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ABSTRACT 

 

Building an intelligent robotic system that can maneuver in the unknown unpleasant 

environment can be difficult in urban search and rescue research. The robot built required to 

take sensor data, for building a map of the unknown environment to get knowledge of 

existing landmarks and to figure out its position and orientation inside, the problem named 

SLAM. Additionally, the autonomous system needs motion planning the systematic way to 

avoid the obstacle by taking SLAM as input to control the movement it takes around 

occupied spaces. In order to enhance its capability, autonomous victim detection system 

integration is necessary. Several pieces of research are done nowadays stipulating a lot of 

algorithms for achieving autonomous navigation system and object detection. The defacto 

platform for robot design is ROS (Robot operating system) which provide all-rounded 

packages for rigorous implementation of the robotic system. On this research, we analyze 

and implemented algorithms out there for our mission. we see into advanced SLAM, motion 

planning and victim detection algorithm’ s for search and rescue mission. Analyzing ROS, 

we found out HECTOR mapping, AMCL, ROS Global Planer and TEB local Planer in 

combination can give robust result comparative from other existing slam and motion 

planning algorithms on the platform. Victim detection is achieved successfully using YOLO 

V3 which is the present state-of-the-art deep learning object detection algorithm. 

 

Keywords: urban search and rescue; Robot operating system; SLAM; Motion planning; 

YOLO V3 
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ÖZET 

 

Bilinmeyen tatsız çevrede manevra yapabilen akıllı bir robot sistemi oluşturmak, kentsel 

arama ve kurtarma araştırmalarında zor olabilir. SLAM adlı problemi, sensör verilerini 

almak, var olan yerlerden bilgi edinmek için bilinmeyen bir ortam haritası oluşturmak ve 

SLAM adlı problemin içindeki konumunu ve yönünü bulmak için gerekli kılıyor. Ek olarak, 

özerk sistem, işgal edilmiş alanların etrafındaki hareketleri kontrol etmek için girdi olarak 

SLAM'ı alarak engeli önlemek için sistematik bir yol planlama hareketine ihtiyaç duyar. 

Yeteneğini geliştirmek için, özerk mağdur tespit sistemi entegrasyonu gereklidir. 

Bugünlerde, özerk navigasyon sistemi ve nesne tespitine ulaşmak için birçok algoritma şart 

koşan birçok araştırma yapılır. Robot tasarımı için defacto platformu, robot sisteminin titiz 

bir şekilde uygulanması için çok yönlü paketler sağlayan ROS'tur (Robot işletim sistemi). 

Bu araştırmada misyonumuz için algoritmaları analiz edip uyguladık. arama kurtarma 

görevinde gelişmiş SLAM, hareket planlama ve mağdur tespit algoritması görüyoruz. ROS'u 

analiz ettik, HECTOR mapping, AMCL, ROS Global Planer ve TEB local Planer'ın 

kombinasyon halinde kombinasyonunu, platformdaki diğer mevcut çarpma ve hareket 

planlama algoritmalarına kıyasla sağlam bir sonuç verebileceğini gördük. Kurban tespiti, 

mevcut derin öğrenme nesnesi algılama algoritması olan YOLO V3 kullanılarak başarılı bir 

şekilde gerçekleştirilir. 

Anahtar Kelimeler: kentsel arama kurtarma; Robot işletim sistemi; eşzamanlı lokalizasyon 

ve haritalama; Hareket planlama; YOLO V3 
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CHAPTER 1 

INTRODUCTION 

 

 

 

1.1 Overview 

The use of robots in USAR could be a difficult space for researchers in artificial 

intelligence as a result of Robots employed in search and rescue want mobility and 

robustness(Tadokoro, 2009). The scenario in which they will be used is harsh with many 

unknowns. There are two fundamental subjects that feed each other to accomplish robot 

autonomous navigation are SLAM (Scaramuzza et al. 2016) and motion planning (LaValle, 

2011). SLAM is an analytical problem of creating or recording a map of an undiscovered 

environment while concurrently updating the robot’s position and orientation within it 

(Scaramuzza et al. 2016). Grid base and visual-based slam are most popular applicable 

nowadays the most dominant one being the first. 

In ROS there are several slam algorithms based on grid-based approach(Santos and Rocha, 

2011), gmapping which uses particle filter as a core pose estimator (GvdHoorn, 2018) and 

hector mapping uses the scan match technique (StefanKohlbrecher n.d.) are widely used.  

Hector slam represent the environment as Occupancy grid map(Stefan Kohlbrecher, Oskar 

v, Johannes M, 2011). Occupancy grid map categorized as metric map uses arrays of binary 

cells (matrix) to show the surrounding world and create estimation about which part of the 

cell is occupied (Thrun n.d.). Motion planning, on the other hand, uses the map created by 

the robot to plan a way to accomplish a goal avoiding obstacle and optimizing the speed 

(LaValle, 2011). Additional we analyze the implementation of deep learning algorithms for 

detecting victim in unknown clustered USAR environment. Robot operating system 

provides all this functionality and infrastructure by its different package with certain 

preconditions. So, this research will be going to address how we can accomplish autonomous 

navigation and victim detection using ROS by analyzing the existing state of art algorithms 

for search and rescue mission. 
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1.2 Problem Of Statement 

Robots are playing a vital role in our day to day life in transportation, service, industries and 

in research as the advancement in the technology is growing fastly. Nowadays robots are 

capable of doing what human incapable of because robots can be designed uniquely to 

address the difficult situation. Robot autonomous capabilities are significantly grown in the 

past decades thus making the robot to do thing by the own in a harsh and hazardous 

environment. One area at which robot autonomism required is in USAR mission in a disaster 

environment. Search and rescue environment is a dynamic environment that anything can 

happen unexpectedly this make things difficult for human exploration some times. In 

addition, there are areas that human can’t reach due to varies unpleasant conditions, 

therefore, robot value in this situation is undeniable. 

One of the deeply studied areas in a robotics automation system is robot autonomous 

navigation which deals with planning and moving to the goal of avoiding obstacle around 

the environment. On this research, we are focusing on autonomous navigation system In 

ROS (robot operating system) platform. ROS provides varies nodes and packages in order 

to achieve full autonomy. Taking this advantage, we are aiming to analyze the ROS 

navigation system for our purpose which is search and rescue mission. we aim to simulate 

and analyze the ROS navigation stack using hocuyo lidar scan and skid steering robot which 

is a favorite model for the unpleasant environment because of its ability to turn fast and 

accurately. The camera sensor is integrated into the system for the victim detection system. 

To achieve a robust goal, we are going to analyze suitable object detection, slam, and move_ 

base package considering search and rescue environmental conditions on ubuntu 18.04 ROS 

melodic system by creating URDF (universal robot format) and SDF file for the world and 

robot description in ROS and gazebo simulation platform. We hope this work will be 

beneficial for using ROS navigation stack for real search and rescue robot as it assists to 

understand the tuning and the work behind the seen in within different chapters. 
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1.3 General Objective 

✓ To analyze existing ROS algorithm’s in navigation system which suits search and 

rescue robotic systems 

✓ Implementing victim detection in USAR environment 

✓ Demonstrate the result using simulation 

1.4 Specific Objective 

✓ Selecting implement suitable slam algorithm for search and rescue mission 

✓ Creating a robot model and simulation environment for simulation 

✓ Localizing robot in the environment 

✓ Analyzing and implementing suitable path planning algorithm 

✓ Analyzing and implementing suitable victim detection algorithm 

 

1.5 Application And Advantage  

Our focus in this work is to analyze the robot capability before the robot touches the ground 

using the simulated robot on the ROS platform. This will benefit to know the behavior of 

the real robot beforehand. ROS is the de_facto programming platform in robotics to achieve 

greater capability with reduced time. Additionally, our work will give insight ROS 

navigation stack for search and rescue experimentation. As the simulation is exactly similar 

to real work the reader be forced to understand the way to use the navigation stack of ROS 

platform. 
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CHAPTER 2 

SEARCH AND RESCUE ROBOTICS 

 

 

 

2.1 Introduction 

A rescue mission is dependably a competition against time, to attain as quick as conceivable 

to reach every single survivor candidate but then maneuver gradually enough to avoid 

creating additional falls, distress, or damages to rescuers and unfortunate casualties 

(Murphy, 2013). Ideally, the general objective for rescue robotics is to reduce potential 

harm, the objective for particular automation styles and ability relies on their given 

work. The type of work that has been given for rescue robots can be searching, 

reconnaissance, creating maps, west removal, inspection, medical assessment, extraction and 

evaluation of causality providing logistic supports(Murphy, 2013). The kind of disaster 

impacts the decision of robot plat-structures and payloads. Rescue robots can be extensively 

classified into sorts dependent on modality and size. There are four applicable models of 

rescue robots: ground, aerial, underwater, and water surface. The disaster characteristics and 

Impact on robotics in case of man-made and natural disasters their promising robot design 

are like snakes, legged locomotion(Murphy, 2013). extensive research was done japan 

project called DDT, this research addresses the search and rescue, the impact of natural and 

artificial disasters and the role robot can play to reduce the consequence. It gives a deep 

intuition on the disaster information gathering, the material used, design methods. The 

design varies with the type of robot models and some background perceptions were 

discussed (Tadokoro, 2009) 

2.2 Why Autonomous Search and Rescue Robot 

The first applicable proposal for utilization of small robotic model in USAR performed over 

victim rehabilitation mission in the repercussions of the Oklahoma town disaster (Blitch, 

1996). Generally, USAR is full of cluttered area’s and every robot that is implemented in 

this condition don’t have data beforehand about obstacles in the surrounding. Therefore, the 

task is deeply challenging for a vehicle to autonomously move around the environment and 

detect casualties. Therefore, presently most implementations of robots in USAR task demand 
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human interventions in the system to assist a robot manually(Denker and Işeri, 2017). Mobile 

communication issues and fatigue problem can arrive. Moreover, an operating person can 

turn out to be easily pressurized and exhausted in USAR due to surroundings, making 

mistakes in decision making (Burke et al. 2004). Semi-autonomous control strategy has been 

put forward that allows the system to be separated between a vehicle and an operator(Denker 

and Işeri, 2017).But to get a robust solution fully Autonomous USAR is very crucial. 

