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ABSTRACT  

 

Industrial robot manipulators are multi-body system having nonlinear, coupled dynamics 

and parameter fluctuations, the nonlinear and coupled dynamics includes: - gravitational 

forces which depend on position, carioles and centrifugal force. Reaction forces in joints due 

to the acceleration of other links, friction force, etc. In this paper an ISMC with fuzzy 

supervisory is presented to control and eliminate the trajectory tracking error of a three 

degree of freedom robot manipulating arm and also the modeled robot manipulator’s 

stability is analyzed using the direct method of Lyapunov stability theorem and the 

supervisory adaptive fuzzy logic inference system was serving as a tuning mechanism for 

the gain parameter of the sliding surface also it helps to converge and maintain the sliding 

surface to zero. The kinematics and dynamics of the robot manipulator are designed and 

briefly discussed before the suggested controller is implemented. The effectiveness of the 

presented control method has been evaluated in the simulation environment using MATLAB 

Simulink software. we have also compared the result of the presented controller which is the 

integral sliding mode and integral sliding mode with fuzzy supervisory with 20% of matched 

uncertainty imposed to the system and without uncertainty. in the system simulation, the 

presented control provides 0.0001435 rad of root mean square error (RMS) without 

uncertainty and 0.002188 rad of RMS when 20% of disturbance is applied on it. The 

suggested control model was also implemented on PUMA 560 robot six DOF manipulator 

while the first 3 joints are fixed and the result of the model is compared with another model 

which was implemented on similar well-known PUMA 560 robot manipulator. 

Keywords: kinematics; dynamics; fuzzy logic; Lyapunov stability theorem; trajectory 

tracking; ISMC; root mean square 
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ÖZET 

 

Endüstriyel robot manipülatörleri, doğrusal olmayan, birleştirilmiş dinamikler ve parametre 

dalgalanmalarına sahip çok gövdeli bir sistemdir, doğrusal olmayan ve birleştirilmiş 

dinamikler şunları içerir: - pozisyona, karyolalara ve merkezkaç kuvvetine bağlı yerçekimi 

kuvvetleri. Diğer bağlantıların, sürtünme kuvvetinin, vb. Hızlandırılmasından dolayı 

eklemlerdeki reaksiyon kuvvetleri. Bu yazıda, 3-DOF robot manipülatör bir kolun yörünge 

izleme hatasını kontrol etmek ve ortadan kaldırmak için bulanık bir denetime sahip bir ISMC 

ve ayrıca modellenmiş robot manipülatörünün dengesi Lyapunov stabilite teoreminin direkt 

metodu kullanılarak analiz edilir ve denetleyici adaptif bulanık mantık çıkarım sistemi, 

kayma yüzeyinin kazanç parametresi için bir ayarlama mekanizması görevi görmekte olup, 

kayma yüzeyinin sıfıra yakınlaşmasına ve korunmasına yardımcı olmaktadır. Manipülatörün 

kinematik ve dinamikleri, önerilen kontrolör uygulanmadan önce tasarlanmış ve kısaca 

tartışılmıştır. Sunulan kontrol yönteminin etkinliği simülasyon ortamında MATLAB 

Simulink yazılımı kullanılarak değerlendirilmiştir. Ayrılmaz kayma modu ve bütünleşik 

kayma modu olan sunulan denetleyicinin, bulanık denetleyici ile sisteme uygulanan ve 

belirsizliğin% 20'sini karşılayan belirsizlik ile karşılaştırdık. Sistem simülasyonunda 

sunulan kontrol, belirsizliği olan 0.0001435 radyasyon kök ortalama kare hatası (RMS) ve 

üzerine% 20 bozulma uygulandığında 0.002188 radyon kök ortalama kare hatası (RMS) 

sağlar. Önerilen kontrol modeli aynı zamanda PUMA 560 robot altı DOF manipülatöründe 

uygulanmış, ilk 3 eklem sabitlenmiş ve modelin sonucu benzer PUMA 560 robot 

manipülatöründe uygulanan başka bir model ile karşılaştırılmıştır. 

Anahtar Kelimeler: kinematik; dinamiği; Bulanık mantık; Lyapunov kararlılık teoremi; 

yörünge izleme; ISMC; Kök kare ortalama 
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CHAPTER 1  

INTRODUCTION 

 

1.1. Background  

Robotics, as the name suggests, is the science and study of robots, the word comes from the 

Czech word “ROBOTA” meaning (forced labor) which was coined by Karel Capek in 1921. 

Robots as by what comes first to mind, are man-made computerized machines which 

perform tasks on human commands or by themselves and seeks to make work easier for 

human beings.  

A robot is an integrated system made up of sensors, manipulators, control systems, power 

supplies, and software, which work co-dependently in order to perform a task. Robots come 

in all different shapes and sizes but frequently classed by their degree of freedom, each 

direction of movement on the robot is considered as an axis of movement, each single 

movement axis is considered as one degree of freedom, the most common movement of a 

robot manipulator which is yaw, pitch and roll helps to locate the tools in a work area and 

are called position axes. 

Every robot has a controller, which continuously reads from sensors like motor encoder, 

force sensors, vision sensor and depth sensor which updates the actuator commands so as to 

achieve the desired robot behavior.  

Nowadays, there are many ways of controlling the trajectory tracking of a robot 

manipulating arm, the control methodology of the robot arm based on their controller is 

mainly divided as a model-based controller and non-model-based controller. these are 

adaptive control, variable structure control and computed torque under the model-based. For 

this research, we choose integral sliding mode controller which has a robust controlling 

approach and insensitive for disturbance and uncertainty in the nonlinear system and help to 

develop a precisely controlled way for the dynamic movement of the robot arm. Variable 

structure control is a way of controlling dynamics of a model-based linear and nonlinear 

system where the control law is changing accordingly with some pre-defined rules in the 

control process and have different type based on the controlling method used among them 
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sliding mode control is widely used in controlling of a dynamic system with uncertainty and 

disturbance but it has its own drawbacks which will be discussed below. 

1.1.1.Sliding mode control  

It is the main and widely used type of variable structure control methodology for both linear 

and nonlinear system, which is capable of changing the dynamics of the system by applying 

a high frequency switching control law, even if the system have good response for nonlinear 

and discontinuous system it has major drawback of the chattering effect to the system many 

researchers have been proposing and applying different type of control method for nonlinear 

multi input multi output system and others, (Vadim Utkin, 1992) the stability of the system 

in sliding mode control will be granted if the matching condition is verified when there is 

uncertainty and external disturbance on the system but the system is sensitive for the 

disturbance in reaching phase, there is no guarantee for robustness in reaching phase, several 

researchers suggest imposing reachability time will eliminate the sensitivity of the system 

for uncertainty and disturbance in reaching phase or by choosing a non-linear sliding surface 

which starts from the initial point, nowadays due to its speed, nonlinearity and switching 

nature sliding mode is widely applied to more controlling systems even if it has a chattering 

problem which is harmful to actuators leading to low accuracy in trajectory tracking, cause 

wear and heat the mechanical parts. 

Different researcher have been proposing many techniques to reduce or eliminate the 

chattering problem of a system mainly in to two branches which are estimated uncertainty 

method (uses system uncertainty estimator to compensate the uncertainty) and boundary 

layer saturation method (replacing the discontinuous method with linear (saturation) method 

with small switching surface), many researchers use estimated uncertainty method option 

using artificial intelligence, fuzzy logic and neural network but when we try to eliminate the 

nonlinear unstable system’s chattering effect it causes a trajectory tracking error for our 

system nevertheless to overcome this error we suggested a chattering free, insensitive to 

dynamic uncertainties and disturbance and robust ways of controller which is integral sliding 

mode control(ISMC) for trajectory tracking control of  3 degree of freedom robot 

manipulator.   
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1.1.2. Integral sliding mode control  

It is an improved version of SMC for designing an enhanced accuracy, robustness, 

undisturbed and chattering free dynamic control mechanism for a nonlinear system like robot 

manipulation. In this method, the guaranteed stability of the system is the result of imposing 

the sliding mode throughout the system but the overshoot, undershot and response time may 

be poor if the initial error is very large(Zheng, et al., 2015). In classical sliding mode control 

(SMC), since the SMC does not have information about the stability of the system during 

reaching phase of the system so, the system robustness and stability which are exposed to 

matched and unmatched uncertainty and external disturbances(gravitational forces, Coriolis 

and centrifugal forces) can be achieved only after the occurrence of the sliding mode we do 

not have a guarantee for the system stability during the reaching phase but the ISMC can 

overcome this problem and achieve the desired accuracy and robustness for a nonlinear 

system control. 

In this research paper, to overcome the windup issue tuning the gain parameter of the sliding 

manifold of the nonlinear control system using an adaptive fuzzy logic inference system will 

give a promising result (Lu, 2015).  

1.1.3. Adaptive fuzzy logic gain tune 

Fuzzy logic is a way of computing based on the degree of truth instead of crisp or Boolean 

value. In this research, we will implement the well-known adaptive fuzzy inference system 

to automatically tune the gain of the nonlinear control system parameter which does not have 

prior information about the parameters of the system. Combination of robust control with 

adaptive fuzzy logic inference system for controlling a trajectory tracking of a robot 

manipulator has been suggested by the different researcher so far.  

For a system which have a changing dynamic parameter are need to be trained online, the 

adaptive fuzzy will try to tune the gain parameter without any information about the dynamic 

system behavior, by combining the ISMC with adaptive fuzzy logic gain scheduler, we can 

overcome the problem of instability and the increment of rise time and get good trajectory 

tracking controller 

For this research, we will implement an adaptive fuzzy inference system to tune the gain 

parameter of the integral sliding surface to remain the surface to zero 𝑠=0 and the gain 
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parameter of the integral and derivative component of  �̇�,  𝐾𝑝 and 𝐾𝑖 to obtain the desired 

output.  

1.2. Statement of the Problem  

Robot manipulators are a multi-body system having nonlinear, coupled dynamics and 

parameter fluctuations. The nonlinear and coupled dynamics represent example: - 

gravitational forces which depend on position, carioles and centrifugal force. Reaction forces 

in joints due to the acceleration of other links, friction force, etc... In trajectory tracking 

application, such complex systems are mostly controlled using PID (proportional integral 

derivative) controller and sliding mode control.  

Applying the pre-tuned integral sliding mode using a fuzzy logic will be implemented to 

overcome those trajectory tracking problems and get the required accuracy, effectiveness 

and robust dynamic trajectory tracking control system for our 3 degree of freedom robot 

manipulator. For example, in robotics systems use for assembling operations with heavy 

workpieces carried by manipulator’s gripper, a robot with high speed operating, etc. are 

exposed for dynamic uncertainties and external disturbance applying the classical sliding 

mode controller or PID controller will not provide the stable system.  

Different researchers have presented to avoid the shortcoming of sliding mode control using 

a nonlinear controller and different approaches have been suggested for designing the 

nonlinear control,  

1. The ISMC. 

2. The adaptive fuzzy logic gain tune for ISMC. 

1.3. Objectives  

1.3.1. General Objective  

Developing a trajectory tracking using an Adaptive fuzzy integral sliding mode controller 

for the 3 DOF robot manipulator. 

1.3.2. Specific Objective  

• To develop dynamics and kinematics of a 3-DOF robot manipulator 

• To develop an ISMC for the robot manipulating arm 

• To develop a tuning parameter for ISMC using adaptive fuzzy logic  
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• To compare the AFISMC with ISMC  

• To simulate and demonstrate an AFISMC of a 3-DOF robot manipulating arm 

1.4 Methodology  

The suggested thesis first concentrated at the study of the literature about controller design, 

theoretical and structural backgrounds about robot manipulator and controller. Then after we 

get a good understanding about robot manipulator and controller from the reviewed 

literature, we have compared the performance of the various controller and then we have 

selected our technique which can remove the shortcoming of the PID and sliding mode 

controller.  

