n, n + 1.

Therefore, for the solution of the matrix equation (4.18), we will use the modified Gauss

elimination method. We seek a solution of the matrix equation by the following form:

un = αn+1un+1 + βn+1, n = M − 1, ..., 1, 0

where uM = 0, α j ( j = 1, ...,M−1) are (N +1)×(N +1) square matrices, β j ( j = 1, ...,M−1)

are (N + 1) × 1 column matrices, α1, β1 are zero matrices and

αn+1 = − (B + Cαn)−1 A, βn+1 = (B + Cαn)−1 (Dϕn −Cβn) , n = 1, ...,M − 1.

Now, we give the error analysis between exact solutions u(tk, xn) and the approximate

solutions uk
n for the different values of N and M. The errors are computed by the formula

EN
M = max

0≤k≤N,0≤n≤M

∣∣∣u(tk, xn) − uk
n

∣∣∣
The results are given in the following table that is constructed for N = M = 20, 40 and 80.

Table 1: Error analysis for difference scheme (4.17)

N = M = 20, 20 N = M = 40, 40 N = M = 80, 80

Error 0.0055 0.0014 0.00034274
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As it is seen in Table 1 , we get some numerical results. If N and M are doubled, the value

of errors decrease by a factor of approximately1/4 for second order difference scheme.

Second, we consider the nonlocal boundary problem for the elliptic equation with Neumann

boundary condition

−∂
2u
∂t2 −

∂2u
∂x2 + u = 3 cos t cos x, 0 < t < 2π, 0 < x < 2π,

u (0, x) = u (2π, x) ,
∫ 2π

0
u (s, x) ds = 0, 0 ≤ x ≤ 2π,

ux (t, 0) = ux (t, 2π) = 0, 0 ≤ x ≤ 2π.

(4.19)

The exact solution of this problem is

u (t, x) = cos t cos x.

For the approximate solution of the nonlocal boundary problem (4.16), we consider the set

[0, 2π]τ × [0, 2π]h of a family of grid points depending on the small parameters τ and h

[0, 2π]τ×[0, 2π]h = {(tk, xn) : tk = kτ, 0 ≤ k ≤ N,Nτ = 2π, xn = nh, 0 ≤ n ≤ M,Mh = 2π} .

For the numerical solution, we consider the difference scheme of the second order of

accuracy in t and first order of accuracy in x.

−
uk+1

n − 2uk
n + uk−1

n

τ2 −
uk

n+1 − 2uk
n + uk

n−1

h2 + uk
n = 3 cos tk cos xn,

1 ≤ k ≤ N − 1, 1 ≤ n ≤ M − 1,

u0
n = uN

n ,
∑N−1

i=0 ui
n = 0, 0 ≤ n ≤ M,

uk
1 − uk

0 = uk
M − uk

M−1 = 0, 0 ≤ k ≤ N.

(4.20)

It is the system of algebraic equations and it can be written in the matrix form
Aun+1 + Bun + Cun−1 = Dϕn, 1 ≤ n ≤ M − 1,

u0 = u1, uM−1 = uM.

(4.21)
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Here,

A = C =



0 0 0 0 . 0 0 0 0

0 a 0 0 . 0 0 0 0

0 0 a 0 . 0 0 0 0

0 0 0 a . 0 0 0 0

. . . . . . . . .

0 0 0 0 . a 0 0 0

0 0 0 0 . 0 a 0 0

0 0 0 0 . 0 0 a 0

0 0 0 0 . 0 0 0 0


(N+1)×(N+1)

, B =



1 0 0 0 . 0 0 0 −1

c b c 0 . 0 0 0 0

0 c b c . 0 0 0 0

0 0 c b . 0 0 0 0

. . . . . . . . .

0 0 0 0 . b c 0 0

0 0 0 0 . c b c 0

0 0 0 0 . 0 c b c

0 1 1 1 . 1 1 1 1


(N+1)×(N+1)

where a = − 1
h2 , b = 2

τ2 + 2
h2 + 1, c = − 1

τ2 ,

ϕn =



ϕ0
n

ϕ1
n

.

ϕN−1
n

ϕN
n


(N+1)×1

=



0

3 cos t1 cos xn

.

3 cos tN−1 cos xn

0


(N+1)×1

,

and D = IN+1 is the identity matrix,

us =



u0
s

u1
s

.

uN−1
s

uN
s


(N+1)×1

, s = n − 1, n, n + 1.

