
IM
PR

O
V
E
D
C
L
A
SSIFIC

A
T
IO

N
O
F
W
H
IT
E
B
L
O
O
D
C
E
L
L
S

W
IT
H
G
E
N
E
R
A
T
IV
E
A
D
V
E
R
SA

R
IA
L
N
E
T
W
O
R
K
A
N
D
D
E
E
P

C
O
N
V
O
L
U
T
IO

N
A
L
N
E
U
R
A
L
N
E
T
W
O
R
K

K
H
A
L
ED

A
B
D
A
L
L
A

A
L
M
E
ZH

G
H
W
I

N
E
U

2020

IMPROVED CLASSIFICATION OFWHITE BLOOD
CELLS WITH GENERATIVE ADVERSARIAL
NETWORK AND DEEP CONVOLUTIONAL

NEURAL NETWORK

A THESIS SUBMITTED TO THE GRADUATE
SCHOOL OF APPLIED SCIENCES

OF
NEAR EAST UNIVERSITY

By
KHALED ABDALLA ALMEZHGHWI

In Partial Fulfillment of the Requirements for
the Degree of Doctor of Philosophy

in
Electrical and Electronics Engineering

NICOSIA, 2020



IMPROVED CLASSIFICATION OFWHITE BLOOD
CELLS WITH GENERATIVE ADVERSARIAL
NETWORK AND DEEP CONVOLUTIONAL

NEURAL NETWORK

A THESIS SUBMITTED TO THE GRADUATE
SCHOOL OF APPLIED SCIENCES

OF
NEAR EAST UNIVERSITY

By
KHALED ABDALLA ALMEZHGHWI

In Partial Fulfillment of the Requirements for
the Degree of Doctor of Philosophy

in
Electrical and Electronics Engineering

NICOSIA 2020



Khaled Abdalla Almezhghwi: IMPROVED CLASSIFICATION OF WHITE BLOOD
CELLS WITH GENERATIVE ADVERSARIAL NETWORK AND DEEP
CONVOLUTIONAL NEURAL NETWORK

Approval of Director of Graduate School of

Applied Science

Prof. Dr. Nadire CAVUS

We certify this thesis is satisfactory for the award of the degree of Doctor of
Philosophy in Electrical and Electronics Engineering

Examining Committee in Charge:

Assist. Prof. Dr. Elbrus İMANOV Committee Chairman, Department of
Computer Engineering, NEU

Assist. Prof. Dr. Umar ÖZGÜNALP Department of Electrical and
Electronic Engineering,CIU

Prof. Dr. Ayşe Günay KİBARER Department of Biomedical
Engineering, NEU

Assist. Prof. Dr. Ayşegül EREM Department of Basic Sciences &
Humanities , CIU

Assist. Prof. Dr. Sertan Serte Supervisor, Department of Electrical
and Electronic Engineering, NEU



I hereby declare that all information in this document has been obtained and presented in

accordance with academic rules and ethical conduct. I also declare that, as required by

these rules and conduct, I have fully cited and referenced all material and results that are

original to this work.

Name, Surname: Khaled Abdalla Almezhghwi

Signature:

Date: 17-08-2020



ii

ACKNOWLEDGMENTS

Firstly, I would like to express my thanks to my supervisor Assist. Prof. Dr. Sertan Serte for

the support of my Ph.D study. I want to appreciate my family particularly my wife for her

immerse support throughout the period of this study. My sincere heart of gratitude goes to the

entire instructors in the department and my supervisor, for the invaluable impact in my study.



iii

To my Family…



iv

ABSTRACT

Blood is composed of plasma, erythrocytes, leucocytes, and platelets also known as

thrombocytes. However, this study focused on the automatic classification of leucocytes with

the use of approaches involved with the augmentation of data and deep neural networks as an

alternative for manual laboratory procedures by using Artificial Intelligence (AI). Several

objectives were outlined for this study, which consist of an end-to-end equipped deep neural

network for the automatic classification of leucocytes into their five different categories:

neutrophils, eosinophils, basophils, lymphocytes and monocytes. The exploration of a host of

deep neural network systems was conducted by using pre-equipped standards for enhancing

the performance of classification. Dataset acquisition and simulation analysis prove that the

suggested approach performs well directly with obtained images and performs better the than

previous approaches, which require tedious image preparations stages and feature engineering.

Moreover, a deep learning approach was used to analyze the LISC dataset. The results from

this study revealed a high level of accuracy of 97.4%, 98.3%, 98.8%, 96.5% for ResNet-50

(Tran_aug3 + GAN_aug3), DenseNet-121 (Tran_aug3 + GAN_aug3), and DenseNet-169

(Tran_aug3 + GAN_aug3) respectively. However, the results of this study revealed that the

proposed technique is very effective and more studies should be conducted using this

technique.

Keywords: Artificial Intelligence (AI), Deep learning, ResNet, DenseNet, Blood.



v

Özet

Kan, trombosit olarak da bilinen plazma, eritrositler, lökositler ve plateletlerden oluşur.

Bununla birlikte, bu çalışma Yapay Zeka (AI) kullanılarak manuel laboratuvar prosedürlerine

alternatif olarak verilerin ve derin sinir ağlarının arttırılması ile ilgili yaklaşımların

kullanılmasıyla lökositlerin otomatik olarak sınıflandırılmasına odaklanılmıştır. Bu çalışma

için uçtan uca donanımlı derin sinir ağı kullanarak, lökositlerin nötrofiller, eozinofiller,

bazofiller, lenfositler ve monositler olmak üzere beş farklı kategoride otomatik olarak

sınıflandırılması için uçtan uca donanımlı bir derin sinir ağı içeren çeşitli hedefler

belirlenmiştir. Sınıflandırma performansını artırmak için önceden donatılmış standartlar

kullanılarak bir dizi derin sinir ağı sisteminin keşfi gerçekleştirilmiştir. Veri kümesi elde etme

ve simülasyon analizi, önerilen yaklaşımın doğrudan elde edilen görüntülerle iyi performans

gösterdiğini ve sıkıcı görüntü hazırlama aşamaları ve özellik mühendisliği gerektiren önceki

yaklaşımlardan daha iyi performans gösterdiğini kanıtlamaktadır. Ayrıca, LISC veri kümesini

analiz etmek için derin öğrenme yaklaşımı kullanılmıştır. Bu çalışmadan elde edilen sonuçlar,

sırasıyla ResNet-50 (Tran_aug3 + GAN_aug3), DenseNet-121 (Tran_aug3 + GAN_aug3) ve

DenseNet-169 (Tran_aug3 + GAN_aug3) için %97.4, %98.3, %98.8, %96.5'lik yüksek bir

doğruluk düzeyi olduğunu ortaya koymuştur. Ancak bu çalışmadan elde edilen sonuçlar,

önerilen tekniğin çok etkili olduğunu ve bu teknik kullanılarak daha fazla çalışma yapılması

gerektiğini ortaya koymuştur.

Anahtar Kelimeler: Yapay Zeka (AI), Derin öğrenme, ResNet, DenseNet, Kan.
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CHAPTER 1

INTRODUCTION

The optimal defence of the body against harmful foreign elements (bacteria and viruses)

depends of the presence of functional white blood cells in the correct proportion. If the blood

is deficient in healthy white blood cells or the different types are present in the wrong

proportions, several harmful elements can easily invade the body causing various types of

diseases for which the subject may require considerable medical care. As such, white blood

cell type classification and subsequent defect inspection are important to ascertain the overall

good health of subjects.

Traditionally, counting white blood cells is achieved in the laboratory using a staining process

and manual examination under the microscope. This process is however tedious, and errors

can occur due to fatigue on the part of the human examiner. The use of automated cell

counting systems such as laser-dependent cytometers are commercially available, but are not

morphologically nor image-dependent. Moreover, blood cells are destroyed in the course of

analyses. An interestingly alternative is the non-destructive classification approach that relies

on images of white blood cell types for learning the classification problem. However, a major

problem for image-based automatic classification of white blood cells is the small size of data

that is usually available for training. This problem worsens for deep neural networks, which

are well known to be ‘data-hungry’. As such, the following section summarizes the objectives

of this thesis.

1.1 Objectives of Study

The main objectives of this thesis are as follows.

i. An end-to-end equipped deep neural network for the automatic classification of

leucocytes into their five different categories: neutrophils, eosinophils, basophils,

lymphocytes and monocytes.
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ii. The exploration of a host of deep neural network systems with the use of pre-equipped

standards for enhancing the performance of classification.

iii. Dataset acquisition and simulation analysis.

iv. To prove that the suggested approach performs well directly with obtained images and

also performs better than previous approaches which require tedious image

preparations stages and hand engineering of important features.

1.2 Significance of Study

The different kinds of leucocytes have different functions. Particularly, they depict different

pathologic conditions of the patients. Therefore, it is necessary to enumerate and identify the

number of the various leucocytes in a blood sample to ascertain whether they are present in

their correct proportions. In addition, the various leucocytes after identification can be

extracted for in-depth analysis for irregularities. This investigation of white blood cells

quantitatively and qualitatively provide much information on the health status of the patient.

For instance, this process makes it possible to investigate patients for health conditions like

leukemia, immune system irregularities and cancers (Shafique et al., 2018).

Traditionally, identification is performed in a laboratory setting in which the obtained slides of

blood cells are stained with special stains or reagents. These are then microscopically

examined by specialists. Nonetheless, this procedure is time consuming and subjective to

operation errors.

1.3 Overview on the Composition of Blood

Blood is the main body fluid composed of four constituents, which are: plasma, erythrocytes,

leucocytes and platelets otherwise known as thrombocytes. Blood is split into main parts:

plasma, which makes up about 55% of whole blood and the remaining 45% made of cells. The

total contribution by mass of whole blood to the overall body mass is about 8%. The adult

human possesses about five litres of blood. The vital functions of blood are the transportation

of respiratory gases, notably oxygen and carbon dioxide to and from organs and tissues, the
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transport of nutrients, the transport of antibodies to designated sites for fight against infections,

transporting waste products of metabolism for detoxification in the liver and kidney, the

regulation of human body temperature, the transport of hormones and more.

1.4 Blood Components

Plasma is the straw-colored liquid component of blood which is largely made up of water,

about 90%, proteins, sugars, fats and salts such as sodium, potassium, chloride and calcium.

Plasma is responsible for the transportation of blood cells and other constituents to all organs

of the body. Blood cells such as erythrocytes, leucocytes, cell fragments like thrombocytes,

constituents like nutrients, electrolytes, antibodies, vitamins, clotting factors and hormones are

borne in plasma. Plasma void of its clotting factors is known as serum (Fathima et al., 2017).

Erythrocytes, otherwise known as red blood cells, they are the commonest of the three kinds of

blood cells in the human body. Their main distinction is the absence of a nucleus from the

mature cells (anucleate). This morphology renders them more flexible to be able to squeeze

through cell-to-cell junctions through a process known as diapedesis. In addition, the absence

of a nucleus gives more room for the continence of respiratory gases to and from tissues. This

anucleated morphology gives them a biconcave disk shape with a flattened center. These cells

bear a protein known as haemoglobin, which is primarily responsible for binding respiratory

gases, either oxygen from the lungs as oxyhemoglobin or carbon dioxide as

carbaminohemoglobin.

Figure 1.1: Red blood cell (Fathima et al., 2017)
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This hemoglobin is also responsible for the red color of blood and is so because of the binding

of iron to oxygen. This compound functions as a transport system for the transportation of

oxygen from the lungs to body tissues. It also transports the generated carbondioxide from the

body tissues as waste back to the lungs for expulsion from the system. The manufacture of

erythrocytes is regulated by a hormone known as erythropoietin produced in the kidneys. The

mean lifespan of an erythrocyte is 120 days (Fathima et al., 2017).

Leucocytes, also known as white blood cells, they are implicated with the human immune

system as they protect the body from foreign invading infections. The manifestation of

infection is readily observable from an increase in overall white blood cell count in circulation.

They police the body searching for infectious agents.

