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ABSTRACT 

 

In the present study, a source identification problem for parabolic-elliptic equations is 

studied. Using tools of classical approximate, we are active to obtain the solution of any 

source identification problems for parabolic-elliptic equations. Moreover, numerical 

solutions of identification parabolic-elliptic equations are investigated. The first and 

second order of accuracy difference schemes are presented for the solution of the 

identification problem for a one-dimensional parabolic-elliptic equations and the 

numerical procedure for application of these schemes is discussed.  

 Keywords: Source identification problems; parabolic-elliptic differential equations; 

Fourier series method; Laplace transform and Fourier transform solutions; difference 

schemes; numerical experience 
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ÖZET 

 

Bu çalışmada, parabolik-eliptik denklemleri için kaynak tanımlama problemi 

incelenmiştir. Klasik yaklaşım araçları, parabolik-eliptik denklemleri için çeşitli kaynak 

tanımlama problemlerinin çözümünü elde etmemize imkan tanır.  

Ayrıca , parabolik-eliptik problemlerin tanımlanmasında sayısal çözümler incelenmiştir. 

Bir boyutlu parabolik-eliptik denklemlerde tanımlama probleminin çözümü için birinci 

ve ikinci dereceden doğruluk farkı şemaları sunulmuş ve bu şemaların uygulanması için 

sayısal prosedür ele alınmıştır. 

.Anahtar Kelimeler: Kaynak tanımlama problemleri; parabolik-eliptik denklemleri; 

Fourier serisi yöntemi; Laplace dönüşümü ve Fourier dönüşümü çözümleri; fark 

şemaları; sayısal deneyim 
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CHAPTER 1

INTRODUCTION

Partial differential equations are ubiquitous in the applied sciences where they ensure a

mathematical description of phenomena in the physical, natural and social sciences.

Scientists have tried to study the real life problems applying mathematical models which

consist of partial differential equations. Lately, there have been many papers on inverse

problems with applications (A. K. Urinov and S. T. Nishonova, 2017 ;M. Kohlmann, 2015;

R. Denk, T. Seger, 2014; I. C. Kim, 2013; A. Ashyralyev, 2011; A. Ashyralyev and

O.Gercek,2010; M. Stiemer,2010; A. Ashyralyev and P.E. Sobolevskii,2004).

One of the main classes of inverse problems is the source identification problem. Since many

phenomena of the sciences and engineering are modeled by inverse problems, the apply of

more applicable and true algorithms that use some given investigation at accessible parts

of the domain of the problem to determine the unknown function has been becoming very

important. The study of well-posedness of the problem plays a vital role in obtaining a

numerical solution of the problem, as well (A. K. Urinov, S. T. Nishonova, 2017). As it is

known, if a problem is ill-posed, it is quite possible to have some difficulties with using the

numerical methods for the numerical solution of this problem.

The unknown source term of a parabolic equation may based on time, space or time and

space as the unknown variables. Several methods have been recommended or studied for

the reconstruction of the space-dependent source term. The traditional approach in solving

problems of source identification approximately consists in degradation of the inverse

problem to the Volterra integral equation of the first kind appyling the Green function (M.

Kohlmann, 2015). Another approximation is to use numerical schemes such as finite

difference method and finite elements method. Borukhov and Vabishchevich (I. C. Kim,

2013) presented a numerical algorithm depending the passing to the problem of the loaded

parabolic equation and used a difference scheme to solve the non-classical problem. A

numerical algorithm on the basis of the Landweber iteration is applied to take care of with

the problem ( R. Denk, T. Seger, 2014). Recovering the space-dependent source and the
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theoretical and numerical methods interrelated to it are investigated by several writers. In

these works, finite difference method (A. Ashyralyev, 2011), the radial basis functions

method (M. Stiemer, 2010), the boundary elements method, the combination of the

boundary elements method and variational method are applied. For a general survey about

inverse and ill-posed problems, we cite (A. Ashyralyev and P.E. Sobolevskii,2004).

In the present paper, we deal with an inverse problem for mixed partial differential equations.

The problem of identifying the pair (u (t) , p) is stated as follows:

−
d2u(t)

dt2 + Au(t) = p + f (t), 0 < t < 1,

u(0+) = u(0−), u
′

(0+) = u
′

(0−),

du(t)
dt − Au(t) = −p + g(t),−1 < t < 0,

u(−1) = ϕ, u(1) = ψ

(1.1)

for the parabolic-elliptic differential equation in a Hilbert space H with self adjoint positive

definite operator A.

Using tools of classical approach we are enabled to obtain the solution of the several source

identification problems for parabolic-elliptic equations. Furthermore, the first and second

order of accuracy difference schemes for the numerical solution of the one-dimensional

parabolic-elliptic source identification problem are presented. Then, these difference

schemes are tested on an example and some numerical results are presented.
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CHAPTER 2

METHODS OF SOLUTION OF SPACE DEPENDENT SOURCE

IDENTIFICATION PROBLEMS FOR PARABOLIC-ELLIPTIC EQUATIONS

It is known that identification problems for parabolic-elliptic differential equations can be

solved analytically by Fourier series, Laplace transform and Fourier transform methods.

Now, let us illustrate these three different analytical methods by examples.

2.1 FOURIER SERIES METHOD

We consider Fourier series method for solution of identification problems for

parabolic-elliptic differential equations.

Example 2.1.1. Obtain the Fourier series solution of the boundary value problem

−
∂2u(t,x)
∂t2 −

∂2u(t,x)
∂x2 + u(t, x) = p(x) + (2t − 1) sin x,

0 < t < 1, 0 < x < π,

∂u(t,x)
∂t +

∂2u(t,x)
∂x2 − u(t, x) = −p(x) + (−2t + 2) sin x,

−1 < t < 0, 0 < x < π,

u(−1, x) = − sin x, u(1, x) = sin x, 0 ≤ x ≤ π,

u(t, 0) = u(t, π) = 0,−1 ≤ t ≤ 1

(2.1)

for the parabolic-elliptic differential equation.

Solution. In order to solve this problem, we consider the Sturm-Liouville problem for the

differential operator A defined by formula

Au(x) = −
d2u(x)

dx2 + u(x)

with the domain

D(A) =

{
u : u(x),

d2u(x)
dx2 ∈ L2[0, π], u(0) = u(π) = 0

}
.

3



Actually, we will obtain all (u(x), λ) such that

−u′′(x) + u(x) = −λu(x), 0 < x < π, u(0) = u(π) = 0, u(x) , 0.

It is easy to see that the solution of this Sturm-Liouville problem is

(uk(x), λk) =
(
sin kx,−k2 − 1

)
, k = 1, 2, ....

Therefore, we will seek solution u(t, x) of problem (2.1) using by the Fourier series

u(t, x) =

∞∑
k=1

Ak(t) sin kx. (2.2)

and

p(x) =

∞∑
k=1

pk sin kx. (2.3)

Here Ak(t), pk, k = 1, 2, ... are unknown functions and parameters. Applying formula (2.2),

given boundary conditions, we get

u(−1, x) =

∞∑
k=1

Ak(−1) sin kx = − sin x,

u(1, x) =

∞∑
k=1

Ak(1) sin kx = sin x.

From that it follows

A1(−1) = −1, Ak(−1) = 0, k , 1 (2.4)

and

A1(1) = 1, Ak(1) = 0, k , 1, (2.5)

respectively. Applying formulas (2.2), (2.3) and given equations, we obtain

−

∞∑
k=1

A
′′

k (t) sin kx +

∞∑
k=1

Ak(t)k2 sin kx +

∞∑
k=1

Ak(t) sin kx (2.6)

=

∞∑
k=1

pk sin kx + (2t − 1) sin x, 0 < t < 1,

4



∞∑
k=1

A′k(t) sin kx −
∞∑

k=1

Ak(t)k2 sin kx −
∞∑

k=1

Ak(t) sin kx (2.7)

= −

∞∑
k=1

pk sin kx + (−2t + 2) sin x,−1 < t < 0.

Equating coefficients of sin kx, k = 1, 2, ..., to zero, we get

−A′′1 (t) + 2A1(t) = p1 + (2t − 1), k = 1, (2.8)

−A′′k (t) + (k2 + 1)Ak(t) = pk, k , 1, 0 < t < 1,

A′1(t) − 2A1(t) = −p1 + (−2t + 2), k = 1, (2.9)

A′k(t) − (k2 + 1)Ak(t) = −pk, k , 1,−1 < t < 0.

First, we obtain A1(t). Applying (2.4), (2.5), (2.8) and (2.9), we get the following boundary

value problem

−A′′1 (t) + 2A1(t) = p1 + (2t − 1), 0 < t < 1,

A′1(t) − 2A1(t) = −p1 − 2t + 2,−1 < t < 0,

A1(−1) = −1, A1(1) = 1

for a mixed ordinary differential equations. We will seek the general solution of this mixed

equation by the formula

A1(t) = Ac (t) + Ap (t) ,

where Ac (t) of homogeneous equation

−A′′1 (t) + 2A1(t) = 0, 0 < t < 1,

A′1(t) − 2A1(t) = 0,−1 < t < 0

and Ap (t) is the particular solution of non-homogeneous mixed equation. It is clear that

Ac (t) =


c1e

√
2t + c2e−

√
2t, 0 < t < 1,

c3e2t,−1 < t < 0.

(2.10)
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For obtaining Ap (t) , we put

Ap(t) = at + b.

Putting it into the first equation, we get

2(at + b) = p1 + 2t − 1.

Then a = 1, b =
p1−1

2 and Ap(t) = t +
p1−1

2 .

Let 0 < t < 1. Using (2.10), we get the general solution of this equation by the following

formula

A1(t) = c1e
√

2t + c2e−
√

2t + t +
p1 − 1

2
. (2.11)

Then,

A′1(t) =
√

2c1e
√

2t −
√

2c2e−
√

2t + 1. (2.12)

Assume that −1 < t < 0. Using (2.10), we get the general solution of this equation by the

following formula

A1(t) = c3e2t + t +
p1 − 1

2
. (2.13)

Then,

A′1(t) = 2c3e2t + 1. (2.14)

Using (2.11),(2.13), (2.12),(2.14), boundary conditions A1(−1) = −1, A1(1) = 1, and

continuity conditions at t = 0, we get the following system of equations

c3e−2 − 1 +
p1−1

2 = −1,

c1e
√

2 + c2e−
√

2 + 1 +
p1−1

2 = 1,

c3 +
p1−1

2 = c1 + c2 +
p1−1

2 ,

2c3 + 1 =
√

2c1 −
√

2c2 + 1.