Therefore, for the solution of the matrix equation (4.18), we will use the modified Gauss

elimination method. We seek a solution of the matrix equation by the following form:

un = αn+1un+1 + βn+1, n = M − 1, ..., 1, 0, (4.22)

where uM = (I − αM)−1 βM, α j ( j = 1, ...,M − 1) are (N + 1) × (N + 1) square matrices, β j

( j = 1, ...,M − 1) are (N + 1)× 1 column matrices, α1 is the identity and β1 are zero matrices
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and

αn+1 = − (B + Cαn)−1 A,

βn+1 = (B + Cαn)−1 (Dϕn −Cβn) , n = 1, ...,M − 1.

Now, we give the error analysis between exact solutions u(tk, xn) and the approximate

solutions uk
n for the different values of N and M. The errors are computed by the formula

EN
M = max

0≤k≤N,0≤n≤M

∣∣∣u(tk, xn) − uk
n

∣∣∣ (4.23)

The numerical results for the difference scheme (4.20) are given in the following tables.

Table 2: Error analysis for difference scheme (4.19)

N = M = 20, 20 N = M = 40, 40 N = M = 80, 80

Error 0.1329 0.0607 0.0290

Table 3: Error analysis for difference scheme (4.19)

N,M = 20, 400 N,M = 40, 1600 N,M = 80, 6400

Error 0.0029 7.1859e − 04 1.7955e − 04

As it is seen in Table 2, if N and M are doubled, the value of errors decrease by a factor of

approximately 1/2. Moreover, as it is seen in Table 3, if N is doubled and M ≥ N2, the value

of errors decrease by a factor of approximately 1/4 difference scheme as the second order of

accuracy.

4.5.2 Three Dimensional Case

For the approximate solutions of nonlocal boundary problem for three dimensional elliptic

equation, the second order of accuracy difference schemes will be used, a procedure of

modified Gauss elimination method to solve the problem will be applied, and the error

analysis of second order of accuracy difference schemes will be given in present section.
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For numerical analysis, we consider the nonlocal boundary problem for three dimensional

elliptic equation

−∂
2u
∂t2 −

∂2u
∂x2 −

∂2u
∂y2 + u = 4 cos t sin x cos y, 0 < t < 2π, 0 < x, y < 2π,

u (0, x, y) = u (2π, x, y) ,
∫ 2π

0
u (s, x, y) ds = 0, 0 ≤ x ≤ 2π, 0 ≤ y ≤ 2π,

u (t, 0, y) = u (t, 2π, y) = 0, 0 ≤ t ≤ 2π, 0 ≤ y ≤ 2π,

u (t, x, 0) = u (t, x, 2π) ,
∫ 2π

0
u (t, x, s) ds = 0,≤ t ≤ 2π, 0 ≤ x ≤ 2π.

The exact solution of this problem is

u (t, x) = cos t sin x cos y.

For the approximate solution of the nonlocal boundary problem (4.16), we consider the set

[0, 2π]τ × [0, 2π]h × [0, 2π]h of a family of grid points depending on the small parameters τ

and h

[0, 2π]τ × [0, 2π]h × [0, 2π]h = {(tk, xn, ym) : tk = kτ, 0 ≤ k ≤ N,Nτ = 2π,

xn = nh, 0 ≤ n ≤ M,Mh = 2π, ym = mh, 0 ≤ m ≤ M,Mh = 2π} .

For the numerical solution, we consider the second order of approximation difference

scheme.

−
uk+1

n,m − 2uk
n,m + uk−1

n,m

τ2 −
uk

n+1,m − 2uk
n,m + uk

n−1,m

h2 −
uk

n,m+1 − 2uk
n,m + uk

n,m−1

h2 + uk
n,m

= 4 cos tk sin xn cos ym, 1 ≤ k ≤ N − 1, 1 ≤ n,m ≤ M − 1,

u0
n,m = uN

n,m,
∑N−1

i=0 ui
n,m = 0, 0 ≤ n,m ≤ M,

uk
0,m = uk

M,m = 0, 0 ≤ k ≤ N, 0 ≤ m ≤ M,

uk
n,0 = uk

n,M,
∑M−1

i=0 uk
n,i = 0, 0 ≤ k ≤ N, 0 ≤ n ≤ M.

