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ABSTRACT

The present thesis deals with strongly positive operators with nonlocal conditions and their
applications. The structure of fractional powers of positive operators in fractional spaces are
given. The well-posedness of the abstract nonlocal boundary value problem for differential
equation of the elliptic type

T

V') +Av(t) = f(t) (0 <t<T),v0)=wT)+ e, fv(s)ds =y

0
in an arbitrary Banach space E with the positive operator A is established. The coercive
stability estimates in Holder norms for the solution of three type elliptic problems are
obtained. The second order of approximation two-step difference scheme for the numerical
solution of a nonlocal boundary value problem is presented. The well-posedness of
difference problems in Banach spaces is established. The stability, almost coercive stability
and coercive stability estimates for the solutions of difference schemes for the numerical
solution of elliptic problems are obtained. Illustrative numerical results for two and three

dimensional case are provided.

Keywords: Fractional powers; interpolation spaces; fractional derivatives; positive operators;

elliptic operators; well-posedness; coercive stability; difference scheme
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OZET

Bu tez, yerel olmayan kosullar ve bunlarin uygulamalar ile birlikte giiclii pozitif operatorler
ile ilgilidir. Kesirli uzaylarda pozitif operatorlerin kesirli mertebelerinin yapist verilmistir.
Eliptik tipin diferansiyel denklemi i¢in yerel olmayan sinir deger probleminin iyi kurulusu

T

V') +Av(@t) = f(t) O<t<T),v(0)=wT)+ e, fv(s)ds =y

0

keyfi bir Banach uzayinda E pozitif operator A ile kurulur. Ug tip eliptik problemin ¢oziimii
icin Holder normlarinda zorunlu olarak istikrarli tahminler elde edilmistir. Yerel olmayan
bir siir deger probleminin sayisal ¢oziimii i¢in yakinsak iki asamali fark semasinin ikinci
mertebesi sunulmugtur. Banach uzaylarindaki farklilik sorunlarinin iyi olusu kurulmustur.
Kararhlik, neredeyse zorlayici kararlilik tahminleriyle, eliptik problemlerin sayisal ¢oziimii
icin fark semalarinin ¢oziimlerinin tahminleri elde edilmistir. Iki ve ii¢ boyutlu durumlar icin

aciklayici sayisal sonuglar verilmistir.

Anahtar Kelimeler: Kesirli mertebeler; interpolasyon uzaylari; kesirli tiirevler; pozitif

operatorler; eliptik operatorler; iyi konumlanmislik; zorlayici kararlilik; fark semalari
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CHAPTER 1
INTRODUCTION

The method of operators as a tool for the investigation of the solution to partial differential
equations in Hilbert and Banach spaces, has been systematically developed by many
authors. It is well-known that various local and nonlocal problems for partial differential
equations can be reduced to local and problems for ordinary differential equations in Hilbert
or Banach spaces with unbounded positive operator. The role played by positivity property
of differential and difference operators in Hilbert and Banach spaces in the study of various
properties of boundary value problems for partial differential equations, of stability of
difference schemes for partial differential equations, and of summation Fourier series is
well-known (Ashyralyev & Sobolevskii, 1994; Ashyralyev& Sobolevskii, 2004;
Krasnosel’skii, et al., 1966; Sobolevskii, 2005).

Important progress has been made in the study of positive operators from the view-point of
the stability analysis of difference schemes for partial differential equations. It is well
known that the most useful methods for stability analysis of difference schemes are
difference analogue of maximum principle and energy method. The application of theory of
positive difference operators allows us to investigate the stability and coercive stability
properties of difference schemes in various norms for partial differential equations
especially when one can not use a maximum principle and energy method. Moreover, the
structure of fractional spaces generated by positive differential and difference operators and
its applications to partial differential equations has been investigated by many researchers.
Finally, a survey of results in fractional spaces generated by positive operators and their
applications to partial differential equations was given in paper of Ashyralyev, 2015.
Nevertheless, structure of fractional powers generated by differential and difference
operators and its applications to partial differential equations has not been investigated a

sufficiently.

The present work is devoted to the study of applications of second order differential



operator with nonlocal conditions. Investigation of the structure of fractional spaces
generated by positive operator with nonlocal conditions in a Banach space. It consists five
chapters. The first chapter is introduction. In the second chapter we consider the definitions
of positive operator in a Banach space, of fractional power of positive operator, of fractional
spaces genareted by positive opaters and essential statements and estimates which will be
useful in the sequel. The simply two differential positive operators in Banach and Hilbert
spaces are considered. The structure of fractional spaces generated by positive operator in a
Banach space is investigated. In applications, we give the structure of fractional powers of
elliptic operators in Banach norms. In the third chapter five nonlocal boundary value
problems are solved analytically by Fourier series, Fourier transform and Laplace transform
methods. We consider the nonlocal boundary value problem for elliptic equations in a
Banach space. The well-posedness of the differential problem in various Banach spaces is
established. In applications, the new coercive stability estimates in Holder norms for the
solutions of the mixed type nonlocal boundary value problems for elliptic equations are
obtained. In the fourth chapter we present second order of accuracy two-step difference
scheme for the approximate solution of the nonlocal boundary value problem for elliptic
equations in a Banach space. The well-posedness of the difference problem in various
Banach spaces is established. In applications, the new stability, almost coercive stability
and coercive stability estimates in Holder norms for the solutions of the difference schemes
for the approximate solution of the nonlocal boundary value problem for elliptic equations
are obtained. Numerical analysis is given. The fifth chapter is conclusions. Basic results of
this thesis have been published by the following papers (Ashyralyev and Hamad, 2017;
Ashyralyev and Hamad, 2018a, 2018b, 2018c; Ashyralyev and Hamad, 2019). Some results
of this work were presented in seminar “Analysis and Applied Mathematics Seminar
Series” of Department of Mathematics, Near East University and in VI congress of Turkic
World Mathematical Society (TWMS 2017), and Fourth International Conference on
Analysis and Applied Mathematics (ICAAM 2018), and in 2nd International Conference of
Mathematical Sciences, Maltepe University, Istanbul in International summer mathematical

school in memoriam V.A. Plotnikov, Odessa National University, Odessa, Ukraine.



CHAPTER 2
STRUCTURE OF FRACTIONAL SPACES AND THEIR APPLICATIONS

This chapter consists three sections, In the first section we consider the definition of positive
operators, the fractional power of positive operator, statements and estimates concerning the
semigroup exp{—tA}(t > 0) from (Ashyralyev and Sobolevskii, 2012; Krasnosel’skii et al.,
1966) which will be useful in the sequel. The some examples are given for explanation their.
In the second, the main Theorem on the structure of fractional spaces D(Aﬁ,Ew,q(E,A)) is

proved. Applications of this theorem are included in the third section.

2.1 INTRODUCTION

Definition. The operator A is said to be strongly positive if its spectrum o (A) lies in the
interior of the sector of angle ¢, 0 < 2¢ < &, symmetric with respect to the real axis and if
on the edges of this sector, S| (¢) = {pe® : 0 < p < oo} and S, (¢) = {pe™™ : 0 < p < oo} and

outside of it, the resolvent (1 — A)~! is subject to the bound

=, < T

E=E = 14 [

2.1

The infimum of all such angles ¢ is called the spectral angle of the strongly positive operator
A and is denoted by ¢ (A) = ¢ (A, E). Since the spectrum o (A) is a closed set, it lies inside
the sector formed by the rays S (¢ (A)) and S, (¢ (A)) and some neighborhood of the apex
of this sector does not intersect o (A). We shall consider contours I' = I' (¢, r) composed by
the rays S (¢), S, (¢) and an arc of circle of radius r centered at the origin; ¢ and r will be
chosen so that ¢ (A) < |¢| < m/2 and the arc of circle of radius r lies in the resolvent set p (A)

of the operator A.

Let f (z) be an analytic function on the set bounded by such a contour I" and suppose that f

satisfies estimate
lf @I < Mlz[*

for some & > 0. Then the operator Cauchy-Riesz integral

1
fA) = T f f@@-A)"dz (2.2)
r



converges in the operator norm and defines a bounded linear operator f(A) which is a
function of the strongly positive operator A. If f () is continuous in a neighbourhood of the

origin, then in (2.2) we shall consider that r = 0, 1.e., I' = 5 (¢) U S, (¢).

As in the case of a bounded operator A one shows that f (A) does not depend on the choice of
the contour I" in the domain of analyticalness of the function f (z) and that the correspondence

between the function f (z) and the operator f (A) is linear and multiplicative.

The function f (z) = z defines a bounded operator A™ whenever @ > 0. Here the contour I'
is chosen with » > 0. By the multiplicative property, A~ = A=*A= = APA is satisfied
for any powers of the strongly positive operator A and not only for negative integer ones.
From this identity it follows (when a + (8 is an integer) that the equation A™“x = 0 has the
unique solution x = 0. Hence, the positive powers A” = (A~*)"" of the strongly positive
operator are defined. The operators A (@ > 0) are unbounded if A is unbounded; they have

dense domains D (A?) and one has the continuous embeddings D (A*) c D (Aﬁ) if B < a.

Now let us consider the function f(z) = e™. For any ¢+ > 0 this function tends to zero
faster any power z7 as |z| — oo and its values lie inside any sector bounded by a contour I'.
Therefore, formula (2.2) can be used to define the function exp {—tA} of the strongly positive

operator A. By multiplicative, the semigroup property holds:
exp{—(t + L) A} = exp{—-HA}exp{-1rA}, t;,1, > 0.

Consider the function ¥ (z) = z%¢™ for some @ > 0 and ¢ > 0. Since, obviously, ¥ (z) — 0

faster than any negative power of z as |z| — oo, ¥ (z) defines the operator function

¥(A) = ﬁ f e (z - A) ' dz. (2.3)
T

Let us show that the operator exp {—fA} maps E into D (A?*) and A” exp {—tA} = ¥ (A). Let x

be an arbitrary element of E. By the multiplicativity property, (2.3) implies that
1
A YA x = — fe"z (z—A) xdz = exp{—tA} x
2 Jr

which proves our assertion. Thus, we have the formula

1
A%exp{-tA} = i fz“e_tz (z-A)'dz 2.4)
r

4



In the above argument we must assume that the contour I" contains an arc of radius r, since
we applied the operator A=, which corresponds to the function z~*. The final formula (2.4)
is valid for any (small) » > 0. Since the integrand in (2.4) is continuous at the point z = 0,
letting z — O we obtain the formula

1 0 . ; . —1
A? eXp{—l‘A} = — |:f p(lel(l¢e—lpe¢ (pel¢ _ A) dp
211 | Joo

~ o —iag —tpe”® —ip -1
+j;pe e’ (pe A) dp]

for some 0 < ¢ < /2. From this and the estimate (2.1) it follows that

_M@OT@

i M@ 7 ot _ipcos
| exp{—tA}”E_)ESTfO o7 P d g 7(cos ¢

In particular, we have the estimate

|lexp {—24}||,._, < M) (2.5)

E—E — T

Let us show that the estimate (2.5) can be sharpened by a factor that decays exponentially
when t — +oco.

Let A be a strongly positive operator. We claim that for sufficiently small 6 > O the operator
A — ¢ is also strongly positive and ¢ (A —6) = ¢ (A). Indeed, let 4 € I'(¢). Consider the
equation Ax — (A — 0) x = y for an arbitrary y. € E. The substitution Ax — Ax = z yields the

equation z + 6 (4 — A lz= y. Since

[6a-a)7",_, <M @)

E—-E —

if 1 € T'(¢), we see that for § < [2M (¢)]_1the equation for z has a unique solution and

llzIl < 2]lyll. Consequently, the equation for x has a unique solution and
lIxll < M (¢) [1A + 117" lzll < 2M (@) [1A] + 117" Iyl .

This means that the operator 4 — (A + 9) has a bounded inverse for

0<6<[2M(¢)]" and

la-@-on,_ , <2M@na+117".

E—-E —



Thus, we have shown that A — ¢ is a strongly positive operator. Hence, by (2.5), we have the

estimate

2M (¢)

lexp (= -0, < =

This obviously yields

2M(9) _s
—e .
T

|lexp {-As)|,_, < (2.6)

E—-E —

where we can put § = [2M (¢)] .

Let ¢ > 1. Then, using the semigroup property, we can write
exp{—tA} =exp{—-A}exp{—(t—1)A}.

Next, applying the estimates (2.5) with # = 1 and (2.6), we obtain

o M(p) 2M(P) _5,-
||A exp{—tA}”E_)E < T(cosd)” 7 e,

Hence, the following estimate holds for > 1:
|4 exp {~tA)||,._ . < M1 (¢)e™.
If 0 < r < 1, then estimate (2.5) trevails. Combining these two estimates, we conclude that

|4 exp {—2A}||,_, < M (¢) e (2.7)

E—-E —

for some M (¢) > 0 and § > 0.
Further, formula (2.2) allows us to establish that the operator- valued function exp {—tA} is
differentiable in the operator norm for ¢ > 0 and

%exp{—tA} = —Aexp{-tA}. (2.8)

In particular, this implies that exp {—tA} is continuous in the operator norm. Using the
semigroup property we deduce that the derivative of exp {—tA} is also continuous in the
operator norm for ¢+ > 0. Finally, formula (2.8) shows that the operator-valued function

exp {—tA} has derivative of arbitrary order in the operator norm for ¢ > 0.



Now, let x € D (A). Then the (E—valued) function exp {—?A} x has a derivative for ¢ > 0 and,
by (2.8),

% exp{—tA}x = —exp {—tA} Ax.
Next, for x as above we can write

z-A)'x=z"x+z7'-4)"Ax
Using formula (2.2), we obtain

1
exp {~1A} x = 5— fe‘fz o x+ 27" (e - A)" Ax]dz.
2 Jr

Here the contour I has the form

Using the Cauchy theorem, we get

1
exp{—tA} x = — fe_’zz_l (z— A Axdz + x.
27 Jr

The estimate (2.1) shows that in the last equality one can pass to the limit under the integral

sign when r — +0. Hence, the limit

t—+0

1
lim exp {—tA} x = x + — fz-‘ (z— A" Axdz.
2ni Jr

exists (in the norm of E). By Cauchy’s theorem, the integral

1 1 —0+ico
O9=— | 7' (@z-A) " Axdz = — 7' (z-A) " Axdz.
21 Jr 270 ) —ico

for some o > 0. Hence, by (2.1),

M (" dt
1 < o Im P |AX]| .



Since ¢ does not depend on o, it follows that ¥} = 0. Hence, we proved that

lim exp{—tA} x = x 2.9)

t—+0

for any x € D(A). Since the norm ||exp {—tA}” ok is uniformly bounded for ¢ > 0, the
limit relation (2.9) holds for any x € E. Thus, if we extend the operator- valued function
U(t) = exp{—tA},t > 0,att = 0 by U (0) = I, we obtain a strongly continuous semigroup.
From the estimate (2.7) (with @ = 0) it follows that this semigroup is analytic. Finally, let
us show that its generator is U’ (0) = —A. From (2.6) and the estimate (2.7) we derive the

identity
!
U)x—x= —f U (s)Axds
0

for x € D(A). Since U (¢) 1s strongly continuous to the left at the point # = 0, this implies
that x € D (U’ (0)) and U’ (0) x = —Ax. Hence, U’ (0) is an extension of the operator —A. By
the estimate(2.6), the operator U’ (0) + 4 and —A + A have bounded inverses for any 4 < 0.
Therefore, U’ (0) = —A.

We have shown that the operator-valued function exp {—fA} is an analytic semigroup with
generator —A and with an exponentially decaying norm. Operators —A that generate such

semigroups were called strongly positive operators.

With the help of a strongly positive operator A we introduce the Banach space E, ,(E,A),
0 < a < 1, consisting of all v € E for which the following norms are finite:

1

. dl\q
Wllg,, = (fo |4 A exp{-AA}|[} 7)‘] 1 <g <o,

a.q
Wllg, = Vllg,.. = sup||2'~*Aexp{-A}v|, .
>0

For all v € E with a strongly positive operator A and —1 < a < 0, the following norms are

finite
1

oo AV
VI, = (L ”/l_a exp{—/lA}v”iIE 7)‘1 1< q< oo,

E’

¥, .. = e, = sup |47 exp{—aA}v|



we define the fractional space E, ,(E,A),—1 < a < 0. The replenishment of space E in this
norm forms a Banach space E, ,(E,A),-1 <a <0,1 < g < oo,

Clearly, the positive operator commutes A and its resolvent (A — A)~!. By the definition of
the norm in the fractional space E, = E,(E,A), E,, = E, ,(E,A),1 < p<oo, (-1 <a <),

we get

1A = D)7 Mg, 1A = D7 Mg, o, < A = D7 k-

Thus, from the positivity of operator A in the Banach space E it follows the positivity of this

operator in fractional spaces E, = E,(E,A), E,, = E, ,(E,A),1 < p <oo, (-l <a <1).

Let us consider the selfadjoint positive definite operator A in a Hilbert space H with dense
domain D(A) = H. That means there exists 6 > 0 such that A = A* > §1. Then, applying the

spectral representation of the selfadjoint positive definite operator, we can get

_ 1
lAa-07",_, < Sup (2.10)

It is easy to see that from (2.10) it follows that the selfadjoint positive definite operator A
in a Hilbert space H is the strongly positive operator with the spectral angle ¢(A, H) = 0.
Therefore, the positivity of operators in a Banach space is the generalization of the notion of
selfadjoint positive definite operators in a Hilbert space.

Now, let us consider two examples of positive operators in Banach spaces.

1. Let C(R') be the Banach space of continuous scalar functions f(x) on R! = (—o0, o)
satisfying condition f(x) — 0 as |x| — oo, with the norm ||f||cz1y = SUp i |f(x)]. Let A be
the operator acting in C(R') according to the rule Av(x) = —v"(x) + v(x), so that we also
have v (x) € C(R"). It is easy that A is the self-adjoint positive-definite operator in L(R").
Here L,(R") is the Hilbert space of square-interability scalar functions f(x) on R! with the

norm

IAIZ, g1y = f fC0)P dx.

x€R!

Actually, for all u,v € L,(R") we have that

(Au,v) = foo Au(x)v(x)dx = — fw i (du (x)) v(x)dx + f°° u(x)v(x)dx
o o dx\ dx o




du (x)
- ( T )V(X)

= I: dL;iX) d\;’ix)dx"‘ I: u(x)v (x) dx,

(1, Av) = f T (@ Av)dx = — f T % (dtlix)) dx + f " oy (1) dx

°° . f‘” du (x) dv (x)

Tdr dx dx + Im u(x)v(x)dx

— u(x) (d‘;ix)) + I : d\;ix) db;ix) dx + I : u(x)v(x)dx

= f‘” a(x) d\;’ix) dL;ix) dx + f‘” u(x)v (x) dx.

