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ABSTRACT

In this thesis, a parabolic type involutory partial differential equation is investigated.
Applying Fourier series, Laplace and Fourier transform methods, we obtain the solution of
several parabolic type involutory differential problems. Furthermore, the first and second
order of accuracy difference schemes for the numerical solution of the initial boundary
value problem for one dimensional parabolic type involutory partial differential equation

are presented. Numerical results are given.

Keywords: Parabolic involutory differential equations; Fourier series method; Laplace

transform solution; Fourier transform solution; Difference scheme



OZET

Bu tezde parabolik tipi involiisyon kismi diferansiyel denklemi incelenmistir. Fourier
serileri, Laplace ve Fourier doniisiim yontemlerini uygulayarak, birka¢ parabolik tipi
involiisyon kismi diferansiyel problemlerin ¢oziimii elde edilmistir. Ayrica, bir boyutlu
parabolik tipi involiisyon kismi diferansiyel baslangic sinir deger problemin sayisal
¢oziimi i¢in birinci ve ikinci dereceden dogruluklu farki semalart sunulmustur. Sayisal

sonuclar verilmistir.

Anahtar Kelimeler: Parabolik invitator diferansiyel denklemler; Fourier serisi yontemi;

Laplace doniisiimii ¢oziimii; Fourier donilistimii ¢6zlimii; Fark semast
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CHAPTER 1
INTRODUCTION

Time delay is a universal phenomenon existing in almost every practical engineering
systems (Bhalekar and Patade 2016; Kuralay, 2017; Vlasov and Rautian 2016; Sriram and
Gopinathan 2004; Srividhya and Gopinathan 2006). The value of unknown function on one
point is not enough for finding of solutions of delay equations. In an experiment measuring
the population growth of a species of water fleas, Nesbit (1997), used a DDE model in his

study. In simplified form his population equation was
N'(t) = aN(t — d) + bN(2).

He came into difficulty with this model because he did not have a reasonable history function
to carry out the solution of this equation. To overcome this roadblock he proposed to solve a
’time reversal” problem in which he sought the solution to functional differential equations.
He used a "time reversal” equation to get the juvenile population prior to the beginning time
t = 0. The time reversal problem is a special case of a type of equation called an involutory

differential equation. These are defined as equations of the form

y' (@) = [t y(0); y(u(D)), y(to) = yo. (1.1)

Here u(t) is involutory, that is u(u(t)) = t, and ¢, is a fixed point of u. For the "time reversal”
problem, we have the simplest involutory differential equation, one in which the deviating

argument is u(¢) = —t. This function is involutory since
u(u(t)) = u(—t) = —(-t) = t.

We consider the simplest involutory differential equation, one in which the deviating
argument is u(t) = d — t. This function is involutory since u(u(t)) = u(d — t), which is
d —(d —1t) =t Note d —t is not the ’delay” function as t — d.

The existence and uniqueness of a bounded solution was established for a nonlinear delay
one dimensional parabolic and hyperbolic differential equations with constant coefficients on

[0, 00) X (=00, 00) in, S. M. Shah, H. Poorkarimi, J. Wiener, (1986). Note that the approach of
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these papers is not applicable for studying a wider class of multidimensional delay nonlinear
differential equations and with local and nonlocal boundary conditions.

The discussions of time delay issues are significant due to the presence of delay normally
makes systems less effective and less stable. Especially, for hyperbolic systems, only a small
time delay may cause the energy of the controlled systems increasing exponentially. The
stabilization problem of one dimensional parabolic equation subject to boundary control is
concerned in the paper Gordeziani and Avalishvili, 2005. The control input is suffered from
time delay. A partial state predictor is designed for the system and undelayed system is
deduced. Based on the undelayed system, a feedback control strategy is designed to stabilize
the original system. The exact observability of the dual one of the undelayed system is
checked. Then it is shown that the system can be stabilized exponentially under the feedback
control.

Ashyralyev and Sobolevskii (2001) consider the initial-value problem for linear delay partial
differential equations of the parabolic type and give a sufficient condition for the stability
of the solution of this initial-value problem. They obtain the stability estimates in Holder
norms for the solutions of the problem. Applications, theorems on stability of several types
of initial and boundary value problems for linear delay multidimensional parabolic equations
are established.

Time delay linear and nonlinear parabolic equations with local and nonlocal boundary
conditions have been investigated by many researchers (D. Agirseven, 2012; H. Poorkarimi,
J. Wiener, 1999; A. Ashyralyev, A. M. Sarsenbi, 2017; X. Lu, Combined, 1998; H. Bhrawy,
M.A. Abdelkawy, 2015; H. Egger, H. W. Eng and M. V. Klibanov, 2004; V. L. Kamynin,
2003; Orazov and M. A. Sadybekov, 2012; D. Guidetti, 2012; M. Ashyralyyeva and M.
Ashyraliyev, 2016). Ashyralyev and Agirseven (2014) investigated several types of initial
and boundary value problems for linear delay parabolic equations. They give theorems on
stability and convergence of difference schemes for the numerical solution of initial and
boundary value problems for linear parabolic equations with time delay. As noted above for
the solution of delay differential equations we need given values of unknown function from

history. Twana Abbas (2019) in his master thesis investigated a Schrodinger type ivolutory



partial differential equation. He obtained the solutions of several Schrodinger type ivolutory
ordinary and partial differential problems. The first order of accuracy difference scheme for
the numerical solution of the initial boundary value problem for involutory one dimensional
a Schrodinger type partial differential equations was presented. Moreover, this difference
scheme was tested on an example and some numerical results were presented.

In the present study, an involutory parabolic partial differential equation is investigated.
Applying tools of the classical integral transform approach we obtain the solution of the six
parabolic type involutory differential problems. Furthermore, the first and second order of
accuracy difference schemes for the numerical solution of the initial boundary value
problem for involutory parabolic type partial differential equations are presented. Then,
these difference schemes are tested on an example and some numerical results are
presented.

The thesis is organized as follows. Chapter 1 is introduction. In chapter 2, a involutory
ordinary differential equations and involutory parabolic type partial differential equations are
investigated. Using tools the classical methods we obtain the solution of the several parabolic
type involutory differential problems. In chapter 3, numerical analysis and discussions are

presented. Finally, chapter 4 is conclusion.



CHAPTER 2
METHODS OF SOLUTION OF PARABOLIC TYPE INVOLUTORY PARTIAL
DIFFERENTIAL EQUATIONS

2.1 Involutory ordinary differential equations

In this section we consider the parabolic type involutory ordinary differential equations

Yo(t) = f(&; y(1); y(u(1)), ¥(t0) = Yo.

Here u(t) is involutory, that is u(u(t)) = ¢, and f, is a fixed point of u.
Example 2.1. Consider the initial value problem for the first order ordinary differential

equation

Y(£) = 5y(t — 1) + 4y(t) on I = (—oco,c0), y(72—r) - 1.

Solution. We will obtain the initial value problem for the second order differential equation

which is equivalent to the given problem. Substituting & — ¢ for ¢ into this equation, we get
Y (=1 = 57(t) + 4y(m — ).

Differentiating the given equation, we get
V(1) = =5y (r =) + 4y ().

Using these equations, we can eliminate the terms of y(r — ) and y (7 — 1) . Really, using

formula
1 ’
y(r—1) = g{y () — 4y},
we get
, Iy 4 16 9 4
Yi(r—1) =5y + 2 ) 5 (@) = 5y(t) +3Y (?).
Therefore

, 9 4
y (@ =-5 {gy(t) + gy’(t)} +4y'(1)



or
Y (1) = =9y().
Using initial condition y(3) = 1 and given equation, we get
Vg n Vg
(2N = - 4 ) g
¥(3)=55(3) +4y(3) =9
or
T
"(=)=09.
Y3)

Therefore, we have the following initial value problem for the second order differential

equation
Y (0+950) =0, 1€ Ly3) = Ly(5)=9.
The auxiliary equation is
m>+9=0.
There are two roots m; = 3i and m, = —3i. Therefore, the general solution is
y(t) = ¢y cos 3t + ¢, sin 3¢.
Differentiating this equation, we get
Y (t) = =3¢ sin 3t + 3¢, cos 3t.
Using initial conditions y(3) = land y'(5) = 9, we get
n n . 3m
y(z) = 0057 + ¢y smj =—c =1,
y’(g) = -3¢, sin%” + 3¢5 cos 37” = 3¢, =09,

From that it follows ¢; = =3, ¢, = —1. Therefore, the exact solution of this problem is

y(t) = =3 cos 3t — sin 3t.



Example 2.2. Consider the initial value problem

V() = by(m — 1) + ay(t) + f(1) on I = (—co, c0), y(g) -1 2.1)

Solution. In the same manner, we will obtain equivalent to (2.1) initial value problem for

the second order differential equation. Differentiating equation (2.1), we get

Y (8) = =by' (m— 1) + ay'(t) + f ().

Substituting 7 — ¢ for ¢ into equation (2.1), we get

Y@ —1) = by +ay(m— 1) + f(m —1).

Using these equations, we can eliminate the y(r — ) and y (7 — ) terms. Actually, using

formula

1
yr—n=+ '@ —ay(® - f(0},

we get

, _ a, a’ a
Y —1) =by(r) + 57 (1 - E)’U) - Ef(t) + f(r—1)

2 2

a a, a
== YO+ Y (O = P f(O) + flw—1).