(4.24)
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It is the system of algebraic equations and it can be written in the matrix form
AUn+1 + BUn + CUn−1 = DΦn, 1 ≤ n ≤ M − 1,

U0 = UM = 0.

(4.25)

Here,

A = C =



O O O O . O O O O

O A1 O O . O O O O

O O A1 O . O O O O

O O O A1 . O O O O

. . . . . . . . .

O O O O . A1 O O O

O O O O . O A1 O O

O O O O . O O A1 O

O O O O . O O O O


(M+1)×(M+1)

,

B =



I O O O . O O O −I

C1 B1 C1 O . O O O O

O C1 B1 C1 . O O O O

O O C1 B1 . O O O O

. . . . . . . . .

O O O O . B1 C1 O O

O O O O . C1 B1 C1 O

O O O O . O C1 B1 C1

O I I I . I I I I


(M+1)×(M+1)

,
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where O = O(N+1)×(N+1), I = I(N+1)×(N+1),

A1 = C1 =



0 0 0 0 . 0 0 0 0

0 a 0 0 . 0 0 0 0

0 0 a 0 . 0 0 0 0

0 0 0 a . 0 0 0 0

. . . . . . . . .

0 0 0 0 . a 0 0 0

0 0 0 0 . 0 a 0 0

0 0 0 0 . 0 0 a 0

0 0 0 0 . 0 0 0 0


(N+1)×(N+1)

,

B1 =



1 0 0 0 . 0 0 0 −1

c b c 0 . 0 0 0 0

0 c b c . 0 0 0 0

0 0 c b . 0 0 0 0

. . . . . . . . .

0 0 0 0 . b c 0 0

0 0 0 0 . c b c 0

0 0 0 0 . 0 c b c

0 1 1 1 . 1 1 1 1


(N+1)×(N+1)

,

where a = −1
h2 , b = 2

τ2 + 2
h2 + 1, c = −1

τ2 ,

Φn,r =



ϕ0
n,r

ϕ1
n,r

.

ϕN−1
n,r

ϕN
n,r


(N+1)×1

=



0

4 cos t1 sin xn cos yr

.

4 cos tN−1 sin xn cos yr

0


(N+1)×1

1 ≤ r ≤ M − 1,
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Φn =



Φn,0

Φn,1

.

Φn,M−1

Φn,M


(M+1)×1

1 ≤ n ≤ M − 1,Φn,0 = Φn,M = O(N+1)×1,

Us,r =



u0
s,r

u1
s,r

.

uN−1
s,r

uN
s,r


(N+1)×1

0 ≤ r ≤ M, s = n − 1, n, n + 1,

D = I(N+1)(M+1) is the identity matrix and

Us =



Us,0

Us,1

.

Us,M−1

Us,M


(M+1)×1

, s = n − 1, n, n + 1.

Therefore, for the solution of the matrix equation (4.25), we will use the modified Gauss

elimination method. We seek a solution of the matrix equation by the following form:

Un = αn+1Un+1 + βn+1, n = M − 1, ..., 1, 0,

where UM = 0, α j ( j = 1, ...,M − 1) are (N + 1)(M + 1) × (N + 1)(M + 1) square matrices,

β j ( j = 1, ...,M − 1) are (N + 1)(M + 1) × 1 column matrices, α1, β1 are zero matrices and

αn+1 = − (B + Cαn)−1 A,

βn+1 = (B + Cαn)−1 (Dϕn −Cβn) , n = 1, ...,M − 1.

Now, we give the error analysis between exact solutions u(tk, xn, ym) and the approximate

solutions uk
n,m for the different values of N and M. The errors are computed by the formula

EN
M = max

0≤k≤N,0≤n,m≤M

∣∣∣u(tk, xn, , ym) − uk
n,m

∣∣∣
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The results are given in the following table that is constructed for N = M = 20, 40 and 80.

Table 4: Error analysis for difference scheme of the problem (4.24)

N = M = 20, 20 N = M = 40, 40 N = M = 80, 80

Error 0.0062 0.0015 0.00038560

As it is seen in Table 4 , we get some numerical results. If N and M are doubled, the value

of errors decrease by a factor of approximately1/4 for second order difference scheme.