Since an appropriate dynamic model equation has very important in designing the robot 

controller. To develop the model, we have divided this thesis into two main parts. First, we 

developed the robot manipulator equation of motion. This stars from the equation of position 

and orientation description, forward and inverse kinematics, dynamic analysis and forces, 

kinematic and potential energy by using Lagrange equation and second, we will design the 

overall nonlinear system model of the manipulator dynamics. After the dynamic models have 

been developed, based on the ISMC theory the three degrees of freedom robot manipulator 

controllers are designed.  
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CHAPTER 2  

LITERATURE REVIEW 

 

In a research made (Esmaili & Haron, 2017) the researcher suggested an adaptive neural-

based ISMC method. The suggested method was designed for synchronization of multiple 

robot manipulators which do not have direct communication between them. However, the 

communication carries outs through an object as a communication point and use both direct 

and un-direct implicit communication ways throughout the system. In which it has a huge 

advantage to overcome the failures occurrences in case of un-direct communication. In the 

suggested system kinematics and dynamics constraint of the system is considered instead of 

direct force control for synchronization of multiple robot manipulators with improved 

integral sliding mode controller.   

The researchers briefly explain and drive a synchronization robust and accurate nonlinear 

control method by the combination of adaptive NN with ISMC method for a nonlinear 

system. In order to eliminate the tracking and the synchronization error by considering 

different kind of uncertainty that may happen to the system which is exposed to external 

disturbance. For implementation purpose the researchers used a well-known two 6-degree 

of freedom PUMA 560 robot manipulators are chosen and the parametric gain for KP and KI 

is set to be 2 and 0.0001. 

In this paper (Esmaili & Haron, 2017) the researchers try to consider four different cases 

which are: a system without uncertainty, with lumped uncertainty, with grasping uncertainty 

and with both lumped and grasping uncertainties. Based on these cases the paper tries to 

analyze, test and compare the performance of the suggested system with Adaptive Neuro-

Fuzzy Inference Systems (ANFIS) method.  

The paper suggests a feed-forward neural network architecture (FFNN) that have an input 

layer, hidden layer, and output layer. The neural model has 6 input nodes representing each 

parameter, and 1 hidden layer which have 10 nodes, and 6 output nodes representing the 

output parameters. The designed neural network architecture is trained using 71 sample data 

and validated using 71 validation set samples. After training the designed neural network the 

researchers obtained a mean squared error of 1.9641𝑒−11.  
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The researchers compared the ANFIS and the suggested ANNISMC methods based on the 

four uncertainty cases. These two methods are compared based on three different 

measurement factors which are Position Tracking Error (PE), Coupled Error (CE), and 

Synchronization Errors (SE). The execution result shows us that they have a significant 

difference. The researchers compared the result of those two systems by their values 

differences of the results.  

For the first case, the value difference between the two methods using the CE, PE, and SE 

factor errors are 0.000293346, 4.22121𝑒−4, and 0.2951946𝑒−4 are respectively showing the 

suggested system is better. And for the second case, the value difference of the CE, PE, and 

SE values are 0.2951946𝑒−4,0.2769245 𝑒−4, and 0.2769245 𝑒−4 also, indicating that the 

ANNISMC method is better. Furthermore, in the third case, the value of the difference 

between the two methods for the CE, PE, and Se are 0.2769245 𝑒−4,0.2769245𝑒−4, and 

0.008291 clamming that the suggested method is better than the ANFIS method. Finally, the 

results for the fourth case shows that the suggested model is better in which the value of the 

difference for the CE, PE, and SE errors factors are 0.313392 𝑒−4, 0.3075458 𝑒−4, and 

0.2718546 𝑒−4. According to the paper in total, the suggested ANNISMC method has a 3% 

percent of improvement on the ANFIS method. 

In a research made(Ferrara & Incremona, 2015) the researchers suggested an algorithm 

based integral suboptimal second-order sliding mode control system (ISSOSM). The 

suggested algorithm is a nonlinear control mode that provides a mechanism for reducing the 

reaching phase of a system which is controlled by a sliding control method. In which the 

reaching phases generally exists in any kinds of system that are controlled by a sliding 

mechanism. The suggested algorithm increases the efficiency of the suggested system by 

extending the sliding mode to the time intervals in which the default sliding mechanism 

doesn't include.  These reasons make the suggested algorithm suitable and applicable for real 

industrial robots to improve and optimize the efficiency and accuracy of the controlling 

model of the robots. Also, the suggested algorithm provides a second-order sliding mode in 

which the control mode of the system has a relative degree of one which results in a positive 

chattering alleviation effect.  
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Furthermore, the researchers carried out an experimental test of the suggested algorithm on 

COMAU SMART3-S2 industrial robot. Additionally, the researchers compared their 

suggested controller algorithm model with other standard and suboptimal algorithms. Their 

comparison results show the suggested algorithm model is satisfactory than the others 

compared. The researchers compared their suggested model with two different robot 

controlling models. The first controlling model which is compared with their model is 

proportional derivate (PD) controller and the second model is the suboptimal second-order 

sliding mode (SSOSM). Those three controllers’ models are compared based on their mean 

square tracking (MST) error and the suggested model (ISSOSM) is better than the others 

according to their comparison results. The results of the root mean square (RMS) error of 

the PD, SSOSM, and ISSOSM are 0.016, 0.0056, and 0.0037 respectively. Their RMS result 

shows the suggested model which is ISSOSM has the smallest tracking error making it the 

best among the three models. 

Also, in research (Incremona, et al., 2017) the researchers introduced a model that can solve 

the problem of motion controlling for robot manipulators. The suggested model is based on 

hierarchical multiloop control scheme and the paper presents the design and implementation 

of the introduced model. The main elements of the suggested model are the multi-input and 

multi-output based on an inverse dynamic controlling mechanism and an integrated sliding 

control (ISC) model with a model predictive control (MPC).  When some uncertainties occur 

as a result of unrecognized and unmodeled dynamics the ISM is responsible for adjusting 

those uncertainties. Usually, the ISM will become responsible if those uncertainties are not 

handled by the inverse dynamic method. The MPC is attached with the external loop which 

gives a guarantee for the evolution of the control system in order to make it as efficient as 

possible, also through the accomplishments of the inputs and outputs constraints at the same 

time.  

As the researchers presented in the paper the primary reason for the ISM to be used is its 

robustness while dealing with multiple and wide class of uncertainties. Additionally, the 

second main reason is the ability of the ISM to apply and enforce a sliding mode of the 

control system from the beginning of the time start. The ability to enforce the sliding control 

from the initial time start will give the system the ability to reduce and solve the optimization 

problems of the MPC. The researchers have simulated the testing and examination of the 
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presented model using COMAU Smart3-S2. In which this model is an industrial robot 

manipulator. The researchers compared their suggested system MPC/ISM with the 

standalone MPC methods according to the results of the root mean square error (RMS) and 

the RMS value of the models. The robotic system they were examining and testing their 

suggested strategies were a 6-joint based robot but for the sake of their strategies and 

simplicity they locked the three joints and carried out their experiment only on the other 

three joints. However, they have explained that their suggested approach can be applied for 

6-joint robotic models as well and even can be generalized for general use.  

Finally, the root mean square error (RMSE) results obtained by the researchers for the three 

unlocked joints using the standalone MPC algorithm model are 0.2105, 0.3749, and 1.0458 

for the 1st, 2nd, and 3rd joints respectively.  And the RMS results of the suggested system 

(MPC/ISM) are 0.0070, 0.0102, and 0.0152 for the 1st, 2nd, and 3rd joints respectively. 

Thus, we can see that the mean square error of the suggested system for each joint was 

smaller than the standalone models showing the suggested model is better. And the result of 

the RMS value using the standalone MPC model for joint 1, joint 2 and joint 3 are 8.0303, 

13.4839, and 41.2172 respectively. Additionally, the RMS value of the suggested system for 

joint 1, joint 2, and joint 3 is 8.06, 13.4217, and 34.8530 respectively. Therefore, in general, 

we can conclude that according to the experimental results of RMS and RMS error the 

suggested system is better than the standalone MPC robotic model.    

Additionally, an adaptive controller based integral sliding model and time delay estimation 

(TDE) approaches are suggested in research (Lee, et al., 2017) for robot manipulators. The 

researchers suggested an estimator for uncertainties that occurs in robot dynamics, such 

uncertainness might be variations of parameters and disturbances according to the 

researcher’s explanation. The sliding integral is responsible for eliminating and reducing the 

reaching phase and noisy actions of the conventional sliding models. Additionally, the 

researchers used adaptation gain dynamics to obtain a better and higher degree of accuracy. 

According to the research’s explanation, the suggested adaptive control model is chattering 

free, robust and highly accurate. An experimental examination is carried on the suggested 

system to verify its accuracy and efficiency. The extermination is conducted on a 

programmable universal machine for industrial robot manipulators.   
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According to their paper (Lee et al., 2017), fuzzy logic and artificial neural network 

approaches are better and efficient for handling nonlinearities and uncertainties. However, 

these models require an intense number of parameters and complex rules so, they become 

nearly impossible or difficult to be applied.  The controller suggested by the researchers is 

not model dependent as a result of the TDE being model-independent. As the researches 

indicated the suggested system can be considered as an improved form of the original TDC 

model. The researches designed an adaptive rule in order to activate the ASMC term also an 

additional algorithm was implemented to remove the problem of singularity.  Thus, in the 

suggested system the singularity and the reaching phase are removed and also the robustness 

of the model is improved thanks to the integral sliding surface.  

The suggested algorithm was written and implemented using c++ in Linux operating system 

environment. For the purpose of verifying the effectiveness and accuracy of the suggested 

system (TDE based AISMC), the researches performed experimentation on three joint robots 

of the Samsung Faraman-AT2 using AC servo which is used to serve as a power transmission 

motor. The researchers compared the efficiency of the suggested algorithm through the RMS 

values of the simulation with a previously made model. Also, the researchers compared their 

model with a different constant value of k in which k is a constant adaptive gain value. The 

researches evaluate the efficiency of the suggested system by comparing it with three 

different k constant values of adaptive gain which can be grouped as small, proper and large.   

The comparison is performed for each joint of the robot. The results of the RMS value of the 

first joint for the suggested system, smaller constant k value, proper constant k value, large 

constant k value, and previous design are 7.97, 14.86, 9.70, 30.53, and 25.81 respectively.  

And the RMS values for the second joint for the suggested system, smaller k, proper k, larger 

k, and the previously done model are 12.61, 32.62, 16.45, 20.06, and 65.74 respectively. 

Additionally, the RMS results of the third joint are12.47, 35.19, 17.35, 20.82, 73.83 for the 

models of the suggested system, smaller k constant value, proper k constant value, larger k 

constant value, and previously done model respectively. The comparison of the RMS value 

of each joint show that the suggested model is better than the previously done model and 

models having a constant adaptive gain value.      
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Furthermore, in research (Zhang et al., 2018) the researchers suggested an integral sliding 

control tracking mechanism for robot manipulators. In which the suggested model provides 

a solution for the tracking problems of continuous sliding control for robot manipulators 

with the existence of uncertainties and disturbances from the external environments. The 

researchers first suggest a control mode which is based on a non-chattering integral terminal 

sliding. For which the sliding control is integrated with an observer. In order to prove the 

global finite time of the tracking mode of the robot controller system, the researchers used 

the Lyapunov stability theory. The paper presents an integral terminal sliding mode control 

(ITSMC) for the main goal of tracking robot manipulators in finite time under the existences 

of parametric uncertainties and disturbances that can occur from the external environment.   

Additionally, the paper suggests a tracking mode that has a chattering free SMC so that it 

can guarantee the errors of the siding surface and tracking process is initially suggested. The 

trajectories of the suggested model don’t meet the boundaries of the layer like the existing 

SMC models rather it meets the sliding surface within a finite time. Also, the tracking 

activity of the suggested model ITSMC is assured for the finite-time convergence. The 

researchers performed an extensive examination of the suggested controller system through 

the comparisons of two different controllers. In which these two are a continuous terminal 

sliding mode controls and a fast terminal sliding mode control. 