Therefore
Y (6) = (@ = D)y@) + af@) = bf(x = 1) + (1)
or
Y'(0) = (@ = bP)y() = af(t) - bf(x — 1) + f(0).
Putting initial condition y(%) = 1 into equation (2.1), we get
Y3 =a+b+f3).
We denote

F(@t) =af@®) - bf(r—1)+ f'(@).



Then, we have the following initial value problem for the second order ordinary differential

equation
y%n+w%wﬁﬂ0:meeIJ§>:Ly§>:a+b+ﬂg> 2.2)

Now, we obtain the solution of problem (2.2). There are three cases:b*> — a* > 0,
b -a*>=0,b*-d*><0.

In the first case b*> — a*> = m? > 0. Substituting m? for b*> — a* into equation (2.2), we get

Yy () + m*y(t) = F(p).

We will obtain Laplace transform solution of problem (2.2). Here and in future

u(s) = L{u(r)}.

Applying the Laplace transform, we get

s*y(s) = sy(0) = y'(0) + m’y(s) = F(s)

or

(s> +m)y(s) = sy(0) +y'(0) + F(s).
Then,

1 1

y(s) = 2y(O) T "(0) ol (s).
Applying formulas

L{cosmt} = m,

) _oom
L{sinmt} = ol
LIS * ) () = {fﬂ@ﬂhﬁﬂ% LFOILigD) 23)

7



we get,

y(s) = L{cos mt}y(0) + %L{sin mt} + %L{fsin (m(t — p)) F(p)dp}.

0
Taking the inverse Laplace transform, we get

t

y(t) = cos (mt ) y(0) + % sin (mt ) y'(0) + % fsin (m(t — p)) F(p)dp.
0

Now, we obtain y(0) and y’(0). Taking the derivative, we get

t

y'(t) = —msin (mt ) y(0) + cos (mt) y'(0) + f cos (m(t — p)) F(p)dp.
0

Putting F(p) = af(p) - bf(x - p) + f (p), we get

y(t) = cos (mt) y(0) + % sin (mt) y'(0)

1 t
- f sinm(t - p)[af(p) - bf(x - p) + £'(P)] dp, 2.4)
0

y'(t) = —msin (mt) y(0) + cos (mt) y'(0)

[ cos ntt = p) laf () - bfx = p) + £ ) dp. 2.5)
0
Substituting 7 for 7 into equations (2.4) and (2.5) we get

1
y(g) - Cosmg ¥(0) + — sin mg Y(0)

. 3
= f sinm( = p)[af(p) = bf(x~ p) + (D) dp,
0

y’(g) — —msin mg (0) + cosmg Y(0)



n

2

+ [[osm = prlas) - bt - p) + £ ) dp.

0
Applying initial conditions y(5) = 1,y(5) = a + b + f(5), we obtain

cos () y(0) + L sin (%) y(0) = 1 - a1,

—msin ("Z) y(0) + cos (%) y'(0) = a + b+ f(%) - .

Here
1 ( ) m ,
a1——lfan@dg—pﬁkﬁﬁﬁ—bﬂﬂ—p%hf@ﬂdn
0
3 i ,
az:jlm@mi—pﬂwﬂm—bﬂn—m+fQMdn
0
Since
(%) = coszmZ +sin2m7—T =1#0
m 2 2 ’

we have that
4(0) = @ B 1 - %sin(%)
A la+b+fE)-ar cos(Z)
mm 1 . (mn T
= coS (7) [1—-a;]— —sin (7) [a +b+ f(i) - az] ,
, A cos (22 1-a
YO == = K”
—msm(%) a+b+ f(3) -

- cos(—")[a +b +f(g) —az] +msin(%)[1 —l.

n

Putting y(0) and y’(0) into equation (2.4), we get
1 2
@) 1 -— fsin(m(z —p))
m 2
0

y(t) = cos (mt) {cos( >



mit

1
x[af(p) = bfr = p)+ £ (P dpl} - sin(T)
T % T
x {a +b+ f(5) - f cos (5 = p))laf(p) ~ bfx = p) + £ (p) dp}}
0
1
+E sin (mt) {cos (?) {a +b+ f(g)

- f cos (m(g - p)) laf(p) —bf(m—p)+ f'(p)] dp}

0

+msin (%) {1 - % f sin (m<g - p)) [af(p) = bf = p)+ f ()] dp}}

0
1 t
+— fsin (m(t = p)) [af(p) = bf(x—p)+ f'(p)ldp
0

= cos (mt) cos (%T) + sin (mt) sin (?)
+% [— cos (mt) sin (%) + sin (mt) cos (%)] [a +b+ f(g)]

s
2

1
- cos (mt) cos (?)fsin (m(g - p)) laf(p) = bf(r—p)+ f'(p)ldp

0

(SIE]

1
+E cos (mt) sin (%T) fcos (m(g - p)) laf(p) —bf(r—p)+ f'(p)ldp

0

[SIEY

1
- sin (mt) cos (%T) fcos (m(g - p)) laf(p) —bf(r—p)+ f'(p)ldp
0
1 1 ;
~ sin(mpsin(5") - f sin(m(S ~ p))laf () - bfx = p)+ £ ()] dp
0

1 t
= f sin (m(t — p) [af(p) - bf(x - p) + F'(p)] dp
0

10



. 7
~cos(m) - [ sin(nG - p)[-arp) - b= )+ £ ] dp
m 2
0
| % m ,
~ L sin(mn) f cos (5 = p)) laf () - bfa = p) + £ (p)]dp
m 2
0

1 t
+— fsinm(t -p)laf(p) - bf(x—p)+ f'(p)ldp
0
3 b8 1 . b4 b bs
= cosm(t — 5) + = smm(z - 1) [{a +b+ f(i)]

| 3
——cosm(t — E) fsinm(E - p)laf(p) - bf(x—p)+ f(p)ldp
m 2 2
0
1 . T i T ,
+—sin m(t = 5) fcos m(z = p) laf(p) —bf(m—p)+ f'(p)]dp
0

1 t
+— fsin m(t — p) laf(p) = bf(x - p)+ f'(p)]dp
0
= cosm(t — E)+ lsinm(j—r —1) [a+b+f(7—r)]
2 m 2 2

. 3
—%fsinm(t—p) laf(p) —bf(r—p)+ f'(p)ldp
0

- f sinm(t = p) [af (p) = bf(x = p) + (P dp.
Therefore, ihe exact solution of this problem is

3W(t) = cos mt — g) + % sinm(’z—T _ [a +b+ f(g)]

—n% fgsin m(t - p)[af(p) = bf(m - p) + f'(p)]dp.

In the second case b*> — a*> = 0. Then,

11



y (1) = F(1).

Applying the Laplace transform, we get

s*y(s) = sy(0) — y'(0) = F(s).

Then

y(s) = y(O)L{1} + Yy (O)L{r} + L{t} L{F(n)}

Taking the inverse Laplace transform, we get

y(@) = y(0) + 1y’ (0) + fo (t - p)F(p)dp. (2.6)

From that it follows

t

y' (1) =y'(0) + f F (p)dp.

0

Applying initial conditions y(§) = 1,y'(5) =a+b+ f(5), F(p) = af(p) —bf(m - p) + f(p),

we obtain

=3 =0+ 2y + [ (5= p)[arw) - bre—py+ £ )] dp.

(=]
(STE]

arb+ 13 =y =y O+ [ [afw)-brx=py+ £ )] dp.
0
Therefore,

(=]
(STE]

YO =a+b+fG) - | [afp)=bfer—p)+f(p)]dp.

Lo
2

y<0>—1—g{a+b+f<g>— f |af(p) - bfGr = p)+ f (p)] dp

0

(=]
(SIE]

(g _ p) laf(p) - bf = p)+ f ()] dp.

12



Putting y(0) and y’(0) into equation (2.6), we get

o =1-3 {a +h+ f(3) - f |af(p) - bfGx = p)+ f )] dp}
0
/ T ’
- [ &= plaser-bs=p) + £ )] ap
0
+t {a +b+ f5) - f |af(p) = bfr—p)+ £ (p)] dp}
0
: f (= p)[af) - bfa=p) + F p)dp =1+ (1= 5)
{a wh+ fG) - f af(p) - b= p)+ £ ()] d }
- (5 - p)[asp) - bfex=p)+ £ ()] dp
+ f (t= p)[afp) - bfGe—p) + £ ()] dp
0

=1+ (t—g)[a+b+f(g)]

- [¢=plare) b=+ £ )]
0

+ [t=pase) b= p s £ )] dp
0

-1 +(t—g)[a+b+f(g)]

(t = p)|af(p) - bfx—p)+ £ (p)| dp

|
-
(STE]

In the third case b* — a®> = m* < 0. Substituting —m? for b*> — a* into equation (2.2), we get

13



y (1) — m*y(t) = F(t).

Applying Laplace transform, we get

s*y(s) = sy(0) — ¥’ (0) — m*y(s) = F(s)

or

¥(8) = 5=3(0) + 5——y/(0) + 5 F(s).