Second, we consider the nonlocal boundary problem for three dimensional elliptic equation

with Neumann boundary condition

−∂
2u
∂t2 −

∂2u
∂x2 −

∂2u
∂y2 + u = 4 cos t cos x cos y, 0 < t < 2π, 0 < x, y < 2π,

u (0, x, y) = u (2π, x, y) ,
∫ 2π

0
u (s, x, y) ds = 0, 0 ≤ x ≤ 2π, 0 ≤ y ≤ 2π,

ux (t, 0, y) = ux (t, 2π, y) = 0, 0 ≤ t ≤ 2π, 0 ≤ y ≤ 2π,

u (t, x, 0) = u (t, x, 2π) ,
∫ 2π

0
u (t, x, s) ds = 0,≤ t ≤ 2π, 0 ≤ x ≤ 2π.

(4.26)

The exact solution of this problem is

u (t, x) = cos t cos x cos y.

For the approximate solution of the nonlocal boundary problem (4.26), we consider the set

[0, 2π]τ × [0, 2π]h × [0, 2π]h of a family of grid points depending on the small parameters τ

and h

[0, 2π]τ × [0, 2π]h × [0, 2π]h = {(tk, xn, ym) : tk = kτ, 0 ≤ k ≤ N,Nτ = 2π,

xn = nh, 0 ≤ n ≤ M,Mh = 2π, ym = mh, 0 ≤ m ≤ M,Mh = 2π} .

For the numerical solution, we consider the second order of approximation difference
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scheme.

−
uk+1

n,m − 2uk
n,m + uk−1

n,m

τ2 −
uk

n+1,m − 2uk
n,m + uk

n−1,m

h2 −
uk

n,m+1 − 2uk
n,m + uk

n,m−1

h2 + uk
n,m

= 4 cos tk cos xn cos ym, 1 ≤ k ≤ N − 1, 1 ≤ n,m ≤ M − 1,

u0
n,m = uN

n,m,
∑N−1

i=0 ui
n,m = 0, 0 ≤ n,m ≤ M,

uk
1,m − uk

0,m = uk
M,m − uk

M−1,m = 0, 0 ≤ k ≤ N, 0 ≤ m ≤ M,

uk
n,0 = uk

n,M,
∑M−1

i=0 uk
n,i = 0, 0 ≤ k ≤ N, 0 ≤ n ≤ M.

(4.27)

It is the system of algebraic equations and it can be written in the matrix form
AUn+1 + BUn + CUn−1 = DΦn, 1 ≤ n ≤ M − 1,

u0 = u1, uM−1 = uM.

U0 = U1,UM−1 = UM.

(4.28)

Here,

A = C =



O O O O . O O O O

O A1 O O . O O O O

O O A1 O . O O O O

O O O A1 . O O O O

. . . . . . . . .

O O O O . A1 O O O

O O O O . O A1 O O

O O O O . O O A1 O

O O O O . O O O O


(M+1)×(M+1)

,
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B =



I O O O . O O O −I

C1 B1 C1 O . O O O O

O C1 B1 C1 . O O O O

O O C1 B1 . O O O O

. . . . . . . . .

O O O O . B1 C1 O O

O O O O . C1 B1 C1 O

O O O O . O C1 B1 C1

O I I I . I I I I


(M+1)×(M+1)

,

where O = O(N+1)×(N+1), I = I(N+1)×(N+1),

A1 = C1 =



0 0 0 0 . 0 0 0 0

0 a 0 0 . 0 0 0 0

0 0 a 0 . 0 0 0 0

0 0 0 a . 0 0 0 0

. . . . . . . . .

0 0 0 0 . a 0 0 0

0 0 0 0 . 0 a 0 0

0 0 0 0 . 0 0 a 0

0 0 0 0 . 0 0 0 0


(N+1)×(N+1)

,

B1 =



1 0 0 0 . 0 0 0 −1

c b c 0 . 0 0 0 0

0 c b c . 0 0 0 0

0 0 c b . 0 0 0 0

. . . . . . . . .

0 0 0 0 . b c 0 0

0 0 0 0 . c b c 0

0 0 0 0 . 0 c b c

0 1 1 1 . 1 1 1 1


(N+1)×(N+1)

,
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where a = −1
h2 , b = 2

τ2 + 2
h2 + 1, c = −1

τ2 ,

Φn,r =



ϕ0
n,r

ϕ1
n,r

.