From that it follows {Au, v) = (u, Av) and

(Au, 1) = f Tdu@du(® f " () dx > f ) dx = (. (2.11)
o dx dx oo o

For the self adjoint positive definite operator A we will introduce the operator-valued function
exp {—tA} defined by formula u(t) = exp {—tA} ¢, where abstract function u(¢) is the solution

of the following Cauchy problem in a Hilbert space H = L,(R")
u'(t) + Au(t) = 0,1 > 0,u(0) = ¢. (2.12)

and the following estimates hold

tA exp {—tA} <e. (2.13)
| |

”eXp{_tA}”H—w <e’, H—oH =

It is based on the spectral represents of unit self adjoint positive definite operator A and

IfAllpon < Sup O

Here f is the bounded function on [d, co) . Therefore, the operator A in a Hilbert space H =
L,(R") is the strongly positive operator with the spectral angle (A, H) = 0.
Moreover, this differential operator A is the strongly positive operator in Banach spaces
E=L,(R").1<p<oo,C*(R),0<a <1
It is based on the triangle inequality and formula
o (=)

e A g(ydy, (2.14)

—t

2/t

—00

exp {—1A} ¢(x) =

10



First, we will proof the formula (2.14). Using the definition of operator function exp {—tA},

we can write
u(t, x) = exp {—1A} (x),
where u(t, x) is the solution of the following Cauchy problem
u(t, x) — ur (2, x) + u(t,x) =0, > 0,u(0, x) = ¢(x), x € R! (2.15)

for the parabolic equation with smooth ¢(x). Assume that ¢(+o00) = 0. Taking the Fourier

transform, we get the following Cauchy problem
u(t, s) + s2ut, s) + u(t,s) = 0,t > 0,u(0,s) = F {op(x)}
for the first order ordinary differential equation. Taking the Laplace transform, we get

uu(, s) — F {o(x)} + s*u(u, s) + u(u, s) = 0

or

ulp, s) =
J7i

mF {p(x)}.

Applying the inverse Laplace transform, we get

P

Fle 4t VF{p(x)}.

u(t, s) = e CHVF (p(x)} = e7'e ' F {p(x)} = ¢!
2\t

Applying the inverse Fourier transform, we get formula (2.14). Applying formula (2.14), we

can get the following estimates

||€_’A||C<R1)ﬁc<m) <e't>0, (2.16)

l|ae™|| t> 0. (2.17)

C(RH)—C(RY) < \/7_” ’

11



2. Now, let C(R'*") be the Banach space of continuous scalar functions f(x) on R'* = [0, c0)
satisfying condition f(x) — 0 as x — oo, with the norm
Ifllcgy = sup [f(x)].
x€R*

Let A be the operator acting in C(R'*) according to the rule Av(x) = —v'(x) +v(x), so that we
also have v'(x) € C(R'™"). It is easy that A is not self-adjoint, but positive-definite operator in
Ly(R™).

Here, L,(R'") is the Hilbert space of square-interability scalar functions f(x) on R'* with

the norm

AR, e, = f OOl dx.

XeRM

Actually, for all u,v € L,(R'") we have that

(Au,v) = f " Ay (0 dx = f T dxt f " a0 dx
0 0 0

dx

—u(x)v(x)ly + j(; ) udZix)

= foo udv @) dx + fm u(x)v (x) dx + u(0)v(0),
0 dx 0

(1, Av) = f " () AW = f LA f " a0 dx
0 0 dx 0

—u(x)v(x)ly + f " du) v(x)dx + f ) u(x)v (x)dx
dx 0

0

dx + fw u(x)v(x)dx
0

dx
From that it follows (Au, v) # (u, Av). Moreover,

(Au,uy = — fw du (x)udx + fw u(x)u (x) dx
0 dx 0

_ f‘x’ du (x)v(x)dx + foo u(x)v (x) dx + u(0)v(0).
0 0

P
2

> (u,u).

u*(0)
2

+ foo u(x)u (x)dx = foo u(x)u (x) dx +
0 0 0

That means A is not self-adjoint, but positive-definite operator in Ly(R'*).
Moreover, this differential operator A is the positive operator in Banach spaces

E=L,(R"),1<p<o,C*(R*),0<a<l.

12



It is based on the triangle inequality and formula
exp {—tA} o(x) = e'p(x + 1). (2.18)

First, we will proof the formula (2.18). Using the definition of operator function exp {—tA},

we can write
u(t, x) = exp {~1A} ¢(x),
where u(t, x) is the solution of the following Cauchy problem
u,(t, x) — u(t, x) + u(t,x) = 0,1 > 0, u(0, x) = ¢(x), x € R'* (2.19)

for the transport equation with smooth ¢(x). Assume that ¢(co) = 0.
The associated system of equations are

dt dx du

1 -1 —u

dt d
Applying 1= —)lc , we get

t+x=q.

. . dt du
Similarly, applying 1= we get
—u

—t=Ilnu-1Inc,

or
_ —t
u=ce'.
Therefore,
to_
e'u = cp.

Then, using Lagrange’s method, we get

¢ = fcr).

13



The general solution of the given equation is
u(t,x) = e f(t + x).
Using the initial condition, we get
u(0,x) = f(x) = (x).
Then f(t + x) = ¢(t + x) and
u(t,x) = e”'o(t + x).
The formula (2.18) is proved. Applying formula (2.18), we can get the following estimate

e cegrey oy < €512 0. (2.20)

The theory of fractional powers of operators can be constructed for a wider class of positive
operatorse (even for a more extensive class-weakly positive operators (Krasnosel’skii and
Sobolevskii, 1959). For such operators the estimate (2.1) is required to hold for some ¢
and not only from the interval [0, /2], but from the larger interval [0, 7). Their domains
of definition D(A®, E) are closely connected with the spaces E,(E,A). In fact, for arbitrary

small & > 0 the following continuous embeddings hold.
Theorem 2.1.1. (see for example, Ashyralyev & Sobolevskii, 1994) .

D(A°, E) C E,(E,A) C D(A"*, E),

D(A™,E) C Eq (E,A) C D(A“®,E),1 < q < o

forall) < a < 1.
The main aim of this chapter is study structure of fractional powers of positive operators.
2.2 STRUCTURE OF FRACTIONAL SPACES D(A? E, o(E, A))

In (Sobolevskii, 1966) embedding theorems were obtained for the domains of definition of

fractional powers of elliptic operators. These theorems and embeddings allow one to obtain

14



almost the same (up to &) embedding theorems for the spaces E,(L,,A). In (Smirnitskii and
Sobolevskii, 1974) precisely the same embedding theorems for the spaces E,(L,,A) as for
D(A®,L,).

Let us prove the main theorem in this chapter which deal with structure of fractional spaces

D(AP,E, ,(E,A)) generated by a strongly positive operator A in a Banach space.

Theorem 2.2.1. D(A?,E, ,(E,A)) = E,.p,(E,A) forall 1 < g < co and
0<lo] <18l <1,0<la+8 <1

Proof. 1t is clear for § = 0. Therefore, we will put 8 # 0. To prove this statement we

examine separately the six cases

O<a,f<1l,0<a+pB<1;

-l<a <0, —1<a+p<0;
O<a<l, -1<B8<0,0<a+pB<1;
O<a<l, -1<B8<0, —-1l<a+p<0;
-1<a<0,0<p<1,0<a+B8<1;

-l<a<0,0<B8<],-l<a+p<0.

let u € D(AP, E,,(E,A)). Then we will prove that u € E,.3,(E,A) and the following

statement holds
D(AP, Eq (. A)) C Equp (. A). (2.21)
In the first case 0 < @, < 1. Applying formula (see Ashyralyev and Sobolevskii, 1994)
1 00
AP = — f A lexp{-14}da (2.22)
G B Jo d
and the definition of fractional spaces E, ..(E,A) and D(A?, E), we get

' =P || A exp {—pAYul|, = p' P ||APA exp (—uA} APul|,

/.ll_a_'B 00
G®B Jo

< P |Aexp (- (A + ) A} APu|| . da

15



J7 A R
=M ———dllule, .o ) -
GP Jo A+ Eq0(D(AP E).A)

00 l—a—ﬂ/lﬁ—l 00 —
f £ 1-a da = pﬁ T \l-a a
o 1+ o (p+1)

<f1pﬁ‘ld +fm ath2g N el
Y S Y A S Tq gy

it follows that

Since

' =P || A exp {-uA} ul|,, < Mi(e, B)llull, oo )0

1-
for any u > 0. Here and in future M;(a,f) = MG G+ D) (la_ e Therefore,

lullg, 5oz.a) < Mi(a, B) lullg, .o E).4)

which completes the proof of statement (2.21) for g = oco. In the case 1 < g < oo, applying

formula (2.22) and the triangle inequality, we get

' PA exp{-pA}ul|, = [u' " PAPAexp (—pd} APul,

'ul a—f3

(ﬁ)

- G (B)
for any u > 0. Therefore, applying the definition of fractional spaces E, ,(E,A) and D(A?, E)

s ||A exp {— (A + ) A} APul| . d2

f P ||Aexp (= (o + 1) A} AP dp

and using this estimate and Minkowski’s inequality, we get

1
00 l-a 00 qd -
Il ) < ( fo (g B fo PP A exp {-u o + 1)A}A”u||Edp) 7“)" (2.23)
1
G(ﬁ)f (f || exp{—p (o + 1) A} Aul] )’ i )qd (2.24)
1
1 P ldp (f I-a B "dz)q
SGB Jy oy (et 2
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Using estimate (2.7), we get

lulle, 5 2.0 < M@, B) lullpws. g, .4y

which completes the proof of statement (2.21) for 1 < g < co. In the second case -1 < @, <
0. Applying estimate (2.7) and the definition of fractional spaces E,.(E,A) and D(A?, E),

we get

i exp (o

R

1P exp {—%A} APu

E—E E

<M27P “u‘“ exp {—%A} APu

< M2 lullg, owar.g)a)
E

for any u > 0. Therefore,

||M||Ea+ﬁ,w(E,A) < M2 lullg, .. oas ).

which completes the proof of statement (2.21) for g = co. In the case 1 < g < oo, applying

formula (2.22), the triangle inequality, and estimate (2.7), we get

|l exp {—pA}ul|,

e 21

P exp {—gA} Alu

E—E E

< M27P H,ﬂ exp {—%A} APy

E
for any 4 > 0. Therefore, applying the definition of fractional spaces E, ,(E, A) and D(A?, E),

we get

||u||Ea+ﬁ,q(E’A) < Mz_ﬁ (f (u_a
0

_ —B-a
=M?2 el pas £, (E.4))

1
)q d_ﬂ)5
E/] H

which completes the proof of statement (2.21) for 1 < g < oo. In the third case 0 < @ < 1,

exp {—gA} Alu

-1 < <0,0 < a+p < 1. Using estimate (2.7) and the definition of fractional spaces

E,.(E,A) and D(AP, E), we get
||,u]_“_ﬁA exp {—uA} u”E = ||,u]_"‘_ﬁA]_ﬁ exp {—,uA}A'Bu”E
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-

< M2F “/,tl_aA exp {—%‘A}Aﬁu

w!' " PAexp {—'gA} APu

E—E E

l—a—
< M2 F el pas £, o (E,4))
E

for any u > 0. From that it follows

l—a—
lullg,, 5.0y < M2 p el peas e, . (E.4))

which completes the proof of statement (2.21) for g = oo. In the case 1 < g < oo, using
formula (2.22) and estimate (2.7), and the definition of fractional spaces E,,(E,A) and
D(AP E), we get

1

. .
el 20) = (fo (,ul_“_ﬁ ||A exp {—uA) u”E)q 7'“)4

([ bt 4

0 2

< Mz—ﬁ (f (/Jl_a
0

1_ —
= M2 P ullpas s, 5.9

A}Aﬁu

A exp {—
)
E] M

which completes the proof of statement (2.21) for 1 < g < oco. In the fourth case 0 < @ < 1,

1
%)
E—E E M

K
2
1
q

A exp {—gA} APu

-1 <B<0,-1 < a+p < 0. Using formula (2.22), estimate (2.7) and the definition of
fractional spaces E, (E,A) and D(A?, E), we get

P |lexp {-pAtul, = po P [|ATP D A exp (-} APl

_a_‘B 00
M 5 ,
<casn ) tlA — A+ ) A APl aa
G(,8+1)j; || A exp (= (A + ) A} APu
o ) dA ||ull
= u
GB+1DJy (1 +Iu)l—(x D(AP Eq o(E.A))

for any u > 0. Since

00 —a—ﬁ/yf
fouw)“’ f(p+1)l"
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+al a-1
< [ [ i 22

it follows that

1 a—-1
lutll £, 5o E.4) < GCB+ DB+ D@+p) el peas 2, . (E.4))

which completes the proof of statement (2.21) for g = oo. In the case 1 < g < oo, using

formula (2.22) and estimate (2.7), we get

o prtore
1P ||exp (—pA} ul|, < mfo A ||A exp {— (2 + ) A} APul|  d2

Iul—oz 00
smfo o |Aexp{—u (p + 1) A} APu||  dp

for any 4 > 0. Therefore, applying the definition of fractional spaces E, ,(E, A) and D(A?, E),
and Minkowski’s inequality, we get

1
o0 du\,
||u||E(,+5,q(E,A) = (L (/J_a_ﬁ ||eXp {_/JA} u”E)q ju)q

1

a H
I
1

1 * pﬁdp * 1-a B ‘Idzq
*G@+ 1) (p+1)1“(f ([ Hew izt 4l,) )

Using estimate (2.25), we get

1 a-—1
<
||M||EM’,,(E,A) “GEB+ DB+ D(@tp ”u”D(Aﬂ,Ea,q(E,A))

which completes the proof of statement (2.21) for 1 < g < co. In the fifth case -1 < a < 0,
0<pB < 1,0 < a+p < 1. Using estimate (2.7) and the definition of fractional spaces

E.(E,A) and D(AP, E), we get

b= A exp (-pay ul,

<u'" P |A P exp {—gA}

exp {—%A}Aﬁu

E—E E
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< M2'# sup
w>0

" exp {—SA} APu

for any u > 0. From that it follows

1—a—
lullg, 5.0y < M2 p el peas e, . (E.4))

1_ —
< M2 lullg, peas. 4
E

which completes the proof of statement (2.21) for g = oco. In the case 1 < g < oo, using

estimate (2.7) and the definition of fractional spaces E, ,(E,A) and D(AP E), we get

~ J\S
lullg, s 20 = (fo (,ul_a_ﬁ ||A1‘ﬁ eXp{—,LlA}Aﬁu”E)q ju)q

([ fslprent-

0 2

< M2'# ( f (,ﬂ
0

E—E

exp {—gA} APu p

exp {—gA} APu

1
. Z
d,Ll —a—
E) _)‘1 = M2! ﬁ”uHD(Aﬁ,Ea,q(E’A))

which completes the proof of statement (2.21) for 1 < g < co. In the sixth case -1 < @ < 0,

0<pB <1, -1 <a+p <0.Using formula (2.22) and the definition of fractional spaces

E,(E,A) and D(AP, E), we get

1P |lexp (—pA)ul] , = @ P [|AT exp {-uA) APl

_a_ﬂ
< H
G®)
—-a—f 00 /lﬁ_l
7
< da _
GP)Jo A+w™* l1ullpas o E.4)

s |lexp {— (A + p) A} APu| , dA

Since

o0 _a_ﬁ/lﬁ_l 00 _
'u——ad/l = pﬁ ———dp
o A+ o e+ 1D

ff”“d’”f = e

it follows that

1 @

u < u 8
Il ”E(H,/g,w(E,A) GBB+D@+p I ”D(A Eqo(EA))

20
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which completes the proof of statement (2.21) for g = co. In the case 1 < g < oo, using
formula (2.22) and estimate (2.7), we get

ur ||exp{—,uA} u”E <uF ||A_ﬂ exp {—,uA}Aﬁu”E
g
G(B) Jo

[ s
6B fo P! lexp (= (o + 1) A} APu| dp

for any 4 > 0. Therefore, applying the definition of fractional spaces E, ,(E, A) and D(A?, E),

<

P lexp {= (A + p) A} APul|  d2

<

and Minkowski’s inequality, we get

1
00 du\,
||u||Ea+ﬂvq(E,A) = (L (/J_‘Y—,B ||eXP{—,UA} u”E)q 7,u)q

1

1 Vs (i g du\g
SG—(,B)f0 pﬁl(fo (17 [lexp (=1 (o + D A} APu ) 7)qdp
1

1 « pﬁ_ldp « —a B q dz q
GBS D" (fo (& lxp t-ay 4l ?) |

Using estimate (2.26), we get

1 @

u < u B
l ||E{,+[,,q(E,A) GB+ B+ 1) (@+p) I ”D(A \Eq4(E,A))

which completes the proof of statement (2.21) for 1 < g < oo. Now, we will prove the
opposite inequality.  Actually, Let u € E,.g,(E,A). Then we will prove that
u € D(AP, E, ,(E,A)) and the following statement

Ea+ﬁsq(E’ A) c D(Aﬂ’ Ea,q(Ea A)) (227)

In the first case 0 < o, < 1, 0 < @ + 8 < 1. Applying estimate (2.7) and the definition of
fractional spaces E, (E, A) and D(A?, E), we get

||~ A exp {—uA} Aﬁu||E

A exp {—gA} u

l-a
M
E—-E

< HAﬂ exp {—gA}

E
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< M/ll—(z—ﬁ ‘

A exp {—gA} u

|
< M2 F lullE, . s00E.2)
E
for any > 0. From that it follows
1_ —
utll pas g, o ce,0y) < M2 P lutll £, 5. (2.0

which completes the proof of statement (2.27) for g = oco. In the case 1 < g < oo, applying
estimate (2.7), and the definition of fractional spaces E, ,(E, A) and D(AP E), we get

1

00 du\,
llellpas i, .40y = ( fo (1A exP{—,uA}Aﬁu“E)q jﬂ)q

(T |
< M(fom (ﬂl—a—B”A exp{—%A}u E)q ‘L_ﬂ)a

1_ —
=M2¢ A ||u||Ea+ﬁ,q(E’A)

1

)
E/] H

AP exp {—SA} A exp {—gA}u

E—E

which completes the proof of statement (2.27) for I < g < co. In the second case —1 <
a, B < 0. Applying formula (2.22) and estimate (2.7) and the definition of fractional spaces
E,.(E,A) and D(AP, E), we get

7 |lexp {—pA) APu||,, < G”(__aﬁ) fo e lexp (= (A + p) A} ul|, d2

b [
= Allu
G (_ﬁ) 0 (/l + M)_(a'"'ﬂ) En+ﬁ,oo(E,A)

for any u > 0.Since
00 —a ) -p-1 00 -B-1
[ [
o (A+p) P o (z+ 1) P

1 00 _
< f Pdz +f 227z = M, (2.28)
0 1 Ba

it follows that

u ||exp {—uA} A'Bu”E < M(a,p) lullg,, ;. E.0)
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1 —(@+p)
G(-p) Pa

ltllpas g, 2.4y < M@, B) lullg, ;. 2.4

for any u > 0. Here and in future M(a, ) = . Therefore,

which completes the proof of statement (2.27) for g = oco. In the case 1 < g < oo, applying

formula (2.22) and estimate (2.7), we get

|l exp {—pA} APul| < G”(__ 5 fo AP |exp {= (u + D) A} ul| . da.
U s
e P71 |lexp (=1 (1 + p) Abu| , dp

for any 4 > 0. Therefore, applying the definition of fractional spaces E, ,(E, A) and D(A?, E),

we get

1

o0 d
ltll peas £, E.4)) = (f(; ||/J_a eXP{—,UA}Aﬁu”Z_ 7,“)6]