Applying (2.3) and formulas

S

L{coshmt} = ot
) m
L{sinh mt} = gL
we get

y(s) = L{cosh mt}y(0) + %L{sinh mt} + %L{fsinh (m(t — p)) F(p)dp} .

0

Taking the inverse Laplace transform, we get

t

y(t) = cosh (mt ) y(0) + % sinh (mt ) y'(0) + % f sinh (m(t — p)) F(p)dp.
0

Now, we obtain y(0) and y’(0). Taking the derivative, we get

t

y'(¢) = msinh (mt ) y(0) + cosh (mt) y'(0) + f cosh (m(t — p)) F(p)dp.
0

Putting F(p) = af(p) = bf(m = p) + f'(p), we get

y(t) = cosh (mt) y(0) + % sinh (mt) y'(0)

1 t
= f sinh (m(t — p)) [af(p) - bf(x - p) + £ (p)] dp.
0
y'(¢) = msinh (mt) y(0) + cosh (mt) y'(0)

14
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+ fcosh (m(t — p)) [af(p) —bf(x - p)+ f'(p)]dp.
0

Substituting 7 for 7 into equations (2.7) and (2?), we get

n V4 I . T,
y(z) = coshmz y(0) + - smhmz v'(0)
|
b [ siohn G = ) Laf ) - bfn - p)+ 5 ) dp
0
V&) =m sinhmg Y(0) + coshmg Y(0)

+ | cosh m<g —p)laf(p) = bfx—p)+ f(p)dp

(=]
NI

Applying initial conditions y(5) = 1,y(5) = a + b + f(5), we obtain

cosh (%) y(0) + L sinh () y/(0) = 1 — e,
msinh (%) y(0) + cosh (%) y'(0) = {a+ b + f()} - .

Here

s

1 2
=+ f sinh (5 = ) laf(p) = bx = p) + £/ (D] dp,

0

s

2
azzf

0

Since

cosh (m(g - p)) laf(p) = bf(r—p)+ f'(p)]dp.

= cosh®>mZ — sinh? m3 =10,

_ | cosh()  xsinh (1)
= m sinh (%) cosh (%
we have that
o= 1T 1 Sinh (22)
{a+b+f(5}-a, cosh(

15



:cosh(n;ﬂ)[l —a] - lsmh(n; )[{a+b+f( )} ],

cosh (%) 1 -a

0) ==L =
Yo msmh(’””) {a+b+f(’—zr)}—

A

:cosh(%r)[{mmf(g)}— ] msmh( )[1—a1].

Putting y(0) and y’(0) into equation (2.7), we get

n

y(t) = cosh (mt) {cosh( > ){1 - n% fsinh (m(7_2r - p)

0

-

X|af(p)—bf(r—p)+ f'(p)ldp}} - lsmh( 5

0

X {a +b+ f(g) - fcosh (m(7—2r - p)) laf(p) = bf(m—p) + f(p)] dp}}
1
+— sinh(nn) {cosh( . ){a +b+ 1)

_ f cosh (m(g - p)) [af(p) = bfx—p)+ (D] dp}

0

—msinh (%T) {1 - % jsin (m(g - p)) l[af(p) = bf(x—p)+ f(p)] dp}}

0
1 t
+Zfsin(m(t—p)) laf(p) —bf(r—p)+ f'(p)ldp
0

= cosh (mr) cosh (%) — sinh (1) sinh (%)

1 1
—— [cosh (mt) sinh (@) + — sinh(mr) cosh (@)
m 2 m 2

{a Ny f(g)}

1
—— cosh (mt) cosh (@)fsinh (m(z - p)) laf(p) —bf(r—p)+ f'(p)ldp
m 2 2

0
1 2
_ 2 cosh(mi) sin(2Ey f cosh (m(’—r - p)) [af(p) - bf(m—p)+ f(p)]dp
m 2 2
0
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n

1 . (

- sinh(mr) cosh(m?ﬂ) fcosh (m(g - p)) laf(p) —bf(r—p)+ f'(p)ldp
0

. 5
—— sinh(mt) sinh(m)fsin (m(E - p)) laf(p) —bf(x—p)+ f'(p)]dp

m 2 2

0

1 t

= f sin (m(t — p) [af(p) - bf G — p) + £ ()] dp
0

= cosh (t—f)—l inh (E_t)[ +b+f(7—r)]
= coshm 5) = —sinhm(z a >

1 T ( . T v
——coshm(t - >) fsmhm(z -p)laf(p)—bf(x—p)+ f(p)ldp

0

1 . bd ( b4 ,

-— sinh m(t — E) fcoshm(z -p)laf(p)—bf(x—p)+ f'(p)ldp
0

1 t

+n_1 fsinhm(t —p)laf(p)=bf(x—p)+ f'(p)ldp
0
_ coshm(t— %) = L sinhm(E - 1) [a + b+ f(f)]
2 m 2 2

X g
- fsinh m(t — p) laf(p) = bf(x - p)+ f'(p)]dp
0

1 t
+n_1 fsinhm(t = p)laf(p)—bf(x—p)+ f(p)]dp.
0

Therefore, the exact solution of this problem is

(1) = coshmft — g) - nll sinh m(7—2T — 1 [a +b+ f(g)]

. 5
-— fsinh m(t — p) [af(p) — bf(x — p) + f'(p)]dp.
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2.2 Parabolic Type Involutory Partial Differential Equations

It is known that initial value problems for parabolic type involutory partial differential
equations can be solved analytically by Fourier series, Laplace transform and Fourier
transform methods. Now, let us illustrate these three different analytical methods by
examples.

First, we consider Fourier series method for solution of problems for parabolic type
involutory partial differential equations.

Example 3.1. Consider the initial-boundary-value problem for parabolic type involutory

partial differential equation

Ou(t,x)

5 — Aty (1, X) — buy, (=1, x)

= (=1+a)e’sin(x) + be' sin (x),

x€(0,m),—c0 <t < 00, (2.8)

u(0, x) = sin(x), x € [0, ],

u(t,0) = u(t,n7) = 0,1 € (—o0, 00).

Solution. In order to solve this problem, we consider the Sturm-Liouville problem
—u'(x)—Aux)=0, O<x<m, u0)=u(r)=0

generated by the space operator of problem (2.8). It is easy to see that the solution of this

Sturm-Liouville problem is
A =K, w(x) = sinkx, k=1,2,....

Then, we will obtain the Fourier series solution of problem by formula

u(t, x) = Z A(f) sin kx,
k=1
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where A, (f) are unknown functions. Applying this equation and initial condition, we get

(o)

D A ysinkx +a ) KRAD sinkx + b ) K*Al(—1) sinkx
k=1 k=1

=1
=(=1+a)e’'sin(x)+ be'sin(x),x € (0,7),—0c0 <t < o0,

Z A, (0) sinkx = sin(x), x € [0, 7].
k=1

Equating coefficients sin kx, k = 1,2, ... to zero, we get the initial value problems

AL(1) + aA (1) + bA|(—) = (=1 + a) e + be', —c0 < 1 < o0,
(2.9)
A1(0) =1
A1) + akPA (1) + DRRAL(—1) = 0, —c0 < t < 0o,k # 1,
(2.10)
Aw0) =0

for involutory ordinary differential equations. We will obtain A;(z). The equivalent to (2.9)
initial value problem for the second order differential equation can be obtain. Taking the

derivative of (2.9), we get

AY(t) + aA (1) — bA(—1) = (1 —a)e™ + be'. (2.11)
Putting —¢ instead of 7 in (2.9), we get

Al(=1) + aA (1) + bA|(t) = (-1 + a) €' — be™". (2.12)
Multiplying equation (2.12) by b, we get

bA! (1) + abA (—1) + B*A|(t) = b(~-1 + a) ' + b*e™".
Adding last equation with (2.11), we get

AY(f) + aA|(t) + abA,(~1) + b*A, (1) = (1 — a + bYe™" + abe'. (2.13)
Multiplying equation (2.9) by (—a), we get

—aA|(t) — a*A(t) — abA(~t) = (a — az) e —abe'.
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Then adding these equations, we get

Al + (P - a?) Ay = (b - a® +1) e (2.14)
Using equation (2.9) and A; (0) = 1, we get

A1) +aA (0)+bA (0)=—-1+a+b,

AL (0) = —1.

So, we have the following problem
Al + (b - @) A = (1+b* —a?) e, —co<t<oo, A(0)=1,A](0)=-1.

There are three cases : b>—a*> >0, b*—a*>=0, b*—a*<0.

In the first case b> — a* = m?> > 0. Substituting m? forb?> — a? into equation (2.14), we get
AVt + mPAy(1) = (m? + 1) e, (2.15)
We will obtain Laplace transform solution of problem (2.15). We have that

s?A1(s) — sA1(0) — A/ (0) + mPA (s) = (m2 + 1) e

or
(5% + m)A(s) = sA1(0) + AL(0) + (m* + 1) ™.
Then,
S 1 ’ 1 2 —s
As) = 5= A0 + 5 A0 + —— (m*+1)e.
Applying formulas
S
L{COS mt} = m, (216)
1 . 1 m
—L{sinmt} = ——=— 2.17)
m ms-+m
L{(f =)0} = L{ f f(p)g(t - p)dp} = L{f(O}L{g(D)}, (2.18)
0
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we get

’ t
Ai(s) = L{cos mt}A;(0) + n%L{sin mt} + mn;l- 1L{fsin m(t — p)es}.
0

Taking the inverse Laplace transorm, we get

1) ¢

Ai(t) = cos (mt )A(0) + l sin (mt ) A{(0) +
m m
0

Applying initial conditions A; (0) = 1,A] (0) = —1, we obtain
(m2 + 1) t
fsin (m(t — p)) e Pdp.

