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ABSTRACT

This study present an approximate solution of a nonlocal boundary value problem for second
order linear elliptic equation on a rectangular domain. Dirichlet boundary condition were
applied to obtain the solution of the problems given on the three sides of the rectangle, while
on the fourth side the unknown function f was set and obtained which define the trace of
the solution parallel at the midline of the rectangle.

We assume that, the boundary functions on three sides of the rectangle belong to the Holder
classes C*>*, 0 < A < 1. On the fourth side, the desired function f gives rise for a simple
prove of the existence and uniqueness of the solution. The proposed method help in
constructing the 5-point finite difference approximate solution of the general second order
linear elliptic equation.

Keywords: Elliptic equation; nonlocal boundary value problem in a rectangular domain;

finite difference method; Dirichlet problem; numerical solution
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OZET

Bu c¢alisma, dikdortgen bir alanda ikinci mertebeden dogrusal eliptik denklem icin yerel
olmayan sinir deger probleminin yaklagik bir ¢oziimiinii sunmaktadir. Dikddrtgenin ii¢
kenarinda verilen problemlerin c¢oziimiinii elde etmek icin Dirichlet smir kosulu
uygulanmig, dordiincii kenarda ise dikdortgenin orta cizgisinde paralel ¢ozeltinin izini
tanimlayan bilinmeyen fonksiyon f ayarlanmis ve elde edilmistir.

Dikdértgenin ii¢c kenarinda sinir fonksiyonlarinin Holder C>4, 0 < A < 1, simflarina ait
oldugunu varsayiyoruz. Dordiincii kenarda, arzu edilen f fonksiyonu, ¢dziimiin varlifinin ve
tekliginin basit bir kanitiz1 dogurmaktadir. Onerilen yontem, genel ikinci mertebeden lineer
eliptik denklemin 5 noktali sonlu fark yaklagik ¢6ziimiiniin olusturulmasina yardime1 olur.
Anahtar Kelimeler: Eliptik denklem; dikdortgensel bir alanda yerel olmayan sinir deger

problemi; sonlu farklar yontemi; Dirichlet problemi; sayisal ¢oziim
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CHAPTER 1
INTRODUCTION

Modeling real life situation in diverse disciplines like Economics, Applied Science,
Engineering etc. most often lead to partial differential equation of different orders. Most of
these partial differential equation cannot be solved analytically that’s give rise to a
numerical approximations. Obviously many numerical approach has been developed to
replace analytical approach using partial differential equation.

Bitsadze and Samarskii (1969) introduced nonlocal boundary value problem for simplest
generalizations of linear elliptic problems. Still on the research of reducing a nonlocal to
local value problem, many authors were investigated the generalization of nonlocal
boundary value problem and their approximate solution. Due to the simplicity of nonlocal
condition difficulties arises in solving the exact and numerical solution of this problem.
Furthermore, (Volkov; 2013) continues this problem on approximate grid solution of
nonlocal boundary value problem for Laplace’s equation on a rectangle. On the rectangle,
Dirichlet boundary conditions were given on the three sides. At the fourth side, a function f
was set to be unknown function using the condition that the equal to the trace of the solution
on the parallel midline of the rectangle. The existence and uniqueness of this function were
stated and the proposed method was used to generalize 5-point finite difference for the
approximate solution of nonlocal boundary value problem. Volkov and Dosiyev (2016)
proposed on the numerical solution of a multilevel nonlocal problem. 5-point approximate
solution of the multilevel nonlocal boundary value problem for Laplace’s equation using a
Dirichlet problems was stated. Uniform estimate of the error of the approximate solution
find from multilevel nonlocal problem is of order O (hz), where £ is the mesh step.

In (Volkov; 2013) contraction mapping principle for solvability analysis of a nonlocal
boundary value problem is investigated. For simplicity it was assumed that the boundary
values given on the three sides of the rectangle have a second derivatives satisfying a Holder
condition. In particular, approximate solution was proved to converge uniformly on the grid

to the solution of the differential problem at an O(hz) rate, where h is the mesh side.



Volkov et al (2013) focuses on the solution of a nonlocal probem. They were concluded that
the solution of this problem defined as a solution of the first boundary value problem on the
rectangle, by finding a function given as the boundary value on those side of the rectangle
where the nonlocal condition was given. The proposed work was justified through the
numerical experiments which support the analysis made. Gordeziani et al (2005) also
worked on finite-difference methods for solution of nonlocal boundary value problems.

In chapter 2, on a solution of a nonlocal boundary value problem for general second order
linear elliptic equation is considered. It was assumed that the boundary values given on the
three sides of the rectangle were given and have a second derivatives satisfying a Holder
condition. On the fourth side of the rectangle the unknown function f is obtained by
solving the Dirichlet boundary value problem on the rectangle. A special method was
applied to find a continuous function. The solution of the nonlocal problem is defined as a
sum of two Dirichlet problems. The solution of a considered problem give rise to a simple
proof of the necessary and sufficient condition to prove ours claimed. See Theorem 1 and 2,
simple proves for existence and uniqueness condition of a continuous function is stated and
well proved. The desired function is obtained through the limit of infinite sequences of a
continuous function.

In chapter 3, an approximate solution of the nonlocal boundary value problem for general
second order linear elliptic equation on a rectangle using a finite difference method is
considered. We assumed that the approximate continuous functions on th rectangle satisfy
Holder condition. We define L, to be a new linear differential operator of averaging over
four neighboring grid nodes. By the use of n—th iteration of the convergent fixed-point

iterations the desired function was obtained.



CHAPTER 2
ON THE SOLUTION OF A NONLOCAL BOUNDARY VALUE PROBLEM FOR
GENERAL ELLIPTIC EQUATION

Our aim is to find the function from this domain which are continuous boundary value given
on the three sides of the rectangle. The fourth side, the boundary function coincide with
those on the middle of the rectangle parallel to this side. Our expected function seen not to

be harmonic on open rectangle then continuous on the closed rectangle.

2.1 NONLOCAL BOUNDARY VALUE PROBLEM
Consider a linear space C° to be a space of continuous function with a close interval x € [0, 1]
, vanish at n-th of this interval. For any arbitrary function f € C°, the given function equipped

with the norm is defined as,

I f o= max | £ ()1 @.1)
Let R be an open rectangle with two variables x and y, then R can be defined as,

R=1{(x,y):0<x<1,0<y<2}. (2.2)

On R, let ¢ denote the sides of the rectangle, where m = 1, ..., 4 from the right side numbered
in a clockwise direction.
Again on R we take y/ as a given continuous functions on the three sides where j = 1,2, 3.

It follow that

gozzgoz(x),OSxSl

¢=¢"0),k=1,3,0<y<2 (2.3)

@' (2) = ¢*(0)

¢ 2)=¢*(1)



generally
G 0)=¢*(1)=0,k=1,3. (2.4)

Now consider the boundary value problem

LU =gonR (2.5)
U=¢' ony! (2.6)
U = ¢’ ony’ (2.7)
U=¢’ony’ (2.8)
U(x,0) = U (x,1) ony*, (2.9)
where
PU U oU oU
LU = W + (9_)/2 +a(x,y)a +b(x,y)a—y +c(x,y)U

with C (x,y) < 0.
For any f € C°, problem (2.5) — (2.9) has a unique classical solution U in the open rectangle
R and continuous on the closed rectangle R. Our interest is to obtain the desired function

f € C° which
Ux,0)=U(x1),0<x<1, (2.10)

where U is the problem of (2.5) — (2.9).