2.3 SLAM For Search and Rescue Robot 

With the development of robotics research in these late years, autonomous robotic systems 

are being designed to aid rescue personnel in USAR operations. Starting 2000’s Robocop 

rescue is playing an important role in search and rescue research. Recently several modules 

of an algorithm for achieving greatly capable autonomous USAR robot algorithm is 

presented in ROS(Kohlbrecher et al. 2017). They incorporate hector slam for implementing 

SLAM in clustered urban environmental. They show a new algorithm for SLAM problem 

which needs to be settled to produce adequately exact metric maps valuable for navigation 

of models or a robot framework by name called hector slam(Kohlbrecher et al. 2017). As 

odometry is highly untrusted in USAR situations, the framework is intended to not require 

odometry information, rather absolutely depending on quick LIDAR information scan 

matching at full LIDAR update rate. In combination with altitude prediction framework and 

a discretionary pitch/yaw part to balance out the laser scanner, the framework can give a 

map of the area regardless of whether the movement plane is non-level as experienced in the 

Robocop scenarios. This can be considered one of the best advantages of the strategy-making 

hector slam to turn into the accepted standard Slam framework utilized by numerous groups 

with extraordinary achievement in Robocop tournament. Additionally, hector exploration 

planner and simulation with gazebo environment is briefly explained(Kohlbrecher et al. 

2017).  

2.4 Motion Planning  

In addition to slam, search and rescue robotics require motion planning to move secure and 

systematically in the heavenly clustered world to achieve their assignments. This problem 

brings the principle challenge to consider navigation strategies that can be implemented to 
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various robot kinematics, environments, and targets. A fundamental comprehension of the 

analysis problems and kind of outlooks to get solution of the basic motion planning problem 

had been given here (LaValle, 2011). Despite the fact that the motion planning problem lives 

in continuous C-space, is an analysis done digitally. To have a realistic or applicable solution 

we need to perform digitalization of our system first to solve the problem. This has prompted 

two fundamental ways of thinking combinatorial planning, creating a model in the C-space 

that digitally and totally include entire data necessary to implement planning. Sampling-

based planning utilizes collision detection computations to test and updatly find the C-space 

for the result, as opposed to totally describing the majority of the Cfree structure. The 

subsequent methodology is most broadly utilized but, the first is far best with numerous 

qualities. 

2.5 ROS Navigation System 

ROS initially created in 2007 at the Stanford Artificial Intelligence, today used by many 

robots, universities and companies and it been the thesaurus standard for robot programming. 

It has an integral role in Process management, Inter-process communication, Device drivers, 

Simulation, Visualization, Graphical user interface, Data logging, Control, Planning, 

Perception, Mapping and Manipulation of the robotic system. Especially for the navigation 

system, ROS provides varies motion planning algorithms separately for global and local 

planners. The principal Global Planer in ROS is navfn gives a quickly added path planning 

which will be utilized to make plans for robotic platform, path planning is processed with 

the Dijkstra's Algorithm (Jihoonl,  2014). The global_planner package provided as a 

progressively adaptable substitution to navfn providing an application of a higher, 

interpolated global planner for movement of the robot (Reinzor, 2019). The carrot_planner 

is a basic global planner, the planner acquires any goal coordinate from an outer client, 

checks if the user-determined objective is an obstacle, and on the off chance that it will be, 

it strolls around the vector of the user indicated objective and the robot base 

(NickLamprianidis, 2014).  

The default local planer for ROS is base_local_planner. It is the implementation of the 

Trajectory Rollout and Dynamic-Window algorithms to deal with robot local planning 
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problem. Utilizing slam, the planner makes a kinematic calculation for the platform to arrive 

from a beginning to an objective area. In the path, the planner finds free space, away around 

for the robot base by solving the cost function, which utilizes a binary map of the 

environment. The cost function detects the expenses of crossing the entire binary grids. The 

planner main responsibility is to utilize the analysis of cost function to decide linear and 

angular speeds given to the robot (NicolasVaras, 2014). The dwa_local_planner gives a 

similar capacity as the DWA however is diverse in the method environmental inspection of 

robot performed. (AchmadFathoni, 2018). Eband_local_planner actualizes a module to the 

moving base local planner (FelixWidmaier,  2018). It permits advancing a global plan 

arrangement locally, limiting the length of the way and fending off it from obstacles while 

in the meantime considering moving obstacles. Favorable position of this methodology is 

that they optimize the plan incrementally. That is, the longer the robot moves, the better the 

trajectory path will be. It is intended for use with omnidirectional and differential drive 

robots (Quinlan and Khatib, 2002). The teb_local_planner algorithm actualizes a module to 

the local planner of the 2D move base architecture (ChristophRoesmann, 2019). The 

teb_local_planner or Timed Elastic Band locally enhances the created global arrangement 

optimizing the direction execution time. It is consistency with Kino dynamic requirements, 

including, satisfying most extreme speeds and increasing velocities at runtime. It is intended 

for robots that have a turning circle some of which are a vehicle or articulated robot 

(Christoph Rösmann, 2017). 

Research aiming to incorporate and investigate the implementation of a navigation system 

of ROS based on the time elastic band (TEB) in real robot model based on Ackerman 

kinematics’ analyzed here (Marin-Plaza et al. 2018). They show due to the continuous update 

property of the planner TEB is a comparatively convenient preference over the addition of 

kinematic model change and if the vehicle misses the path. Experimenting by real vehicle 

platform takes time and consume resources as the availability of a suitable environment and 

robot dynamic properties have to be accounted for(Mcleod,  2018). On this paper, the authors 

demonstrate the simulation of two steering methods namely differential and skid steering 

using the navigation stack of ROS for autonomous navigation. As tuning of the navigation 

stack in a real robot is costly and dangerous the paper analyzes how to perform SLAM and 
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move_base of navigation stack using ROS platform and gazebo environment (Mcleod, 

2018).  

2.6 Victim Detection  

Finding victim in USAR environment is a challenging problem as the robot is subjected to 

maneuver in the undiscovered environment and find victims lying or trapped under rubble 

whose body may be partially visible. Classical learning approaches developed for USAR 

environment focused on first extracting set handcrafted features or histogram of oriented 

gradients then trained supervised learning model(Louie and Nejat,  2013). Doing manual 

design requires empirical selection and validation, which is time-consuming and require 

expert knowledge. Additionally, it requires a predefined rule to analyze the grouping of 

human body parts. As deep learning approach take sensory data as its input instead of 

handcrafted features it can reduce the above classical learning problems. There are two main 

approaches to design the architecture of person recognition with deep learning(Tsung-Yi Lin 

et al. 2017). The first is a two-stage approach which is comprised of a first stage that 

generates a set of region proposals indicating where target objects might be located, and the 

second stage classifies each proposed region as an object class or as background. Design of 

FPN (feature pyramid network) with fast R-CNN (recursive convolution neural network) is 

a typical example of this approach. The other approach is one stage detector which performs 

object localization and classification together. This approach has fast detecting capability but 

compromising with an accuracy of recall ability. Most popular one stage detector SSD, 

YOLO v2, YOLO v3, and retina Net are well recognized for this method. The result shows 

that the YOLO algorithm has the highest precision-recall rates for both partially occluded 

body parts and full visible body parts demonstrating robustness for occlusion (Identification 

et al. 2019) 
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CHAPTER 3 

AUTONOMOUS USAR WITH ROS 

 

 

3.1 Introduction 

This chapter discusses how the research is done by using certain methods. first, a brief 

explanation about ROS is given. After that, on the subsection of the chapter, we explain how 

to create a robot model description, sensors, mechanisms and software tools used for this 

project. Finally, we extensively analyze the algorithm used to develop an autonomous 

system in the ROS platform.  

3.2 Principle of Robot Operating System 

Before diving into analyzing the implementation of ROS for our system here is a brief 

explanation about how ROS works in general. As shown in figure 3.1 ROS Master manages 

the inter-process interaction between nodes (processes). Every node register at startup with 

the master. ROS master Enable ROS nodes to find each other, think of it as a ROS index 

administration, kind of DNS Provides naming and enrollment services for nodes, topics, 

services, and so forth.  ROS Nodes organized in package ROS nodes is executable c++ or 

python program which can be individually compiled, executed and managed for a specific 

competition. ROS messages data structure defining the type of a topic Comprised of a nested 

structure of integers, floats, Booleans, strings, etc. and arrays of objects Defined in *.msg 

files. Strictly-typed data structures for the communication between nodes. float64 x, float64 

y, float64 z, Vector3 linear, Vector3 angular can be some example of Ros messages. ROS 

topic is a name for a flood of messages, nodes communicate over topics, nodes can publisher 

subscribe to a topic typically, 1 publisher and n subscribers. ROS Services using one to one 

request-response as service /client mode Synchronous the transactions between nodes / RPC 

(remote procedure call) the two main roles of Ros service are performing computation and 

triggering functionality/behavior. As map_server/static_map recovers the present grid map 

utilized by the robot for navigation. Parameter Server operating inside the ROS master, it is 

a shared, multi-variate data set that is steamed via network APIs. It very well may be Best 
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utilized for static, non-binary information, such as configuration parameters. ROS packages 

program in ROS is sorted out using packages. A package contains at least one node and gives 

a ROS interface, most of ROS packages are facilitated in GitHub.  

The launch is a tool for launching multiple nodes (as well as setting parameters) Are written 

in XML as *. launch files If not yet running, launch automatically starts a rescore. 

 

 

 

Figure 3.1: Robot operating system component 
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3.3 ROS Navigation 

The objective of the navigation stack is to move a robot starting with one position then onto 

the next position securely (without smashing or getting lost). It learns from the odometry 

and sensors, and an objective posture and yields safe speed directions that are sent to the 

robot. The navigation stack expects that the robot is arranged in a specific way so as to run. 

The diagram underneath demonstrates a review of this design. The white parts are required 

segments that are as of now actualized, the gray segments are discretionary segments that 

are as of now executed, and the blue segments must be made for every robot stage. The pre-

essentials of the route stack, alongside directions on the best way to satisfy every 

prerequisite, are given in the areas beneath. 