ϕN−1
n,r

ϕN
n,r


(N+1)×1

=



0

4 cos t1 cos xn cos yr

.

4 cos tN−1 cos xn cos yr

0


(N+1)×1

1 ≤ r ≤ M − 1,

Φn =



Φn,0

Φn,1

.

Φn,M−1

Φn,M


(M+1)×1

1 ≤ n ≤ M − 1,Φn,0 = Φn,M = O(N+1)×1,

Us,r =



u0
s,r

u1
s,r

.

uN−1
s,r

uN
s,r


(N+1)×1

0 ≤ r ≤ M, s = n − 1, n, n + 1,

D = I(N+1)(M+1) is the identity matrix and

Us =



Us,0

Us,1

.

Us,M−1

Us,M


(M+1)×1

, s = n − 1, n, n + 1.

Therefore, for the solution of the matrix equation (4.28), we will use the modified Gauss

elimination method. We seek a solution of the matrix equation by the following form:

Un = αn+1Un+1 + βn+1, n = M − 1, ..., 1, 0,

where UM = 0, α j ( j = 1, ...,M − 1) are (N + 1)(M + 1) × (N + 1)(M + 1) square matrices,

β j ( j = 1, ...,M − 1) are (N + 1)(M + 1) × 1 column matrices, α1, β1 are zero matrices and

αn+1 = − (B + Cαn)−1 A,
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βn+1 = (B + Cαn)−1 (Dϕn −Cβn) , n = 1, ...,M − 1.

Now, we give the error analysis between exact solutions u(tk, xn, ym) and the approximate

solutions uk
n,m for the different values of N and M. The errors are computed by the formula

EN
M = max

0≤k≤N,0≤n,m≤M

∣∣∣u(tk, xn, , ym) − uk
n,m

∣∣∣
The results are given in the following table that is constructed for N = M = 20, 40 and 80.

Table 5: Error analysis for difference scheme of the problem (4.27)

N = M = 20, 20 N = M = 40, 40

Error 0.1125 0.0504

As it is seen in Table 5 , we get some numerical results. If N and M are doubled, the value

of errors decrease by a factor of approximately1/2 for first order difference scheme.
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CHAPTER 5

CONCLUSIONS

The present thesis deals with strongly positive operators with nonlocal conditions and their

applications. The following results are obtained:

• Fourier series, Laplace transform and Fourier transform methods are applied for the

solution of several problems for elliptic differential equations with nonlocal boundary

conditions.

• The theorem on the structure of fractional with powers of strongly positive operators in

fractional spaces is established.

• Structure of fractional powers of elliptic operators is studied.

• The well-posedness of the abstract nonlocal boundary value problem for the elliptic

equation in an arbitrary Banach space with positive operator in various Banach spaces is

established.

• The theorems on coercive stability estimates for the solutions of three type elliptic

differential nonlocal problems are proved.

• The second order of approximation two-step difference scheme is presented. The well-

posedness of this difference scheme in various Banach spaces is established.

• The theorems on stability, almost coercive stability and coercive stability estimates for the

solutions of difference schemes for the three type elliptic differential nonlocal problems are

proved.

• Illustrative numerical results for two and three dimensional case are provided. The Matlab

implementation of these difference schemes is presented.

• The theoretical statements for the solution of these difference schemes are supported by

the results of numerical examples.
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Ashyralyev, A., & Tetikoğlu, F. S. (2015). A note on fractional spaces generated by the

positive operator with periodic conditions and applications. Boundary Value Problems,

2015(1), 31.
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APPENDIX A

MATLAB PROGRAMMING

In this part, Matlab programs are presented for the first and second orders of accuracy

difference schemes.

1. Matlab Implementation of the Second Order of Accuracy Difference Scheme of

Problem (4.16)

clear all; clc; close all; delete ’*.asv’;

N=40; M= N;

h=(2*pi)/M;

tau=(2*pi)/N;

c=-1/(tauˆ2);

a=-1/(hˆ2);

b=(2/(hˆ2))+(2/(tauˆ2))+1;

a1=-((hˆ2)/(2*tauˆ2));

b1=((hˆ2)/(tauˆ2))+((hˆ2)/2)+1;

for k=2:N;

a(k)=(-1/(hˆ2)); A(k,k)=a(k); A(N+1,N+1)=0;

end; A;

for k=2:N;

E(k,k)=b1; E(k,k-1)=a1; E(k,k+1)=a1;