6



From that it follows

c3e−2 +
p1−1

2 = 0,

c1e
√

2 + c2e−
√

2 +
p1−1

2 = 0,

−c3 + c1 + c2 = 0,

−2c3 +
√

2c1 −
√

2c2 = 0

or 

c3e−2 +
p1−1

2 = 0,

c1e
√

2 + c2e−
√

2 − c3e−2 = 0,

−c3 + c1 + c2 = 0,

−2c3 +
√

2c1 −
√

2c2 = 0.

Since ∣∣∣∣∣∣∣∣∣∣∣∣∣
e
√

2 e−
√

2 −e−2

1 1 −1
√

2 −
√

2 −2

∣∣∣∣∣∣∣∣∣∣∣∣∣
= −2e

√
2 −
√

2e−
√

2 +
√

2e−2 +
√

2e−2 + 2e−
√

2 −
√

2e
√

2 , 0,

we have that

c1 = c2 = c3 = 0 .

From that and equation c3e−2 +
p1−1

2 = 0 it follows that p1 = 1and A1(t) = t.

7



Second, we obtain Ak(t), k , 1. Applying (2.4), (2.5), (2.8) and (2.9), we get the following

boundary value problem

−A′′k (t) + (k2 + 1)Ak(t) = pk, 0 < t < 1,

A′k(t) − (k2 + 1)Ak(t) = −pk,−1 < t < 0,

Ak(−1) = 0, Ak(1) = 0

for a mixed ordinary differential equations. We will seek the general solution of this mixed

equation by the formula

A1(t) = Ac (t) + Ap (t) ,

where Ac (t) of homogeneous equation

−A′′k (t) + (k2 + 1)Ak(t) = 0, 0 < t < 1,

A′k(t) − (k2 + 1)Ak(t) = 0,−1 < t < 0

and Ap (t) is the particular solution of non-homogeneous mixed equation. It is clear that

Ac (t) =


c1e

√
k2+1t + c2e−

√
k2+1t, 0 < t < 1,

c3e(k2+1)t,−1 < t < 0.

(2.15)

For obtaining Ap (t) , we put

Ap(t) = b.

Let 0 < t < 1.Putting it into the first equation, we get

(k2 + 1)b = pk.

Then b =
pk

k2+1 . Using (2.15), we get the general solution of this equation by the following

formula

Ak(t) = c1e
√

k2+1t + c2e−
√

k2+1t +
pk

k2 + 1
. (2.16)

8



Then,

A′k(t) = c1

√
k2 + 1e

√
k2+1t − c2

√
k2 + 1e−

√
k2+1t. (2.17)

Let −1 < t < 0. Putting into Ap(t) = b the second equation, we get

−(k2 + 1)b = −pk.

Then b =
pk

k2+1 . Using (2.15), we get the general solution of this equation by the following

formula

A1(t) = c3e(k2+1)t +
pk

k2 + 1
. (2.18)

Then,

A′1(t) = c3(k2 + 1)e(k2+1)t. (2.19)

Using (2.16),(2.17), (2.18),(2.19), boundary conditions Ak(−1) = 0, Ak(1) = 0, and

continuity conditions at t = 0, we get the following system of equations

c3e−(k2+1) +
pk

k2+1 = 0,

c1e
√

k2+1 + c2e−
√

k2+1 +
pk

k2+1 = 0,

c3 +
pk

k2+1 = c1 + c2 +
pk

k2+1 ,

(k2 + 1)c3 = c1

√
k2 + 1 − c2

√
k2 + 1.

From that it follows

c3e−(k2+1) +
pk

k2+1 = 0,

c1e
√

k2+1 + c2e−
√

k2+1 − c3e−(k2+1) = 0,

−c3 + c1 + c2 = 0,

−(k2 + 1)c3 + c1

√
k2 + 1 − c2

√
k2 + 1 = 0.

9



Since ∣∣∣∣∣∣∣∣∣∣∣∣∣
e
√

k2+1 e−
√

k2+1 −e−(k2+1)

1 1 −1
√

k2 + 1 −
√

k2 + 1 −(k2 + 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= −(k2 + 1)e

√
k2+1 −

√
k2 + 1e−

√
k2+1 +

√
k2 + 1e−(k2+1)

+
√

k2 + 1e−(k2+1) + (k2 + 1)e−
√

k2+1 −
√

k2 + 1e
√

k2+1 , 0,

we have that

c1 = c2 = c3 = 0 .

From that and equation c3e−(k2+1) +
pk

k2+1 = 0 it follows that pk = 0 and Ak(t) = 0.Then,

Ak(t) = 0, pk = 0, k , 1 and the exact solution of the problem (2.1) is

u(t, x) =

∞∑
k=1

Ak(t) sin kx = A1(t) sin x = t sin x, (2.20)

p(x) =

∞∑
k=1

pk sin kx = p1 sin x = sin x.

Note that using similar procedure one can obtain the solution of the following boundary

value problem

−
∂2u(t,x)
∂t2 −

n∑
r=1
αr

∂2u(t,x)
∂x2

r
= p(x) + f (t, x),

x = (x1, ..., xn) ∈ Ω, 0 < t < T,

∂u(t,x)
∂t +

n∑
r=1
αr

∂2u(t,x)
∂x2

r
= −p(x) + g(t, x),

x = (x1, ..., xn) ∈ Ω, −T < t < 0,

u(−T, x) = ψ (x) , u(T, x) = ψ(x), x ∈ Ω,

u(t, x) = 0,−T ≤ t ≤ T, x ∈ S

(2.21)

10



for the multidimensional parabolic-elliptic partial differential equation. Here αr > α >

0 and f (t, x) ,
(
t ∈ (0,T ) , x ∈ Ω

)
, g (t, x) ,

(
t ∈ (−T, 0) , x ∈ Ω

)
, ϕ(x), ψ (x)

(
x ∈ Ω

)
are given

smooth functions. Here and in future Ω is the unit open cube in the n−dimensional Euclidean

space Rn (0 < xk < 1, 1 ≤ k ≤ n) with the boundary

S ,Ω = Ω ∪ S .

However, Fourier series method described in solving (2.21) can be used only in the case

when (2.21) has constant coefficients.

Example 2.1.2. Obtain the Fourier series solution of the identification problem

−
∂2u(t,x)
∂t2 −

∂2u(t,x)
∂x2 + u(t, x) = p(x) + (2t − 1) cos x,

0 < t < 1, 0 < x < π,

∂u(t,x)
∂t +

∂2u(t,x)
∂x2 − u(t, x) = −p(x) − 2t cos x,

−1 < t < 0, 0 < x < π,

u(−1, x) = − cos x, u(1, x) = cos x, 0 ≤ x ≤ π,

ux(t, 0) = ux(t, π) = 0,−1 ≤ t ≤ 1

(2.22)

for parabolic-elliptic equations.

Solution. In order to solve the problem, first we consider the Sturm-Liouville problem for

the operator A defined by formula

Au(x) = −
d2u(x)

dx2 + u(x)

with the domain

D(A) =

{
u : u(x),

d2u(x)
dx2 ∈ L2[0, π], u′(0) = u′(π) = 0

}
.

Actually, we will obtain all (u(x), λ) such that

−u′′(x) + u(x) = −λu(x), 0 < x < π, u′(0) = u′(π), u(x) , 0.

11



It is easy to see that the solution of this Sturm-Liouville problem is

(uk(x), λk) =
(
cos kx,−k2 − 1

)
, k = 0, 1, ....

Therefore, we will seek solution u(t, x) of problem (2.22) using by the Fourier series

u(t, x) =

∞∑
k=0

Ak(t) cos kx. (2.23)

and

p(x) =

∞∑
k=0

pk cos kx. (2.24)

Here Ak(t), pk, k = 0, 1, 2, ... are unknown functions and parameters. Applying formula

(2.23), given boundary conditions, we get

u(−1, x) =

∞∑
k=0

Ak(−1) cos kx = − cos x,

u(1, x) =

∞∑
k=0

Ak(1) cos kx = cos x.

From that it follows

A1(−1) = −1, Ak(−1) = 0, k , 1 (2.25)

and

A1(1) = 1, Ak(1) = 0, k , 1, (2.26)

respectively. Applying formulas (2.23), (2.24) and given equations, we obtain

−

∞∑
k=0

A
′′

k (t) cos kx +

∞∑
k=0

Ak(t)k2 cos kx +

∞∑
k=0

Ak(t) cos kx (2.27)

=

∞∑
k=0

pk cos kx + (2t − 1) cos x, 0 < t < 1,

∞∑
k=0

A′k(t) cos kx −
∞∑

k=0

Ak(t)k2 cos kx −
∞∑

k=0

Ak(t) cos kx (2.28)

= −

∞∑
k=0

pk cos kx + −2t cos x,−1 < t < 0.
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Equating coefficients of cos kx, k = 0, 1, 2, ..., to zero, we get

−A′′1 (t)+2A1(t) = p1 + (2t−1), k = 1,−A′′k (t)+ (k2 +1)Ak(t) = pk, k , 1, 0 < t < 1, (2.29)

A′1(t) − 2A1(t) = −p1 − 2t, k = 1, A′k(t) − (k2 + 1)Ak(t) = −pk, k , 1,−1 < t < 0. (2.30)

First, we obtain A1(t). Applying (2.25), (2.26), (2.29) and (2.30), we get the following

boundary value problem

−A′′1 (t) + 2A1(t) = p1 + (2t − 1), 0 < t < 1,

A′1(t) − 2A1(t) = −p1 − 2t,−1 < t < 0,

A1(−1) = −1, A1(1) = 1

for a mixed ordinary differential equations. We will seek the general solution of this mixed

equation by the formula

A1(t) = Ac (t) + Ap (t) ,

where Ac (t) of homogeneous equation

−A′′1 (t) + 2A1(t) = 0, 0 < t < 1,

A′1(t) − 2A1(t) = 0,−1 < t < 0

and Ap (t) is the particular solution of non-homogeneous mixed equation. It is clear that

Ac (t) =


c1e

√
2t + c2e−

√
2t, 0 < t < 1,

c3e2t,−1 < t < 0.

(2.31)

For obtaining Ap (t) , we put

Ap(t) = at + b.

13



Assume that 0 < t < 1.Putting it into the first equation, we get

2(at + b) = p1 + 2t − 1.