White blood cells can be further divided into two categories based on the absence or presence

of granules in the cells. These are either granulocytes (bearing granules) or agranulocytes

(absence of granules). Granulocytes can be further split into three categories: neutrophils,

eosinophils and basophils. Agranulocytes are divided into two kinds namely monocytes and

lymphocytes.

Granulocytes: Neutrophils are responsible for the destruction of alien bodies particularly

bacteria by phagocytosis. Eosinophils are responsible for fighting against infections due to

parasitic worms by the release of toxins. The action of basophils is through the release of two

chemicals namely histamine which produces allergic reactions and heparin which is an anti-

coagulant.

Agranulocytes: The role of monocytes is in the process of phagocytosis as they form

macrophages. These are the main white blood cells and are further divided into T lymphocytes

and B lymphocytes. T lymphocytes are thymus dependent cells. Their function is through cell

mediated immunity and act directly against infected cells and tumors. B lymphocytes are bursa

dependent cells and are responsible for humoral immunity. They generate antibodies which

target bacteria, viruses and other alien bodies. Lymphocytes are different from other

leucocytes in their having the power of memory in the recognition of invading alien bodies.
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As previously seen, whole blood comprises red blood cells, white blood cells as well as

platelets. The absence of nucleus on red blood cells makes them inappropriate for

chromosomal culture. With adequate conditions, white blood cells can be utilized for in vitro

(culture) investigations. The objective of a white blood cell culture is the acquisition of an

adequate proportion of metaphases to permit the analysis of chromosomes. The differentiated

T lymphocytes circulating in peripheral blood do not undergo any further mitosis. As such,

white blood cells are cultured in rich culture media (RPMI 1640 containing low thymidine) as

well as bovine calf serum (which acts as a natural environment for growing cells). Large

quantities of white blood cells enter mitosis is made possible with the use of a mitogen or

microprotein known as phytohemaglutinin (PHA). The introduction of PHA results in changes

in morphology like the production of RNA and DNA as well as the enlargement of nuclei.

These cells are incubated for about three days so as to obtain the maximum mitotic index. At

this point, the mitotic index is enhanced by the introduction of colchicine, a mitotic inhibitor.

The addition of this into the culture media prohibits the production of mitotic spindle fibres

thus suspending the process of mitosis at the metastatic phase. This leads to an accumulation

of cells at the metastatic phase of mitosis. These cells are then harvested and exposed to a

hypotonic solution of 0.56% KCl. This induces swelling such that the chromosomes are well

dispersed and the cells are further exposed to Carnoy’s fixative containing a mixture of

methanol and acetic acid in a ratio of 3:1.

Figure 1.2: Leucocytes (Fathima et al., 2017)
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Figure 1.3: Platelets (Fathima et al., 2017)

The harvested white blood cells are placed on chilling slides and stained with Giemsa for an

analysis of their chromosomes (Fathima et al., 2017).

Platelets, otherwise known as thrombocytes, are cell fragments without a nucleus. They are

produced in the bone marrow by large megakaryocytes. They are implicated with the process

of blood clotting through the formation of a platelet plug at the location of injury. This leads to

the formation of a clot, which prevents further blood flow from the injury hence enhancing the

healing process.

1.5 Applications of blood

Erythrocytes, leucocytes, and thrombocytes are manufactured in the bone marrow prior to

their being introduced into peripheral blood. Plasma is greatly constituted of water, which is

obtained through absorption from ingested food from the intestines. Circulating blood has a

number of applications, which are vital for survival. These include:

 Blood supplies oxygen to body cells and tissues

 It provides required nutrients to cells like glucose, fatty acids and amino acids

 It removes waste from cells and tissues such as carbon dioxide, urea as well as lactic

acid



7

 It protects the body from infectious agents via the action of leucocytes

 It transports hormones from a section of the body to another and as such, transmits

signals as well as completes necessary processes

 It regulates acid levels

 It regulates body temperature

 It helps engorge body parts when required such as with penile erection as a natural

response to sexual arousal

 Blood protects against infection. Leucocytes protect against infections, alien agents

and diseased cells

 Thrombocytes help with blood clotting. In a situation of bleeding, thrombocytes clump

together to produce a clot. This proceeds to become a scab which prevents further

blood loss and as such prevents further infection of the wound.

1.6 Classification of White Blood Cells

The composition of the white blood cell population provides important information to aid in

diagnosis for patients. The engagement in the automatic detection of white blood cells instead

of the manual detection is a significant topic in cancer diagnosis. The microscopic

differentiation of the white blood cell population is still conducted by hematologists. It is a

vital procedure for the diagnosis of cancerous suspicions. Though a reference standard for

blood samples with abnormal cells, the procedure is slow, subjective and results have poor

reproducibility. As such, the automation of this procedure is necessary for improving the

haematological process and enhance the diagnosis of many infections (Soltanian-Zadeh et al.,

2009).

The texture, colour, dimensions and morphology of the nucleus and cytoplasm differentiate

the different types of white blood cells.

In blood smears, the proportion of erythrocytes is always more than those of leucocytes. An

image of about 100 erythrocytes would contain about 1 to 3 leucocytes. In laboratory setting,

the main important or significant factors with respect to haematology exams include red blood
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cell count, white blood cell count and the detection of blood disorders. The identification,

location and counting of these cells is a demanding task. This makes an automated system for

such procedures an utmost necessity. Leucocytes have more clinical significance than

erythrocytes as they are implicated with a variety of infections. As such, the proper

differentiation of these cells is employed for the determination of the presence of an infection

in the human body.

The lymphocytes are more common in the lymphatic system. They are unique in their

possession of a deep staining nucleus which may be centrally located relative to a very small

cytoplasmic space.

Monocytes constitute about 6% leucocyte population and are implicated in human immune

system. Their nucleus is kidney-shaped and are granulated. They bear an abundance of

cytoplasmic space. Compared to other leucocytes, these live longer. They patrol peripheral

blood scouting for bacteria, viruses as well as other waste substances which require removal.

Faced with an alien particle, they phagocytize the foreign body. This is then followed by

digestion of the foreign body into smaller bits and the presenting these fragments on their cell

surfaces for passing T lymphocytes to familiarize themselves with the foreign body and so

ease the killing of more of these by the T lymphocytes.

The function of neutrophils is in the defence against bacterial or fungal infections as well as a

host of other minute inflammatory reactions, which are typical primary responses to

pathogenic infections. Their action and death in extensive proportions form pus. They are

typically known as polymorphonuclear (PMN) leucocytes. Their nuclei is multi-lobed which

gives an appearance of multiple nuclei. Their cytoplasm may appear transparent as a result of

fine grains which appear faintly pink. They are very active in the process of phagocytosis of

bacteria and are available in extensive proportions in pus. They do not renew their lysosomes

which was used in the digestion of microbes and eventually die after phagocytosis of a few

microbes (Hiremath et al., 2010). Differentiation of these leucocytes is important as the

accuracy of the subsequent isolation of characteristics and classifying relies on the proper

segmentation of leucocytes. One of the challenges involved in the process results from the
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complex nature of the cells as well as the uncertainty of the microscopic graphic. As a result,

this step stands to be the most significant and crucial step and so improving the segmentation

of cells has been a major area of research.

The microscopic investigation of blood slides generates vital information both qualitatively

and quantitatively on the presence of hematic pathological infections. Two main analyses are

involved in this procedure: the first of these is the qualitative investigation of the morphology

of the cells. This provides knowledge of degenerative and tumor infections like leukemia. The

second analysis is quantitative. It involves the differential numeration of white blood cell types.

The use of automated cell counting systems like laser-dependent cytometers are commercially

available but are not morphologically nor image-dependent. More so, blood cells are destroyed

in the course of analyses. Furthermore, these cytometers do not permit direct classifying of

white blood cells based on morphology such as the differentiation of tumor leucocytes from

normal leucocytes (Piuri et al., 2004).

Leucocytes present the main defense against infections in the human body and their specific

proportions can aid specialists discriminate the presence or absence of certain kinds of

pathologies such as the presence of mononucleosis, hepatitis, diabetes, allergy, arthritis,

anemia and so on. The drawback of this manual process in the accuracy of classifying cells

and enumeration is subjective. The process of identification and differential enumeration of

leucocytes is tedious and the reproducibility of results is poor.

The dissemination of extensive screening programs has placed a demand on the necessity for

fully automated non-destructive systems for rapid and accurate analysis of blood samples.

Such systems could also be considered a first step to the automated detection or monitoring of

blood pathologies like different kinds of leukemia as well as an analysis of the different forms

of leucocyte morphology.

1.� Aim of Study

The purpose of this thesis involved the investigation of the automatic classification of

leucocytes with the use of approaches involved with the augmentation of data and deep neural
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networks as an alternative for manual laboratory procedures. These proposed novel techniques

prove to be rapid, accurate as well as cost effective. Data enhancement approaches are

operations which transform images as well as GAN-generated images. These techniques are

used to classify leucocytes into neutrophils, eosinophils, basophils, lymphocytes and

monocytes. A main advantage of this approach is the absence of specialized and complicated

image preparation stage and characterizes engineering prior to classifying.
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CHAPTER 2

LITERATURE REVIEW

2.1 Densely Connected Convolutional Networks

The prominent machine learning technique for visually recognizing images or objects is the

convolutional neural network (CNN) techniques. Despite the fact that they have been in

existence for over two decades (LeCun et al., 1989), it is only in recent years that there has

been the enhancement of computer hardware as well as network systems have made possible

the equipping of deep convolutional neural networks. The initial LeNet (LeCun et al., 1998).

comprised of five layers, VGG comprised nineteen layers, and Highway Networks, as well as

Residual networks known as ResNets, have over 100 layers.

With the increase depth of convolutional neural networks, there is a rise of a novel kind of

challenge. The flow of information in the input or gradient through multiple layers could lead

to the vanishing or washing out of information by the time it gets to the terminus or beginning

of the network. A number of research publications have addressed or related to this challenge.

ResNets and Highway Networks detour signals from layer to layer through identity links. The

presence of stochastic depths (Huang et al., 2016), decrease ResNets. This is done by

haphazardly dropping layers in the course of training or equipping to permit much improved

information as well as the flow of gradient. FractalNets (Larson et al., 2016), unite multiple

sequences of layers in repeat mode with various quantities of convolution blocks so as to

achieve an extensive nominal depth while simultaneously ensuring multiple short paths in the

network. Despite the fact these various techniques differ in network topology and the

procedure of equipping, they all have a fundamental feature in that they generate shortened

routes or detours from early layers to subsequent layers.

Exploring network structures has been a component of neural network investigations from the

moment of their earliest discovery (Huang et al., 2017). This sector of research has been

revived as a result of the increased rise in prominence of neural networks of late. The

variations in architectures is amplified by the increasing proportion of layers in recent
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networks. This further enhances the desire for exploring the various connection systems and

the revisit of former research concepts.

An early such investigation dates back to the 1980s (Fahlman et al., 1989). This early work

focused on completely connected multiple layer perceptions equipped in a sequence of layers.

In recent times, fully linked cascade networks for equipping with batch gradient descent was

suggested (Wilamowski et al., 2010). This approach proved efficient with minimal datasets as

it scales to networks having just few hundred features. In investigations conducted by (Yang et

al., 2015), it was found that the use of multiple layer characteristics in convolutional neural

networks via skip-connections proved effective for different visual applications. Further

investigations conducted by (Cortes et al., 2016), derived a conceptual structure for networks

with cross layer connectivity.

Among the earliest structures which made it possible to efficiently equip end-to-end networks

with over 100 layers was the Highway Networks (Srivastava et al., 2015). With the use of

bypass routes coupled with gating units, these Highway networks with several hundred layers

could be optimized with ease. The bypass routes are assumed to be vital elements which ease

the equipping of the extremely deep neural networks. This fact is further advocated on by

ResNets (He et al., 2016). With these, pure identity mappings are utilized as detouring routes.

These ResNets have accomplished magnificent, accurate results on numerous hurdles

concerned with the recognition of graphics, localization as well as detecting tasks like

ImageNet and COCO detection objects.