Clearly, function U can be written as a sum of two functions V and W

Ux,y)=Vxy)+W(y). 2.11)



Consider a function f € C° and W (x, y) to be the solution of the Dirichlet problem

LW=00onR (2.12)
W=0ony" ,m=1,2,3 (2.13)
W = fony* (2.14)
where
62W PwW ow ow
LW = +a (xy)—+b(xy)—+c(xy)W
6x2 oy 9y dy

Let B be the linear operator from C° to C°, we define
Bf (x) =W(x,1) e C°, (2.15)

where Bf denote the trace of the solution to Dirichlet problem (2.12) on the interval y° =
{(x,y):0<x<1ly=1}C R. We see that in problem (2.12) the boundary value problem are

zero on the three sides y”', m = 1, 2, 3. The following inequality is true on I

1
| W(x,p) < 3 I fllo 2=y), (x,y) €.

Consider the function

1
W= 3 Il fllo 2=y, (x,y) €R. (2.16)
We have

| W(x,y) |< W(x,y) onT.

It follows from the maximum principle see (Ber’s book 1971).

Let us prove that

| W(x,y) |< W(x,y) onR (2.17)



hold, where

LW =0. (2.18)

Since (2.16) is

— 1

W= ) Il fllo 2=y). (2.19)
clearly

W > 0. (2.20)

We consider the following Lemma:

Lemma 2.1.1. If W is non constant LW > 0 then W (x,y) can’t take its positive maximum

on R.

Lemma 2.1.2. If W is non constant LW < 0 then W (x,y) can’t take its negative minimum

on R.

Lemma 2.1.3. Let | W(x,y) |= % || f llo (2 —=1y) and let W (x,y) be the solution to the
problem (2.12) — (2.14). Assume that b(x,y) > 0 on R in (2.12). Then the inequality |
W (x,y) |< W(x,y) on R hold,

Proof. We define
— 1
W(x,y) = 3 Il fllo 2—y).
Then it is clear that
| W(x,y)|< W(x,y) ony", m=1,2,...,4. (2.21)
Let us consider the function
B (x,y) = Wy £ | Wx,y) .
It implies that

h(x,y)>0,ony",m=1,2,..,4,



where

OPh™  OPhT on* oh* -
+ +a(x,y) +b(x,y) — +c(x,y)h". (2.22)
0x ay

Lh* (x,y) = PR

We take the partial derivative of LW (x, y) and LW (x,y) with respect to x and y, we have

— 1 1
LW £ LW = _b(x’y)(_i ||f||)+c(x,y)§ I fII2-y=+0,

where LW = 01in (2.18).

We assume that b (x,y) > 0, then

Lh™ (x,y) <0onR (2.23)

h* (x,y)>0ony",m=1,2,..,4.

By using the maximum principle see (Ber’s et al 1971), directly
h¥ (x,y) > 0 on R,

| W(x,y) |< W(x,y) onR.

Since

— 1

W= 3 Il fllo@2=y)=—W(x,y)>0onT,
it follows that

— 1 —
W= 1fllo@=»=-Wy=0omR

and
1
-Wx,y) < 3 I flle 2-y)
1
| Wx,y) < 3 Il fllo 2=y).
Therefore

| WIKW. (2.24)



Since
1

| W(x,y) < 7 Il fllco 2=y), (x,y) onR,

by (2.15) we have
1

IBfII< S 11 £ llco, f € C°
which shows

| B |< !

<5

Then, the norm of operation B is at most 1.
Consider the Dirichlet problem

LV =gonR,

V=¢"ony" , m=1,2,3,

V =0o0n )/4,
where ¢, m = 1,2, 3 denote boundary value functions and
LV = 227‘2/ + 6027‘2/ +a(x,y)(;—‘; + b(x,y)(?a—;/ +c(x,y) V.
We set
o’ =0%x)=V(x1) e’
From (2.10) it show that
f(x)=U((x,0),0<x<1.
Let
e =fx)=U(x0).

By virtue of equation (2.11) and put y = 1 we have

U(x,l):O'O(x)+B<p(x) ,0<x<1,

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

where U is the solution of (2.5), o is the function given in (2.29) and ¢ use as a boundary

values in equation (2.5).



2.2 EXISTENCE AND UNIQUENESS OF A SOLUTION

2.2.1 EXISTENCE OF THE SOLUTION

Theorem 2.2.1. For any arbitrary function ¢ € C°, with equality U (x,0) = ¢ (x) = U (x, 1),
0 < x <1, holds if and only if ¢ satisfy

e(x)=c’(xX)+Bp(x),0<x<1 (2.32)
Where U is the solution of problem (2.5).
Proof. The proof is trivi’al |
Theorem 2.2.2. There is unique function ¢ € C° for which equation (2.32 ) holds.

Proof. Consider a linear space C° consisting an infinite sequence of functions {wk} where

k=0,1,2,... fork=0,y° =0, for k = n, we have -

y'=B(c® +y" ). n=1,2,.... (2.33)
For k =n + 1, we have

y"' =B +y").n=12,.. . (2.34)
We subtract (2.33) from (2.34), it yield

wn+1 — Y= B(O‘O +¢n) —B(O‘O +¢n—1).
By virtue of (2.33) and (2.34) ,

Il =" llo=ll B(y" = 9" ") lly = 1,2,
From (2.26)

1 1 n_ -l
g™ =" lleos S 1 (0" =" ")l g o= 1.2..... (2.35)

It follows that the sequence of a function is a Cauchy sequence and is convergence. Hence

(2.33) is fundamental and it therefore has a limit.

limy" =y € C°. (2.36)

n—oo0



Again we consider a linear operator B with " from C° to C° as,
{Bdlk}:’:o ’
where k = 0,1,2,..., fork = 0, By° = 0, for k = n,
By =B(B(c"+y"")).n=1.2,.. .
Fork=n+1,
By = B(B(c"+y")).n=1.2,.. .
We subtract By — By yield
I BY = BY" llco=ll BGy =) ll o ,n=12,....
And (2.26)
1BW =) oS 5 1 W=y Iy =12,
The following limit exist
lim By = By € C°.
Putting (2.33), (2.36) and (2.37) together we have
y'=B(c*+y") . n=12,.. .
By virtue of (2.36) it become
y=B(c"+y).
Analogy (2.38) become
p=0"+y

90:0'0+Bgo.

It show that equation (2.39) satisfies equality (2.32) which is the desired function.

10

(2.37)

(2.38)

(2.39)



2.2.2 THE UNIQUENESS OF THE SOLUTION

Proof. Assume that there are two functions ¢* € C° , k = 1,2 holds in (2.32) that is

@' (x) =0’ (x) + Bp' (x),
@ (x) = 0" (x) + B2 (x). (2.40)

We are to show that
o' (0 =¢* ().
We subtract ¢' (x) — ¢? (x) and by virtue of (2.39) we have

I ¢ () = @ () llco=ll Be' () = B () lleo=ll B (" (x) = > () s (2.41)

1
s§n¢u»w%wm«

Clearly, we have

' (x) = ¢* () llo< 0 (2.42)

Il ' (x) = ¢* () [|co= 0.

Hence it become
o' () =¢" ().

Equation (2.40) holds. |

11



CHAPTER 3
APPROXIMATE SOLUTION OF NONLOCAL BOUNDARY VALUE PROBLEM
BY THE FINITE DIFFERENCE METHOD

Everywhere below we can consider a function f on the set E to belong in a class of C*! (E)
if f has k-th derivative of E satisfy the Holder condition with an exponent 0 < 4 < 1. We

assume that the function ¢ in (2.6) and (2.8) are in the class C>*(y™), m = 1,2, 3.