0

Aq(t) = cos(mt ) — % sin (mt ) +

We denote

I= fsin(m(t — p)e Pdp.

We have that
I =—sinm(t — p)e? — mfcos m(t — p)e dp

= —sinm(t — p)e” + mcosm(t — p)e " —m* fsin m(t — p)e Pdp.
Therefore,
I(m2 + 1) = —sinm(t — p)e’’ + mcosm(t — p)e™?

or

1 . _ _
I=— {—sinm(t — p)e™ + mcosm(t — p)e™"}.
m*+1

From that it follows

t

fsin m(t — p)e Pdp =

0

_t .
me~" + sinmt — m cos mt}.
T |
m?* + 1

Then,
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(m2+ 1)

Ai(t) = cos(mt) — % sin (mt ) + -

1 . PR B _
cos(mt)— —sin(mt)+e '+ —sinmt —cosmt =e .
m m

Therefore

A(t) =e™.

It is easy to see that A|(f) = e~ for b*> —a*> = 0,b* —a*> < 0.

{me™ + sinmt — m cos mt}}

Now we will obtain Ai(¢) for k # 1. The equivalent to (2.10) initial value problem for the

second order differential equation can be obtain. Taking the derivative of (2.10), we get

A} (1) + ak* Al (1) — bK*A (1) = 0.
Putting —# instead of 7 in (2.10), we get

Al(=t) + ak*Ai(=t) + bI*Ai(t) = 0.
Multiplying equation (2.22) by bk>, we get

bk*A}(~1) + abk*Ay(—1) + b*k*A(f) = 0.

Adding last equation with (2.21), we get

A (f) + ak*Al(1) + abk*Ay(~t) + b*k* A1) = 0.

Multiplying equation (2.10) by (—ak?), we get
—al*Al(t) — a*k*A(t) — abk*Ay(=1) = 0.

Then from these equations, we get
AL + (b - @) K Aw(o) = 0.

Using equation (2.10) and A, (0) = 0, we get
A (0) + ak*A; (0) + bk*A; (=0) = 0
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or
A0) =

We have the following problem
AL + (b = @) KA = 0, A (0) =0,A;(0) =0

From that it follows A.(f) = 0,k # 1. In the same manner Ay(f) = 0,k # 1 for b> —a®> = 0

and b*-a’><0.
Therefore, the exact solution of problem (2.8) is
u(t,x) = A(f)sinx = e 'sin x.

Note that using similar procedure one can obtain the solution of the following initial

boundary value problem

Bu(l X) —a Z 8% u(tz,x) b Z 3 M(d LX) _ f(t X)

ar ox;

x=(x1,..., X,) €0, —c0 <1< o0,

(2.23)
u(é,x) = p(x),x € ﬁ,d >0,

u(t,x) =0,x € S,t € (—oo0, )

for the multidimensional involutory parabolic type equation. Assume that a, > ay > 0 and
[, x) (t € (—00,00),x € ﬁ) , o(x) (t € (—00,00),x € ﬁ) are given smooth functions. Here
and in future € is the unit open cube in the n—dimensional Euclidean space

R"(0 < x; < 1,1 < k < n) with the boundary
$,Q=QUS.

However Fourier series method described in solving (2.23) can be used only in the case when

(2.23) has constant coefficients.
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Example 3.2. Consider the initial-boundary-value problem for parabolic type involutory

partial differential equation

Ou(t,x)

2 = Al (8, X) — buy, (=1, x) = (=1 + a) e™' cos (x) + be' cos (x),

x€(0,m),—c0 <t < 00,

(2.24)

u(0, x) = cos(x), x € [0, ],

u(t,0) =u(t,m) =0,t € (—o0, 00).
Solution. In order to solve this problem, we consider the Sturm-Liouville problem

—u"(x)—Aux)=0, O<x<m, u0)=u(r)=0

generated by the space operator of problem. It is easy to see that the solution of this Sturm-

Liouville problem is
A = K, w(x) = coskx, k=0,1,2,....

Then, we will obtain the Fourier series solution of problem by formula

u(t, x) = Z A7) cos kx,

k=0

Here A,(7) are unknown functions. Applying this equation and initial condition, we get

D Al coskx +a ) kA1) cos kx
k=0 k=0

+b Z A (1) coskx = (=1 + a) e cos (x) + be' cos (x),
k=0

Z A (0)cos kx = cos(x), x € [0, x].

k=0

Equating coefficients cos kx,k = 0, 1,2, ... to zero, we get

(2.25)

A1) +aA (1) + DA((=1) = (=1 +a) e + be',
A1(0) =1,
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(2.26)

A1) + ak®A (1) + bK*A(—1) = 0,k # 1,
A(0)=0

for involutory ordinary differential equations. We will obtain A;(#). The equivalent to (2.25)
initial value problem for the second order differential equation can be obtain. Taking the

derivative of (2.25), we get

AT (@) + aA’(t) — bA(=1) = (1 —a)e™" + be'. (2.27)
Putting —7 instead of 7 in (2.25), we get

Al(=1) + aA (1) + bA|(t) = (-1 + a) €' — be™". (2.28)
Multiplying equation (2.28) by b, we get

bA|(~t) + abA (1) + B*A|(t) = b (=1 + a) ' + b*e™".
Adding last equation with (2.27), we get

AY(f) + aA|(t) + abA,(~t) + b*A, (1) = (1 — a + bYe™" + abe'.
Multiplying equation (2.25) by (—a), we get

—aA((t) - a’A\(t) — abAy(-1) = (a — a*) e™" — abe'.
Then adding these equations, we get

Al + (P - a) A = (b - a® +1) e (2.29)
Using equation (2.25), A; (0) = 1, we get

Al +a+b=(-1+a)+b
or

AL (0) =-1.
So, we have the following problem

Al + (P - a®) A = (1+ b =d’) e, A(0) = 1,4;(0) = -1.
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There are three cases : b>—a*> >0, b*—a*>=0, b*—a’><0.

In the first case b*> — a*> = m* > 0. Substituting m? for b*> — a* into equation (2.29), we get
AV (1) + mPAy(1) = (m? + 1) e, (2.30)
We will obtain Laplace transform solution of problem (2.30). We have that
SA1(5) = 5A1(0) — A{(0) + mP*Ay(s) = (m® + 1) e
or
(5% + m)A(s) = sA;(0) + AL(0) + (m* + 1) ™.
Then,
As) = ——A(0) + %AQ(O) + % (m*+1)e.
s2+m s s2+m

+ m?

Applying formulas (2.16), (2.17) and (2.18), we get

1 . m* + 1 l ) _
Aq(s) = L{cos mt}A,(0) + n—iL{smmt} + - L sinm(t — p)e Pdp .
0

Taking the invers Laplace transorm, we get
(m2 + 1) t
fsin m(t — p)e Pdp. (2.31)

0

A(t) = cos(mt )A;(0) + l sin (mt ) A} (0) +
m m

Applying initial conditions A (0) = 1, A} (0) = —1, we obtain A;(z) = cos (mt )—% sin (mt )+
t

@ fsin (m(t — p)) e Pdp.
0

Applying (2.20), we get

(m2 + 1)

m

1 1
A(t) = cos(mt) — —sin(mt ) + { {me™ + sinmt — mcos mt}} ,
m

m?+1
1 . —t 1 . -t
cos(mt)— —sin(mt)+e '+ —sinmt—cosmt =e .
m m
Therefore

A(r) = e’
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It is easy to see that A|(f) = e~ for b> —a> = 0,b* — a*> < 0.

Now we will obtain Ai(¢) for k # 1. The equivalent to (2.26) initial value problem for the

second order differential equation can be obtain. Taking the derivative of (2.26), we get
A (D) + ak*Al(t) + bI*Aj(~t) = 0. (2.32)
Putting —¢ instead of 7 in (2.26), we get
Al(—1) + ak*Ay(—t) + DI A(f) = 0. (2.33)
Multiplying equation equation (2.33) by bk?, we get
bl* Al (—1) + abk*Ay(=1) + b*k*A(t) = 0.
Adding last equation with (2.32), we get
AL (1) + ak*Ai(0) + abk* Ay(—t) + b*k* A1) = 0.
Multiplying equation (2.26) by (—ak?), we get
—ak*Aj(t) — a’k*Ay(t) — abk*Ay(—1) = 0.
Then from these equations, we get
AL @)+ (b - @) K An(0) = 0.
Substituting t=0 in equation (2.26), we get
A} (0) + ak*A; (0) + bk*A; (0) = 0
or
A, (0)=0.
We have the following problem
A0+ (b - @)K A = 0, A (0) = 0,4;(0) = 0.
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From that it follows Ax(f) = 0,k # 1. In the same manner A;(¢) = 0,k # 1 for b> —a*> = 0

and b*>-a*<0.
Therefore, the exact solution of problem(2.24) is
u(t,x) = A|(f)cos x = e’ cos x.

