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ABSTRACT

In the present study, a source identification problem for parabolic-elliptic equations is
studied. Using tools of classical approximate, we are active to obtain the solution of any
source identification problems for parabolic-elliptic equations. Moreover, numerical
solutions of identification parabolic-elliptic equations are investigated. The first and
second order of accuracy difference schemes are presented for the solution of the
identification problem for a one-dimensional parabolic-elliptic equations and the

numerical procedure for application of these schemes is discussed.

Keywords: Source identification problems; parabolic-elliptic differential equations;
Fourier series method; Laplace transform and Fourier transform solutions; difference

schemes; numerical experience



OZET

Bu c¢alismada, parabolik-eliptik denklemleri igin kaynak tanimlama problemi
incelenmistir. Klasik yaklagim araglari, parabolik-eliptik denklemleri igin ¢esitli kaynak
tanimlama problemlerinin ¢Ozumiini elde etmemize imkan tanir.
Ayrica , parabolik-eliptik problemlerin tanimlanmasinda sayisal ¢oziimler incelenmistir.
Bir boyutlu parabolik-eliptik denklemlerde tanimlama probleminin ¢oéziimii igin birinci
ve ikinci dereceden dogruluk farki semalar1 sunulmus ve bu semalarin uygulanmasi igin

sayisal prosediir ele alinmigtir.

Anahtar Kelimeler: Kaynak tanimlama problemleri; parabolik-eliptik denklemleri;

Fourier serisi yontemi; Laplace doniisimii ve Fourier donilisimii ¢oziimleri; fark

semalari; sayisal deneyim
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CHAPTER 1
INTRODUCTION

Partial differential equations are ubiquitous in the applied sciences where they ensure a
mathematical description of phenomena in the physical, natural and social sciences.
Scientists have tried to study the real life problems applying mathematical models which
consist of partial differential equations. Lately, there have been many papers on inverse
problems with applications (A. K. Urinov and S. T. Nishonova, 2017 ;M. Kohlmann, 2015;
R. Denk, T. Seger, 2014; I. C. Kim, 2013; A. Ashyralyev, 2011; A. Ashyralyev and
0.Gercek,2010; M. Stiemer,2010; A. Ashyralyev and P.E. Sobolevskii,2004).

One of the main classes of inverse problems is the source identification problem. Since many
phenomena of the sciences and engineering are modeled by inverse problems, the apply of
more applicable and true algorithms that use some given investigation at accessible parts
of the domain of the problem to determine the unknown function has been becoming very
important. The study of well-posedness of the problem plays a vital role in obtaining a
numerical solution of the problem, as well (A. K. Urinov, S. T. Nishonova, 2017). As it is
known, if a problem is ill-posed, it is quite possible to have some difficulties with using the
numerical methods for the numerical solution of this problem.

The unknown source term of a parabolic equation may based on time, space or time and
space as the unknown variables. Several methods have been recommended or studied for
the reconstruction of the space-dependent source term. The traditional approach in solving
problems of source identification approximately consists in degradation of the inverse
problem to the Volterra integral equation of the first kind appyling the Green function (M.
Kohlmann, 2015). Another approximation is to use numerical schemes such as finite
difference method and finite elements method. Borukhov and Vabishchevich (I. C. Kim,
2013) presented a numerical algorithm depending the passing to the problem of the loaded
parabolic equation and used a difference scheme to solve the non-classical problem. A
numerical algorithm on the basis of the Landweber iteration is applied to take care of with

the problem ( R. Denk, T. Seger, 2014). Recovering the space-dependent source and the



theoretical and numerical methods interrelated to it are investigated by several writers. In
these works, finite difference method (A. Ashyralyev, 2011), the radial basis functions
method (M. Stiemer, 2010), the boundary elements method, the combination of the
boundary elements method and variational method are applied. For a general survey about
inverse and ill-posed problems, we cite (A. Ashyralyev and P.E. Sobolevskii,2004).

In the present paper, we deal with an inverse problem for mixed partial differential equations.

The problem of identifying the pair (u (¢), p) is stated as follows:

d*u(r)
—= tAu(®) =p+ f(),0<t<1,

u(0+) = u(0-),u (0+) = u'(0-),
(1.1

du(t)

o —Au()=-p+g0),-1<r<0,

u(=1) = ¢, u(l) = ¢

for the parabolic-elliptic differential equation in a Hilbert space H with self adjoint positive

definite operator A.

Using tools of classical approach we are enabled to obtain the solution of the several source
identification problems for parabolic-elliptic equations. Furthermore, the first and second
order of accuracy difference schemes for the numerical solution of the one-dimensional
parabolic-elliptic source identification problem are presented. Then, these difference

schemes are tested on an example and some numerical results are presented.



CHAPTER 2
METHODS OF SOLUTION OF SPACE DEPENDENT SOURCE
IDENTIFICATION PROBLEMS FOR PARABOLIC-ELLIPTIC EQUATIONS

It is known that identification problems for parabolic-elliptic differential equations can be
solved analytically by Fourier series, Laplace transform and Fourier transform methods.

Now, let us illustrate these three different analytical methods by examples.

2.1 FOURIER SERIES METHOD
We consider Fourier series method for solution of identification problems for
parabolic-elliptic differential equations.

Example 2.1.1. Obtain the Fourier series solution of the boundary value problem

_62u(t,x) _ 0%u(t,x)
or? 0x2

+ u(t, x) = p(x) + (2t — 1) sin x,

O<t<1,0<x<m,

Ou(t,x) 8%u(r,x)

—u(t,x) = —p(x) + (=2t + 2)sin x,

ot Ox2
-1<t<0,0<x<m, 2.1
u(—1,x) = —sinx,u(l,x) =sinx,0 < x < 7,

ut,0) =u(t,n)=0,-1<t<1

for the parabolic-elliptic differential equation.
Solution. In order to solve this problem, we consider the Sturm-Liouville problem for the
differential operator A defined by formula

d*u(x)
dx?

Au(x) = — + u(x)

with the domain

2
D(A) = {u D u(x), % € L,[0, 7], u(0) = u(r) = O}.

2



Actually, we will obtain all (u(x), 4) such that
—u"(x) + u(x) = —Au(x),0 < x < m,u(0) = u(n) = 0, u(x) # 0.
It is easy to see that the solution of this Sturm-Liouville problem is
(u(x), ) = (sinkx, =k* = 1),k = 1,2, ..

Therefore, we will seek solution u(¢, x) of problem (2.1) using by the Fourier series

u(t, x) = Z A7) sin kx. 2.2)
k=1
and
p(x) = > pisinkx. (2.3)
k=1

Here Ay(t), pr,k = 1,2, ... are unknown functions and parameters. Applying formula (2.2),

given boundary conditions, we get

u(=1,x) = ZAk(—l) sinkx = — sin x,
k=1

u(l, x) = i A(1)sinkx = sin x.
k=1
From that it follows
Al(-1)=-1LA(-1)=0,k# 1 2.4)
and
A(1) = 1,A(1) =0,k # 1, (2.5)
respectively. Applying formulas (2.2), (2.3) and given equations, we obtain

=3 A@ysinkx+ Y AR sinkx+ Y A sinkx 2.6)
k=1 k=1

k=1
= Zpksinkx+ 2t—1)sinx,0<t< 1,
k=1



DAy sinkx = " A0k sinkx = " Ay(1) sin kx 2.7)
k=1 k=1 k=1

= —Zpk sinkx + (=2t + 2) sinx,—1 < £ < 0.
k=1
Equating coefficients of sinkx, k = 1,2, ..., to zero, we get
AT +2A/() = p1 + 2t - 1),k =1, (2.8)
AL+ ( + DA = prk # 1,0 <t < 1,
Al -2A1() = -p1 + (-2t +2),k=1, 2.9)

A(t) — (kK + DA = —prk # 1,1 <t < 0.

First, we obtain A;(¢). Applying (2.4), (2.5), (2.8) and (2.9), we get the following boundary

value problem

—AT(E) + 2A,(8) = pr + 21— 1),0 <t < 1,

Al(t)-2A/() = -p1 —2t+2,-1<1t<0,

A=) =-1LA() =1
for a mixed ordinary differential equations. We will seek the general solution of this mixed

equation by the formula
A1) = A (D) +A, (D),
where A, () of homogeneous equation
-A7(H)+2A(1)=0,0<1< 1,
Al -2A1(1)=0,-1<1<0
and A, (¢) is the particular solution of non-homogeneous mixed equation. It is clear that

cle‘ﬁt + cze’\rz’,O <t<l1,
A (1) = (2.10)

e’ -1 <t <0.