E(N+1,k)=1; E(N+1,N+1)=0; E(1,1)=1;

E(1,N+1)=-1; E(N+1,1)=1;

B(k,k)=b; B(k,k-1)=c; B(k,k+1)=c;

B(N+1,k)=1; B(N+1,N+1)=0; B(1,1)=1;

B(1,N+1)=-1; B(N+1,1)=1;

end; B;

for k=2:N;
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F(k,k)=1;

F(N+1,k)=0; F(N+1,N+1)=0; F(1,1)=0;

F(1,N+1)=-0; F(N+1,1)=0;

end

C=A; C;

for i=1:N+1;

D(i,i)=1;

end; D; D;

for j=1:M-1;

for k=2:N;

t=(k-1)*tau; x=(j)*h;

phy(k,j:j)=3*cos(t)*cos(x);

end;

end;

for j=1:M-1;

phy(1,j:j)=0; phy(N+1,j:j)=0;

end; phy;

for k=2:N;

t=(k-1)*tau;

phy0(k,1:1)=3*cos(t);

phy0(1,1:1)=0;

phy0(N+1,1:1)=0;

end;

I=eye(N+1,N+1);

alpha1=inv(E)*F;

betha1=inv(E)*((hˆ2)/2)*phy0(:,1:1);

for j=1:M-1;

alphaj+1=inv(B+C*alphaj)*(-A);

bethaj+1=inv(B+C*alphaj)*(I*phy(:,j:j)-C*bethaj);
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end;

for j=1:M+1;

for k=1:N+1;

t=(k-1)*tau;

x=(j-1)*h;

es(k,j:j)=cos(t)*cos(x);

end;

end;

UM=inv(((alphaM-1-4*I))*alphaM+3*I)*(-bethaM-1-((alphaM-1-4*I)*bethaM));

for Z=M-1:-1:1;

UZ=alphaZ+1*UZ+1+bethaZ+1;

end;

for Z=1:M;

p(:,Z+1)=UZ;

end;

p(:, 1)=UM;

for j=1:M+1;

for k=1:N+1;

t=(k-1)*tau;

x=(j-1)*h;

es(k,j:j)=cos(t)*cos(x);

end;

end;

abs(es-p);

maxes=max(max(es)) ;

maxapp=max(max(p)) ;

maxerror=max(max(abs(es-p)))

relativeerror=maxerror/maxapp;

cevap = [maxes,maxapp,maxerror,relativeerror];

101



p; es;

[xler,tler]=meshgrid(0:h:pi,0:tau:1);

table=[es; p]; table(1:2:end,:)=es; table(2:2:end,:)=p;
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APPENDIX B

MATLAB PROGRAMMING

2. Matlab Implementation of the First Order of Accuracy Difference Scheme of

Problem (4.19)

clear all; clc; close all; delete ’*.asv’;

N=80; M= 80;

h=(2*pi)/M;

tau=(2*pi)/N;

c=-1/(tauˆ2);

a=-1/(hˆ2);

b=(2/(hˆ2))+(2/(tauˆ2))+1;

for k=2:N;

a(k)=(-1/(hˆ2)); A(k,k)=a(k); A(N+1,N+1)=0;

end; A;

for k=2:N;

B(k,k)=b; B(k,k-1)=c; B(k,k+1)=c;

B(N+1,k)=1; B(N+1,N+1)=0; B(1,1)=1;

B(1,N+1)=-1; B(N+1,1)=1;

end; B;

C=A; C;

for i=1:N+1;

D(i,i)=1;

end; D; D;

for j=1:M-1;

for k=2:N;

t=(k-1)*tau; x=(j)*h;

phy(k,j:j)=3*cos(t)*sin(x);
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end;

end;

for j=1:M-1;

phy(1,j:j)=0; phy(N+1,j:j)=0;

end; phy;

I=eye(N+1,N+1);

alpha1=zeros(N+1,N+1);

betha1=zeros(N+1,1);

for j=1:M-1;

alphaj+1=inv(B+C*alphaj)*(-A);

bethaj+1=inv(B+C*alphaj)*(I*phy(:,j:j)-C*bethaj);

end;

UM=zeros(N+1,1);

for Z=M-1:-1:1;