Note that using similar procedure one can obtain the solution of the following initial

boundary value problem

61,{([ X) —a Z tz b Z (9 u(d 1,xX) _ f(t x)

x=(Xq,...,X,) € ﬁ, —00 <t < 00,

(2.34)
u(4,x) = ¢(x),x € Q,d > 0,

Ou(t,x)
ap

=0,xe8§,t € (—00,00)

for the multidimensional involutory parabolic type equation. Assume that a, > ay > 0 and
f(tx) (t € (—00,00),x € 5) , p(x) (t € (—00,0), x € ﬁ) are given smooth functions. Here
and in future p is the normal vector to S. However Fourier series method described in

solving (2.34) can be used only in the case when (2.34) has constant coefficients.

Example 3.3. Consider the initial-boundary-value problem for parabolic type involutory

partial differential equation

Ou(t,x)

5 — Al (t, X) — b (=, x) = e7'(=1 + 4a) cos 2x + 4e' cos 2x,

x € (0,m),—0c0 <t < 0o,
(2.35)

u(0, x) = cos2x, x € [0, 7]

u(t,0) = u(t,7), u(t,0) = u(t,0) = u,(t,m),t € (—o0, 00).
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Solution. In order to solve this problem, we consider the Sturm-Liouville problem
—u’'(x)— Aux) =0, 0<x<m, u0) =u(n), u0) = u.(n)

generated by the space operator of problem (2.35). It is easy to see that the solution of this

Sturm-Liouville problem is
A = 4K, up(x) = cos 2kx, k=0,1,2, ..., up(x) = sin2kx, k= 1,2, ...

Then, we will obtain the Fourier series solution of problem (2.35) by formula
u(t,x) = )" Au(t)cos 2kx + ) By(r)sin 2kx, (2.36)
k=0 k=1

where Ay (¢), k =0,1,2,...., and Bi(¢), k = 1,2, .... are unknown functions.

Putting formula (2.36) into the main problem and using given initial condition, we obtain

D AL(r) cos 2kx + > Bi(0)sin 2kx +a ) 4KPA(t) cos 2kx
k=0 k=1 k=0

+a Z AKBy(£) sin 2kx + b kZ; 4KP2Ay(~1) cos 2kx + b Z 4K By (~1) sin 2kx

k=1 k=1
= e (=1 + 4a) cos 2x + 4e' cos 2x, x € (0, n), tel, xe(0, ),
Z AL(0) cos 2kx + Z B,(0) sin 2kx = cos 2x, x € [0, 7].
k=0 k=1

Equating the coefficients of coskx, k =0, 1,2, ..., and sinkx, k = 1,2, ... to zero, we get

B (1) + 4ak*By(t) + 4bk* Bi(—1) = 0, 1 €(—00, ),

(2.37)
B(0)=0, k=1,2,...,
A1) + 4aA (1) + 4bA,(—1) = e7(=1 + da) + de', t €(—00, ),

(2.38)
A(0) =1,
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AL(D) — 4akPA (1) — 4bICA(—1) = 0,k # 1, 1 €(—00, 00),

A(0)=0, k=1,2,...

(2.39)

for involutory ordinary differential equations. We will obtain A;(#). The equivalent to (2.38)

initial value problem for the second order differential equation can be obtain. Taking the

derivative of (2.38), we get

A7 (1) + 4aA’(t) — 4bA (1) = (1 — 4a)e™ + 4bé'.
Putting —¢ instead of 7 (2.38), we get

Aj(=1) + 4aA (-1) + 4bA,(t) = (-1 + da) ¢' — 4be™".
Multiplying equation (2.41) by 4b, we get

4bA’ (1) + 16abA (1) + 16b°A(f) = 4b (=1 + 4a) ' + 16b%e™".
Adding last equation with (2.40), we get

A7 (f) + 4aA’ (t) + 16abA (=) + 16b*A,(f) = (1 — 4a + 16b*)e™" + 16abe’.
Multiplying equation (2.38) by (—4a), we get

—4aA’(t) - 16a°A,(t) — 16abA,(~1) = (4a — 16a°) ¢™' - 16abe’.
Then adding these equations, we get

A1)+ (166 — 16a°) Ay (1) = (1 + 165> — 16a°) ™.
Using equation (2.38) and A; (0) = 1, we get

A1) +aA (0)+bA (0)=-1+a+b,

AL (0) = —1.
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So, we have the following problem
A(t)+(16b° — 16a°) Ay (1) = (1 + 166* — 16a°) ¢, —c0 <t < oo, A;(0) = 1,A7(0) = —1.

There are three cases : b*>—a*>>0, b*—-a*>=0, b*-a*><0.
In the first case b* —a? = m? > 0. Substituting 16m? for 166> — 164 into equation (2.42), we

get
AY(t) + 16m* Ay (1) = (1 + 16m*) ™", (2.43)
We will obtain Laplace transform solution of problem (2.43). We have that
SA1(5) = sAL(0) — A{(0) + 16m°Ay(s) = (1 + 16m°) ™
or
(s + (4m)>)A(s) = sA;(0) + A} (0) + ((4m)2 + 1) e,
Then,

A(s) = A(0) + A(0) + ((4m)2 +1)e™.

52 + (4m)? 52 + (4m)? §2 + (4m)?

Applying formulas (2.16), (2.17) and (2.18), we get

2 1
Ai(s) = L{cos4m)}A,(0) + iL{sin 4mt} + ML {f sin 4m(t — p))es}.
4m 4m

0

Taking the inverse Laplace transorm, we get

(4m)* + 1

fsin (4m(t — p)) e Pdp. (2.44)
4m

0

1
Ai(t) = cos (4mt) A1(0)+ T sin (4mt) A7(0)+
m
Applying initial conditions A; (0) = 1,A] (0) = —1, we obtain

2
Aq(t) = cos (4mt) — ﬁ sin (4mt) + (4’72—”:1 fsin (4m(t — p)) e Pdp.
0

We denote
I= fsin(4m(l - p)etdp.
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We have that

I = —sindm(t — p)e? — 4mfcos 4m(t — p)e Pdp

= —sindm(t — p)e™? + 4mcos 4m(t — p)e P — 16m> fsin 4m(t — p)e Pdp.
Therefore,
I(16m” + 1) = = sin4m(t — p)e™ + 4mcos 4m(t — p)e™”

or

1

I = T {=sindm(t — p)e™” + dmcos dm(t — p)e "} . (2.45)

Therefore,

t

fsin 4m(t — p)e Pdp =
0

1
m {4me_t + sin4mt — 4m cos 4mt} .
m

(16m2 + 1)
4dm

1 1
A (f) = cos (4mt )— o sin (4mt )+ { {4me™ + sindmt — 4m cos 4mt}}
m

16m? + 1
1 . —t 1 . -t
:cos(4mt)—4—sm(4mt)+e +4—sm4mt—cos4mt:e .
m m

It is easy to see that A,(f) = e for 16b> — 16a*> = 0,16b* — 164> < 0.

Now we will obtain Ai(7) for k # 1. The equivalent to (2.39) initial value problem for the

second order differential equation can be obtain. Taking the derivative of (2.39), we get

AY(f) + dak* Al (1) + 4bK* Al (1) = 0. (2.46a)
Putting —7 instead of 7 (2.39), we get

Aj(—1) + 4ak*Ar(—t) + 4bK* A1) = 0. (2.47)
Multiplying equation (2.40) by 4bk?, we get

4bk* A} (~t) + 16abk* Ay (=) + 16b7k* Ax(t) = 0.
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Adding this equation with (2.46a), we get
AY(f) + dak* Al (1) + 16abk*Ay(—t) + 16b*k* A(1) = 0.
Multiplying equation (2.39) by (—4ak?), we get
—dal®Aj(t) — 16a*k*A(t) — 16abk*Ai(~1) = 0.
Then from these equations, we get
A1) + (1667 — 16a°) K A1) = 0.
Substituting t=0 in equation (2.39), we get
A} (0) + 4ak®A; (0) + 4bk*A; (0) = 0
or
AL (0)=0.
We have the following problem

ALt + (166 — 16a°) K*A(1) = 0, A (0) = 0,A;(0) = 0.

From that it follows Ax(¢) = 0, k # 1. In the same manner A.(t) = 0,k # 1 for 16b*>—16a*> = 0

and 160 — 1642 < 0.

Therefore, the exact solution of problem (2.35) is

u(t,x) = A(f) cos 2x = e~" cos 2x.

Note that using similar procedure one can obtain the solution of the following initial

boundary value problem

n n
ou(t,x) 82u(t,x) Ou(d-t,x) _
- —a 2,1 a5 = b 2‘1 ar—ya— = f(, x),

X =(X1,..., X,) € Q, —c0 <1< oo,
(4, x) = p(x),x € Q,d >0,

Au(t,x)

Ju(t,
M(t, x)'S] = u(ta -x)lsz > ap = u(*X)

S5 9p

at € (_007 OO)
S2
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for the multidimensional involutory parabolic type equation. Assume that a, > ay > 0 and
f(t, x) (t € (—00,00),x € ﬁ) , p(x) (t € (—00,0), x € ﬁ) are given smooth functions. Here
S =851U8,,2=5,NnS,. However Fourier series method described in solving (2.48) can
be used only in the case when (2.48) has constant coeflicients.