For obtaining A, (1) , we put
A, (1) = at + b.

Putting it into the first equation, we get
2(at +b) = p; + 2t - 1.

Thena = 1,b =2 and A, () = t + 2.

Let 0 < ¢t < 1. Using (2.10), we get the general solution of this equation by the following

formula

Al(t):cle‘@+cze_‘/§t+t+pl_l. (2.11)
Then,

AL = V2ee = V2epe VP 4 1. (2.12)

Assume that —1 < ¢ < 0. Using (2.10), we get the general solution of this equation by the

following formula

AW = v+ L 2.13)
Then,

Al(f) = 2c3e* + 1. (2.14)
Using (2.11),(2.13), (2.12),(2.14), boundary conditions A;(—-1) = —-1,A;(1) = 1, and

continuity conditions at t = 0, we get the following system of equations

_ -1
cze — 1+ 8= =1,

eV 4 e V2 41 +—p‘2_1 =1,

-1 -1
C3+IJIT:C]+C2+FIT,

2c3+1 = \/zcl—\/icz+1.




From that it follows

—c3+c1+c =0,

—2C3 + \/§C1 — \/§C2 =0

or
czer + ’”T_l =0,
cle‘/i + cze_ﬁ —cie 2 =0,
—C3+CL+C =0,
—2C3 + \/§C1 - \/56‘2 =0.
Since
eV V2 g2
1 1 -1

V2 V2 -2
= 2eV - V2e V24 V2e 2+ V2t 420 V2 - V2e V2 2 0,
we have that
cir=c=c3=0.

From that and equation c3e™2 + ”‘T_l = (0 it follows that p; = land A(?) = t.



Second, we obtain Ai(?),k # 1. Applying (2.4), (2.5), (2.8) and (2.9), we get the following

boundary value problem

—AY () + (K2 + DA = pr,0 <t < 1,

A1) = (kK + DA(1) = —p, -1 <1 <0,

A(-1) =0,A(1) =0
for a mixed ordinary differential equations. We will seek the general solution of this mixed
equation by the formula

A=A +A,1,

where A, () of homogeneous equation

—AY () + (K + DA =0,0 <t < 1,

A(t) — (K + DA =0,-1 <t <0
and A, () is the particular solution of non-homogeneous mixed equation. It is clear that

Vi2 _Vi2
C1€k+1 k+]l,0<t<1,

"+ e
A, () = (2.15)
c3e®H D 1 <1<,

For obtaining A, (¢) , we put
A, (1) = b.

Let 0 < ¢ < 1.Putting it into the first equation, we get
(k> + 1)b = py.

Then b = . Using (2.15), we get the general solution of this equation by the following

formula

Pk

2 — K2
Ap(t) = c1e V1 4 e VI 4 —
kK +1

(2.16)



Then,

AL() = ¢ V2 + 1e Vo1 — o) VI2 4 17 Vi1, (2.17)
Let =1 <t < 0. Putting into A,(#) = b the second equation, we get

—(kK* + 1)b = —p.

Then b = . Using (2.15), we get the general solution of this equation by the following

formula

Ar(t) = c3e®+Dr 4 kzpﬁ. (2.18)
Then,

A1) = 3k + 1)e® 1, (2.19)

Using (2.16),(2.17), (2.18),(2.19), boundary conditions Ax(-1) = 0,Ax(1) = 0, and

continuity conditions at ¢t = 0, we get the following system of equations

—(kK2+1 Pk _
c3e ( )+m—0,

Vi2 _Vi2 .
ce k+1+C2€ k+1+—kfj_] —0,
Pk Pk
G % 2 Lt T o

(k2+ 1)C3 = Cq Vk? + 1 —C VkZ + 1.

From that it follows

—(kK2+1 Pk _
c3e ( )+m—0,

Vi2 /%) —(k2
€k+1 k+l—C3€(k+l)=0,

C1 + cre

—C3+C1+C2:O,

—(k2+1)C3+C1 Vk2+1—C2 VkZ+1=0.



Since

Vi V2 —(i2
e k*+1 e k*+1 —e (k=+1)

1 1 -1
Vie+1 —Vi2+1 —(2+1)

= —(2 + DeWH — Vi2 4+ 1e W 4 Vi2 4 1o

+VIZ+ 1@ 4 (12 + De W = ViZ+ 1e ¥+ 2 0,

we have that
cir=c=c3=0.

From that and equation cze~®*V + Z= = 0 it follows that p; = 0 and Ag(r) = 0.Then,

Ar(t) =0, pr = 0,k # 1 and the exact solution of the problem (2.1) is

u(t, x) = Z Au(f)sinkx = A (£) sin x = £sin x, (2.20)
k=1

p(x) = Zpk sinkx = p; sin x = sin x.
k=1

Note that using similar procedure one can obtain the solution of the following boundary
value problem

n

Fult, Qult,
- 352)0 -2 _g)(CZX) = p(x) + f(1, %),
r= "

x=(x1,...,xn)€5, O0<t<T,

du(t, 2 %ult,
M+ Y a5 = —p(x) + g(1, %),
r=1 "

X = (X1, X)) €Q, =T <t <0, (2.21)

u(=T,x) = ¢ (x),u(T, x) = Yy(x), x € Q,

ult,x) =0,-T<t<T, x€e8§

10



for the multidimensional parabolic-elliptic partial differential equation. Here o, > o >
0 and f(t,x),(t €(0,7),x eﬁ),g(t,x),(t e(-T,0),x€ ﬁ),go(x),w(x)(x € 5) are given
smooth functions. Here and in future € is the unit open cube in the n—dimensional Euclidean

space R" (0 < x; < 1,1 < k < n) with the boundary
$,Q=QUS.

However, Fourier series method described in solving (2.21) can be used only in the case

when (2.21) has constant coefficients.

Example 2.1.2. Obtain the Fourier series solution of the identification problem

O u(r, 0% ul(t,
_ 0 SEZX) _ g)(CZX) + bt(t, x) = p(x) + (2; _ I)COS X,

O0<tr<1,0<x<m,

oult, 8ult,

ung) + —;‘i’zx) —u(t, x) = —p(x) — 2t cos x,

-1<t<0,0<x<m, (2.22)
u(-=1,x) = —cosx,u(l,x) =cosx,0 < x <,

u(t,0) = u(t,m) =0,-1<r<1

for parabolic-elliptic equations.
Solution. In order to solve the problem, first we consider the Sturm-Liouville problem for
the operator A defined by formula

d*u(x)

Au(x) = — e

+ u(x)

with the domain

2
D(A) = {u s u(x), du_(zx) € L,[0,7],u'(0) = u'(7) = O}.
dx

Actually, we will obtain all (u(x), 1) such that
—u”(x) +u(x) = —Au(x),0 < x < m,u'(0) = u'(n),u(x) # 0.

11



It is easy to see that the solution of this Sturm-Liouville problem is
(up(x), Ay) = (cos kx, =k = 1),k = 0,1, ..