According to their explanation, the suggested controller gains an improved controller 

tracking performance in the presence of uncertainties and external disturbances. Also, the 

suggested controller is better than the CTSMC and FTSMC because of its chattering free 

and has a great and fast steady stage accuracy under uncertainties and disturbances that might 

happen from the external environment. The researchers used a two-DOF robot for executing 

the simulation operation in order to demonstrate the suggested ITSMC tracking accuracy 

and performance in which the robot to be used for simulation has only two joints.  

The researchers used Integrated Absolute Error (IAE) and energy of control input (ECI) for 

evaluating the accuracy and performance of the tracking process and energy required for 

control. The experimentation results for the IAE and ECI of the suggested system (ITSMC) 

are 451.30 and 589.35 for joint 1 and 244.48 and 851.56 for joint 2 respectively. And the 

values of IAE and ECI for CTSMC are 626.37 and 588.58 for joint 1 and 335.86 and 954.89 
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for joint 2 respectively. Finlay the results of IAE and ECI for the third FTSMC mode are 

642.68 and 504.63 for joint 1 and 355.92 and 840.03 for joint 2 respectively. According to 

the result of their examination, we can conclude that the suggested system ITSMC is better 

than CTSMC and FTSMC models. 

Additionally, in another paper (Enrique, et al., 2010) the researchers suggest an integral 

control for robot manipulators which basis a nested sliding mode control. The researchers 

suggest a solution to the problem of tracking robot manipulators with the help and 

application of ISM and NSM.  The suggested controller has the robustness of the nested 

sliding mode and the ability to reduce the gains of the sliding functions from the ISM. Since 

the suggested controller is modeled with the combination of ISM using the sliding control 

mode as a basis it improves the robustness of the model and guarantees the tracking process.  

The researches performed a simulation operation to prove the designed algorithm performs 

as expected. They used a two-link planar robot manipulator having perturbations under the 

existences of the uncertainties, external disturbances, and variations of parameters. In which 

the simulation robot has two joints. According to their results and conclusion, the response 

for joint 1 and joint 2 are appreciable and satisfactory. The suggested controller model has 

rejected the external disturbances, uncertainties, and also the parameter variations. Also, the 

researches stated that the result of the simulation for the tracking error was approximately 

zero.   

In a paper (Dumlu, 2018) the researchers suggested a six degree of freedom trajectory 

tracking control for robotic manipulator based on a suggested FOAISM. The suggested 

model achieves many different advantages such as a finite time convergence, without 

chattering, improved tracking precious, and improved robustness using an adaptive integral 

sliding mode and fractional order control mechanisms. The adaptive method has been used 

to evaluate and handle the uncertainties and the unknown dynamics of a robot control system 

without the use of upper bounds. Additionally, for the purpose of proving the efficiency of 

the suggested system for real-time experimentation of the model using an industrial robot 

that has six joints. 

Similarly, to the papers (Lee et al., 2017) reviewed before this paper presents that there are 

many other good approaches, however, among the many different robust control methods 
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the SMC is a better and robust control approach for a system which is nonlinear and the 

involves unmodeled dynamics, uncertainties and external disturbances also the paper 

presents the use of fraction order calculus (FO) with the adaptive ISMC to create a new 

approach that uses a fractional-order adaptive ISMC that is examined on an industrial robot 

manipulating arm of six-DOF. Thus, the suggested system comprises a fractional-order (FO) 

with adaptive feedback for the purpose of improving the efficiency and performance of a 

robotic manipulating arm. 

The main aim or reason for integrating fraction order (FO) calculus concept with adaptive 

integral sling mode controller (AISMC) as the paper presents is to design a fast-finite time 

convergence, accurate and chattering (high-frequency oscillation) free control, and a better 

robust model for industrial robot manipulators. The control model is designed so that it can 

deal and compensate with the unknown and un-modeled dynamics without the need of prior 

knowledge about the nonlinear model. Also, the aim of the control is tracking each joint of 

the robot based on their angles using the given trajectory reference. In order to track the 

joints based on the given trajectory reference, the tracking error should be minimized in any 

cases. 

The researches carried experimentation to show the efficiency and effectiveness of the 

suggested FO-AISMC system and compared their experimentation results with the classic 

ISMC. The experimentation is performed on an industrial robot manipulator called Denso 

VP-6242G which has six rotational joints and each joint are controlled by servo motors.  The 

results of the joints for classic ISMC and FO-AISMC are compared based on their root mean 

square error (RMSE) values. The RMSE experimentation result of the classic ISMC model 

for joint 1, 2, 3, 5, and 6 are 0.0088, 0.0047, 0.0058, 0.0062, and 0.0047 respectively. And 

the RMSE experimentation results of the suggested FO-AISMC model for joint 1, 2, 3, 5, 

and 6 are 0.0041, 0.0024, 0.0039, 0.0043, and 0.0031 respectively. Therefore, based on their 

experimentation result we can conclude that the suggested fractional order (FO-AISMC) 

system is better than the classic ISMC model. 

Also, in another paper (Heydaryan & Majd, 2017) suggests an integral sliding mode using 

bilateral teleoperation method that can be applied to the n-DOF. The researchers used a 

second ordered sliding mode to predict or estimate the unknown input forces of the model 
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from the environment which are acting on the robot manipulators and for estimating the 

actual state of the system. The ISM which is used by the researches is used provides a better 

and efficient practical implementation of the suggested system. The bilateral teleoperation 

constitutes the power and ability to operate remote side manipulator by using a master 

manipulator from another environment for controlling the save manipulator located in 

another environment. This operation is performed by sending a signal commands from the 

master manipulators to the salve. And the command receiver side which is the salve 

manipulator will simulate the master-slave based on the command received. However, the 

operation of this command transmission faces a greater problem of time delaying in the 

operation of command transmission.  

Additionally, the researchers suggest (Heydaryan & Majd, 2017) a positioning force bilateral 

teleoperation design based on two different operations for designing the master and slave 

manipulator controllers. The first approach of the suggested system is a positioning force 

bilateral system it uses conventional sliding mode and an impedance controller for the slave 

controller and the master manipulator side respectively. This first approach also constitutes 

a constant time delay that is used to improve the transparency of the suggested model. 

Additionally, for the purpose of estimating the forces, positions, and velocity that are acting 

on both slave and master manipulators of the suggested system they implemented an 

observer of second-order sliding mode.  

Furthermore, in the second approach, the researchers used a new ISMC for the slave 

manipulator side in order to remove the chattering as easily as possible. Also, the suggested 

designed algorithm is much safer and easier for implementing it on a mechanical system. 

Unlike other models the suggested algorithm doesn't cause the mechanical actuators to wear 

and tear therefore, it is much suitable for mechanical systems. 

The suggested system’s efficiency and accuracy are evaluated through simulation in which 

the master and slave manipulators are taken as 2-DOF manipulators and also parameters for 

the simulation operation of the manipulators are specified as a mass of 1-kilogram and a link 

length of 1-meter. The simulation experiment is carried by considering an external human 

forces and environmental forces acting on the master manipulator and both the external 

forces are estimated well by the suggested model. Also, a simulation examination is carried 
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on to check the performance of the mode on position tracking in which the results show there 

is no contact between the slave and the environment. Moreover, when a simulation is done 

by applying the conventional sliding mode approach to the slave manipulator the delayed 

trajectory of the master manipulator’s first degree of freedom is tracked showing that the 

tracking process worked very well and sufficiently. Furthermore, when the suggested 

integral siding control mode is applied to the tracking of the joint angels it is also, satisfactory 

and efficient. In addition to these simulation results when the conventional siding mode is 

compared with the suggested integral siding mode it shows a large performance variance in 

the teleoperation process. 

Basically, the first paper on the integral sliding system was suggested (V. Utkin & Jingxin 

Shi, 2002) in 1996 by V. Utkin and J. Shi as an improved model of the conventional sliding 

mode approach. In which the suggested integral sliding model has a similar order of motion 

equation with original mode but it has a reduced number of inputs dimension of the control. 

Therefore, this reduced number of input dimensions improves and assures the robustness of 

the suggested control mode during the entire system process starting from the beginning of 

the response time instance.  

Also, the researchers suggested an alternative way when the control matrix can't be used for 

generating a sliding mode control through the discussion of the associated decoupling 

problem. This alternative way presented by the researches is by using a sliding mode 

transformation for generating the SMC. For the purpose of removing the chattering problem, 

the researches removed the discontinuous control activity from the control and integrate it 

into the internal dynamic process in order to generate the SMC. This technique of removing 

the chattering problem while delivering a higher degree of robustness gives a better 

advantage than the conventional chattering removing approach.  

Usually, many of the papers which are reviewed before and will be reviewed after are the 

extension of the concept of this first paper. The robustness of the ISMC is the main reason 

and intension for other researchers to use and improve this suggested algorithm. The 

switching part of the suggested integral sliding mode is designed with two different parts. In 

which the first part involves the conventional sliding mode by using a combination of the 

linear states of the model.  And the second part is designed as the integral terms which are 
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presented by the suggested system. Additionally, the researchers suggest an integral 

feedback design of the performances of the integral sliding mode system.  

In research (Rsetam, et al., 2017) the researchers suggested an optimal second-order ISM 

control for the purpose of reducing the challenges that occur while dealing with a robot 

manipulator having a flexible joint. The suggested system (OSOISMC) is intended to 

improve and obtain a better robustness performance of robot manipulator having a single-

link flexible joint and the researchers primarily designed a linear quadratic regulator of an 

integral sliding mode that can serve as a nominal and switching control so that the control 

guarantees the robustness of the entire system. For the purpose of decreasing the chattering 

problem of the suggested the system the researches come up with a second order ISM that 

has a nonsingular terminal sliding surface also, the second-order ISMC gives the fine 

convergence. Simulation experimentation is carried out to prove the performance of the 

suggested system. 

The suggested algorithm is compared with a linear quadratic regulator (LQR) and the classic 

or conventional integral sliding mode control (ISMC) based on the results of the tracking 

performances and chattering results.  The LQR control obtains the performance of the system 

without the presence of the uncertainties and smaller control efforts. Then the uncertainties 

and the disturbance of the system are tackled by the ISMC form the initial start of the process. 

This integral sling mode controller which will result in improving the robustness and 

performance of the suggested system.  

The experimentation is performed by maintaining some control parameters for each of the 

comparing algorithms in order to make a fair comparison and prove the performance and 

efficiency of the suggested system. The external disturbance was rejected by the suggested 

system by improving the response tracking without the effect of the chattering. But the LQR 

controller was unable to reject the disturbances like the suggested system because it was not 

designed with ability to reject disturbances. Therefore, the suggested system was much 

efficient than the LQR model based on rejecting the disturbances. However, the ISMC was 

designed to reject the disturbance but it results was not as efficient as the suggested system 

because the chattering problem was not handled in the ISMC system and it has a greater 

effect on it. 
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Also, in a paper (Ablay, 2014) the researchers suggested algorithms of two different control 

approaches which are sliding surface mode based on a coefficient ratio and an ISMC are 

presented for multivariable systems. The problem of the design of the sliding surface is 

reduced by using a constant closed-loop system. For the purpose of efficient and robust 

tracking, a sliding surface based on a coefficient ratio design is used for the suggested 

system. The researchers implemented the suggested algorithms on a strike aircraft and 

flexible robot manipulators in order to verify the performance and efficiency of the suggested 

algorithms and also, the simulation results are presented in the paper.  

In order to design the sliding surface of the suggested system, it uses a coefficient ratio-

based algorithm that follows four respective steps. The first step of the algorithm is finding 

τ from a given t where τ=t/3 and the second step is to compute a transformation matrix T 

which will be used to convert the system into a regular form. The third step of the suggested 

algorithm is by using the coefficient ratio to design and find the desired spectrum of the 

system using the characteristic polynomial and finally, the last step is generating the sliding 

surface using the robust Eigen structure approach.  