In recent times, stochastic depths has been suggested as a means for a successful equipping of

a 1202-layer ResNet (He et al., 2016). This stochastic depth enhances the equipping of deep

residual networks by placing layers haphazardly in the course of equipping. From this, it is

obvious that not every layer could be required. It also highlights the intense amount of

redundancy in deep residual network architectures. Pre-activated ResNets equally ease the

equipping of top quality network architectures with more than a thousand layers (Huang et al.,

2016).
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A possible approach of increasing the depth of networks such as with the aid of skip

connections is by increasing the breadth of the network. GoogleNet utilizes an inception

module. This module organizes feature maps generated by filters of various dimensions in a

sequential pattern (Szegedy et al., 2015). A derivative of ResNets with broad generalized

residual blocks was suggested. It was shown that merely increasing the proportion of filters in

every layer of ResNets has the possibility of enhancing the operation so long as the depth is

sufficient (Zagoruyko et al., 2016). Fractal Nets were also shown to accomplish satisfactory

results on a number of datasets with the use of a broad network structure (Larson et al., 2016).

In place of obtaining representing power from very deep or extensive architectures, DenseNets

investigate the possibility of the network via the reusability of features. This generates

condensed patterns which are easy to equip and prove effective with respect to parameters.

The sequential organization of characteristic-maps equipped by various layers improves

differences in the input of other layers and enhances effectiveness. This makes a significant

distinction between DenseNets and ResNets. In contrast to Inception network architectures

that also organize in a sequential manner, characteristics from various levels, DenseNets have

proven to be simpler and more effective. A host of other network architectures have also

proven to generate satisfactory results. An example of this is the Network in Network

architecture (Lin et al., 2014) which involves multiple micro layer perceptions into filters of

convolutional layers to isolate more complicated characteristics. With Deeply Supervised

Networks (DSN) (Lee et al., 2015), inside levels are directly monitored by auxiliary classifier

this has the possibility of strengthening the gradients obtained from previous layers. Ladder

networks are architectures which present lateral connectivity into auto-encoders thereby

generating satisfactory and accurate results on semi-monitored training functions (Rasmus et

al., 2015).

Deeply fused networks (DFN) were suggested to enhance the flow of information by joining

intermediary levels of various base networks. The improvement of networks with routes which

reduce reconstruction losses has proven to enhance the classification of image patterns (Zhang

et al., 2016).
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2.2 Image Segmentation and Classification of White Blood Cells

The enumeration of blood cells is a major sector in bioengineering. With the segmentation of

human blood cells, a number of techniques have been investigated and employed for obtaining

accurate outcomes (Ravikumar, 2016). In 2013, Tulsani suggested a technique for

enumerating various blood cells in the course of a blood smear examination.

The most common form of adult blood cancer in Canada is chronic lymphatic leukemia (CLL).

The investigation presented in 2013 by Mohammed and colleagues aimed at decreasing the

over segmentation as well as under segmentation of faults of the watershed algorithm by a

suppression of 1% of the local minima. Saba and colleagues in 2013 performed an

investigation which was aimed at providing a contrasting investigation between artificially

equipped and heuristics rule-dependent approaches employed for the recognition of prototypes

in top notch technology with focus on the recognition of script pattern. Again in 2013,

Mohasenzadeh and colleagues suggested a separable technique in characteristic and sample

domains. With the adoption of a Bayesian approach as well as the utilization of Gaussian

priors, the equipped model by RSFM is sparse in the sample and characteristics domains. This

suggested technique is an extended form of the conventional RVM technique. The standard

form only opts for sparseness in the sample sector. Dorini and colleagues in 2013 investigated

novel techniques for segmenting the nucleus and cytoplasm of leucocytes. For the

segmentation of the nucleus, the graphic pre-processing with SMMT proved to be significant

for ensuring the effectiveness of two properly recognized image segmentation approaches

known as watershed transform and layer set methods.

In recent times, the Extreme Learning Machine (ELM) for single hidden level feed-forward

neural networks (SLFN) has grown in prominence and popularity as a result of its rapid

learning speed and improved general operations than those of conventional gradient-dependent

learning techniques. A derived learning technique suggested by (Han et al., 203), for

overcoming the challenges of ELM utilizes an enhanced particle swarm optimization (PSO)

technique for selecting the input weights, hidden discriminations as well as the Moore-Penrose

(MP) general inverse for the analytical determination of the output weights. In 2013, Chyzhk
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and colleagues conducted the segmenting of clinical pictures following an Active Learning

technique which permits rapid interactive segmenting, decreasing the prerequisites for the

interference with human faults. The automatic segmenting of white blood cells can aid

pharmaceutical firms reach decisions on drugs as well as promote the development of an

automatic white blood cell recognition system. In 2013, (Saraswat et al., 2013), suggested a

new technique dependent on a differential evolution (DE) technique for the segmentation of

white blood cells from pictures of mice skin sections exposed to H&E staining reagent which

were gotten from 40× magnification.

The domain of medical imaging is a significant one with respect to techniques of image

processing. Notably, the analyses of white blood cells has involved scientists from sectors of

medical fields and computer visuals as well. Cueves and colleagues in 2013 suggested a

technique for the automatic detection of white blood cells embedded into sophisticated and

cluttered smear pictures which takes into consideration the full process as a circle detection

challenge.

The aim of the investigation performed by (Mohapatra et al., 2014), was the improvement of

the ALL diagnostic accuracy by the analyses of morphological as well as texture-based

characteristics from the blood picture with the use of image processing. This study

investigated the utilization of picture morphology as well as the recognition of pattern

techniques for the sub classification of leukemia lymphoblasts based on the procedure outlined

by French American-British classification.

Strzelecki et al. (2013) presented a software tool for the automated classification and

segmentation of two-dimensional and three-dimensional clinical pictures. In 2014,

Chinnathambi and colleagues suggested a rigid segmentation technique which can separate

linked cells. Daniel and colleagues in 2013 identified that the clinical imaging is a significant

sector of application of the techniques involved with the processing of images. To overcome

these challenges encountered with the conventional methods of identifying white blood cells

based on the colored or grey pictures obtained from light microscopy, a microscopy hyper-

spectral imaging system was utilized for the analysis of the blood smears. This structure was
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developed by (Li and colleagues, 2013). This coupled an acousto-optic tunable filter (AOTF)

adaptor to a microscope and powered by an SPF model AOTF regulator that can capture

hyper-spectral graphics from 550nm to 1000nm with a resolution of 2 to 5nm.

The process of classifying white blood cells can be performed by automated and manual

techniques for the enumeration. As previously noted, the manual classification of white blood

cells is prone to much challenges such as inaccuracies resulting from sampling, statistical

probabilities, poor sensitivity, poor specificity as well as predictive values. More so, some

automated techniques performed in the laboratories utilize tools like flow cytometry as well as

automated counting machine for the detection and classification of white blood cells. These

tools do not utilize image processing algorithms. They can enumerate and classify white blood

cells only quantitatively but not qualitatively. As such, there is the necessity for designing an

automated system which involves the processing of images, the processing of signals, the

recognition of patterns or deep learning techniques for providing a qualitative as well as

quantitative assessment, accurate outcomes and rapid results (Abbas et al., 2018).

Automated classifying of white blood cells comprises six steps as shown in the figure below:

1. The acquisition of the image

2. The pre-processing of the image

3. Segmentation

4. The isolation of characteristics and representations

5. The classification of the cells

6. The assessment
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Figure 2.1: Steps of automated classification of white blood cells (Strzelecki et al., 2013)

2.3 Some MachineLearning Approaches

In recent times, deep learning has drawn much attention in computer visual applications as

well as clinical imaging applications as a result of its automated and unsupervised and

monitored properties in learning algorithms. It works by simulating the structure and

performance of the human brain (Voulodimos et al., 2018). It is also widely used in the

classification of white blood cells. Nonetheless, it requires an extensive amount of equipped

data if to be trained from scratch. Transfer learning prototypes could decrease the equipping,

but the approach still functions as a black box lacking proof-based output. More so, the use of

deep learning techniques is quite costly as it may involve over a week of high-end graphical

processing unit period for equipping.

With respect to the classification of white blood cells, knowledge from the afore-mentioned

sector can accomplish highly precise performance with representational proof for the

reasoning process. As such, other classifiers like support vector machines, relevance vector

machines, classification trees and logistic regression are much suitable for making use of

principles obtained from human expertise rather than deep learning. Thus, scientist tend to

utilize the processing of signals and machine learning approaches in white blood cell

classification with respect to segmentation and the isolation of characteristics for resolving
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challenges involved with classification of white blood cells. For instance, studies conducted by

(Al-Dulaimi et al., 2018), proposed a method for the classification of white blood cells into 10

classes based on bispectrality invariant features and support vector machines with

classification tree. These bi-spectral invariant features are isolated based on the shape of the

segmented white blood cell nucleus for dealing with intra-class differences of staining, shape

cellular illumination as well as topology.

Studies conducted by (Al-Dulaimi et al., 2018), propose a novel technique for the

classification of white blood cells which aims at increasing the robustness for taking into

consideration the complexity, compactness and effectiveness. This suggested technique is

utilized on L-moments (L-skweness, L-mean, L-scale and L-kurtosis) of the Radon projected

input picture. This is coupled with the Linear Discriminant Analysis (LDA). The white blood

cells are classified into ten classes with the use of support vector machines and classification

tree.

Regardless of the extensive amount of research, the automated classification of white blood

cells with respect to segmentation and the representations of characteristics still has several

challenges and neither of the proposed techniques cover all challenges simultaneously. A full

or complete blood cell (CBC) enumeration is a relevant exam frequently required by medical

personnel for evaluating the health status of a patient. Since these blood cells are quite

numerous in number, conventional methods of counting them with the traditional

hemocytometer is extremely time consuming and tedious, liable to human errors and vastly

depends on the professional skills of the operator. As such, an automatic procedure for

enumerating these various blood cells from a blood smear image would ease the entire

enumerating procedure (Alam et al., 2018).

The accuracy of the classification of images and the recognition of objects has increased in

recent years since the advent and introduction of machine learning techniques. For this reason,

machine learning techniques have a wide variety of applications across many different fields.

Of notable significance of this is the application of machine learning techniques in many

clinical tasks such as the detection of irregularities and the localization of characteristics in
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chest X-ray examinations. Some others also include the automated segmentation of the left

ventricle in heart magnetic resonance imaging, as well as the detecting of diabetic retinopathy

in images of the retina fundus. As such, there is therefore the necessity of looking into the

possible applications of deep learning techniques which can be possibly applied to the

enumeration of blood cells in smear pictures.

Several deep learning techniques have been suggested based on the counting of blood cells. A

method based on the detection of objects by deep learning for the detection of various blood

cells was suggested by (Mohammad et al., 2018). In this study, taking into consideration

prominent object detection techniques like regions with convolutional neural networks

(RCNN), you only look once (YOLO), the YOLO algorithm was chosen due to the fact that it

is about thrice faster than RCNN with VGG-16 algorithm. The YOLO algorithm utilizes a

unique neural network for the prediction of bounding boxes and class probabilities directly

from the complete image in a single evaluation. YOLO was retrained to autonomously

recognize and enumerate red blood cells, white blood cells and platelets from blood smear

pictures. For the improvement of the accuracy of the performance, an authentication method

was developed for preventing repeat counts by the algorithm (Alam et al., 2018).

More so, the equipped algorithm was evaluated with pictures from a different dataset for the

purpose of observing the generalization of the technique. The figure below demonstrates the

suggested deep learning technique for the identification of the various blood cells as well as

their counting.

On a general basis, two distinct approaches exist for the automatic enumeration of the blood

cells. These are the image processing approach and the machine learning approach.

An image processing approach was suggested by (Acharya et al., 2018) for the counting of

erythrocytes. In this method, the blood smear picture was processed to count erythrocytes as

well as the recognition of normal and abnormal cells. They utilized the K-medoids technique

for the isolation of white blood cells from the graphic and granulometric analysis for the

separation of red blood cells from white blood cells. This was then followed by the counting of

cells with the use of labelling algorithm as well as a circular Hough Transform (CHT).
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A study conducted by (Sarrafzadeh and colleagues, 2015), suggested a circlet transform for the

enumeration of erythrocytes on the greyscale picture. They utilized iterative soft-thresholding

technique for identifying and enumerating the cells. A method presented by (Kaur et al., 2016),

based on the automatic counting of platelets from the circular Hough Transform in a

microscopic blood cell picture. They utilized the dimension and shape characteristics from the

circular Hough Transform in the enumeration procedure.