Then a = 1, b =
p1−1

2 . Using (2.31), we get the general solution of this equation by the

following formula

A1(t) = c1e
√

2t + c2e−
√

2t + t +
p1 − 1

2
. (2.32)

Then,

A′1(t) =
√

2c1e
√

2t −
√

2c2e−
√

2t + 1. (2.33)

Assume that −1 < t < 0.Putting into Ap(t) = at + b the second equation, we get

a − 2(at + b) = −p1 − 2t.

Then a = 1, b =
p1−1

2 . Using (2.31), we get the general solution of this equation by the

following formula

A1(t) = t +
1
2

(1 − e2+2t)(1 − p1). (2.34)

Then,

A′1(t) = 1 − e2+2t(1 − p1) (2.35)

Using (2.32),(2.33), (2.34),(2.35), boundary conditions A1(−1) = −1, and continuity

conditions at t = 0, we get the following system of equations

c1e
√

2t + c2e−
√

2t + t +
p1−1

2 ,

c1e
√

2 + c2e−
√

2 + 1 +
p1−1

2 = 1,

c1 + c2 +
p1−1

2 = 1
2 (1 − e2)(1 − p1),

√
2c1 −

√
2c2 + 1 = 1 − e2(1 − p1).
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From that it follows

c1e
√

2 + c2e−
√

2 −
p1−1

2 = 0,

c1 + c2 + (p1 − 1)(1
2 + 1

2 −
e2

2 ) = 0,

√
2c1 −

√
2c2 + (p1 − 1)(−e2) = 0.

Since ∣∣∣∣∣∣∣∣∣∣∣∣∣
e
√

2 e−
√

2 1
2

1 1 1 − e2

2
√

2 −
√

2 −e2

∣∣∣∣∣∣∣∣∣∣∣∣∣
= −
√

2 + e2−
√

2 − e2+
√

2 +
√

2(1 −
e2

2
)(e
√

2 +
1

e
√

2
, 0,

we have that

c1 = c2 = p1 − 1 = 0 .

It follows that p1 = 1 and A1(t) = t.

Second, we obtain Ak(t), k , 1. Applying (2.25), (2.26), (2.29) and (2.30), we get the

following boundary value problem

−A′′k (t) + (k2 + 1)Ak(t) = pk, 0 < t < 1,

A′k(t) − (k2 + 1)Ak(t) = −pk,−1 < t < 0,

Ak(−1) = 0, Ak(1) = 0

for a mixed ordinary differential equations. We will seek the general solution of this mixed

equation by the formula

A1(t) = Ac (t) + Ap (t) ,

where Ac (t) of homogeneous equation
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−A′′k (t) + (k2 + 1)Ak(t) = 0, 0 < t < 1, (2.36)

(2.37)

A′k(t) − (k2 + 1)Ak(t) = 0,−1 < t < 0.

and Ap (t) is the particular solution of non-homogeneous mixed equation. It is clear that

Ac (t) =


c1e

√
k2+1t + c2e−

√
k2+1t, 0 < t < 1,

c3e(k2+1)t,−1 < t < 0.

(2.38)

For obtaining Ap (t) , we put

Ap(t) = b.

Assume that 0 < t < 1. Putting it into the first equation, we get

(k2 + 1)b = pk.

Then b =
pk

k2+1 . Using (2.38), we get the general solution of this equation by the following

formula

Ak(t) = c1e
√

k2+1t + c2e−
√

k2+1t +
pk

k2 + 1
. (2.39)

Then,

A′k(t) = c1

√
k2 + 1e

√
k2+1t − c2

√
k2 + 1e−

√
k2+1t. (2.40)

Assume that −1 < t < 0. Putting into Ap(t) = b the second equation, we get

−(k2 + 1)b = −pk.

Then b =
pk

k2+1 . Using (2.38), we get the general solution of this equation by the following

formula

Ak(t) = (−1 + e(k2+1)(t+1))
pk

k2 + 1
. (2.41)

Then,

A′k(t) = (k2 + 1)(e(k2+1)(t+1))pk. (2.42)
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Using (2.39),(2.41), (2.40),(2.42), boundary conditions Ak(−1) = 0, Ak(1) = 0, and

continuity conditions at t = 0, we get the following system of equations

c1e
√

k2+1 + c2e−
√

k2+1 +
pk

k2+1 = 0,

1
k2+1 (−1 + ek2+1)pk = c1 + c2 +

pk
k2+1 ,

ek2+1 pk = c1

√
k2 + 1 − c2

√
k2 + 1.

From that it follows

c1e
√

k2+1 + c2e−
√

k2+1 +
pk

k2+1 = 0,

c1 + c2 + pk

(
2−ek2+1

k2+1

)
= 0,

c1

√
k2 + 1 − c2

√
k2 + 1 − ek2+1 pk = 0.

Since ∣∣∣∣∣∣∣∣∣∣∣∣∣
e
√

k2+1 e−
√

k2+1 1
k2+1

1 1 2−ek2+1

k2+1
√

k2 + 1 −
√

k2 + 1 −ek2+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 2
√

k2 + 1
2 − ek2+1

k2 + 1

 − 2
√

k2 + 1
k2 + 1

, 0,

we have that

c1 = c2 = 0 .

From that and equation pk
k2+1 = 0 it follows that pk = 0 and Ak(t) = 0. Then, Ak(t) = 0, pk =

0, k , 1 and the exact solution of the problem (2.22) is

u(t, x) =

∞∑
k=1

Ak(t) cos kx = A1(t) cos x = t cos x, (2.43)

p(x) =

∞∑
k=1

pk cos kx = p1 cos x = cos x.
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Note that using similar procedure one can obtain the solution of the following boundary

value problem

−
∂2u(t,x)
∂t2 −

n∑
r=1
αr

∂2u(t,x)
∂x2

r
= p(x) + f (t, x),

x = (x1, ..., xn) ∈ Ω, 0 < t < T,

∂u(t,x)
∂t +

n∑
r=1
αr

∂2u(t,x)
∂x2

r
= −p(x) + g(t, x),

x = (x1, ..., xn) ∈ Ω, −T < t < 0,

u(−T, x) = ψ (x) , u(T, x) = ψ(x), x ∈ Ω,

θu(t,x)
∂m = 0,−T ≤ t ≤ T, x ∈ S

(2.44)

for the multidimensional mixed partial differential equation. Here αr > α > 0 and

f (t, x) ,
(
t ∈ (0,T ) , x ∈ Ω

)
, g (t, x) ,

(
t ∈ (−T, 0) , x ∈ Ω

)
, ϕ(x), ψ (x)

(
x ∈ Ω

)
are given

smooth functions. Here m is the normal vector to boundary S .

However Fourier series method described in solving (2.44) can be also used only in the case

when (2.44) has constant coefficients.

Example 2.1.3. Obtain the Fourier series solution of the identification problem

−
∂2u(t,x)
∂t2 −

∂2u(t,x)
∂x2 + u(t, x) = p(x) + (4e−t − 1) sin 2x,

0 < t < 1, 0 < x < π,

∂u(t,x)
∂t +

∂2u(t,x)
∂x2 − u(t, x) = −p(x) +

(
−6e−t + 1

)
sin 2x,

−1 < t < 0, 0 < x < π,

u(−1, x) = e sin 2x, u(1, x) = e−1 sin 2x, 0 ≤ x ≤ π,

u(t, 0) = u(t, π), ux(t, 0) = ux(t, π),−1 ≤ t ≤ 1

(2.45)

for the parabolic-elliptic differential equation.
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Solution. In order to solve the problem, first we consider the Sturm-Liouville problem for

the operator A defined by formula

Au(x) = −
d2u(x)

dx2 + u(x)

with the domain

D(A) =

{
u : u(x),

d2u(x)
dx2 ∈ L2[0, π], u(0) = u(π), ux(0) = ux(π)

}
.

Actually, we will obtain all (u(x), λ) such that

−u′′(x) + u(x) = −λu(x), 0 < x < π, u(0) = u(π), ux(x) = ux(π).

It is easy to see that the solution of this Sturm-Liouville problem is

(uk(x), λk) =
(
sin 2kx,−4k2 − 1

)
, k = 1, 2, ...,

(uk(x), λk) =
(
cos 2kx,−4k2 − 1

)
, k = 0, 1, ....

Therefore, we will seek solution u(t, x) of problem (2.45) using by the Fourier series

u(t, x) =

∞∑
k=0

Ak(t) cos 2kx +

∞∑
k=1

Bk(t) sin 2kx. (2.46)

and

p(x) =

∞∑
k=0

pk cos 2kx +

∞∑
k=1

qk sin 2kx. (2.47)

Here Ak(t), pk, k = 0, 1, 2, ... and Bk(t), qk, k = 1, 2, ... are unknown functions and parameters.

Applying formula (2.46), given boundary conditions, we get

u(−1, x) =

∞∑
k=0

Ak(−1) cos 2kx +

∞∑
k=1

Bk(−1) sin 2kx = e sin 2x,

u(1, x) =

∞∑
k=0

Ak(1) cos 2kx +

∞∑
k=1

Bk(1) sin 2kx = e−1 sin 2x.

From that it follows

A1(−1) = 0, Ak(−1) = 0, B1(−1) = e, Bk(−1) = 0, k , 1 (2.48)

19



and

A1(1) = 0, Ak(1) = 0, B1(1) = e−1, Bk(1) = 0, k , 1, (2.49)

respectively. Applying formulas (2.46), (2.47) and given equations, we obtain

−

∞∑
k=0

A
′′

k (t) cos 2kx +

∞∑
k=0

Ak(t)4k2 cos 2kx +

∞∑
k=0

Ak(t) cos 2kx

−

∞∑
k=1

B
′′

k (t) sin 2kx +

∞∑
k=1

Bk(t)4k2 sin 2kx +

∞∑
k=1

Bk(t) sin 2kx

=

∞∑
k=0

pk cos 2kx +

∞∑
k=1

qk sin 2kx + (4e−t − 1) sin 2x, 0 < t < 1,

∞∑
k=0

A′k(t) cos 2kx −
∞∑

k=0

Ak(t)4k2 cos 2kx −
∞∑

k=0

Ak(t) cos 2kx

+

∞∑
k=1

B′k(t) sin 2kx −
∞∑

k=1

Bk(t)4k2 sin 2kx −
∞∑

k=1

Bk(t) sin 2kx

= −

∞∑
k=0

pk cos 2kx −
∞∑

k=1

qk sin 2kx + (−6e−t + 1) sin 2x,−1 < t < 0.