 

 

Table 3.1: Ros packages utilized in this research 

Packages Application 

TF Maintaining the relationship between multiple coordinates 

frames overtime 

HECTOR MAPPING Provides a laser _based slam (simultaneous _localization 

and mapping) using a grid map 

AMCL Probabilistic localization system for a robot moving in 2D 

MOBE_BASE Implement the action of moving to the destination location 

RVIZ A 2d multi-robotic simulator 

GAZEBO A 3d multi-robotic simulator 

 

The navigation stack isn't a piece of the standard ROS kinetic installation. To use navigation 

stack we should install it first by typing be command below. 

 

 
$ sudo apt-get install ros-melodic-navigation 
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3.3.1 Requirement for using navigation stack 

To take advantage of navigation stack of ROS, one must ensure the robot is utilizing ROS 

and the platform is publishing data about the transformation b/n coordinate frame utilizing 

TF (transformation frame of Ros). The stack utilizes data acquired from sensors to evade 

obstacles on the surrounding, it expects data obtained are distributing in according to 

messages declaration over ROS. We use Hokuyo Laser for our purpose as a range sensor. 

Also, for estimation of the movement of the robot ROS navigation acquires that odometry 

data be communicated utilizing TF and the ROS messages. In spite of the fact that navigation 

stack doesn't require odometry and map to work, we make a guide by utilizing hector slam 

and spare it on map server so as to reuse for our analysis. 

 

 

Figure 3.2: The overall architecture of Ros navigation stack(Gill ,2014.) 
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velocity command in Ros navigation sent by using geometric and twist messages 

transformed from the base frame of the platform communicated though "cmd_vel" topic. 

This means that the have to be anode that provides odometry and other node subscribed to it 

that takes angular and leaner velocity messages and change them to motor commanded to 

give to the mobile base. 

3.3.2 Coast Map 

Are a set of values (matrix) that show an area that is convenient for the vehicle inside a grid 

map. It interprets and uses the occupied and unoccupied cell of the surrounding and the 

provided robot inflation radius for effective navigation. The cost map is utilized to keep 

away from obstacles as per the estimation of the parameter given to it. There are two kinds 

of cost maps in ROS which are Managed by the costmap_2d package Global cost map 

collection occupied and unoccupied cells for creating a global plane of the robot and Local 

cost map utilized for the local planer. The global planner just uses the present guide and the 

footprint of the robot to design away from indicating A to B. It couldn't care less about how 

the robot moves so as to achieve this direction. The local planner utilizes a kinematic model 

of the robot to locate the robust arrangement of directions that achieve globally create a path.  

skid steer robot, for instance, the planner 'recreates' each linear and rotational speed suitable 

for performing and picking the optimal arrangement of speeds that achieve the objective. 

 

 

Table 3.2: Necessary package for utilized navigation stack 

Packages Application 

Map server map database of ROS  

HECTOR MAPPING Offer SLAM using scan matching in occupancy grid 

AMCL Offers the localization system for the robot platform 
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Table 3.2 continued.. 

MOBE_BASE Implement the action of moving to the destination location 

Global_planner Implement fast global planer for navigation 

Local_planner Implement trajectory rollout and TEB_local_planner for local 

robot navigation 

 

 

3.4 Sensors 

Basically, our robot contains two sensors hocuyo lidar sensor and camera sensor. Hokuyo 

scanning LiDAR is a range sensor which can create Realtime information on the surrounding 

for the purpose of detection, navigation, and measurement. It is responsible for providing 

continuous time-stamped digital mapping coordinates which input for our SLAM system. 

Most modern lidars applied for indoor and outdoor application range from 20mm-300mm, 

240°- 270° scanning window and their update rate is very high. Their high update rate has 

significant importance when used in hector SLAM. Camera sensor provides a sequence of 

RGB image for the victim detection system. For simulation purpose, the gazebo provides a 

plugin for hokuyo lidar and camera sensor included in our robot description. 

3.5 Robot Kinematic Model 

The kinematics model of robot differs according to the steering mechanism which then 

determines the mechanical construction of the robot. In ROS the are several robot kinematic 

models we can operate on in order to implement our algorism the well-known are differential 

drive, skid and Ackerman(carlike) steering mechanisms additionally it is possible to create 

our own kinematic model. To implement simulation autonomous system in ROS and gazebo 

there is gazebo plugin which code that implements skid steering include the plugin to our 

robot description code (URDF) this true for lidar and camera plugin also. The steering 

control takes Front and rear-wheel joint static transform and applies appropriate force to 

move, turn the robot when command velocity id is given to it. Odometry calculation is also 

obtained and to obtain the robot need to go form the starting position. The static frame 



 

 

15 

 

transformation of the robot is taken by a robot state publisher. A brief introduction on how 

to create a robot model (robot description) is given in the next section. 

3.6 Unified Robot Description Format (URDF) 

Unified robot description format specifies varies information contained in tag depending on 

the robot model. In general sensor/proposal depicts a sensor, for example, a camera, beam 

sensor, and so on. Link contains the Kino dynamic characteristics of a robot platform. 

Transmissions interface mechanical interconnection of joints and corresponding actuators. 

Joint Describes the Kino dynamic character of the joint element. model _state depicts the 

condition of robot structure at a specific moment, further gazebo depicts simulation 

characters such as damping and friction properties. The model depicts the kinematic and 

dynamic properties of a robot structure. Can be incorporated as the plan prerequisite need. I 

talked about some of the critical traits I utilized for my purpose on the following points. 

3.6.1 Link 

The link element expresses a rigid body with inertia, visual and collision tags. There is a 

specific tag that defines a link in URDF file. I will go through some tag and show what they 

represent name give the nomenclature for the link. Other tags represent the visual, collusion, 

inertia, geometry and texture property of the link element. The initial tag is used specifically 

for gazebo simulator in order for the simulator to understand the inertia of the link defined. 

Inertia can be represented by a 3x3 rotational matrix in the inertial coordinate. Due to the 

symmetric property of inertia matrix, we can specify using only the following 6-attribute’s 

ixx, ixy, ixz, iyy, iyz, izz .visial tag can be written in order to show the link geometry of the 

part on graphical user Interface.  

 

 

 

 

 

http://wiki.ros.org/urdf/XML/link
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Figure 3.3: Diagram showing the relationship between frames in the link 

component(FabioCapasso ,2018) 

 

 

Collusion tag which can be written similar to visual tag it represents the region at which the 

link can’t be touched by other environmental or other links of robots. All the inertia, visual 

and collision tag’s name, <origin> which contain attributes XYZ specifying offset from x,y, 

z, rpy. <geometry> tag representing the structure of the corresponding object. It can be a 

box, cylinder, sphere or a mesh. Mesh specified by corresponding file path with a specific 

file name, the mash can be created cad software like solid work, MeshLab, blander or other 

recommended format is Collada .dea file because of color flexibility ability, although STL 

file is supported.   
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3.6.2 Joints 

The joint element portrays the kinematics and dynamics of the joint and furthermore 

indicates the safety limits of the joint. 

 

 

 

 

 

 

 

 

Figure 3.4: show the relationship between frames in a joint component(RicardoAngeli 

2018) 

 

 

The joint component has dual characters <name> (required) expressing a novel 

numeniculture of the joint. <Type> being necessary tag it expresses the kind of joint, which 

can be one of the following: revolute, Continuous and Prismatic, the first one rotating in 

some axis at the fixed angle specified, the subsequent one rotates continuously around an 

axis without limit the last one slide on some specific axes. Floating joint permits movement 

for each of the 6 axes on the coordinate frame. Finally, Planar this connection enable 

movement in a plane opposite to the hub. Joint element is a very important part of URDF as 

it defines the relationship b/n links. This tag contains varies elements inside, <origin> set at 

origin of the child link and define the transformation b/n child and parent link. We can see 

the figure below to understand about parent and child link and relationship between frames. 

XYZ, rpy attributes must be specified to set linear and angular offsets. <parent> <child> tags 

by their link attribute define which is parent and child link for the robot tree structure 

respectively. <axis> (discretionary: defaults to (1,0,0)) place inside joint tag it specifies the 
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rotation link with respect to another link on the robot. Additionally, <dynamics> <mimic>, 

<calibration> and <safety_controller> Tay’s can be used to took advantage of different 

attribute they offer. 

3.7 TF Transformation System: 

Tool for monitoring coordinate frames after some time. Facilitate the connection between 

coordinate frames in a tree structure supported in time, letting the users transform points, 

vectors, and so on between coordinate frames. At wanted time Implemented as 

publisher/subscriber model on the topics /tf and /tf_static.TF listeners utilize a cushion to 

tune in to all broadcasted transforms Query for explicit changes from the change tree. 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Representing TF node architecture 

 

3.8 Simultaneous Localization And Mapping 

In Probabilistic formulation of slam, a robot is presumed to maneuver in an unknown 

environment, over the trajectory expressed by the sequence of random variables 

   

             𝑋1: 𝑡 = {𝑥1, ……………………… , 𝑥𝑡}                                                                     (3.1) 

 

while moving it acquires sequences of odometry measurement 

          𝑈1: 𝑡 = {𝑢1, ……………………… , 𝑢𝑡}                                                         (3.2) 

 

Node 

Node 

Node 

/tf 
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perceptions of environments 

           𝑍1: 𝑡 = {𝑧1, ……………………… , 𝑧𝑡}                                                           (3.3) 

A map can be specified as a set of spatially located landmarks, by dense representations like 

occupancy grid’s, surface map, or by row sensor measurement. Solving slam problem 

requires computing in high dimensional state space Considering static world and Markov 

assumption. A convenient way to explain this structure is with the dynamic Bayesian 

network (DBN) (Grisetti et al. 2010). Bayesian network is a graphical structure that 

expresses the stochastic process as directed graph connectivity of DBN follows a repetitive 

pattern expressed by the state transition model and by the observation model.  

In Figure 3.5, blue nodes represent the observed variables (this means z1: environment T 

and u1: T), white nodes represent required variables (x1: T) and m describing the robot’s 

trajectory and the grid map of the environment. The structure of the DBN obeys a recurrent 

pattern expressed by the state transition model and by the observation model. The transition 

model p(xt | xt−1, ut ), tries to find the position of robot xt given the past position of robot 

xt−1 and odometry measurement ut. The observation model p(z t | xt, mt ) models also try 

to obtain observation zt given the present robot position xt from within observation map m. 

To address slam problem standing on a probabilistic point of view we can see two equally 

important solutions which are online slam and full slam explained below. 