Cruz and colleagues (2017), suggested a technique based on the processing of images for the

enumeration of blood cells. They utilized hues, saturation, value thresholding technique as

well as the constituent labelling for identifying and enumerating blood cells. A method

proposed by (Acharjee and colleagues, 2016), based on semi-automatic process by the

application of Hough Transform for counting erythrocytes by the detection of their oval and

biconcave shape. (Lou and colleagues, 2016), suggested a technique for the automatic

detection of and classification of white blood cells with the use of spectral angle imaging as

well as support vector machine.

Zhao and colleagues ( 2017), suggested an automated identification and classification method

for white blood cells with the use of convolutional neural network. Primarily, the white blood

cells were detected from the microscopic images and then convolutional neural networks was

utilized for the detection of various kinds of white blood cells.

Habibzadeh and colleagues (2013), proposed a system for the classification of five different

kinds of white blood cells in which they utilized classifiers which involved two distinct kinds

of support vector machines and one convolutional neural network classifier. They utilized

previously trained convolutional neural networks, ResNets and Inception Net for the

enumeration of white blood cells from segmented pictures. The pictures were segmented and

employed color space analysis.

Xu and colleagues (2017), used a patch size normalization on previously processed pictures

and then employed convolutional neural networks for the classification of red blood cell

shapes from microscopy images of subjects of sickle cell disease.
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Figure 2.2: Block diagram for the automated detection and counting of blood cells
(Voulodimos et al., 2018)

The suggested technique utilizes the YOLO for the detection of all three kinds of blood cells at

the same time. This method does not require greyscale conversion or binary segmenting. This

process was proven to be fully automated, rapid and accurate.

The conventional practice in medical practice involves the microscopy exam of peripheral

blood which contributes significantly in diagnosis and monitoring of infections. This act

makes it possible to discern relevant morphologic characteristics of hematopoietic cells as well

as irregular white blood cells in lymphoma, leukemia, dysplasia and other infections. As with

the majority of manual practices which rely on visual inspection with limitations in quality

control and economic scalability, the preparation of blood smear techniques and interpretation

are subject to observer discrimination, slide distribution faults, data sampling faults, clerical

faults, laboriously intensive and the need for intensive skills.
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Conventionally, much research has been conducted for automating the processes involved

with geometric differential enumeration.

These automated processes often accomplish satisfactory results but rely on segmentation

accuracies and the effectiveness of the traits. The ineffectiveness of one step in the process

would affect the entire process.

Dan and colleagues (2019), characterized white blood cells with local features. In this

investigation, three detectors were used; scale invariant feature transform (SIFT), oriented

features from accelerated segment text (OFAST) and center surround extrema (CenSurE).

These were employed for the acquisition of significant aspects such that these local features

could represent the five white blood cell types. However, the accuracy of the procedure was

unsatisfactory particularly for eosinophils and basophils.

Deep learning techniques for the classification of white blood cells have shown satisfactory

results in different visual applications such as the classification of clinical pictures, the

detection of objects and semantic segmentation. The principle of these deep learning

techniques is that the process of isolation of characteristics is not designed by human

engineers but is learned from information which utilizes a broad-purpose learning algorithm.

Convolutional neural networks provide satisfactory results with respect to the analysis of

images and so are increasingly employed in applications involving the recognition of and

classification of white blood cells. Investigations conducted by (Zhao et al., 2016), proposed a

technique for the autonomous detection and classification of white blood cells from peripheral

blood smear images. White blood cells were identified with respect to the location of the

nucleus. The convolutional neural network system was designed with five convolution layers

and two pooling layers for the isolation of characteristics in high level. This algorithm

provided a possibility of dealing with the challenge of recognizing white blood cells by a

combination of detection and classification of white blood cells. The white blood cells

identified were of five different types and the precision for the identification of eosinophils

and lymphocytes had to be improved on as they generated an accuracy of 70% and 74.8%

respectively.
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A study conducted by (Shahin et al., 2019), suggested a technique which utilizes convolutional

neural network architecture for the recognition and classification of five mature white blood

cells. This study accomplished a classification accuracy superior to that of the conventional or

traditional approaches for the identification of white blood cells.

Choi et al. ( 2017) engaged an automatic differential counting process for white blood cells

with the use of a dual phase convolutional neural network. This dual phase convolutional

neural network system categorized pictures into ten kinds of myeloid and erythoid maturation

stages. This investigation accomplished very satisfactory performance.

Based on deep residual learning concept and clinical domain knowledge, Qin and colleagues

in 2018, suggested a fine granulated white blood cell classification technique for microscopy

pictures. The suggested deep residual neural network was assessed on microscopy image data

set with forty groups of white blood cells and obtained satisfactory results. This studies

provided information on the research object which spanned from five types of peripheral blood

to ten or forty kinds of bone marrow specimen. Also the quantity of training group ranged

from 2174 to about 92480 pictures.

Despite the fact that deep convolutional neural networks and the conventional traditional

machine learning techniques have demonstrated satisfactory outcomes in the classification of

white blood cell pictures, they are limited with respect to exploiting the long term reliance

between some vital characteristics of pictures and image annotations. In a bid to resolve this

limitation, a convolutional neural network-recursive neural network (CNN-RNN) architecture

was designed to improve the understanding of picture content and train the structured

characteristics of the image.

Many of the afore-mentioned techniques were designed from the viewpoint of the

classification of images. This involves the recognition of white blood cell as a classification

function. This procedure necessitates that there be the availability of object samples in the

input picture by segmentation. Also the number of objects do not exceed one by cropping the

image manually or sophisticated segmentation step. These techniques are frequently aimed at
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the recognition of five kinds of mature white blood cells that are frequent observed in

circulating blood.

A major challenging task in computer visual systems is the generic detection of objects which

is aimed at the localization of object instances from a wide array of predefined classes in

images. Nonetheless, regardless of the possibilities presented by this automated architecture,

the improvement of the techniques with regards to this challenge is still an ongoing challenge.

As a result, studies conducted by (Wang et al., 2019), deals with the recognition of white

blood cells of multiple images from the standpoint of detecting objects instead of classifying

images with the intent of appropriately differentiating the kind of white blood cells and its

location in the image obtained directly from the microscope.

Two instituted series are available as representations of deep learning techniques:

 Two-phase detection architecture: it involves a pre-processing step for region proposal

which makes the overall pipeline a two-stage system.

 One-phase detection architecture: it involves a region proposal free architecture which

does not differentiate detection proposals thus makes the overall pipeline a one stage

system with end to end.

The frequent structures for the two-phase pipeline include regions with convolutional neural

network, spatial pyramid pooling in deep convolutional neural network, fast R-CNN, faster

RCNN. Region-dependent fully convolutional neural network and mask RCNN.

Frequent architectures for one stage pipeline include DetectorNet, MultiBox, OverFeat, You

Only Look Once (YOLO), YOLOv2, YOLOv3 and single shot multibox detector (SSD) of the

afore-mentioned channels for the detection of objects, SSD is relatively fast and robust to

overcome differences due to the fact that it employs multiple convolution layers and joins all

prognostications from multiple characteristic maps with various resolutions for the detection

of objects.
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YOLO is a unified detector which casts the detection of objects as a regression challenge from

graphic pixels to spatially separated bounding boxes as well as connected category

possibilities. The improved versions of YOLO, namely YOLOv3 operates faster than the other

detection techniques with contrasting performance. YOLOv3 stands out with respect to the

accuracy of detection and computational speed.

Studies conducted by (Liang and colleagues, 2018), involved the treatment of urinary object

recognition as the object detection and employed faster RCNN and SSD techniques together

with their derivatives for the recognition of urinary objects. The satisfactory results gotten

from this investigation inspired the study of (Wang et al., 2019), research for considering the

recognition of white blood cells as the particle detection task and then exploiting two familiar

convolutional neural network dependent detection techniques, SSD and YOLOv3 for the

detection of white blood cells.

In adopting these techniques for the recognition of white blood cells, the mechanism of deep

transfer learning was adopted which involved fine regulating of corresponding pre-equipped

models and not necessarily developing them from scratch.

Figure 2.3: Channels of white blood cell recognition in peripheral blood circulation (A) treat
leukocyte recognition as traditional feature engineering: segmentation, feature
extraction & selection by manual and then classifier based on the feature matrix;
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(B) treat leukocyte recognition as object classification: get patches containing
leukocyte candidates from original image by manual or segmentation approaches,
and then feed these patches into CNN-based deep learning classifier to output the
leukocyte types; (C) treat leukocyte recognition as object detection: feed the
original images into CNN based deep learning detector, and then output the
leukocyte types and the corresponding locations (Liang et al., 2018)

2.4 Applications of Ensemble Artificial Neural Network for the Classification of White

Blood Cells

The human immune system protects the body from a large number of pathogens like microbes,

infections, parasites by recognizing and expelling them. White blood cells are manufactures

from a multi-potent cell in the bone marrow that is responsible for acquired immunity, by

generating antibodies and terminating diseased or malignant cells (Bain et al., 2016).

Abnormalities of blood cells are known as hematological disorders. There are many of these

and some of them include: acute or chronic leukemia, inflammation, AIDS, thrombocytopenia,

polycythemia. These disorders can influence the numbers as well as the effectiveness of these

blood cells of the immune system. For the acquisition of optimum information from a blood

cell, the operator conducts skilled analysis. The visual assessment or analysis of blood cells by

humans is tedious and liable to errors. This is because it largely depends on the skills of the

operator. As such, a computer assisted system for such identification and classification is

necessary for the reduction of all such inconveniences. A few automated blood cell analyzers

are commercially available. These assess the quantities of different cells in the blood smear.

Laser based instruments such as the flow cytometry is used to assess the physical

characteristics and the complicated characteristics of the blood cell.

These are expensive, requiring high maintenance as well as the need for actual real time blood

specimens. As such, in an effort for reducing these concerns, much research have been going

on for the invention of devices for the assessment of white blood cells which employ image

processing techniques. A number of these techniques have been used for the segmentation of
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white blood cells. But only few techniques have been developed for the segmentation of white

blood cell images and this is as a result of their intrinsic structural morphology.

The use of image processing methods for the enumeration of blood cells in peripheral blood

provides information on the cell morphology. These techniques require only a cell image and

is cost effective compared to the laser-based methods (Putzu, 2016). A computer assisted

classifying system is necessary for aiding operators diagnose infections or hematological

disorders. The use of computer aided techniques results to the improvement of diagnostic

potential by a reduction of human faults. The development of a computer assisted structure for

the characterization of diverse classes of white blood cells is tedious as a result of the variety

of obtained smear pictures with different noises and outliers. As such the benefit of visual

smear evaluations integrate the recognition of irregularities in blood smears in an efficient and

rapid manner (Rawat et al., 2017).

The human peripheral blood is replete with mature white blood cells which can either be

granulocytes or agranulocytes. This classification is based on the nuclear morphology as well

as the presence or absence of cytoplasmic granules. Based on the size and condition of nucleus,

the cytoplasm staining color as well as by the ratio of nucleus to cytoplasm, white blood cells

can be classed into neutrophils, eosinophils, monocytes, lymphocytes or basophils.

In studies conducted by (Rawat et., 2018), a novel automated classification and ensemble

neural network-dependent classification system is suggested for the recognition of four types

of white blood cells in microscopic blood images. The technique applies one or more neural

processes to the input pictures directly and monitoring their outcomes. Every network is

equipped to generate the closeness or lack of a nucleus. More so, the technique was suggested

to be general with very little pre-processing for white blood cells. The outcomes are compared

with the traditional and conventional results obtained by the hematology examiner. The

suggested technique proved more efficient than the conventional approach. The set up for the

white blood cell classification is shown by the figure below.
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Figure 2.4: the classification structure for white blood cell (Rawat et., 2018)

Many studies have shown that the classification of white blood cells can be done on the

premise of two classes:

 A 5-class classification problem

 A 4-class classification problem

Table 2.1: A detailed depiction of studies did on leukocyte classification

Considered

class

Authors and year Isolated

features

Classifier

used

Images Accuracy

(%)

5-class

Neutrophils
Eosinophils
Basophils
Monocytes
Lymphocytes

Pang et al. (2015) TFV SVM 298 95.5

Ravikumar and

Shanmugam (2015)

SFV, TFV RVM 85 91.0

Nazlibilek et al. (2014) SFV, TFV ANN 240 95.0

Habibzadeh et al.