Therefore, we will seek solution u(¢, x) of problem (2.22) using by the Fourier series

u(t, x) = Z Ay(?) cos kx. (2.23)
k=0
and
px) = Z Pi COS kx. (2.24)
k=0

Here Ai(1), pr,k = 0,1,2,... are unknown functions and parameters. Applying formula

(2.23), given boundary conditions, we get

u(-1,x) = ZAk(—l) coskx = —cos x,
k=0

u(l, x) = ZAk(l)coskx = COS X.
k=0
From that it follows
A=) =-1,A(-1) =0,k # 1 (2.25)
and
Ai(D)=1,A(1) =0,k #1, (2.26)

respectively. Applying formulas (2.23), (2.24) and given equations, we obtain

= > Au()ycoskx + ) A coskx + Y A(f) coskx (2.27)
k=0 k=0 k=0
= prcoskx+ (2t —1)cosx,0 <t <1,
k=0
D Ay coskx = > Atk coskx — )" Ax(t) cos kx (2.28)
k=0 k=0 k=0

= —Zpkcoskx+ —-2tcosx,—1 <t<0.
k=0

12



Equating coefficients of cos kx, k = 0, 1, 2, ..., to zero, we get

AT () +2A,() = p1+2t—-1),k =1, —A,’c’(t)+(k2+ DA(t) = pr.k #1,0<t <1, (2.29)

A1) —2A1((0) = —p1 =2tk = 1,A(t) - (% + DA = —pi,k # 1,-1 <t < 0. (2.30)

First, we obtain A;(7). Applying (2.25), (2.26), (2.29) and (2.30), we get the following

boundary value problem

AT +2A(0D)=p1+(2t-1),0<1 <1,

A1) —2A1(0) = —p - 2t,-1 <1 <0,

A-D=-1LA10)=1

for a mixed ordinary differential equations. We will seek the general solution of this mixed

equation by the formula
A=A +A,Q1),
where A, (¢) of homogeneous equation
-A7(t) +2A,(1) =0,0 <1< 1,
Al -2A1(1)=0,-1<t<0
and A, (¢) is the particular solution of non-homogeneous mixed equation. It is clear that

cle‘ﬁ’ + cze‘\@,O <t<l,
A (D) = (2.31)

e’ -1 <t <0.

For obtaining A, (¢) , we put
A,(t) = at + b.

13



Assume that 0 < ¢ < 1.Putting it into the first equation, we get
2(at +b) = p; +2t - 1.

Thena = 1,b = p‘T_l Using (2.31), we get the general solution of this equation by the

following formula

A = eV 4 ey L (2.32)
Then,

AL = V2ee = V2epe Y 4 1. (2.33)
Assume that —1 < 7 < 0.Putting into A,(¢) = at + b the second equation, we get

a—2(at+b)=—-p; —2t.
Thena = 1,b = p‘—;]. Using (2.31), we get the general solution of this equation by the
following formula

Aty =t+ %(1 — (1 - py). (2.34)
Then,

Al =1-¢e(1-p)) (2.35)
Using (2.32),(2.33), (2.34),(2.35), boundary conditions A;(—1) = -1, and continuity

conditions at ¢ = 0, we get the following system of equations

_ -1
cle‘/it + cre AR p—‘z ,
\/>

cie 2+cze“/§+1+plT_1:1,

e+ e+ B =11 =1 - py),

V21— V2e, + 1 =1-€X(1 - py).

14



From that it follows

_ 1
creV? + cre V2 -l —

2

a+o+(pi-DG+3-%) =0,

V2¢i = V2e, + (py = 1)(=€?) = 0.

Since
eV2 V2 %
e2
1 1 1-%
V2 -2 =&

2
1
V24V oV VD1 - e — £ 0,

we have that
ci=c=p—1=0.

It follows that p; = 1 and A(¢) = t.
Second, we obtain Ai(7),k # 1. Applying (2.25), (2.26), (2.29) and (2.30), we get the

following boundary value problem

A}/ () + (K + DA = pr,0 <t < 1,

A1) = (K + DA = —pr, =1 <1 <0,

A(=1) = 0,A(1) =0

for a mixed ordinary differential equations. We will seek the general solution of this mixed

equation by the formula
A=A +A,1),

where A, (¢) of homogeneous equation

15



Al + (K + DA() = 0,0 <t < 1, (2.36)
(2.37)

A — (kK + DA =0,-1 <t < 0.

and A, (¢) is the particular solution of non-homogeneous mixed equation. It is clear that

2
cre Vel 4 e

A (1) = (2.38)

“ViEH ) < p <]

c3e(k2+1)’, -1<1t<0.

For obtaining A, (1) , we put
A, (D) =b.

Assume that 0 < ¢ < 1. Putting it into the first equation, we get

(k> + 1)b = py.
Then b = k;% Using (2.38), we get the general solution of this equation by the following
formula
Ap(t) = cre VFH 4 oy VI _Pr_ (2.39)
kK +1
Then,
A1) = ey VI2 + 1e V1 — ) Vi2 4 17 Vi, (2.40)

Assume that —1 < ¢ < 0. Putting into A,(f) = b the second equation, we get
—(k* + )b = —py.

Then b = #. Using (2.38), we get the general solution of this equation by the following

formula

Add) = (=1 + e<’<2+1><f+1>)kzpﬁ. (2.41)
Then,

AL = (K + 1)(e® D) (2.42)

16



Using (2.39),(2.41), (2.40),(2.42), boundary conditions Ai(-1) = 0,Ax(1) = 0, and

continuity conditions at ¢t = 0, we get the following system of equations

2 _ 2
cre Vel 4 e VL 4 —kffl

=0,

1 K2+1 _ Dk
k2+1(—1+€ )pk_c1+02+k2+1a

€k2+1pk =C \/kZ +1- Co \/k2 + 1.
From that it follows

2 — 2
cre o ey VT 4 P = 0,

5P+l
Cq +cz+pk(k§T):0’

aVZ+1 - VIZ+1-e*p = 0.

Since
e\/k2+1 e ViZ+1 1
k2+1
2
2—€k +1
1 1 k2+1

ViZ+1T —Vid+1 -

21 2VI2 + 1
=2V +1 - 0
¥ (k2+1 ) I

we have that
ci1=c=0.

From that and equationZ*; = 0 it follows that p; = 0 and Ax(f) = 0. Then, Ax(t) = 0, p; =
0, k # 1 and the exact solution of the problem (2.22) is

u(t,x) = Z Ai(t)coskx = A;(t)cos x = tcos x, (2.43)
k=1

p(x) = Zpk COSkx = p; COS X = COS X.
k=1

17



Note that using similar procedure one can obtain the solution of the following boundary

value problem

Au(t, U
= X = p() + [0, ),

[)x
r=

x=(X1,..., Xp) EQ, O0<t<T,

oult, 62 1,
e + Z @, PM0 = —p(x) + g(1, %),

x=(X1,...,X,) € ﬁ, -T <t<0,

u(=T,x) = ¢ (x),u(T, x) = Yy(x), x € Q,

W) — 0, -T<t<T, x€S8
“om

(2.44)

for the multidimensional mixed partial differential equation. Here @, > @ > 0 and

f6,0,(te0.7),x€Q),g(t,0),(t € (-T.0),x € Q),0(x),¥ (1) (x € Q)  are

smooth functions. Here m is the normal vector to boundary .

given

However Fourier series method described in solving (2.44) can be also used only in the case

when (2.44) has constant coefficients.

Example 2.1.3. Obtain the Fourier series solution of the identification problem

_Putx)  0Putx)
or? B

+ u(t, x) = p(x) + (4e™" — 1) sin 2x,

0<t<1,0<x<m,

Ou(t,x) | 0%u(t,x)
ot ox?

—u(t,x) = —p(x) + (—6e™" + 1) sin 2x,

-1<t<0,0<x<m,

u(=1,x) = esin2x,u(l,x) = e 'sin2x,0 < x < m,

u(t,0) = u(t,n), u(t,0) = u,(t,7),-1 <t <1

for the parabolic-elliptic differential equation.

18
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Solution. In order to solve the problem, first we consider the Sturm-Liouville problem for

the operator A defined by formula

2
Au(x) = —% + u(x)
with the domain
2
D(A) = {u D u(x), % € L,[0, 7], u(0) = u(m), u,(0) = ux(n)}.

Actually, we will obtain all (u(x), 2) such that
—u”(x) + u(x) = —Au(x),0 < x < m,u(0) = u(n), u,(x) = u(r).
It is easy to see that the solution of this Sturm-Liouville problem is
(up(x), Ay) = (sin 2kx, =4k% = 1),k = 1,2, ..,

(up (%), ) = (cos Dkex, —4k* — 1) k=0,1,...

Therefore, we will seek solution u(z, x) of problem (2.45) using by the Fourier series

u(t, x) = Z Au(f) cos 2kx + Z By (t) sin 2kx. (2.46)
k=0 k=1
and
p(x) = Z i c08 2kx + Z qi sin 2kx. (2.47)
k=0 k=1

Here Ai(¢), pr,k =0, 1,2, ... and Bi(t), gx, k = 1,2, ... are unknown functions and parameters.