Second, we consider Laplace transform solution of problems for parabolic type involutory

partial differential equations.

Example 3.4. Consider the initial-boundary-value problem

Ou(t,x)

5 = Ay (1, X) — buy (=1, x) = (=1 —a)e™'e™ = be'e”™,

x €(0,00),t € (—00, 0),
(2.49)

u(0,x) = e, x € [0, 00),

u(t,0) = e, u(t,0) = —e™',t € (—o0, 0)

for one dimensional involutory parabolic equation.

Solution. We will obtain Laplace transform solution of problem (2.49). We denote that
u(t,s) = L{u(, x)}.

Taking the Laplace transform with respect to x, we get
u,(t,s)—a {szu (t,s) — se”’ — (—e")} -b {szu (—t,5) — se”" — (—e_t)}

1

1 1
=—1+a)e™ — be' ,u(0,s) = .
1+s 1+s 1+

From that it follows the initial value problem

1

u, (t,8) — as’u(t,s) — bs'u(-t,s) =a(s)e” = b(s)e',u(0,s) = o (2.50)
s
for involutory ordinary differential equations. Here
as*+1 bs?
=— ,b(s) = 2.51
a(s) I+ () I+ @-51)
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We will obtain u (¢, s) . The equivalent to (2.50) initial value problem for the second order

differential equation can be obtain. Taking the derivative of (2.50), we get

Uy (t,8) — as’u; (t,5) + bs’u, (—t,s) = —a(s)e”" —b(s)e". (2.52)
Putting —¢ instead of ¢ equation (2.50), we get

u (—t,8) —as’u(—t, s) — bsu(t,s) = a(s)e' —b(s)e™". (2.53)
Multiplying equation (2.53) by (bsz) , we get

—bsu, (—t, s) + abs*u (—t, s) + b*s*u (1, s) = bs*a(s)e' — bs*b(s)e™".
Adding this equation (2.52), we get

uy, (¢, 8) — as*u, (¢, s) + abs*u (—t, s) + b*s*u (¢, s)

= (b’ (s) —a(s))e™ = (b(s) + bs’a(s))e'.

Multiplying equation (2.50) by (asz), we get

as’iu, (t, s) — a*s*u(t, s) — abs*u (—t, s) = as*a(s)e™ — as’b (s) €.
Adding two last equations, we get

uy (2, 8) + b*s*u(t, s) — a*s*u(t, s)

= (asza (s) —a(s) + bs’b (s)) e’ — (aszb (s) = b(s) — bs’a (s)) e.

Using notations (2.51), we get

241 241 bs?
u, (t,s) + (b2s4 — a2s4) u(t,s) = _aZ + & L P
1+s 1+s 1+s

1+s 1+ 1+

2 2 2 1
—(as2 bs bs L 28t )e’

or

(aZ—bz)s4—1
1+s

u, (t,s) + (b2s4 - a2s4) u(t,s) = -
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Using u (0, s) = l%s and equation (2.50), we get

1
u[(O,S):_l-'_S.

Then, we have the following initial value problem for the second order ordinary differential
equation

(uz—bz)s4+1

u, (t,s) + (b2 - az) stu(t,s) = T

e',tel,
(2.54)

u(,s)= -, u,(0,s) = —-1

T+s’ Ts®
Now, we obtain the solution of problem (2.54). There are three cases: -a*>=0,
b’—a*>0,b*-a*><0.
Substituting m? for (b2 - az) s* into equation (2.54), we get

2

5 _m +1 _, 3 1 _ 1
u, (t,s) +m-u(t,s) = 1+Se ,tEI,u(O,s)—1+s,u,(O,s)— T

We have that
u(t,s) = u.(t,s) + upy(t, s),
where u. (t, s) is the general solution of homogenous equation
u, (t,8) + m*u(t,s) = 0.
and u,, (¢, s) is the particular solution of nonhomogenous equation. The auxillary equation is
P’ +m’=0.
In the first case, we have that p;, = 0,0 and
u,(t,s) = c; + cst.
In the second case p;, = +im. Then

u. (t,s) = ¢y cosmt + ¢, sinmt.

36



In the third case p;, = +m. Then
u,(t,s) = cre™ + cre™™.

Now, we will obtain the particular solution u,, (¢, s) by formula
u,(t,s) =wi(s)e™.

Putting it into nonhomogenous equation, we get

241
w(s)e ' +mPw(s)e” = n e’
1+
or
241
2 _
{1+m }w(s)— T+s
Then
1
wis)= 1+s
and
t,s) = -,
up(t ) 1+ se
In the first case, we have
u(t,s)=cy +ct+ e’
1+s

Applying initial conditions, we get

1 1
u@,s)=c;+—— = ,
1+s 1+
1 1
u,(O,s)—cz—1+S——1+s.

From that it follows ¢; = ¢, = 0 and
u(t,s) =w(s)e™.

In the second case, we have

u(t,s) = ¢y cosmt+ cp sinmt + "
Ky
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Applying initial conditions, we get

1 1
u@O,s)=c;+ —— = ,
1+s 1+
1 1

ut(o’s):02_1+s:_1+s'

From that it follows ¢; = ¢, = 0 and
u(t,s) =w(s)e™.

In the third case, we have

1
u(t,s) =ce™ +cre™ + e’
I+
Applying initial conditions, we get
1

1
u@,s)=c;+cr + = ,
1+s 1+s

1

1

u (0,8) =m(c; —c2) — =

1+ _1+s'

From that it follows ¢; = ¢, = 0 and
u(t,s) =w(s)e™.
Therefore,
u(t,s) =w(s)e’' =e'L{e™}
and
ut,x) =L {e'L{e™}} = e e
Therefore,
u(t,x) =e'e ™.

is the exact solution of problem (2.49).
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Example 3.5. Consider the initial-boundary-value problem

‘7"ét;x) — Ay (t,x) = bu,, (=t,x) = —(a+b)e™,

x € (0,00),—00 <t < 00,
(2.55)

u(0,x) = e, x €0, 00),

u(t,0) = 1, u(t,c0) = 0,1 € (—o0, 00)

for one dimensional involutory parabolic equation.

Solution. We will obtain Laplace transform solution of problem (2.55). Taking the Laplace

transform, we get

u, (t,5) —a [szu t,s)—s—p (t)] - b [szu (-t,)—s—p (—t)]

:_M —oo<t<00,ﬁ(l):ux(t’0)7

1+s?

u(0, s) =

1+s

or

u, (t,5) — as’u(t,s) — bs*u(—t, s)

=—(a+b)s—af(t)—bB(~t) — “L, —0o < t < oo, (2.56)

1+s?

u(0, s) =

1+s°

From (2.56) it follows that

2
u,(o,s):%—(mb)s—(ﬁb)ﬁm)—‘f:i

or
u, (0,5) = —(a+b)[1 +B(0)].
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Taking the derivative of (2.56), we get
uy (t,8) — as’u, (t, s) + bs*u, (—t, s) = —aB’ (t) + b’ (-1). (2.57)

Putting —¢ instead of ¢ equation (2.56), we get

a

u, (=t,5) — as*u(—t,s) — bs*u(t,s) = —(a+b)s —aB (—1) — bB(t) — . : p

(2.58)
Multiplying equation (2.58) by (—bsz), we get
—bsu, (—t, s) + abs*u (—t, s) + b*s*u (1, s)

— (a+D)bs® + abs’B(=1) + 2B (1) + (%) bs”.

Adding last equation with (2.59), we get

uy, (t, 8) — as*u, (t, s) + abs*u (—t, s) + b*s*u (¢, s)

2 2
= —aB () + b (1) + (@+ D) bs’ +abs’B (=) + DB (1) + (%) .

Multiplying equation (2.56) by (asz), we get

as’u, (t,s) — a*s*u(t, s) — abs*u (-t, s)

a’s* + bas?

= —(a+b)as’ —a’s’B (1) — as’bB (-1) -
I+

Adding these equations , we get

y (t,5) + (b = @) u(t, s) = —aff (t) + bB' (—1) + (a + b) bs’ + *s’B (1)

abs* + b*s* — a*s* — abs?