Equating coefficients of sin 2kx, k = 1, 2, ..., cos 2kx, k = 0, 1, ..., to zero, we get

A′k(t) − 4k2Ak(t) − Ak(t) = −pk, k = 0, 1, ...,

B′k(t) − 4k2Bk(t) − Bk(t) = −qk, k , 1,−1 < t < 0,

B
′

1(t) − 5B1(t) = −q1 + (−6e−t + 1),

Ak(−1) = 0, Ak(1) = 0, k = 0, 1, ...,

B1(−1) = e, B1(1) = e−1,

Bk(−1) = 0, Bk(1) = 0, k , 1.

(2.50)
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−A
′′

k (t) + 4k2Ak(t) + Ak(t) = −pk, k = 0, 1, ...,

−B
′′

k (t) + 4k2Bk(t) + Bk(t) = −qk, k , 1, 0 < t < 1,

B
′′

1(t) − 5B1(t) = −q1 + (4e−t − 1),

Ak(−1) = 0, Ak(1) = 0,∀k, B1(−1) = e, B1(1) = e−1,

Bk(−1) = 0, Bk(1) = 0, k , 1.

(2.51)

First, we obtain Ak(t), k , 1. Applying (2.46), (2.47), (2.50) and (2.51), we get the following

boundary value problem

−A′′k (t) + (4k2 + 1)Ak(t) = pk, 0 < t < 1,

A′k(t) − (4k2 + 1)Ak(t) = −pk,−1 < t < 0,

Ak(−1) = 0, Ak(1) = 0.

for a mixed ordinary differential equations. Assume that −1 < t < 0.

A′k(t) − (4k2 + 1)Ak(t) = −pk.

It is clear that

Ak(t) = c1e(4k2+1)t +
pk

4k2 + 1
,

and 0 < t < 1.

−A′′k (t) + (4k2 + 1)Ak(t) = pk

also it is clear that
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Ak(t) = c2e
√

(4k2+1)t + c3e−
√

(4k2+1)t +
pk

4k2 + 1
.

and we use boundary conditions Ak(−1) = 0, Ak(1) = 0. we get
Ak(−1) = c1e−(4k2+1) +

pk
4k2+1 = 0,

Ak(1) = c2e
√

(4k2+1) + c3e−
√

(4k2+1) +
pk

4k2+1 = 0.

(2.52)

Using (2.52) and continuity conditions at t = 1, we get the following system of equations

c1 = c2 + c3,

c1e−(4k2+1) = c2e−(4k2+1) + c3e−(4k2+1),

(4k2 + 1)c1 =
√

(4k2 + 1)c2 −
√

(4k2 + 1)c3.

or



c1 − c2 − c3 = 0,

c1e−(4k2+1) − c2e(4k2+1) − c3e−(4k2+1) = 0,

(4k2 + 1)c1 −
√

(4k2 + 1)c2 +
√

(4k2 + 1)c3 = 0.

since

∣∣∣∣∣∣∣∣∣∣∣∣∣
1 −1 −1

e−(4k2+1) −e(4k2+1) −e−(4k2+1)

4k2 + 1 −
√

(4k2 + 1)
√

(4k2 + 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

√
(4k2 + 1)

(
e−(4k2+1) − e(4k2+1)

)
, 0.

we have that

c1 = c2 = c3 = 0.
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From that and equation Ak(t) =
pk

4k2+1 ,∀k. it follows that pk = 0and Ak(t) = 0.

Second, we obtain Bk(t). It is cleat that for k , 1, Bk(t) is the solution of the initial value

problem (2.46), (2.47), (2.50) and (2.51), we get the following boundary value problem



−B′′k (t) + (4k2 + 1)Bk(t) = qk, 0 < t < 1,

B′k(t) − (4k2 + 1)Bk(t) = −qk,−1 < t < 0,

Bk(−1) = 0, Bk(1) = 0.

for a mixed ordinary differential equations. Assume that −1 < t < 0.

B′k(t) − (4k2 + 1)Bk(t) = −qk

It is clear that

Bk(t) = c1e(4k2+1)t +
qk

4k2 + 1
,

and 0 < t < 1.

−B′′k (t) + (4k2 + 1)Bk(t) = qk

also it is clear that

Bk(t) = c2e
√

(4k2+1)t + c3e−
√

(4k2+1)t +
qk

4k2 + 1
.

and we use boundaey conditions Bk(−1) = 0, Bk(1) = 0. We get
Bk(−1) = c1e−(4k2+1) +

qk
4k2+1 = 0,

Bk(1) = c2e
√

(4k2+1) + c3e−
√

(4k2+1) +
qk

4k2+1 = 0.

(2.53)

Using (2.53) and continuity conditions at t = 1, we get the following system of equations
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c1 = c2 + c3,

c1e−(4k2+1) = c2e−(4k2+1) + c3e−(4k2+1),

(4k2 + 1)c1 =
√

(4k2 + 1)c2 −
√

(4k2 + 1)c3.

or 

c1 − c2 − c3 = 0,

c1e−(4k2+1) − c2e(4k2+1) − c3e−(4k2+1) = 0,

(4k2 + 1)c1 −
√

(4k2 + 1)c2 +
√

(4k2 + 1)c3 = 0.

since ∣∣∣∣∣∣∣∣∣∣∣∣∣
1 −1 −1

e−(4k2+1) −e(4k2+1) −e−(4k2+1)

4k2 + 1 −
√

(4k2 + 1)
√

(4k2 + 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

√
(4k2 + 1)

(
e−(4k2+1) − e(4k2+1)

)
, 0.

we have that

c1 = c2 = c3 = 0.

From that and equation Bk(t) =
qk

4k2+1 , k , 1. it follows that qk = 0and Bk(t) = 0.

Third, we obtain Bk(t), k = 1.Applying (2.46), (2.47), (2.50) and (2.51), we get the following

boundary value problem

−B′′1 (t) + 5B1(t) = q1 + (4e−t − 1), 0 < t < 1,

B′1(t) − 5B1(t) = −q1,+(6e−t + 1),−1 < t < 0,

B1(−1) = e, B1(1) = e−1
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for a mixed ordinary differential equations. We will seek the general solution of this mixed

equation by the formula

B1 p(t) = a + be−t.

Assume that −1 < t < 0. It is clear that

−be−t − 5(a + be−t) = −q1 + 1 − 6e−t,

b = 1, a =
q − 1

5
.

we get

B1(t) = e5tc1 +
q − 1

5
+ e−t,−1 < t < 0, (2.54)

B1(−1) = e−5c1 +
q − 1

5
= 0 (2.55)

Now we use again differential equation for 0 < t < 1

−be−t − 5(a + be−t) = −q1 + 1 − 6e−t,

b = 1, a =
q − 1

5
.

we get

B1(t) = c2e
√

5t + c3e−
√

5t +
q − 1

5
+ e−t, 0 < t < 1, (2.56)

B1(1) = c2e
√

5 + c3e−
√

5 +
q − 1

5
= 0. (2.57)

Using (2.54),(2.55), (2.56),(2.57), we get the following system of equations

c1 = c2 + c3,

5c1 =
√

5c2 −
√

5c3,

e−5c1 = c2e
√

5 + c3e−
√

5.
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From that it follows

c1 − c2 − c3 = 0,

5c1 −
√

5c2 +
√

5c3 = 0,

e−5c1 − c2e
√

5 − c3e−
√

5 = 0.

Since ∣∣∣∣∣∣∣∣∣∣∣∣∣
1 −1 −1

5 −
√

5
√

5

e−5 −e
√

5 −e−
√

5

∣∣∣∣∣∣∣∣∣∣∣∣∣
(
√

5 − 5)e−
√

5 + (
√

5 + 5)e
√

5 − 2
√

5e−5 , 0,

we have that

c1 = c2 = c3 = 0, q1 = 1.

From that it follows q1 = 1and Ak(t) = 0.Then, Ak(t) = e−t, k = 1 and the exact solution of

the problem (2.45) is

u(t, x) =

∞∑
k=0

Ak(t) cos 2kx +

∞∑
k=1

Bk(t) sin 2kx = A1(t) sin 2x = e−t sin 2x, (2.58)

p(x) =

∞∑
k=0

pk cos 2kx +

∞∑
k=1

qk sin 2kx = q1 sin 2x = sin 2x.

Note that using similar procedure one can obtain the solution of the following boundary
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value problem

−
∂2u(t,x)
∂t2 −

n∑
r=1
αr

∂2u(t,x)
∂x2

r
= p(x) + f (t, x),

x = (x1, ..., xn) ∈ Ω, 0 < t < T,

∂u(t,x)
∂t +

n∑
r=1
αr

∂2u(t,x)
∂x2

r
= −p(x) + g(t, x),

x = (x1, ..., xn) ∈ Ω, −T < t < 0,

u(−T, x) = ψ (x) , u(T, x) = ψ(x), x ∈ Ω,

u(t, x) |S 1= u(t, x) |S 2 ,
∂u(t,x)
∂m |S 1=

∂u(t,x)
∂m |S 2 −T ≤ t ≤ T

(2.59)

for the multidimensional mixed partial differential equation. Here αr > α > 0 and

f (t, x) ,
(
t ∈ (0,T ) , x ∈ Ω

)
, g (t, x) ,

(
t ∈ (−T, 0) , x ∈ Ω

)
, ϕ(x), ψ (x) , x ∈ Ω are given smooth

functions. Here and in future Ω is the unit open cube in the n−dimensional Euclidean space

Rn (0 < xk < 1, 1 ≤ k ≤ n) with the boundary

S = S 1 ∪ S 2, S 1 ∩ S 2 = ∅.

However, Fourier series method described in solving (2.59) can be used only in the case

when (2.59) has constant coefficients.

2.2 LAPLACE TRANSFORM METHOD

We consider Laplace transform solution of identification problems for parabolic-elliptic

differential equations.

Example 2.2.1. Obtain the Laplace transform solution of the following problem source
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identification problem

−
∂2u(t,x)
∂t2 −

∂2u(t,x)
∂x2 + u(t, x) = p (x) − e−x,

0 < x < ∞, 0 < t < 1,

∂u(t,x)
∂t +

∂2u(t,x)
∂x2 − u(t, x) = −p (x) ,

0 < x < ∞,−1 < t < 0,

u (−1, x) = −e−x, u (1, x) = e−x, 0 ≤ x < ∞,

u (t, 0) = t, ux (t, 0) = −t,−1 ≤ t ≤ 1

(2.60)

for a one dimensional parabolic-elliptic equation.