Applying formula (2.46), given boundary conditions, we get

u(-1,x) = ZAk(—l) cos 2kx + Z Bi(=1) sin 2kx = e sin 2x,
k=0 k=1

u(l, x) = ZAk(l)cos Dkx + Z Bi(1)sin 2kx = ™" sin 2x.

k=0 k=1

From that it follows

Ai(-1)=0,A,(-1) =0,Bi(-1)=e,Bi(-1) =0,k # 1 (2.48)
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and
A(D)=0,A(1)=0,Bi(1)=¢",Bi(1) =0,k £ 1, (2.49)
respectively. Applying formulas (2.46), (2.47) and given equations, we obtain

— > Al cos 2kx + > A4 cos 2kx + Y A1) cos 2k
k=0 k=0 k=0

= B{(nsin2kx+ » | By()4k>sin2kx + > By(f) sin 2kx
k=1 k=1

k=1
= Zpkcos2kx+ qu sin2kx + (4e”" = 1)sin2x,0 <t < 1,
k=0 k=1

Z A(t) cos 2kx — Z Au(0)42 cos 2kx — Z Ay(2) cos 2kx
k=0 k=0 k=0

+ Z B (f) sin 2kx — kZI: By (H)4K* sin 2kx — Z By (f) sin 2kx

k=1 k=1

= — Zpk cos 2kx — Z g sin 2kx + (=6e™" + 1) sin2x, -1 < ¢t < 0.
k=0 k=1

Equating coefficients of sin 2kx, k = 1,2, ...,cos 2kx,k = 0, 1, ..., to zero, we get

A1) = APAL(D) — A1) = —pr k= 0,1, ...,
B (1) — 4k*By(t) — Bu(t) = —qi, k # 1,—1 <1 <0,
B\(t) = 5Bi(t) = —q1 + (=6e”" + 1),
(2.50)
A1) =0,Al1) =0,k =0,1,...,

Bi(-1)=¢,Bi(1) =€,

Bi(—=1)=0,B,(1) =0,k # 1.
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—A;(t) + 4P A0 + A(t) = —pr k= 0,1, ...,

—B (1) + 4K>Bi(1) + Bi(t) = —qi, k # 1,0 <1 < 1,

B[(t) = 5Bi(t) = —q1 + (4™ = 1), (2.51)

A(=1) = 0,Ai(1) = 0,Yk, Bi(-1) = ¢, B;(1) = ¢!,

Bi(=1)=0,B,(1) =0,k # 1.

First, we obtain Ay(7), k # 1. Applying (2.46), (2.47), (2.50) and (2.51), we get the following

boundary value problem

—AY() + (4K + DA = pr. 0 <t < 1,

A1) — (4k* + DAL(t) = —p, -1 <1 <0,

Ak(—l) = O,Ak(l) =0.

for a mixed ordinary differential equations. Assume that -1 <7 < 0.

AL(D) = (4K* + DA = —py.

It is clear that

Pk

A(f) = (4k2+1)t+ ’
W) =cre 42+ 1

and0 <t < 1.
—A} (1) + (4% + DA = py
also it is clear that
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2 _ 2 Pk
A = cre (4k +1)’+C3e V@2 +1)t " ‘
© 4K% + 1

and we use boundary conditions Ay(—1) = 0, Ax(1) = 0. we get

A(=1) = cje” @D 4 B =,
(2.52)

Ar(1) = cre VERFD | o= VERHD 7 =0.
Using (2.52) and continuity conditions at ¢ = 1, we get the following system of equations

Ci1 = C +C3,

—(4k>+1) _ —(4k>+1 —(4k>+1
cre” D = 0y o@D prem (D),

(4k* + 1)c; = J(4k% + 1)ca — J(4K2 + 1)cs.

or
c1—cy—c3 =0,
Cle—(4k2+1) _ C26(4k2+1) _ C3e—(4k2+1) =0,
(4k* + 1)y — (K2 + 1)y + AJ(4k% + 1)c3 = 0.
since

1 -1 -1

—(4k2 2 (A2
e (4k=+1) _e(4k +1) —e (4k=+1)

42+ 1 —J@d2+ 1) @R +1)
- 1/(4](2 + 1)(6—(4k2+1) _ e(4k2+1)) £0.
we have that

C]ICZIC3:0.
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From that and equation A.(f) = ;5=, Vk. it follows that p; = Oand A(f) = 0.

Second, we obtain B(7). It is cleat that for k # 1, Bi(¢) is the solution of the initial value

problem (2.46), (2.47), (2.50) and (2.51), we get the following boundary value problem

—B/ (1) + (4k* + DBu(1) = 1,0 <t < 1,

B(t) — (4k* + 1)By(t) = —qi, —1 < 1 < 0,

Bi(=1) =0, B (1) = 0.

for a mixed ordinary differential equations. Assume that -1 < ¢ < 0.
B(1) — (4> + 1)By(t) = —qu

It is clear that

Bu(f) = ¢ e+ 9k ’
W) =cre 42+ 1

andO << 1.
=B/ (t) + (4K + DBW(1) = qx
also it is clear that

- gk
B.(1) = cre (4k2+1)t+c e (4k2+l)l+ )
k(1) = ¢ 3 2l

and we use boundaey conditions B(—1) = 0, Bi(1) = 0. We get

—(4k*+1
Bk(—l):cle ( +)+4kq2ﬁ:0’

(2.53)

Bi(1) = cpe @k>+1) + c3e (@k2+1) + “quﬁ =0.

Using (2.53) and continuity conditions at ¢ = 1, we get the following system of equations
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C1 =C +C3,

_(4k2 _(4k2 _(4k2
cre k= +1) _ ce (4k+1) + cie (4k +1)’

(4k* + 1)c; = (k2 + 1)ca — /(4K + 1)cs.

or
c1—cy—c3 =0,
Cle—(4k2+1) _ Cze(4k2+1) _ C3e—(4k2+1) =0,
(4K* + 1)y — (K2 + 1)y + J(4k% + 1)c3 = 0.
since

1 -1 -1

—(4k2 2 (A2
e (4k=+1) _e(4k +1) —e (4k=+1)

P+ 1 —J@dR2+1) @k +1)
= V@2 + 1) (e — WD) 2 0,
we have that

C1:C2:C3=0.

From that and equation By(f) = ;%5. k # 1. it follows that g, = Oand By(7) = 0.

Third, we obtain Bi(t), k = 1. Applying (2.46), (2.47), (2.50) and (2.51), we get the following

boundary value problem

—B/(t) +5Bi() = q1 + (4e”' = 1),0 <t < 1,
B{(t) = 5B(t) = —q1,+(6e™" + 1), -1 <1 <0,

Bi(-1)=e,Bi(1) = ¢!
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for a mixed ordinary differential equations. We will seek the general solution of this mixed

equation by the formula
Bip(t) = a+ be™".

Assume that —1 < 7 < 0. It is clear that

—be"' —5(a+be"y=—-q; +1—6e7",

B]([) = €5t6’1 + 4 3

+e’,-1<t<0,

_1
Bi(—1) = eS¢, + q? -0

Now we use again differential equation for 0 <z < 1

—be' —=5(a+be’)y=—q; +1—6e7",

qg-—1
b=1,a=—.

=75
we get

V5t

~1
By(1) = cre V™ 4 cye V3 4 ‘1? +e'0<i<]1,

-1
Bi(1) = cre VS 4 cye V5 4+ q? = 0.
Using (2.54),(2.55), (2.56),(2.57), we get the following system of equations

Ci1 =C +cC3,

5¢1 = ‘/ng - ‘/503,

5 A

e cpr=ce’ + c3e“@.
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From that it follows

C1—C2—C3:0,

5C1 — \/§C2 + \/36'3 = O,

eS¢ —creV — eV’ = 0.
Since
1 -1 -1
5 -V5 5
=S _exfs _e—\E

(V5=5)e V5 + (V5 +5)eVS —2v5¢7 %0,
we have that
C1 26‘2203:0,ql =1.