1

1 * —-B-1 ~ —-a— _ qd_/.l ;1
SG(—ﬁ)fo p (fo (1P |lexp (= (1 + p) A}u| ) u) dp
1

— 1 - p_’B_l )(f‘x’ —-a—f3 _ ‘]%);
_G(—ﬁ)(fo e m )\, P lleptmearal, ) )

Using estimate (2.28), we get

lull pas £, 2.4 < M@, B) lullg, ;.4

which completes the proof of statement (2.27) for 1 < g < co. In the third case 0 < @ < 1,
-1 <8 <0.0<a+p < 1. Using formula (2.22) ,the triangle inequality and the definition of
fractional spaces E, (E,A) and D(A?, E), we get

ul= ||A exp{—uA}Aﬁu”E

< ”(l_ﬁ) fom AP | Aexp(— (A + ) Ay ul, da

ul-e 0o -1

< dAlullg, ..
GB) Jy (4ot T ED
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for any u > 0. Since

00 l—a/l—ﬂ—l 00 -B-1
f RSy S [ L—»
o A+ o e+

1 00
5 _ +B8-1
< -1 +f 2q, = LIP 2.29
fop p 1/0 p Y (2.29)

it follows that

u B > u
D(AP.E, 4(E,A)) G( ,8 1) (1 Q) Epip00(E.A)

which completes the proof of statement (2.27) for g = oo. In the case 1 < g < oo, applying

formula (2.22) and the triangle inequality, we get

l-a 00
,ul_“”Aexp{—pA}Aﬁu”Es Glu(—,B)fO i ||Aexp{—(/l+,u)A}u||Ed/l
/ll—(x—,B 00 L
sG(_ﬁ) 0 p P |Aexp{—u (o + D A}ul, dp

for any p > 0. Therefore, applying the definition of fractional spaces E, ,(E, A) and D(A?, E)

and using estimate (2.29) and Minkowski’s inequality, we get

|17 |D(A/3,E(,,w(E,A))
1

: e (- g du\g
smfopﬁl(fo (P [JAexp - o + D A}u] ) 7)qdp

1 o0 p_ﬁ_l 00 o g dZ —
= G(—ﬁ) o (p i 1)1—(x_ﬁdp (ﬁ (Z] B ||A exp{—zA} u”E) ?)C[

< 1 [[2e]
u
G(-B+1)(1—-a) Earpg(EA)

which completes the proof of statement (2.27) for 1 < g < co. In the fourth case 0 < @ < 1,
-1 <p<0,-1 <a+p < 0. Using estimate (2.7) and the definition of fractional spaces

E,.(E,A) and D(AP, E), we get

'~ A exp {—pA} APu|, < '~

A" exp {—gA}

exp {—'%A} u

E—E E

24



< M2 sup
w>0

Y 7 a
1P exp {_EA} ul = M2 Nullg, 0

for any u > 0. From that it follows
1—
lullps £, weay < M2 ullg, 5 £.0)

which completes the proof of statement (2.27) for g = oo. In the case 1 < g < oo, using

formula (2.22) and estimate (2.7), we get

||~ A exp {—puA} APu||,, < p'~

AP exp {—'%A}

exp {—'L—lA} u
E—E 2 E

< M2'*B

P exp {—'L—IA} u
2 E

for any u > 0. Using the definition of fractional spaces E, ,(E,A) and D(AP E), we get
1

)q d_ﬂ)?z
E] M

which completes the proof of statement (2.27) for 1 < g < co. In the fifth case -1 < @ < 0,

00 e u
lullpas £, .0y < M2'P ( f (’“ 7 lexp {_EA} !
0

1_
<M2T¢ ||M||Ea+p,q(E,A)

0<pB<1,0 < a+p < 1. Using formula (2.22) and the definition of fractional spaces
E,.(E,A) and D(AP, E), we get

1 |[exp {—puA} APul|, = AP A exp (—pA) u]|,

p v
sG(l—_ﬁ)fo AP ||Aexp{— (A +p) A}yl dA

pe I
= dA||u
G(1-p) fo A+ P llllE, o .2)

for any u > 0. Since

o ayp oo -5
f 'u—l__d/1=f %dp
o A+w'? o (p+DF

! > +B-1
< Bdp + f olgy < LTP 1 (2.30)
fop PP PR 0 e
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it follows that
a+f-

el peas g, 2.4y < W lutll £, 5.(E.2)

which completes the proof of statement (2.27) for ¢ = oco. In the case 1 < g < oo, using

formula (2.22), we get

1 ||lexp (—uA} APul|,, < G(‘{;_ﬁ) fw AP ||Aexp{— (A +p) A}yl dA

l —a—
PllAexp{-u(o+ 1) A}ul||, d
=G ﬁ)f Ao toute e
for any 4 > 0. Therefore, applying the definition of fractional spaces E, ,(E, A) and D(A?, E),

using estimate (2.29) and Minkowski’s inequality, we get

|17 |D(Aﬁ,E(,,w(E,A))

1

B l-a-p _ 741\ g
G(l—ﬁ)f (f [Aexptosto+ nAV) y) o

1

__ 1 R (foo 1-a-p _ "%)5
_G(l—ﬁ)fo pr o\, ez )

a+p-1
= G(2——ﬁ)a ”M”E,ﬂﬁ’q(E,A)
which completes the proof of statement (2.27) for 1 < g < oco. In the sixth case -1 < @ < 0,

0<pB <1 -1 <a+p < 0. Using estimate (2.7) and the definition of fractional spaces

E,.(E,A) and D(AP, E), we get

||,u_“ exp {—,uA}A'gu”E <u

exp {—gA} u

< M2@ ||u||Ea+ﬁ(E,A)
E

AP exp {—%A}

E—E E

< M2 sup
>0

for any u > 0. From that it follows

u P exp {—gA} APu

Nl pas £, ey < M27 llg, 5. (2.0)

which completes the proof of statement (2.27) for g = co. In the case 1 < g < oo, using

estimate (2.7) and the definition of fractional spaces E, ,(E,A) and D(AP E), we get
1

00 du\,
”M”D(Aﬁ,Ea,m(E,A)) = (‘[0 (,u_a ||€Xp {_,UA}Aﬁu“E)q ju)q
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AP exp{—pA}ul,)’ ‘L—“)q

([
([
([

which completes the proof of statement (2.27) for 1 < g < oco. Therefore, Theorem 2.2.1 is

AP exp {—'%A}

1
q d -
exp —'l—lA u I
2
E—E E ,Ll
1
du\g

q
M -a
exp {_EA}M E) 7)(1 < M2 |ullg,,, 2.4)

proved. O

’

With the help of a positive operator A, we introduce the Banach space E, ,(E,A),0 <a <1,

consisting of all v € E for which the following norms are finite:
1

Vllg,, = (j(; ||/l"A 1+ A" v”z 7)CI 1<q<oo
IVl = sup||/l“A 1+A)™" V”E
’ >0

Applying the positive operator A, for all v € E and —1 < a < 0, the following norms are

finite
1

dA\q
27+ AL 7)‘1 1 <g<e,

loe}
Ml = ( f |
a,q 0

Wllg = sup[l2* (X +A)"y)|
' >0

E,

we define the fractional space E/ (E,A),—1 < @ < 0. The replenishment of space E in this

aq

’

norm forms a Banach space E, (EA),-1<a< 0,1 <g<oco.

The fractional power and structure of fractional spaces generated by the wider class of
differential and difference positive operators and their related applications have been
investigated by many researchers (see, for example, Simirnitskii, 1983; Bekir, Aksoy and
Guner, 2014; Agmon, 1962; Ashyralyev, 2009; Ashyralyev, 2015 and the references given

therein).

Theorem 2.2.2. (see, for example, Ashyralyev and Sobolevskii, 1994).

E, (E,A) = E,(E,A) forall0<|a| < 1,1 < g < .

a,q
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Applying Theorems 2.2.1 and 2.2.2 we get the following result.

Theorem 2.2.3. D(AP, E, (E,A) =E, ; (EA) foralll < g <o0and0 < |a| < 1,|8 <

’
a+B,q

,O<|a+p < 1.

Note that positive fractional powers of positive operators in a Banach space and the structure
of positive fractional powers of positive operators in fractional spaces E;, ,(E,A),1 < g < oo
for @ > 0 were investigated by Sobolevskii P.E. in papers (Sobolevskii, 1966; Sobolevskii,
1967; Sobolevskii, 1974).

2.3 APPLICATION
Now, we consider the applications of Theorems 2.2.1 and 2.2.3. First, we consider the

differential operator A* defined by the formula
A'u = = (x) + Su(x), 6 >0 (2.31)

with domain
2m
D(AY) = {u(x) su(x), u' (x),u” (x) € C[0, 2n], u(x) = u(x + 27n), fu(x)dx = O} .
0

The resolvent of the operator A*, i.e.
A'u+ du=¢ (2.32)

or
—u'(x)+ (0 + Dulx) = p(x), 0<x<2nm,

(2.33)

27
u(0) = u(2n), fu(x)dx =0
0
was investigated in paper (Ashyralyev and Tetikoglu, 2017). We introduce the Banach
spaces CP[0,2x] (0 < B < 1) of all continuous functions ¢(x) satisfying a Hélder condition

for which the following norms are finite

lo(x +7) — p(x)]

Il @ llcsro2m=Il ¢ llcioon +  sup 5

0<x<x+1<2m
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where C[0, 2] is the space of the all continuous functions ¢(x) defined on [0, 27] with the

usual norm

= max X)|.
| ("2 ||C[O,27r] onar |90( |

The positivity of the operator A* in the Banach space C [0, 2r] was established in paper

(Sobolevskii, 2005). In paper (Ashyralyev and Tetikoglu, 2017), it was proved that for any
1

a € (0, 5) the norms in space E,(C [0, 27],A) and C?? [0, 27| are equivalent. The positivity

1
of A* in the Holder spaces of C??[0,2n], a € (0, ?) was proved. Theorem on the structure
of E,(C[0,2n],A) of paper (Ashyralyev and Tetikoglu, 2017) and Theorem 2.2.1 implies

the following result.

Theorem 2.3.1. D(A?,E,(C[0,2rx],A)) = C*®[0,2n] for all 0 < a < % 1Bl <1 0<

=

1
+ =
a ,8<2

Now, we introduce the Banach space Wf,‘ [0,27] (0 < u < 1) of all integrable functions ¢(x)

defined on [0, 27r] and satisfying a Holder condition for which the following norm is finite:
1

2r 2n

o (x +) — (I P
f f PRI dydx + gl 0| 1 <P <.
0

L+up
" Iyl

||90||Wg[o,2n] =

Here, L, [0,2n],1 < p < oo 1is the space of the all integrable functions ¢(x) defined on [0, 27]

with the norm
1

2r p
||(P||Lp[o,2n] = f|‘10 Pdx| .
0

Theorem on the structure of E, (L, [0,2r],A) of paper (Ashyralyev and Tetikoglu, 2017)

and Theorem 2.2.1 imply the following result.

Theorem 2.3.2. W, "****'[0,2r] ¢ D(AP, W2 [0,2x]) € W,“*#7[0,27],1 < ¢ < oo for all

1 1 1
O<a/<§,|,8|<§,()<a+,818<§.

Second, we consider the differential operator with constant coefficients of the form

29



acting on functions defined on the entire space R". Here r € R” is a vector with nonnegative
integer components, |r| = r; + ... + r,. If () =01,...,¥,) €R") is an infinitely
differentiable function that decays at infinity together with all its derivatives, then by means

of the Fourier transformation one establishes the equality

F(B,) (& =B@F () ().

Here the Fourier transform operator is defined by the rule

F @)@ = @n™" f exp (—i (&)} 0 () dy,

R
0, &) =&+ ... + Y&

The function B (¢) is called the symbol of the operator B and is given by
BE) = ) b G&)" ... )"
Irl=2m
We will assume that the symbol
BY(¢) = Z a,(x) (&))" ... (i)™ & = (&1,- - &) €RT
Irl=2m
of the differential operator of the form

I

B =Y a0 234
2, v 239

|r|=2m

acting on functions defined on the space R”, satisfies the inequalities
0 < M{EP" < (=1)"BY(€) < Mpléf™ < oo

for & # 0.

Then, for sufficiently large positive 9, an elliptic operator A = B* + 61 is a strongly positive
operator in Banach spaces C(R") and L,(R"),1 < p < co. Here C(R") is the space of all
continuous functions ¢(x) defined on R” with the usual norm

||90||C(Rn) = sup l¢ (x|,

x€eR"
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L,(R") is the space of the all integrable functions ¢(x) defined on R" with the norm
1
4
el =| [ lecor x|
€R”
We will introduce the Banach space C*(R")(0 < u < 1) of all continuous functions ¢(x)

defined on R" and satisfying a Holder condition for which the following norm is finite:

lp(x +y) — @)
llellcugrny = sup le (0] + sup m
xeR” x,yeR" |Y|
y#0

b

the Banach space W,(R") (0 <y < 1) of all integrable functions ¢(x) defined on R” and

satisfying a Holder condition for which the following norm is finite:

1
le(x+y) — eI g
px+y)—px
[ f f N dydx + ||(,0||ip(Rn) , 1 < p<oo.

€R" yeR"
y#0

Theorem 2.3.3. (Ashyralyev & Sobolevskii, 1994, Triebel, 1978).
EL(C[R"),A) = C*"*(R"),
Eqp(Ly(RM,A) = W™ (R"),1 < p < oo forall 0 < 2ma < 1.

Theorem 2.3.3 on the structure of E,(C(R"),A) and E, ,(L,(R"),A),1 < p < oo of papers
(Ashyralyev and Sobolevskii, 1994; Triebel, 1978) and Theorem 2.2.1 imply the following

results.

1 1
Theorem 2.3.4. D(AP,C*(R")) = C*"@A(R") for all 0 < a < o 1Bl < 2—,0 <a+p<
m m
1

2m’
Theorem 2.3.5. W," """ (R") ¢ DA, We(R") ¢ W," PP @®",1 < q < o for all

1 1
0 — —.0 + —
<a<2m L8|<2m <a+,8+s<2m
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CHAPTER 3
WELL-POSEDNESS OF ELLIPTIC DIFFERENTIAL EQUATIONS WITH
NONLOCAL BOUNDARY CONDITIONS

3.1 INTRODUCTION

In mathematical modeling, elliptic equations are used together with local boundary
conditions specifying the solution on the boundary of the domain. In some cases, classical
boundary conditions cannot describe process or phenomenon precisely. Therefore,
mathematical models of various physical, chemical, biological or environmental processes
often involve nonclassical conditions. Such conditions usually are identified as nonlocal
boundary conditions and reflect situations when the data on the domain boundary cannot be
measured directly, or when the data on the boundary depend on the data inside the domain.
The well-posedness of various nonlocal boundary value problems for partial differential and
difference equations has been studied extensively by many researchers, see for example,
(Ashyralyev, 2008; Ashyralyev, 2003; Ashyralyev et al., 2004; Ashyralyev & Tetikoglu,
2012; Ashyralyev & Ozturk, 2013; Ashyralyyev, 2017; Ashyralyyev & Akkan, 2015;
Kadirkulov & Kirane, 2015; Kirane & Torebek, 2016; Sapagovas et al., 2017; Sapagovas et
al., 2016; Shakhmurov & Musaev, 2017, éiupaila et al., 2013; Wang & Zheng, 2009) and

the references given therein.

It is known that the mixed problem for elliptic equations can be solved analytically by
Fourier series, Fourier transform and Laplace transform methods. Now, let us illustrate

these different analytical methods by examples.

Example 3.1.1. Obtain the Fourier series solution of the nonlocal boundary value problem

0? 0?
—8—:—8—;+u:3sintsinx, O0<t<2m O0<x<m,
u,x) =un, x), fo%u(s,x)ds =0,0<x<m, (3.1)
u(t,0)=ul@t,7)=0,0<t<2n
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for the elliptic equation.

Solution. In order to solve this problem, we consider the Sturm-Liouville problem
" (xX)+u(x)—Aux)=0,0<x<mu)=u(r)=0.

generated by the space operator of problem (3.1). So, the nontrivial solutions of this Sturm-

Liouville problem are given by formulas
up(x) = sinkx, 4 =k*+1 wherek =1,2,3,---.
Then, we will obtain the Fourier series solution of problem(3.1) by formula
u(t,x) = i Ay (1) sin kx,
k=1

where A, (), k = 1,2, 3, ... are unknown functions. Putting u(¢, x) into the equation (3.1) and

nonlocal boundary conditions
27
u(0,%) = u(2m %), f w5, x)ds=0,0<x<m 32)
0
we obtain
- AL Osinkx + Ky A (sinkx+ Y A (1) sinkx
k=1 k=1 k=1

=3sintsinx, 0 <t <2m O0<x <,

and

ZAk (0) sin kx = ZAk (2m)sinkx,0 < x < 7,
k=1 k=1

27 0 271
f ZAk(s)sinkxds:Zsinkxf Ai(s)ds =0,0< x <.
0 %=1 k=1 0

Equating coefficients sin kx, k = 1, ... to zero, we get
—A7 () +2A, (t) = 3sint,0 < t < 2,
—A; O+ (R +1) A ()= 0k #1,0 < < 2m,
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21
A (0)=A,2n), f A (s)ds=0,k=1,2,3, ...
0

We will obtain Ay (7),k = 1,2, .... Firstly, for k = 1,we have the following problem

=AY (1) + 2A, (t) = 3sint,0 < 1 < 2m,

A1) = A2, [T A (s)ds = 0.

It is easy to obtain that A (¢) = sint. Secondly, for k # 1, we have the following problem

—AY () + (kK + 1) A (1) = 0,0 < £ < 2m,

27
Ac(0) = A 2m), [ Ax(s)ds = 0.
It is easy to obtain that A, (f) = 0. Thus, the solution of (3.1) is u (¢, x) = sin ¢ sin x.

Note that using similar procedure one can obtain the solution of the following mixed problem

Pu r Fult,x)

= — X a——— = f(t, %),

atz r=1 (9X%
O0<t<2m x=(x1,..,x,) €Q,

2
u(0,x) =um, x) + ¢(x), fo u(s,x)ds = y(x), (3.3)

x=(xq,...,X,) € ﬁ,

u(t,x) =0,x€S§,0<t<2n

for the multidimensional elliptic differential equation. Assume that @, > @ > 0 and
[, x) (t €(0,2n),x € ﬁ) , (X)), Y(x) (x € ﬁ) are given smooth functions. Here and in
future €Q is the wunit open cube in the n—dimensional Euclidean space
R"(0 < x¢ < 1,1 < k < n) with the boundaryS,Q = QU S.