Online slam: This problem structure addresses the estimation of momentary pose (position 

and orientation) along with the map, this removes old measurements and controls the present 

data's as they become available equation 3.4 (THRUN 2000) 

          𝑝(𝑥𝑡, 𝑚 ∨ 𝑧1:𝑡, 𝑢1:𝑡) = ∫ ∫ …∫ 𝑝(𝑥1:𝑡, 𝑚 ∨ 𝑧1:𝑡, 𝑢1:𝑡)dx1dx2...dx𝑡−1           (3.4) 

 

Full slam: analyzing the full slam problem includes estimating the posterior probability of 

the robot’s trajectory x1:t and the map of the environment all the measurements plus an 

initial position provided equation 3.5. 

          𝑝(𝑥1: 𝑡,𝑚|𝑧1: 𝑡, 𝑢1: 𝑡, 𝑥0).                                                                            (3.5) 
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3.8.1 Overview of existing SLAM solutions 

Generally, there are about four basic techniques of generating consistent maps in slam which 

are EFK slam, fast slam, scan matching, and graph slam. Slam solution can be achieved by 

different realization the oldest and comparatively more exact estimation algorithm is Kalman 

filter (THRUN, 2000). Kalman filter method uses Gaussian distribution with the motion 

model linear or some linearization implementation made before the execution of estimation. 

Extended Kalman filter (EKF) is one of the most popular algorithms which categorized in 

this category as the name indicates EKF implements an extension of linearization step before 

Gaussian estimation of the pos (translation and rotation) analyzed. Considering the 

computational cost of EKF researchers focus to its twine extended information filter (EIF) 

which represent the Gaussian posterior by information vector b information matrix H instead 

of using mean µ and covariance matrix Σ.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Dynamic Bayesian Network (DBN) of the simultaneous localization and 

mapping process (Grisetti et al. 2010) 
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The two parameterizations are similar can be interrelated by 𝐻 = Σ−1  and 𝑏 = µT𝐻 the 

sparse pattern is drastically different (Chen 2013).EIF algorithm then extended to SEIF 

(which is sparse extended information filter) to optimize the storage system to linear with 

the number of landmarks and execute all updates in constant time (Chen, 2013). 

As I mention above Kalman filter suffer when it comes to the nonlinear (arbitrary) 

distribution of motion model, we can use linearization method if our model is not too 

nonlinear but for highly arbitrary models a most promising method for estimation is particle 

filter (Doucett, Freitast, and Russent, 2000). Particle filters use samples of arbitrary 

distribution these samples are assigned with a distinct amount of weight, the higher the 

weight the higher the probability of the area this means we can find the posterior from the 

sample representation. To achieve this particle filter algorithm, implement three main steps 

which are sampling the particle using the proposal distribution, compute the importance of 

weight, resampling for better estimation. As the particles are generated and resumed, they 

automatically concentrate on the more probable region of the distribution. Graph-based slam 

build by node s which represent robot pose (position and orientations) or landmarks, and 

edges reflecting the sensor measurements that define the relationship between those poses 

or landmarks this construction stage is called front end (Grisetti et al. 2010). This stage only 

responsible for the data association and bounce the search for correspondence. In graph slam, 

we need to find the structure of anode that highly consistent with the measured data this is 

achieved in the optimization stage. This stage involves solving a large error minimization 

implementing mostly list square method, or related algorithms.  

The other widely used slam algorithm is using scan matching approach which is implements 

scan registration with or without odometry (Stefan Kohlbrecher, Oskar v, Johannes M, 

2011). Scan matching organizes or aligns scans as they become available with each other or 

with existing map. Due to modern laser scanners low distance measurements noise and high 

scan rate this method yields Avery accurate in creating maps. For most robots, this method 

performs much better than that of odometry data if it is available at all. Hector slam is the 

most known algorithm for implementing this method which demonstrated in UGV, 
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underwater, and quadcopters.  In our case also we take advantage of this method as our 

environment for search and rescue mission is full of rubs and uncertainties.  

3.8.2 Hector SLAM 

Hector slam is one of well-known slam algorithm which uses scan matching for generating 

a map(Stefan Kohlbrecher, Oskar v, Johannes M 2011). This approach relies on optimization 

the alignment of beam endpoints with map registered before. 

In HECTOR, we seek to obtain rigid transformation ξ = (px, py, ψ) T that minimizes 

 

                                 

                                                (3.6) 

 

 

We compute the bast alignment laser scan with the map equation 3.7. where Si (ξ) is the 

world coordinate of scan endpoints. M (Si (ξ)) return the map value at the coordinate given 

by …S i (ξ). In other words, we compute the best alignment of the laser scan with the map. 

 

                                              (3.7) 

 

 

 

Figure 3.7: Demonstrates hector slam scan matching problem  
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Given that starting pos ξ. of, we can evaluate ∆ξ which minimize the error measurement 

according to by using first-order Tyler expansion and partial derivative with ∆ξ to zero and 

solving we can obtain ∆ξ according to equation 3.8. which is the change in pose (Stefan 

Kohlbrecher, Oskar v, Johannes M 2011). 

 

                  (3.8) 

 

3.8.3. Adaptive monte carlo localization (AMCL) 

Two key problems in mobile robot localization are global position prediction and local 

position tracing. We express global position estimation as the capability of the robot to find 

its position with a previously known map and without any other information other than the 

robot could be somewhere on the map. If the robot doesn’t have prior information about the 

map, the map should be created online at the time of exploration. Once we obtain the position 

of the robot on the map, local tracing localizes the robot throughout the movement of the 

robot over time. Both these abilities are important to empower a robot to execute helpful 

errands, for example, office conveyance, transportation and search and rescue mission 

(Sebastian Thrun et al. 1999). AMCL is a probabilistic localization system for a vehicle 

moving in 2D space. It implements the adaptive (or KLD-sampling) Monte Carlo 

localization approach, which uses a particle filter to trace the pose of a vehicle within a 

known map (SteveMacenski n.d.). AMCL takes an input of a laser-based grid map, laser 

scans, and frame transform messages, and outputs pose prediction of the robot. On startup, 

AMCL initializes its particle filter by using the parameters given by launch file. Remember 

that, due to defaults setup, if no parameters are given, the initial filter state will be a 

moderately sized particle cloud centered about (0,0,0). 

3.9 Motion Planning 

Path planning research for autonomous navigation is started since in the 1970’, in 1971 

Lazano, Parez, and Wesely introduces the configuration space which then starts the in-depth 

research in modern motion planning (LOZANO-PEREZ, 1983). now a day’s automation of 

different machineries being studied, robot automation being the frontier for this since robot’s 

http://wiki.ros.org/action/fullsearch/amcl?action=fullsearch&context=180&value=linkto%3A%22amcl%22
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role in people’s day to day life is being significantly growing. In this area most researches 

are focused on obtaining optimal solution such as path planning (figuring out the path the 

vehicle must follow to arrive at specific goal and motion control (analyzes the control input 

that must be given to the robot to keep the collision-free path. Specifically considering 

motion control, varies algorithms has been used in keeping the path. Here we define the 

problem motion planning and try to see TAB_local_algorithim intuitions. 

3.9.1 Obstacles And The Configuration Space 

The configuration space, or C-space, of the robot framework, is the space of every 

conceivable setup of the framework (LaValle 2011). The number of degrees of freedom of 

a robot configuration is the dimension of the configuration space or the minimum number of 

parameters needed to specify the configuration. 3-parameter representation: q = (x, y, θ). In 

3D, q would be of the form (x, y, z, α, β, γ) . Standing on our understanding of configurations 

and of configuration spaces, we can characterize the path-planning problem to be 

determining a continuous mapping, c: [0, 1] →Q, to such an extent that no configuration in 

the way causes a crash between the robot and an obstacle (LaValle, 2011). With 𝑊= 𝑅𝑚 

being the work space, 𝑂𝜖𝑊 the set of obstacles, 𝐴(𝑞) the robot in configuration 𝑞𝜖 

 

 

 

 

 

 

 

 

Figure 3.8: Three degree of freedom robot in c-space on the left, the right figure shows the 

question of path planning in c space connects 𝑞𝑖 to 𝑞𝑔 while remaining in Cfree 
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           𝒄𝒇𝒓𝒆𝒆={𝒒𝝐𝒄  𝑨(𝒒)∩𝑶=∅}                                                                                              (3.9)  

 

           𝑐𝑜𝑏𝑠 = 𝑐 𝑐𝑓𝑟𝑒𝑒⁄                                                                                                        (3.10) 

 

The motion planning amounts to finding a continuous path. This setting provided; we can 

analyze motion planning with the robot assumed as a point in C-space. 

         

          τ [0,1] →  𝑐𝑓𝑟𝑒𝑒                                                                                          (3.11) 

          

          With τ (0) =𝑞𝑖, τ (1) =𝑞𝑔  

 

3.9.3 Local planer solutions in ROS 

It is mandatory to compare algorithms to achieve a higher standard result. Ebad local planer 

is a force base path deformation and path following controller. Use in plan short path for the 

local solution without considering Kino dynamic constraints. Tab local planner depends on 

optimization resp with a predictive control strategy. using multiple local solutions perform 

parallel optimization for the time-optimal result or ref, path fidelity considering Kino 

dynamic constraints. DWA uses sample-based trajectory generation with predictive control 

to achieve the globally planned goal. One of the downsides, the algorithm takes samples that 

exhibit constant curvature. Showing time suboptimal result obtained from multiple local 

solutions by considering Kino dynamic constraints. There difference lie in the computational 

burden of the algorithms, TAB local planner possesses high Burdon compared to that the 

other two. DWA planner being the list as constraint competition is less. All this algorithm 

can be implemented for Omnidirectional and differential drive robots, but Tab local planner 

can be used for car-like robots in addition.  

3.9.4 TEb_local Planer 

Online planning is favored over offline approaches because of its quick reaction to changes 

in a dynamic environment or disrupts the robot movement at runtime. Besides producing an 

impact freeway towards the objective trajectory optimization considers auxiliary objective 
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such as control error, trajectory length, control effort, travel time and clearance from 

obstacles. Practically, because of limited computational resources most of the time online 

optimization depends upon local optimization strategies for which convergence into the 

global optimal trajectory is not pledged. In the navigation system of mobile robots, optimal 

trajectories are necessary due to the existence of obstacles.  