From that it follows g; = land Ax(t) = 0.Then, A(f) = e/, k = 1 and the exact solution of
the problem (2.45) is

u(t, x) = Z Ay(f) cos 2kx + Z By (f) sin 2kx = A, (£) sin 2x = ¢ sin 2x, (2.58)

k=0 k=1

p(x) = Z Pi cos 2kx + Z qx sin 2kx = gy sin 2x = sin 2x.
k=0 k=1

Note that using similar procedure one can obtain the solution of the following boundary
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value problem

02 ult, < 6 u(t,
— SEZX) -2 - giz)o = p(x) + f(1, %),
r=1 "

x=(X1,.00r Xp) eﬁ, 0<t<T,

n 2
D 1+ 3, 58 = —p(x) + (1, x),
r=1 "

X=X, onX) €Q, =T <t <0, (2.59)

u(=T,x) =y x),u(T,x) =yY(x),x € 5,

oult, oult,
u(t, x) |s, = u(t, x) ls,, 242 | = ML | T << T

for the multidimensional mixed partial differential equation. Here ¢, > a > 0 and
ft.x),(t€(0.7),x€Q).g(t.x),(t € (-T,0),x € Q),p(x), (x), x € Q are given smooth
functions. Here and in future € is the unit open cube in the n—dimensional Euclidean space

R*(0 < x; < 1,1 < k < n) with the boundary
S=85,U8,,85 NS,=0.

However, Fourier series method described in solving (2.59) can be used only in the case

when (2.59) has constant coefficients.

2.2 LAPLACE TRANSFORM METHOD
We consider Laplace transform solution of identification problems for parabolic-elliptic
differential equations.

Example 2.2.1. Obtain the Laplace transform solution of the following problem source
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identification problem

8ult, 8u(t, _
— U0 T oy, x) = p(x) — €7,

O<x<oo,0<t<,

Ou(t,x) | 0*u(t,x)

ot + a2 I/l(t, -x) =-p (-x) )

(2.60)
O<x<oo,-1<1<0,
u(-1,x)=—-e u(l,x) =e*,0 < x < o0,
u@,0)=tu,(t,00=-t,-1<tr<1
for a one dimensional parabolic-elliptic equation.
Solution. Here and in future, we will denote
LAu(t, x)} = u(t, s).
Using formula
Lie™} ! (2.61)
et = )
s+ 1

and taking the Laplace transform of both sides of the differential equation and using

conditions

I/l(t, 0) = ta Uy (t’ O) = _t’
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we can write

—u, (t,5) — [s2u (t,s) — su(t,0) —u,(t, 0)] + u(t, s)
:p(s)—ﬁ,0<t< 1,
u, (t, ) + [szu (t,s) — su(t,0) —u,(t, 0)] —u(t, s)

=-p(s),-1<t<0,

u(-1,8) = -1 u(l,s) = .

Therefore, we get the following problem
—uy (1, 8) + (=% + Du(t, s)
:p(s)—st+t—$,0<t< 1,

u, (t,8) + (s> = Du(t, s) (2.62)

=-p(s)+st—t,-1<t<0,

u(=1,58)=-- u(l,s)= L

1+s 2 1+s°

Now we will obtain the solution of problem (2.62). Let —1 < t < 0.Then, we have the
following initial value problem

u (t,8) + (s> = Du(t,s) = —p(s) + (s — 1)t,—1 <t <0,
(2.63)

u(-1,s) = —%

Intergrating it, we get

t

u(t, s) = —e_(sz_l)(’“)u(—l, s) + fe_(sz_l)(‘_y) {p(s) + (s — D)y} dy
|

29



— (P DD _p) 1 p(s) . r 1
2=1 (s+D(s2-Df s2-1 s+1 (s+1)(s2-1)

From that it follows

_ - _ p(s) 1 p(s) _ 1

u(0,5) = e [ -1 G+ 1)]+ 2—1 G+D)-1) (2.64)
RN I 1

u(0,8) =e [p(s) P + 1 (2.65)

Now, let 0 < ¢ < 1. Applying (2.63) , (2.64) and (2.65) , we get the following initial value

problem

Uy () + (2= Du(t,s) =—p(s)+st—t+ - 0<t<1,

s+17?

w0, 5) = e~ [_ IO 1 ] 4+ 2 1 (2.66)

=1 " )0 T P T D=1

u(0.5) = e p(s) = L] + o

Applying the D’ Alembert’s formula , we get

ut, s) = cos Vs2 — 1te™h [—p(s) + ! ] (2.67)

s2—1 (s+D(s2-1)

1 1
+ sin V2 — 1te™&D p(s) — —
s+ 1

s2—1

1 1 ‘
T (s+1_p(s)) TSR

Putting # = 1 and using u(1, s) = -, we get

s+17?

cos Vs2 — le D[ 1 1
_ + 1 \/2_1 _
s —1 [1+s P(s) S2_1sm > [p(s) s2+1]

1 1 1
+ - +—= )

Fo1|5+1 POt 5T T 5 A

Then

1 Vs? —1 2 1
— —p(s) o8 Vs e sin Vs2 — 1 + =0
l+s 2-1 21 s?—1




Since,

cos Vs2 — 1D - Vg2 —1sin Vs2 = 1+ 1 20,

we have that
1
S =0.
1+s P(s)

Therefore, p(s) = —— and

1+s

1
_ p-l — " 2.68
px) =L {1+s} e (2.68)
Using p(s) = 1~ , we get
—=.0<r<1, t
t, = = . 269
u(t, s) 5 s (2.69)
-1 <t<0.

Taking the inverse Laplace transform with respect to x , we get
1
tx)=tL'{——b=te*,-1<t<1.
PRRSTRR
Thus, the exact solution of problem (2.60) is
(u(t, x), p(x)) = (te™",e™).

Example 2.2.2. Obtain the Laplace transform solution of the following problem source
identification problem
2 2
_9 ;E;X) _ 0 gigx) =p ()C) e — 28—(t+x)’
O0<x<o0,0<t<1,
Ou(t,x) n Ou(t,x) _

iy ACOR

(2.70)

O0<x<o0,-1<t<0,

u(-1,x)=e"u(l,x)=e",0 < x < o0,

u(t,0)=e’ u,(t,0)=—"',-1<t<1
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for a one dimensional parabolic-elliptic equation.

Solution. Taking the Laplace transform of both sides of the differential equation and using

t

conditions u (z,0) = e™', u, (¢, 0) = —e™!, we can write

—tty (8, 5) = [$Pu (t, 8) = su(1,0) = u, (1, 0)|

1 27!
:p(S)—m—ﬁ,O<l<1,

u, (t, ) + [szu (t,s) — su(t,0) —u,(t, 0)]

=—p(s)+ =, -1 <1<0,

u(=1,5) = 1=,u(l,s) = <.

Therefore, we get the following problem
—uy (t,8) + —su(t, s)
:p(s)—se"+e"—;11—%,0<t< 1,

u, (¢, 8) + s2u(t, s) (2.71)

=—p()+se’+e’+- 1 -1<1t<0,

1+s?

u(=1,5) = 1= ,u(l,s) = <.

Now, we will obtain the solution of problem (2.71). Let —1 < ¢ < 0.Then, we have the

following initial value problem

u (t,8) + su(t,s) = -ps)+e'(s— 1)+, -1<t<0,

1+s5°

(2.72)
u(-1,s) ==

I+s°
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Solving it, we get

t

1
u(t,s) = e y(=1, 5) + f e 1) (p(s)+e_y(s— 1)+ — dy (2.73)
s
-1
1 1 2 1
S _ 1=¢° (t+1) -t
s2(1+s p(s)){ ¢ }+s+le
From that it follows

1 1 _2 1
M(O, s) = ; (1—+S - p(S)) {1 —e } + S-l-—l’ (274)

1 1 2 g2
u,(O,s):§(1+S—p(s))se “ o1 (2.75)

Now, let 0 < ¢ < 1. Applying (2.72) , (2.74) and (2.75) , we get the following initial value

problem

y (1, 8) + s2u(t, ) = —p(s) + (s — De + B2 0 <1< 1,

u(©0,5) = 5 (= - p(»)) (1- ) + L (2.76)

s+1°

1,0, 5) = & (75 = p(9)) 2™ = 7.