UZ=alphaZ+1*UZ+1+bethaZ+1;

end;

for Z=1:M;

p(:,Z+1)=UZ;

end;

p(:,1)=zeros(N+1,1);

for j=1:M+1;

for k=1:N+1;

t=(k-1)*tau;

x=(j-1)*h;

es(k,j:j)=cos(t)*sin(x);

end;

end;

es;

p;
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abs(es-p);

maxes=max(max(es)) ;

maxapp=max(max(p)) ;

maxerror=max(max(abs(es-p)))

relativeerror=maxerror/maxapp;

cevap = [maxes,maxapp,maxerror,relativeerror];

p; es;

[xler,tler]=meshgrid(0:h:pi,0:tau:1);

table=[es; p]; table(1:2:end,:)=es; table(2:2:end,:)=p;
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APPENDIX C

MATLAB PROGRAMMING

In this chapter, Matlab programs are presented for the first and second orders of accuracy

difference schemes.

3. Matlab Implementation of the Second Order of Accuracy Difference Scheme of

Problem (4.19)

clear all; clc; close all; delete ’*.asv’;

N=40; M= Nˆ2;

h=(2*pi)/M;

tau=(2*pi)/N;

c=-1/(tauˆ2);

a=-1/(hˆ2);

b=(2/(hˆ2))+(2/(tauˆ2))+1;

for k=2:N;

a(k)=(-1/(hˆ2)); A(k,k)=a(k); A(N+1,N+1)=0;

end; A;

for k=2:N;

B(k,k)=b; B(k,k-1)=c; B(k,k+1)=c;

B(N+1,k)=1; B(N+1,N+1)=0; B(1,1)=1;

B(1,N+1)=-1; B(N+1,1)=1;

end; B;

C=A; C;

for i=1:N+1;

D(i,i)=1;

end; D; D;

for j=1:M-1;

for k=2:N;
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t=(k-1)*tau; x=(j)*h;

phy(k,j:j)=3*cos(t)*cos(x);

end;

end;

for j=1:M-1;

phy(1,j:j)=0; phy(N+1,j:j)=0;

end; phy;

I=eye(N+1,N+1);

alpha1=eye(N+1,N+1);

betha1=zeros(N+1,1);

for j=1:M-1;

alphaj+1=inv(B+C*alphaj)*(-A);

bethaj+1=inv(B+C*alphaj)*(I*phy(:,j:j)-C*bethaj);

end;

UM=inv(I-alphaM)*bethaM;

for Z=M-1:-1:1;

UZ=alphaZ+1*UZ+1+bethaZ+1;

end;

for Z=1:M;

p(:,Z+1)=UZ;

end;

p(:, 1)=U1;

for j=1:M+1;

for k=1:N+1;

t=(k-1)*tau;

x=(j-1)*h;

es(k,j:j)=cos(t)*cos(x);

end;

end;
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abs(es-p);

maxes=max(max(es)) ;

maxapp=max(max(p)) ;

maxerror=max(max(abs(es-p)))

relativeerror=maxerror/maxapp;

cevap = [maxes,maxapp,maxerror,relativeerror];

p; es;

[xler,tler]=meshgrid(0:h:pi,0:tau:1);

table=[es; p]; table(1:2:end,:)=es; table(2:2:end,:)=p;
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APPENDIX D

MATLAB PROGRAMMING

4. Matlab Implementation of the Second Order of Accuracy Difference Schemeof

Problem (4.24)

clear all; clc; close all;delete ’*.asv’

M=40; N=M;

h=(2*pi)/M;

tau=(2*pi)/N;

a=-1/(hˆ2);

b=(2/(hˆ2))+(2/(hˆ2))+(2/(tauˆ2))+1;

c=-1/(tauˆ2);

A=zeros((N+1)*(N+1),(N+1)*(N+1));

B=eye((N+1)*(N+1),(N+1)*(N+1));

for k=2:N;

A1(k,k)=a; A1(N+1,N+1)=0;

B1(k,k)=b; B1(k,k-1)=c; B1(k,k+1)=c;

B1(N+1,k)=1; B1(1,1)=1;

B1(1,N+1)=-1; B1(N+1,N+1)=1;

end;B1;

for j=N+2:N+1:N*(N+1);

A(j:j+N,j:j+N)=A1;

B(1:N+1,1:N+1)=eye(N+1,N+1);B(1:N+1,N*(N+1)+1:(N+1)*(N+1))=-eye(N+1,N+1);