Additionally, the researches presented another approach for designing the sliding surface 

and the algorithm is presented in the paper having four consecutive processes. The second 

suggested algorithm first finds the τ from a given settling time t in where τ= t/3 just like the 

previous algorithm and secondly it computes the transformation matrix for transforming the 

reduced-order initial variable into a controllable form. Then in the third stage based on the 

coefficients, the characters polynomial is calculated for the desired spectrum and at last the 

sliding surface is obtained by computing the original initial system with the matrix. The 

coefficient ratio-based method constitutes the advantages of the linear quadratic regulator 

(LQR) and Eigen structure assignment-based approaches. The numerical simulation result 

of the suggested systems on a flexible robot manipulator and aircraft are presented on the 

paper. The examination results show that on both simulation systems the coefficient ratio 

based and feedback designs provide with similar and better performances of the suggested 

algorithms. 

Furthermore, in research (Nadda & Swarup, 2018) the researchers suggested a nonlinear 

ISMC for solving robot manipulators position obtaining the problem. The paper presents and 
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proves the efficiency of the suggested system by taking under consideration of the external 

disturbances, load variations, and other external factors. The performance of the suggested 

nonlinear ISMC system is evaluated by comparing its performance results with the 

performance of the linear proportional integral derivative control approaches (PID). The 

paper presents the performance results by considering a robot manipulator having two degree 

of freedom (2-DOF) and an integral sliding mode (ISM) control is suggested to support the 

position using the desired or required value and also the paper proves and guarantees the 

support of the suggested model is presented. 

The researchers removed the discontinues function and replaced it with a saturation function 

instead of the sign function in order to eliminate the chattering that occurs in the system due 

to the presence of the sign function. According to the simulation results which are presented 

in the paper the position tracking of the suggested algorithm is much better than t the PID 

control model showing the suggested algorithm is efficient and have a better performance 

than the proportional integral derivative mode control approach.  Additionally, the suggested 

algorithm uses a smaller time for the purpose of stabilizing the positions of the controllers 

however, the PID control model takes a larger time for the same purpose. This shows the 

suggested algorithm is robust and faster than the PID controller model. 

On the paper (Kumar, Kumar, & Gaidhane, 2018) the researcher tries to compare the 

performance of integer order fuzzy PID, fuzzy fractional-order PID and conventional PID 

for trajectory tracking controller of a five-degree of freedom redundant robotic manipulator 

through Matlab simulation. The redundant 5 DOF robot manipulator is a highly nonlinear 

multi-input multi-output manipulator whose performance is poorly affected by the matched 

uncertainty and external disturbance. 

For tuning the gain parameter of the proposed controller the researcher used a technique 

called artificial bee colony optimization technique or ABC, the performance of the proposed 

system tested using a Matlab Simulink with integral absolute time error (ITAE) and 

compared each controllers value as 0.2220, 0.8487 and 1.5505 for fuzzy PIλDµ than fuzzy 

PID and PID respectively and among them the best controller selected which have small 

ITAE which is fuzzy PIλDµ for trajectory tracking application. 
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In research paper(H., Bendary, & Elserafi, 2016) the researcher suggested a fractional order 

fuzzy PID controller for the trajectory tracking purpose of a multi input multi output highly 

nonlinear robot manipulator and implemented the proposed controller on the first three joints 

of PUMA 560 robot manipulator while the rest three are fixed. The research also designs 

different type of controller namely PID, FOPID and FUZZY-PID to compare and analyze 

the result of each different controller with fractional order fuzzy PID.  

The kinematics and dynamics model of the robot manipulator is also designed while the 

matched uncertainty is considered and imposed as input to check the robustness of the 

controller with matched uncertainty. On the proposed controller the fuzzy logic is served as 

a supervisory tuning for the gain parameter of the controller while the error and the error 

derivative were serves as input for the fuzzy logic. These four different controllers provide 

different RMS performance on the same model as 0.04676 rad, 0.001799 rad, 0.02278 rad 

and 0.0008419 rad for PID, FOPID, Fuzzy-PID and FO-Fuzzy-PID respectively. 

As we studied other related works there is a trajectory tracking problem still needs to be 

fixed in order to make our system to perform in the highly nonlinear environment and 

matched uncertainty, so we will propose an adaptive fuzzy integral sliding mode controller 

that will overcome the trajectory tracking problem. 
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CHAPTER 3  

PROPOSED METHODOLOGY  

 

Different robot has different type of connection of links through their joint, for a robot 

manipulator to have a rotational movement the links should be joined with revolute joint 

whereas for sliding movement we need to attach the links in a prismatic way, so that each 

link can achieve the required movement and desired positions using the forward kinematics 

and inverse kinematics. The independent input movement that will be achieved by the 

relative movement of the links in a manipulator is described using degree of freedom, each 

consecutive links in a joint have its own degree of freedom but differ based on the connection 

of each independent links, for PUMA560 robot there are 6 revolute joints connected to 

perform the required trajectory, the kinematics and dynamics of the PUMA560 robot have 

been studied to apply different type of controller in order to choose the best controller 

performance, for this research purpose we fixed the first 3 links in order to study the rest 3 

links of the robot manipulator.  

3.1. Kinematics and Dynamics of Robot Manipulator  

For describing, analyzing and designing a robot manipulator a brief knowledge about the 

kinematics and dynamics of the manipulator plays a key role, the representation and 

explanation of how the motion, position, and acceleration of the robot manipulator and the 

cause of the motion will be briefly discussed below.  

3.1.1. Kinematics  

Kinematics is the analysis of the motion, positions, and acceleration of a rigid body without 

considering the force or torque associated which those motions. As we know motion is the 

crucial feature for robotic manipulators while designing the robot's movement and analysis 

the system robot kinematics is the fundamental aspect. 

To represent the kinematics of a mechanism or a rigid body we use two different possible 

ways which are Cartesian and Quaternion space. For this research purpose, we use Cartesian 

space representation of the robot manipulator in space. 
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3.1.1.1. Forward kinematics of robot manipulator  

computing the angle parameter of the given mechanism will determine and describes the 

position and orientation of the end effector of the robot manipulator. For forward kinematics, 

the first step is to find the homogenous transformation matrix of the manipulator from the 

first link to the end effector link  

 

Figure 3.1: Frame representation of 3 DOF robot manipulator 

The Denavit-Hatrenberg (DH) convention will be used to find the homogenous 

transformation matrix. And the value of each link is fully described below  

 

Table 3.1: DH parameter of a 3 DOF planner robot manipulator 

 

Using the general transformation matrix to find the transformation matrix we can derive the 

homogenous transformation matrix for each link and using matrix multiplication we can get 

the forward kinematics of the end effector.  

 𝑇𝑖−1
𝑖

= [

cos(𝜃𝑖) cos(𝛼𝑖) ∗ −sin(𝜃𝑖) sin(𝛼𝑖) sin(𝜃𝑖) ɑ𝑖 cos(𝜃𝑖)

sin(𝜃𝑖) cos(𝛼𝑖) ∗ cos(𝜃𝑖) sin(𝛼𝑖) ∗ −cos(𝜃𝑖) ɑ𝑖 sin(𝜃𝑖)

0 sin(𝛼𝑖) cos(𝛼𝑖) 𝑑𝑖

0 0 0 1

] 
(3.8) 

𝜃1 

𝜃2 

𝜃3 

𝐿1 

𝐿2 

𝐿3 
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 𝑇0
3 = 𝑇0

1 𝑇1
2 𝑇2

3    (3.9) 

𝑇0
1 = [

cos 𝜃1 −sin 𝜃1 0 𝐿1(cos 𝜃1)
sin 𝜃1 cos 𝜃1 0 𝐿1 (sin 𝜃1)

0 0 1 0
0 0 0 1

] 

𝑇1
2 = [

cos 𝜃2 −sin 𝜃2 0 𝐿2 (cos 𝜃2)
sin 𝜃2 cos 𝜃2 0 𝐿2 (sin 𝜃2)

0 0 1 0
0 0 0 1

] 

𝑇2
3 = [

cos 𝜃3 −sin 𝜃3 0 𝐿3 (cos 𝜃3)
sin 𝜃3 cos 𝜃3 0 𝐿3 (sin 𝜃3)

0 0 1 0
0 0 0 1

] 

 

The total homogenous transformation matrices are the matrix multiplication of the individual 

rotational matrixes and translation matrixes  

 

 

(3.10) 

The homogenous transformation matrix defined in (3.10) is the one that defines the forward 

kinematics of the 3-DOF robotic arm shown in Figure 3.3. From this matrix, the end effectors 

position. and orientation is a non-linear function of joint variables P (x, y) = f (𝜃). Having 

derived the forward kinematics or direct kinematics of Figure 3.3, it's now possible to define 

the end-effector’s position and orientation from the individual joint angles (𝜃1, 𝜃2𝑎𝑛𝑑 𝜃3). 

 X =  𝐿1cos (𝜃1)  + 𝐿2cos (𝜃1 + 𝜃2)  + 𝐿3cos (𝜃1 + 𝜃2 + 𝜃3)  (3.11) 

 Y  =  𝐿1sin (𝜃1) + 𝐿2sin(𝜃1 + 𝜃2) + 𝐿3sin(𝜃1 + 𝜃2 + 𝜃3)  (3.12) 

To determine the velocity of the robot’s end-effector the Jacobean matrix can be applied. 

The end effector’s velocity in the base frame has two components, the first component is the 
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linear velocity(𝑉𝑛
0 ) and the second component is the angular velocity (𝜔𝑛

0) for n number of 

joints. 

 

 [
𝑉𝑛

0 
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0 ]=
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�̇�3

] (3.13) 

 

Where [
𝑉𝑛

0 

𝜔𝑛
0 ] is end effector’s velocity 

         𝑉𝑛
0 is the linear velocity of the end effector from frame 0 to frame n in the base frame  

            𝜔𝑛
0 is end effector’s rotational velocity from frame 0 to frame n in the base frame  

            �̇� is the time derivative of each joint parameters  

            J is a Jacobean matrix 

Jacobian matrix is a matrix that transforms the joint velocity �̇� into the end effectors 

velocity. Rank deficiency of Jacobean represents singularity. This means that the joint 

angular velocities become infinite when the determinant of the Jacobian matrix component 

becomes zero. This is when the angular position of the third elbow joint 𝜃3 is either 00 or1800 

which leads to the loss of solution number of the inverse kinematics.  

 

J=

[
 
 
 
 
 

𝜕𝑥

𝜕𝜃1
  

𝜕𝑥

𝜕𝜃2
  

𝜕𝑥

𝜕𝜃3
 

𝜕𝑦

𝜕𝜃1
  

𝜕𝑦

𝜕𝜃2
  

𝜕𝑦

𝜕𝜃3

𝜕𝑧

𝜕𝜃1
  

𝜕𝑧

𝜕𝜃2
  

𝜕𝑧

𝜕𝜃3]
 
 
 
 
 

 =[
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22    𝑎23
] (3.14) 

  𝑎11 = 𝐿2 sin(𝜃1 + 𝜃2) − 𝐿1 sin(𝜃1) − 𝐿3sin(𝜃1 + 𝜃2 + 𝜃3)      

  𝑎12 = −𝐿2sin (𝜃1 + 𝜃2) − 𝐿3sin(𝜃1 + 𝜃2 + 𝜃3) 

  𝑎13 = −𝐿3sin(𝜃1 + 𝜃2 + 𝜃3) 
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  𝑎21 = 𝐿2 cos(𝜃1 + 𝜃2) + 𝐿1 cos(𝜃1) + 𝐿3cos(𝜃1 + 𝜃2 + 𝜃3) 

  𝑎22 = 𝐿2 cos(𝜃1 + 𝜃2) + 𝐿3cos(𝜃1 + 𝜃2 + 𝜃3) 

   𝑎23 = 𝐿3cos(𝜃1 + 𝜃2 + 𝜃3) 

 
(�̇�
�̇�
) = 𝐽 ∗ �̇� (3.15) 

   

3.1.1.2. Inverse kinematics  

Inverse kinematics is a function that tells us the joint angle we need to attain a particular 

robot end-effector position. The inverse kinematics tries to answer what should the joint 

angle be set in order for the robot end-effector to get to the particular pose? Which is the key 

for arm type robot? There are several approaches to Figure out the inverse kinematics of a 

robotic manipulator, for our robot arm manipulator we will use the geometry method as 

described below.  