Applying the D’ Alembert’s formula , we get

s2\1+s s+ 1

u(t, s) = cos sz{l (L - p(s)) (1-e)+ L} (2.77)

+l- ; 1 1 s) ) 2 1
—sinsty —=|—— — p(s)]|se™® —
Ky s\l +s p s+ 1

t

+ % fsin s(t—y)(1 2e” —p(s)+(s— l)e_y) dy.

s+ 1
0

Integrating by parts, we get
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t
t

ot L t

I(t):fSinS(t_y)e—ydy: sin st + se SCOS S

1+ 52
0
Then,

1 1 , |
o & ) tme 2.78
u(t, s) cosst{s2(1+s p(s))( e )+S+1} 078)

Lt L)) e -
—sinstd —|—— — -
s s sS2\1+s pRyfse s+ 1

| 1 . 1({ 1 )+ 1+ 5% [sinst+ se™" — scos st
—(1=—=cosst]|=|—— - p(s )
52 2\1+s 7 s(1+ ) 1+ s2

o

s+1°

1 1 _Q 1
Cos § §(1+S—p(s))(1—e )+s+—1

+1 . 1 1 () 2—;2 1
—sins< — - -
S S s\l +s pPRyfse s+ 1
1

| lcos 1 1 (5] + 1+s%> (sins+se’! —scoss e
— _ s|—|—— — S = .
52 2\1+s P s(1+5) 1+ s+ 1

Putting r = 1 and using u(1, s) = we get

1

From that it follows

1 cos s e L2 1 coss
1—+s—p(S)]{ 2 (1-e )+ESIHS€ —§+ 2 }:0

Since,
cos s(2 — e‘sz) +ssinse™ —1# 0,
we have that

1
_— =0.
1+s p(s)

Therefore, p(s) = —— and

1+s

p(x)=L" {L} =e™" (2.79)

1+s
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Using p(s) = - T » We get
l+€0<l‘<1 ;
t, = = . 280
ut, s) 1o (2.80)
-1<t<0.

1+s

Taking the inverce Laplace transform with respect to x , we get

1
t,x)=e"' =e'e*,-1<t<1.
u(t,x) =e 'L {1+} e

Thus, the exact solution of problem (2.70) is

(u(t, x), p(x)) = (e_(t”), e_)‘) )

Note that using similar procedure one can obtain the solution of the following identification

problem

Qult, o R,
~Tea Zl a gizx) = p(x) + f(1, %),

r=

x= (X)) €Q, 0<t<T,

Bu(lx) + Z 6 u(lx) p(X) +g(t .X)

62

x=(x1,...,%,) € §+, -T <t<(,
(2.81)

u(-T,x) =v x),u(T,x) = Y(x), x € §+,

u(t, x) = a(t, x), u, (t,x) = p(t,x), 1 <r<n,

-T<t<T, xeS8°

for the multidimensional parabolic-elliptic partial differential equation. Here a, > a > 0 and
fx),(1e0.7),x€Q),g(t.x), (1€ (-T.0),xeQ),

w(x), ¥ (x) (x € §+),a/(t, x),B,x)(-T <t < T, x € §%), are given smooth functions.
Here and in future Q* is the unit open cube in the n—dimensional Euclidean space

R"(0 < x;, < 00,1 < k < n) with the boundary
STO =QUS™.
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However, Laplace transform method described in solving (2.81) can be used only in the case

when (2.81) has constant and polynomial coefficients.

2.3 FOURIER TRANSFORM METHOD

We consider Fourier transform solution of identification problems for parabolic-elliptic
differential equations.

Example 2.3.1. Obtain the Fourier transform solution of the following problem source

identification problem

2 2
— O D 4w, x) = p(x) — e + (_4x2 + 2) e,

0<t<l1,xeR!,
Qul) o Pen) _yp x) = —p (x) — e + (42> =2) e, (2.82)

ot ox2

-1<t<0,xeR!,

u(-1,x) = el‘xz, u(l,x) = e‘l"‘z,x e R!

for a one dimensional parabolic-elliptic differential equation.

Solution. Here and in future we denote
Flu,x)}=u(,s).

Taking the Fourier transform of both sides of the differential equation (2.82) and using initial
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conditions, we can obtain

—u, (t,s) — T{%} + F {u(t, s)} = p(s) — T{e‘)‘Q}

+e—f¢{(—4x2 + 2)e—x2},o <t<1,

u (t,s) + T{%} —FAu(t, s)} = —p(s) - (f{e‘xz},

+e‘t77{(4x2 - 2)6_X2} ,—1<t<0,

u(=1,s) = eT{e‘xz},u(l, s) = e‘l?’{e_xz}.

We denote that

a {e_xz} = q(s).

Then

Let -1

—y (1,5) + S2u(t,5) + u(t,5) = p(s) - g(s) — F [ £ (7)),

0<rt<1,

u; (1, 8) — s*u(t,s) +u(t,s) = p(s) —q(s) + e_tfc{% (e‘ 2)} ,

-1<t<0,

u(=1,s) =eq(s),u(l,s) =e'q(s).

<t < 0. Then we have the identification problem

u, (t,8) — (s> = Du(t, s)

=p(s) —q(s) —e's*q(s),—1 < t <0,

u(=1,s) = eq(s)
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for ordinary differential equations. Solving the problem, we get

t

u(t, s) = e(sz_l)(’“)eq(s) + fe(sz_l)(’_” (p(s) —q(s) — e‘yszq(s)) dy. (2.86)

-1

§2— (S) CI(S) $2— 52— -2 2
— o W*”eq(s) ( — e 1)(”1))+q(s)e‘ 13 [e '_ ]

-1
Then,
p(s) — q(s) -
u(©.5) = g(s) - =5 —— (1 =), (2.87)
(0, 5) = —q(s) - M (~(s* = D). (2.88)
se—1

Now, let 0 < ¢ < 1. Applying (2.85) , (2.87) and (2.88) , we get the following initial value

problem

ty(t, 8) = (s> = Dut, s) = = {p(s) — g(s) + e's°q(s)]

u(0, 5) = g(s) — 294 (1 - e<fz-1>), (2.89)

u,(0, s) = —q(s) — P(S) q(S) ( (s — 1)e<s2“)).

Applying the D’ Alembert’s formula , we get

u(t, s) = cosh Vs — 1tu(0, s) +

sinh Vs? — 11u,(0, s) (2.90)
-1

- \/21_1 sinh Vs? — 1t - ) {p(s) - q(s) + e ’q(s)} dy
S —_
0

Integrating by parts, we get
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u(t, s) = cosh Vs? — 1t{q(s) __PG) —4q(s) (1 _ e(sz—l))}

s2 -1

. sinh V2s2 — 1z {—q(s) B P(i)Z—_(i(S) (—(sz _ 1)e<s2—1))}
2

+ M (—1 + cosh Vs? — lt)

s2—1

_ qis) 1 {sinh Vs> = 1r+ Vs? = 1 (e = cosh Vs - 11)}.
Va2 =

Putting # = 1 and using u(1, s) = e~'g(s) , we get

cosh Vs —1 {q(s) - _M (1 _ e<s2—1))}

sz =1

N sinh V2 s2—1 {—q(s) B P(S)Z— q(s) (_(Sz _ l)e(sz—l))}
-1 57— 1

+ P(s) = 4(s) (—1 + cosh Vs? — 1)

s2—1

q(s) {sinh V2 1+ Vs2 —1 (e—l — cosh \/sz——l)}

s2 =1

= e_lq(s).

Then,
p—(s)z_ 4(5) l— cosh VsZ — 1(1 - ¢"V) - sinh Vs? ~ 1 (~(s* = Det™ )
2 -1 s2—1
—1 + cosh \/ﬂ] =0.
Since
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—cosh \/H(l - e(“‘z_l)) -

sz =1

we have that
P =g _

s2 -1

Therefore p(s) = ¢g(s) and

2

p(0) =qx)=F'F e} =e".

Using p(s) = F {e‘xz} , we get

q(s)e,0<t<1,

u(t, s) = =q(s)e".

qg(s)e™',—1 <t <0.

Taking the inverse Fourier transform with respect to x , we get

u(t,x) = F! {T {e_(”xz)}} = e_(’”z), -1<t<1.
Thus , the exact solution of problem (2.82) is

(u(t, ), p() = (¢, 7).

Sith V9?1~ 166 0) 4 (1 + cosh V57 T) 20,

(2.94)

(2.95)

Note that using similar procedure one can obtain the solution of the following boundary

value problem

a2 ax?

2 n 2
~55Et = B a5 = po) + f(1. ),
r=1

x=0x,..x)€ER", 0<t<T,

n 2
250+ 3 o = —p(a) + g1, ),
r=1 "

x=(x1,...x) ER", -T <t <0,

u(=T,x) =y x),u(T,x) = ¥Y(x),x e R"
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for the multidimensional parabolic-elliptic partial differential equation. Here @, > a@ > 0
and f(t,x),(te(0,T),xeR"),g(t,x),(te(-T,0),x € R"),@o(x),¥ (x)(x € R") are given
smooth functions.