Solution. Here and in future, we will denote

L {u(t, x)} = u(t, s).

Using formula

L
{
e−x} =

1
s + 1

(2.61)

and taking the Laplace transform of both sides of the differential equation and using

conditions

u (t, 0) = t, ux (t, 0) = −t,
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we can write

−utt (t, s) −
[
s2u (t, s) − su (t, 0) − ux (t, 0)

]
+ u(t, s)

= p (s) − 1
s+1 , 0 < t < 1,

ut (t, s) +
[
s2u (t, s) − su (t, 0) − ux (t, 0)

]
− u(t, s)

= −p (s) ,−1 < t < 0,

u (−1, s) = − 1
1+s , u (1, s) = 1

1+s .

Therefore, we get the following problem

−utt (t, s) + (−s2 + 1)u (t, s)

= p (s) − st + t − 1
s+1 , 0 < t < 1,

ut (t, s) + (s2 − 1)u (t, s)

= −p (s) + st − t,−1 < t < 0,

u (−1, s) = − 1
1+s , u (1, s) = 1

1+s .

(2.62)

Now we will obtain the solution of problem (2.62). Let −1 ≤ t ≤ 0.Then, we have the

following initial value problem
ut (t, s) + (s2 − 1)u (t, s) = −p(s) + (s − 1)t,−1 < t < 0,

u (−1, s) = − 1
1+s .

(2.63)

Intergrating it, we get

u(t, s) = −e−(s2−1)(t+1)u(−1, s) +

t∫
−1

e−(s2−1)(t−y) {p(s) + (s − 1)y} dy
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= −e−(s2−1)(t+1)
[
−

p(s)
s2 − 1

+
1

(s + 1)(s2 − 1)

]
+

p(s)
s2 − 1

+
t

s + 1
−

1
(s + 1)(s2 − 1)

.

From that it follows

u(0, s) = e−(s2−1)
[
−

p(s)
s2 − 1

+
1

(s + 1)(s2 − 1)

]
+

p(s)
s2 − 1

−
1

(s + 1)(s2 − 1)
, (2.64)

ut(0, s) = e−(s2−1)
[
p(s) −

1
s + 1

]
+

1
s + 1

. (2.65)

Now, let 0 ≤ t ≤ 1. Applying (2.63) , (2.64) and (2.65) , we get the following initial value

problem

utt (t, s) + (s2 − 1)u (t, s) = −p (s) + st − t + 1
s+1 , 0 < t < 1,

u(0, s) = e−(s2−1)
[
−

p(s)
s2−1 + 1

(s+1)(s2−1)

]
+

p(s)
s2−1 −

1
(s+1)(s2−1) ,

ut(0, s) = e−(s2−1)
[
p(s) − 1

s+1

]
+ 1

s+1 .

(2.66)

Applying the D’Alembert’s formula , we get

u(t, s) = cos
√

s2 − 1te−(s2−1)
[
−p(s)
s2 − 1

+
1

(s + 1)(s2 − 1)

]
(2.67)

+
1

√
s2 − 1

sin
√

s2 − 1te−(s2−1)
[
p(s) −

1
s + 1

]

+
1

s2 − 1

[(
1

s + 1
− p(s)

)]
+

t
s + 1

.

Putting t = 1 and using u(1, s) = 1
s+1 , we get

cos
√

s2 − 1e−(s2−1)

s2 − 1

[
1

1 + s
− p(s)

]
+

1
√

s2 − 1
sin
√

s2 − 1
[
p(s) −

1
s2 + 1

]

+
1

s2 − 1

[
1

s + 1
− p(s)

]
+

1
s + 1

=
1

s + 1
.

Then [
1

1 + s
− p(s)

] cos
√

s2 − 1
s2 − 1

e−(s2−1) −
1

√
s2 − 1

sin
√

s2 − 1 +
1

s2 − 1

 = 0.
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Since,

cos
√

s2 − 1e−(s2−1) −
√

s2 − 1 sin
√

s2 − 1 + 1 , 0,

we have that

1
1 + s

− p(s) = 0.

Therefore, p(s) = 1
1+s and

p(x) = L−1
{

1
1 + s

}
= e−x. (2.68)

Using p(s) = 1
1+s , we get

u(t, s) =


t

1+s , 0 ≤ t ≤ 1,

t
1+s ,−1 ≤ t ≤ 0.

=
t

1 + s
. (2.69)

Taking the inverse Laplace transform with respect to x , we get

u(t, x) = tL−1
{

1
1 + s

}
= te−x,−1 ≤ t ≤ 1.

Thus, the exact solution of problem (2.60) is

(u(t, x), p(x)) =
(
te−x, e−x) .

Example 2.2.2. Obtain the Laplace transform solution of the following problem source

identification problem

−
∂2u(t,x)
∂t2 −

∂2u(t,x)
∂x2 = p (x) − e−x − 2e−(t+x),

0 < x < ∞, 0 < t < 1,

∂u(t,x)
∂t +

∂2u(t,x)
∂x2 = −p (x) + e−x,

0 < x < ∞,−1 < t < 0,

u (−1, x) = e1−x, u (1, x) = e−1−x, 0 ≤ x < ∞,

u (t, 0) = e−t, ux (t,∞) = −e−t,−1 ≤ t ≤ 1

(2.70)
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for a one dimensional parabolic-elliptic equation.

Solution. Taking the Laplace transform of both sides of the differential equation and using

conditions u (t, 0) = e−t, ux (t,∞) = −e−t, we can write

−utt (t, s) −
[
s2u (t, s) − su (t, 0) − ux (t, 0)

]
= p (s) − 1

s+1 −
2e−t

1+s , 0 < t < 1,

ut (t, s) +
[
s2u (t, s) − su (t, 0) − ux (t, 0)

]
= −p (s) + 1

1+s ,−1 < t < 0,

u (−1, s) = e
1+s , u (1, s) = e−1

1+s .

Therefore, we get the following problem

−utt (t, s) + −s2u (t, s)

= p (s) − se−t + e−t − 1
s+1 −

2e−t

1+s , 0 < t < 1,

ut (t, s) + s2u (t, s)

= −p (s) + se−t + e−t + 1
1+s ,−1 < t < 0,

u (−1, s) = e
1+s , u (1, s) = e−1

1+s .

(2.71)

Now, we will obtain the solution of problem (2.71). Let −1 ≤ t ≤ 0.Then, we have the

following initial value problem
ut (t, s) + s2u (t, s) = −p(s) + e−t(s − 1) + 1

1+s ,−1 < t < 0,

u (−1, s) = e
1+s .

(2.72)
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Solving it, we get

u(t, s) = e−s2(t+1)u(−1, s) +

t∫
−1

e−s2(t−y)
(
p(s) + e−y(s − 1) +

1
1 + s

)
dy (2.73)

=
1
s2

(
1

1 + s
− p(s)

) {
1 − e−s2(t+1)

}
+

1
s + 1

e−t.

From that it follows

u(0, s) =
1
s2

(
1

1 + s
− p(s)

) {
1 − e−s2}

+
1

s + 1
, (2.74)

ut(0, s) =
1
s2

(
1

1 + s
− p(s)

)
s2e−s2

−
1

s + 1
. (2.75)

Now, let 0 ≤ t ≤ 1. Applying (2.72) , (2.74) and (2.75) , we get the following initial value

problem

utt (t, s) + s2u (t, s) = −p (s) + (s − 1)e−t + 1+2e−t

1+s , 0 < t < 1,

u(0, s) = 1
s2

(
1

1+s − p(s)
) (

1 − e−s2
)

+ 1
s+1 ,

ut(0, s) = 1
s2

(
1

1+s − p(s)
)

s2e−s2
− 1

s+1 .

(2.76)

Applying the D’Alembert’s formula , we get

u(t, s) = cos st
{

1
s2

(
1

1 + s
− p(s)

) (
1 − e−s2)

+
1

s + 1

}
(2.77)

+
1
s

sin st
{

1
s2

(
1

1 + s
− p(s)

)
s2e−s2

−
1

s + 1

}

+
1
s

t∫
0

sin s(t − y)
(
1 + 2e−y

s + 1
− p(s) + (s − 1)e−y

)
dy.

Integrating by parts, we get
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I(t) =

t∫
0

sin s(t − y)e−ydy =
sin st + se−t − s cos st

1 + s2 .

Then,

u(t, s) = cos st
{

1
s2

(
1

1 + s
− p(s)

) (
1 − e−s2)

+
1

s + 1

}
(2.78)

+
1
s

sin st
{

1
s2

(
1

1 + s
− p(s)

)
s2e−s2

−
1

s + 1

}

−

(
1 −

1
s2 cos st

)
1
s2

(
1

1 + s
− p(s)

)
+

1 + s2

s(1 + s)

(
sin st + se−t − s cos st

1 + s2

)
.

Putting t = 1 and using u(1, s) = e−1

s+1 , we get

cos s
{

1
s2

(
1

1 + s
− p(s)

) (
1 − e−s2)

+
1

s + 1

}

+
1
s

sin s
{

1
s2

(
1

1 + s
− p(s)

)
s2e−s2

−
1

s + 1

}

−

(
1 −

1
s2 cos s

)
1
s2

(
1

1 + s
− p(s)

)
+

1 + s2

s(1 + s)

(
sin s + se−1 − s cos s

1 + s2

)
=

e−1

s + 1
.

From that it follows[
1

1 + s
− p(s)

] {
cos s

s2 (1 − e−s2
) +

1
s

sin se−s2
−

1
s2 +

cos s
s2

}
= 0.

Since,

cos s(2 − e−s2
) + s sin se−s2

− 1 , 0,

we have that

1
1 + s

− p(s) = 0.

Therefore, p(s) = 1
1+s and

p(x) = L−1
{

1
1 + s

}
= e−x. (2.79)
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Using p(s) = 1
1+s , we get

u(t, s) =


t

1+s , 0 ≤ t ≤ 1,

t
1+s ,−1 ≤ t ≤ 0.

=
t

1 + s
. (2.80)

Taking the inverce Laplace transform with respect to x , we get

u(t, x) = e−tL−1
{

1
1 + s

}
= e−te−x,−1 ≤ t ≤ 1.

Thus, the exact solution of problem (2.70) is

(u(t, x), p(x)) =
(
e−(t+x), e−x

)
.