3.1 FINITE DIFFERENCE METHOD
Lemma 3.1.1. The function o (x) defined by (2.29) belongs to C**,0 < A < 1 on the interval

0<x<1.

Lemma 3.1.2. The function ¥ =  (x) found as limit (2.36) of an infinite sequence of

continuous functions is in the class C** (y™), 0 <1< 1, m=1,2,3

Proof. We consider equation (2.38) defined by ¢ = B (0'0 + 1,//), the function y is the trace
on the interval v = {(x,y) : 0<x <1,y =1} C R, of the solution to problem (2.12), where
f = 0%+ yisin C° We see that the boundary values on the sides y! and y? in (2.12) are
zero. Hence this problem (2.12) can be extended through y! and y? to the domain in which
¥ is strictly in its interior (R). Then equation (2.36) is in the class C>%,0 < A < 1, on the

interval 0 < x < 1. m|

Now, we construct a square mesh Dy, obtain with the lines x,y = 0, 4, 2h, ... let h = % denote
a mesh side, where N > 2, is positive integer. D), denote the set of nodes of the square mesh

or grid. R;, denote the set of grid on y".
R, =RN D,

I_Qh:I_QﬂDh

Yy =Y"NDym=1,..,4.

12



Let C} denote the linear of grid function on the interval [0, 1], where x vanish at x = 0 and

x = 1. For any arbitrary given function f;, € Cg. We define a space together with a norm as,

Il o llo= max | fn (0] (3.1

b xel0,1]
It is obvious that the space is complete equipped with this norm. Consider C = Cy, C;... to

be a constants which are independent of /.

Consider L, to be a new linear difference operator of averaging over four neighboring grid

nodes.

LyU, (x,y) = h2[Uy, (x + h,y) + Uy, (x = h,y) + Uy, (x,y + h)

+Uh (-x’y - h) - 4Uh (X,)’)]

ra(x.y) [Uh (x + h,)’)z—hUh (x— h,J’)]
b (ey) [Uh (x,y + h)z_hUh (x,y — h)]
+c(x,y) Up (x,y). (3.2)

Let V), be a solution of the finite difference problem. It follow that the boundary value

problem (2.27) is approximated by the system of grid equation.

L,V =gnonR,

Vi=¢"ony,, m=1,2,3
V,=0on 72. 3.3)
We define
g =00 (x) =V, (x, 1) e C), x€0,1],, (3.4)
where V), is a solution of the grid equation (3.3).
Lemma 3.1.3. It is true that

~0 0 2

where 52 is defined in (3.4) and 0'2 is a trace of function (2.29) on [0, 1],, C, is a constant

independent of h.

13



Let B, be a linear operator from C) to C}.

Consider f, € Cg from equation (2.12) , we defined a new system of grid equations as,

Wh = BhWh on Rh

Wy=0ony', m=1,2,3

Wy, = f, ony;. (3.5)
We set
B,fy (x) = W, (x,1) € C), (3.6)

where W), is he solution to problem (3.5), by virtue to inequality (2.25), similarly we have

1
I Bifi () leg= 5 1l fi ()l fir € Cy- (3.7)

Let {Jz }/io € C} be an infinite sequence and for k = 0, 1,2, ...

k=0,40=0

k=ny, =BG +y;").n=12., (3.8)
where

Ty =0y (x) =V, (x,1) € C). (3.9)

We compute the elements on the grid [0, 1], of (3.8) with the corresponding elements of
sequence (2.33) of continuous functions. When k = n then ¢/ is a trace of the function ¢ on
a close interval 0 < x, < 1, also ¢ and (Bcro)h be the trace of the function ¢ and Bo® on
0<x,<1.

We take the norm difference of each correspond element in (3.8) and (2.33).

For
k= 0,11y =¥ lico= 0, (3.10)

k=10, -y, = Biay — (Bo), .

14



We add to both side

—BhO'g + Bhag.
We have

7t = B(F - o)+ Bk (50,
By taking the norm and it become

10 = 03 <l B (@5 = 3) Uy + 1l Buory = (B), Il (3.11)

i
From (3.11) we see that
1 1 1 ~0 _ 0
103 = W3 = 5 11 Bu (@ = ) Ny
By virtue of lemma (3.1.3), we have the inequality
ch?

I B4 (35 = o)y = (3.12)

Also by virtue of Lemma 3.1.1 the function defined in (2.29) o (x) belongs to a class C*1,0 <
A< 1lontheinterval 0 < x < 1. Hence 0 (x) e C>1,0 < A < 1.

From Theorem 1.1 (see in (Volkov, 1979)), we have
max | V,, - V |< CH°.
Eh
Analogy we have
I Byory — (Bo?), o< Col?. (3.13)
Putting (3.12) and (3.13) into equation (3.11) yield
2

~ calh? c
I, — IICgs (1— + Czhz) < C3h?*,Cs = 51 +C,, (3.14)

where Cj; is a constant independent of /.

We consider whenk=n > 2

V== Bi(h+ 0 = (B(e" + ), (3.15)

15



We add B, (o + ™) + By (0 + ") in (3.15) then it become

Un—wp = Bu(T+ ) = Bu (0 + i)+ B (0 + yy ) = (B(” + ¢ 7)), . (3.16)
From (3.16) the right handset become

B, — (BO'O)h + By (v =) + By - (Bw"-l)h .

By virtue of Lemma (3.1.3) equation (3.15) become

10, = w3 <l By, = (Ba®), lly + 1By (57 = w5)
+ 1 By = (By™), Nl g 2 2. (3.17)
h
But
~0 0 2
I By, - (Bo®), < C3h. (3.18)

We further estimate the second and the third terms. Then we take the sup norm of " defined

by (2.33) as follows:

0
sup [[¢" Il <l o llco -

0<n<oo

Again
W= B(O‘O + w) (3.19)
" =B(c" +y").

Taking the sup norm we have

0 0
sup || o +y" |l o= sup llo Il , + sup [[¢" 1l

0<n<oco 0<n<oo 0<n<oco

=10 llco + 11 0 llco< 2 11 7° llco, (3.20)

where 0° = 0% (x) = V(x, 1) € C°.

Let B be from C° to C° then fork =n — 1,
l//n—l :B(0_0+l//n—2),n >
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be the trace on the interval
Y ={(xy):0<x<1l,y=1}CR

for n > 2, we consider a new system of Dirichlet boundary problem.

o*vn N o*v" fale )(9V” P b(x )8V”
ox? dy? Y ox Y dy

+c(x,y)V"'=g(x,y) onR. (3.21)
Vi=0ony" ,m=1,2,3
V' =00+ "2 ony*,
where V"=V" (x,y) is the solution of problem (3.21) which is extended to an odd function
from R to R, through the sides y' and y°, where
R ={(x,y): -1 <x<2,0<y<?2}. (3.22)

Analogy by estimate of (3.20) and (3.21) become

sup | V" |= sup | V"=l o + " || o< 2110 llco,n 2 2... . (3.23)

(X.Y)ER, (x,y)ER

By virtue of Lemma (3.1.1) consider the open rectangle of R, the distance between ° to R,

is positive . We state the following estimate, by taking the derivative of "~ ! (x),0 < x < 1

d n—1 d2 n—1 m,n—1
'70 + l// + ...+ dL
dx dx? dx"

It follow by maximum principle

m, g n—1

max | 1< Cp |l 0 llco,n = 2,m > 4, (3.24)

0<x<1 dxm

where
A=) =V(x1)eC’.