 

Figure 3.2: Kinematic representation of a manipulator 

 

From the transformation matrix, we found the forward kinematics of the robot arm 

manipulator from equation 3.11 and equation 3.12 respectively as follow 

             X = L1cos (𝜃1) +L2 cos (𝜃1 + 𝜃2) +L3 cos (𝜃1 + 𝜃2 + 𝜃3) 

             Y = L1 sin (𝜃1) +L2 sin (𝜃1 + 𝜃2) +L3 sin (𝜃1 + 𝜃2 + 𝜃3) 

 ϕe =𝜃1 + 𝜃2 + 𝜃3 (3.16) 
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Figure 3.3: Inverse kinematics of a 3 DOF planner robot manipulator 

 

 𝑥𝑤 = 𝑥𝑒 − 𝑙3 cosϕe (3.17) 

 𝑦𝑤 = 𝑦𝑒 − 𝑙3 sinϕe (3.18) 

 𝑙1
2 + 𝑙2

2 − 2𝑙1𝑙2 cos 𝛽 (3.19) 

 
𝛽 = cos−1 (

𝑙1
2 + 𝑙2

2 − 𝑟2

2𝑙1𝑙2
) (3.20) 

 
𝛾 = cos−1 (

𝑟2 + 𝑙1
2 − 𝑙2

2

2𝑟𝑟1
) (3.21) 

Where    

                𝑟2 = 𝑥𝑤
2 + 𝑦𝑤

2  

𝜃2 = 𝜋 − 𝛽 

Similarly, 𝑟2 + 𝑙1
2 − 2𝑟𝑙1 cos 𝛾 = 𝑙2

2 

𝛼 = tan−1 (
𝑦𝑤

𝑥𝑤
) 

𝜃1 = 𝛼 − 𝛾 

Then,  

 𝜃3 = ϕe − 𝜃1 − 𝜃2                         (3.22) 
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3.1.2. Dynamic analysis and forces 

In the previous section, we studied the kinematics position and differential motion of the 

robot. Dynamics of the robot is related to the accelerations, loads, masses and inertias. In 

order to be able to accelerate a mass, we need to exert a force on it. Similarly, to cause an 

angular acceleration in a rotation body a torque must be exerted on it.  

Actuators with a sufficient amount of torque and force are required in order to get an 

accelerated robot link which will move them to proper and required velocity and acceleration 

if the link doesn’t get the necessary amount of torque and force it will not move and preserve 

the required positional accuracy.   

The dynamic calculation that controls the movement of the link will tell us the about 

strongness of the actuator, to do so a relationship of inertia(I), mass(m), force(F), angular 

acceleration and torque is necessary. Using the information achieved from the above relation 

and considering the external loads we can design the proper robot dynamics.  

Using the Lagrangian method, we can derive the dynamic equation of motion for 3 DOF 

robot manipulating arm of the below Figure3.4. 

 

Figure 3.4: Dynamics representation of 3 DOF planner robot manipulator 

 

For link 1, 2 and 3 the kinetic and potential energies are illustrated as follow(Al-Shabi et al., 

2017)  

 𝑑

𝑑𝑡

𝜕ℒ

𝜕𝜃�̇�
−

𝜕ℒ

𝜕𝜃𝑖
= 𝜏𝑖                         (3.23) 
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 ℒ = 𝑘1 + 𝑘2 + 𝑘3 + 𝑝1 + 𝑝2 + 𝑝3                         (3.24) 

 𝑘𝑖 =
1

2
𝑚𝑖||𝑣𝑖||

2 +
1

2
𝐼𝑖(∑ �̇�𝑖𝑖 )

2
                         (3.25) 

 𝑝𝑖 = 𝑚𝑖𝑔𝑙𝑖,𝑦                         (3.26) 

Where: ||𝑣𝑖|| the magnitude of the velocity 

             𝑙𝑖,𝑦 the position of the centroid that is dependent on joint coordinate  

As we know the Lagrangian equation is a sum of the kinetic and potential energy, so to drive 

the components of lagrangian we need to compute the derivative of each components and 

use the kinetic and potential energy formula.  

𝑥1 = 𝐿1𝑐𝑜𝑠𝜃1 

𝑦1 = 𝐿1𝑠𝑖𝑛𝜃1 

𝑥2 = 𝐿1𝑐𝑜𝑠𝜃1 + 𝐿2cos (𝜃1 + 𝜃2) 

𝑦2 = 𝐿1𝑠𝑖𝑛𝜃1 + 𝐿2sin (𝜃1 + 𝜃2) 

𝑥3 = 𝐿1𝑐𝑜𝑠𝜃1 + 𝐿2 cos(𝜃1 + 𝜃2) + 𝐿3 cos(𝜃1 + 𝜃2 + 𝜃3) 

𝑦3 = 𝐿1𝑠𝑖𝑛𝜃1 + 𝐿2 sin(𝜃1 + 𝜃2) + 𝐿3 sin(𝜃1 + 𝜃2 + 𝜃3) 

 �̇�1 = −𝐿1�̇�1𝑠𝑖𝑛𝜃1                         (3.27) 

 �̇�1 = 𝐿1�̇�1𝑐𝑜𝑠𝜃1                         (3.28) 

 �̇�2 = −𝐿1�̇�1𝑠𝑖𝑛𝜃1−𝐿2(�̇�1 + �̇�2)sin (𝜃1 + 𝜃2)                         (3.29) 

 �̇�2 = 𝐿1�̇�1𝑐𝑜𝑠𝜃1+𝐿2(�̇�1 + �̇�2)cos (𝜃1 + 𝜃2)                         (3.30) 

 �̇�3 = −𝐿1�̇�1𝑠𝑖𝑛𝜃1−𝐿2(�̇�1 + �̇�2) sin(𝜃1 + 𝜃2) − 𝐿3(�̇�1 + �̇�2 +

�̇�3) sin(𝜃1 + 𝜃2 + 𝜃3)                         
(3.31) 

 �̇�3 = 𝐿1�̇�1𝑐𝑜𝑠𝜃1+𝐿2(�̇�1 + �̇�2) cos(𝜃1 + 𝜃2) + 𝐿3(�̇�1 + �̇�2 +

�̇�3) cos(𝜃1 + 𝜃2 + 𝜃3)            
(3.32) 
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After calculating the torque using the derivation of the Lagrangian equation we can use it to 

drive the final dynamic equation of three degree of freedom robot arm manipulator which 

includes asymmetric and positive definite inertia matrix ( 𝑀(𝜃),  Coriolis and centrifugal 

matrix (𝑐(𝜃, �̇�)) and the gravitational matrix (𝑔(𝜃)). 

 𝜏 = 𝑀(𝜃)�̈� + 𝑐(𝜃, �̇�) + 𝑔(𝜃)                         (3.33) 

 
𝑀(𝜃) = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

]                         (3.34) 

 

𝑐(𝜃, �̇�) = [

𝑏1

𝑏2

𝑏3

]                         (3.35) 

 
𝑔(𝜃) = [

𝑔1

𝑔2

𝑔3

]                         (3.36) 

   

Table 3.2: Physical parameter of the 3 DOF planner robot manipulator 

Parameter Notation Value 

Link length 1 𝐿1 0.2m 

Link length 2 𝐿2 0.2m 

Link length 3 𝐿3 0.2m 

Mass of link 1 𝑚1 1kg 

Mass of link 2 𝑚2 1kg 

Mass of link 3 𝑚3 1kg 

Link 1 center of mass 𝑙𝑐1 0.1m 

Link 2 center of mass 𝑙𝑐2 0.1m 

Link 3 center of mass 𝑙𝑐3 0.1m 

Inertia of link 1 I1 0.5kg*m2 

Inertia link 2 I2 0.5kg*m2 

Inertia link 3 I3 0.5kg*m2 

Gravitational acceleration g 9.8m/s2 
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3.2. The Proposed Adaptive Fuzzy Integral Sliding Mode (AFISMC) 

Control of a nonlinear system is classified based on the model as model-based and non-

model based, for non-model-based system detailed mathematical knowledge is not necessary 

whereas for the model-based system the detailed analysis of dynamics of the system is 

required to obtain the desired control mechanism.  

The variable structure control system is a robust way of controlling uncertainties and external 

disturbance where the switching function control determines which structural control law 

will be applied by changing them. Sliding mode control is one of the methods in the variable 

structure control system for robust control of a system which is insensitive for uncertainty 

and disturbance for a nonlinear system. 

Since sliding mode control is affected by external disturbance during the reaching phase, it 

is difficult to control some uncertainties even the matched one. To overcome this problem 

an efficient and precise way of controlling method has been suggested which is integral 

sliding mode controller. (Edwards et al., 2016). 

3.2.1. Integral sliding mode control 

For a nonlinear system with disturbance and parametric uncertainties, a sliding mode 

controller is an efficient and accurate way to handle the system dynamics, the compensated 

dynamic using sliding mode control system becomes insensitive for the matched and 

unmatched disturbance but as a drawback, the controller will develop a chattering problem 

for the system. 

For a linear system, the traditional way of controlling which is proportional integral 

derivative (PID) and proportional derivative (PD) can handle but when the nonlinear 

dynamics overcome the linear dynamics those technique fails to compensate the dynamics. 

The total torque will be written as  

 𝜏 = [𝜏1 𝜏1 𝜏3]𝑇 = 𝑀(𝜃)�̈� + 𝑐(𝜃, �̇�) + 𝑔(𝜃)                         (3.37) 
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Where 𝜃, 𝜃,̇ 𝜃 ̈ represents the vectors of joint position, velocity and acceleration 

respectively, 𝑀(𝜃) ∈ 𝑅𝑛𝑥𝑛 is inertia matrix, 𝑐(𝜃, �̇�) ∈ 𝑅𝑛𝑥1 is centripetal Coriolis and 

𝑔(𝜃)  ∈ 𝑅𝑛𝑥1 is gravitational matrix  

For any n number of degree of freedom robot the generalized dynamic equation is given by 

the equation below  

𝜏 = 𝑀(𝜃)�̈� + 𝑐(𝜃, �̇�) + 𝑔(𝜃) 

 

[

𝜏1

𝜏2

𝜏3

] = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] [

�̈�1

�̈�2

�̈�3

] + [

𝑏1

𝑏2

𝑏3

] + [

𝑔1

𝑔2

𝑔3

]                         (3.38) 

 

From the above equation, we can get each torque individually  

 𝜏1 = [((𝑎11 ∗ �̈�1) + (𝑎12 ∗ �̈�2) + (𝑎13 ∗ �̈�3)) + 𝑏1 + 𝑔1]                         (3.39) 

 𝜏2 = [((𝑎21 ∗ �̈�1) + (𝑎22 ∗ �̈�2) + (𝑎23 ∗ �̈�3)) + 𝑏2 + 𝑔2]                         (3.40) 

 𝜏3 = [((𝑎31 ∗ �̈�1) + (𝑎32 ∗ �̈�2) + (𝑎33 ∗ �̈�3)) + 𝑏3 + 𝑔3]                         (3.41) 

 �̈� =  𝑀−1(𝜃)(𝜏 − 𝑐(𝜃, �̇�) − 𝑔(𝜃))                         (3.42) 

When a sliding mode have the equation of motion same order as the original system is 

called an ISMC (integral sliding mode controller). The logic behind the ISMC 

methodology is to find an expression which satisfies 𝑥(𝑡) ≡  𝑥0(t) at all-time t > 0, the 

equivalent control(𝑢1𝑒𝑞) of the control part, should obey the expression   

 

 𝐵(𝑥)𝑢1𝑒𝑞 = −ℎ(𝑥, 𝑡)                         (3.43) 

 

The first step for designing the ISMC for a dynamic model whose state-space equation is 

expressed as  

 

 �̇� = 𝑓(𝑥) + 𝐵(𝑥)𝑢 + ℎ(𝑥, 𝑡)                         (3.44) 
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Where 𝑥 ∈ 𝑅𝑛 a representation of a state vector, 𝑢 ∈ 𝑅𝑚 is a representation of control input 

of the system and ℎ(𝑥, 𝑡) is a representation of perturbation vector caused by the dynamic 

system of uncertainty and disturbance here the perturbation vector is assumed to ensure the 

matched condition. 