However Fourier series method described in solving (3.3) can be used only in the case when

(3.3) has constant coefficients.
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Example 3.1.2. Obtain the Fourier series solution of the nonlocal boundary value problem

0? 0?
—6—:—8—;+u:3costcosx, O<t<2m O<x<m,
u(,x) =un, x), f(f”u(s,x)ds =0,0<x<m, (3.4)
u, (t,0)=u,(t,7)=0, 0<t<2m

for the elliptic equation.
Solution. In order to solve this problem, we consider the Sturm-Liouville problem
U (xX)+ux)—Aux)=0,0<x<mu (0)=u (r)=0.

generated by the space operator of problem (3.4). So, the nontrivial solutions of this Sturm-

Liouville problem are given by formulas
u(x) = coskx, 4 =k* + 1,k=0,1,2,3, - -.
Therefore, we will obtain the Fourier series solution of problem (3.4) by formula
u(t,x) = i Ay (t) cos kx,
=0

where A, (1) ,k = 0,1,2,3,... are unknown functions. Putting u(¢, x) into the equation (3.4)

and nonlocal boundary conditions (3.2), we obtain

- Z A} (t)cos kx + K Z Ay () cos kx + Z Ay () cos kx
=0 k=0 k=0

=3costcosx,0<t<2n,0<x<m,

ZAk (0) cos kx = ZAk (2m)coskx,0 < x <,

k=0 k=0
0

21 e 21
f ZAk(s)coskxds:Zcoskxf Ap(s)ds =0,0 < x <.
k=0 k=0 0

Equating coefficients cos kx,k = 0, 1, ... to zero , we get
—A7 () +2A,(t) =3cost,0 <t < 2m,
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_Al’c/(t)+(k2+ 1)Ak(t) =0,k#1,0<t<2n,

21
A (0)=A,2n), f A (s)ds =0,k=0,1,2,3, ...
0

We will obtain Ay (¢),k = 0, 1, .... Firstly, for kK = 1,we have the following problem

—A7 (1) +2A,(t) = 3cost,0 <t < 2m,

A1) = A @n), [TA (s)ds = 0.

It is easy to obtain that A; (#) = cos . Secondly, for k # 1,we have the following problem

—A7 () + (K + 1) Ac (1) = 0,0 < £ < 2m,

Ac(0) = A, 2r), [ Ag(s)ds = 0.

It is easy to obtain that A, (#) = 0. Thus the solution of (3.4) is u (¢, x) = cos t cos x.

Note that using similar procedure one can obtain the solution of the following mixed problem

Pu n Qult, x)

2 ar

Ryl e

= f(z, x),

O0<t<2m x=(x1,....,x,) € Q,

u(0,x) =un,x)+ @(x), fOZH u(s,x)ds = y(x), (3.5)

x=(x1,...,x%,) € Q,

ou(t, x)
om

=0,x€S5,0<¢r<2n

for the multidimensional elliptic differential equation. Assume that @, > a > 0 and

[t x) (t €(0,2m),x € 5),go(x),w(x) (x € 5) are given smooth functions. Here and in

future m is the normal vector to S.

However Fourier series method described in solving (3.5) can be used only in the case when

(3.5) has constant coefficients.
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Example 3.1.3. Obtain the Fourier series solution of the nonlocal boundary value problem

Pu O u

—ﬁ—ﬁ+u:6costcos2x,0<t<27r,O<x<7r,
X

u (0,0 =u@mn,x), [Tu(s,x0ds=0,0<x<n, (3.6)

u,0)=u(n),u(t,0)=u(t,m) 0<t<2rx

for the elliptic equation.

Solution. In order to solve this problem, we consider the Sturm-Liouville problem
U (X)) +ux)—Aux)=0,0<x<mu)=u(x),u 0)=u ().

generated by the space operator of problem (3.6). So, the nontrivial solutions of this Sturm-

Liouville problem are given by formulas
A = 4K + 1, up(x) = coskx, k=0,1,2,3, - -, up(x) = sinkx, k= 1,2,3,- - -.

Therefore, we will obtain the Fourier series solution of problem(3.6) by formula
w(t,x) = ) Ap(f)cos2kx+ ) By (1)sin 2kx,
k=0 k=1

where A, (1) ,k=0,1,2,3,... and B, (¢) ,k = 1,2, 3, ... are unknown functions. Putting u(z, x)

into the equation (3.6) and nonlocal boundary conditions (3.2), we obtain

— Y A (t)cos2kx — B! (¢) sin 2kx + 4k* Y Ay () cos 2kx + 4k* ) By (¢) sin 2kx
k k
k=1 k=0

k=0 k=1

+ZAk(r)cos2kx+ZBk(r)smzkx: 6costcos2x,0 <t <2m0<x<n,
k=0 k=1

Z A, (0) cos 2kx + Z B, (0) sin 2kx = Z A, (27) cos 2kx
k=1

k=0 k=0

+ Z B, (27) sin 2kx,0 < x < 7,
k=1
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2 [ e
f [Z A, (5) cos 2kx + Z By (s)sin 2kx) ds (3.7)
0 \i=o k

=1

= icoskathk(s)ds + i sin2kxf2ﬂBk(s)ds =0,0<x<m.
k=0 0 k=1 0

Equating coefficients sin kx,k = 1, ...,and cos kx,k = 0, 1, ... to zero, we get
—A7 () +5A,(t) = 6¢co0st,0 <t < 2m,
—A} (0 + (4% + 1) A () = 0,k # 1,0 < t < 27,
A (0) = A, 2m), fOZHAk (5)ds=0,k=0,1,2,3, ..,
—~B}/ (t) + (4 + 1) B, (1) = 0,0 < t < 2,
B (0) = B, (2n), foh By (s)ds =0,k=1,2,3,....

that is

21
A (0) =A(2n), f A (s)ds =0,k=0,1,2,3, ...,
0

27
B (0) = B, (2n), f By (s)ds =0,k=1,2,3,....
0
We will obtain Ay (7),k = 0, 1, .... Firstly, for k = 1,we have the following problem

—A7 (1) + 5A, (1) = 6¢c0st,0 <t < 2m,

A1(0)= A @n), [TA (s)ds = 0.

It is easy to obtain that A; (f) = cos t. Secondly, for k # 1,we have the following problem

—A7 () + (42 + 1) Ay () = 0,0 < 1 < 27,

2n
A (0) = A 2m), [ Ar(s)ds = 0.
It is easy to obtain that A; () = 0.

Now will obtain By(?),k = 1,.... We have the following problem

—By () + (4k* + 1) B (1) = 0,0 < t < 2,

B (0) = By 2n), [ " Bi(s)ds=0.
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It is easy to obtain that By () = 0. Thus the solution of problem (3.6) is u (¢, x) = costcos 2x.

Note that using similar procedure one can obtain the solution of the following mixed problem

u n Oult,x)

a
atz r=1 " (9)(%

= f(t, x),

0<t<2m x=(x1,....,x,) €Q,

2
u(0,x) =um, x) + ¢(x), fo u(s,x)ds = y(x), (3.8)

x=(xq,...,X,) € ﬁ,

ou(t, x)
om

_ Ou(t, x)

s, om

,0<t<2n
Sa

M(l', x)lSI = M(t, x)|S2 s

for the multidimensional elliptic differential equation. Assume that @, > @ > 0 and
[, x) (t €(0,2n),x € ﬁ) , (X)), Y(x) (x € 5) are given smooth functions. Here
S=5,US8,2=8 NS,

However Fourier series method described in solving (3.8) can be used only in the case when

(3.8) has constant coefficients.

Now, we consider Laplace transform solution of nonlocal problems for elliptic differential

equations.

Example 3.1.4. Obtain the Laplace transform solution of the initial-boundary-value problem

0? 0?
—a—t;t—a—xbzt+u:sinte‘x, O0<t<2m 0<x< oo,
u(0,x) = u2m, x), f(fﬂu(s,x)ds =0,0 < x < oo, (3.9)
u(t,0) =sint, u,(¢,0) = —sinz, 0 <t <2n

for the elliptic equation.
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Solution.We will denote L {u(t, x)} = u(t, s). Using formula

1
s+1

Lie™} =

and taking the Laplace transform of both sides of partial differential equations and u (0, x) =
u@n,x), fozn u(s,x)ds = 0 and using conditions u (t,0) = sint, u,(¢,0) = —sinz,0 <t <
27, we obtain

2

—u, (t,s) — (s2 - l)u(t, s) = 7 +SS

sint, 0 <t < 2m,

27
u(0,s) = u(27r,s),f u(y,s)dy =0.
0

It is easy to obtain that

sin t.

u(t,s) =

& 5) I+

Finally, taking the inverse Laplace transform of this equation, we obtain
u(t,x) = e *sint.

Note that using similar procedure one can obtain the solution of the following initial

boundary value problem

Pu n Qult,x)

- - Y

AT DS,

x=(xg,....x,) €QF, 0< 1< 2nm,

u(0,x) =un,x)+ ¢(x), fOZH u(s,x)ds = y(x),
(3.10)

—+
X = (.X], s xn) € Q >

ut,x) = a(t,x), u,(t,x)=p(x),

1<r<n0<t<2n,xe S

40



for the multidimensional elliptic differential equation. Assume that @, > @ > 0 and
F6,0) (€ 0,21),x € Q") @),y (x) (xe §+), a(t,x),B(tx) (te[0,2n],x€S*) are
given smooth functions. Here QF is the open cube in the n-dimensional Euclidean space
R"(0 < x;¢ < 00,1 < k < n) with the boundary S* and Q =0rus

However Laplace transform method described in solving (3.10) can be used only in the case

when (3.10) has a,(x) polynomials coefficients.

Finally, we consider the Fourier transform solution of the nonlocal boundary value problem

for elliptic differential equations.

Example 3.1.5. Obtain the Fourier transform solution of the nonlocal boundary value

problem
9* 0?
—a—:—a—;+u:(—4x2+4)e‘xzsint, 0<t<2m, —o0<x<o00,
(3.11)
u@,x)=un,x), f(fﬂu(s,x)ds =0,-0<x <o
for the elliptic differential equation.
Solution. We denote ¥ {u (¢, x)} = u (¢, i) . Then, applying the formula
(e_"z)” = (4x2 - 2) e‘xz,
and taking the Fourier transform from both sides of (3.11) and boundary conditions
271
u(0,x) =um,x), f u(s,x)ds =0,
0
we get
~tt (1) + (2 + 1)t ) = (12 +2) F {e™ Jsine, 0 <1 <27,
27
u,u) =un,u), f u(s,p)ds = 0. (3.12)
0
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The general solution of this equation is given by formula
u(t,p) = cre KA e em Vil + T{e"‘z} sint.

Then, using the nonlocal boundary conditions (3.12), we get
u(t,u) =F {e‘xz} sin t.

Finally, taking the inverse Fourier transform, we get

X

2 .
u(t,x)=e" sint.

Note that using similar procedure one can obtain the solution of the following initial

boundary value problem

Pu n Oult,x)

(04
atz r=1 " ax%

= f(t, x),

x=(x1,....,x,) €ER", 0 <t <2mnm,

(3.13)

u(0,x) =unm, x) + ¢(x), fozn u(s,x)ds = y(x),

x=(x,..,x,) €ER"

for the multidimensional elliptic differential equation. Assume that @, > @ > 0 and
ft,x)(e0,2r),x € R"),p(x), ¥ (x) (x € R") are given smooth functions.

However Fourier transform method described in solving (3.13) can be used only in the case
when (3.13) has constant coefficients.

So, all analytical methods described above, namely the Fourier series method, Laplace
transform method and the Fourier transform method can be used only in the case when the
differential equation has constant or polynomial coefficients. It is well-known that the most
general method for solving partial differential equation with dependent in ¢ and in the space

variables is operator method.
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In Chapter 3, we will study well-posedness of the nonlocal boundary value problem for
elliptic equations. Note that the well-posedness of the local boundary value problem for the

elliptic equation
V' () +Av(t) = f(1) (0<t<T), v(0) = vy, W(T) =vr (3.14)

in an arbitrary Banach space E with the positive operator A and its related applications have
been investigated by many researchers, see for example, (Ashyralyev & Sobolevskii, 2004;
Lunardi, 1995; Skubachevskii, 1997) and the references given therein.

Here, the abstract nonlocal boundary value problem for differential equation of elliptic type

T

V') +Av(t) = f(1) (0<t<T),v(0)=wT)+e, fv(s)ds =y (3.15)

0
in an arbitrary Banach space E with the positive operator A is considered. A function v(¢) is

called a solution of the problem (3.15 ) if the following conditions are satisfied:

1. v(?)is a twice continuously differentiable on the segment [0, 7']. The derivatives at the

endpoints of the segment are understood as the appropriate unilateral derivatives.

ii. The element v(¢) belongs to D(A) for all t € [0, T'] , and the function Av(?) is continuous

on the segment [0, T].
i.  v(¢) satisfies the equation and boundary conditions (3.15).

A solution of problem (3.15) defined in this manner will from now on be referred to as
a solution of problem (3.15) in the space C(E) = C([0,T],E). Here C(E) stands for the
Banach space of all continuous functions ¢(¢) defined on [0, T'] with values in E equipped

with the norm

= max t .
lelleur = max llg(o)le

The well-posedness of the problem (3.15) in various Banach spaces is established. In
applications, the new coercive stability estimates in Holder norms for the solutions of the

mixed type nonlocal boundary value problems for elliptic equations are obtained.
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3.2 AUXILIARY RESULTS FOR PROBLEM (3.14)

In this section, we give some auxiliary statements from (Ashyralyev & Sobolevskii, 2004)
which will be useful in the sequel. The operator B = A? has better spectral properties than
the positive operator A. Indeed, the operator —B is a generator of an analytic semigroup
exp{—tB} (t > 0) with exponentially decreasing norm, when t — +oco, 1. e. the following

estimates
lexp (=1B)| .. . |tBexp(=tB)| ., , < M(B)e *®"(t > 0) (3.16)

hold for some M(B) € [1,+c0), a(B) € (0,+0c0). From that it follows that the operator

I — e72"B has the bounded inverse and the following estimate holds:

I = ™) lpmp< M(B)(1 — 2P~ (3.17)
The following formula

W(f) = (I — e 2TB) (B — g~ @T0B), 4 (o~ T=0B _ ,~(T+0By,,

T
_(e_(T_[)B _ e—(T-H)B)(zB)—l f (e—(T—S)B _ e—(T+S)B)f(s)ds}
0

T
+(2B)™! f (71518 _ =98 £(5)ds (3.18)
0

holds for the exact solution of problem (3.14) under sufficiently smooth data vy, vy and f().
We denote by C*(E), (0 < a < 1), the Banach space obtained by completion of the set of all

smooth E-valued functions ¢(¢) on [0, T] in the norm

Il (2 +7) — @) |l
Il ¢ llceey= max lle()lg +  sup :
0<t<T

104
0<t<t+7<T T

Theorem 3.2.1. Suppose v{, vi € E,, f(t) € C*(E)0 < a < 1). Then the boundary value
problem (3.14) is well-posed in Holder space C*(E), if A is the positive operator in Banach

space E. For the solution v(t) in C*(E) of the boundary value problem the coercive inequality

M M.
IV llcee) + IAVIIcaey + IV llcE,) < o(l—a) Il f llceE) +;[|| volle, + IV7llg, ]

a(l

holds, where M does not depend on a, v, vy and f(t)
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Here, the Banach space E, = E,(B,E) (0 < @ < 1) consists of those v € E for which the

norm

1-
v llg,=supz ™ || Bexp{=zB}v [l + |l v Il
>0

is finite. Moreover, the positivity of A is a necessary condition for well-posedness of problem
(3.14) in C(E). However, the problem (3.14) is not well posed in C(E) for all positive
operators. It turns out that a Banach space E can be restricted to a Banach space E’ in such
a manner that the restricted problem (3.14) in E” will be well posed in C(E”). The role of E’

will be played here by the fractional spaces E, = E,(B,E)(0 < a < 1).

Theorem 3.2.2. Let A be the positive operator in a Banach space E and f(t) € C(E,)
(0 < @ < 1). Then for the solution v(t) in C(E,) of the boundary value problem (3.14) the

coercive inequality

. .
IV ek, + 1 AV llce)< M Avo llg, + 1| Avr llg, +a” (1 =) || f llee,)]

holds, where M does not depend on «, vy, vy and f(t).

3.3 WELL-POSEDNESS OF PROBLEM (3.15)
We consider the problem (3.15). Using formula (3.18) and nonlocal conditions, v(0) =

T
v(T) + ¢ and fv(s)ds =y, we get
0

WO = 2 (1= e (14 6) (Bw [ e ds) L
0

| =

T T
+%([—e_TB)1 B-l( f e T9Bf (s)ds + f e_SBf(s)ds), (3.19)
0 0

T

W) = 2 (1) (14 e) (ng B f £05) ds) L

T T
+%(I—e_TB)_1 B-l( f e T9BF (s)ds + f e_SBf(s)ds). (3.20)
0 0
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Actually, applying formula (3.18), we get

f ' v(y)dy = ( ZTB) 1 f ' (e_yB - e_(ZT_y)B) dyv(0)
0 0
__-orB\™! ! ~(T-y)B _ —~(T+y)B
+ (I e ) f(; (e Y e )dyv(T)
(7 _ -arB\7! N ~(T-y)B _ ~(T+y)B )
(I e ) (2B) (fo (e Y e )dy

T
(f (e—(T—s)B _ e—(T+s)B)f(S) ds)
0
T T
+(2B)"! f f (€718 — e™0B) £ (5) dsdly.
0 0

By computing and interchanging of the order of integration the following formula yields

f Tv(y)dy B (1-e?™) " (1= w0)
0
+B (1-e™) (1= ™) u(D)

_%A—] (I _ 6—273)—1 (I B 6_73)2 f: (e—(T—s)B _ e—(T+s)B)f(s) ds

T X
camr [ ([ o
0 0

T
+f (e_(y_s)B - e_(y“)B) dy)f(s) ds.

It follows that
y=B"(1-eT)(1+e7) w0
+B (1= &) (14 ™) (D)

_%A—] (I —TB) (1 + e_m)—l f: (e—(T—s)B _ e—(T+s)B)f(S) ds

1 T
+5A™ f (21— 267 — T8 4 " T+95) £ (5) dis.
0

Thus
y=B"(1-e")(1+e7) w0
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+B (1= &™) (14 ™) (D)

T T
—A™! (I+e_TB)_l( f e T8¢ () ds + f e_SBf(s)ds)
0 0

T
+A‘1f f(s)ds.
0

Applying the nonlocal condition v(0) = v(T') + ¢, we get

w=28"(1-e)(1+e™) w0) - B (1-e ™) (1+e™) ¢

T T
. (I + e‘TB)_1 ( f e TP f(s)ds + f e*Pf (s) ds)
0 0

T
+A‘1f f(s)ds.
0

From that they follow formulas (3.19) and (3.20).

It is easy to show that v(¢) defined on [0, '] by formulas (3.18), (3.19 ), and (3.20) is a unique
solution in C(E) of problem (3.15) if, for example, ¢ € D(A?), € D(A%) and Af (¢) € C(E)
or ' (t) € C(E). Sufficient conditions for the well-posedness of the nonlocal boundary value
problem (3.15) can be established if one considers this problem in certain spaces of smooth
E—valued functions defined on [0, T'].

Note that for the solution of problem (3.15) the coercivity inequality

IV llcee) + 1AVIIceey < Mclllfllce) + 11A¢llE + [|AYlIE]
fails. Nevertheless, we have the following result.