For n > 2.

We take a new Dirichlet boundary value problem,

o0*z" N o*z" ralx )82" P b(x )6Z"
x> 9y? Y o Y dy

+c(x,y)Z"=00nR (3.25)
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Z'"=0ony" ,m=1,2,3
7" ::lﬁn_l 0r1)/{
Consider the approximate grid of (3.25)

ZZZ = l;hZZZ OIll?h,
Z,=0ony" ,m=1,2,3
Z' =y" ! onyh. (3.26)

Clearly, solution (3.24) satisfies Holder condition with an interval 0 < 4 < 1,0 < x < 1.

From (3.21), y' and 7? are zero which take the derivative % where ¢ = 0, 1,2 with

0 < x < 1. From (3.21) and (3.24) the estimate hold by using the maximum principle

0*Z" (x,y) d'Z" (x,y)
max | ———— |= max | ——— |
(x.y)eR dx* (x.y)eR dy
41 n—1
= max | <Cyll & llco,n =2, (3.27)
0<x<1
where

=)=V 1) e’

and Cy is a constant independent of /.

Now we take the estimate || B,y ~' — (Bglf"‘l)h o -
h

Lemma 3.1.4. Consider Q), and Q,, to be the solution of the system of grid equations

On=B,0,+&onR, Qp=00nT,

0, =B,0,+&,0nR, Q,=00nT}, (3.28)

where I';, = Eh\Rh, &, and Eh are the function given on R;, €| &, |< Eh on R, and | Qy, |< éh
on R, The proof (3.28) follow directly from finite difference methods for elliptic equation by
Samarski and Andreev,(1976)

Now we defined

W, (x,y) = (& GVt (3.29)

2 B
Ca %5110l c0(2==y), (x.y)eRn,

18



where

=)=V 1) e’

and C; is a constant independent of 4. Clearly (3.29) is a function which satisfies the system

of the grid functions

Wh = BhWh +ﬁh on Rh

W, =0onT}.
We take the
2

. h 0
min g, > C“ﬁ Il o llco .
(xy)eR

From (3.2) we have

Let
BU, ;

denote the right hand side of (3.32), we have
LU;;=BU;;,LU;; = f;

It implies that

Ui’j:BU,',j-i' Ui,j:O

i,j»

Vi’j:BVl’,j-i'ﬁ,j, V,-,j=0.

Lemma 3.1.5. If| f;; < f, then | U;; |< U

Pl’OOf The inequality Ui,j > 0 on Q0 +y but U,"j = Vi,j + Wi,j and Vi,j

LUZ',J' = ﬁ,j = ?i,j +ﬁ,j > 0 then LV,"J' = ﬁ,j = ?i,j _fi,j >0.

Consider a boundary condition, directly we have Ui, i+U;; >0, Ui, i—Ui;j >0, \_/i, i+tVij>0,

Vij—Vi;>0Clearly U;; > 0, implies that the | U; ; |[< V; .

19
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We assume that

1 aij 1 b] -4
%) 50 (222950, (e + =) >0, 334
(h2 * Zh) = (h Zh) (c’f * ) (3.34)

We take the
M = max {max | a;j |, max | b; |}-
R R

Consider a Taylor expansion of (3.32) up to fourth derivative on (x + 4, y) and (x,y + h) .
hdZ" (x,y) N 7" (x,y)

Z"(x+h,y)=2Z"(x,y) + o 2192 (3.35)
W7 (x,y)  hd*Z"(E,y)
R A10x (3.36)
i . hoZ" (x,y) h20*Z" (x,y)
2oy + ) = 2 () + =g Y+ 2552 Y (3.37)
h3a3zn (x’ y) . h4a4Z” (x’ 6)
310y3 410y*
0 0 Bt (02" (E,y)  0'Z" (x,&)
AZ" =27" (x, )+Z( P + oy )
W (8*Zr (&) 07" (x,8)
z" =AZ" — —
n (%) 24 ( o oy )
W (70 (€, y) a‘*z;; (x,&)
z = AZ! - + . .
(x.) = 24 ( o ay* ) (3.38)
Let
g =27'-7Z"onRy,n>2 (3.39)

where Z}' and Z" are the solution of grid in equation (3.26) and (3.25) we have from (3.38)

W LA AR
Y T oy* '
Let
_ (3 Zy (&y) +34ZZ (x,6)
TTu\Ter Tt )
So that
7 &7 (E.y) &z (x,)
< o e i Rl 3.40
g s g o 5 o 502 a0
Cuht

0 .
< 0 ||lco< minfBy,,n > 2.
24 Folle (x,y>Rh’8 e
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From Lemma (3.1.5) we have

0
Il o llco,n > 2,

max | Z; (x,y) = Z" (x,y) |< max W, (x,y) < Cj';hz

(x.Y)Ry (xX.y)R

where

h4

CZ_E'

In equation (3.29) and equation (3.25), we set
Z" =y ony*.
Consider the definition of operators B and B), yield

By = Z; (x,y), x€[0,1],
B ' =27"(x,y), xe[0,1].
Putting (3.41) and (3.42) into consideration we have
I B! = (By™), Nlp= max | By = (BY"™), leg

max | Zy (x,1) = Z" (x,1) |< max | Z; (x,y) = Z" (x,y) |
(X,y)Rh

x€lo, 1]y

< Cih?* || 0 o, n > 2.
Since (3.43) is bounded above by

max | Zj(xy) = 2" () < Bl (07 = i) g
YR

- n— 1 *
< I =0) leys S Gl 110 leo -

N =

Then equation (3.17) become

— 1,
197, = W lleg= Csh® + SCa [l 0 lleo < Colt?,

| =yt || < Coh*on =2

c0—
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where
l % 0
Co=Cs+ §C4 Il o llco,

and JZ is the nth element of sequence (3.8) and ¢/} is the trace of nth element of sequence

(2.33). From (2.33) we take the estimate
v’ =0, v = B(c” +y ).
For k = 1 we have
wl = Bo.
By virtue of (3.45), we have
Iy o< % o llco - (3.46)
For k > 2 we have the following
" = B(O_O_'_wn—l)’ = B(O_O_i_wn—Z)

wn _ wn—l — B(O'O +wn—l) _B(O_O +wn—2)

l//n _ wn—l — B(wn—l _ wn—l). (3.47)

Since the sequence is fundamental,satisfying cauchy sequence we take the limit of (3.47)

and its become
n n—1 n 0
| " =" o< 3 Il o llco - (3.48)
Consider k = n + m, we have
l//n+m - B (0_0 + l//(n+m)—l) )
By taking a norm, yield

" =g lleo=ll B + 9 ) = B0 + ) lle
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By virtue of (3.48) we have
™" =" o< 27 (1 =27") [ 02 |0, (3.49)

where n and m are positive integer and 0° = V (x, 1).