The control law for the dynamic system of the state space equation is described as following   

 𝑢 = 𝑢0 + 𝑢1                         (3.45) 

In which 𝑢0 represents the performance of the nominal control and 𝑢1 represents the 

discontinuous control, which is responsible to reject the uncertainty and disturbance of a  

perturbation vector for the dynamic manipulation of the robot arm to ensure the sliding 

motion(Esmaili & Haron, 2017).  

The sliding manifold of the dynamic system is represented as  

 𝑠 = 𝑠0(𝑥) + 𝑧,         𝑠, 𝑠0(𝑥), 𝑧 ∈ 𝑅                         (3.46) 

                𝑧 = 𝑠0(𝑥) − 𝑠 

                �̇� =
𝜕𝑠0(𝑥)

𝜕𝑥
 

 �̇� = − 
𝜕𝑠0

𝜕𝑥
�̇� =

𝜕𝑠0

𝜕𝑥
(𝑓(𝑥) + 𝐵(𝑥)𝑢0𝑥),      𝑍(0) = −𝑠0(𝑥(0))                         (3.47) 

 

The above equation 3.19 contains both a linear combination in sliding mode 𝑠0(𝑥) of the 

system state and expression for integral design Z. To fulfill the initial condition of  𝑍(0) the 

condition 𝑠(0) = 0 must be satisfied, and it is shown that the discontinuity control rejects 

the uncertainty and disturbance parameters(Vadim Utkin, Guldner, & Shi, 2017).  

When we come to the real practical application the high-frequency vibration will lead the 

system to chattering problem when applying the discontinuous control 𝑢1 to the dynamic 

model of a robotic manipulator, in order to overcome this chattering problem and reduce the 

effect on our dynamic system the equation will be modified to 

                𝑠 = 𝑠0(𝑥) + 𝑧, 
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 �̇� = − 
𝜕𝑠0

𝜕𝑥
�̇� =

𝜕𝑠0

𝜕𝑥
{𝑓(𝑥) + 𝐵(𝑥)𝑢 − 𝐵(𝑥)𝑢1}                         (3.48) 

              𝑧(0) = −𝑠0(𝑥(0)) 

  𝑢 = 𝑢0 + 𝑢1𝑒𝑞                                                

By solving the time derivative of s and compute to zero (�̇� = 0) for control part( 𝑢1) it can 

be checked that  𝑢1𝑒𝑞 of 𝑢1 cancels the uncertainty and disturbances of the dynamic robot 

manipulator(Vadim Utkin, 1992; Vadim Utkin et al., 2017). 

An equational expression that describes the motion caused due to the applied force on robot 

manipulator is called dynamic equation of the robot arm. The dynamic equation of the 

manipulator helps to relate, define and express displacement, velocity, and acceleration of 

the manipulator when force is applied to it.  

𝑀(𝜃)�̈� + 𝑐(𝜃, �̇�) + 𝑔(𝜃) = 𝜏 

To make the design easy we change the variables as  

 𝑀(𝜃)�̈� + 𝑁(𝜃, �̇�) = 𝜏                         (3.49) 

where 𝑁(𝜃, �̇�) = 𝑐(𝜃, �̇�) + 𝑔(𝜃) , this expression doesn’t contain the acceleration term �̈�, 

let's express the dynamics model as a combination of with ideal part and the uncertainty 

and disturbances term (perturbation term) 

 𝑀0(𝜃)�̈� + 𝑁0(𝜃, �̇�) = 𝜏 + 𝐻(𝜃, �̇�, �̈�)                         (3.50) 

Where  

 𝑀0(𝜃) = 𝑀(𝜃) − ∆𝑀 

               𝑁0(𝜃, �̇�) = 𝑁(𝜃, �̇�) − ∆𝑁, 

𝐻(𝜃, �̇�, �̈�) = −(∆𝑀�̈� + ∆𝑁) 

 ∆𝑀 And ∆𝑁 are unknown matrices of the dynamic manipulator's motion vectors of 

𝑀(𝜃) 𝑎𝑛𝑑 𝑁(𝜃, �̇�) and the perturbation vector, 𝐻(𝜃, �̇�, �̈�) satisfies the matching condition.  
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Following the control law of the dynamic model of the robot manipulator given on equation 

3.45 and the computed torque control method stated in (Dodds, 2015).  

The system can be expressed as follow  

𝜏 = 𝜏0 + 𝜏1  

              �̈� = �̈�𝑑 + 𝐾𝑑�̇� + 𝐾𝑝𝑒 

 𝜏0 = 𝑀0(𝜃)[�̈�𝑑 + 𝐾𝑑�̇� + 𝐾𝑝𝑒] + 𝑁0(𝜃, �̇�)                         (3.51) 

The trajectory tracking error 𝑒 = 𝜃𝑎 − 𝜃𝑑 and �̇� = �̇�𝑎 − �̇�𝑑, where 𝜃𝑑 is the ideal or desired 

position and 𝜃𝑎 is the practical position, the nominal value of the inertia matric and Coriolis 

and gravitational force are 𝑀0(𝜃) 𝑎𝑛𝑑  𝑁0(𝜃, �̇�) 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦,  𝐾𝑝 𝑎𝑛𝑑 𝐾𝑖 are (𝑛𝑥𝑛) 

diagonal matrices which ensure the stability of the error system, 𝐾𝑝 =

𝑑𝑖𝑎𝑔(𝐾𝑝, 1, … . . 𝐾𝑝 , 𝑛) > 0 𝑎𝑛𝑑 𝐾𝑖 = 𝑑𝑖𝑎𝑔(𝐾𝑖, 1, … . . 𝐾𝑖 , 𝑛) > 0. 

The sliding manifold expressed in equation 3.46 can be rewritten using a definite positive 

gain and identity (𝑛𝑥𝑛) matrix as follow  

𝑠 = 𝑠0(𝑥) + 𝑧 

𝑠0 = [𝐶 𝐼] [
𝑒
�̇�
] 

 
�̇� = −[𝐶 𝐼] [

�̇�
𝑀0

−1𝑁0 + 𝑀0
−1𝜏0 − �̈�𝑑

]                         (3.52) 

𝑧(0) = −𝑐𝑒(0) + �̇�(0) 

Substituting 𝜏0 in equation 3.25 vector 𝑠 can be more simplified as              

 𝑠 = �̇� + 𝐾𝑝𝑒 + 𝐾𝑖 ∫ 𝑒(ξ
𝑡

0
)𝑑ξ − �̇�(0)−𝐾𝑝𝑒(0) (3.53) 

From the above, we can see that the condition 𝑠(0) = 0 is satisfied and resulting in the 

occurrence of sliding mode starting from 𝑡 = 0. Equation 3.53 represents the natural 

occurrence of the basic design equation of ISM. The time derivative of  𝑠(𝑡) is  

 𝑑𝑠

𝑑𝑡
= �̇� = �̇�0 + �̇� = 𝜁1 + 𝜁2𝜏0 + 𝑀−1𝜏1 (3.54) 
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Where 𝜁1 = (𝑀0
−1𝑁0 − 𝑀−1𝑁)𝑎𝑛𝑑 𝜁2 = (𝑀−1 − 𝑀0

−1) these parameters represent the 

mismatch between the nominal and real parameters 𝑀0, 𝑁0(𝜃, �̇�) 𝑎𝑛𝑑 𝑀(𝜃),𝑁(𝜃, �̇�) 

respectively, 𝜁1𝑎𝑛𝑑 𝜁2𝜏0  are bounded. 

To reject overall uncertainty and disturbance torque 𝐻(𝜃, �̇�, �̈�) of the system, we design a 

discontinuous control 𝜏1 with a positive constant gain 𝛤0 as follow. 

 𝜏1 = −Ґ0𝑠𝑖𝑔𝑛(𝑠) (3.55) 

To stabilize the sliding mode, we will consider a Lyapunov function as  

                  𝑉 = 1
2𝑠𝑇𝑠⁄ > 0 𝑓𝑜𝑟 𝑠 ≠ 0 

 V̇ = sTṡ = sT(ζ1 + ζ2τ0) − sTM−1Γ0sat(s) (3.56) 

The term sTM−1Γ0sat(s) will be positive because of the term  𝑀−1 and  𝛤0  are positive 

for, 𝑠 ≠ 0 on the above we clearly show the occurrence of sliding mode by bounding the 

system to manifold𝑠(𝑡) = 0, the equivalent torque can be found by  taking the time 

derivative of s to zero �̇� = 0. 

 𝜏1𝑒𝑞 = −𝑀(𝜁1 + 𝜁2𝜏0) (3.57) 

Equating equation 3.49 and equation 3.57 we will get a simplified form of the equation  

 𝑀0(𝜃)�̈� + 𝑁0(𝜃, �̇�) = 𝜏0 (3.58) 

The general integral sliding mode controller equation for a robot manipulator is stated below,  

 𝑠 = �̇� + 𝐾𝑝𝑒 + 𝐾𝑖 ∫ 𝑒(ξ
𝑡

0
)𝑑ξ − �̇�(0)−𝐾𝑝𝑒(0) (3.59) 

 𝜏1 = −𝛤0𝑠𝑎𝑡(𝑠) 

 𝜏 = 𝜏0 + 𝜏1 

 
Implementation of the integral sliding mode on 3 DOF robot manipulator  

𝜏 = 𝜏0 + 𝜏1 

𝜏0 = 𝜏𝑒𝑞 = [𝑀−1 (𝐵 + 𝐺) + �̇�]𝑀 



35 

 

Where 

 𝜏0 = [

𝜏𝑒𝑞1

𝜏𝑒𝑞2

𝜏𝑒𝑞3

] , Ґ = [

Ґ1

Ґ2

Ґ3

] , (𝑆 ∅⁄ ) =

[
 
 
 
 
𝑆

∅1
⁄

𝑆
∅2

⁄

𝑆
∅3

⁄ ]
 
 
 
 

  

𝑠𝑎𝑡 (𝑆 ∅⁄ ) =  

  1          (𝑆 ∅⁄ > 1)

−1           (𝑆 ∅⁄ < 1)

           𝑆
∅⁄        − 1 < 𝑆

∅⁄ > 1

 

 �̇� = [

�̇�1

�̇�2

�̇�3

] , 𝜏1 = 𝜏𝑠𝑎𝑡 = Ґ ∗ 𝑠𝑎𝑡 (𝑆 ∅⁄ ) 

𝜏𝑠𝑎𝑡 = [

𝜏𝑠𝑎𝑡1

𝜏𝑠𝑎𝑡2

𝜏𝑠𝑎𝑡3

] 

 𝜏 = [𝑀−1 (𝑁 + 𝐺) + �̇�]𝑀 + Ґ ∗ 𝑠𝑎𝑡 (𝑆 ∅⁄ ) (3.60) 

3.2.2. The proposed fuzzy control-based adaptation mechanism   

Fuzzy logic is a way of computing based on the degree of truth instead of crisp or Boolean 

value. In this research, we will implement the well-known adaptive fuzzy inference system 

to automatically tune the gain of the nonlinear control system which does not have prior 

information about the parameters of the system. Combination of robust control with adaptive 

fuzzy logic inference system for controlling a trajectory tracking of a robot manipulator has 

been suggested by the different researcher so far.  

For a system which has a changing dynamic parameter are need to be trained online, the 

adaptive fuzzy will try to tune the gain parameter without any information about the dynamic 

system behavior, by combining the integral sliding mode controller with adaptive fuzzy logic 

gain scheduler, we can get accurate trajectory tracking controller 

For this research, we will implement an adaptive fuzzy inference system to tune the gain of 

the integral sliding surface Ks to remain the surface to zero 𝑠=0 and the gain of the integral 

and derivative parameters of the �̇�,  𝐾𝑝 and 𝐾𝑖 to obtain the desired output.  
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Figure 3.5: Block diagram of an adaptive fuzzy gain scheduling sliding mode controller 

The above Figure shows that the general structure of the controller integrated with the robot 

manipulator where the adaptive fuzzy logic is individually applied to the sliding surface s to 

tune gain parameter Ks every time so that the sliding surface sustain on the s=0 and the 

second adaptive fuzzy logic is responsible to tune the gain parameter of the equivalent torque 

controller part. After properly tuned the total torque f the controller is feed back to the robot 

manipulator kinematics to perform the required trajectory. 