Note that using similar procedure one can obtain the solution of the following identification

problem

−
∂2u(t,x)
∂t2 −

n∑
r=1

ar
∂2u(t,x)
∂x2

r
= p(x) + f (t, x),

x = (x1, ..., xn) ∈ Ω
+
, 0 < t < T,

∂u(t,x)
∂t +

n∑
r=1

ar
∂2u(t,x)
∂x2

r
= −p(x) + g(t, x),

x = (x1, ..., xn) ∈ Ω
+
, −T < t < 0,

u(−T, x) = ψ (x) , u(T, x) = ψ(x), x ∈ Ω
+
,

u(t, x) = α(t, x), uxr (t, x) = β(t, x), 1 ≤ r ≤ n,

−T ≤ t ≤ T, x ∈ S +

(2.81)

for the multidimensional parabolic-elliptic partial differential equation. Here ar > a > 0 and

f (t, x) ,
(
t ∈ (0,T ) , x ∈ Ω

+)
, g (t, x) ,

(
t ∈ (−T, 0) , x ∈ Ω

+)
,

ϕ(x), ψ (x)
(
x ∈ Ω

+)
, α(t, x), β(t, x)(−T ≤ t ≤ T, x ∈ S +), are given smooth functions.

Here and in future Ω+ is the unit open cube in the n−dimensional Euclidean space

Rn (0 < xk < ∞, 1 ≤ k ≤ n) with the boundary

S +,Ω
+

= Ω+ ∪ S +.
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However, Laplace transform method described in solving (2.81) can be used only in the case

when (2.81) has constant and polynomial coefficients.

2.3 FOURIER TRANSFORM METHOD

We consider Fourier transform solution of identification problems for parabolic-elliptic

differential equations.

Example 2.3.1. Obtain the Fourier transform solution of the following problem source

identification problem

−
∂2u(t,x)
∂t2 −

∂u2(t,x)
∂x2 + u(t, x) = p (x) − e−x2

+
(
−4x2 + 2

)
e−t−x2

,

0 < t < 1, x ∈ R1,

∂u(t,x)
∂t +

∂2u(t,x)
∂x2 − u(t, x) = −p (x) − e−x2

+
(
4x2 − 2

)
e−t−x2

,

−1 < t < 0, x ∈ R1,

u (−1, x) = e1−x2
, u (1, x) = e−1−x2

, x ∈ R1

(2.82)

for a one dimensional parabolic-elliptic differential equation.

Solution. Here and in future we denote

F {u (t, x)} = u (t, s) .

Taking the Fourier transform of both sides of the differential equation (2.82) and using initial
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conditions, we can obtain

−utt (t, s) − F
{
∂2u(t,s)
∂x2

}
+ F {u(t, s)} = p (s) − F

{
e−x2

}
+e−tF

{
(−4x2 + 2)e−x2

}
, 0 < t < 1,

ut (t, s) + F
{
∂2u(t,s)
∂x2

}
− F {u(t, s)} = −p (s) − F

{
e−x2

}
,

+e−tF
{
(4x2 − 2)e−x2

}
,−1 < t < 0,

u (−1, s) = eF
{
e−x2

}
, u (1, s) = e−1F

{
e−x2

}
.

(2.83)

We denote that

F
{
e−x2}

= q(s).

Then 

−utt (t, s) + s2u (t, s) + u(t, s) = p (s) − q(s) − F
{
∂2

∂x2

(
e−x2

)}
,

0 < t < 1,

ut (t, s) − s2u (t, s) + u(t, s) = p (s) − q(s) + e−tF
{
∂2

∂x2

(
e−x2

)}
,

−1 < t < 0,

u (−1, s) = eq(s), u (1, s) = e−1q(s).

(2.84)

Let −1 ≤ t ≤ 0. Then we have the identification problem

ut (t, s) − (s2 − 1)u (t, s)

= p (s) − q(s) − e−ts2q(s),−1 < t < 0,

u (−1, s) = eq(s)

(2.85)
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for ordinary differential equations. Solving the problem, we get

u(t, s) = e(s2−1)(t+1)eq(s) +

t∫
−1

e(s2−1)(t−y)
(
p(s) − q(s) − e−ys2q(s)

)
dy. (2.86)

= e(s2−1)(t+1)eq(s) −
p(s) − q(s)

s2 − 1

(
1 − e(s2−1)(t+1)

)
+ q(s)es2−1)t

[
e−s2t − es2]

.

Then,

u(0, s) = q(s) −
p(s) − q(s)

s2 − 1

(
1 − e(s2−1)

)
, (2.87)

ut(0, s) = −q(s) −
p(s) − q(s)

s2 − 1

(
−(s2 − 1)e(s2−1)

)
. (2.88)

Now, let 0 ≤ t ≤ 1. Applying (2.85) , (2.87) and (2.88) , we get the following initial value

problem

utt(t, s) − (s2 − 1)u(t, s) = −
{
p(s) − q(s) + e−ts2q(s)

}
u(0, s) = q(s) − p(s)−q(s)

s2−1

(
1 − e(s2−1)

)
,

ut(0, s) = −q(s) − p(s)−q(s)
s2−1

(
−(s2 − 1)e(s2−1)

)
.

(2.89)

Applying the D’Alembert’s formula , we get

u(t, s) = cosh
√

s2 − 1tu(0, s) +
1

√
s2 − 1

sinh
√

s2 − 1tut(0, s) (2.90)

−
1

√
s2 − 1

t∫
0

sinh
√

s2 − 1(t − y)
{
p(s) − q(s) + e−ys2q(s)

}
dy.

Integrating by parts, we get

38



u(t, s) = cosh
√

s2 − 1t
{

q(s) − −
p(s) − q(s)

s2 − 1

(
1 − e(s2−1)

)}

+
sinh

√
s2 − 1t

√
s2 − 1

{
−q(s) −

p(s) − q(s)
s2 − 1

(
−(s2 − 1)e(s2−1)

)}
(2.91)

+
p(s) − q(s)

s2 − 1

(
−1 + cosh

√
s2 − 1t

)

−
q(s)
√

s2 − 1

{
sinh

√
s2 − 1t +

√
s2 − 1

(
e−t − cosh

√
s2 − 1t

)}
.

Putting t = 1 and using u(1, s) = e−1q(s) , we get

cosh
√

s2 − 1
{

q(s) − −
p(s) − q(s)

s2 − 1

(
1 − e(s2−1)

)}

+
sinh

√
s2 − 1

√
s2 − 1

{
−q(s) −

p(s) − q(s)
s2 − 1

(
−(s2 − 1)e(s2−1)

)}

+
p(s) − q(s)

s2 − 1

(
−1 + cosh

√
s2 − 1

)
(2.92)

−
q(s)
√

s2 − 1

{
sinh

√
s2 − 1 +

√
s2 − 1

(
e−1 − cosh

√
s2 − 1

)}

= e−1q(s).

Then,

p(s) − q(s)
s2 − 1

− cosh
√

s2 − 1
(
1 − e(s2−1)

)
−

sinh
√

s2 − 1
√

s2 − 1

(
−(s2 − 1)e(s2−1)

)
(2.93)

−1 + cosh
√

s2 − 1
]

= 0.

Since
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− cosh
√

s2 − 1
(
1 − e(s2−1)

)
−

sinh
√

s2 − 1
√

s2 − 1

(
−(s2 − 1)e(s2−1)

)
+

(
−1 + cosh

√
s2 − 1

)
, 0,

we have that

p(s) − q(s)
s2 − 1

= 0.

Therefore p(s) = q(s) and

p(x) = q(x) = F −1F
{
e−x2}

= e−x2
. (2.94)

Using p(s) = F
{
e−x2

}
, we get

u(t, s) =


q(s)e−t, 0 < t < 1,

q(s)e−t,−1 < t < 0.

= q(s)e−t. (2.95)

Taking the inverse Fourier transform with respect to x , we get

u(t, x) = F −1
{
F

{
e−(t+x2)

}}
= e−(t+x2),−1 ≤ t ≤ 1.

Thus , the exact solution of problem (2.82) is

(u(t, x), p(x)) =
(
e−(t+x2), e−x2)

.

Note that using similar procedure one can obtain the solution of the following boundary

value problem

−
∂2u(t,x)
∂t2 −

n∑
r=1
αr

∂2u(t,x)
∂x2

r
= p(x) + f (t, x),

x = (x1, ..., xn) ∈ Rn, 0 < t < T,

∂u(t,x)
∂t +

n∑
r=1
αr

∂2u(t,x)
∂x2

r
= −p(x) + g(t, x),

x = (x1, ..., xn) ∈ Rn, −T < t < 0,

u(−T, x) = ψ (x) , u(T, x) = ψ(x), x ∈ Rn

(2.96)
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for the multidimensional parabolic-elliptic partial differential equation. Here αr > α > 0

and f (t, x) , (t ∈ (0,T ) , x ∈ Rn) , g (t, x) , (t ∈ (−T, 0) , x ∈ Rn) , ϕ(x), ψ (x) (x ∈ Rn) are given

smooth functions.

However, Fourier series method described in solving (2.96) can be used only in the case

when (2.96) has constant coefficients.

So, all analytical methods described above, namely the Fourier series method, Laplace

transform method and the Fourier transform method can be used only in the case when the

differential equation has constant coefficients or polynomial coefficients. It is well-known

that the most general method for solving partial differential equation with depend on t and

in the space variables is finite difference method. In the next chapter, we consider the source

identification problem for a one dimensional parabolic-elliptic equation. The first and

second order of accuracy difference schemes for the numerical solution of this source

identification problem for a one dimensional parabolic-elliptic equation is presented.