B(j:j+N,j:j+N)=B1;

B(j:j+N,j-N-1:j-1)=A1;

B(j:j+N,j+N+1:j+2*N+1)=A1;

B(N*(N+1)+1:(N+1)*(N+1),j:j+N)=eye(N+1,N+1);

end
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C=A;C;

NK=(N+1)*(M+1);

phy=zeros(NK,M+1);

for n=2:M;

x=(n-1)*h;

for j=2:M;

i1=(N+1)*(j-1);

y=(j-1)*h;

for k=2:N;

t=(k-1)*tau;

phy(i1+k,n)=4*cos(t)*sin(x)*cos(y);

end;

end;

end;

R=eye(NK,NK);

alphaf1=zeros(NK,NK);

bethaf1=zeros(NK,1);

for j=2:M

alphafj=-inv(B+C*alphafj-1)*A;

bethafj=inv(B+C*alphafj-1)*(R*(phy(:,j))-C*bethafj-1);

end;

U=zeros(NK,M+1);

for j=M:-1:1;

U(:,j)=alphafj*U(:,j+1)+bethafj;

end

p=zeros(N+1,M+1,M+1);

for n=1:M+1;

x=(n-1)*h;

for j=1:M+1;
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i1=(N+1)*(j-1);

y=(j-1)*h;

for k=1:N+1;

t=(k-1)*tau;

p(k,n,j)=U(i1+k,n);

es(k,n,j)=cos(t)*sin(x)*cos(y);

end;

end;

end;

maxerror=max(max(max(abs(es-p))))
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APPENDIX E

MATLAB PROGRAMMING

5. Matlab Implementation of the Second Order of Accuracy Difference Schemeof

Problem (4.27)

clear all; clc; close all;delete ’*.asv’

M=20; N=M;

h=(2*pi)/M;

tau=(2*pi)/N;

a=-1/(hˆ2);

b=(2/(hˆ2))+(2/(hˆ2))+(2/(tauˆ2))+1;

c=-1/(tauˆ2);

A=zeros((N+1)*(N+1),(N+1)*(N+1));

B=eye((N+1)*(N+1),(N+1)*(N+1));

for k=2:N;

A1(k,k)=a; A1(N+1,N+1)=0;

B1(k,k)=b; B1(k,k-1)=c; B1(k,k+1)=c;

B1(N+1,k)=1; B1(1,1)=1;

B1(1,N+1)=-1; B1(N+1,N+1)=1;

end;B1;

for j=N+2:N+1:N*(N+1);

A(j:j+N,j:j+N)=A1;

B(1:N+1,1:N+1)=eye(N+1,N+1);B(1:N+1,N*(N+1)+1:(N+1)*(N+1))=-eye(N+1,N+1);

B(j:j+N,j:j+N)=B1;

B(j:j+N,j-N-1:j-1)=A1;

B(j:j+N,j+N+1:j+2*N+1)=A1;

B(N*(N+1)+1:(N+1)*(N+1),j:j+N)=eye(N+1,N+1);

end
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C=A;C;

NK=(N+1)*(M+1);

phy=zeros(NK,M+1);

for n=2:M;

x=(n-1)*h;

for j=2:M;

i1=(N+1)*(j-1);

y=(j-1)*h;

for k=2:N;

t=(k-1)*tau;

phy(i1+k,n)=4*cos(t)*cos(x)*cos(y);

end;

end;

end;

R=eye(NK,NK);

alphaf1=eye(NK,NK);

bethaf1=zeros(NK,1);

for j=2:M

alphafj=-inv(B+C*alphafj-1)*A;

bethafj=inv(B+C*alphafj-1)*(R*(phy(:,j))-C*bethafj-1);

end;

U(:,M+1)=inv(R-alphafM)*bethafM;

for j=M:-1:1;

U(:,j)=alphafj*U(:,j+1)+bethafj;

end

p=zeros(N+1,M+1,M+1);

for n=1:M+1;

x=(n-1)*h;

for j=1:M+1;

113



i1=(N+1)*(j-1);

y=(j-1)*h;

for k=1:N+1;

t=(k-1)*tau;

p(k,n,j)=U(i1+k,n);

es(k,n,j)=cos(t)*cos(x)*cos(y);

end;

end;

end;

maxerror=max(max(max(abs(es-p))))
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