1+s

—(a+b)as’® - azszﬁ (1) +

or

2 2 — AR s 2 2\ 3
uy (1, 5)+ (b = @) u(t,s) = —af () +bp (-1)+(b* — a*) s>+ —

52 +(b2 - az) s2,3 (0.
There are three cases: b*> —a? = 0, b* —a* > 0, b* — a® < 0. In the first case b*> — a® = 0. Then

Uy (t,5) = —afy’ (1) + B’ (=1).

u(0, s) = ﬁ,u,(O,s) =—(a+b)[1+B(0)].
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Applying formula

t
p(t) = po+1tpy+ f (t—s)p”(s)ds,
0

we get

l t
ut,s) = T +1 {—@+b1 +,3(0)]}+f(t—p){—aﬁ' (p) + 0B (-p)}dp
0

1+s

= LH {—(a+b)[1+ﬁ(0)]}+[(t—p)aﬁ(t)+bﬁ(—t)]6—f(aﬁ(p)+bﬁ(—p))dp
0

t

+1{=(a+Db)[1+BO)]} +1 (a+b)ﬁ(0)+faﬁ(p)+b,3(—p)dp

0

1
T l+s

1 t
_ I——t(a+b)—f(aﬁ(p)+b,3(—l7))dp-
+s
0

Therefore,

1 t
t,5) = —— = ~t(a+b) - f (aB(p) + bB(~p)) dp.
0

Putting

t
AW =-1a+5)~ [ @w)+bpe-prap
0
we get
(1) = —— = A®)
A '
Taking invers the Laplase transform, we get
u(t,x) — e = L™ {A®1)}. (2.59)
Applying x — oo, we get

0=L"{A®)}.
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Then,

HAW) =
or
A =0
Putting A(?) into (2.59), we get
u(t,x)—e*=0.

ut,x) =e".

In the same manner we can obtain
—X

u(t,x)=-e

for b* —a?> > 0and b* — a®> < 0. Therefore,

u(t,x) =e

is the exact solution of problem (2.55).

Note that using similar procedure one can obtain the solution of the following problem

6u(z‘ X) —a Z arﬁ u(t X) -b Z 5 M(d LX) _ f(f X)

x=(x1,...,X,) € ﬁ+, —00 < t < 00,
(2.60)
d —+
u(—,X) = SD(X)ax € Q )

u(t,x) = a(t,x), u,(t,x)=6,tx),1<r<mntel,xeS”*

for the multidimensional parabolic type involutory partial differential equations. Assume

thata, > ay > Oand f (1,0 (re Lx e Q ), o) (xe Q). a(t,) .5 (LX) (e L.x€S™)
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are given smooth functions. Here and in future Q* is the open cube in the n-dimensional

Euclidean space R"(0 < x; < 00,1 < k < n) with the boundary S* and Q = 0 ust.

However Laplace transform method described in solving (2.60) can be used only in the case

when (2.60) has constant or polynomial coefficients.

Third, we consider Fourier transform solution of the problem for parabolic type involutory

partial differential equations.

Example 3.6. Consider the initial-boundary-value problem

Ou(t,x)

o AUy x (t’ X) - buxx (_t’ )C)

= (—1 —a(4x* - 2)) e7le™™ — b(4x? — 2)ele ™,
2.61)

X € (—00,00),—00 < t < 00,

u(0, x) = e‘xz, X € (—00, 00)

for one dimensional involutory parabolic equation.

Solution. We will obtain Fourier transform solution of problem (2.61). Taking the Fourier

transform, we get

Here

u, (1, 8) + as’u(t, s) + bs*u(—t, s)

= —e7'q(s) + as’e”'q(s) + bs*e'q(s), (2.62)

u (0, s) = g(s).

u(t,s) = F{u(t,x)},q(s) = F{e"‘z}.

From (2.62) it follows that

u, (0, 5) = —asq(s) — bs>q(s) — q(s) + as’q(s) + bs°q(s) = —q(s)
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or

u; (0, s) = —q(s).
Taking the derivative of (2.62), we get

uy (t,8) + as’u, (t, s) — bsu, (—t, 5) = e”'q(s) + as’e™ + be'q(s). (2.63)
Putting —¢ instead of ¢ equation (2.62), we get

u (—t,5) + 5% (au (=, 5) + bu (t, 5)) = —e'q(s) + s> (ae' + be™) q(s). (2.64)
Multiplying equation (2.64) by (bsz) , we get

s?bu, (—t, ) + 5*b (au (—t, 8) + bu (¢, 5)) = —s°be'q(s) + s*b (ae' + be™) q(s).
Adding last equation with (2.63), we get

u, (2, 8) — s*au, (¢, s) — s*bau (—t, s) — s*b*u (¢, s)

= e7'q(s) — s*ae”'q(s) + bas*e'q(s) + s*b*e"q(s).

Multiplying equation (2.62) by (—asz), we get
—asu, (t,s) — a*s*u(t, s) — abs*u (—t, s) = asze"q(s) - a2s4e_’q(s) - abs4etq(s).
Adding two last equations, we get the following problem

u, (t,s) + (b2 - a2) stu(t,s) = e7'q(s) {1 + (b2 - az) s4} ,
(2.65)
u(0,5) =q(s), u;(0,5) =—q(s).
Now we will obtain initial value problem for the second order ordinary differential equation
of the problem (2.65). There are three cases: (b2 - a2) st =0, (b2 — az) s* >0,
(b2 — a2) st < 0.

Substituting m? for (b2 - az) s* into equation (2.65), we get

uy (t,8) +m*u(t,s) = e'q(s) {1 + mz} )
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We have that
u(t,s)=u.(ts)+u,,s),
where u, (t, s) 1s the general solution of homogenous equation
u, (t,8) + m*u(t,s) =0
and u,, (¢, s) is the particular solution of nonhomogenous equation. The auxillary equation is
pP+m* =0.
In the first case m*> = 0. Then p;, = 0,0.
u.(t,8) = c1 + cot.
In the second case p;, = +im?. Then
u. (¢, 8) = ¢ cosm>t + ¢, sin mt.
In the third case p;, = +m?. Then
U, (1, 8) = c1&™" + ™"
Now, we will obtain the particular solution u,, (¢, s) by formula
u,(t,5) =A(s)e.
Putting it into nonhomogenous equation, we get
A(s)e +mPA(s)e™ = e'g(s) {1 + mz}
or
{1+m*}A(s) = qls){~1+m?}.
Therefore

A(s) = q(s)
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and
u, (1, 5) = q(s)e™".

In the first case, we have
u(t,s)=cy +cyt+q(s)e”’.

Applying initial conditions, we get
u(0, ) = c1 +4(s) = q(s),

u; (0, 5) = c2 — gq(s) = —q(s).

From that it follows ¢; = ¢, = 0 and

u(t,s) =q(s)e™.

In the second case, we have

u(t,s) = cycosmt+cpsinmt + g(s)e".

Applying initial conditions, we get
u(0,s) =cy +q(s) = q(s),

u; (0, 5) = com — q(s) = —q(s).

From that it follows ¢; = ¢, = 0 and
u(t,s) = q(s)e™.

In the third case, we have
u(t,s)=cie™ +cre™ +q(s)e”’.

Applying initial conditions, we get

u(0,s5) =c; + ¢+ q(s) = g(s),

t
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u; (0,5) = m(cy —c2) — q(s) = —q(s).

From that it follows ¢; = ¢, = 0 and
u(t,s) = q(s)e™.
Therefore,
u(t,s)=q(s)e’ =e'F {e‘xz}
and
u(t,x) = F! {e"F {e‘xz}} = e,
Therefore,
u(t,x) = e'e™

is the exact solution of problem (2.61).

Note that using similar procedure one can obtain the solution of the following problem

Bu(t X) —a Z ara u(12,x) b Z 3 u(d LX) _ f(t X)

xr

x=(x1, ..., X,) ER", —00 <t < 00, (2.66)

u(€,x) = o(x), x e R"

for the multidimensional parabolic type involutory partial differential equations. Assume that
a.>ap>0and f(t,x) (t€l,x e R"), p(x)(x € R") are given smooth functions. However
Fourier transform method described in solving (2.66) can be used only in the case when

(2.66) has constant coefficients.
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CHAPTER 3
NUMERICAL ALGORITHM FOR THE SOLUTION OF THE INVOLUTORY
PARTIAL DIFFERENTIAL EQUATION

When the analytical methods do not work properly, the numerical methods for obtaining
approximate solutions of the local and nonlocal problems for the parabolic type involutory
partial differential equations play an important role in applied mathematics. In this section,

we present the algorithm for the numerical solution of the initial boundary value problem

Ju(t,x)

o Uy (t, x) — u,(—t, x) = costsin x,

O<x<nm —-—m<t<m,
3.1

u0,x)=0,0<x<m,

ut,0) =u(t,n)=0,—-1<t<nm

for the one dimensional parabolic type involutory partial differential equation. The exact
solution of problem (3.1) is u(t, x) = sintsinx,0 < x <@, -7 <t < 7.
For the approximate solutions of the problem (3.1), we will apply Gauss elimination method

to solve the problem. Using the set of grid points,

[—m, 7wl X [0, ], = {(tx, xn) - tx = kt,—-N <k < N,Nt =nm,x, =nh, 0 <n <M, Mh = r},

we get the first order of accuracy in ¢ difference scheme
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k-l ko~ ko k —k _n =k, —k
Up,—u, _ LS| 2Mﬂ-‘—un—l _ Uil 2”’1 tu

T h? h?

-N+1<k<N, 1<n<M-1,

u=0,0<n<M,
uy =uk, =0, —-N<k<N

and second order of accuracy in ¢ difference scheme

n n

—k+1 —2u;k+1 +u—k+1
n—1

1 14

T 2 h? 2 h?

—-N+1<k<N, 1<n<M-1,

W =0,0<n<M,

o~
I

=uh, =0, —-N<k<N.

They are systems of algebraic equations and they can be written in the matrix form

k_ k-1 ko _n ko k k=1_n k=1, k=1  —k _n k., —k
uk—u 1M 2uy+ut, 1M 2u, U, 1 % 2u, " +ut
2

= cos(ty — 3)sinx, f = kt, x, = nh, Nt =,

2 h?