Theorem 3.3.1. Suppose Ay — fOTf(s) ds=0,Ap—- f(0O)+ f(T) € E,, f(t) € C*(E) (0 <
a < 1). Then the boundary value problem (3.15) is well-posed in Holder space C*(E), if A
is the positive operator in Banach space E. For the solution v(t) in C*(E) of the boundary

value problem the coercive inequality

’7 7’ M
IV llcaqey + 1AV]IceE) + IV llcE,) < | f llcae) o lAp = f(0) + f(Dl,

a(l —a)

holds, where M does not depend on a, ¢ and f(t).
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Proof. By Theorem 3.2.1 we have the following estimate

”VN”C”(E) + [|Av|ceey + ”VN”C(EG)

M M
< I f llewey += [IAV(©) = FO)lIg, + IAV(T) = (DI, |
a(l —a) a

for the solution of problem (3.15). Therefore, to prove the theorem it suffices to establish the

estimates for ||Av(0) — f(0)[[g, and [[AW(T) — f(T)llg,. Applying formula (3.19), we get

AV(0) - £(0) = = (Aso FO)+f(T)+= ( )

T T
X (f Be™ "B (f ()= f(T))ds + f Be*P (f (s) - £ (0)) a’S) :
0 0
Then using the triangle inequality, the estimates (3.16), (3.17) and the definition of the spaces
C?(E) and E,, we get
|41 Be™ (Av(0) ~ f (O))|,

< slse - ro+ s+ 5 -

T

T
+ f ||BZe—(/l+s)B

: iug’ |4 Be ™ (Ap - £ (O) + £ (1)),

T a _
Jﬂﬂl_a (f (T - ) s su If (s) f(QT)IIE
2 0 A+ (T =29) os<r (T—5)

T p _
+f Sy sup I/ (s) f(O)IIE)
0

(A+ 5 o<s<r sv

| 1 () = £ Ol ds)

1
< 5 lAe = £ O) + f (D,

% l-a IT& fT 5@ )
! (0 A @y @ e |Vlew

laa

1
< 5 1A = fO) + f (D, +Mf dSIIfllca(E)

+
[\
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for any A > 0. Since

T/ll—a/a 00 @ 2
f Szdssf P sdp £ ————,
o (1+5) o (I1+p) (1+a)(1-a)

we have that

|41 Be™ (Av(0) ~ f O))|,

A = fO) + f(Dllg, + M

| =

<

2
+rod-0 1A llcece)
for any A > 0. Therefore

1
1Av(0) = £ O, = 5 llA¢ = £O) + f (D, +

2M
T fllev - (3.21)

Applying v(0) = v(T) + ¢, we get
AWT) - f(T) = Av(0) — Ap — f(T).
Using the triangle inequality and the estimate (3.21), we get

1AV(T) = f(Dllg, < 1Av0) = f (O)llg, +I1If (0) = Ap = f(T)llg,

2M

<5 Ae = fO) + fF(Dllg, + 7 Mlicow -

[NSRRON)

Therefore, Theorem 3.3.1 is proved. O

Theorem 3.3.2. Suppose Ay — fOT f(s)ds =0, A is the positive operator in a Banach space
E and f(t) € C(E,) (0 < a < 1). Then for the solution v(t) in C(E,) of the boundary value

problem (3.15) the coercive inequality

1V llee + I AV lle@)< M Ag llg, +a ' (L=a) | £ llee,)]
holds, where M does not depend on «, ¢ and f(t).

Proof. By Theorem 3.2.2 we have the following estimate

I v” e, + I Av llee, < M Av(O) |z, + 1| Av(T) llg, +C¥_1(1 - @)_1 I f llei,]
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for the solution of problem (3.15). Therefore, to prove the theorem it suffices to establish the

estimates for [|Av(0)||z, and [|JAv(T)||g, . Applying formula (3.19), we get

T T
Av(0) = %Atp + %(1 - e_TB)_l ( fo Be T8 £ (s)ds + fo Be B f(s) ds).

Using the triangle inequality, the estimates (3.16), (3.17) and the definition of the spaces E,,

we get

|41 Be B Av(0)|, < %||/11-“Be—*BA¢||E + % |(r =) ”EﬁE

T T
A R W e
0 0

< iagl, + ma- ( f ' ds 1F (9
2 VPIIE, 0 A+T =) (T - s\ Fa

T ds
+j(: Wﬂf( )“E(,)

1 Alds
—||A +2M _—
2 lAellg, f Lt s)sie f e,

for any A4 > 0. Since

T 1-a oo a—1
ﬂ_dssf AR S
o (A+s)sl-@ o p+1 a(l-a)

we have that

2M
l-ap,—
|1 BeEAv(0))), < |A<,o||E T =g Wllee, -
for any A > 0. Therefore
1 2M
14V O, < 5 IAells, + s fllece, - (3.22)

Applying v(0) = v(T) + ¢, the triangle inequality and the estimate (3.22), we get

lAV(D)llg, < IAVO)lg, + 1A¢llg, <

2M
) ||A90||E o ”f”cn(E) .

Therefore, Theorem 3.3.2 is proved. O
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3.4 APPLICATIONS
Finally, we consider the applications of Theorems 3.3.1 and 3.3.2 to the elliptic equations.
First, we consider the boundary value problems for two dimensional elliptic equations

5 b
—a—;;—a(x)a—;zt+5u=f(y,x), 0<y<T, 0<x<l,

T
(0, %) = (T, x) + ¢(x), [u(s,x)ds =0, 0< x < 1, (3.23)
0

u(,0) = uly, ), ux(y,0) =u,(y,1), 0<y<T,

where a(x), ¢(x) and f(y, x) are given sufficiently smooth functions and

a(x) > 0, 6 > 0is a sufficiently large number. We introduce the Banach spaces C?[0,1] (0 <
B < 1) of all continuous functions ¢(x) satisfying a Holder condition for which the following

norms are finite

lp(x + 1) — ()]

= + su
Il ¢ llesro.=Il @ llcro, 1 p B

O<x<x+7<1
where C[0, 1] is the space of the all continuous functions ¢(x) defined on [0, 1] with the usual
norm

Il @ llcro.n= 5235 ()]
It is known that the differential expression

A*v = —a(x)v"(x) + ov(x)

define a positive operator A* acting in C?[0, 1] with domain C#*2[0, 1] and satisfying the
conditions v(0) = v(1), v,(0) = v,(1). Therefore, we can replace boundary value problems
(3.23) by the abstract boundary value problem (3.15). Using the results of Theorems 3.3.1

and 3.3.2, we can obtain that

T
Theorem 3.4.1. Assume that f f(s,x)ds = 0, 0 < x < 1. Then, for the solution of the

0
boundary value problem (3.23) the following coercive inequalities are valid:

Il Nle2roccupo,ny + 11 2t llee(c2eupo,nn)
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< M(a) [|| S lleeeroy +I = a()¢” () +0¢ (-) = f(0,-) + f(T, ')||cza+#[o,1]] )
Il 2t Nle2(c2emmgonny + Il lleezsaasupo iy
< M@)|Il £ lle(cno,y Hiplleowmon |, 0<2a+u<1.
Here M() is independent of ¢(x) and f(y, x).
Second, let €2 be the unit open cube in the n—dimensional Euclidean space R* (0 < x; <

1,1 < k < n) with boundary §, Q=0QUS.In [0, T] x © we consider the mixed boundary

value problem for the multidimensional elliptic equation

32 , n (92 ,
_ L;(yyz 28 ; @,(x) L;(;; 0 + ou(y, x) = f(y, x),

x=0x...,x)€Q,0<y<T,
(3.24)

T
u(0, x) = u(T, x) + go(x),fu(s, x)ds=0, x€ Q,
0

u(y,x) =0, xes,

where a,(x) (x € Q)and f(y,x) (y € (0,T), x € Q), p(x)(x € ﬁ) are given smooth functions
and o,(x) > 0, 6 > 0O is a sufficiently large number. We introduce the Banach spaces
Cgl(ﬁ) B =B1,...,.),0 < x < 1,k =1,...,n) of all continuous functions satisfying a
Holder condition with the indicator 8 = (By,...,8,),8: € (0,1),1 < k < n and with weight

xik(l — X — )P, 0 < xp < x5+ b < 1,1 < k < n which equipped with the norm
I f s =l £ e

+ sup lf(xty..oox0) — f(x1 + hyyoo oy x, + )

O<xp<xp+h<1,1<k<n

n
x | | P = = P,
k=1

where C(Q)-is the space of the all continuous functions defined on Q, equipped with the

norm
” f ”C(ﬁ): max |f(x)|
xeQ
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It is known that the differential expression

n (92 ’
A== 3 a5 4 vy,

r=1

defines a positive operator A* acting on C (Q) with domain D(A¥) C C2+’3 (Q) and satisfying
the condition v = 0 on S. Therefore, we can replace boundary value problems (3.24) by the
abstract boundary value problems (3.15). Using the results of Theorems 3.3.1, we can obtain

that

Theorem 3.4.2. Assume that

ff(s Xds =0, —Z ,(x ) (x) 4+ 60(x) — £(0, %) + f(T,x) = 0, x € Q.

Then, for the solution of the boundary value problem (3.24) the following coercive inequality

is valid:

n
lllzeafen ) + Z

O<a<l,u={u, - u:},0<u <1,1 <k<n,

62
62

r

< M(a) ||f||C(r CcH (ﬁ)
co(ch @) (@)

where M(«) is independent of f(y, x).

Third, we consider the boundary value problem on the range
{0<y<T,xeR"

for 2m—order multidimensional elliptic equations

0u Oy
_g + |r|%m ar( )8 rl 6 n + 5M(y, X) = f(y’ X),
O<y<T, x,reR"|rl=r+---+r, (3.25)

T
u(0, x) = u(T, x) + ¢(x), fv(s, x)ds =0,x e R",
0
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where a,(x) and f(y, x), ¢(x) are given sufficiently smooth functions and
a,(x) > 0, 6 > 0 is the sufficiently large number . We will assume that the symbol
BY©) = > a,(x) ()" .. ()" €= (£, &) €R"
|r|=2m
of the differential operator of the form

I

B = (—2 3.26
Z “ (x)ax? ...0x)" (3.26)

|r|=2m

acting on functions defined on the space R”, satisfies the inequalities
0< M1 |é~_-|2m < (—l)me(f) < M2|§|2m < 00

for & # 0. The problem (3.25) has a unique smooth solution. This allows us to reduce
the boundary value problem (3.25) to the boundary value problem (3.15) in a Banach space
E = C*(R") of all continuous bounded functions defined on R"satisfying a H 6lder condition

with the indicator u € (0, 1) with a strongly positive operator A* = B* + 61 defined by (3.26).

T
Theorem 3.4.3. Assume that f f(s,x)ds =0, x € R". Then, for the solution of the boundary
0

value problem (3.25) the following coercivity inequalities are satisfied

OMu

~ 1 A~ 7 S M a [ (03 n
o o (@) |1 llceccnrmy

CH(CHR™)

|| u ||C2+‘Y(C“(R”)) + Z

|r|=2m

O o(-
| a0 ) = 0. + T

I 1,
ox)'...0x;'

b

C2ma+p (R™) ]

|r|=2m

oMu
o
ox)'...0x,

” u ||C2(C2ma+p(Rn)) + Z

lr|=2m C(CZ""H"‘(R"))

3|r|(p

_— , 0<2ma+u<l,
ox)' ...0x, K

< M(a) [Ilf lle(comencrmy) + Z

|T|=2m

C(CZmarﬂz(Rn))]
where M(a) does not depend on ¢(x) and f(y, x).

The proof of Theorem 3.4.3 is based on the abstract Theorems 3.3.1 and 3.3.2, the positivity
of the operator A* in C*(R"), the structure of the fractional spaces E(I((A")%, C(R™)) and the

coercivity inequality for an elliptic operator A* in C¥(R").
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CHAPTER 4
WELL-POSEDNESS OF ELLIPTIC DIFFERENCE EQUATIONS WITH
NONLOCAL BOUNDARY CONDITIONS

4.1 INTRODUCTION
In the present thesis, second order of approximation two-step difference scheme

U] — 2Uy + Uy
- Tzk = +Au = fio i = f@), tx =kt,1 <k <N-1,Nt =T,

4.1

N

Up = Uy + @, ), ;T =Y

i=1
for the approximate solution of problem (3.15) is presented. The well-posedness of the
difference scheme (4.1) in Banach spaces is established. In applications, the stability, almost
coercive stability and coercive stability estimates in Holder norms in one variable for the
solutions of difference schemes for numerical solution of two type elliptic problems are

obtained.

4.2 AUXILIARY RESULTS
In this section, we give some auxiliary statements from (Ashyralyev & Sobolevskii, 2004)
which will be useful in the sequel. We consider the second order of accuracy difference

scheme

U1 — 2Uy + Uy
- Tzk “ tAu = fi, fi=f0), h=kt, I<k<N-1, Nt =T, 4.2)

Uog = vo, Uy = vr.

of approximation solution of the boundary value problem (3.15). This problem is uniquely

solvable, and the following formula holds

we = (I = RV {(R* = RV Fyug + (RV = RV yuy 4.3)

i=1

N-1
—(RV* RN+ TB)2I +7B) B Y (RY - RN“')f,-T}
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N-1
+(I+TB)2I + TB) BT Y (R - R fir, 1 <k < N -1,
i=1

where

A A\?
B:B(T,A):%+ (%) +A R=(+1B)".

Note that B(t,A) # A?but then B(t,A) — A? as T — 0 and it has same spectral properties of
A2 under the some assumption for A.

Let us denote by F.(E) = F([0,T],, E) the space of grid functions ¢* = {<Pk}ivz_1] for fixed
T= % Thus, F.(E) is the vector space whose elements are ordered (N —1)-tuples of elements
of E. The space F;(E) can be equipped with various norms and thus become a normed space.
Thus, for instance, the vector space F.(E) generates the normed space C.(E) = C([0,T]., E)

with the norm

,
= max .
I @lle = max 1l

Let us reduce the difference scheme (4.2) to an operator problem in the space F.(E). In
addition to the operator D%, acting from the space E X F.(E) X E of vectors w™ = {wk}kN: o Into

the space F,(E) of vectors v" = {v}3~ by the rule
T 2. T 1
vV = DTM s Vi = _2(Wk+1 _2Wk + Wk—l)’k = 1,' ' '9N_ 19
T

define an operator A, from the space E x F(E) X E of vectors w™ = {w}¥’ into the space

F(E) of vectors v" = {v;}]' by the rule
Vi=Au, vi=Awy, k=1,---,N—1.

Then the difference scheme (4.2) can obviously be rewritten as the equivalent operator

equation
—D?T(ug, uy)u™ + A T(ug, uy)u” = f7.
Here /7 is defined by the formula

fT = (flv ' "fN—l)-
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The last operator problem will be considered in the space F.(E). From its unique solvability
for any uy, uy € E and f7 € F.(E) it follows that its solution u” defines an additive and
homogeneous operator u"(f7, up, uy) is continuous.

The boundary value problem (4.2) is said to be stable in F.(E) if we have the inequality

| u™(f, uo, un) ”FT(E) <ML f* ”FT(E) + | uollg + llunllg],

where M is independent not only of f7, uy, uy, but also of 7.
The boundary value difference problem (4.2) is said to be well-posed (coercively stable) in

F.(E) if we have the coercive inequality

-2 N-1 N-1
” {T (uk+l - 2uk + uk*l)}l ”FT(E) + ” {Auk}l ”FT(E)

<M Mg + 1 Aug Nl + lAunllg],

where M is independent not only of f7, uy, uy, but also of 7.

From the formula (4.3) it follows that the investigation of the stability and well-posedness of
difference scheme (4.2) relies in an essential manner on a number of properties of the powers
of the operator R = (I +7B)~! in the general cases of operator A. We begin by deriving some
estimates for powers of the operator (I + 7B)™! a strongly positive operator A in a Banach

space E ( Sobolevskii, 2005).

Lemma 4.2.1. Let A be a strongly positive operator in a Banach space E. Then, —A is a
generator of the analitic semigroup exp{—tA} (t > 0) with exponentially decreasing norm,

when t — +00, i. e. we have the following estimates
|lexpt—tA}||,_,, < M ™ (¢ > 0),

|[tA exp{—tA}||,_ . < M (¢ > 0)

E—E —

for some 1 < M < 400, 0 < § < +0o0. Here M does not depend on 7.

Lemma 4.2.2. Let —A be a generator of the analytic semigroup exp{—tA} (t > 0) with
exponentially decreasing norm, when t — +oo. Then the following estimates hold for any

k>1:
AT +B)*||,_ . < M2+ Ta(A)] ™,
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IktBU + TB) gk < M,
where M does not depend on .

Let —A be a generator of the analytic semigroup exp{—tA} (t > 0) with exponentially

decreasing norm, when t — +o00. Then the following estimates hold for any k > 1 :

(A +tB)* < M[A + ta(A)] 7, (4.4)
|

E—-E —

lktBU + TB) Mlg—p < M, (4.5)

where M does not depend on 7.

We have the following results.

Theorem 4.2.3. Let A be a strongly positive operator in a Banach space E. Then, difference
problem (4.2) is stable in C.(E). For the solutions of the difference problem (4.2) satisfy the

stability inequalities
I u™ Nl < MU Ny + 1 uolle + lluw 11£],
where M does not depend on f7, uy, uy and .

Theorem 4.2.4. Let A be a strongly positive operator in a Banach space E and uy, uy €
D(A). Then, the solutions of the difference problem (4.2) in C.(E) obey the almost coercivity
inequality

” {T_z(u/ﬁl - 2uk + uk—l)}llv_l ||CT(E)+ || {Auk}jlv_1 ||CT(E)
) 1
< M[min {hl put |1n||A||E—>E|} I 7 e, + 1l Auglle + lAuy 11£],
where M is independent not only of f7, uy, uy but also of 7.

Theorem 4.2.5. Let A be a strongly positive operator in a Banach space E and
(I = Rt %uy — fi, I — R)*1%uy — fy_1 € E.,. Then, the solutions of the difference problem
(4.2) in C¢(E) obey the coercivity inequality

” {T_z(ukﬂ - 2uk + uk—l)}llv_l ”C?(E) + ” {Auk}llv_l ”Cﬁ.'(E)
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) N-1
+ T err = 20 + - DY T e

M

2.2
< m[” fr ”C?(E) +II =R T7uy - fi ||E&

+HI( = R* T 2uy — frv-illg 1,
where M, is independent not only of 7, uy, uy, , but also of T. Here, the Banach space
E/, =E/ (B,E) (0<a <1)consists of those v € E for which the norm
1V llg,= supz® || B+ B)"'v Iz + | v |l
>0

is finite.

Theorem 4.2.6. Let A be a strongly positive operator in a Banach space E and Auy, Auy €

E!,. Then the solutions of the difference problem (4.2) in C.(E],) obey the coercivity inequality

-2 N-1 N-1
2 Gtt = 20 + e DW Ny + HABR ™ e

1
<M|———|| o+ | Augllz + |Aunllg |,
a(l—a)”f e,z + 1Auollg, + lAuyl|g,

where M is independent not only of f7, uy, uy, @, but also of T. Here, the Banach space
E,=E/(B,E) (0<a <1)consists of those v € E for which the norm

-1
v llg,=supz® || Bzl + B) v+l vIE
z>0

is finite.