(2013)

SFV,TFV,CFV SVM 140 84.0

Rezatofighi et al.

(2010)

SFV, CFV ANN 400 96.8
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Table 2.1: A detailed depiction of studies did on leukocyte classification (Cntinued)

Ramesh et al. (2012) SFV, CFV LDA 1983 93.9

Rezatofighi and

Soltanian-Zadeh

(2011)

TFV SVM 90 93.0

Xie et al. (2010) SFV ANN 230 89.6

Ghosh et al. (2010) SFV Naive

Bayes

150 83.2

Rodrigues et al. (2008) SFV, TFV SVM 241 85.4

Bacusember and Gose

(1972)

SFV,TFV,CFV MGC 523 93.0

Young (1972) SFV, CFV DT 74 92.4

4-class

Eosinophils
Polymorphs
Monocytes
Lymphocytes

Sabino et al. (2004) TFV SVM 50 97.0

Sarrafzadeh et al.

(2014)

SFV,TFV,

CFV

SVM 149 97.7

Tabrizi et al. (2010) SFV, TFV,

CFV

SVM 302 97.0

Stadelmann and

Spiridonov (2012)

SFV, TFV,

CFV

AdaBoost 461 91.3

Suapang and

Chivaprecha (2015)

SFV, TFV,

CFV

ANN 134 88.1

Mircic and

Jorgovanović (2006)

SFV ANN 200 86.0

Ferri et al. 1994 SFV KNN 45 80.0

Notes: SFV: shape feature vector, TFV: texture feature vector, CFV: chromatic texture feature

vector, MGC: multivariate Gaussian classifier, DT: decision tree.
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From previous investigations, it is observed that the greatest characterization accuracy for the

5-class challenge is 97.7% and that for the 4-class challenge is 97.0%.

Studies conducted by (Rezatofighi and colleagues, 2010), for the 5-class white blood cells

classification generated a 97.8% precision by neural network classifier and isolating chromatic

and shape characteristics. For the 4-class leucocyte classification system conducted by (Sabino

et al., 2004), a 97.0% accuracy was generated by the application of support vector machine

classifier with statistical characteristics.

In investigations conducted by (Rawat et al., 2018), a 4-class white blood cell classification

algorithm is directly compared to that of (Sabino et al., 2004). Textual characteristics are

isolated and support vector machine is employed for the segregation of the four classes of

white blood cells. This investigation presents a white blood cell classification system which

has the possibility of segmenting the nucleus and file them into a leucocyte class subsequently.

The k-means technique was used for the localization of the nucleus. This was then followed by

textual characteristics (stastical texture characteristics, transfer domain dependent traits as well

as signal processing dependent textual traits), characteristics based on shape as well as for

color are isolated from the segmented nucleus for representing the difference between various

white blood cells.

2.5 Segmentation and Classification of White Blood Cells

The development of automatic cell counters have transformed the arduous task of human

subjects to automatic systems. But like every other system, it has its own drawbacks.

According to research conducted by (Bikhet et al., 2000), the aim was the recognition and

classification of various kinds of normal leucocytes. With the analysis of blood specimens,

examiners seek to identify three different types of cells: red blood cells, white blood cells and

platelets. These three kinds are distinct from each other by dimensions and color. This study

made use of grey level pictures because leucocytes appear darker than red blood cells and
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platelets. With respect to dimensions, blood platelets are the tiniest whereas white blood cells

are the largest.

A common challenge with respect to the acquisition of accurate identification and

classification of cells is the differentiation of white blood cells from red blood cells, platelets

and cell fragments. As a result, special techniques are developed for the separation of these

white blood cells. The picture is primarily improved with the use of a medium filter. This is

then thresholded to segregate the cells from the background. The classification of white blood

cells depends on the recognition of cell nuclei with the use of syntactic analysis of the interior

portion of the cell. The investigation further integrated the cell protoplasm characteristics into

the classification process. This is accomplished by the identification and isolation of the

various building blocks or components of the cell nucleus. Based on the number of blocks, the

shape of each block, the dimension of the block, the association between the blocks and the

dimension of then protoplasm, the cells can be differentiated into different classes which

match the usual medical classification. The technique as well as the extracted traits were

assessed and generated an adequate classification rate greater than 90%. Research is being

undertaken for the development of a completely automatic system in which outcomes are

formatted and presented on a high definition color screen.

Many scholars have suggested techniques for classifying and differentiating white blood cells.

Ingram and colleagues ( 1970), suggested a technique for the identification of white blood

cells dependent on the transformation of highly recursive picture, and this is known as Golay

pattern transforms. These transforms generate information on such traits of the nucleus of the

cell like area, dimensions as well as structure. Despite the fine accuracy of their technique, it is

relatively slower in conducting the differential counting.

A technique was also suggested by (Young, 1972) which utilizes a cascade process dependent

on the color of red blood cells to localize white blood cells in the visual field. The analyses of

statistics on a group of 74 equipping groups generated a four-dimensional trait vector.

Monici and colleagues developed a technique while working with a group of white blood cells

with known fluorescent properties, studied in suspension as well as on individual cells at
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microscopic examinations. Lymphocytes, monocytes, neutrophils and eosinophils were

differentiated based on the intensity and spectral shape of the automatic fluorescence radiation

in the visible range from 440 to 580nm.

2.6 Automated White Blood Cell Classification Processes

The levels involved with the automated classification of white blood cells are:

2.6.1 Image acquisition

This is the initial phase of the classification process. This involves the input of images of white

blood cells obtained from peripheral blood smear samples onto microscope slides. These

pictures are acquired by placing the slides on the stage of a compound microscope or optical

microscope subject to illumination levels with sufficient magnification as well as recording

them with the use of a digital camera. The analyses with the microscope begins with the lower

magnification powers to higher powers (10x to 1000x). A digital camera is utilized for the

purpose of capturing images for demonstrating, enhancing and observing of blood cell. In

some instances, digital cameras can be utilized separate of the microscope. These pictures are

then stored on memory cards and downloaded into computers as 24-bitmap images or joint

photographic experts group (jpeg) images or as videos (Abbas et al., 2018).

With some commercial cameras, there is need for supplemental optics to ensure connectivity

to the microscope. The results are not always of good quality. Single lens reflex cameras can

be linked to microscopes with the use of single lens reflex adapters which are available on

many microscopes from which pictures can be introduced onto computers automatically.

Microscopy pictures of cells are acquired following staining which results in various

coloration of the cell nucleus and protoplasm as well as the blood picture background. The

technique of staining white blood cells is one which is utilized to improve contrast via

changing the coloration of some components of the cell structure which permits a clearer

visualization of cell components.

A number of these microscopy stains exist which can be utilized and the generic name of these

stains is known as Romanowsky stains. The Romanowsky stain utilizes a solution of



33

methylene blue for the detection of malarial parasites in peripheral blood (Carleton, 1980).

Examples of these kinds of stain include Jenner, Nocht, Leishman, Giemsa, Wright-Giemsa

stain and Leishman stains. The stains in this category which are utilized for staining white

blood cells include Giemsa stain, Wright stainm, Wright-Giemsa stain and the Leishmann

stain. They are accurately formulated and perform optimally as well as predictably when

utilized manually or in automated processes. The majority of these stains color the nucleus

dark purple or pink. The stains may also reveal the granules in protoplasm of some white

blood cells. The process of staining generates enough contrast for the process segmenting,

enumeration as well as classification of individual cells. Pictures are then acquired with the

use of various digital cameras with varied resolution powers.

2.6.2 The pre-processing phase

This is involved with the enhancement or improvement of the image data which overcomes

unwanted distortions, removal of noise or the enhancement of some characteristics necessary

for subsequent assessment in segmentation and classification phases. This phase also involves

geometric variations of graphics like rotation, scaling and translation.

2.6.3 Segmentation

This phase is involved with the detection of white blood cells as well as their nuclei and

cytoplasm. It differentiates them from red blood cells, background and plasma of peripheral

blood smear pictures with the use of graphic processing as well as techniques of processing

signals. The performance of these techniques are based on shape, color, edges and geometry

for segmentation. A number of techniques have been suggested and combined with other

strategies for the detection and segmentation of white blood cells. These strategies include

thresholding techniques, operations on morphology, scale-space assessmemnts, the detection

of edges and boundaries and phase set methods through geometric active contour (GACs).

Some current techniques include color space like RGB, CMYK as well as HSV with Otsu

threshold (Safuan et al., 2017).
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2.6.4 Isolation of characteristics

This is a significant phase in the process of segmenting and classifying white blood cells.

Characteristics which are isolated include geometric traits like area, radius, perimeter, convex

area, major axis length, compactness and orientation. It also involves the isolation of textual

traits like momentum, contrast, entropy and skew. Other isolated traits involve color features

like the distribution of color and histogram.

2.6.5 Classification

This phase differentiates the different kinds of white blood cells. The process permits for the

assessment and diagnosis of numerous infections. Various modern machine learning

techniques are utilized for the classification of white blood cells. Some of these include

random forest, support vector machines, deep learning techniques such as artificial neural

networks, multiple layer perceptions as well as hyper-rectangular composite neural networks

(Bishop, 2006). Nonetheless, support vector machine classifiers are the prominent methods for

classifying white blood cells as a result of fast performance.

2.6.6 Evaluation

This is performed with the use of a numeric metric like accuracy; or a graphical representation

of the performance like Receiver Operating Characteristic (ROC) graph. Accuracy is the most

prominent assessment for performance and represents the degree of the total number of

predictions phases that can be correctly classified and contrasts this to the actual class.

Thepredictions are computed for the creation of a confusion matrix:

 True positives (TP): these are samples which have been properly categorized as

positives

 True Negatives (TN): these are samples which have been correctly categorized as

negatives

 False positives (FP): these are samples which have been wrongly categorized as

positives
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 False negatives (FN): these are sample which have been wrongly categorized as

negatives

The above parameters can be gotten by the use of testing and equipping algorithms dependent

on Hold-out method, K-fold cross validation and Leave-one-out cross validation techniques.

2.� Application of WBC Classification

Two main elements which affect the accuracy of the classification procedure are the

segmentation of white blood cells and the represented characteristics utilized. These

characteristics ought to bear significant information but at the same time be robust to intra-

class differences, cell morphology, and nucleus, stage of maturity, background, color,

dimensions, location and non-uniform lighting.

Representations of isolated characteristics have been adopted with various machine learning

methods for the classification of white blood cells into five different kinds as previously seen.

A suggested approach for the classification of white blood cells into neutrophils, eosinophils,

lymphocytes and monocytes is based on the Beckman-Coulter Corporation provided by

information on flow cytometry. The classifier utilized for this procedure was the support

vector machine which grouped parametric information in a multi-dimensional section

(Adjouadi et al., 2005). The outcome of this investigation proved that the accuracy of the

classification process is dependent on the sample size of available data utilized for the process.

As such, for a data set of 100 images, a classification accuracy of 86.6% was achieved. This

method however has a number of disadvantages, some of which include:

 It requires intensive computational skills

 For the purpose of narrowing the misclassification ratio that is associated to different

classes of information, there is the need for increased convergence rate

 Flow cytometry processes cannot generate pictures of white blood cells for subsequent

evaluation of pictures as well as the authentication should there exist intra-class

variations with respect to staining, morphology, lighting or overlapping of cells.
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Another technique was proposed by (Ghosh et al., 2010), for the classification of white blood

cells into five kinds. This investigation utilized T-test and kernel density applications for the

acquisition of geometric characteristics from images of segmented white blood cells. A Naïve

Bayes classifier was employed for assessing and training the system. Four statistical

characteristics ensured the generation of satisfactory results during the process of classification.