3.2.2.1. Fuzzy logic to tune sliding surface  

The sliding surface of integral sliding mode controller should be equal to zero in order to 

have a desirable reduced order dynamic when constrained to it. In ideal system the sliding 

surface is designed to satisfy the condition s=0 but when there is uncertainty the surfaces 

will have some difficulties to achieve the required, so the fuzzy logic will improve the sliding 

surface performance by approximate the sliding manifold to zero. The fuzzy logic we use 
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the output of the sliding manifold as input and take the gain parameter of the integral part as 

output then using the described fuzzy rule the system gain will be tuned. 

 

 

Figure 3.6: Block diagram of the adaptive fuzzy inference tuner of the gain 

 

To design the fuzzy inference for sliding surface, we will follow some steps: 

Step1: the controller will have one input and one output and seven linguistic membership     

function each, the input is the sliding surface s and the output is gain of an integral 

part 𝐾𝑠. 

Step2: the linguistic membership function for our fuzzy inference system are NB (Negative 

Big), NM(Negative Medium), NS(Negative Small), Z(zero), PS(positive Small), 

PM(Positive Medium) and PB(Positive Big) with the range of -0.01 to 0.01 and 

quantized as -0.01, -0.006667, -0.003333, 1.735e-18, 0.003333, 0.006667 and 0.01 

also for the gain 𝐾𝑖 the linguistic membership function are LL(Large Left), 

ML(Medium Left), SL(Small Left), Z(Zero), SR(Small Right), MR(Medium Right) 

and LR(Large Right) with the  range of -0.01 to 0.01 and quantized as -0.01, -

0.006667, -0.003333, 1.735e-18, 0.003333, 0.006667 and 0.01. 

Step3: the shape of the membership function is selected as a triangular membership function  
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Step4: the main goal of this fuzzy inference is to make the sliding surface equals to zero for   

that purpose we will state some rules and generalized as follow  

Table 3.3: Control rule of the fuzzy inference of sliding surface 

S NB MM NS Z PS PM PB 

Ks LL LM LS Z SR MR LR 

 

The general rule of the fuzzy logic controller tries to sustain the sliding surface to zero, which 

helps the control system to maintain stability and robustness.  

If (S is NB) then (Ks is LL) 

If (S is MM) then (Ks is LM) 

If (S is NS) then (Ks is LS) 

If (S is Z) then (Ks is Z) 

If (S is PS) then (Ks is SR) 

If (S is PM) then (Ks is MR) 

If (S is PB) then (Ks is LR) 

Step5: Defuzzification: for this step, we use the center of gravity. 
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3.2.2.2. Fuzzy logic to tune equivalent control law gains  

The second adaptive fuzzy inference system to tune the gain of �̇� will use the data of the 

error and derivative of the error as input and gives moderate value for the gain parameter kp 

and ki.  

 

Figure 3.7: Block diagram of the adaptive fuzzy inference tuner of the gain 

 

Step1: the controller will have two input and two output and seven linguistic membership 

function each, the input are the error and derivative of the error( �̇� 𝑎𝑛𝑑 𝑒) and the 

outputs are the gains 𝐾𝑝 and 𝐾𝑖. 

Step2: the linguistic membership function for our fuzzy inference system are NB (Negative 

Big),  N(Negative), Z(zero), P(Positive), and PB(Positive Big) with the range of -

0.01 to 0.01 and quantized as -0.01, -0.006667, -0.003333, 1.735e-18, 0.003333, 

0.006667 and 0.01 also for the gain 𝐾𝑖 the linguistic membership function are 

LL(Large Left), ML(Medium Left), SL(Small Left), Z(Zero), SR(Small Right), 

MR(Medium Right) and LR(Large Right) with the  range of -0.01 to 0.01 and 

quantized as -0.01, -0.006667, -0.003333, 1.735e-18, 0.003333, 0.006667 and 0.01. 

Step3: the shape of the membership function is selected as a triangular membership function 

Step4:  the operating rule for the membership function is stated in the below Table  

 

𝝉𝒆𝒒 
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Table 3.4: Fuzzy rule for Kp variable 

 

Table 3.5: Fuzzy rule for Ki variable 

 

The system will have 25 rules that vary in the given range of value  

If (e is NB) and (�̇� is NB) then (kp is Z) and (ki is PB) 

If (e is Z) and (�̇� is NB) then (kp is Z) and (ki is Z) 

If (e is Z) and (�̇� is NB) then (kp is Z) and (ki is PB) 

If (e is P) and (�̇� is NB) then (kp is PS) and (ki is PS) 

If (e is PB) and (�̇� is NB) then (kp is PM) and (ki is Z) 

If (e is NB) and (�̇� is N) then (kp is Z) and (ki is PB) 

If (e is N) and (�̇� is N) then (kp is PS) and (ki is P) 

If (e is Z) and (�̇� is N) then (kp is PS) and (ki is P) 
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If (e is P) and (�̇� is Z) then (kp is PS) and (ki is PM) 

If (e is PB) and (�̇� is Z) then (kp is PM) and (ki is Z) 

If (e is NB) and (�̇� is Z) then (kp is Z) and (ki is P) 

If (e is N) and (�̇� is Z) then (kp is PS) and (ki is P) 

If (e is Z) and (�̇� is Z) then (kp is PM) and (ki is PM) 

If (e is P) and (�̇� is Z) then (kp is P) and (ki is PS) 

If (e is PB) and (�̇� is Z) then (kp is PB) and (ki is Z) 

If (e is NB) and (�̇� is P) then (kp is PM) and (ki is PM) 

If (e is N) and (�̇� is P) then (kp is P) and (ki is P) 

If (e is Z) and (�̇� is P) then (kp is P) and (ki is PS) 

If (e is P) and (�̇� is P) then (kp is P) and (ki is PS) 

If (e is PB) and (�̇� is P) then (kp is PB) and (ki is Z) 

If (e is NB) and (�̇� is PB) then (kp is PM) and (ki is PM) 

If (e is N) and (�̇� is PB) then (kp is P) and (ki is PS) 

If (e is Z) and (�̇� is PB) then (kp is PB) and (ki is Z) 

If (e is P) and (�̇� is PB) then (kp is PB) and (ki is Z) 

If (e is PB) and (�̇� is PB) then (kp is PB) and (ki is Z) 

Step 5: Defuzzification: for this step we use the center of gravity method and the block 

diagram  

The proposed system will use the fuzzy logic controller to adaptively tune the gain parameter 

of the controller automatically to give a good performance and robust system. 
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CHAPTER 4  

SIMULATION DESIGN AND RESULT DISCUSSION 

 

The simulation test of the ISMC with adaptive fuzzy logic to tune the gain parameter of the 

controller for 3 DOF planner robot manipulator is carried out using the Simulink feature of 

Matlab 2019a. In this chapter, we will build the control system for both integral sliding mode 

and AFISMC with and without uncertainty for three degree of freedom robot manipulator 

whose mathematical modeling has been studied in the previous chapter briefly.  

The robustness of the designed controller is tested based on the power of disturbance 

elimination and insensitive to parameter variation in the adaptive fuzzy logic integral sliding 

mode and integral sliding mode controller. The value of disturbance applied to the 

parameters of the system is predefined as 20% of the input signal. Based on the result 

ADISMC is more robust than ISMC and SMC. 

 

Figure 4.1: Overall adaptive fuzzy integral sliding mode control 
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Figure 4.2: Inverse kinematics calculator 

 

Figure 4.3: Inertia matrix calculator 
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Figure 4.4: Equivalent control law generator 

 

Figure 4.5: Discontinues control law generator 
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Figure 4.6: Dynamic equation of the 3 DOF planner manipulator 

 

Figure 4.7: Sliding surface of the AFISMC 
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Figure 4.8: I matrix 

 

 

Figure 4.9: Sdot generator for AFISMC 
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Figure 4.10: A11 without uncertainty 

 

Figure 4.11: Inertia matrix a11 with 20% uncertainty added  

 

Figure 4.12: RMS of the desired controller 
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4.1. Performance of Integral Sliding Mode Controller  

The adaptive fuzzy integral sliding mode controller (AFISMC) response without uncertainty 

and external disturbance for the three degree of freedom robot manipulator for desired and 

actual displacement with ramp response as input is shown in Figure 4.13 and 4.14 

respectively and with sine wave as input is shown in Figure 4.15 and 4.16 respectively. 

Figure 4.17, 4.18 and 4.19 shows the performance of the adaptive integral sliding mode 

controller for trajectory tracking of link one, two and three with equivalent step response 

signal is applied. After testing the system performance without applying any external 

disturbance and uncertainty we tried to impose 20% of the input signal as uncertainty to the 

system and analyze the efficiency of the control system.  Figure 4.20, 4.21, 4.22 and 4.23 

shows the desired and actual displacement with ramp response and sine response as input 

respectively. 

 

Figure 4.13: θd and θa of the manipulator with ramp response 

 

Figure 4.14: θd and θa of the manipulator with ramp response 
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Figure 4.15: θd and θa of the manipulator with sine wave 

 

Figure 4.16: θd and θa of the manipulator with sine wave 

 

Figure 4.17: First link trajectory without disturbance 
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Figure 4.18: Second link trajectory without disturbance 

 

Figure 4.19: Third link trajectory without disturbance 

 

Figure 4.20: θd and θa of the manipulator with ramp response and 20% uncertainty 
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Figure 4.21: θd and θa of the manipulator with ramp response and 20% uncertainty 

 

Figure 4.22: θd and θa of the manipulator with sine response and 20% uncertainty 

 

Figure 4.23: θd and θa of the manipulator with sine response and 20% uncertainty 
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The comparison between the adaptive fuzzy integral sliding mode and integral sliding mode 

for step input response is shown below and the AFISMC tries to eliminate the undershoot of 

the system and have better settling and rise time than the integral slinging mode controller 

for 3 DOF robot manipulator.  

 

Figure 4.24: Comparison between FISMC and ISMC 

 

In Figure 4.24 the trajectory tracking control system with a tuned gain by fuzzy logic 

algorithm clearly shows that the settling, rise time and the undershoot of the modeled system 

is lower than the conventional integral sliding mode control.   

The trajectory tracking response of each controller for the same reference trajectory is shown 

in the Figure 4.25, Figure 4.26, Figure 4.27 and Figure 4.28, the result clearly shows that the 

adaptive fuzzy integral sliding mode controller has a better trajectory tracking compared to 

others which clearly overlaps on the reference trajectory. Whereas the adaptive fuzzy 

integral sliding mode controller with 20% matched uncertainty added on it lacks to follow 

the trajectory at the beginning of the trajectory but achieve the reference trajectory as soon 

as it begins. The integral sliding mode shows almost the same result as the adaptive fuzzy 

integral sliding mode with uncertainty.   
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Figure 4.25:  AFISM trajectory tracking 

 

Figure 4.26: AFISM with 20% uncertainty trajectory tracking 
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Figure 4.27: ISM trajectory tracking 

 

Figure 4.28: ISMC with 20% uncertainty trajectory tracking 
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As shown in the Table below the adaptive tuned gain of the integral sliding mode 

controller have a better performance than the reset. 

Table 4.1: RMS result of the trajectory tracking 

Controller  RMS (rad) 

AFISMC 0.0001435 

AFISMC +20% uncertainty 0.002188 

ISMC 0.002306 

ISMC +20% uncertainty 0.004908 

 

On paper (H. et al., 2016) the researchers suggest a fraction order fuzzy PID for trajectory 

tracking of  robot arm and tested on PUMA 560 robot arm for the first 3 joints and the result 

was discussed as follow and compare their result using different methodology among them 

the fractional order fuzzy PID give a better result. As the paper presents the fuzzy logic was 

served as a supervisory to automatically tune the gain parameter of the PID to get a better 

result. The RMS value of the trajectory error of the different method was listed as 0.04676 

rad, 0.001799 rad, 0.02278 rad and 0.0008419 rad for PID, FOPID, Fuzzy-PID and FO-

Fuzzy-PID respectively. 