Numerical analysis and discussions are presented.
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CHAPTER 3

FINITE DIFFERENCE METHOD OF THE SOLUTION OF SOURCE

IDENTIFICATION PROBLEMS FOR PARABOLIC-ELLIPTIC EQUATIONS

In this section, we study the numerical solution of the identification problem for parabolic-

elliptic equations

−
∂2u(t,x)
∂t2 −

∂2u(t,x)
∂x2 + u(t, x) = p(x) + f (t, x),

0 < t < 1, 0 < x < π,

∂u(t,x)
∂t +

∂2u(t,x)
∂x2 − u(t, x) = −p(x) + g(t, x),

−1 < t < 0, 0 < x < π,

u(0+, x) = u(0−, x), ut(0+, x) = ut(0−, x), 0 ≤ x ≤ π,

u(−1, x) = ϕ(x), u(1, x) = ψ(x), 0 ≤ x ≤ π,

u(t, 0) = u(t, π) = 0,−1 ≤ t ≤ 1,

(3.1)

where p(x) is an unknown source term. Problem (3.1) has a unique smooth solution

{u(t, x), p(x)} for the smooth functions ϕ(x), ψ(x), f (t, x) and g(t, x). We construct the first

and second order of accuracy difference schemes for the approximate solutions of the

identification problem (3.1). We discuss the numerical procedure for implementation of

these schemes on the computer. We provide with numerical illustration for simple test

problem.
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3.1 THE NUMERICAL ALGORITHM

The solution of problem (3.1) can be obtained

u(t, x) = w(t, x) + q(x), 0 ≤ x ≤ π,−1 ≤ t ≤ 1 (3.2)

where q(x) is the solution of identification problem

−q
′′

(x) = p(x), 0 < x < π, q(0) = q(π) = 0 (3.3)

and w(t, x) is the solution of the nonlocal boundary value problem

−wtt − wxx = f (t, x), 0 < t < 1, 0 < x < π,

wt + wxx = g(t, x),−1 < t < 0, 0 < x < π,

w(0+, x) = w(0−, x),wt(0+, x) = wt(0−, x), 0 ≤ x ≤ π,

w(−1, x) − w(1, x) = ϕ(x) − ψ(x), 0 ≤ x ≤ π,

u(t, 0) = u(t, 1) = 0,−1 ≤ t ≤ 1.

(3.4)

Note that from (3.1)-(3.3) it follows that

p(x) = wxx(1, x) − ψ
′′

(x), 0 ≤ x ≤ π. (3.5)

Taking into account all of the above, the following numerical algorithm can be used for the

approximate solutions of the identification problem (3.1):

1. Find the approximate solution of the nonlocal boundary value problem (3.4).

2. Approximate the source function p(x) by the formula (3.5).

3. Find the approximate solutions of identification problem (3.3).

4. Find the approximate solution of identification problem (3.1) by the formula (3.2).

For the numerical solution of problem (3.1), we consider grid spaces

[−1, 1] τ = {t : tk = kτ,−N ≤ k ≤ N,Nτ = 1, }
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[0, π]h = {x : xn = nh, 0 ≤ n ≤ M,Mh = π.}

For the numerical solution of problem (3.1), we present stable two-step difference schemes

−
uk+1

n −2uk
n+uk−1

n
τ2 −

uk
n+1−2uk

n+uk
n−1

h2 = pn + f (tk, xn),

1 ≤ k ≤ N − 1, 1 ≤ n ≤ M − 1,

uk
n−uk−1

n
τ

+
uk−1

n+1−2uk−1
n +uk−1

n−1
h2 = −pn + g(tk, xn),

−N + 1 ≤ k ≤ 0, 1 ≤ n ≤ M − 1,

u1
n − u0

n = u0
n − u−1

n , 0 ≤ n ≤ M,

u−N
n = e sin xn, uN

n = e−1 sin xn, 0 ≤ n ≤ M,

uk
0 = uk

M = 0,−N ≤ k ≤ N

(3.6)

of the first order of accuracy in t and the second order of accuracy in x and

−
uk+1

n −2uk
n+uk−1

n
τ2 −

uk
n+1−2uk

n+uk
n−1

h2 = pn + f (tk, xn),

1 ≤ k ≤ N − 1, 1 ≤ n ≤ M − 1,

uk
n−uk−1

n
τ

+
uk−1

n+1−2uk−1
n +uk−1

n−1
2h2 +

uk
n+1−2uk

n+uk
n−1

2h2 = −pn + g(tk −
τ
2 , xn),

−N + 1 ≤ k ≤ −1, 1 ≤ n ≤ M − 1,

−3u0
n + 4u1

n − u2
n = 3u0

n − 4u−1
n + u−2

n , 0 ≤ n ≤ M,

u−N
n = e sin xn, uN

n = e−1 sin xn, 0 ≤ n ≤ M,

uk
0 = uk

M = 0,−N ≤ k ≤ N

(3.7)

of the second order of accuracy in t and in x. Therefore, in the first step for the approximate

solution of nonlocal boundary value problem (3.4) we have the following stable two-step
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difference schemes

−
wk+1

n −2wk
n+wk−1

n
τ2 −

wk
n+1−2wk

n+wk
n−1

h2 = f (tk, xn),

1 ≤ k ≤ N − 1, 1 ≤ n ≤ M − 1,

wk
n−wk−1

n
τ

+
wk−1

n+1−2wk−1
n +wk−1

n−1
h2 = g(tk, xn),

−N + 1 ≤ k ≤ 0, 1 ≤ n ≤ M − 1,

w1
n − w0

n = w0
n − w−1

n , 0 ≤ n ≤ M,

w−N
n − wN

n =
(
e − e−1

)
sin xn, 0 ≤ n ≤ M,

wk
0 = wk

M = 0,−N ≤ k ≤ N

(3.8)

of the first order of accuracy in t and the second order of accuracy in x and

−
wk+1

n −2wk
n+wk−1

n
τ2 −

wk
n+1−2wk

n+wk
n−1

h2 = f (tk, xn),

1 ≤ k ≤ N − 1, 1 ≤ n ≤ M − 1,

wk
n−wk−1

n
τ

+
wk−1

n+1−2wk−1
n +wk−1

n−1
2h2 +

wk
n+1−2wk

n+wk
n−1

2h2 = g(tk −
τ
2 , xn),

−N + 1 ≤ k ≤ −1, 1 ≤ n ≤ M − 1,

−3w0
n + 4w1

n − w2
n = 3w0

n − 4w−1
n + w−2

n , 0 ≤ n ≤ M,

w−N
n − wN

n =
(
e − e−1

)
sin xn, 0 ≤ n ≤ M,

wk
0 = wk

M = 0,−N ≤ k ≤ N

(3.9)

of the second order of accuracy in t and in x. Difference schemes (3.8) and (3.9) can be

written in the matrix form
Awn+1 + Bwn + Cwn−1 = ϕn, 1 ≤ n ≤ M − 1,

w0 = wM = 0,

(3.10)

where 0̃ is a zero vector and
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wn =



w−N
n

w−N+1
n

w−N+2
n

.

.

.

w0
n

w1
n

w2
n

w3
n

.

.

.

wN−1
n

wN
n


(2N+1)×1

,
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A = C =



0 0 0 . . . 0 . . . 0

a 0 0 . . . 0 . . . 0

0 a 0 . . . 0 . . . 0

0 0 a . . . 0 . . . 0

. . . . . .

. . . . . .

. . . . . .

0 0 0 . . . a 0 . . . 0

0 0 0 . . . . b . . . 0

0 0 0 . . . . b . . . 0

. . . . . .

. . . 0 . .

. . . 0 . .

0 0 0 . . . 0 . . . b 0

0 0 0 . . . 0 . . . 0


(2N+1)×(2N+1)
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, ϕn =



ψ(xn) − ϕ(xn)

τg(t−N+1, xn)

τg(t−N+2, xn)

.

.

.

τg(t1, xn)

τg(t0, xn)

τ2 f (t1, xn)

τ2 f (t2, xn)

.

.

.

τ2 f (tN−2, xn)

0


(2N+1)×1

,
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B =



1 0 0 . . . 0 . . . −1

c d 0 . . . 0 . . . 0

0 c d . . . 0 . . . 0

. .

. . . . . . .

. . . . . . .

. . . . . . .

0 0 0 . . . c d . . . 0

0 0 0 . . . e f e . . . 0

0 0 0 . . . 0 e f e . . 0

. . . . . . . .

. . . . . . . .

. . . . . . . .

0 0 0 . . . . . e f e

0 0 0 . . . −1 2 −1 . . . 0


(2N+1)×(2N+1)

a = 1
h2 , b = − 1

h2 , c = 1
τ
, d = −1

τ
− 2

h2 , e = − 1
τ2 and f = 2

τ2 + 2
h2 for difference scheme (3.8) and
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A = C =



0 0 0 . . . 0 . . . 0

a a 0 . . . 0 . . . 0

0 a a . . . 0 . . . 0

. . . . 0 . . . 0

. . . . . . .

. . . . . . .

. . . . . . .

0 0 0 . . . a a . . . 0

0 0 0 . . . . b . . . 0

0 0 0 . . . . b . . . 0

. . . . . .

. . . 0 . .

. . . 0 . .

0 0 0 . . . 0 . . . b 0

0 0 0 . . . 0 . . . 0


(2N+1)×(2N+1)
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B =



1 0 0 . . . 0 . . . −1

c d 0 . . . 0 . . . 0

0 c d . . . 0 . . . 0

. .

. . . . . . .

. . . . . . .

. . . . . . .

0 0 0 . . . c d . . . 0

0 0 0 . . . e f e . . . 0

0 0 0 . . . 0 e f e . . 0

. . . . . . . .

. . . . . . . .

. . . . . . . .

0 0 0 . . . . . e f e

0 0 0 . . 1 −4 6 −4 1 . . . 0


(2N+1)×(2N+1)

,

a = 1
2h2 , b = − 1

2h2 , c = 1
τ
− 1

h2 , d = −1
τ
− 1

h2 , e = − 1
τ2 , f = 2

τ2 + 2
h2 ,
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ϕn =



ψ(xn) − ϕ(xn)

τg(t−N+1+ τ
2
, xn)

τg(t−N+2+ τ
2
, xn)

.

.

.

τg(t1+ τ
2
, xn)

τg(t0+ τ
2
, xn)

τ2 f (t1, xn)

τ2 f (t2, xn)

.

.

.

τ2 f (tN−2, xn)

0


(2N+1)×1

for difference scheme (3.9). For the solution of the matrix equation (3.10), we use the

modified Gauss elimination method. We seek a solution of the matrix equation (3.10) by the

following form:
wn = αn+1wn+1 + βn+1, n = M − 1, ..., 2, 1

wM = 0̃

(3.11)

where αn(1 ≤ n ≤ M) are (2N + 1)x(2N + 1) square matrices and βn(1 ≤ n ≤ M) are

(2N + 1)x1 column vectors, calculated as,
αn+1 = −(B + Cαn)−1A,

βn+1 = (B + Cαn)−1 [
Dϕn −Cβn

] (3.12)

for n = 1, 2, ...M − 1. Here α1 is a zero matrix and β1 is a zero matrix.

In the second step, we obtain {pn}
M−1
1 by formula

pn =
wN

n+1 − 2wN
n + wN

n−1

h2 − ψ
′′

(xn), n = 1, 2, ...M − 1. (3.13)
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In the third step, we obtain {qn}
M
0 by formula

pn = −
qn+1−2qn+qn−1

h2 , 1 ≤ n ≤ M − 1,

q0 = qm = 0

(3.14)

or 

−2s s

s −2s s

s −2s s

. . .