This investigation experienced a few drawbacks such as the faults which were generated in the

course of isolating geometric characteristics as a result of the utilization of pictures with varied

orientation of nuclei, shapes, dimension as well as phase of maturity. As such, the observed

accuracy for the classification process was 83.2% with a sample size of 150 pictures.

In investigations conducted by (Rezatofighi et al., 2011), a local binary pattern (LBP)

approach was utilized for obtaining the morphological and textual characteristics. These

characteristics were employed for grouping the white blood cells into five different forms.

Support vector machines and artificial neural networks were the employed classifiers used for

equipping and testing the system. The outcomes of the experiment with the use of support

vector machine as classifier and generated an accuracy of 86.10% outperformed that for the

artificial neural network classifier. Experimental errors were encountered at the stage of

isolation of features and were based typically on the variations in shapes of the cells rather

than on nuclei. The errors also involved the variations of the phases of cell maturity and

overlapping.

A method for the classification and numeration of white blood cells was again suggested by

(Habibzadeh et al., 2013). This involved the classification and counting of white blood cells

from microscopic pictures with the utilization of two groups of characteristics:

 An initial characteristic vector including shape, intensity as well as texture

 Invariant characteristics of the structure of white blood cells as well as shifting,

rotation and magnification acquired with the use of a Dual-Tree Complex Wavelength

Transform (DTCWT).

The classifier utilized for grouping these characteristics of white blood cells into five different

groups. Nonetheless, the outcomes demonstrated that faults were as result of the poor quality
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of samples and reduced resolution. The accuracy of the white blood cell classification which

employed the linear support vector machine was 84%. In contrast, the accuracy was 76% for

the support vector machine classifier which utilized the dimensional reduction kernel principal

component analysis (KPCA).

Studies conducted by (Su et al., 2014), presented a suggestion for the classification of white

blood cells into five different classes with the use of characteristics based on geometry, color

as well as texture. A local directional pattern (LDP) approach was suggested for the extraction

of texture characteristics. The local directional pattern technique has tolerance against changes

in lighting as well as includes direction for every pixel in the picture. The system isolated

twenty characteristics and engaged three various types of classifiers; multilayer perception

(MLP), support vector machine (SVM) and hierarchical convolution neural network (HCNN).

The operation between all three was contrasted and the results proved that multilayer

perception classifiers have greater performance than those of support vector machines and

hierarchical convolution neural networks. As a result of incorrect segmentation, some cells

were however wrongly classified.

In investigations conducted by (Schneider et al., 2015), a flow cytometer dataset was utilized

for differentiating between three kinds of white blood cells; granulocytes, lymphocytes and

monocytes. The information comprises three significant functions of white blood cells as well

as asserting a microfluidic flow in a narrow canal, microscope imaging and sorting. An optical

neural network was utilized for the classification of these white blood cells and the approach

generated an accuracy of 89%. Nonetheless, faults were due to cells like monocytes which

were insufficiently represented in the sample.

An approach proposed by (Ravikumar et al., 2016), utilized the conventional extreme learning

machine (ELM) techniques and fast relevance vector machine (Fast RVM) for the

classification of white blood cells into five different categories. The extreme learning machine

approach was employed for the segmentation of the cell and then the creation of biased

characteristics based on a threshold technique. Extreme learning machine and fast relevance

vector machine classifiers were employed for the equipping and assessment of the system. The
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outcomes prove that the fast relevance vector machine classifier yielded better results than the

extreme learning machines classifier and generated an accuracy of 80%.

A technique which involved the detecting and classifying of white blood cells from peripheral

blood pictures was proposed by (Zhao et al., 2017). White blood cells were identified from

microscopy pictures with the use of the association of red and blue colors, as well as by

morphological characteristics. A characteristic based on granularity was utilized with the

support vector machine classifier for the classification of basophils and eosinophils from other

white blood cells. Subsequently, a convolution neural network was employed for the isolation

of traits in high level from the white blood cells. For the purpose of classification, a random

forest was employed for the recognition of other forms of white blood cells namely the

lymphocytes, monocytes and neutrophils. The accuracy of this technique was 92.6%. The

drawback of this technique resulted from the fact that some cells were incorrectly classified.

Studies conducted by (Habibzadeh et al., 2017), involved the use of a monitored technique for

classifying white blood cells based on hierarchical topological isolation of characteristics with

the use of inception and ResNet structures as well as subsequent deep learning framework for

the process of classification.

A number of techniques involved with the classification of white blood cells have encountered

a number of challenges involving aspects such as time complexity, poor or insufficient

recognition of cells, poor quality of the sample pictures, as well as limited size of the data base.

More so, some techniques utilized flow cytometry data which are limited in the fact that they

cannot generate pictures of white blood cells for subsequent assessment of images and

authentication should there be intra-class differences with respect to staining, shape lighting

and overlapping of cells.

2.8 Use of Convolutional Neural Network Optimized Through Genetic Algorithm

The recognition of pictures is one of the significant patterns for the significance of artificial

intelligence. Deep learning techniques permit for computational models which comprise
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multiple processing levels for equipping data characteristics with numerous levels of

abstraction. These deep learning techniques have enhanced top quality speech identification,

the visual recognition of objects and more (LeCun et al., 2015). A type of these deep learning

techniques is the convolution neural networks which have introduced much in the processing

of pictures, videos, speech as well as audio.

The identification of images is employed for numerous tasks. They are employed for safety

purposes like facial recognition. They are fundamental in self-driven vehicles. They are

abundantly applied in medical tasks such as the diagnosis of infections, the identification of

infectious agents as they ease the reduction of costs and time for the analysis of laboratory

samples. The techniques of convolutional neural networks are prominent in the majority of

recognition and detection applications and functions and even in human performance of some

functions (Bani-Hani et al., 2018).

With the possibility of scanning and loading clinical pictures into computers, scientists have

developed architectures for the automated analyses of samples. From the 1970s till the mid-

1990s, the assessment of clinical images was performed through a cascade of applications of

low-level processing of pixels which involved edge and line detector filters and region

growing as well as computational modeling which involved fitting lines, circles and eclipses

for the construction of compound rule-dependent systems for particular applications (Litjens et

al., 2017).

Towards the end of the 1990s, applications of machine learning have increasingly gained

prominence in medical applications with respect to the classification of pictures. This has

brought about a complete shift from human designed systems to computer assisted systems

which utilize trained data for learning in which characteristic vectors are isolated. Another

aspect involved is the employment of computers to learn the traits which optimally represent

the available information wherein the concept is the fundamental focus of deep learning,

specifically neural networks which comprise multiple layers. These multiple layers transform

information to outputs or results while simultaneously learning increasingly greater levels of

characteristics.
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Novel techniques are presented frequently for the institution of automated image

representation that could result to advanced diagnosis as well as enhanced comprehension of

the progress of infection. Requirements for efficient classification of medical images are an

adequate classification structure and an appropriate number of training samples. A number of

tailored medical diagnostic systems have been developed for assisted medical practitioners

diagnose infections of white blood cells and red blood cells which provide significant

information for practitioners on the infection.

Conventional systems comprise of information pre-processing whereby a combination of

different pictures is processed which involves the removal of noise, the correction of color as

well as the improvement of the image. The vital phase is the segmentation step. This is

because the precision of the subsequent isolation of characteristics and classification steps rely

of the proper segmenting of the lone white blood cells and red blood cells.

Previous studies have depicted the segmentation of blood cells to be more prone to faults in

the segmentation of red blood cells from the protoplasmic region from white blood cells as a

result of a close color resemblance among them in the intrinsic nature of the blood cells

surrounding (Poon et al., 1992). White blood cells each has its unique or distinct morphology

and color. This makes it a challenging feat to generate a general segmentation and the

multistage classification equally enhances the overall sophistication which results to greater

processing times.

The conventional or traditional techniques for the identification of white blood cells involved

the enumeration of the frequencies of white blood cells in a definite sample size. This was

usually performed by microscopy, by a human expertise which involved the analysis of the

percentage of the frequency of each white blood cell type, a process popularly known as

differential counting. This procedure may also involve the indication of any undefined objects

which may be significant for diagnosis. This manual process, as previously seen was limited in

a number of ways as a result of the slow, tiring and repetitive nature of the process. The

accuracy of the technique was uniquely dependent on the operator skills (Hiremath et al.,

2010).
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Owing to the slow and tedious nature of the manual process in the analysis of white blood

cells, there has been the emergence in recent years of automatic, accurate and efficient systems

for enumerating and classifying white blood cells. The employment of such systems have

resulted to the performing of diagnostic procedures in a rapid manner, at cost effective rates as

well as the achievement of better accurate results. On the basis of previous investigations that

have been conducted on the process of enumerating white blood cells and classification, the

suggested techniques basically fall into one of three fundamental models; the segmentation of

cells with the use of thresholding, the recognition of patterns and deformable model.

In 1992, Cseke employed the thresholding approach in his study involving cell segmentation

which was previously introduced by (Otsu, 1979). In this method, thresholds utilize multiple

step color characteristics. The differentiation and identification of white blood cells of the

blood smear picture was done by increasing the variation between dark, grey and bright colors.

Color contradiction was observed as the white blood cell nucleus collided with the background.

As such, thresholding works by isolating the white blood cell nucleus and this is defined by

subtracting the nucleus from the white blood cell images. The segmentation was achieved by

using a digital single processor. The investigation generated an accuracy of 92%.

A similar method was utilized by (Putzu et al., 2013). As white blood cells appear darker than

the background, it involved the application of image or color thresholds. This made their

identification easy which resulted to segmentation on the basis of the different kinds of white

blood cells. The segmentation of the white blood cells was based on morphology and defined

by their frequency, prominence and their contradiction against specific color thresholds. The

observed accuracy for this investigation was 92%. A study conducted in 2015 by Suryani and

colleagues employed an application of fuzzy rile-dependent structure based on the morphology

of white blood cells for the identification of Acute Lymphocytic Leukemia (ALL) as well as

Acute Myeloid Leukemia type M3 (AMLM3). The morphological characteristics employed in

this investigation include the area of white blood cells, ration of the nucleus and the granular

ration. The algorithms utilized for processing include thresholding, the detection of canny
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edge and the recognition of color filters. This method used a fuzzy rule dependent system

coupled with the Sugeno method and demonstrated an accuracy of 83.65%.

In 2011, a study conducted by Rezatofighi and colleagues suggested a system for the analysis

of images for the classification of five types of white blood cells. The suggested technique is

based on Gram-Schmidt orthogonalization together with a snake technique for the

segmentation of the nucleus and the protoplasm of cells. The results obtained from their use of

artificial neural network were contrasted to that obtained with support vector machine and it

was found that the result obtained with support vector machine was better. With respect to the

classification of basophils, the support vector machine obtained an accuracy of 89.69%,

whereas for the other four white blood cell types namely eosinophils, lymphocytes, monocytes

and neutrophils, the observed accuracy was 96%.

Hiremath and colleagues ( 2010) suggested a technique for segmentation based on color and

the isolated morphological characteristics for each segment for the identification of white

blood cells, specifically lymphocytes, monocytes and neutrophil. Four feature groups (F) were

isolated for which the accuracy for F1 ranged between 92% and 98%, whereas the accuracy

for F4 ranged between 98% and 99%.

A novel technique for segmentation of white blood cells was suggested by (Su et al., 2014). It

involved localizing a biased region of white blood cells on the hue, saturation and intensity

(HSI) color space. Neural networks were utilized and three kinds of characteristics namely

geometric characteristics, color characteristics and LDP dependent textual characteristics

which were isolated as input data. The accuracy for this investigation was 99.11%. Prinyakupt

and colleagues in 2015 suggested a technique for the segmentation of white blood cells which

involved a joined thresholding, geometric operation and ellipse curve fitting for classifying

white blood cells. With these isolated characteristics, linear and Bayes Naïve classifiers were

employed and an accuracy of 98.7% and 97.3% were respectively achieved.