We implement the integral sliding mode controller with tuned gain using fuzzy logic and get 

a better result. Table 4.2 shows the root mean square error (RMS) of the trajectory tracking 

of our suggested control method on PUMA 560 robot dynamics. 

 
RMS= 

√(𝑥𝑎𝑐𝑡−𝑥𝑑𝑒𝑠)
2+(𝑦𝑎𝑐𝑡−𝑦𝑑𝑒𝑠)

2+(𝑧𝑎𝑐𝑡−𝑧𝑑𝑒𝑠)
2

3
 (4.1) 

Table 4.2: Suggested system RMS trajectory error on Puma 560 

Controller type  RMS (rad) 

AFISMC 0.0001517 

 

 

𝐼𝑇𝐴𝐸 = ∫ 𝑡|𝑒|dt (4.2) 

On paper(Kumar et al., 2018) the researcher applied Fuzzy PIλDµ, Fuzzy PID and PID 

controllers for trajectory tracking with integral time absolute error (ITAE) of 0.2220, 0.8487 

and 1.5508  or the robot manipulator, while our proposed system have a good performance 

with ITAE of  0.03315. 
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CHAPTER 5  

CONCLUSION 

 

In trajectory tracking of a robot, manipulators robustness plays a key feature, obtaining 

robustness in a system with matched uncertainty and external disturbance is a difficult and 

main target, in this paper we suggested a modified ISMC to obtain the robustness for the 

trajectory tracking of a 3-DOF robot manipulator. 

In this study ISMC with fuzzy supervisory to tune the gain parameter of the 3-DOF robot 

manipulator has been implemented to achieve the required trajectory tracking of the robot 

arm with minimum trajectory error and highly robust system. the final result we achieved 

from the simulation has been compared with ISM and AFISM while applied 20% of inputs 

matched uncertainty to the system and tries to analyze the results. after comparing our result, 

it is clear that the automatic fuzzy gain tuning mechanism provides a better result to our 

trajectory tracking system model compared to the traditional ISMC. 

We implement the suggested system on the well-known PUMA 560 six degree of freedom 

robot manipulator while the three joint are fixed and compare the achieved result with other 

researcher work who design a robust trajectory tracking robot manipulator on PUMA 560 

robot manipulator and get a better performance on the trajectory tracking and less root mean 

square error (RMS) relative to them. 
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APPENDIX 1: DYNAMIC EQUATION OF THE ROBOT MANIPULATOR  

 

𝑎11 = 𝑚1𝑙𝑐1
2 + 𝑚2(𝐿1

2 + 𝑙𝑐2
2 + 2𝐿1𝑙𝑐2𝑐𝑜𝑠𝜃2)

+ 𝑚3(𝐿1
2 + 𝐿2

2 + 𝑙𝑐3
2 + 2𝐿1𝐿2𝑐𝑜𝑠𝜃2 + 2𝐿1𝑙𝑐3 cos(𝜃2 + 𝜃3)

+ 2𝐿2𝑙𝑐3 cos(𝜃3)) + 𝐼1 + 𝐼2+𝐼3 

𝑎12 = 𝑚2(𝑙𝑐2
2 + 𝐿1𝑙𝑐2 cos(𝜃3)) + 𝑚3(𝐿2

2 + 𝑙𝑐3
2 + 𝐿1𝐿2𝑐𝑜𝑠𝜃2

+ 𝐿1𝑙𝑐3 cos(𝜃2 + 𝜃3) + 2𝐿2𝑙𝑐3𝑐𝑜𝑠𝜃3) + 𝐼2+𝐼3 

𝑎13 = 𝑚3(𝑙𝑐3
2 + 𝐿1𝑙𝑐3 cos(𝜃2 + 𝜃3) + 𝐿2𝑙𝑐3𝑐𝑜𝑠𝜃3)+𝐼3 

𝑎22 = 𝑚2𝑙𝑐2
2 + 𝑚3(𝐿2

2 + 𝑙𝑐3
2 + 2𝐿2𝑙𝑐3 cos(𝜃2 + 𝜃3))+𝐼2+𝐼3 

𝑎23 = 𝑚3(𝑙𝑐3
2 + 𝐿2𝑙𝑐3𝑐𝑜𝑠𝜃3)+𝐼3 

𝑎33 = 𝑚3𝑙𝑐3
2 +𝐼3 

𝑏1 = −𝑚2𝐿1𝑙𝑐2(2�̇�1�̇�2 + �̇�2
2) sin 𝜃2

− 𝑚3[𝐿1𝐿2(2�̇�1 + �̇�2) sin 𝜃2 + 𝐿1 𝑙𝑐3(2�̇�1 + �̇�2

+ �̇�3) sin(𝜃2 + 𝜃3) + 𝐿1𝑙𝑐3(2�̇�1 + �̇�2 + �̇�3) sin 𝜃3] 

𝑏2 = −𝑚2[𝐿1𝑙𝑐2(�̇�1
2 + �̇�1�̇�2) sin 𝜃2 + 𝐿2𝑙𝑐2�̇�1�̇�2 sin 𝜃2]

− 𝑚3[𝐿1𝐿2(�̇�1
2 + �̇�1�̇�2) + 𝐿1𝑙𝑐3(�̇�1

2 + �̇�1�̇�2 + �̇�1�̇�3) sin(𝜃2 + 𝜃3)

+ 𝐿2𝑙𝑐3(�̇�1
2 + 2�̇�1�̇�2 + �̇�1�̇�3 + �̇�2

2 + �̇�2�̇�3) sin 𝜃3

+ 𝐿1𝐿2�̇�1�̇�2 sin 𝜃2 + 𝐿1𝑙𝑐3�̇�1�̇�2 sin(𝜃2 + 𝜃3)

+ 𝐿2𝑙𝑐3(2�̇�1 + 2�̇�2 + �̇�3) sin 𝜃3] 

𝑏3 = −𝑚3[𝐿1𝑙𝑐3(�̇�1
2 + �̇�1�̇�2 + �̇�1�̇�3) sin(𝜃2 + 𝜃3) + 𝐿2𝑙𝑐3(�̇�1

2 + 2�̇�1�̇�2 + �̇�1�̇�3

+ �̇�2
2 + �̇�2�̇�3) sin 𝜃3 + 𝐿1𝑙𝑐3�̇�1�̇�3 sin(𝜃2 + 𝜃3)

+ 𝐿2𝑙𝑐3(�̇�1�̇�3 + �̇�2�̇�3) sin 𝜃3] 

𝑔1 = 𝑔[cos 𝜃1(𝑚1𝑙𝑐1 + 𝑚2𝐿1 + 𝑚3𝐿1) + cos(𝜃1 + 𝜃2) (𝑚2𝑙𝑐2 + 𝑚3𝐿2)

+ cos(𝜃1 + 𝜃2 + 𝜃3) (𝑚3𝑙𝑐3)] 

𝑔2 = 𝑔[(𝑚2𝑙𝑐2 + 𝑚3𝐿2) cos(𝜃1 + 𝜃2) + 𝑚3𝑙𝑐3 cos(𝜃1 + 𝜃2 + 𝜃3)] 

𝑔3 = 𝑔(𝑚3𝑙𝑐3 cos(𝜃1 + 𝜃2 + 𝜃3)) 
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After inserting the value of each parameter to the dynamic’s equation  

𝑎11 = 𝑚1𝑙𝑐1
2 + 𝑚2(𝐿1

2 + 𝑙𝑐2
2 + 2𝐿1𝑙𝑐2𝑐𝑜𝑠𝜃2)

+ 𝑚3(𝐿1
2 + 𝐿2

2 + 𝑙𝑐3
2 + 2𝐿1𝐿2𝑐𝑜𝑠𝜃2 + 2𝐿1𝑙𝑐3 cos(𝜃2 + 𝜃3)

+ 2𝐿2𝑙𝑐3 cos(𝜃3)) + 𝐼1 + 𝐼2+𝐼3 

𝑎11 = 1.65 + 0.12𝑐𝑜𝑠𝜃2 + 0.04 cos(𝜃2 + 𝜃3) + 0.04 cos(𝜃3) 

𝑎12 = 𝑚2(𝑙𝑐2
2 + 𝐿1𝑙𝑐2 cos(𝜃3)) + 𝑚3(𝐿2

2 + 𝑙𝑐3
2 + 𝐿1𝐿2𝑐𝑜𝑠𝜃2

+ 𝐿1𝑙𝑐3 cos(𝜃2 + 𝜃3) + 2𝐿2𝑙𝑐3𝑐𝑜𝑠𝜃3) + 𝐼2+𝐼3 

𝑎12 = 1.06 + 0.06𝑐𝑜𝑠𝜃3 + 0.04𝑐𝑜𝑠𝜃2 + 0.02cos(𝜃2 + 𝜃3) 

𝑎13 = 0.51 + 0.02 cos(𝜃2 + 𝜃3) + 0.02𝑐𝑜𝑠𝜃3 

𝑎21 = 0 

              𝑎22 = 1.06 + 0.04 cos(𝜃2 + 𝜃3) 

𝑎23 = 0.51 + 0.02 cos(𝜃2 + 𝜃3) 

𝑎31 = 0 

𝑎32 = 0 

𝑎33 = 0.51 

𝑏1 = −𝑚2𝐿1𝑙𝑐2(2�̇�1 + �̇�2) sin 𝜃2�̇�2

− 𝑚3[𝐿1𝐿2(2�̇�1 + �̇�2) sin 𝜃2 + 𝐿1 𝑙𝑐3(2�̇�1 + �̇�2

+ �̇�3) sin(𝜃2 + 𝜃3) + 𝐿1𝑙𝑐3(2�̇�1 + �̇�2 + �̇�3) sin 𝜃3] 

𝑏1 = −0.02(2�̇�1�̇�2 + �̇�2
2) sin 𝜃2

− [0.04(2�̇�1 + �̇�2) sin 𝜃2 + 0.02 (2�̇�1 + �̇�2 + �̇�3) sin(𝜃2 + 𝜃3)

+ 0.02(2�̇�1 + �̇�2 + �̇�3) sin 𝜃3] 

 𝑏2 = −[0.02(�̇�1
2 + �̇�1�̇�2) sin 𝜃2 + 0.02�̇�1�̇�2 sin 𝜃2] − [0.04(�̇�1

2 + �̇�1�̇�2) +

0.02(�̇�1
2 + �̇�1�̇�2 + �̇�1�̇�3) sin(𝜃2 + 𝜃3) + 0.02(�̇�1

2 + 2�̇�1�̇�2 + �̇�1�̇�3 + �̇�2
2 +

�̇�2�̇�3) sin 𝜃3 + 0.04�̇�1 sin 𝜃2 �̇�2 + 0.02�̇�1�̇�2 sin(𝜃2 + 𝜃3) + 0.02(2�̇�1 + 2�̇�2 +

�̇�3) sin 𝜃3] 
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𝑏3 = −[0.02(�̇�1
2 + �̇�1�̇�2 + �̇�1�̇�3) sin(𝜃2 + 𝜃3)

+ 0.02(�̇�1
2 + 2�̇�1�̇�2 + �̇�1�̇�3 + �̇�2

2 + �̇�2�̇�3) sin 𝜃3

+ 0.02�̇�1�̇�3 sin(𝜃2 + 𝜃3) + 0.02(�̇�1�̇�3 + �̇�2�̇�3) sin 𝜃3] 

𝑔1 = 4.905𝑐𝑜𝑠𝜃1 + 2.943 cos(𝜃1 + 𝜃2) + 0.981 cos(𝜃1 + 𝜃2 + 𝜃3) 

𝑔2 = 2.943 cos(𝜃1 + 𝜃2) +  0.981 cos(𝜃1 + 𝜃2 + 𝜃3) 

𝑔3 = 0.981 cos(𝜃1 + 𝜃2 + 𝜃3) 

 