Time Elastic Bands (TEB) create a sequence of intermediate vehicle poses 𝑝 = (𝑥𝑖, 𝑦𝑖, 𝑜𝑖)𝑇   

modifying the initial global plan. It requires the speed and acceleration limits of the robot, 

the safe separation of the obstacles and the geometric, and kinematic and dynamic limitations 

of the vehicle (Marin-Plaza et al. 2018). The original TEB planner is optimized extended in 

(Christoph Rösmann,, 2017) to a fully integrated online trajectory planning methodology 

that combines the exploration and simultaneous optimization of multiple admissible 

topologically individual trajectories during runtime. A discrete trajectory 𝒃 =

[𝑠1, ΔT1, ΔT2, ……… , ΔTN − 1, Sn]𝑇 is expressed by an ordered sequence of poses 

incremental sequence with time stamps. 𝑠𝑘 = [𝑥𝑘, 𝑦𝑘, βk]
T ∈ R2 × S1  with k=1, 2………., 

N represents the position and orientation of the robot and ΔTk  ∈ R > 0  with  

k=1,2………..., N−1 denote the time interval related to the movement between two 

respective poses 𝑆𝐾 and 𝑆𝐾+1  consecutively. 

 

 

 

 

 

 

 

Figure 3.9: Demonstrate Discrete path with n=3 poses (Christoph Rösmann 2017) 
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The TEB optimization inquiry is defined in such a way that b∗ minimizes a weighted and 

clustered nonlinear least-squares cost function: 

 

           𝑏∗ = arg min
b{𝑆1,𝑆𝑁}

 ∑ σifi
2(b),  i ∈ { ℐ,  Ƥ}𝑖                                                    (3.12) 

 

The terms fi: B→R ≥ 0 represent conflicting objectives and penalty functions. The set of 

indices related to objectives is denoted by ℐ and the set of indices that allotted to penalty 

functions by Ƥ. The change among individual variables is obtained by weights σi. The term 

b\{𝑆1, 𝑆𝑁} indicates that starting pose 𝑆1 =𝑆𝑠 and final pose 𝑆𝑁 =𝑆𝑔 are fixed and therefore 

can't be optimized. on the cost function, 𝑆1 and 𝑆𝑁 are replaced by the present robot pose 𝑆𝑠 

and the required goal pose 𝑆𝑔. 

3.10 YOLO V3 

Deep learning has been around for long but it has massively dominated computer vision after 

graphic card capacity is upgraded in recent years overcoming customarily used 

methodologies, achieving the top score, on several tasks and their associated competitions. 

Deep learning is achieved by forming a hierarchy of a convolutional neural network, pooling, 

and softmax structure. One strand convolutional network can concurrently predict numerous 

bounding boxes and class probabilities for those boxes.  

YOLO implements deep learning algorithm in order to accomplish real-time object 

detection. Unlike that of sliding window and region proposal-based methods, YOLO views 

the entire image once during training and test moment so it completely encodes contextual 

data about classes as well as their appearance information. From the image, YOLO creates 

a grid of 13*13 grid cells each grid cell is responsible for predicting 5 bounding boxes which 

totally brings 845 bounding boxes. The confidence result for the bounding box and the class 

estimates are integrated into a final score that gives us the probability that this bounding box 

is a particular type of object. YOLO V3 Further improve upon YOLO V2 by incorporating 

some elements used in other states of the art detection algorithms such as residual blocks 

and feature pyramids as shown on the network Figure 3.1 
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Figure 3.10: Darknet-53, the feature extraction layers used in YOLOv3, (Adopted from 

(Identification et al. 2019) ) 
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On the present stage, there is ROS package developed for object detection in-camera images 

called YOLO (V3) (Bjelonic, 2018). We can use this ROS package YOLO (V3) on GPU 

and CPU. The pre-trained model of the convolutional neural system is proficient to identify 

pre-trained classes including the informational collection from VOC and COCO, or you can 

likewise make a system with your very own recognition objects. 
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CHAPTER 4 

RESULT AND DISCUSSION 

 

4.1 Overview 

For the simulation of robot, we created a robot description and gazebo environment using 

URDF and SDF as explained on the corresponding topic. Hector mapping, AMCL, 

map_sever, move_base packages of ROS are parametrized according to our need’s. The 

parametrization is done using a launch file for SLAM and move_base packages. For local 

and global planer packages we use a YAML file to set the corresponding tuning values 

Appendix 3. Frame transformation b/n links are done by using robot state publisher and TF 

frame state. Skid steering control used as odometry source.  

4.2 Skid-Steer Model  

As expressed previously our model is a skid-steer platform. This platform is used as it 

provides the same movement model, Figure 4.1 but requires different control and model 

dynamics. This will enable the skid-steer of system parameters between model types. For 

simplicity, the model contains only laser scanner placed on the middle of the front base link 

of the robot. The model’s parameters are 500 x 750 x 375mm (LxWxH), weight is 8kg, and 

wheel radius is 500 mm. Fig shows the final models design. 

 

 
Figure 4.1: Skid steering robot model used in experimentation   
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4.3 Simulation Environment 

The simulator is very essential tools in robotic researches for their fast and robust test of new 

concepts, methods, and algorithms. As we are taking advantage of ROS platform to simulate 

search and rescue robot environment, gazebo simulator is very suitable, as it’s capable of 

creating complex 3d sonorous that our robot experience additional it offers data visualization 

and simulation of the remote environment. Gazebo uses SDF format for creating a world 

which is an XML file. In this SDF file, several components are included to address the root 

property of the environment. For the simulation of the autonomous navigation system, we 

created a simple cross-shaped floor with four rooms using build editor of gazebo simulator, 

and included fallen and standing person structure for implementing our victim detection 

algorithm as shown figure 4.2.  

 

 

Figure 4.2: Environment design for experimentation in gazebo simulator 
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4.4 Packages Used 

For the model, we use the AMCL package for localization, global_planner for global 

planning and TEB_local_planner as the primary local path control. These three provided the 

best results through testing detail parameter settings on appendix 3. The drive controller uses 

the skid_steering_controller with an update rate of 10, a torque of 10 N.m, receives /Odom 

topics and publishes motor commands to the /cmd_vel topic. The localization parameters 

and laser parameters were set from the skid-steering-drive model defined above with 

odom_model_type adjusted to diff. The controller frequency of the path planners move_base 

node is also set to 50Hz. This is to help reduce the impact of the rotation bug mentioned 

above. The global path planner used is global_planner. It is defined with default values. The 

local planner uses the Time elastic band (TEB) method, the odom_model_type set to deff in 

move_base launch file appendix 2, show the skid steering model is implemented by the 

assumption of the bicycle model, meaning that the four well of the robot model using two 

virtual weels placed for the simplicity of analysis. All parameters used for packages are 

shown in the appendix. The corresponding values are in meter, meter per second, radians per 

se cond and in corresponding SI unit 

Figure 4.3: RQT graph showing the node of the control system from ROS. Representing 

all the node used in the system and their corresponding topics registered for 

communication 
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4.5 Internode Communication 

The frame transformation graph of our simulated robot is shown in Figure 4.4. The parent 

of the frame on hierarchal is map frame. This frame is a virtual frame that offers orientation 

and position of the environment for the system. The relative position and orientation of the 

robot in the simulated environment are advertised from Odom frame the broadcaster is 

/gazebo topic. Robot state publisher is responsible for transforming frame pose between 

fixed robot frames which are wheels and chassis (base_link). RQT graph of the robot shows 

the overall system of our robot. Several nodes of the system operated by registering the 

corresponding topic to plan, move, to position the robot autonomously. Figure 4.3 shows 

each node of the system with their corresponding subscribed and publishing topics. 

 

 

 

Figure 4.3: implementing hector mapping on the enviroment, left side showing map of 

half of the enviroment ,right side robot moving in the environment  
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4.6 Simultaneous Localization and Mapping 

The mapping performed using hector SLAM on the simulating environment is shown in 

Figure 4.5. Hector slam implements hector mapping node for building a map of a world and 

concurrently predicts the pose of the environment at scan frame rate. The linear and angular 

speed of the robot is 0.02 and 0.16 (meter/second rad/second) were set when mapping 

respectively. AMCL package is used for localization of the robot. The result for the mapping 

and localization is pretty much consistent to the environment and robot position as shown 

below in figure 4.5. The environment as represents on Gazebo Figure 4.2: the two figures 

below show the occupancy grid map created using hector slam.  

 

 

 

 

 

Particle 

pridiction 

Occupancy Grid map 

Figure 4.5: Occupancy grid map of the gazebo environment on the left side of the 

figure, global cost map, robot localization, and particle prediction shown on 

the right.  
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4.7 Motion Planner 

The motion planner uses default ROS global planer and tab planer as a local planer. Both 

local cost map and glocal cost map are shown in figure 4.6. The path created by global plan 

considerably accurate but sometimes can be very near to obstacle. The record of velocity 

necessary for the robot to achieve a goal is shown on the graphical on figure 4.8,4.9,4.10 on 

some momentary time interval. 

 

 Local costmap of the robot 

Global path 

plan 

Lesor ray  

Figure 4.6: Global and local cost map of the system, the red and pink line 

representing laser ray and global plan represented by the green line, local 

cost map show with a white box the robot moving on the top 
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4.8 Victim Detection 

The robot is in front of two people in the gazebo environment the camera integrated with the 

robot record data and send to YOLO. On Run time stream of images are given to YOLO, 

YOLO V3 node is register to the camera topic in our case Camera/raw. As the result show 

the pre-trained YOLO algorithms process the data and obtain two victims in this case person 

classify and create a bounding box around the image shown figure 4.11. We used the default 

trained YOLO algorithm because creating clustered USAR environment is still not easy to 

achieve is gazebo platform to implement complicated victim detection. 

 
Figure 4.7: Wider right-side representing robot facing the person in gazebo environment, 

below to the left output of the camera sensor in RVIZ, on the top right YOLO 

object detection result bounding box on the person 
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4.9 Discussions 

As we learn from the simulation at high speed the mapping built is inconsistent because of 

the rate at which the scan match of hector slam. This makes the mapping inconsistent with 

the environment. In order to fix this, the mapping is performed at a lower speed of 0.02 

meter/sec and 0.16 rad/second linear and angular respectively. The simulation shows Amcl 

works better for short distance traveled. The orientation of the pose array of the AMCL is 

not consistent when the robot rotates but give accurate enough for overall performance. For 

the uncertainty of Amcl value alpha have been increased of default value because the skid 

steering gazebo introduces much more uncertainty. As we observed from the simulation the 

gazebo simulator update rate plays an essential role succeeding on navigation stack because 

the update of the odometry from gazebo must match the update rate of frame transform of 

robot description. 