In 2007, Theera-Umpon and colleagues investigated the likelihood of the sufficiency of

nuclear data alone for the classification of white blood cell. They investigated a group of white
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blood cell nucleus dependent characteristics with the use of computational morphology. The

accuracies achieved for equipping and assessment sets were respectively 81% and 77%.

As earlier seen, the microscopy examination of blood provides diagnostic information as

regards the patient’s health condition. The differential white blood cell enumeration depict an

extensive range of relevant hematological infections. For instance, they can provide

information on leukemia and certain forms of cancers from the results of classification and

white blood cell count.

Many different techniques have been suggested for the purpose of implementing a white blood

cell identification architecture which is based on the processing of images. The quality of

operation of the automated detection and classification of white blood cells relies on proper

segmentation algorithm for segmenting white blood cells from the background.

Studies conducted by (Sona et al., 2019) involved the extraction of three kinds of features

from the segmented region. The traits that were isolated were further introduced into three

different neural networks for classification of the white blood cells into their five different

types.

Figure 2.5: A comparison of leukemia blood and normal blood (Suryani et al., 2015)
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A contrast of segmentation techniques reviewed by (Adollah et al., 2008), assert that the

traditional color-dependent techniques and thresholding approaches are simple to sacrifice

accuracy. On the contrary, approaches such as region-expansion can provide increased

accuracy with high costs of computation. Some techniques operate directly on the RGB (red,

green, blue) color space whereas others operate directly on HIS or CMYK (cyan, magenta,

yellow and key black) color space. On a general basis, techniques based on S-component are

superior to techniques based on RGB.

By leveraging the cyan-magenta-yellow-key black color models, (Putzu et al., 2013), endeavor

to develop the characteristic vector. It was found that all other constituents except white blood

cells have traces of yellow color in them whereas white blood cells depict a good contrast in

the CMYK color models Y constituent.

Young and colleagues (1972) employed four features and a minimal distance classifier for the

classification of five sell types. (Sheik et al., 1999), utilized wavelength transform coefficients

as well as artificial neural networks for the recognition of white blood cells, red blood cells

and platelets.

Bikhet et al. (2000) chose ten characteristics and employed a minimum distance classifier for

developing an automated classification structure which attained a classification accuracy of

91% for a seventy-one-leucocyte data base. (Piuri and colleagues, 2004), suggested an

automated recognition and classification system dependent on twenty-three geometric features

and a neural classification architecture. A structure of classification was suggested in (Yampri

et al., 2006), which depends on own-cell and parametric traits.

Nulifer et al., suggested a classification technique which is based on combined histogram-

dependent traits and a vector support machine (Nulifer et al., 2008) ( Osowski et al., 2009)

suggested a genetic approach and a support vector machine for the identification of white

blood cell in the bone marrow.
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A technique presented by (Rezatofighi et al., 2010) involved the extraction of geometric and

texture dependent characteristics from local binary pattern (LBP) followed by the training of

two types of neural networks for classification.

Studies conducted by (Tabrizi et al., 2010) involved the adoption of major component analysis

for the isolation of characteristics and then utilized a neural network of learning vector

quantization for the classification of five kinds of leucocytes. Gosh and colleagues employed

the Naïve Bayes classifier with four statistically relevant characteristics for the classification

of five kinds of white blood cells and achieved an overall accuracy of 88.2 % (Ghosh et al.,

2010).

2.9 Convolutional Neural Networks for Recognition of Lymphoblast Cell Images

One of the acute cancerous infections of white blood cells is acute lymphoblastic leukemia

(ALL). This infection is characterized by the over manufacturing of immature lymphocytes

called lymphoblasts in the bone marrow. The infection rate is fast and prevents the production

of normal white blood cells and ultimately leads to death among children and youngsters. It is

a heterogeneous infection. By this, it requires distinct therapeutic procedures for different

groups of sufferers based on the subtype of leukemia. As such, individual sub types of the

infection respond differently to chemotherapy. For this reason, the recognition of the sub type

of the leukemia is significant for diagnosis and effective therapy.

According to the WHO classification, acute lymphoblastic leukemia can be grouped as:

 T-lymphoblastic leukemia (pre-T)

 B-lymphoblastic leukemia (pre-B)

 Mature B-lymphoblastic (mature B)

The recognition of the various sub categories necessitates a multi-parametric approach as well

as morphology, immune-phenotyping, cytogenetics as well as molecular features.



46

Regardless of the advanced techniques available, a required initial stage of the process is a

morphological assessment of the blood smear specimen. This can be performed by computer

aided systems. Much interest has been geared to the development of instruments and

techniques for the analysis of images and the recognition of patterns for enumerating and

identifying white blood cells (Piuri et al., 2004). With these automated techniques, much

efficiency is accomplished in the analysis with respect to time management, accuracy,

reduction of human labor hence human errors and the understanding of various patterns or

cells from microscopy pictures. Due to the fact that this techniques require only images and

not blood specimen, it makes available low-cost methods and makes available data for

subsequent utilization in diagnosis.

The geometry of lymphocytes and acute lymphoblastic leukemia subcategories demonstrate

extensive differences among cells in same class. Simultaneously, they also depict numerous

features which resemble cells belonging to various categories.

With respect to morphology, lymphocytes have a compact nucleus with smooth edges, blue-

purple nuclear color and low nucleus/cytoplasm ratio. On the contrary, lymphoblasts

demonstrate irregularities with rough edges, sparse red-purple nucleus coloration, and high

nucleus/cytoplasm ratio (Labati et al., 2011). Taking into considerations the acute lymphoblast

leukemia subcategories according to the classification set forth by WHO, pre-T and pre-B

lymphoblasts have these features:

 Pre-T cells

They vary significantly from tiny blasts with a condensed nuclear chromatin and

indistinct nucleoli, to bigger blasts with well dispersed chromatin and prominent

nucleoli (Borowitz et al., 2008). It is also characterized by a limited amount of

cytoplasmic space. Cytoplasmic granules are also a common phenomenon with

appearance as specks of dust and in some instances may show visible large grains.

Nuclear morphology range from round to irregular to lobed. The nucleus may also be

cleaved, may exhibit cytoplasmic protrusion or hand mirror form.
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 Pre-B cells

These demonstrate many features like small-sized cell with sparse cytoplasmic space,

condensed nuclear chromatin, indistinct nucleoli. The cells may also be medium sized

with moderate quantities of light blue protoplasm, infrequent well disseminated nuclear

chromatin and a distinct nucleoli. The majority of these cells have a high

nucleus/cytoplasm ratio. Other features include an elongated form, hand mirror form,

circular or irregular nuclear convolutions. All these subtypes are sorted out by the

automated cell recognition process.

Figure 2.6: Sample images of the considered white blood cells: lymphocyte, pre-T, and pre-B

lymphoblasts

A prominent technique is hand-crafted characteristic engineering with classification

algorithms like support vector machines (SVM), k-nearest neighbor (KNN) and multi-layer

perceptron (MLP). This approach involves the isolation of characteristics with image

processing techniques and domain knowledge. This is then followed by the combination of

selected significant characteristics as data for the classification process. This hand crafted

algorithm however has a number of disadvantages:

 The technique requires expertise on domain knowledge for the determination of useful

characteristics.

 The technique is dependent on the techniques involving the processing of images for

the isolation of useful traits without the introduction of additional discrimination and

faults.
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 The operations involving the isolation of characteristics are challenging to automate

and are time consuming.

Studies conducted by (Pansombut et al., 2019) utilized a deep learning technique which

involved the implementation of a convolution neural network. This network directly receives

pixel values from graphics and then gradually develops significant characteristics via the

employment of multiple layer architecture. The characteristics are then utilized for the

recognition of pattern significant to the challenge encountered with classification. In this study,

a significant factor which was considered was the size of dataset. Techniques for the

augmentation of data were utilized to increase the proportion of input images for equipping.

The objective of the investigation was the application of deep learning technique for the

development of a recognition pattern for lymphocytes and acute lymphoblastic leukemia sub

categories as well as pre-T and pre-B cells derived from blood microscopy pictures. The

recognition of B-cells was left out due to the fact that they are less frequent compared to the

other two sub groups. The assessment of the performance of this deep learning approach was

performed by comparing the accuracy and sensitivity of the utilized convolutional neural

network classifier with support vector machine which employed hand-crafted feature

engineering. For ensuring fair comparison, the support vector machine classifier is promoted

with the selection of traits as well as the optimization of GA-dependent factors.

The assessment of hematologic pictures is broadly differentiated into four major steps as

previous seen; the pre-processing of images, segmentation, the isolation of features and

selection, and finally the classification process. (Mohapatra and colleagues, 2012), suggested a

technique for segmentation which employs color-dependent aggregation for obtaining nuclear

region and the cytoplasmic region from stained blood smears. Support vector machines are

utilized with significant characteristics and they showed satisfactory outcomes.

Investigations conducted by (Osowski et al., 2006), proposed a fully automated technique for

the recognition of seventeen categories of myelogenous leukemia from pictures of bone

marrow aspirates. The segmentation of cells was done with watershed algorithm coupled with

techniques involving region-growing and the detection of edges. 117 characteristic features
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were generated and chosen with the use of linear support vector machine. This technique was

further improved by (Osowski et al., 2006), which proposed the selection of characteristics

with the use of genetic techniques for the extraction of features with the use of genetic

algorithms for the selection of traits coupled with support vector machines learning algorithms.

This algorithm was found to have an improved accuracy by over 25%.

Reta and colleagues (2010), suggested a technique for the categorization of two kinds of

leukemia; acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). The

process of segmenting blood cells is conducted with the use of contextual color and textual

information for the identification of nucleus and the cytoplasm region and the separation of

overlapping blood cells. Following the segmentation step is the isolation of the morphological,

statistical, textual, dimensional, relative and eigen characteristic features for use by various

machine learning classifiers in Weka.

Convolutional neural networks have found applications in microscopy analysis.

Studies conducted by (Song and colleagues, 2014), made use of a deep learning technique

dependent on a super-pixel and convolution neural network for the detection of the cytoplasm

in the segmentation procedure. This convolution neural network technique is contrasted to

various algorithms that are reverse propagation neural network, probabilistic neural network,

support vector machine as well as learning vector quantization algorithms. Convolution neural

networks was proven to outperform other algorithms and generates an accuracy of 94.50% for

the detection of nuclear region. For the segmentation of cytoplasmic and nucleus, convolution

neural network was found to be superior to all three standard techniques as assessed by F-

measure, accuracy and recall.

Investigations conducted by (Zhao et al., 2016), suggested a technique for the automatic

detection of white blood cells from peripheral blood smears as well as the classification of five

types of white blood cells. Eosinophil and basophil are initially categorized from the other

forms of white blood cells by using a support vector machine classifier with a granularity

feature. The remaining three types of white blood cell are identified with the use of

convolution neural network for the extraction of characteristics and random forest utilizes
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these features for the classification of these white blood cells. Studies conducted by (Litjens

and colleagues, 2016), presented a deep learning technique for improving the objectivity and

effectiveness of histo-pathologic slide assessment. Two experiments are performed by the

training of convolutional neural networks which are the identification of prostate cancer in

biopsy samples as well as the detection of breast cancer dissemination in sentinel lymph nodes.

2.10 Classification with Improved Swarm Optimization of Deep Learning Features

Many people around the world suffer from leukemia which is a malignant tumor of the white

blood cells. This disease starts in the lymphatic system where blood cells are produced.

Firstly, it starts in the bone marrow and then is spread in blood cells of the human body. The

growth of white blood cells is based on the demands of the body. However, in the case of

leukemia, they blood is filled with immature white blood cells which are inefficient for

carrying out their usual functions. Despite the fact that they can be readily identified from their

dark-purple apparition, the assessment and subsequent processing could be complicated as a

result of differences with respect to shape and texture. Despite the fact that white blood cells

can be differentiated from each other, there is however the necessity of separating them from

other blood components like red blood cells and platelets.

As depicted in the figure below, lymphocytes from normal healthy people are regular in shape

with smooth nuclei of regular edges. On the contrary, lymphocytes from patients suffering

from acute lymphocytic leukemia (ALL) otherwise known as lymphoblasts are irregular and

bear tiny cavities in their cytoplasm known as vacuoles, along with round particles in their

nuclei called nucleoli. The increased morphological variations mentioned above depict the

increased severity of the infection.