. . .

s −2s s

s −2s



.



q1

q2

.

.

.

qM−2

qM−1



=



p1

p2

.

.

.

pM−2

pM−1



,

where s = − 1
h2 . In the fourth step, we obtain solution of difference schemes (3.8) and (3.9),

we will use formula

uk
n = wk

n + qn, n = 0, 1, ...,M, k = −N, ...,N. (3.15)

For the numerical test, we consider the example when f (t, x) = − sin x, g(t, x) = −2e−t sin x+

sin x, ϕ(x) = e sin x and ψ(x) = e−1 sin x.The exact solution of this problem is

u(t, x) = e−t sin x,−1 ≤ t ≤ 1, 0 ≤ x ≤ π, p(x) = sin x, 0 ≤ x ≤ π. (3.16)

The numerical solutions are computed using the first and second order of accuracy schemes

for different values of M and N. We compute the error between the exact solution and

numerical solution by formulas

||Eu||∞ = max
−N≤k≤N,0≤n≤M

∣∣∣u(tk, xn) − uk
n

∣∣∣ , (3.17)

(3.18)∣∣∣∣∣∣Ep

∣∣∣∣∣∣
∞

= max
1≤n≤M−1

|p(xn) − pn| ,

where u(tk, xn) is the exact value of u(t, x) at (tk, xn) and p(xn) is the exact value of source

p(x) at x = xn; uk
n and pn represent the corresponding numerical solutions by these difference
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schemes. Applying the numerical algorithm on the above, we get the following numerical

results:

TABLE 1. Difference Scheme (3.8)

Errors N = M = 40, 40 N = M = 80, 80 N = M = 160, 160

||Ew|| 0, 0527 0, 0265 0, 0133∣∣∣∣∣∣Ep

∣∣∣∣∣∣ 0, 0521 0, 0264 0, 0132

||Eu|| 0, 0277 0, 0140 0, 0070

TABLE 2. Difference Scheme (3.9)

Errors N = M = 40, 40 N = M = 80, 80 N = M = 160, 160

||Ew|| 1, 5271x10−4 3, 8366x10−5 9, 6146x10−6∣∣∣∣∣∣Ep

∣∣∣∣∣∣ 6, 6656x10−4 1, 6687x10−4 4, 1742x10−5

||Eu|| 1, 7230x10−4 4, 2859x10−5 1, 0687x10−5

Tables 1 and 2 are constructed for the obtained errors in maximum norm of solution of

problem (3.1) with difference schemes (3.8) and (3.9), respectively. As it is seen in Table 1

and 2, if N and M are doubled, the value of errors decreases by a factor of approximately 1/2

for the difference scheme (3.8) and 1/4 for the difference scheme (3.9), respectively. Thus,

the results show that the second order of accuracy difference scheme (3.9) is more accurate

comparing with the first order of accuracy difference scheme (3.8).
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CHAPTER 4

CONCLUSIONS

This thesis is seperated to the source identification problem for parabolic-elliptic equations

with unknown parameter p(x). The following conslusions are established:

• The literature of direct and invert boundary value problems for parabolic-elliptic

equations was studied.

• Fourier series, Laplace transform and Fourier transform methods are used for the

solving of six identification problems for parabolic-elliptic equations.

• The first and the second order of accuracy difference schemes are presented for the

approach solution of the one dimensional identification problem for the parabolic-

elliptic equation with the Dirichlet condition.

• The Matlab application of the numerical solution is added.
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APPENDIX 1 

MATLAB PROGRAMMING 

function AA(N,M) 
if nargin < 1; end;  
    close;close; 
  % first order, first equation  
  tau=1/N; 
  h =pi/M; 
    A = zeros(2*N+1,2*N+1); 
    for i=2:N+1; 
        A(i,i-1)=(1/(h^2)); 
    end; 
    for i=N+2:2*N; 
        A(i,i)=-(1/h^2); 
    end; 
    C=A; 
    A; 
  B=zeros(2*N+1,2*N+1); 
    for i=2:N+1;  
        B(i,i)=(1/tau); 
        B(i,i-1)=-(1/tau)-(2/(h^2)); 
    end; 
    for i=N+2:2*N;                                                                                                                                                                  
        B(i,i-1)=-(1/(tau^2));                                                                                                                                                                                                  
        B(i,i)=(2/(tau^2))+(2/(h^2)); 
        B(i,i+1)=-(1/(tau^2)); 
    end;                                                                                                                                                                                                                                                         
  B(1,1)=1; 
  B(1,2*N+1)=-1; 
  B(2*N+1,N)=-1; 
  B(2*N+1,N+1)=2; 
  B(2*N+1,N+2)=-1; 
  B; 
     D=eye(2*N+1,2*N+1); 
    for j=1:M+1; 
         fii(1,j)=(exp(1)-exp(-1))*sin((j-1)*h); 
    for k=2:N+1; 
         fii(k,j)=-2*exp(-(k-1-N)*tau)*sin((j-1)*h)+sin((j-1)*h); 
    end;  
    for k=N+2:2*N; 
         fii(k,j)=-sin((j-1)*h); 
    end; 
         fii(2*N+1,j)=0; 
    end;          
    alpha{1}=zeros(2*N+1,2*N+1); 
    betha{1}=zeros(2*N+1,1);  
    for j=2:M;  
        Q=inv(B+C*alpha{j-1}); 
        alpha{j}=-Q*A; 
        betha{j}=Q*(D*(fii(:,j))-C*betha{j-1}); 
    end; 
    U=zeros(2*N+1,M+1);  
    for j=M:-1:1; 
        U(:,j)=alpha{j}*U(:,j+1)+betha{j};  



 

59 
 

    end; 
    'EXACT SOLUTION OF THIS PROBLEM'; 
     for j=1:M+1; 
        for k=1:2*N+1;  
         esw(k,j)=(exp(-(k-1-N)*tau)-1)*sin((j-1)*h);  
        end; 
     end; 
    figure;  
    m(1,1)=min(min(U))-0.01;  
    m(2,2)=nan;  
    surf(m); 
    hold;  
    surf(esw) ; rotate3d ;axis tight; 
    figure;  
    surf(m);  
    hold; 
    surf(U); rotate3d; axis tight;  
    title('FIRST ORDER'); 
    maxes=max(max(esw)); 
    maxerror=max(max(abs(esw-U)))  
    relativeerror=maxerror/maxes; 
    cevap1 = [maxerror,relativeerror]; 
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APPENDIX 2 

MATLAB PROGRAMMING 

function CC(N,M) 
if nargin < 1; end;  
    close;close; 
  % first order, first equation  
  tau=1/N; 
  h =pi/M; 
    A = zeros(2*N+1,2*N+1); 
    for i=2:N+1; 
        A(i,i)=1/(2*(h^2)); 
        A(i,i-1)=1/(2*(h^2)); 
    end; 
    for i=N+2:2*N; 
        A(i,i)=-1/(h^2); 
    end; 
    C=A; 
    A; 
  B=zeros(2*N+1,2*N+1); 
    for i=2:N+1;  
        B(i,i)=(1/tau)-(1/h^2); 
        B(i,i-1)=-(1/tau)-(1/(h^2)); 
    end; 
    for i=N+2:2*N;                                                                                                                                                                  
        B(i,i-1)=-(1/(tau^2));                                                                                                                                                                                                  
        B(i,i)=(2/(tau^2))+(2/(h^2)); 
        B(i,i+1)=-(1/(tau^2)); 
    end;                                                                                                                                                                                                                                                         
    B(1,1)=1; 
    B(1,2*N+1)=-1; 
    B(2*N+1,N-1)=1; 
    B(2*N+1,N)=-4; 
    B(2*N+1,N+1)=6; 
    B(2*N+1,N+2)=-4; 
    B(2*N+1,N+3)=1; 
  B; 
     D=eye(2*N+1,2*N+1); 
    for j=1:M+1; 
         fii(1,j)=(exp(1)-exp(-1))*sin((j-1)*h); 
    for k=2:N+1; 
         fii(k,j)=-2*(exp((-(k-1-N)*tau)+(tau/2)))*sin((j-1)*h)+sin((j-

1)*h); 
    end;  
    for k=N+2:2*N; 
         fii(k,j)=-sin((j-1)*h); 
    end; 
         fii(2*N+1,j)=0; 
    end;        
    alpha{1}=zeros(2*N+1,2*N+1); 
    betha{1}=zeros(2*N+1,1);  
    for j=2:M;  
        Q=inv(B+C*alpha{j-1}); 
        alpha{j}=-Q*A; 
        betha{j}=Q*(D*(fii(:,j))-C*betha{j-1}); 
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    end; 
    w=zeros(2*N+1,M+1);  
    for j=M:-1:1; 
        w(:,j)=alpha{j}*w(:,j+1)+betha{j};  
    end; 
    'EXACT SOLUTION OF THIS PROBLEM'; 
     for j=1:M+1; 
        for k=1:2*N+1;  
         esw(k,j)=(exp(-(k-1-N)*tau)-1)*sin((j-1)*h);  
        end; 
     end; 
     for j=1:M+1; 
         for k=1:2*N+1; 
             esU(k,j)=(exp(-(k-1-N)*tau))*sin((j-1)*h); 
         end;  
     end; 
     for j=1:M+1; 
              ep(j)=sin((j-1)*h); 
         end; 
           for j=1:M+1; 
          q(j)=-w(2*N+1,j)+((exp(-1))*sin((j-1)*h)); 
      end; 
      for j=2:M; 
          p(j)=-(((q(j+1))-(2*q(j))+(q(j-1)))/(h^2)); 
      end;  
        p(1)=0; 
       p(M+1)=0; 
      for k=1:2*N+1; 
      for j=1:M+1; 
          U(k,j)=w(k,j)+q(j); 
      end;  
      end; 
    figure;  
    m(1,1)=min(min(w))-0.01;  
    m(2,2)=nan;  
    surf(m); 
    hold;  
    surf(esw) ; rotate3d ;axis tight; 
    figure;  
    surf(m);  
    hold; 
    surf(w); rotate3d; axis tight;  
    title('FIRST ORDER'); 
    maxes=max(max(esw)); 
    maxerror=max(max(abs(esw-w)))  
     maxerror=max(max(abs(esU-U)))  
     maxerror=max(max(abs(ep-p))) 
    relativeerror=maxerror/maxes; 
    cevap1 = [maxerror,relativeerror]; 
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