 
Figure 4.8: Angular velocity of the robot recorded on some specific time. Blue 

representing Angular velocity around the X-axis rad curve representing 

Angular velocity around the Y-axis green curve representing Angular 

velocity around the Z-axis 
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Figure 4.9: Linear velocity of robot recorded on some specific time. The blue curve 

represents linear velocity in x-direction pink curve representing linear velocity 

in y and the red curve represents linear velocity in z 

 

 

Figure 4.10: A graph showing angular and linear cmd_vel of the move_base node for the 

local planer in some momentary time interval 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

 

 

5.1 Conclusions 

On this research, we demonstrated the simulation of autonomous search and rescue robotics 

using a robot operating system and gazebo simulator. Analyzing ROS we show that hector 

mapping, AMCL, Ros global planer, and TEB local in combination can give robust result 

comparative from other existing slam and motion planning algorithms on the platform. 

Victim detection is achieved successfully using YOLO V3 which is the present state-of-the-

art deep learning algorithm. The test environment and robot model have been created using 

universal robot description formant (URDF) and solid dynamic format (SDF). The system 

takes range data of the surrounding using hucuyo lidar sensor interpreted it as occupancy 

grid map using hector slam. Using the map created from the map server move base generate 

obstacle-free path and velocity command to reach a goal. Our result shows that 

comparatively teb_local planner best performance for local planning utilizing multiple local 

solutions perform parallel optimization for its time-optimal result. Default Ros global planer 

is used for path planning and the parameters used for move base global planer and local 

planer is demonstrated in the appendix. The result has been demonstrated by using GUI of 

YOLO V3, RVIZ and gazebo platform.  
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5.2 Recommendations and Future Work 

The analysis is done in this research shows that we can successfully achieve an autonomous 

search and rescue robot by using Ros platform. We recommend to realize and use this system 

for real autonomous research and rescue mission or computation. The method we used in 

this research is can be easily perceived and adapted for any kind of robot system for any 

objective. Therefore, we recommend a robot designer to use Ros for their robot because it is 

flexible, full of resources and capability. As the objective of this work is to analyzing 

simulating of Ros platform for achieving autonomous navigation system for search and 

rescue mission we are limited. On the feature work, we can work on several issues such as 

realizing this system in a real environment.  We can analyze the dynamic obstacle which is 

obvious in search and environment. On this thesis we use a predefined map for our system 

store on map server in the future we may work on using online slam to achieve exploration 

capability for our system.  
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APPENDIX 1 

 

Universal robot description of the rescue robot 

 

<robot name="roobot1"> 

<link name="base_footprint"></link> 

  <joint name="base_footprint_joint" type="fixed"> 

    <origin xyz="0 0 0" rpy="0 0 0" /> 

    <parent link="base_footprint"/> 

    <child link="base_link" /> 

  </joint> 

<link name="base_link"> 

      <inertial> 

         <origin xyz="0 0.1 0" rpy="0 0 0" /> 

         <mass value="3" /> 

         <inertia ixx="0.2656" ixy="0" ixz="0" iyy="0.57810" iyz="0" izz="0.8124" /> 

      </inertial> 

      <visual> 

         <origin xyz="0 0 0.25" rpy="0 0 0" /> 

         <geometry> 

            <box size="0.75 0.5 0.25" /> 

         </geometry> 

         <material name="">  

            <color rgba="0.79216 0.81961 0.93333 1" /> 

         </material> 

      </visual> 

      <collision> 

         <origin xyz="0 0 0.25" rpy="0 0 0" /> 

         <geometry> 

            <box size="1.5 1 0.25" /> 

         </geometry> 

      </collision> 

   </link> 

   <link name="Empty_Link1"> 

      <inertial> 

         <origin xyz="0 0 0" rpy="0 0 0" /> 

         <mass value="1" /> 

         <inertia ixx="0.0108333" ixy="0" ixz="0" iyy="0.0108333" iyz="0" izz="0.01" /> 

      </inertial> 

      <visual> 

         <origin xyz="0 0 0" rpy="1.570795 0 0" /> 

         <geometry> 

            <cylinder length="0.1" radius="0.2" /> 

         </geometry> 
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         <material name=""> 

            <color rgba="0.79216 0.81961 0.93333 1" /> 

         </material> 

      </visual> 

      <collision> 

         <origin xyz="0 0 0" rpy="1.570795 0 0" /> 

         <geometry> 

            <cylinder length="0.1" radius="0.2" /> 

         </geometry> 

      </collision> 

   </link> 

   <joint name="front1" type="continuous"> 

      <origin xyz="-0.25 -0.375 0.2" rpy="0 0 0" /> 

      <parent link="base_link" /> 

      <child link="Empty_Link1" /> 

      <axis xyz="0 1 0" /> 

   </joint> 

   <link name="Empty_Link2"> 

      <inertial> 

         <origin xyz="0 0 0 " rpy="0 0 0" /> 

         <mass value="1" /> 

         <inertia ixx="0.0108333" ixy="0" ixz="0" iyy="0.0108333" iyz="0" izz="0.01" /> 

      </inertial> 

      <visual> 

         <origin xyz="0 0 0" rpy="1.570795 0 0" /> 

         <geometry> 

            <cylinder length="0.1" radius="0.2" /> 

         </geometry> 

         <material name=""> 

            <color rgba="0.79216 0.81961 0.93333 1" /> 

         </material> 

      </visual> 

      <collision> 

         <origin xyz="0 0 0" rpy="1.570795 0 0" /> 

         <geometry> 

            <cylinder length="0.1" radius="0.2" /> 

         </geometry> 

      </collision> 

   </link> 

   <joint name="front2" type="continuous"> 

      <origin xyz="-0.25 0.375 0.2" rpy="0 0 0" /> 

      <parent link="base_link" /> 

      <child link="Empty_Link2" /> 

      <axis xyz="0 1 0" /> 

   </joint> 
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   <link name="Empty_Link3"> 

      <inertial> 

         <origin xyz="0 0 0" rpy="0 0 0" /> 

         <mass value="1" /> 

         <inertia ixx="0.0108333" ixy="0" ixz="0" iyy="0.0108333" iyz="0" izz="0.01" /> 

      </inertial> 

      <visual> 

         <origin xyz="0 0 0" rpy="1.570795 0 0" /> 

         <geometry> 

            <cylinder length="0.1" radius="0.2" /> 

         </geometry> 

         <material name=""> 

            <color rgba="0.79216 0.81961 0.93333 1" /> 

         </material> 

      </visual> 

      <collision> 

         <origin xyz="0 0 0" rpy="1.570795 0 0" /> 

         <geometry> 

            <cylinder length="0.1" radius="0.2" /> 

         </geometry> 

      </collision> 

   </link> 

   <joint name="rear1" type="continuous"> 

      <origin xyz="0.25 -0.375 0.2" rpy="0 0 0" /> 

      <parent link="base_link" /> 

      <child link="Empty_Link3" /> 

      <axis xyz="0 1 0" /> 

   </joint> 

   <link name="Empty_Link4"> 

      <inertial> 

         <origin xyz="0 0 0" rpy="0 0 0" /> 

         <mass value="1" /> 

         <inertia ixx="0.0108333" ixy="0" ixz="0" iyy="0.0108333" iyz="0" izz="0.01" /> 

      </inertial> 

      <visual> 

         <origin xyz="0 0 0" rpy="1.570795 0 0" /> 

         <geometry> 

            <cylinder length="0.1" radius="0.2" /> 

         </geometry> 

         <material name=""> 

            <color rgba="0.79216 0.81961 0.93333 1" /> 

         </material> 

      </visual> 

      <collision> 

         <origin xyz="0 0 0" rpy="1.570795 0 0" /> 
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         <geometry> 

            <cylinder length="0.1" radius="0.2" /> 

         </geometry> 

      </collision> 

   </link> 

   <joint name="rear2" type="continuous"> 

      <origin xyz="0.25 0.375 0.2" rpy="0 0 0" /> 

      <parent link="base_link" /> 

      <child link="Empty_Link4" /> 

      <axis xyz="0 1 0" /> 

   </joint> 

   <link name="Empty_lidar"> 

      <inertial> 

         <origin xyz="0 0 0" rpy="0 0 0" /> 

         <mass value="0.1" /> 

         <inertia ixx="1e-6" ixy="0" ixz="0" iyy="1e-6" iyz="0" izz="1e-6" /> 

      </inertial> 

      <visual> 

         <origin xyz="0 0 0" rpy=" 0 0 0" /> 

         <geometry> 

            <mesh filename="package://robot_1/meshes/hokuyo.dae" /> 

         </geometry> 

      </visual> 

      <collision> 

         <origin xyz="0 0 0" rpy="0 0 0" /> 

         <geometry> 

            <box size="0.1 0.1 0.1" /> 

         </geometry> 

      </collision> 

   </link> 

   <joint name="lidar1" type="fixed"> 

      <origin xyz="0.375 0 0.5" rpy="0 0 0" /> 

      <parent link="base_link" /> 

      <child link="Empty_lidar" /> 

      <axis xyz="0 1 0" /> 

   </joint> 

  <link name='camera'> 

    <inertial> 

      <mass value="0.1"/> 

      <origin xyz="0.0 0 0" rpy=" 0 0 0"/> 

      <inertia 

          ixx="1e-6" ixy="0" ixz="0" 

          iyy="1e-6" iyz="0" 

          izz="1e-6"/> 

    </inertial> 
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    <collision name='camera_collision'> 

      <origin xyz="0 0 0" rpy=" 0 0 0"/> 

      <geometry> 

        <box size=".05 .05 .05"/> 

      </geometry> 

    </collision> 

    <visual name='camera_visual'> 

      <origin xyz="0 0 0" rpy=" 0 0 0"/> 

      <geometry> 

        <box size=".05 .05 .05"/> 

      </geometry> 

    </visual> 

  </link> 

 