- -
Au,y +Bu, + Cupy =Dg,, 1 <n<M—-1,uy=0, uy=20,

=L = coS t sin x,, ty = k1, x, = nh, Nt =n, Mh = =,

(3.2)

(3.3)

3.4)

where A, B, C are (2N + 1) X (2N + 1) matrices and D = Iy, is the identity matrix, ¢, and

ug are (2N + 1) X 1 column vectors

0

COS f_pn41 SIN X,

COS ty_1 Sin x,

COS f SIN X,

“(2N+1)x1




and

o

o O

J@2N+1)X(2N+1)

J2N+1)x(2N+1)

and d = 5 + 1 for the difference scheme (3.2) and



0 00 a a 0 a a 00O
0 00 0 a 2a a 0 000
A=C= ,
0 00 0 a 2a a O 000
00O a a 0 a a 0 0O
0 0 a 00 0 00O a 00

lon+nen+)
000-00 1 0O0:-000
c d o 00 0 00 -05b b
0Ocd-00 0 00-5bbO
000 -¢cd 0 bb-000
s |0 000 cb+db 0000
000 -0b btcdO-000
000-bb 0 cd-000
O00b»-00 O O0OO0O-4d00O0
Obb-00 0 0O0- -cd
' b b O -00 0 00 -0c¢ d<(2N+1)(2N+1)
a= g b= o= o Landd = &+ L forthe difference scheme (3.3

Therefore, for the solution of the matrix equation (3.4), we will use the modified Gauss

elimination method. We seek a solution of the matrix equation by the following form
Up = Upy1Upqsd +ﬂn+19 n=M - 1’--'71’ (35)
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where uy; = —0), a; (j=1,..,M—1)are (2N + 1) X (2N + 1) square matrices, §; (j =

1,..,M—1)are (2N + 1) X 1 column matrices, ;, 8 are zero matrices and

Ap1 = —(B + Ca’n)_lA,

Bus1 = (B+ Ca,) ' (Dp, +CB,), n=1,...,.M - 1.

NUMERICAL ANALYSIS

The numerical solutions are recorded for different values of N and M, and u* represents the
numerical solution of this difference scheme at u(#, x,,). Table 1 is constructed for N = M =
40, 80, 160 respectively and the errors are computed by

EN = max u(ty, x,) — ut|.
M ™ _N<k<N, 1Sn§M—1| (> Xn) nl

If N and M are doubled, the values of the errors are decreases by a factor of approximately
1/2 for the first order difference scheme (3.2) and 1/4 for the second order of accuracy
difference scheme (3.3). The errors presented in this table indicates the accuracy of
difference schemes. We conclude that, the accuracy increases with the second order
approximation.

Table 1: Error analysis EY,

N=M=40,40 N=M=280,80 N =M =160, 160
(3.2) 0.3015 0.1565 0.0798
(3.3) 25707 x 107 6.4258 x 107 1.6 X 107
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CHAPTER 4
CONCLUSION

This thesis is devoted to initial boundary value problem for parabolic type involutory
differential equations: The following results are obtained: The history of involutory
differential equations is studied. Fourier series, Laplace transform and Fourier transform
methods are applied for the solution of six parabbolic type involutory partial differential
equations. The first and second order of accuracy difference schemes are presented for the
approximate solution of the one dimensional parabolic type involutory partial differential
equation with Dirichlet condution. Numerical results are given. The Matlab implementation

of the numerical solution is presented.
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APPENDIX 1
MATLAB PROGRAMMING
In this part, Matlab programs are presented for the first and second orders of accuracy difference

schemes.

1. Matlab Implementation of the First Order of Accuracy Difference Scheme of Problem
(31)

clear all; clc; close all; delete *.asv';
N=40;

M=N;

tau=pi/N;

h=pi/M;

a=-1/(h"2);

b=-1/tau;

c=2/h"2;
d=(1/tau)+(2/h"2);
A=zeros(2*N+1,2*N+1);
for k=2:N;
A(N+1,N+1)=2*a;
A(k,K)=a;
A(Kk,2*N+2-k)=a;

end;

for k=N+2: 2*N+1;
A(k,k)=a;
A(k,2*N+2-k)=a;

end;

A;

C=A;
B=zeros(2*N+1,2*N+1);
B(1,N+1)=1,;

for k=2:N;
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B(k,k-1)=b;
B(N+1,N+1)=c+d;
B(N+1,N)=b;

B(k,k)=d;
B(k,2*N+2-k)=c;

end;

for k=N+2:2*N+1,
B(k,k)=d;
B(k,2*N+2-k)=c;
B(k,k-1)=b;

end;

B;
D=eye(2*N+1,2*N+1);
for j=1:M+1,

for k=2:2*N+1;
fii(k,j)=cos((k-1-N)*tau)*sin((j-1)*h);

end;

fii(1,j)=0;

end;
alpha{l}=zeros(2*N+1,2*N+1);
betha{1}=zeros(2*N+1,1);

for j=2:M;
Q=inv(B+C*alpha{j-1});
alpha{j}=-Q*A;
betha{j}=Q*(D*(fii(:,j))-C*betha{j-1});
end;

U=zeros(2*N+1,M+1);

for j=M:-1:1;
U(:,j)=alpha{j}*U(:,j+1)+betha{j};
end
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'EXACT SOLUTION OF THIS PROBLEM';

for j=1:M+1,;

for k=1:2*N+1;
es(k,j)=sin((k-1-N)*tau)*sin((j-1)*h);
end,;

end;

%.ERROR ANALYSIS,;
maxes=max(max(abs(es)));
maxerror=max(max(abs(es-U)))

relativeerror=maxerror/maxes;

cevapl=[maxerror,relativeerror] ;
%figure;
%m(1,1)=min(min(abs(U)))-0.01;
%m(2,2)=nan;

%surf(m);

%hold;

%surf(es);rotate3d;axis tight;
%title('Exact Solution’);

%figure;

%surf(m);

%hold;

%surf(U);rotate3d;axis tight;
%title(FIRST ORDERY);
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APPENDIX 2
MATLAB PROGRAMMING

2. Matlab Implementation of the second Order of Accuracy Difference Scheme of Problem
(3.1)

clear all; clc; close all; delete *.asv';
N=160;

M=N;

tau=pi/N;

h=pi/M;

a=-1/2*h"2;

b=1/h"2;
c=(1/h"2)-(1/tau);
d=(1/h"2)+(1/tau);
A=zeros(2*N+1,2*N+1);
for k=2:N;
A(N+1,N+1)=2*a;
A(N+2 N+1)=2*q;
A(N+2,N)=3a;
A(N+1,N)=3a;
A(N+2,N+2)=3;
A(N+1,N+2)=g;
A(kk-1)=a;

A(k,k)=a;
A(k,2*N+3-k)=a;
A(k,2*N+3-k-1)=a;

end;

for k=N+3: 2*N+1;
A(k,k)=a;

A(kk-1)=a;
A(k,2*N+3-k)=a;
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A(k,2*N+2-k)=a;

end;

A,

C=A;
B=zeros(2*N+1,2*N+1);
B(1,N+1)=1;

for k=2:N;
B(N+1,N+1)=b+d;
B(N+2,N+1)=b+c;
B(N+2,N)=b;
B(N+1,N)=c;
B(N+2,N+2)=d;
B(N+1,N+2)=b;
B(k,k-1)=c;

B(k,k)=d;
B(k,2*N+3-k)=b;
B(k,2*N+3-k-1)=b;
end;

for kK=N+3:2*N+1;
B(k,k)=d;

B(k,k-1)=c;
B(k,2*N+3-k)=b;
B(k,2*N+2-k)=b;

end;

B;
D=eye(2*N+1,2*N+1);
for j=1:M+1,;

for k=2:2*N+1;
fii(k,j)=cos((k-1-N)*tau-tau/2)*sin((j-1)*h);

end;



fii(1,j)=0;

end;

alpha{1}=zeros(2*N+1,2*N+1);
betha{1}=zeros(2*N+1,1);

for j=2:M;

Q=inv(B+C*alpha{j-1});
alpha{j}=-Q*A;
betha{j}=Q*(D*(fii(:,j))-C*betha{j-1});
end;

U=zeros(2*N+1,M+1);

for j=M:-1:1;
U(:,j)=alpha{j}*U(:,j+1)+betha{j};
end

'EXACT SOLUTION OF THIS PROBLEM?;
for j=1:M+1,;

for k=1:2*N+1,
es(k,j)=sin((k-1-N)*tau)*sin((j-1)*h);
end;

end;

%.ERROR ANALYSIS,;
maxes=max(max(abs(es)));
maxerror=max(max(abs(es-U)))

relativeerror=maxerror/maxes;

cevapl=[maxerror,relativeerror] ;
%figure;
%m(1,1)=min(min(abs(U)))-0.01,
%m(2,2)=nan;

%surf(m);

%hold;

%surf(es);rotate3d;axis tight;
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%title('Exact Solution’);
%figure;

%surf(m);

%hold,;
%surf(U);rotate3d;axis tight;
%title('SECOND ORDER);
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