4.3 WELL-POSEDNESS OF DIFFERENCE PROBLEM (4.1)

We consider the difference problem (4.1). Using formula ( 4.3) and nonlocal conditions

N

uozuN+<,0,ZuiT:lp,

i=1
we get

N-1
up = I +B)'(I + R") (1 - RN)_I {B.// —B'(I+1B) Z f;} (4.6)
i=1
+ U+l + 7By (1-RY) (1-R"")p

N-1 N-1
+B I +tBQI+ B (1-RY) {Z R ifr+ Y K fﬂ'} ,
i=1

i=1
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N-1
uy = QI+ 7By +RY)(I - RN)_I {Bw — B (I +1B) Z f,-T}

i=1
—@r+B) (1-RY) (1-R")¢

N-1 N-1
+ B I+ 1B+ 1B (I - RN)_l {Z RVifr + Z R ﬁr} .
i=1 i=1

Actually, applying formula (4.3), we get

N-1

N-1 N
v =uyt+ ) wr =1 - R {Z(Rk = RN Py + (RN F = RV yuyt
k=1 k=1

k=1

N-1 N-1
= > (RYF—RVY(I +B)2I + 7B BT Y (RN - RNH)fiTz}

k=1 i=1
N-1 N-1
+(I+TB)2L + B BT Y N (R - R £,
k=1 i=1

By computing and interchange of the order of summation, we obtain

W= (I — RNy {R (1 T RN‘Z) — RV¥! (RN—2 T 1)} UoT
+ (I — RNy {(RN-1 +..+1)— R (1 T RN-I)} UNT

— (I - Ry {R (RVZ+ .+ 1) =RV (I +.. + RV?))
N-1
x (I +7B)(2I + 7B)"' B Z(RN—" — RV f12 + (I +tB)2I + tB)"'B™
i=1
N-1
X Z {(Ri“ T I) + (R +o+ RN""‘) - (R”i ot RN”‘])}firz.

i=1

Therefore,

y=UI-R"Y'R(I-R") I =R (I- R Yuor
+ (I — R*Ny! (1 - RN+‘) (I-R)" (1 - RN) UNT
— (I -R™)'R (1 - RN) (I-R)" (1 - RN-I) (I+7B)2I +1B)"'B™!
N-1

x (R = R¥) f® + (I +7B)I +TB) ' B (I - R)”'
i=1

=

x > (1= RY)+R(1=R"") = R™ (1= RV)| fir?.

i=

—_
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From that it follows that

y=UT+R)'RU-R)"(I- R Yuor + I+ R") (1 - R*) (I = R uyt
N-1
—(U+R) T U-R (1-R") @I +7B) ' B Z(RN—" — RV £
i=1
N-1
+(+1B)2I+7tB)'B' (U -R)" Z (1 ~R +R-RV—R* 4 RN”) .

i=1

Thus

v=U+R")'RU-R)" (1 - RN‘I) uot + (I + RV)™! (1 - RN“) (I-R)uyt

N-1 N-1
~B U -R U+ RY)! {Z RVf?+ ) R fﬂ'z}
i=1 i=1

N-1
+B I +1B)2I+ 7B (I - R (I+R) Z 72

i=1
Since uy = uy — ¢, we have that
y=U-R"U+RVY'U+R) (1 - RN) uot — (I — R (I + RY)™! (1 - RN“) o1
N-1 N-1 N-1
~B'(U-RI+RY)! {Z RV f? + ) RiﬁTQ} +BU-R Y fiT
i=1 i=1 i=1
From that they follow formulas (4.6), (4.7).

Theorem 4.3.1. Let A be a strongly positive operator in a Banach space E and
N-1

W = A Y fit. Then, difference problem (4.1) is stable in C.(E). For the solutions of the
i=1

difference problem (4.1) satisfy the stability inequality

Il lleae < M| llee + 1@ U]

where M does not depend on f7, ¢ and .

Proof. By Theorem 4.2.3, we have the following estimate

I u™ lle.e< M e, + 11 uolle + Nl ]
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for solution of problem (4.2). Therefore, to prove the theorem it suffices to establish the

N-1
estimate for ||ug||; and ||uy||z. Applying condition y = A~' 3 fi7, formula (4.6), we get
i=1

wo = (I + B2 +7B)" (1-R™)(1-R) ¢ (4.8)

N-1

N-1
+ BT +7B) 21 + 7B (1-R") {Z RV ifr+ Y R fﬂ'} .
i=1

i=1

Using formula (4.8) and the triangle inequality, we get

luolly < |7 + eBY@L + 7B (1= RY) (1= RY) | ligll

+ HB—I(I +TB)2I +7B)" (I - RN)*HE%

N-1 N-1
N—i ,
xRN Wil 7+ > (IR, s 7
i=1 i=1

Using estimate (4.4), (4.5), we get

N-1
laoll < My liglle + My max Il >
1<i<N-1

i=1

(1+Ta(A))T

< M3 (I £ Ny + Nl ).
From that and formula uy = uy + ¢ it follows
lunlle < Msll f7 e, + (M + Dl @l
Therefore, Theorem 4.3.1 is proved. O

Note that for the solution of difference problem (4.1) the coercivity inequality
” {T_z(uk+l - 2uk + uk—l)}]lv_l ”CT(E) + ” {Auk}llv_l ”CT(E)

< Mcllliflle,e + NlAelle + 1AYlE]

fails. Nevertheless, we have the following results.

Theorem 4.3.2. Let A be a strongly positive operator in a Banach space E and
N-1
W = A" Y fir. Then, the solutions of the difference problem (4.1) in C.(E) obey the almost
i=1
coercivity inequality
” {T_z(ukﬂ - 2uk + uk—l)}llv_l ||CT(E)+ || {Auk}jlv_l ||CT(E)
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1 .
< M[mm {ln ~.[In ||A||H|} 1 ey + 1| Ag ||E],

where My is independent not only of f7, ¢ but also of T.
Proof. By Theorem 4.2.4, we have the following estimate
. 1 .
Il Au” llc,r< M[min {ln p |In ||A||E—>E|} I e,y + 1l Auglle + [|Aunllg]

for solution of problem (4.2). Therefore, to prove the theorem it suffices to establish the

estimate for ||Aug||z and ||A uyl|g. Using formula (4.8), and formula A = B>R, we get

Aug = (I +TBY2I + 7B (1= R¥") (1 - RY) ' Ag (4.9)
N-1 N-1
Z BRV f1 + Z BR ft
i=1 i=1

Applying the triangle inequality, we get

+@I+7B (1-RY)

-1
lAuolly < (7 +B)Q2I +7B)™ (I = R*') (I = RY) "Il gllAgll

N-1 N-1
wlr+ B (1-RY) s {Z IBRY||, Wil 7+ D BRI, il r} :

i=1 i=1

Using estimate (4.4), (4.5), we get
1
lAuollg < MsllAell + Me max ||fillg1In -,
1<i<N-1 T
lAuolle < MsllAgllz + Ms max [|fillz [1 + [InIBllg gl
Hence
) 1
| Auglle < M7 [” Ag || + min {ln e 1+ |ln||B||E—>E|} I fr ||CT(E)] :
From that and formula uy = uy — ¢ it follows
) 1
lAunlle < (M7 + Dl A |l + M7 min {ln pt 1 + [In ||B||E—>E|} I f7 e, e)-
Therefore, Theorem 4.3.2 is proved. O

Note that for the solution of difference problem (4.1) the coercivity inequality

-2 N-1 N-1
” {T (uk+1 - Zuk + uk—l)}l ”C?(E) + ” {Auk}l ”Cf(E)

< Mclllfllces) + lA@lle + [|AYlE]

fails. Nevertheless, we have the following result.
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Theorem 4.3.3. Let A be a strongly positive operator in a Banach space E and
N-1

W = A™''Y fir. Then the solutions of the difference problem (4.1) in C*(E) obey the
i=1

coercivity inequality

-2 N-1 N-1
” {T (uk+1 - 2uk + uk—l)}l ”C?(E) + ” {Auk}l ”Cﬁ.’(E)

M
2 N-1 8
+ T u — Uy + Uy NS —— CYUE
” { ( k+1 k k 1)}] ”CT(EH) 3(1 )” f’f ” o)

+ My [||A90 +Rfy-1 — (I +3tB+ (tB))Rfillg, + lAp — Rfi + (I + 31B + (TB)z)RfN—1||E(;] ,

where Mg is independent not only of f7, ¢, @, but also of 7.

Proof. By Theorem 4.2.5 we have the following estimate
” {Auk}llv_l ”C;?(E)

—M — p—
< o(1—a) S Mo + 11 (= Rt %uy - fi g, + (7 - R uy — Sl ],

for solution of problem (4.2). Therefore, to prove the theorem it suffices to establish the
estimates for || (I = R)*7"%ug — fi |lg; and [|(I = R)*t*uy — fy-illg,. Applying formula (4.8)
and (I — R)*>t™2 =AR , we get

(I =R 2up— fi = @I+ 7By (1-RY) " (1- RV) Ap

N-1 N-1
+@r+7B (1-RY) 'R {Z BR'fr+ Y BR' fﬂ'} - f
i=1 i=1
asd

(I =Ryt %ug—fi = I+7B)™" (I - RN)_l (1-R") [A¢ + Ry — (I+37B + (TB)Z)Rfl]
| N-1 N-1
+Q2I+7B) (I-R") R {Z BRVU(fi— fu-) T+ D BRTN(fi- fi) T}
i=1 i=1
v+ (1-RY) R U =R (1-R)f;

5
~@r+ 7By (1-RY) RY(1- R fies = > B,

m=1
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where

H' = @1 +7B) (1-RY) " (1 - RY"){Ap + Ryt — (I + 3tB + “BIRS).

N-1
H = @I +<B) (1= RY) > BRY ™ (f~ fy-o).

-1

lN ! .
Z BR™ (fi = fr,

i=

H?>=QI+71B)"! 1 RN

H*=@I+7B)" (I - RN)_ RV (I-R)(I-R) £,
H®=-QI+7B)" (I - RN)_l RY(I - R?) fy-.

Now, let us estimate H™ for any m = 1,2,3,4,5 in E/,, separately. We start with H !. Using

estimate (4.5) and the definition of the spaces E/,,we get
-1
1H g, < 1+ 7B (1= RY) (1= RVl

X||Ap + Rfy_1 — (I + 3B + (tB))Rfille, < M||Ap + Rfy_1 — (I + 3tB + (tB))Rfi |l .

Thus, we have proved that
IH I, < MllA@ +Rfy-1 = (I +37B + (tB)))R filg;.

Using estimates (4.4), (4.5),

11
IB*(A+ B)' RV (tB)llpmr < M mm{ Ty }

and the definition of fractional spaces E/, (B, E) and normed space C¢(E), we get
| A“B(A+B)"'H? ||

<a”

@i+ (1-RY) 7 IZBZ(/1+B) RV (= fy) T

N-1
1
< M A” ty — t;)"Tmin «
1 Z( N —1)" {tN l /sz\l—i}” S e
N-1 -
< MyA* _— e
2 [; t1=e(1 + Aty 7 ”CT(E)
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for all A, A > 0. The sum enclosed in the right-hand side square brackets is the lower Darboux
integral sum for the integral

Iy
f ds
si=o(1 + sA)
0

Since

IN &)
/laf ds < f dp ’
si=e(1 + s2) p'=e(1 + p)
0 0

it follows that

M;
2B+ B 'H? |lg ———|| 7 llce
| A7B( ) Il a(l_a)llf llce )

for all A, 4 > 0. From that it follows

IH? g, < ——— (1 IIfTIIC °(E)"

In a similar manner we can show that

M;
3
H ||, < a(l || S e sy
Now, we will estimate ||H?| e,-Using estimates (4.4) , (4.5) ,we get

I "B+ B H* ||

< 2B+ By @1 + By (1~ RN)_I RV'(I-R)(1-R) fi H

< A%

(A+B)' @I +B)" (I +1B) (I - RN) I-R(I-R fln 1BR 1],

for all A, 4 > 0. From that it follows
IH g < My |l fillg -
In a similar manner we can show that

5
H||g, < M3l fu-1 llg-
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Finally, applying the triangle estimate and estimates for H” for any m = 1,2,3,4,5 in E/,,

we get
I =RV uo = fi llg,
M4 T 2
< —_a)ll I lcoy + MIIA@ + Rfy-1 — (I + 3tB + (TB) )R fill;,-

a1l

In a similar manner we can show that
2_-2
| = R v %uy — fN—l”E,

M.
< a/(l——4 a)” fr llcesy + MllAp — Rfi + (I +37B + (TB)z)RfN—luE;,-

Therefore, Theorem 4.3.3 is proved. O

Theorem 4.3.4. Let A be a strongly positive operator in a Banach space E and
N-1

w = ALY fr. Then the solutions of the difference problem (4.1) in C.(E') obey the
i=1

coercivity inequality
-2 N-1 N-1
” {T (uk+1 - 2uk + uk—l)}l ”CT(E&) + ” {Auk}l ||CT(E(,1/)

1
=M [mll S ey + ||A90||E;,] :

where Ms is independent not only of f7, ¢, @, but also of 7.

Proof. By Theorem 4.2.6 we have the following estimate

1
A Y1 < M| ——|| T o+ | Augll e + |Auyll |,
IH{Awdy ™ e a(l_a)llf e,z + 1Auollg, + lAun|lg,

for solution of problem (4.2). Therefore, to prove the theorem it suffices to establish the

estimate ||Augl|g, |Aunllg,. Applying formula (4.9), the triangle inequality and estimates

(4.4), (4.5), we get
Aug = (I +TBY2I + 7B (1-RY) " (1= R¥") Ag

N-1 N-1
+ @ +7B (1-RY)" {Z I-RR"fi+ 3 (1-R) Rl’-lf,-} .
i=1 i=1
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Applying the triangle inequality, we get

|4 BT + By Auy |, < H(I +TB)2 + 7B (1-RY) " (1-RY)

| laeBar+ By ag],

+ H(2I +7By (1-RY) HEﬁE

N-1 N-1
X {Z |a°BI + B (1 - R RV £ + Z |[A°B(AI + By (1 - R)R™! f;||E} .
i=1 i=1

To estimate the last two sums we use the following Cauchy-Riesz representation formula
for these two operators 2Bl + B 'U-RG@B)RYV"'(tB) f,
A“BAI + B)' (I -R(tB))R™ (tB) f.

BAI+B)'(I-R@B)R"""'(tB) f;

= f A+ 5" I -=R@xs) RN (rs) B(sI — B! fds
S1US»

-1
- f Ar+2'U-RG@)R""' (B (51 - B) fidz
S1US» T

where S| = {pei‘/’,O <p< 00} and S, = {pe‘i‘/’,O <p< oo}, 0 <y < Z. Since z = pe*,

with [iy| < 7, from the strongly positivity of A it follows that
@ -1 (01 -1
2 B(EI—B) #l <2 B(’31+B) f
T T E T T E

From this estimate and the estimates

LM
At +2zl = At +p’

=N+i

|(I ~R() RV (z)| = p(l + 2p cos iy +p2) :

it follows that

N-1

Z Ja°BI + B (1 - R RV £,

i=1

=7 0 “(142 N At+p \1
i=1 (1 +2pcosy + p?)
G
o

” 1
<M m N = My —— || 7 N
B ]Oﬁ At +pdp 1N il 1 a(l - a/)H I ey

B(gl + B)_l f

dp
E
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In a similar manner,

N-1
Dt B - R R, < Mo ey
Hence
||/1‘IB(/U + B)_IAMOHE < M3 {”ASD”E(’Y + ﬁ” fr ||c,(E{,)}-
Thus
I Auo Iz, < My {nAsonE s ||C,(E,>}.
« a(l —a) @

From that and formula uy = uy + ¢ it follows

1
| Auy g, < MBa/——a)” T lewy + (Mis + D llAellg, -

(1

Therefore, Theorem 4.3.4 is proved. O

4.4 APPLICATIONS

Finally, we consider the applications of Theorems 4.3.1-4.3.4 to the elliptic equations. First,
we consider the nonlocal boundary value problem (3.23) for two dimensional elliptic
equations.

The discretization of problem (3.23) is carried out in two steps. In the first step, let us define

the grid sets
[0,1], = {x, =nh,0 <n < M,Mh = 1}.

We introduce the Banach spaces C;, = C[0, 1], and C; = C*[0,1],,0 < @ < 1 of the grid

functions ¢"(x) = {¢,}2, defined on [0, 1], equipped with the norms

le"lle, = max l¢"Gol

|S0n+r - SDnI
c + sup —_—
h 0<n<n+r<M rh

l¢"

respectively. For the differential operator A defined by (3.23), we assign the difference

h
%
o

b

operator Aj defined by the formula

O+l — 29011 + Pn-1 5 M-

Arg (x) = {—a (%)

n=1
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acting in the space of grid functions ¢” (x) = {¢,}, defined on [0, 1], satisfying the
conditions ¢y = @, Y1 — Yo = Oy — Pp-1-

With the help of A7, we arrive at the nonlocal boundary value problem

d2 h(’7 )
_% + Azuh(y’ X) = fh(y’ X),

x€[0,1],,0<y<T, (4.10)

T
u™(0, x) = u(T, x) + ¢"(x), fuh(s, x)ds =0, x€[0,1],.

0
In the second step we replace problem (4.10) by the difference scheme

1
—;(u,’;l(x) = 22U} (X) + u)_ (X)) + Afu(x) = L0, £1(x) = Ok %), 3 = kT,

N
1<k <N-LNT=Tuf(0) = () +¢"x), > ul(x)=0, xe[0,1],. (4.11)

i=1

N
Theorem 4.4.1. Assume that ) fih(x) =0, x € [0,1],,. Let T and h be sufficiently small
i=1

numbers. Then, the solutions of difference scheme (4.11) satisfy the following estimates

max ||MZ

< 1£ele, + 1"
0<k<N ||Ch - Ml[ max f}c Ch + “QO ||Ch H

1<k<N-1
20 h byt Wl o
7"y — 205 + DY llewen HIHAR ”CT(C")
1
h\N-1 h
< -
<M, [ln . h”{fk H ”c,(ch) +llp ”C121] ’

-2/ h h h N-1 2 hN-1
Il {r (I/tk+1 - 2uk + uk—l)}l ||C§’.‘(Ch) +||{Dhuk}1 ||C¥(Ch)

1
A N—1 h
< Ma@ AN g + Ml 0 < < 5,
2 h h . h \N-1 h\N-1
Il {r (I/tk+1 - 2Mk + uk_1)}1 HCT(C,%”) +||{Azuk}] ”CT

)

1
h
CT(Cﬁa) + M]”(p ||C]2l+20,0 <a< 2.

Here M, M>(@) do not depend on 1, h and fkh,l <k <N -1and ¢".Here, the difference

< My(@)ll{ Y1)

operator D,21 defined by the formula

Gnil — 200 + Qo1 5 M=

D" (x) = {



acting in the space of grid functions ¢" (x) = {@ ), defined on [0, 1], satisfying the
conditions ¢y = @p, 1 — Po = Pm — Pm-1-

Proof. 1t is known that Aj is a stronly positive operator in C;, . Therefore, we can replace
difference scheme (4.11) by difference problem (4.2). Then, the proof of Theorem 4.4.1
is based on the abstract Theorems 4.3.1- 4.3.4, the positivity of the operator A in C, the

structure of the fractional spaces E:l((AZ)%, Cy) and the following estimate see (Ashyralyev

& Sobolevskii, 2004; Ashyralyev, 2015)

) 1 1
mm{ln put Ch_)ch‘} SlenT+h.