  <joint type="fixed" name="camera_joint"> 

    <origin xyz="0.4 0 0.2" rpy="0 0 0"/> 

    <child link="camera"/> 

    <parent link="base_link"/> 

    <axis xyz="0 1 0" rpy="0 0 0"/> 

    <limit effort="10000" velocity="1000"/> 

    <joint_properties damping="1.0" friction="1.0"/> 

  </joint> 

  <gazebo reference="base_link"> 

    <material>Gazebo/white</material> 

  </gazebo> 

  <gazebo reference="Empty_Link1"> 

    <material>Gazebo/white</material> 

  </gazebo> 

  <gazebo reference="Empty_Link2"> 

    <material>Gazebo/white</material> 

  </gazebo> 

  <gazebo reference="Empty_Link3"> 

    <material>Gazebo/white</material> 

  </gazebo> 

  <gazebo reference="Empty_Link4"> 

    <material>Gazebo/white</material> 

  </gazebo> 

   <gazebo reference="base_footprint"> 

      <material>Gazebo/Blue</material> 

   </gazebo> 

   <!-- hokuyo --> 

   <gazebo reference="Empty_lidar"> 

      <sensor type="ray" name="head_hokuyo_sensor"> 

         <pose>0 0 0 0 0 0</pose> 

         <visualize>false</visualize> 
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         <update_rate>40</update_rate> 

         <ray> 

            <scan> 

               <horizontal> 

                  <samples>720</samples> 

                  <resolution>1</resolution> 

                  <min_angle>-1.570796</min_angle> 

                  <max_angle>1.570796</max_angle> 

               </horizontal> 

            </scan> 

            <range> 

               <min>0.10</min> 

               <max>30.0</max> 

               <resolution>0.01</resolution> 

            </range> 

            <noise> 

               <type>gaussian</type> 

               <!-- Noise parameters based on published spec for Hokuyo laser 

               achieving "+-30mm" accuracy at range < 10m.  A mean of 0.0m and 

               stddev of 0.01m will put 99.7% of samples within 0.03m of the true 

               reading. --> 

               <mean>0.0</mean> 

               <stddev>0.01</stddev> 

            </noise> 

         </ray> 

         <plugin name="gazebo_ros_head_hokuyo_controller" 

filename="libgazebo_ros_laser.so"> 

            <topicName>/scan</topicName> 

            <frameName>Empty_lidar</frameName> 

         </plugin> 

      </sensor> 

   </gazebo> 

   <gazebo> 

      <plugin name="skid_steer_drive_controller" 

filename="libgazebo_ros_skid_steer_drive.so"> 

         <updateRate>10.0</updateRate> 

         <robotNamespace>/</robotNamespace> 

         <leftFrontJoint>front1</leftFrontJoint> 

         <rightFrontJoint>front2</rightFrontJoint> 

         <leftRearJoint>rear1</leftRearJoint> 

         <rightRearJoint>rear2</rightRearJoint> 

         <wheelSeparation>0.46</wheelSeparation> 

         <wheelDiameter>0.1</wheelDiameter> 

         <robotBaseFrame>base_footprint</robotBaseFrame> 

         <torque>10</torque> 
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         <MaxForce>5</MaxForce> 

         <commandTopic>cmd_vel</commandTopic> 

         <odometryTopic>odom</odometryTopic> 

         <odometryFrame>odom</odometryFrame> 

         <broadcastTF>true</broadcastTF> 

         <covariance_x>0.001</covariance_x> 

         <!-- 0.0001 --> 

         <covariance_y>0.001</covariance_y> 

         <!-- 0.0001 --> 

         <covariance_yaw>0.01</covariance_yaw> 

         <!-- 0.01 --> 

      </plugin> 

   </gazebo> 

   <gazebo> 

      <plugin name="gazebo_ros_control" filename="libgazebo_ros_control.so"> 

         <robotNamespace>/roobot1</robotNamespace> 

      </plugin> 

   </gazebo> 

   <gazebo reference="camera"> 

    <material>Gazebo/Green</material> 

    <sensor type="camera" name="camera1"> 

      <update_rate>30.0</update_rate> 

      <camera name="head"> 

        <horizontal_fov>1.3962634</horizontal_fov> 

        <image> 

          <width>800</width> 

          <height>800</height> 

          <format>R8G8B8</format> 

        </image> 

        <clip> 

          <near>0.02</near> 

          <far>300</far> 

        </clip> 

      </camera> 

      <plugin name="camera_controller" filename="libgazebo_ros_camera.so"> 

        <alwaysOn>true</alwaysOn> 

        <updateRate>0.0</updateRate> 

        <cameraName>roobot1/camera1</cameraName> 

        <imageTopicName>image_raw</imageTopicName> 

        <cameraInfoTopicName>camera_info</cameraInfoTopicName> 

        <frameName>camera</frameName> 

        <hackBaseline>0.07</hackBaseline> 

        <distortionK1>0.0</distortionK1> 

        <distortionK2>0.0</distortionK2> 

        <distortionK3>0.0</distortionK3> 
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        <distortionT1>0.0</distortionT1> 

        <distortionT2>0.0</distortionT2> 

      </plugin> 

    </sensor> 

  </gazebo> 

</robot> 
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                                                           APPENDIX 2 

LAUNCH FILES OF THE NODES OF ROBOT SYSTEM 

 

1. Hector slam launch file 

 

<launch> 

  <arg name="tf_map_scanmatch_transform_frame_name" 

default="scanmatcher_frame"/> 

  <arg name="base_frame" default="base_link"/> 

  <arg name="odom_frame" default="odom"/> 

  <arg name="pub_map_odom_transform" default="true"/> 

  <arg name="scan_subscriber_queue_size" default="5"/> 

  <arg name="scan_topic" default="scan"/> 

  <arg name="map_size" default="2048"/> 

 

  <node pkg="hector_mapping" type="hector_mapping" name="hector_mapping" 

output="screen"> 

 

    <!-- Frame names --> 

    <param name="map_frame" value="map" /> 

    <param name="base_frame" value="base_link" /> 

    <param name="odom_frame" value="odom" /> 

 

    <!-- Tf use --> 

    <param name="use_tf_scan_transformation" value="true"/> 

    <param name="use_tf_pose_start_estimate" value="false"/> 

    <param name="pub_map_odom_transform" value="$(arg 

pub_map_odom_transform)"/> 

 

    <!-- Map size / start point --> 

    <param name="map_resolution" value="0.050"/> 

    <param name="map_size" value="$(arg map_size)"/> 

    <param name="map_start_x" value="0.5"/> 

    <param name="map_start_y" value="0.5" /> 

    <param name="map_multi_res_levels" value="2" /> 

 

    <!-- Map update parameters --> 

    <param name="update_factor_free" value="0.4"/> 

    <param name="update_factor_occupied" value="0.9" />     

    <param name="map_update_distance_thresh" value="0.4"/> 

    <param name="map_update_angle_thresh" value="0.06" /> 

    <param name="laser_z_min_value" value = "-1.0" /> 

    <param name="laser_z_max_value" value = "1.0" /> 
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    <!-- Advertising config --> 

    <param name="advertise_map_service" value="true"/> 

 

    <param name="scan_subscriber_queue_size" value="$(arg 

scan_subscriber_queue_size)"/> 

    <param name="scan_topic" value="$(arg scan_topic)"/> 

 

    <!-- Debug parameters --> 

    <!-- 

      <param name="output_timing" value="false"/> 

      <param name="pub_drawings" value="true"/> 

      <param name="pub_debug_output" value="true"/> 

    --> 

    <param name="tf_map_scanmatch_transform_frame_name" value="$(arg 

tf_map_scanmatch_transform_frame_name)" /> 

  </node> 

 

  <!--<node pkg="tf" type="static_transform_publisher" name="map_nav_broadcaster" 

args="0 0 0 0 0 0 map nav 100"/>--> 

</launch> 

 

2. Move_base launch file 

 

<launch> 

  <arg name="map_file" default="$(find my_mapping_launcher)/config/my_map.yaml"/> 

  <node name="map_server" pkg="map_server" type="map_server" args="$(arg 

map_file)" /> 

   

   <param name="use_sim_time" value="true"/> 

   <arg name="use_map_topic" default="false" /> 

   <arg name="scan" default="scan" /> 

   <arg name="initial_pose_x" default="0.0" /> 

   <arg name="initial_pose_y" default="0.0" /> 

   <arg name="initial_pose_a" default="0.0" /> 

   <arg name="odom_frame_id" default="odom" /> 

   <arg name="base_frame_id" default="base_footprint" /> 

   <arg name="global_frame_id" default="map" /> 

   <node pkg="amcl" type="amcl" name="amcl"> 

      <param name="use_map_topic" value="$(arg use_map_topic)" /> 

      <!-- Publish scans from best pose at a max of 10 Hz --> 

      <param name="odom_model_type" value="diff" /> 

      <param name="odom_alpha5" value="0.1" /> 

      <param name="gui_publish_rate" value="10.0" /> 

      <param name="laser_max_beams" value="60" /> 

      <param name="laser_max_range" value="12.0" /> 
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      <param name="min_particles" value="500" /> 

      <param name="max_particles" value="2000" /> 

      <param name="kld_err" value="0.05" /> 

      <param name="kld_z" value="0.99" /> 

      <param name="odom_alpha1" value="0.5" /> 

      <param name="odom_alpha2" value="0.4" /> 

      <!-- translation std dev, m --> 

      <param name="odom_alpha3" value="0.1" /> 

      <param name="odom_alpha4" value="0.4" /> 

      <param name="laser_z_hit" value="0.5" /> 

      <param name="laser_z_short" value="0.05" /> 

      <param name="laser_z_max" value="0.05" /> 

      <param name="laser_z_rand" value="0.5" /> 

      <param name="laser_sigma_hit" value="0.2" /> 

      <param name="laser_lambda_short" value="0.1" /> 

      <param name="laser_model_type" value="likelihood_field" /> 

      <!-- <param name="laser_model_type" value="beam"/> --> 

      <param name="laser_likelihood_max_dist" value="2.0" /> 

      <param name="update_min_d" value="0.25" /> 

      <param name="update_min_a" value="0.2" /> 

      <param name="odom_frame_id" value="$(arg odom_frame_id)" /> 

      <param name="base_frame_id" value="$(arg base_frame_id)" /> 

      <param name="global_frame_id" value="$(arg global_frame_id)" /> 

      <param name="resample_interval" value="1" /> 

      <!-- Increase tolerance because the computer can get quite busy --> 

      <param name="transform_tolerance" value="0.3" /> 

      <param name="recovery_alpha_slow" value="0.0" /> 

      <param name="recovery_alpha_fast" value="0.0" /> 

      <param name="initial_pose_x" value="$(arg initial_pose_x)" /> 

      <param name="initial_pose_y" value="$(arg initial_pose_y)" /> 

      <param name="initial_pose_a" value="$(arg initial_pose_a)" /> 

      <remap from="scan" to="$(arg scan)" /> 

   </node> 

 