However, Fourier series method described in solving (2.96) can be used only in the case

when (2.96) has constant coefficients.

So, all analytical methods described above, namely the Fourier series method, Laplace
transform method and the Fourier transform method can be used only in the case when the
differential equation has constant coefficients or polynomial coefficients. It is well-known
that the most general method for solving partial differential equation with depend on ¢ and
in the space variables is finite difference method. In the next chapter, we consider the source
identification problem for a one dimensional parabolic-elliptic equation. The first and
second order of accuracy difference schemes for the numerical solution of this source
identification problem for a one dimensional parabolic-elliptic equation is presented.

Numerical analysis and discussions are presented.
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CHAPTER 3

FINITE DIFFERENCE METHOD OF THE SOLUTION OF SOURCE
IDENTIFICATION PROBLEMS FOR PARABOLIC-ELLIPTIC EQUATIONS

In this section, we study the numerical solution of the identification problem for parabolic-

elliptic equations

_[)zu(t,x) _ %u(t,x)

or? Ox2 + I/t(t, .X') = p(x) + f(t’ X),

O0<t<1,0<x<m,

u(t,x 2y X
B 4 T — u(1,x) = —p(x) + g1, %),
-1<t<0,0<x<m, 3.1

u(0*, x) = u(07, x), u, (0", x) = 4, (07, x),0 < x <,

u(—1,x) = p(x),u(1,x) = Y(x),0 < x <m,

u(t,0) =u(t,m)=0,-1<r<1,

where p(x) is an unknown source term. Problem (3.1) has a unique smooth solution
{u(t, x), p(x)} for the smooth functions ¢(x), ¥ (x), f(¢, x) and g(z, x). We construct the first
and second order of accuracy difference schemes for the approximate solutions of the
identification problem (3.1). We discuss the numerical procedure for implementation of
these schemes on the computer. We provide with numerical illustration for simple test

problem.
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3.1 THE NUMERICAL ALGORITHM

The solution of problem (3.1) can be obtained

ult,x) =w(t,x)+q(x),0<x<m-1<t<1 (3.2)
where g(x) is the solution of identification problem

—q (%) = p(x),0 < x < 7.(0) = g(m) = 0 (3.3)
and w(t, x) is the solution of the nonlocal boundary value problem

Wy — Wy = f(6,x),0<t<1,0<x<m,

w+wy =gt x),-1<t<0,0<x<m,

w(0™, x) = w(07, x), w, (0", x) = w,(07,x),0 < x < 7, (3.4)

w(=1,x) —w(l,x) = o(x) —¥(x),0 < x <m,

u(t,0) =u,1)=0,-1<r<1.

Note that from (3.1)-(3.3) it follows that
PO = wi(L,x) =y (0),0< x <7 (3.5)

Taking into account all of the above, the following numerical algorithm can be used for the
approximate solutions of the identification problem (3.1):

1. Find the approximate solution of the nonlocal boundary value problem (3.4).

2. Approximate the source function p(x) by the formula (3.5).

3. Find the approximate solutions of identification problem (3.3).

4. Find the approximate solution of identification problem (3.1) by the formula (3.2).

For the numerical solution of problem (3.1), we consider grid spaces

[-1, 1]t ={t:tx =kr,-N<k<N,Nt=1,}
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[0,7],={x:x,=nh,0<n< M Mh=n}

For the numerical solution of problem (3.1), we present stable two-step difference schemes

k+1 k k—1 k  _np ko k
w20 ity u 2u+ut,

- 72 — "2 L= pn + f(tk’ xn)9

1<k<N-1,1<n<<M-1,

Uu,—u

k_ k=1
n_“n

k-1 k=1 k-1
U =2u T +u

1 n
+ n+

pe 2 el = _pn + g(tk’ xn)a

-N+1<k<0,1<n<M-1, (3.6)

1.0 _ .0 _ -1
u, —u, =u,—u,,0<n<M,

n n

_N_ . N_ _1 .
u," =esinx,, u, =e sinx,,0<n<M,

ug:u’jv[:O,—NSkSN

of the first order of accuracy in ¢ and the second order of accuracy in x and

Ukl 2k k! u'r‘l+l —2uk+uk

— = — 2 pl :pn+f(tk’xn)7
I<k<N-1,1<n<M-1,

uk—uk! u];'l —2uk! +uﬁ:1 u’; —2u’n‘+uﬁ_
T + = 2h? : + = 2h2 = _pi’l + g(tk - %axn)’
-N+1<k<-1,1<n<M-1, 3.7

=3ul +4ul —u2 =3’ — 4wt +u2,0<n< M,

-N __ .
w,” = esinx,,u

N

n =

e lsinx,,0<n<M,

ug:uﬁ,,:O,—NSkSN

of the second order of accuracy in # and in x. Therefore, in the first step for the approximate

solution of nonlocal boundary value problem (3.4) we have the following stable two-step
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difference schemes

k1 k oy k=1
whHL 2k gy W 2W +W
e = f(tr, xn),

1§k£N—1,1$nSM—1,

k—wk 1 Wk_1 —2W/:,_] +WA

T + n2 == g(lk, -xn)’

-N+1<k<0,1<n<M-1,

100 — 00 _ -1
w,=w,=w, —w,,0<n<M,

wV —wh = (e—e‘l)sinxn,O <n<M,

wp=wh, =0,-N<k<N

of the first order of accuracy in ¢ and the second order of accuracy in x and

WhH 2y ko) 2W —
- T2 - f(tka xn)
1SkSN—1,1SnSM—I,
wk —yk=1 wk- 11 2wk Lpwk= } 2wy +wk T
. T — 4 2 =+ ’H h2 = g(tk E) Xn),

-N+1<k<-1,1<n<M-1,

=3l + 4wl —w2 =3l — 4wl + w2, 0<n< M,

-N N _ -1 .
w, " —w, —(e—e )smxn,OSnsM,

wgzwll‘W:O,—NﬁkSN

(3.8)

(3.9)

of the second order of accuracy in ¢ and in x. Difference schemes (3.8) and (3.9) can be

written in the matrix form

AW, +Bw, +Cwyoy =@, 1 <n<M -1,

wo =wy =0,

where 0 is a zero vector and
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)
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)
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e f e

“2N+1)X(2N+1)

e=—%and f = % + 3 for difference scheme (3.8) and
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[ ) — (x|
Tg(l—N+l+§,xn)

Tg(t—N+2+% s Xn)

Tg(t1+%, xn)

®n Tg(f0+% 2 Xn)

TZf(tl 5 -xn)
T2f(t2’ xn)

Tzf(tN—Z > xn)

0
- “2N+1)x1
for difference scheme (3.9). For the solution of the matrix equation (3.10), we use the

modified Gauss elimination method. We seek a solution of the matrix equation (3.10) by the
following form:

Wn = @pe1Wntd +ﬁn+l9n =M-1,..,2,1

(3.11)

Wy = 0
where a,(1 < n < M) are 2N + 1)x(2N + 1) square matrices and 8,(1 < n < M) are

(2N + 1)x1 column vectors, calculated as,

Api1 = —(B+ CCL’,,)_]A,

(3.12)
ﬁn+1 = (B + Ca'n)_l [D‘pn - C:Bn]
forn=1,2,...M — 1. Here a, is a zero matrix and 3; is a zero matrix.
In the second step, we obtain { pn}le -1 by formula
Woar = 2wy + Wl ”
Pn = n ¥ (x,),n=1,2,..M—1. (3.13)
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In the third step, we obtain {g,}; by formula

Dn = _Qn+1—2hf12n+qn,1’ 1 <n<M- 1’
3.14)
90 =¢qn =10
or
-2s s qi D1
s 25 s q2 ) 2]
s =25 s
s —2s s qdm-2 Pm-2
s =2s | | gu-1 | | pm-1 |
where s = —#. In the fourth step, we obtain solution of difference schemes (3.8) and (3.9),
we will use formula
ub =wt+¢q,n=0,1,..,M,k=-N,..,N. (3.15)
For the numerical test, we consider the example when f(t, x) = —sin x, g(¢, x) = —2e~' sin x+
sin x, p(x) = e sin x and Y(x) = ¢! sin x.The exact solution of this problem is
ut,x) =e'sinx,-1<r<1,0<x<mpx) =sinx,0 < x <7 (3.16)