Now consider the triangle inequality

1" =¥ llco<l "™ = ¢ lleo + 1" = ¢ llco (3.50)
We take the limit in (3.50) as m — oo we have

1" = o< 27" || 0 llgo,n 2 1. (3.51)
Putting (3.45) and (3.51) corresponding inequality

Il i llco<IEf o

We find that

105 = 0 Dy <0 = W g + 1005 = 0 W < = 0

" =9 lly< 27 110 lleo +Coh®,n 2 2. (3.52)

Consider equation (2.38) and (2.32) , for n > 2.
Let

G =T+ (3.53)
where o) = o7 (x) = V,’Z (x)on [0, 1], . take the difference of (3.53) and (2.32) we have

G ==+ ) = (o) —wa) = (@ - on) + (3 - va)
where ¢y, is the trace of the desired function ¢ on the grid [0, 1], . We have

10 =0 o <UTh= ey + 110 = (3.54)
h h h
<CiR*+27 )| 60 |lco +Coh? (3.55)

(N7 lp= (G + Co) W +27" 1107 o -
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Let
C'=C +C,.
Hence we have
105 = n Nl g < 27" 0 llew +C'h2. (3.56)

Let U (x,y) be the solution from (2.5)-(2.9) with ¢ = * + ¢ which satisfying U (x,y), Let

U, (x,y) be the solution of system of grid equations

Uh :BhUh onRh
Uy=¢"ony, , m=1,2,3 (3.57)

U, =¢on 72. (3.58)

Clearly the desired function ¢ , m = 1,2,3, are in the class C>*,0 < A < 1 on R. From
Lemma(3.1.1) and Lemma (3.1.2) seen that o and y are also in the class C**,0 < A < 1.
Directly in theorem (1.1) ’the method of composite regular nets for the Laplace’s equation
on polygons’. We have the inequality
max | U, (x,y) - U (x,y) I< C"I?, (3.59)
(xR
where U is the solution of problem (3.5)-(3.14), U}, is the solution of system (3.57) and C”
is a constant independent of /.
From (3.57) take n > 2, then the actual system of the grid equations become

(AjZ = Bhﬁlr; on Rh

U,=¢"ony" , m=1,23 (3.60)
Uy =@, onvj. 3.61)

By virtue of inequality (3.56) yield

max | Uy (x,) = Up (5, 3) 1 27" [ 0° lleo +C"1*,n 2 2 (3.62)

(xR,
where U, and 172’ are the respective solutions of system (3.57) ,(3.61) and C’ is a constant

independent of 4.
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Finally by estimation of (3.59) and (3.62) we have the final estimate

max | U (x,y) = U (x,y) |< 27" || 0° |lco +Ch?,n > 2 (3.63)
(x.y)Rn

where U (x,y) and U » are the respective solutions of systems (2.5)-(2.9) ,(3.61) ,¢ = o+

is a desired function and C = C" + C” is a constant independent of n or &

+1

2Inh7!
n=
In2

where the right hand side of (3.63) is O (hz) .
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CHAPTER 4
ON THE NUMERICAL SOLUTION OF A MULTILEVEL NONLOCAL PROBLEM
FOR ELLIPTIC EQUATION

4.1 NONLOCAL BOUNDARY VALUE PROBLEM

We take R to be an open rectangle define as,
R={(xy):0<x<1,0<y<?2}. 4.1)

From R, let yd, d =1,2,3,4 denote it sides including its end point, numerated from the right
hand side by starting with the side which lies on the y-axis. Let y = U;‘:]yd denote the
boundary of R . take R=RU v. Consider (1,12, ...,n,) and (@, @, ..., @,) to be a given

numbers which satisfy some fixed number say ¢ > 0, then the inequalities hold

O<o<m<m<..<n,<2 4.2)
m =

(1 _ E)Z lagl< 1. 4.3)
k=1

(4.2) and (4.3) is denoted by

Rs={(x,y):0<x<1,6<y<?2} “4.4)
Y, ={(xm):0sx<1f,u=12..m (4.5)

Let C%called a linear space of functions on x variable which are continuous on the closed
interval 0 < x < 1, and vanish at x = 0 and x = 1.
For any arbitrary function f € C° with a norm , C° is said to be a complete space which

define as,

Il f llo= max | f(x) 1.
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We consider a multilevel nonlocal boundary value problem on R,

LU =gonR (4.6)

U=0ony' Uy’

U=71(x) on y2 4.7
Z&kU(X, ) =U(x,0), 0<x<1ony* 4.8)
k=1
Where
0*U (92 oU oU .
LU =57 82 +a(xy) +b(xy) +c(x,y)UandT(x)eC

is a given function.
The existence and uniqueness of problem (4.6) and (4.8) are given in chapter 2 .

The problem (4.6) and (4.8) can be written as a sum of two functions
Ux,y)=Uxy)+W(xy). (4.9)

V (x,y) is the multilevel problem define as,

LV =gonR
V =0ony\y
V =1(x) ony?, (4.10)
where
LV = (?ZV oV +a(x, y) ad +b(x,y)a—v +c(x,y) V.
x> (9 By Oy

W (x,y) is a solution of problem

LW =0o0onR
W =0 on y\y*
W = fonvy* 4.11)
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where

62W >Pw

LW = +a (xy)lv+b(xy)—‘;v+c(xy)W

6x2 oy 0y2

For any arbitrary function f € C°, let B; be an operator as

Bf(x)=Wx,n)eC’ i=1,2,..,m.
The norm | B; | hold by the inequality
| B, |< (1 - %) i=1,2,.m.

The arbitrary function f € C%in (4.11) is given by

=p+ Zaklﬁk

where

o= oV (xm).
k=1

(4.12)

(4.13)

(4.14)

(4.15)

Consider an infinite sequences {wf} I where the system of nonlocal equations with ; €
n=

C%i=1,2,..., munknown function.

We define

v = B; (90 + Za/kl//k],i =1,2,...m
k=1

(4.16)

Where ¢ is given in (4.15). In (4.16) we use the method of fixed point iteration to find the

solution of the system

Let

v =0

= B, [90 + Za/kl,//z_l),i =1,2,...mn=1,2,..
k=1

28

(4.17)



and

Yt = B, (cp + iasz),i =1,2,..m.n=12,.. . (4.18)
k=1
We subtract (4.17) and (5.1)
VARRE Biiak (Wi-wp").i=12.mn>1. (4.19)
k=1
Since

max || y; -y} <l ¢l .

0<i<m

It follow from (4.19)
max || ;! =y I gmax [y =y 1< q" L@ ln 2 1

0<i<m

where

q =| B |Zm|@k|< L.

k=1

By simplicity, the sequence of function (4.16) are fundamental. It has the limit

limy} = y; € c’i=1,2,..m. (4.20)
Since

I By — B |I=11 B (W — i) 1<l g — e I,
then, it also has the limit

lim By = By € C’ik=1,2,..,m.
It follow that the limit as n — oo then (4.17) become

v = B; (90 + ia/kl//k),i =1,2,...m

k=1

where y; € C° is defined.