1n|

Ay

O

Second, we consider the boundary value problem (3.24) on the range {0 <y < T, x € R"}
for 2m—order multidimensional elliptic equations.

The discretization of problem (3.24) is carried out in two steps. Let us define the grid space
R; (0 < h < hy) as the set of all points of the Euclidean space R" whose coordinates are given

by
kaSkh, Sk:(),il,iz""’k:l,...’n'

We introduce the Banach spaces C, = C (RZ) and C; = C (RZ),O < a < 1 of the grid

functions ¢"(x) defined on R} equipped with the norms

l¢"ll, = max "ol

xeR;’
n

") — ")
h _ h r =~ -1
le"lley = lle"llc, + epesy | =y

respectively. To the differential operator A let us give the difference operator A; by the

formula
h h h
Al = 3" biDjul + oul.
2m<|r|<S
The coefficients are chosen in such a way that the operator A; approximates in a specified

way the operator (Ashyralyev & Sobolevskii, 2004)

Ir!

A(X)=————— + 6.
Z 4 (x)ax?...(?x,ﬁ”

[r|=2m
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We shall assume that for |£;A4| < 7 the symbol A(£h, h) of the operator A} — ¢ satisfies the
inequalities

b3
(=1)"A*(Eh, h) = M, £, | arg A*(Eh, )] < ¢ < ¢ < oA
With the help of A; we arrive at the boundary value problem

d*V'(y, x)

—5— AV 0,0 = 10, 0,0 <y <T, (4.12)
Y

T
vi(0, x) = V(T x) + ¢" (%), fvh(s, x)ds =0,x e Ry,
0

for an infinite system of ordinary differential equations. In the second step we replace

problem (4.12) by the difference scheme

1
—;(u’k:l(x) = 2u(x) + ul_ (X)) + A (x) = £, (0 = 'Ok 0,y = ke,

N
1 <k<N-1,Nt=T,ul(x) = uly(x) + ¢"(x), Z ul(x) =0, xe R (4.13)
i=1
N
Theorem 4.4.2. Assume that ), fih(x) = 0, flh(x) = fl’\ﬁ_l(x) =0, x € R;. Let T and h
i=1
be sufficiently small numbers. Then, the solutions of difference scheme (4.13) satisfy the

Jfollowing estimates

max ||uZ ,f

|| < Ml[ max |
0<k<N Ci

1<k<N-1

h
o+l .

20, h h o h \N-I hyN-1
TGty = 205 + g DN e AR Ml o,

1 hyN-1 1 h
<M, [lnmll{fk}] le.cyy + I 21l |

~2¢ h h o h yN-1 hN-1
7" gy = 20 + e} ||ca(cﬁ) LU S
(& CT(Ch )

§ I
< Mo(@) [N Mgy, + 1 llegmem ] 0 < < 5-0 < p < 1.

-2/ h h h N-1 hN-1
7™ (g — 20 + wy_ DY ||CT(C,§'"“) +I{ AR h ”CT(Cﬁma)
1
A N—1 I/
< My(@) [ll{fk By + ||¢1||C]2,,Hzm] O<a<s.
T h n

Here My, M»(a) do not depend on v, hand f",1 <k <N —1and ¢".
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Proof. 1t is known that A; is a stronly positive operator in C;, . Therefore, we can replace
difference scheme (4.13) by difference problem (4.2). Then, the proof of Theorem 4.4.2 is
based on the abstract Theorems 4.3.1- 4.3.4, the positivity of the operator A} in Cj,, and on

the almost coercivity inequality for an elliptic operator A; in C,and the following estimate

{ 1
min<In —,
p

and the structure of the fractional spaces E;((A;)%, C)) and on the coercivity inequality for

ln|

Aj

1
Ch—)Ch’} <M, In T+ h

an elliptic operator A; in Cf , see (Ashyralyev & Sobolevskii, 2004; Triebel, 1978). O

Third, let Q be the unit open cube in the n—dimensional Euclidean space R* (0 < x; <
1,1 < k < n) with boundary §, Q=QuUS.In [0, T] x Q we consider the nonlocal boundary
value problem (3.25) for the multidimensional elliptic equation.

The discretization of problem (3.25) is also carried out in two steps. In the first step, let us

define the grid sets

Q= {x=x;= (hijis s Bunfin)s § = (it oo fin):

OéjrSMr’ her: I, r= 1,...,m,},
thﬁhﬂg, ShzﬁhﬂS.

We introduce the Banach spaces L, = Lz(ﬁh), Cf = Cgl(ﬁh) B =B,...,6.),0 < x; <
1,k=1,...,n)and C), = C(ﬁh) of the grid functions ¢"(x) = {¢(hij1, ..., hmjn.)} defined on

Q. equipped with the norms

1/2
||(ph||L2h - [Z |gph(x)|2 hl U hm] ?

X Eﬁh

and
h TN T
” @ ||C§1@h)—|| Y ||C(Qh)

+osp ) = x| PR - = P
k=1

O<xp<xp+hi<l,1<k<n

le"lle, = sup l¢"co)

xEQh
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respectively. To the differential operator A generated by problem (3.25), we assign the
difference operator A; by the formula

m

AZuh(x) = —Z (a,(x)u%)

r=1

Xr, jr

acting in the space of grid functions u"(x), satisfying the conditions u"(x) = 0 (Y x € S,).
It is known that A} is a self-adjoint positive definite operator in Lz(ﬁh) and C (ﬁh). With the

help of A7, we arrive at the nonlocal boundary value problem

d2 h )
— 0D 4 Al (1, x) = [t %),

x€Q,,0<y<T,

(4.14)
T
u'(0,x) = u"(T, %), [u"(s,x)ds =0, x € &,
0

u(y,x) =0, x€S,.

In the second step, we replace problem (4.14) by second order of accuracy difference scheme

4.1)

_ uZH (x)—2uz (x)+u£7 ()

= + Aju(x) = £ (x), [0 = [, %),

Vi =kt,1 <k<N-1,Nt=T, (4.15)

N _
ug(x) = uﬁ,(x), ; uf‘(x)r =0,x e Q.

N —

Theorem 4.4.3. Assume that ), fl.h(x) = 0, flh(x) = flc_l(x) =0, x € Q,.Let 7 and |h|
i=1

be sufficiently small numbers. Then, the solutions of difference scheme (4.15) satisfy the

following estimates

2/ h h o h \IN-1 hN-1
77"y — 20 + w_ DY ez +HIHueh ”cg(ww

< My@)I{ R

”C‘r’(Lzh)’
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7™y = 205+ 1 DR Dy +Hlfeg
< Ms(@ B
™\"h

O<a<1,B={B1, B}, 0<Br<1,1 <k<n.

()

Here M,(a), M5(a, B) do not depend on v, h and fkh, 1 <k<N-1and¢"

Proof. It is known that Ay is a stronly positive operator in C;, and L. Therefore, we can
replace difference scheme (4.13) by difference problem (4.2). Then, the proof of Theorem
4.4.3 is based on the abstract Theorem 4.4.1, the positivity of the operator A; in C), and
L;, and on the coercivity inequality for an elliptic operator A} in L,, and Cf (Ashyralyev &

Sobolevskii, 2004) O

4.5 THE ILLUSTRATIVE NUMERICAL RESULT

When the analytical methods do not work properly, the numerical methods for obtaining
approximate solutions of partial differential equations play an important role in applied
mathematics. Now, we give results for two and three dimensional NBVP. These numerical

results are carried out by using MATLAB program.

4.5.1 Two Dimensional Case

For the approximate solutions of nonlocal boundary problem for two dimensional elliptic
equation, the second order of accuracy difference schemes will be used, a procedure of
modified Gauss elimination method to solve the problem will be applied, and finally, the
error analysis of second order of accuracy difference schemes will be given in present
section.

First, we consider the nonlocal boundary problem for two dimensional elliptic equation with
Dirichlet boundary condition

_Pu _ Fu

S5 — g2 tu=3costsinx,0<t<2m,0 < x<2n,

w(0,0) = u@r,x), [ u(s, ) ds = 0,0 < x < 27, (4.16)

u,0)=u@?2r)=0,0<t<2n.
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The exact solution of this problem is
u(t,x) = costsin x.

For the approximate solution of the nonlocal boundary problem (4.16), we consider the set

[0, 27], X [0, 2x], of a family of grid points depending on the small parameters 7 and &
[0,27]. %[0, 2], = {(tx, x,) : tx = k1,0 <k < N,Nt =21, x,=nh,0<n<M,Mh=2n}.

For the numerical solution, we consider the second order of approximation difference scheme

uy™ = 2ul + uy! ”£+1 — 2uj, + ”ﬁ—l X .
- - + u, = 3 cos #; sin x,,,

T2 h2

I<k<N-1,1<n<M-1,

(4.17)
W =u, SN 'ui=0,0<n<M,
ué:ull‘W:O,OSkSN.
It is the system of algebraic equations and it can be written in the matrix form
Aty + Bu, + Cu,y = Do, 1 <n<M -1,
(4.18)
uo = uy = 0.
Here,
(0000.0000] 1000.000 —I|
0 a 00 0 00O c b c 0 000 O
0 0 aoO 0 00O 0 ¢c b c 000 O
0 00 a 0 00O 0 0 c b 000 O
A=C= ,B=
0 00O a 000 000O0.b5cO0 O
0 00O 0 a 00 000O0.¢c¢cbHc O
0 00O 0 0 a0 000O0.0¢c?b c
0 00O 0 00 0—(N+1)><(N+1) (01 11 . 1111 | I
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wherea= 3, b=%+%+1,c=3,

) ]
@n 0
o) 3 cost sin x,
()On = = )
A 3cos ty_; sin x,
N 0
“n | N+Dx1 b A(N+1x1

D = Iy, is the identity matrix and

U, = . ,s=n—-1,n, n+1.

S dwv+nxa
Therefore, for the solution of the matrix equation (4.18), we will use the modified Gauss

elimination method. We seek a solution of the matrix equation by the following form:
Up = Apr1Up+l +ﬁn+l’ n=M-1,..1,0

where uy = 0,; (j=1,..,M-1)are (N+1)x(N+1) square matrices,8; (j=1,..,M-1)

are (N + 1) X 1 column matrices, a1, 8; are zero matrices and
Ape1 = —(B+ Can)_l A,Bri1 = (B + Ca’n)_l (DQOn - C,Bn) n=1,..,M~-1.

Now, we give the error analysis between exact solutions u(#, x,) and the approximate

solutions u* for the different values of N and M. The errors are computed by the formula

Elﬂvl = max |u(tk, X,) — uﬁ

SKSIV,USns

The results are given in the following table that is constructed for N = M = 20,40 and 80.

Table 1: Error analysis for difference scheme (4.17)

N=M=20,20 N=M=40,40 N=M=2380,80
Error 0.0055 0.0014 0.00034274
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As it is seen in Table 1 , we get some numerical results. If N and M are doubled, the value

of errors decrease by a factor of approximately1/4 for second order difference scheme.

Second, we consider the nonlocal boundary problem for the elliptic equation with Neumann
boundary condition

2 2
—du _ w4y —3costcosx, O0<t<2m 0<x<2nm,
or? 0x2

u@,x)=um,x), fOZRM(S, x)ds =0, 0<x<2nm, 4.19)

u,(t,0) = u,(t,27) =0, 0<x<2nm.

The exact solution of this problem is
u(t,x) = costcos x.

For the approximate solution of the nonlocal boundary problem (4.16), we consider the set

[0, 27r], X [0, 27], of a family of grid points depending on the small parameters 7 and &
[0,27],.%[0,2x], = {(tx, x,) : tx = k1,0 <k < N,NTt=2n, x,=nh,0<n<M,Mh=2n}.

For the numerical solution, we consider the difference scheme of the second order of

accuracy in t and first order of accuracy in x.
ket 1 ko k-1 ko _ gk gk
u," = 2uy, + u, Uppg =2+ U,
- - + u* = 3 cos t; cos x,,,
2 2 n

1<k<N-1,1<n<M-1,

(4.20)
0_ N sN-1_i _
u, =u,, 2o u,=0,0<n<M,
u’[—u’(‘):u’ju—ull‘w_l =0,0<k<N.
It is the system of algebraic equations and it can be written in the matrix form
Auyyy +Bu, +Cu, 1 =Dg,, 1 <n<M-1,
(4.21)

Up = U, Upy—1 = Upm.
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Here,

0 000.000 0 1000.000 —I
0a00.0000 checO.000 0
00a0.0000 Ocbec.000 O
000a.0000 00cb.000 O
A=C= B =
0000 .a000 0000 .5hcO O
0000.0a00 0000 .cbhec 0
0000.00ao0 0000.0¢cb c
0oo0o0o0.0000 o1
wherea:—hiz,b:%+h%+l,c:—$2,
¢, 0
ol 3 cost; COS X,
G = = :
A 3OS fy_ COS X,
- QDnN S(N+1)x1 - 0 S(N+1)x1

and D = [y, is the identity matrix,

u, =1\ . ,s=n—-1,n, n+1.

S(N+1)x1
Therefore, for the solution of the matrix equation (4.18), we will use the modified Gauss

elimination method. We seek a solution of the matrix equation by the following form:
Uy = QpiiUysy + Ppy1, n=M-1,...,1,0, 4.22)

where uy = (I — ay) ™' Bus aj (j=1,..,M—1)are (N + 1) x (N + 1) square matrices, §3;

(j=1,..,M—1)are (N+1)Xx1 column matrices, a; is the identity and 3, are zero matrices
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and
A1 = —(B+ (jan)_1 A,

Bpsi = (B+Cay) ' (Do, —CB),n=1,..,M—1.

Now, we give the error analysis between exact solutions u(#, x,) and the approximate

solutions u* for the different values of N and M. The errors are computed by the formula

EY = max |u(tk, X)) — U

SIV,Usns

(4.23)

The numerical results for the difference scheme (4.20) are given in the following tables.

Table 2: Error analysis for difference scheme (4.19)

N=M=20,20 N=M=40,40 N=M=2380,80
Error 0.1329 0.0607 0.0290

Table 3: Error analysis for difference scheme (4.19)

N.M =20,400 N,M =40,1600 N,M = 80,6400
Error 0.0029 7.1859¢ — 04 1.7955e - 04

As it is seen in Table 2, if N and M are doubled, the value of errors decrease by a factor of
approximately 1/2. Moreover, as it is seen in Table 3, if N is doubled and M > N2, the value
of errors decrease by a factor of approximately 1/4 difference scheme as the second order of

accuracy.

4.5.2 Three Dimensional Case

For the approximate solutions of nonlocal boundary problem for three dimensional elliptic
equation, the second order of accuracy difference schemes will be used, a procedure of
modified Gauss elimination method to solve the problem will be applied, and the error

analysis of second order of accuracy difference schemes will be given in present section.
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For numerical analysis, we consider the nonlocal boundary problem for three dimensional
elliptic equation

2 2 2 .
_du_ du_ %+u =4costsinxcosy,0<t<2m0<x,y<2nm,

u(0,x,y) = u@n,xy), [ uls,xy)ds =0,0 < x<2m,0<y<2n,

u(,0,y) =u(t,2r,y)=0,0<t<2r 0<y<2n,

u(t,x,0) = u(r,x,27r),f02nu(t,x,s)ds:O,S t<2m0< x<2nm.

The exact solution of this problem is
u(t,x) = costsin xcosy.

For the approximate solution of the nonlocal boundary problem (4.16), we consider the set
[0, 2r], X [0, 27];, X [0, 27], of a family of grid points depending on the small parameters 7

and h
[Oa 27[]1 X [0’ 27T]h X [Oa 271-]/1 = {(tk’xn’ym) = kT,O < k < N,NT = 27T,
X, =nh,0<n<M,Mh=2n,y,, =mh,0<m< M,Mh =2nr}.

For the numerical solution, we consider the second order of approximation difference

scheme.
k+1 k k—1 k _ k k k _ k k
un,m - zun,m + un,m un+1,m 2un,m + un—l,m un,m+1 zun,m + un,m—l + l/tk
2 12 2 nm

=4costsinx,cosy,, |l <k<N-1,1<nm<M-1,

uo’ =uV Zl.\if)l u =0,0<nm<M, (4.24)

ko ok M-1 &k _
Upo = Uy pps Dimg Uy; =0,0<Sk<N, 0<n< M.
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It is the system of algebraic equations and it can be written in the matrix form

AU, +BU,+CU,_, =D®,, 1 <n<M-1,

(4.25)
Us = Uy = 0.
Here,
(00 0 0.0 0 0 o0
O A O O .0 O 0 0
0O 0O A O.O0 O 0 0
0O 0 0 A .0 O 0 O
A=C= ,

0O 0O 0 O .4 0 O O
0O 0 0 O .0 A O 0
0O 0 0 0.0 0 A O
0o0oo0o0.0000|

I 0 0 0.0 0 0 -1

C, BB C O .0 0 0 O

O Ci BB C .0 O 0 0

O 0 C B .0 O 0 O

B = ,

O 0 0O O .B C 0 O

O 0 0 O .C B C O

0O 0 0 0.0 C B C

o 10 |,
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where O = O 1yxv+1), I = Iineyxvs1)s

o o o O

where a = ;—21,

o o O

o o o o

o o o O

o o O

)

0
0

S O Q9
Q

S O o O
S o o O

o o O

0
0
0

o o o O Q

S O O O

0
0
0
0

o o O

o o o O
o o o O

_ 2 2 |
b_‘r_2+h_2+1’c_‘r_2

0

Son,r

1
Pn,r

N-1
‘pn,r

N
| Pnr

S(N+1)x1

4 cos t; sin x,, COS y,

4 cos ty_1 Sin x, COS y,

0
0
0
0

S O O O

0

o o o o

o o o O

J(N+1)X(N+1)

J(N+1)x(N+1)

1<r<M-1,

J(N+1)x1
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@,
D,
D, = . 1<n<M-1,®,0=P,n = Ow+ixis
Dy p-1
Dym

S(M+1)x1

Us, = . 0<r<M,s=n-1,nn+1,

LtN_l

Ss,r

N
T dvex

u

D = Ini1ym+1) 1s the identity matrix and

Uso
Ui,
U, = . ,s=n—-1,n, n+1.
Usm-1
Usm

“(M+1)x1
Therefore, for the solution of the matrix equation (4.25), we will use the modified Gauss

elimination method. We seek a solution of the matrix equation by the following form:
U}’l :a’n+1Un+l +ﬁ}’l+1’ n:M_ 19---9 1303

where Uy =0,a; (j=1,...,M—-1)are (N + 1)(M + 1) x (N + 1)(M + 1) square matrices,

B (j=1,..,M~—1)are (N +1)(M + 1) x 1 column matrices, a;, 5 are zero matrices and
A1 = —(B+ Ca'n)_l A,

ﬁn+1 = (B + Ca’n)_l (Dgon - C:Bn)’n =1,.,.M- 1.

Now, we give the error analysis between exact solutions u(#, x,, y,,) and the approximate

solutions uﬁ’m for the different values of N and M. The errors are computed by the formula

N _ k
E), = max |u(tk, Xns s Vm) = Uy
0<k<N,0<n.m<M ’
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The results are given in the following table that is constructed for N = M = 20,40 and 80.