The numerical solutions are computed using the first and second order of accuracy schemes
for different values of M and N. We compute the error between the exact solution and

numerical solution by formulas

IEJlo = = max |u(t,x,) — u], (3.17)
—N<k<N,0<n<M
(3.18)
||Ep||oo = Inax |p(-xn) - pnl >

l<nsM-1
where u(t;, x,) is the exact value of u(t, x) at (%, x,) and p(x,) is the exact value of source

p(x) at x = x,,; u and p, represent the corresponding numerical solutions by these difference
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schemes. Applying the numerical algorithm on the above, we get the following numerical

results:

TABLE 1. Difference Scheme (3.8)

Errors N=M=40,40 N=M=280,80 N =M =160,160

IE, | 0,0527 0,0265 0,0133
|E,|| 0,0521 0,0264 0,0132
IE. 0,0277 0,0140 0,0070

TABLE 2. Difference Scheme (3.9)

Errors N=M=40,40 N=M=280,80 N =M =160,160

IEJI 1,5271x107*  3,8366x107° 9,6146x107°
|E,||  6.6656x10*  1,6687x10* 4,1742x107
IEJl  1,7230x107*  4,2859x107° 1,0687x107

Tables 1 and 2 are constructed for the obtained errors in maximum norm of solution of
problem (3.1) with difference schemes (3.8) and (3.9), respectively. As it is seen in Table 1
and 2, if N and M are doubled, the value of errors decreases by a factor of approximately 1/2

for the difference scheme (3.8) and 1/4 for the difference scheme (3.9), respectively. Thus,

the results show that the second order of accuracy difference scheme (3.9) is more accurate

comparing with the first order of accuracy difference scheme (3.8).
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CHAPTER 4
CONCLUSIONS

This thesis is seperated to the source identification problem for parabolic-elliptic equations

with unknown parameter p(x). The following conslusions are established:

e The literature of direct and invert boundary value problems for parabolic-elliptic

equations was studied.

e Fourier series, Laplace transform and Fourier transform methods are used for the

solving of six identification problems for parabolic-elliptic equations.

e The first and the second order of accuracy difference schemes are presented for the
approach solution of the one dimensional identification problem for the parabolic-

elliptic equation with the Dirichlet condition.

e The Matlab application of the numerical solution is added.
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APPENDIX 1

MATLAB PROGRAMMING

function AA(N,M)
if nargin < 1; end;
close;close;
% first order, first equation

A = zeros (2*N+1,2*N+1) ;
for i=2:N+1;
A(i,i-1)=(1/(h"2));
end;
for 1=N+2:2*N;
A(i, 1) (1/h"2)
end;
C=A;
A;
B=zeros (2*N+1, 2*N+1) ;
for i=2:N+1;
B(i,i)=(1/tau);
B(i,i- 1) -(1/tau)-(2/ (h"2));
end;
for 1=N+4+2:2*N;
B(i,1i-1)=-(1/(tau”2));
B(i,1)=(2/(tau™2))+(2/(h"2));
(1 i+1)=-(1/(tau™2));
end;
(1,1)=
(l 2*N+1)=—1;
(2*N+1,N)=-1;
(2*N+1,N+1)=2;
(2*N+1 N+2)=-1;
D=eye (2*N+1,2*N+1) ;
for j=1:M+1;
£ii(1,9)=(exp(1)-exp(-1))*sin((j-1)*h);
for k=2:N+1;
fii(k,j)=-2*exp (- (k-1-N) *tau) *sin((j-1) *h)+sin((j-1) *h);

WUJUJUJDJUU

end;
for k=N+2:2*N;
fii(k,3j)=-sin((j-1)*h);
end;
fii (2*N+1,73)=0;
end;
alpha{l}=zeros (2*N+1,2*N+1) ;
betha{l}=zeros (2*N+1,1);
for j=2:M;
Q=inv (B+C*alpha{j-1});
alpha{j}=-0*A;
betha{j}=0* (D* (£fii(:,j))-C*betha{j-11})
end;
U=zeros (2*N+1,M+1) ;
for §j=M:-1:1;
U(:,j)=alpha{j}*U(:,j+1)+betha{j};
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end;

'EXACT SOLUTION OF THIS PROBLEM';

for j=1:M+1;
for k=1:2*N+1;
esw(k,Jj)=(exp (- (k-1-N) *tau)-1)*sin((j-1) *h);
end;

end;

figure;

m(l,1l)=min(min(U))-0.01;

m(2,2)=nan;

surf (m) ;

hold;

surf (esw) ; rotate3d ;axis tight;

figure;

surf (m) ;

hold;

surf (U); rotate3d; axis tight;

title ('FIRST ORDER'");

maxes=max (max (esw) ) ;

maxerror=max (max (abs (esw-U) ) )

relativeerror=maxerror/maxes;

cevapl = [maxerror,relativeerror];
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APPENDIX 2

MATLAB PROGRAMMING

function CC (N, M)
if nargin < 1; end;

B=

B;

close;close;
first order, first equation

A = zeros (2*N+1,2*N+1) ;
for i=2: N+1
A(i =1/ (h"2));
A(l,l 1)= l/( *(h*2));
end;
for 1=N+2:2*N;
A(i,1)=-1/(h"2)
end;
C=A;
A;
zeros (2*N+1,2*N+1) ;
for 1i=2:N+1;
B(i, 1) 1/tau -(1/h"2);
B(i,i-1) (1/tau)-(1/(h"2));
end;
for 1=N+2:2*N;
B(i,i-1)=-(1/(tau”2));
B(i,i)= (2/(tauA2))+(2/(hA2));
(1 i+1) (1/ (tau”2));
end;
B(1l,1)=1;
B(l,2*N+1)=-
B(2*N+1,N-1)
B(2*N+1,N)=-
B(2*N+1,N+1)
B(2*N+1,N+2)=
B(2*N+1,N+3)=

D=eye (2*N+1, 2*N+1) ;
for j=1:M+1;

fii(1l,3)=(exp(l)-exp(-1))*sin((j-1)*h);

for k=2:N+1;

fii(k,j)=-2* (exp ( (- (k-1-N) *tau)+(tau/2)))

1) *h);

end;
for k=N+2:2*N;
f£ii(k,j)=-sin((3-1)*h);
end;
fii (2*N+1,73)=0;
end;
alpha{l}=zeros (2*N+1,2*N+1) ;
betha{l}=zeros (2*N+1,1);
for j=2:M;
Q=inv (B+C*alpha{j-1});
alpha{j}=-0*a;
betha{j}=0Q0* (D* (fii(:,J))-C*betha{j-11});
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end;
w=zeros (2*N+1,M+1) ;
for §j=M:-1:1;
w(:,Jj)=alpha{j}*w(:,j+1)+betha{j};
end;
'EXACT SOLUTION OF THIS PROBLEM';
for j=1:M+1;
for k=1:2*N+1;
esw(k,Jj)=(exp (- (k-1-N) *tau)-1) *sin((j-1) *h);
end;
end;
for j=1:M+1;
for k=1:2*N+1;
esU (k,j)=(exp (- (k-1-N)*tau)) *sin((j-1) *h);
end;
end;
for j=1:M+1;
ep(3)=sin((j-1) *h) ;
end;
for j=1:M+1;
q(3)=-w(2*N+1,3)+((exp(-1))*sin((j-1) *h));
end;
for j=2:M;
p(I)=—(((q(3+1))-(2*q(J))+(q(j-1)))/ (h"2));
end;
p(1)=0;
p(M+1)=0;
for k=1:2*N+1;
for j=1:M+1;
Uk, 3)=w(k,3)+q(3);
end;
end;
figure;
m(l,1l)=min(min(w))-0.01;
m(2,2)=nan;
surf (m) ;
hold;
surf (esw) ; rotate3d ;axis tight;
figure;
surf (m) ;
hold;
surf (w); rotate3dd; axis tight;
title ('FIRST ORDER');
maxes=max (max (esw)) ;
maxerror=max (max (abs (esw-w) ) )
maxerror=max (max (abs (esU-U)))
maxerror=max (max (abs (ep-p)))
relativeerror=maxerror/maxes;
cevapl = [maxerror,relativeerror];
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