We seek for the existence and uniqueness of the solution.
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Theorem 4.1.1. The nonlocal boundary value problem (4.6) and (4.8) can have only one

classical solution

Proof. We consider problem (4.6) and (4.8) to be a two classical solution. We take U to be

their difference, clearly U is also a classical solution, now since
UCng)=:;(x),0<x<1,i=1,2,....,m, 4.21)

where ¢; € C°. Then we have

U(x0)= > ag,0<x<1. (4.22)
i=1
But
Fl/Z' = B,-Zak‘gl;k, i1 = 1, 2, ey M.
k=1
Clearly
max || ; |I<| B | Y @ <I By | ) o | max | g | (4.23)
T k=1 k=1 -
= gmax ||y ll.g < 1.
It hold if and only if

max || ¢; |=0,i=1,2,...,m.
0<i<m
It implies that
v =0,i=1,2,...,m.
Hence we have
U0 =00<x<1.
Therefore U is continuous on R. O

Theorem 4.1.2. The nonlocal boundary value problem (4.6) and (4.8) has a unique classical

solution
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Proof. We consider the existence of the solution define, ; = ¢, ¥,

but

¢ = Zakwk.
k=1
From (4.10) and f define as,
f=¢+ Zakwk eC’.
k=1
By the the definition of operator B; we have

W (x,n;) = B; (‘,0 + Zaklﬁk),i,k =1,2,...,m.

k=1
But

Wi = B; (90 + Zakwk),i,k =1,2,...,m.

k=1
Clearly we have

W (x,m:) = ¥
Analogy

V(x,m) = @i

Since U (x,y) can be express as a sum of tow finite function
Ula,y) =Vy) +Wxy).
It follow that

Zm:aiU (x,m) = iaiV(x, n;) + ZmlaiW(x, n:)
=1 =1 i=1

m

iaiﬂﬁi + Zai‘/’i
i=1

i=1

f.
We have

f=Wx0=Ux0),0<x<1.

o U, € CO

(4.24)

(4.25)

(4.26)

Since U (x, 0) is non-zero then we conclude that (4.24) is a classical solution of the (4.6) and

(4.8).
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CHAPTER 5
APPROXIMATE SOLUTION OF THE MULTILEVEL NONLOCAL PROBLEM BY
THE FINITE DIFFERENCE METHOD

Since ¢ € C* (D), if ¢ take k—derivative on D and satisfy Holder condition on 0 < x < 1.
Then, from (4.6) and (4.8) a given function 7 (x) on the side y? of rectangle R , belongs to

the class C*>%,0 < x < 1.

Lemma 5.0.1. The function ¢ = Y, o,V (x,1;) € C**',0 < x < 1, on the interval 0 < x < 1
izt

Proof. Since 7(x) € C>,0 < x < 1, on ? and the problem V (x,y) is continuous on R,
directly it follows from theorem 8.1 differentiability properties of solutions of boundary
value problems for the Laplace and Poisson equations on a rectangle’. That is V (x,y) €
C2>4(Rs),0 < x < 1, but R is defined in (4.4). Clearly from (4.15), each of the functions

V,m) eC**,0<x<1,k=1,2,..,montheinterval 0 < x < 1. O

Lemma 5.0.2. The functions ; = B; (go + ) a/kwk) , Where i = 1,2, ...,m are the limits of the
k=1

sequences (4.17) are in the class C**,0 < x < 1 on the interval [0,1].

Proof. Since the function ; is the trace of the solution W (x, y) of problem (4.11) on P; and
f = ((,0 + Zaxkt,//k) € C° from (4.6) W =0onvy' Uy’ P, c R, i =1,2,..,m also from
k=1

Lemma (3.1.2) ¢; = B; (90 + in] aktpk) = B;f (x). We have ¢; = B;f (x), but (4.12) we have
k=1
Bif (x) =W(x,n) € C’ i=1,2,..,mhence y; = W(x,n;) € C>*,0 < x < 1 on the interval

0<x<1Vi=1,2,..m. O

We set D, to be a square mesh, find with x,y = 0,h,2h,... Let h = ﬁ denote step size,
N > 2 is an integer. Then h gets less than half of the minimum length of the interval

(0,711, [m1,m2], .., [17m> 2] which denoted by P;. We have
Pih<n;<(P;+1)h. (5.1)

Let R, = D,NR, y¢ be the setof grids ony%, d = 1,2,3,4 buty, = U3_ ¥/ and R, = R, Uy,

the interval 1 < u < m, where p is an integer. Consider Y! li’ to be the intersection points of the
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line y = 1, with the grid line x = ih,i = 0, 1, ..., N. We take an approximate closed interval as
1
[0,1], = {x =x;, x;=1ih,i=0,1,...,N,h = —}
N

to be the set of nodes on the interval [0, 1], where £ is called the step size.
Let C2 denote a set of grid functions f;, on 0 < x;, < 1 but f, (0) = f, (1) = 0. Then the space
equipped with the norm can be define as ,

I fillo= max | £ (1)

b 0<x,<1

Let Cy, k =0,1,2,... be a constant which are independent of 4.
Let V), be the problem of the finite difference problem

L,V = gnon R,

Vi =1,(x) ony;

Vi = 0ony,\y;, (5.2)
Where
FVvy &V av) 0
LV, = szh 5 2h +a(x,y) G_xh +b(x,y) alyh +c(x,y) Vj and 7, (x)

is the trace of 7 (x) on y;.

We consider the approximate solution of U, (x, y) as,

LyU, (x,y) = B2 WU, (x + h,y) + Uy (x = h, y)

+U, (x,y +h) + Uy (x,y = h) = 4U;, (x,y)]

+a(xy) [Uh (x + h,)’)z—hUh (x— h,y)]
+b (X,y) [Uh (x»y + h)Q;/th (x’y - h)]
+c(x,y) U, (x,y). (5.3)

Directly from chapter 2 problem (5.2) has a unique solution. From theorem [1.1] on the

method of composite meshes for Laplace’s equation on polygon’ the estimate follow directly

max |V, — v, |< CiH, (5.4)
(x)eR)
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where V), is the problem (5.2) and vj, is the trace of problem (4.10) on R,.
We set

(pi+ 1)h—n; nj = pih

+V(x.(p;+1)h) -

e (x) = V(x, Pjh)
eC'onxel0,1],j=1,2,..,m. (5.5)

We compare (4.10) and (5.5) its follow that the estimate (6.1) on differential properties of
solutions of the Laplace’s and Poisson equations on a parallelepiped and efficient error

estimates of the method of nets we have,
150 =V (x.m), lleo< b2, j = 1,2,...,m, (5.6)

where ('(,Ej - goj)his the trace of (g?j - goj) on [0,1],.

We consider the approximate solution of ¢;, & (x) as,

o h () = | Vi (x. psh) w + V3 (x (ps + 1)) ""_h—pjh
eClonxel0,1],,j=1,2,...m (5.7)

where V), is defined in problem (5.2).
Now we compare (5.4) and (5.6) its become

185 h () =V (x,1)), lleo< C3h?,j = 1,2, ..., m. (5.8)
We construct another finite problem W), as,

W, = AW, on R,

Wy=0o0ny',m=1,23

Wi = fi on v, (5.9)

where f; € C}, is an arbitrary function, since f, = f, (x) € C}) and B? :C) - C).
Then

(1) =, W, (o (py + 1)) =2

B} fiy = | Wi (x. psh) I

€C) onxel0,1],,j=1,2,...m, (5.10)
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where f,, B; and W), are called a grid function, a linear operator and a solution to a given
problem see (5.9) .
Its follows from chapter (2) and by virtue of lemma [1 — 3] we estimate the inequality by

analogy yield,

[ Wi ph) 1< 5 1 il (2 ph)

| Wi (x. (p;+ 1) h) I< % Il filles (2= (pj+1)h). (5.11)

Putting (5.10) and (5.11) together we have

niy .
1B <l filley (1= 2) s = 1,2, (5.12)
Let
77.
q;=1- 5]

then the norm of

|Bj|<1—%,0<qj<1. (5.13)
We define
Gri= ) a@ph(x)eChonxe01],j=12..m. (5.14)
j=1

But ¢}, h (x) is define in (5.7) . Now putting (4.15), (5.8) into consideration its become
I &n = @n llco< Csh’. (5.15)
But ¢, is the trace of
¢ = ZakV(x, M) -
k=1
For any f; € CY we defined f as,

Fi=%n+ Y anony,, (5.16)

=
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where Fw&j’h €eC), j=12,.,m.