Table 4: Error analysis for difference scheme of the problem (4.24)

N=M=20,20 N=M=40,40 N=M=2380,80
Error 0.0062 0.0015 0.00038560

As it is seen in Table 4 , we get some numerical results. If N and M are doubled, the value
of errors decrease by a factor of approximately1/4 for second order difference scheme.
Second, we consider the nonlocal boundary problem for three dimensional elliptic equation

with Neumann boundary condition
-5 = ga % +u=4costcosxcosy,0<t<2m0<x,y<2n,
u(0,x,y) = u(27r,x,y),f02ﬂu(s,x,y)ds =0,0<x<2m,0<y<2n,

(4.26)
u,(t,0,y) =u, (t,2n,y) =0, 0<t<2r, 0 <y <2nm,

u(t,x,0) = u(t,x,27r),f02”u(t,x,s)ds =0,<tr<2n,0< x < 2.

The exact solution of this problem is
u(t,x) = COStCOS XCOS Y.

For the approximate solution of the nonlocal boundary problem (4.26), we consider the set
[0, 2r], X [0, 2r],, X [0, 2], of a family of grid points depending on the small parameters 7
and h

[0,2r], X [0, 27]), X [0, 27t)), = {(tk, X, Ym) : tx = k7,0 < k < N, Nt = 2,
X, =nh,0<n< M ,Mh=2nr,y, =mh,0<m< M, Mh =2nr}.

For the numerical solution, we consider the second order of approximation difference

85



scheme.

k+1 k k—1 k _ k k k _ k k
un,m - 2Mn,m + un,m un+1,m 2un,m + un—l,m un,m+1 zun,m + un,m—l + I/tk
2 2 [z o

=4cost;cosx, cosy,, | <k<N-1,1<nm<M-1,

o _ N N-1_ i _
un,m - un,m’ Zi:O Mn,m - 0’ O < n,m < M’
bt —uk o =uk —uk =0,0<k<NO<m<M
1,m 0,m M,m M-1,m ’ - — 2T Y = — ’

ko ok M-1_k _
Uy = Uy po 2o un’i—0,0sksN, 0<n<M.

It is the system of algebraic equations and it can be written in the matrix form

AUn+1

Here,

+BU,+CU,.1 =D®,,1 <n<M-1,
Up = U, Uy-1 = Upy.

Up=U,Upy-1 = Upy.

(o0 0 0.0 0 0 o0
OA O O .0 O 0 O
0O 0 A O.0 0 0O
0O 0 0O0A .0 0 0O
0O 0 0 0 .A 0 0O
0O 0 0 0.0 A 0O
0O 0 0 0.0 0 A O
0O 0 0 0.0 0 0O

S(M+1)X(M+1)
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S © O O

S O

~ © O O

~ & O O

~ © O O

S © O O

S © O O

where O = O+ xve1)s I = Iivenyxve1)s

o o o O

o o O

o o o O

o o o O

o o O

)

S O 9

S O O O

o o O

0
0

o o o O

0
0
0

S O o O Q

S O O O

o o o O

0
0
0
0

o o O

o o o O

S O O O

0
0
0
0

S © O O

o o o O
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A(M+1)X(M+1)

J(N+1)X(N+1)

J(N+1)xX(N+1)



where a = 7

u

S(N+1)x1

MN—I

S,r

N

“(M+1)x1

ST A(N+Dx1

_ 2 2 _ -1
b_‘r_2+ﬁ+l’c_‘r_2’

0

4 cos t; COS X;, COS Y,

4.costy_1 COS X, COS Y,

0

D= I(N+1)(M+l) is the 1dent1ty matrix and

Us,O
Us,l

Us,M—l
Us,M

“(M+1)x1

,s=n—1,n n+1.

S(N+1)x1

0<r<M, s=n-1,nn+1,

1<r<M-1,

1<n<M-1,0,0=®,y =Ow+i)xi»

Therefore, for the solution of the matrix equation (4.28), we will use the modified Gauss

elimination method. We seek a solution of the matrix equation by the following form:

U, = ays1Ups1 + Bus1s

n=M-1,..1,0,

where Uy =0,a; (j=1,...,M—-1)are (N + 1)(M + 1) X (N + 1)(M + 1) square matrices,

B (j=1,..,M~—1)are (N +1)(M + 1) x 1 column matrices, a;, 5 are zero matrices and

Apt1 = — (B + Can)_l A,
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Bps1 = (B+Cay) " (Do, —CB),n=1,..,M—1.

Now, we give the error analysis between exact solutions u(#, x,,, y,) and the approximate
k

n,m

solutions u, . for the different values of N and M. The errors are computed by the formula

N _ k
E), = max |u(tk, XnssVm) = Uy
0<k<N,0<n.m<M i

The results are given in the following table that is constructed for N = M = 20,40 and 80.

Table 5: Error analysis for difference scheme of the problem (4.27)

N=M =20,20 N=M=40,40
Error 0.1125 0.0504

As it is seen in Table 5 , we get some numerical results. If N and M are doubled, the value

of errors decrease by a factor of approximately1/2 for first order difference scheme.

89



CHAPTER 5
CONCLUSIONS

The present thesis deals with strongly positive operators with nonlocal conditions and their
applications. The following results are obtained:

e Fourier series, Laplace transform and Fourier transform methods are applied for the
solution of several problems for elliptic differential equations with nonlocal boundary

conditions.

e The theorem on the structure of fractional with powers of strongly positive operators in

fractional spaces is established.
e Structure of fractional powers of elliptic operators is studied.

e The well-posedness of the abstract nonlocal boundary value problem for the elliptic

equation in an arbitrary Banach space with positive operator in various Banach spaces is

established.

e The theorems on coercive stability estimates for the solutions of three type elliptic

differential nonlocal problems are proved.

e The second order of approximation two-step difference scheme is presented. The well-

posedness of this difference scheme in various Banach spaces is established.

e The theorems on stability, almost coercive stability and coercive stability estimates for the
solutions of difference schemes for the three type elliptic differential nonlocal problems are

proved.

o [1lustrative numerical results for two and three dimensional case are provided. The Matlab

implementation of these difference schemes is presented.

e The theoretical statements for the solution of these difference schemes are supported by

the results of numerical examples.
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APPENDIX A

MATLAB PROGRAMMING

In this part, Matlab programs are presented for the first and second orders of accuracy

difference schemes.

1. Matlab Implementation of the Second Order of Accuracy Difference Scheme of
Problem (4.16)

clear all; clc; close all; delete **.asv’;
N=40; M= N;

h=(2*pi)/M;

tau=(2%*pi)/N;

c=-1/(tau™2);

a=-1/(h"2);

b=(2/(h"2))+(2/(tau™2))+1;
al=-((h"2)/(2*tau"2));
bl1=((h"2)/(tau"2))+((h"2)/2)+1;

for k=2:N;

a(k)=(-1/(h"2)); A(k,k)=a(k); AIN+1,N+1)=0;
end; A;

for k=2:N;

E(k,k)=bl; E(k,k-1)=al; E(k,k+1)=al;
E(N+1,k)=1; E(N+1,N+1)=0; E(1,1)=1;
E(1,N+1)=-1; EIN+1,1)=1;

Bk k)=b; B(k,k-1)=c; B(k,k+1)=c;
B(N+1,k)=1; B(N+1,N+1)=0; B(1,1)=1;
B(I,N+1)=-1; BN+1,1)=1;

end; B;

for k=2:N;
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F(kk)=1;

F(N+1,k)=0; FIN+1,N+1)=0; F(1,1)=0;
F(1,N+1)=-0; F(N+1,1)=0;

end

C=A;C;

fori=1:N+1;

D@,1)=1;

end; D; D;

for j=1:M-1;

for k=2:N;

t=(k-1)*tau; x=(j)*h;
phy(k,j:j)=3*cos(t)*cos(x);

end;

end;

for j=1:M-1;

phy(1,j:j)=0; phy(N+1,j:))=0;

end; phy;

for k=2:N;

t=(k-1)*tau;

phyO(k,1:1)=3*cos(t);
phyO(1,1:1)=0;

phyO(N+1,1:1)=0;

end;

I=eye(N+1,N+1);

alphal=inv(E)*F;
bethal=inv(E)*((h"2)/2)*phy0(:,1:1);
for j=1:M-1;
alphaj+1=inv(B+C*alphaj)*(-A);
bethaj+1=inv(B+C*alphaj)*(I*phy(:,j:j)-C*bethaj);
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end;

for j=1:M+1;

for k=1:N+1;

t=(k-1)*tau;

x=(-1)*h;
es(k,j:j)=cos(t)*cos(x);

end;

end;
UM-=inv(((alphaM-1-4*]))*alphaM+3*I)*(-bethaM- 1-((alphaM-1-4*])*bethaM));
for Z=M-1:-1:1;
UZ=alphaZ+1*UZ+1+bethaZ+1;
end;

for Z=1:M;

p(:,Z+1)=UZ;

end;

p(:, 1)=UM;

for j=1:M+1;

for k=1:N+1;

t=(k-1)*tau;

x=(j-1)*h;
es(k,j:j)=cos(t)*cos(x);

end;

end;

abs(es-p);
maxes=max(max(es)) ;
maxapp=max(max(p)) ;
maxerror=max(max(abs(es-p)))
relativeerror=maxerror/maxapp;

cevap = [maxes,maxapp,maxerror,relativeerror];
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p; es;
[xler,tler]=meshgrid(0:h:pi,0:tau:1);
table=[es; p]; table(1:2:end,:)=es; table(2:2:end,:)=p;
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APPENDIX B

MATLAB PROGRAMMING

2. Matlab Implementation of the First Order of Accuracy Difference Scheme of
Problem (4.19)

clear all; clc; close all; delete **.asv’;
N=80; M= 80;

h=(2%*pi)/M;

tau=(2*pi)/N;

c=-1/(tau™2);

a=-1/(h"2);

b=(2/(h"2))+(2/(tau™2))+1;

for k=2:N;

a(k)=(-1/(h"2)); A(k.k)=a(k); AIN+1,N+1)=0;
end; A;

for k=2:N;

Bk k)=b; B(k,k-1)=c; B(k,k+1)=c;
B(N+1,k)=1; BAN+1,N+1)=0; B(1,1)=1;
B(I,N+1)=-1; BN+1,1)=1;

end; B;

C=A; C;

fori=1:N+1;

D@,1)=1;

end; D; D;

for j=1:M-1;

for k=2:N;

t=(k-1)*tau; x=(j)*h;
phy(k,j:j)=3*cos(t)*sin(x);
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end;

end;

for j=1:M-1;

phy(L,j:j)=0; phy(N+1,j:)=0;
end; phy;

I=eye(N+1,N+1);
alphal=zeros(N+1,N+1);
bethal=zeros(N+1,1);

for j=1:M-1;
alphaj+1=inv(B+C*alphaj)*(-A);
bethaj+1=inv(B+C*alphaj)*(I*phy(:,j:j)-C*bethaj);
end;

UM=zeros(N+1,1);

for Z=M-1:-1:1;
UZ=alphaZ+1*UZ+1+bethaZ+1;
end;

for Z=1:M;

p(:,Z+1)=UZ;

end;

p(:,1)=zeros(N+1,1);

for j=1:M+1;

for k=1:N+1;
t=(k-1)*tau;
x=(j-1)*h;
es(k,j:j)=cos(t)*sin(x);
end;

end;

es;

p;
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abs(es-p);

maxes=max(max(es)) ;

maxapp=max(max(p)) ;
maxerror=max(max(abs(es-p)))
relativeerror=maxerror/maxapp;

cevap = [maxes,maxapp,maxerror,relativeerror];

p; es;

[xler,tler]=meshgrid(0:h:pi,0:tau:1);

table=[es; p]; table(1:2:end,:)=es; table(2:2:end,:)=p;
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APPENDIX C

MATLAB PROGRAMMING

In this chapter, Matlab programs are presented for the first and second orders of accuracy

difference schemes.

3. Matlab Implementation of the Second Order of Accuracy Difference Scheme of
Problem (4.19)

clear all; clc; close all; delete **.asv’;
N=40; M= N"2;

h=(2*pi)/M;

tau=(2%*pi)/N;

c=-1/(tau™2);

a=-1/(h"2);

b=(2/(h"2))+(2/(tau™2))+1;

for k=2:N;

a(k)=(-1/(h"2)); A(k.k)=a(k); A(N+1,N+1)=0;
end; A;

for k=2:N;

B(k.k)=b; B(k,k-1)=c; B(k.,k+1)=c;
B(N+1,k)=1; B(N+1,N+1)=0; B(1,1)=1;
B(1,N+1)=-1; B(IN+1,1)=1;

end; B;

C=A; C;

fori=1:N+1;

D@,)=1;

end; D; D;

for j=1:M-1;

for k=2:N;
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t=(k-1)*tau; x=(j)*h;
phy(k,j:j)=3*cos(t)*cos(x);

end;

end;

for j=1:M-1;

phy(1,j:1)=0; phy(N+1,j:))=0;
end; phy;

I=eye(N+1,N+1);
alphal=eye(N+1,N+1);
bethal=zeros(N+1,1);

for j=1:M-1;
alphaj+1=inv(B+C*alphaj)*(-A);
bethaj+ 1=inv(B+C*alphaj)*(I*phy(:,j:j)-C*bethaj);
end;

UM-=inv(I-alphaM)*bethaM;

for Z=M-1:-1:1;
UZ=alphaZ+1*UZ+1+bethaZ+1;
end;

for Z=1:M;

p(:,Z+1)=UZ;

end;

p(:, H)=UI;

for j=1:M+1;

for k=1:N+1;
t=(k-1)*tau;
x=(-1)*h;
es(k,j:j)=cos(t)*cos(x);
end;

end;
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abs(es-p);

maxes=max(max(es)) ;

maxapp=max(max(p)) ;
maxerror=max(max(abs(es-p)))
relativeerror=maxerror/maxapp;

cevap = [maxes,maxapp,maxerror,relativeerror];

p; es;

[xler,tler]=meshgrid(0:h:pi,0:tau:1);

table=[es; p]; table(1:2:end,:)=es; table(2:2:end,:)=p;
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APPENDIX D

MATLAB PROGRAMMING

4. Matlab Implementation of the Second Order of Accuracy Difference Schemeof
Problem (4.24)

clear all; clc; close all;delete ’*.asv’

M=40; N=M;

h=(2*pi)/M;

tau=(2%*pi1)/N;

a=-1/(h"2);

b=(2/(h"2))+(2/(h"2))+(2/(tau"2))+1;

c=-1/(tau™2);

A=zeros((IN+1)*(N+1),(N+1)*(N+1));
B=eye((N+1)*(N+1),(N+1)*(N+1));

for k=2:N;

Al(k,k)=a; AI(N+1,N+1)=0;

Bl(k,k)=b; Bl1(k,k-1)=c; Bl(k,k+1)=c;
B1(N+1,k)=1; B1(1,1)=1;

B1(1,N+1)=-1; BI(N+1,N+1)=1;

end;B1;

for j=N+2:N+1:N*(N+1);

AGj+N,j;j+N)=AT1;
B(1:N+1,I:N+1)=eye(N+1,N+1);B(1:N+1,N*(N+1)+1:(N+1)*(N+1))=-eye(N+1,N+1);
B(j:j+N,j:;j+N)=B1;

B(:j+N,j-N-1:j-1)=Al,;
B(G:j+N,j+N+1:j+2*N+1)=A1l;
B(N*#(N+1)+1:(N+1)*(N+1),j:j+N)=eye(N+1,N+1);

end
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C=A;C;

NK=(N+1)*(M+1);
phy=zeros(NK,M+1);

for n=2:M;

x=(n-1)*h;

for j=2:M;

il=(N+1)*(j-1);

y=@-D*h;

for k=2:N;

t=(k-1)*tau;
phy(il+k,n)=4*cos(t)*sin(x)*cos(y);
end;

end;

end;

R=eye(NK,NK);
alphafl=zeros(NK,NK);
bethaf1=zeros(NK,1);

for j=2:M
alphafj=-inv(B+C*alphafj-1)*A;
bethafj=inv(B+C*alphafj-1)*(R*(phy(:,j))-C*bethafj-1);
end;

U=zeros(NK,M+1);

for j=M:-1:1;
U(:,j)=alphafj*U(:,j+1)+bethafj;
end

p=zeros(N+1,M+1,M+1);

for n=1:M+1;

x=(n-1)*h;

for j=1:M+1;
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i1=(N+1)*(-1);

y=(-1)*h;

for k=1:N+1;

t=(k-1)*tau;
p(k,n,j)=U(1+k,n);
es(k,n,j)=cos(t)*sin(x)*cos(y);
end;

end;

end;

maxerror=max(max(max(abs(es-p))))
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APPENDIX E

MATLAB PROGRAMMING

5. Matlab Implementation of the Second Order of Accuracy Difference Schemeof
Problem (4.27)

clear all; clc; close all;delete ’*.asv’

M=20; N=M;

h=(2*pi)/M;

tau=(2%*pi1)/N;

a=-1/(h"2);

b=(2/(h"2))+(2/(h™2))+(2/(tau"2))+1;

c=-1/(tau™2);

A=zeros((IN+1)*(N+1),(N+1)*(N+1));
B=eye((N+1)*(N+1),(N+1)*(N+1));

for k=2:N;

Al(k,k)=a; AI(N+1,N+1)=0;

Bl(k,k)=b; Bl1(k,k-1)=c; Bl(k,k+1)=c;
B1(N+1,k)=1; B1(1,1)=1;

B1(1,N+1)=-1; BI(N+1,N+1)=1;

end;B1;

for j=N+2:N+1:N*(N+1);

AGj+N,j;j+N)=AT1;
B(1:N+1,I:N+1)=eye(N+1,N+1);B(L:N+1,N*(N+1)+1:(N+1)*(N+1))=-eye(N+1,N+1);
B(j:j+N,j:;j+N)=B1;

B(:j+N,j-N-1:j-1)=Al,;
B(G:j+N,j+N+1:j+2*N+1)=A1l;
B(N*#(N+1)+1:(N+1)*(N+1),j:j+N)=eye(N+1,N+1);

end
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C=A;C;

NK=(N+1)*(M+1);
phy=zeros(NK,M+1);

for n=2:M;

x=(n-1)*h;

for j=2:M;

il=(N+1)*(j-1);

y=@-D*h;

for k=2:N;

t=(k-1)*tau;
phy(il+k,n)=4*cos(t)*cos(x)*cos(y);
end;

end;

end;

R=eye(NK,NK);
alphafl=eye(NK,NK);
bethaf1=zeros(NK,1);

for j=2:M
alphafj=-inv(B+C*alphafj-1)*A;
bethafj=inv(B+C*alphafj-1)*(R*(phy(:,j))-C*bethafj-1);

end;
U(:,M+1)=inv(R-alphafM)*bethafM;
for j=M:-1:1;

U(:,j)=alphafj*U(:,j+1)+bethafj;
end

p=zeros(N+1,M+1,M+1);

for n=1:M+1;

x=(n-1)*h;

for j=1:M+1;
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i1=(N+1)*(-1);

y=(-1)*h;

for k=1:N+1;

t=(k-1)*tau;
p(k,n,j)=U(1+k,n);
es(k,n,j)=cos(t)*cos(x)*cos(y);
end;

end;

end;

maxerror=max(max(max(abs(es-p))))
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