 

  <!-- Move base --> 

  <node pkg="tf" type="static_transform_publisher" name="odom_map_broadcaster" 

args="0 0 0 0 0 0 /map /odom 100" /> 

  <node pkg="move_base" type="move_base" respawn="false" name="move_base" 

output="screen"> 

    <param name="use_sim_time" value="true"/> 

    <rosparam file="$(find roboot1_move_base)/config/costmap_common_params.yaml" 

command="load" ns="global_costmap" /> 

    <rosparam file="$(find roboot1_move_base)/config/costmap_common_params.yaml" 

command="load" ns="global_costmap" /> 
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    <rosparam file="$(find roboot1_move_base)/config/costmap_common_params.yaml" 

command="load" ns="local_costmap" /> 

    <rosparam file="$(find roboot1_move_base)/config/local_costmap_params.yaml" 

command="load" /> 

    <rosparam file="$(find roboot1_move_base)/config/global_costmap_params.yaml" 

command="load" /> 

  <!--  <rosparam file="$(find 

roboot1_move_base)/config/base_local_planner_params.yaml" command="load" /> --> 

   <!-- <rosparam file="$(find roboot1_move_base)/config/move_base_params.yaml" 

command="load" /> --> 

   <rosparam file="$(find roboot1_move_base)/config/ Teb_planner_params.yaml " 

command="load" /> 

    <remap from="cmd_vel" to="cmd_vel"/> 

    <remap from="odom" to="odom"/> 

    <remap from="scan" to="scan"/> 

 

   <!-- <param name="base_local_planner" 

value="base_local_planner/TrajectoryPlannerROS"/> --> 

     <param name="base_local_planner" value="teb_local_planner/TebLocalPlannerROS" 

/> 

   <!-- <param name="base_local_planner" 

value="eband_local_planner/EBandPlannerROS"/>  --> 

    <param name="controller_frequency" value="30.0" /> 

    <param name="planner_frequency" value="10.0" /> 

     

 

  </node> 

 

2. Darknet ROS launch file 

 

<launch> 

  <!-- Console launch prefix --> 

  <arg name="launch_prefix" default=""/> 

 

  <!-- Config and weights folder. --> 

  <arg name="yolo_weights_path"          default="$(find 

darknet_ros)/yolo_network_config/weights"/> 

  <arg name="yolo_config_path"           default="$(find 

darknet_ros)/yolo_network_config/cfg"/> 

 

  <!-- ROS and network parameter files --> 

  <arg name="ros_param_file"             default="$(find darknet_ros)/config/ros.yaml"/> 

  <arg name="network_param_file"         default="$(find darknet_ros)/config/yolov2-

tiny.yaml"/> 
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  <!-- Load parameters --> 

  <rosparam command="load" ns="darknet_ros" file="$(arg ros_param_file)"/> 

  <rosparam command="load" ns="darknet_ros" file="$(arg network_param_file)"/> 

 

  <!-- Start darknet and ros wrapper --> 

  <node pkg="darknet_ros" type="darknet_ros" name="darknet_ros" output="screen" 

launch-prefix="$(arg launch_prefix)"> 

    <param name="weights_path"          value="$(arg yolo_weights_path)" /> 

    <param name="config_path"           value="$(arg yolo_config_path)" /> 

  </node> 

 

 <!--<node name="republish" type="republish" pkg="image_transport" output="screen" 

 args="compressed 

in:=roobot1/camera1/image_raw raw out:=/camera/image_raw" /> --> 

</launch> 

 

3. YOLO v3 launch file 

 

<launch> 

   

  <!-- Use YOLOv3 --> 

  <arg name="network_param_file"         default="$(find 

darknet_ros)/config/yolov3.yaml"/> 

 

 

  <!-- Include main launch file --> 

  <include file="$(find darknet_ros)/launch/darknet_ros.launch"> 

    <arg name="network_param_file"    value="$(arg network_param_file)"/> 

  </include> 

 

</launch> 
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                                                            APPENDIX 3 

YAML FILES OF THE ROBOT SYSTEM 

 

1. Base_local_planner_params.yaml 

 

TrajectoryPlannerROS: 

  max_vel_x: -0.2 

  min_vel_x: -0.1 

  max_vel_theta: -0.02 

  min_in_place_vel_theta: 0.10 

  escape_vel: 0.02 

 

  acc_lim_theta: 0.5 

  acc_lim_x: 0.5 

  acc_lim_y: 0.5 

  goal_distance_bias: 0.8 

  path_distance_bias: 1.0 

  gdist_scale: 0.8 

  pdist_scale: 5.0 

  occdist_scale: 0.01 

  heading_lookahead: 0.325 

   

  sim_time: 4 

 

  meter_scoring: true 

  holonomic_robot: false 

 

TebLocalPlannerROS: 

 

  odom_topic: odom 

  map_frame: /odom 

 

  teb_autosize: True 

  dt_ref: 0.3 

  dt_hysteresis: 0.03 

  global_plan_overwrite_orientation: True 

  max_global_plan_lookahead_dist: 1.0 

  feasibility_check_no_poses: 1 

 

  max_vel_x: -0.8 

  max_vel_x_backwards: -0.2 

  max_vel_y: 0.0 

  max_vel_theta: 0.4 
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 wheelbase: 0.0 

  acc_lim_x: 0.5 

  acc_lim_y: 0.00 

  acc_lim_theta: 0.5 

 

  footprint_model: # types: "point", "circular", "two_circles", "line", "polygon" 

  type: "polygon" 

  radius: 0.85 # 

  vertices: [ [-0.6, -0.85], [-0.6, 0.85], [0.6, 0.85], [0.6, -0.85] ] 

 

  # GoalTolerance 

  xy_goal_tolerance: 0.2 

  yaw_goal_tolerance: 0.1 

  free_goal_vel: False 

 

  # Obstacles 

  min_obstacle_dist: 0.5 

  include_costmap_obstacles: True 

  costmap_obstacles_behind_robot_dist: 1.0 

  obstacle_poses_affected: 10 

  costmap_converter_spin_thread: True 

  costmap_converter_rate: 10 

  inflation_dist: 0.8 

  dynamic_obstacle_inflation_dist: 0.6 

  obstacle_association_force_inclusion_factor: 2.0 

  obstacle_association_cutoff_factor: 4.0 

   

  costmap_converter_plugin: "costmap_converter::CostmapToPolygonsDBSMCCH" 

  costmap_converter_spin_thread: True 

  costmap_converter_rate: 5 

  costmap_converter/CostmapToPolygonsDBSMCCH: 

  cluster_max_distance: 0.4 

  cluster_min_pts: 2 

  cluster_max_pts: 30 

  convex_hull_min_pt_separation: 0.1 

 

2. Costmap_common_params.yaml 

 

map_type: costmap 

global_frame: map 

robot_base_frame: base_footprint 

obstacle_range: 10 

raytrace_range: 12 

 

footprint: [ [-0.6, -0.85], [-0.6, 0.85], [0.6, 0.85], [0.6, -0.85] ] 
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transform_tolerance: 0.3 

 

robot_radius: 0.85 

inflation_radius: 0.85 

 

observation_sources: laser_scan_sensor 

laser_scan_sensor: {sensor_frame: Empty_lidar, data_type: LaserScan, topic: scan, 

marking: true, clearing: true} 

 

3. Teb_planner_params.yaml 

 

TebLocalPlannerROS: 

 

  #odom_topic: odom 

  #map_frame: /odom 

 

  teb_autosize: True 

  dt_ref: 0.3 

  dt_hysteresis: 0.03 

  global_plan_overwrite_orientation: True 

  max_global_plan_lookahead_dist: 5.0 

  feasibility_check_no_poses: 1 

 

  wheelbase: 0.0 

  acc_lim_x: 0.25 

  acc_lim_y: 0.25 

  acc_lim_theta: 1.5 

  footprint_model: # types: "point", "circular", "two_circles", "line", "polygon" 

    type: "circular" 

    radius: 0.9 # 

  #  vertices: [ [-0.6, -0.85], [-0.6, 0.85], [0.6, 0.85], [0.6, -0.85] ] 

 

  # GoalTolerance 

  xy_goal_tolerance: 0.2 

  yaw_goal_tolerance: 0.1 

  free_goal_vel: False 

 

  # Obstacles 

  min_obstacle_dist: 0.4 

  include_costmap_obstacles: True 

  costmap_obstacles_behind_robot_dist: 1.0 

  obstacle_poses_affected: 10 

  costmap_converter_spin_thread: True 

  costmap_converter_rate: 5 
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  min_obstacle_dist: 0.35 

  inflation_dist: 0.45 

  dynamic_obstacle_inflation_dist: 0.6 

  obstacle_association_force_inclusion_factor: 2.0 

  obstacle_association_cutoff_factor: 4.0 

 

4. Global_costmap_params.yaml 

 

global_costmap: 

   global_frame: map 

   robot_base_frame: base_footprint 

   update_frequency: 10 

   publish_frequency: 10 

   resolution: 0.06 

   static_map: true 

   rolling_window: false 

 

5. Local_costmap_params.yaml 

 

local_costmap: 

   global_frame: odom 

   robot_base_frame: base_footprint 

   update_frequency: 5 

   publish_frequency: 2 

   width: 10 

   height: 10 

   origin_x: 0.0 

   origin_y: 0.0 

   resolution: 0.02 

   static_map: false 

   rolling_window: true 

 

4. Move_base_params.yaml 

 

shutdown_costmaps: false 

 

controller_frequency: 30.0 

controller_patience: 3.0 

 

planner_frequency: 30.0 

planner_patience: 5.0 

 

oscillation_timeout: 10.0 

oscillation_distance: 0.2 

base_local_planner: " teb_local_planner/TebLocalPlannerROS " 