Let
Yin =B [Zﬁh + ) ),k =1,2,...,m (5.17)
k=1

where Al/;j,h is the solution of the system of equations (4.9). By virtue of chapter two, equations
(3.8) is the system of equations which is fundamental. We can write directly the solution of

(5.17) as a limit of the following sequences in Cy.

w?;h =0
“n _ ph|l— S “n-1 _ _
J', = B! [(ph + > o, ],k =1,2,.,mandn=12.. . (5.18)
k=1
Clearly the
limy”, = lim B!, + B} > o lim /! (5.19)
n—o0 n—00 = n—oo g

Yin = Big, + B?;;j,h

Win =B (@ + ). (5.20)

We compare (5.12), (5.16) and (5.20) we see that ﬁ is the trace of f; on [0, 1], since ﬁ = Atﬂj,h.
Then the inequality (5.12) is converges to a unique solution of equation (5.20).

Now let equation (4.17) and (5.18) on [0, 1], be compared. Consider !//;!,h to be the trace of
W?,h on [0, 1], also ¢;, and (B jgo)h to be the trace of ¢ and (B jgo) on [0, 1],.

Lemma 5.0.3. . The inequality hold
I B’;Zaklpz;f - [B’;Zaklpz;}) lleo < €372 (5.21)
k=1 k=1 h
where Cg is a constant independent of n and h.

Proof. Let f say to be a non-zero, analogy f; is also a non-zero hence problem (4.11) and
(5.9) seen to has only a trivial solution. its follow from (5.21), when n = 1, then

(4.12),(4.13) and (4.17) hold. O
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Again when n > 2 we have

I lleosll By llo + | [BjZakw’,:‘l) s (5.22)
k=1
<118, leoll @ llo + 11 B lleo pua [ | {; | |] (523)
nj n; n—1 .
<(1-Z)tetco+(1-Z) max 1wy [; | |)
where
1B |<1- % (5.24)

Generally, for any n,1 < n < oo, recall thatg; = 1 - %,O < qj <1 we have

max || ¢! [leo< q(u @ llco +max || """ ||) <L gl (5.25)
I<j<m 1<j<m 1- q

where

q=max{(1—%),(1—%)zm|ak |}<1. (5.26)

Hence we have

0<n<oo

max || ¢+ Y o} lleo< (1 DL |) 1 lleo (5.27)
k=1 k=1

But the function

v = By {90 + Zozka‘z),n >2
k=1

is the trace of the problem.

L'U"=g"onR

U"=¢+ ) i ony', (5.28)
Since Y, € R; and 1 < j < m, where Y is the line segments.
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Directly the estimation for derivative of zp’}‘l (x),0 < x <1 hold,

sy n—1
J

max |
osn<l dx$

I<CYll@lco,n=2,524,j=1,2,3,4

where C ?j is a constant independent of n and 4. Since V" = 0 on ¥4, d = 1,3 the derivative

2u,7n—1
&y
dx#

=0,u=0,1,2atapoint x = Oand x = 1.

Directly from chapter 3 the problem Z;.’ ,j=1,2,...,m defined as

L'Z} = g"on R
n _ d _
Zj =0onvy’, d=1,2,3

7" = [/I’?_], ] = 1,2,...,m

J J

belong to C** (I_Q) ,0<A<1.

Analogy we write

h

Recall that

max | Z}, — Z} |< C4n*, j=1,2,3.
R

Bf(x)=Wx,n)eC’ i=1,2,...m.

From (4.12) and (5.10) we have
Bﬁfh =W, ()C, pjh)
onx € [0,1],,j=1,2,....m.

We have

Z'=f )=y

By =7 (x.n;).0<x< 1.
It follow that
B?lﬁﬁl = Zl?,h (X, Pjh)

on [0,1],.

(pj+1)h=n;

(pj+1)h—n;

£ Wi (p + 1)) L2

+Z, (x, (pj + 1)h) ni— Pt
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Clearly By is the trace of By~
Now we compare (5.32) and (5.33) yield
I By = B llcos Csh?, (5.34)

where C (5) is a constant independent of n and /.

We now construct an inequality from (5.30) — (5.34) and since
lﬁ? = B;f (x) (5.35)
FO =g+ awi
k=1

Then by virtue of (5.21) we have

I B [Zakwﬁl) — B, [Zakwﬁ_l) llco
k=1 k=1

h.

< > el By = (Bwy™"), lleo, (5.36)
k=1

where B};l//Z;ll and By~" are defined in (5.32) and (5.33) . We substitute (5.32) and (5.33)

into (5.36) it become

max | Z, (x, p J-h) (o, Hh)h_"j

< N | | x€[0,1], i (537)
kzz; - +Z, (x, (pj + 1)h) w |

+ (xlel[l(f.l)%h | Z) (x, (pj+1) h) -7 (x, (pj + 1) h)

—nh
7nj hp/ |)+C(5)h2.

But

(51528 ) 2522 ) < o

Since from (5.30) we have
max | Z%, - Z} |< C4h*, j=1,2,3.
Ry

It follow that
I B! (Zawg;) - B [Zasz_l] leo< > 1o | COR* + C31> < OO,
k=1 k=1 0 k=1
where Cj = /El | ax | CY + C2.
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Lemma 5.0.4. We show that the inequality hold.
10 = i llegs €O j = 1.2, o

where J’;h is the n-th element of sequence (5.18) l//';.’h is the trace on |0, 1], of the n-th element

in (4.17) and C° is a constant independent of n and h

Proof. We compare (5.1) and (5.18) as n = 0, 1 then it follows

165, =45, lleo=0 (5.38)

L@ = v eo=Il BiGi = (Bje), lico

h o~ )
<11 B} @i = on) lly + 1l Bigow = (B i), llcy, (5.39)
But
Bl <1- iy
2
Then it follow that
— ni —
1B @= o) < (1= 2 )1 @ = ) I (5.40)
where
1 @ = @n) llo< Ch2.
Hence
—_— ]7 .
150 = Wi lleg< (1 - EJ)CShZ <SGy’ j=1,2,...m, (5.41)
where C4 = (1 - %’) Cs. O

We take forn > 2
n n h~
15, = W o<l Bi@s — (Bj¢p), lles
+ B [Zak@;} - Zasz,},l] llco
k=1 k=1
+ || B] [Zak%,—hl) - (Bj (Zasz,_l] ] llco,j=1,2,...,m. (5.42)
k=1 k=1 n
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But
I B = (Bie), llcy=ll B} @ = o) Il + 1| Bign = (Byg), Iy
< (1 - %)th < CuH.
| Bign ~ (Byg), llcos Csh.
We have
I B? [i%gﬁl - ia/kl//ﬁl] llco
k=1 k=1

_ (1 - %)Z I (05 = i) les -

But

It follow that the
I lﬁzh - ‘ﬁ?h ||c2|| lﬁ;zh - lﬁ;Zh ||c2§ C5h2
“n—1 -1
+q |l ‘//Zh _‘//Zh ||c2

< Ch? + gmax || 37! — !
S qukgm I en = Y ||c2,

where Cs = Cg + C4. By virtue of (5.38),(5.42) and (5.44) its become

max gno o ogn < Cohz_
0<k<m I Yien = Y ”cg_

Without approximation we have from (4.17) and (5.27)

n+1

max || ¢ — i [lco< ¢ llco,n =1,

0<j<m 1- q

where
$= Zakv(xﬂk)~
k=1
And

q:max{(l—%),(l—%);lakl}<1,0<q<1.
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By virtue of Lemma (5.0.4) together with (5.47) it become

max || ¢, — ¢, lleo< max I =¥l

0<j<m
+max ||y, — il o<c°h2+£|| llco,n =2 (5.48)
Ojem || A Jh e = 1—g @ llco,n =2 2, .

where J’;h is the n-th term of the sequence (5.18)and ;, is the trace of the function ¢; on
[0, 1],,.

Since
Fi=%n+ ) ainony, (5.49)
j=1

where ﬁ is the approximate function.

Then

f=p+ ) o on [0,1]
k=1

oy = Za’jaj,h(x) € Cy, xe0,1],
=

v, =B [;zh + Zak@;}—],j =1,2,.,m n=1,2,..
k=1

Atﬂj , 18 called the n-th element of sequences.

Directly by (5.15), (5.48) and (5.49) we have

n+1

I o= illgs G+ 3 Ny | f— Ml o 2 2 (5.50)
=1

where f} is the trace [0, 1], of f and Cg is a constant independent of n and A.

Taking the Approximate solution of (4.6) - (4.8) by finite difference problem
U'=LU" on Ry,
U'=0ony?, d=1,2,3

U =1, (5.51)

Ul = f, ony* (5.52)
where f, is define in (5.49).
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Theorem 5.0.5. Let the boundary function 7 (x) in the nonlocal problem (4.6) - (4.8) belongs

to a class of C**,0 < A < 1 on y?, then the inequality hold.

n+1

q
l-g

Il ¢ llco,n =2,

(x.Y)ERy,

m
max | U - Uy |< C°W%+ )" | a; |
=1
where

_ m n; m
q—max{(l—g),(l—a)kzl“lakl}<1,0<q<1.

And

Inh2(1-¢)"
Ing™!

(5.53)

Proof. Since f = ¢ + Y, axy on [0, 1], clearly by virtue of lemma 1 and 2 seen that f €
k=1

C° (y4) but C° n C>4 (y4) = (Y (74). From (5.49) and (5.50) follow from theorem 1.1 on

the method of composite meshes for Laplace’s equation on polygon’. the inequality (5.53)

hold.
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CHAPTER 6
NUMERICAL EXPERIMENTS

Let

R={(x,y):0<x<1,0<y<?2}.
Problem 6.1

U + Uy + € Uy +sin (x) U, — eP'U = 0 on R

U=¢"ony",m=1,2,3.

Ux,00=U(x1),0<x<1,

where

, 2sinmx
Co1+y?

©* =tan"' 2x, ¢* = tan™! (y(y - 1)2).
Problem 6.2
Uy + Uy + e’ Uy +sin(mx) Uy, — U =0onR
Ux,2) =sinmx,0<x < 1,

1 1 1 1 3
U(X,O) = ZU(X, E) + gU(x, 1) + ZU(X, E)
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Table 6.1:

Solutions on the line y =0 of Problem 6.1

h=1/16

h=1/32

h=1/64

h =1/128

1.08143E - 003
2.11043E - 003
3.06437E - 003
3.99917E - 003
4.63414E — 003
5.10924E - 003
5.42355E - 003
5.54481E - 003
5.42355E - 003
5.10924E - 003
4.63414E - 003
3.99917E - 003
3.06437E - 003
2.11043E - 003
1.08143E - 003

1.07733E - 003
2.10093E - 003
3.05995E - 003
3.92006E - 003
4.60194E — 003
5.09734E - 003
5.40011E - 003
5.51245E - 003
5.40011E - 003
5.09734E - 003
4.60194E — 003
3.92006E — 003
3.05995E - 003
2.10093E - 003
1.07733E - 003

1.06995E - 003
2.09985E - 003
3.04753E - 003
3.90146E - 003
4.58118E — 003
5.08458E - 003
5.38575E - 003
5.49120F - 003
5.38575E - 003
5.08458E - 003
4.58118E — 003
3.90146E - 003
3.04753E - 003
2.09985E — 003
1.06995E — 003

1.06878E — 003
2.09723E - 003
3.04516E - 003
3.89853E - 003
4.56626E — 003
5.07102E - 003
5.38023E - 003
5.48215E - 003
5.38023E - 003
5.07102E - 003
4.56626E — 003
3.89853E - 003
3.04516E - 003
2.09723E - 003
1.06878E — 003
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Table 6.2: Solutions on the line y =0 of Problem 6.2

h=1/16 h=1/32 h=1/64 h =1/128
-1.24817E - 006 —1.25923E - 006 -1.26118E —006 —1.25801F — 006
-2.61230E - 006 -2.62049E — 006 —2.62046E —006 -2.61320F — 006
—4.06639E — 006 —-4.06610E — 006 —4.06283E —006 —4.05144E — 006
=5.54744F - 005 -5.53623E — 005 -5.52926E - 005 -5.51406E — 005
-6.97362E — 005 —-6.95075E — 005 -6.94010E —005 -6.92162EF — 005
—8.25574E - 005 —8.22155E -005 -8.20755E —005 —8.18652E — 005
-9.30529E - 005 -9.26090F — 005 -9.24408E — 005 -9.22131F - 005
—1.00403E - 005 -9.98743E — 005 -9.96845E —005 —9.94483E — 005
-1.03901E - 005 -1.03307E —005 -1.03103E -005 -1.02868E — 005
—1.02984F — 005 -1.02350E - 005 -1.02140E -005 -1.01914F - 005
-9.72690E — 005 -9.66213E — 005 -9.64143E —-005 -9.62074E — 005
—8.65773E — 005 —8.59469E — 005 -8.57517E -005 —8.55715E — 005
=7.09704E - 005 -7.03932E - 005 -7.02198E —-005 -7.00737E — 005
-5.07928E - 005 -5.03143E —-005 -5.01745E —-005 -5.00691F — 005
-2.67421E - 005 -2.64308E — 005 -2.63411E —-005 -2.62829E — 005

In Problems 6.1 and 6.2 we see that the exact solution is unknown. This given rise to obtain
the approximate values of Problems 6.1 and 6.2 on the line y = 0 by proposed method given

in Tables 6.1 and 6.2, respectively. By repeated digits, from descending order mesh steps

h = 1—16, é é, ﬁ we have the maximum error on these line decreases as O (hz) rate.
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CHAPTER 7
CONCLUSIONS

The approximate solution of the nonlocal boundary value problem for general second order
linear Elliptic equation on a rectangular domain is defined as a sum of 5-point solution of the
two classical local Dirichlet problem. Nonlocal conditions is replaced by zero on the first
classical local Dirichlet problem except where W = f € C° on y*, also nonlocal boundary
conditions of the original problem are replaced by non-homogeneous condition except where
W = 0 on y*. The boundary values of a nonlocal condition problem were solved by using a
local value of a special constructed function f, where f € C° . By simplicity f = U (x,0) =
U (x,1), its was assumed that Bf = W(x,1) € C° and ¢°(x) = V(x,1) € C°. Original
problem written as a non-linear equation ¢ = 0 + ¢ see in (2.39), the function y is defined
as the n — th iteration of the convergent fixed-point iterations. The uniform estimate of the
error of the approximate solution of the nonlocal boundary value problem for general second
order linear Elliptic equation for n = ([ln h2(1-¢) " /In q‘l] +1, 1) is of order O (hz) ,
where £ is the mesh step. In future I will like to generalize this particular problem with the
height accuracy for fourth order and also seek for the exact and approximate solution of the

problem.
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