Deep learning techniques with the use of convolutional neural networks is at present the

method of choice for the recognition and classification of white blood cells in applications

involving medical imaging. As the convolutional neural networks accomplish satisfactory

outcomes on extensive datasets, they need much data as well as computational resources for
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training. In a number of instances, the data set is restricted and may be insufficient for training

a convolutional neural network from scratch. Faced with such a situation, in a bid for

leveraging the potency of convolutional neural networks while simultaneously decreasing the

cost for computation, transfer learning can be employed (Sharif et al., 2014).

With transfer learning, the convolutional neural network is primarily pre-equipped on an

extensive and diversified generic image data set and then applied to as specific function. A

number of these internationally recognized pre-trained neural networks include VGGNet,

ResNet, NasNet, MobileNet, Inception and Xception.

In studies conducted by (Shin et al., 2016), an assessment of various convolutional neural

network structures was conducted and transfer learning accomplished satisfactory results on

the classification of thoraco-abdominal lymph node and interstitial lung infection. Mean

pooling classification was employed in studies conducted by (Khan et al., 2019), for the

differentiation of malignant from non-malignant cells following the isolation of characteristics

from breast cancer pictures with the use of previously trained convolutional neural network

structures that were introduced into a fully connected classification layer. The outcome of the

investigation demonstrated that the detection accuracy of their technique performed better than

other convolutional neural network techniques in the recognition of cytological picture-

dependent and classification of breast tumors.

The work of a variety of other researchers was based on a combination of multiple deep

learning techniques for the improvement of the usefulness of transfer learning for cell-

dependent classification of graphics. Transfer learning has been employed for overcoming

limitations of past published techniques.

The fundamental factor among these techniques is the utilization of a number characteristics

from previously trained convolutional neural network models. Due to the fact that many of

these characteristics are redundant or may be faulty, this technique could be inefficient with

respect to time management and computational resources. In addition, the accuracy of the

classifier can benefit from restricting the size of the characteristics. In studies conducted by

20, the detection of white blood cells was conducted by isolating various characteristics as
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well as color, texture, shape and hybrid characteristics with the use of classical image

processing. Next was the application of a social spider-inspired optimization to select the most

significant characteristics. The algorithm was examined on ALL-IDB2. The results for the

segmentation were 99.2% for accuracy, 100% for sensitivity and 97.1% for specificity.

In studies conducted by (Abdeldaim et al., 2018), a new technique is presented for the

differentiation of benign from malignant white blood cells as shown in the figure below.

Figure 2.�: Samples from the ALL-IDB2 dataset2 showing benign (top) and malignant

(bottom) lymphocytes (Khan et al., 2019)

The suggested technique uses a combination of convolutional neural networks and an

improved salp swarm algorithm (SSA) dependent on statistical operators. A derivative of

convolutional neural network known as VGGNet that had been previously equipped on

millions of pictures is employed for the process of extraction of characteristics. The final layer

of the VGGNet can be dismounted such that an image can be introduced through the

remaining network for acquiring its characteristic vector. As such, the convolutional neural

network can be utilized for the isolation of a massive matrix for every image which can then

be introduced to an external classifier for the classification of the image. The dataset utilized

in the investigation has only two classes; benign and malignant. As such, the algorithm was

accordingly modified.
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The characteristic matrix generated by the convolutional neural network is adjusted so as to

suit the classification of the image. As such, a statistically enhanced salp swarm algorithm

(SESSA) was developed for the enhancement of the operation of the classification by

excluding correlated and noisy characteristics and choosing only significant characteristics.

The purpose of this investigation was the proposal of a technique for the selection of image

characteristics dependent on enhanced swarm optimization and to demonstrate the fact that it

outperforms numerous current techniques for classifying white blood cells for the detection of

leukemia. A major challenge of many techniques involved with the classification of white

blood cells is the limited availability of data set. This suggested technique however overcomes

this challenge. The challenge in the detection of leukemic cells from such pictures is in the

morphological resemblance as well as variability of the subject. This makes defining suitable

image characteristics challenging. Deep convolutional neural networks operate properly at this

function though not quite efficient as a result of their extensive and redundant space of

equipped characteristics.

The classification of white blood cells for the detection of leukemia provides the optimum

assessment scenario for swarm-dependent optimization of the isolation of characteristics.

Though this investigation does not provide a readily usable clinical instrument for the

diagnosis of leukemia, it however offers a novel and effective technique for the optimization

of deep learning dependent approaches for the classification of clinical images.
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CHAPTER 3

DEEP LEARNING ANDMETHODOLOGY

3.1 Proposed classification of white blood cells

Figure 3.1: Suggested structure for the enhanced classification of leucocyte types. Equipping
route 1: GAN-dependent data enhancement for equipping DNN classifier.
Equipping route 2: transformation performance-dependent data enhancement for
equipping DNN classifier

In this part of the thesis, the suggested frame of study is presented for classifying leucocytes

into their five various categories. The suggested structure is depicted in Figure 3.1. The major

constituents of the suggested structure include (i) the segmentation and resizing of leucocytes

(ii) systems involved with the enhancement of data through operations of transformation or

GAN-based data scenarios as well as the equipping of Deep Neural Networks. The afore-

mentioned constituents are elaborated on in the following pages.

3.2 VGG-16
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This was developed by Simonyan and Zisserman. It accomplishes an accuracy of 70.5% and is

computationally costly neural network of the ILSVRC competition as a result of the extensive

proportion of aspects and convolutional levels it contains. The task of the competition was the

classification of 1,000RGB pictures from ImageNet dataset. VGG-16 architecture comprises

sixteen layers in which thirteen convolutional levels with 3x3 filters and 2x2 max pooling

layers are stacked. The ReLu activation function is sandwiched in between the layers. The

other three layers are fully linked and contain the majority of the parameters of the network. A

softmax function is utilized for generating the probabilities for every class. A challenge with

the VGG-16 is the demanding memory utilization due to its enormous quantity of parameters

(140M) and this leads to decrease in performance and waste of power consumption

(Goodfellow et al., 2014).

Figure 3.2: architecture of VGG-16

The input data into layer 1 is of definite size 224 x 224 RGB image. The picture is subjected

through a sequence of convolutional layers wherein the filters are utilized with a very tiny

receptive field 3*3. This is the least size for capturing the notion of left/right, up/down, center.
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In a configuration, it also uses 1*1 convolution filters which are observed as a linear variation

of the input flow paths (followed by non-linearity). The stride of convolution is definite to 1

pixel. The padding between layers is such that the resolution is preserved after convolution.

That is to say, 1 pixel for 3*3 convolutional layers. Spatial pooling is conducted by five max

pooling levels. Max pooling is conducted over a 2*2-pixel window with stride two.

Three completely connected levels follow a sequence of convolutional levels with different

depth in different models. The first two are each of 4096 channels, the third conducts 1000

way ILSVRC classifying and so bears 1000 channels per class. The last level is the soft max.

This configuration is so for all completely connected levels in all architectures. The latent

levels are trained with rectification (ReLu) nonlinearity (Paganini et al., 2018).

Two major challenges exist with the VGG-16. One of these is the fact that it is very slow to

train. Another is that the network model weights are very large in terms of disk/bandwidth. As

a result of its depth and proportion of fully linked nodes, VGG-16 is more than 533MB. As

such, deploying it is tedious.

3.3 VGG-19

This is a derivative of the VGG architecture which comprises 19 layers; 16 convolutional

layers, three completely connected layers, five max-pooling layers and a soft max layer. VGG-

19 has 19.6 billion FLOPs.

The VGG-19 architecture has the following parameters:

A definite size of 224*224 RGB image is utilized as input for this network implying the shape

of the matrix is 224*224

Preprocessing was performed by subtracting the mean RGB value from every single pixel

calculated over the entire equipping set.

Kernels of 3*3 sizes with a stride dimension of 1 pixel were used for enabling them to cover

the entire nation of the image
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Spatial padding was utilized for preserving the spatial resolution of the picture. Max pooling

was conducted across a 2*2 pixel window with stride 2

Next was the introduction of non-linearity using Rectified Linear unit (ReLu) for improving

the classification properties of the architecture as well as improve the time of calculation as

previous models utilized tanh or sigmoid functions.

The architecture also implemented three completely linked levels from which the first two are

of dimensions 4096 each. Following this is a layer with 1000 channels for 1000-way ILSVRC

classifying and finally is the last layer which is a function of soft max.

Figure 3.3: VGG-19 architecture

3.4 Densely Connected Convolutional Networks
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Work in recent times has proven that convolutional neural networks can be deeper, accurate

and more effective at training should they bear shorter connections between levels proximal to

the input as well as close to the output. These dense convolutional neural networks (Densenets)

connect a layer to every other layer in a feed-forward system.

 Densenets have several benefits.

 They solve the problem of vanishing gradient

 They strengthen the propagation of traits

 They encourage the reuse of characteristics

 They decrease to a significant extent, the number of parameters

Densenets require fewer parameters compared to the equivalent conventional CNN since there

is the absence for learning repetitive feature maps (Bengio et al., 2013). More so, some

derivatives of Resnets have shown that multiple layers are barely contributing and can be left

out. The proportion of parameters of Resnets are large since each layer has its weights to learn.

On the contrary, the layers of densenets are narrow and they only add a tiny set of novel

feature-maps.

Densenets present a pattern of connection which solves the problem of vanishing gradient in

the course of training deeper architecture while maintaining maximum data as well as gradient

flow across the network. Each level is connected to the other layer in a feed forward pattern

and as such, input from each level is the concatenated characteristic map of all previous layers

and output from it is utilized for all later layers. The benefit of this is in decreasing the

proportion of parameters used as it decreases the amount of repetitive feature maps learned by

the encouraging of feature reuse (Ciresan et al., 2012). Densenets are made of sequential dense

blocks as well as transition blocks. Inside a dense block, the sizes of the characteristic maps

stay the same so as to permit their concatenation although the volume changes. On the

contrary, transition blocks conduct down sampling between dense blocks via 1*1 convolution

as well as 2*2 pooling levels. This network model has a hyperparameter increase rate that

influences the proportion of feature maps that is added by every layer and so regulates the
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quantity of data added by every layer to the entire state. Densenets have accomplished top

quality output on the identification of images.

Densenets 121 and 169 each denote the depth of the ImageNet models with 121 layers and 169

layers respectively.

Figure 3.4: Densenet 121 architecture

3.5 Generative Adversarial Network (GAN)

GAN is a category of machine learning architecture developed by Goodfellow Ian and

colleagues in 2014. Provided a training set, the technique learns to produce novel data with

same statistics like that of the training data. For instance, a generative adversarial network

equipped on images can produce novel images that superficially resembles an authentic one to

human observation with many real features. Initially suggested as a type of generative

architecture for unmonitored learning, generative adversarial networks have demonstrated to

be of significance for semi-monitored learning, completely monitored learning as well as

reinforcement learning (LeCun, 2016).
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Figure 3.5: Generative adversarial network

The GAN produces subjects while the discriminative network assesses them. This contest

functions with respect to the distribution of data. GAN learns to map from a hidden space to a

data dissemination of concern whereas the discrimination network differentiates subjects

generated by the generator from the authentic data distribution. The aim of the training of the

generative network is for the expanding of the error frequency of the discrimination network;

to deceive the discriminator network by generating new subjects which the discriminator

considers not synthesized, not a constituent of the authentic data distribution.

An identified dataset is used as the original training data for the discriminator. Equipping this

entails to present it with samples from the equipping dataset to the point of it achieving

satisfactory accuracy. The training of the generator is dependent on if it succeeds in deceiving

the discriminator. In essence, the generator is randomly seeded with data from a previously

defined hidden space such as multi-variant normal distribution. Subsequently, samples are

produced by the generator and assessed by the discriminator. Back-propagation is subjected to

both networks so that the generator generates improved images while the discriminator

becomes more accurate in flagging produced images. The generator is essentially a de-

convolutional neural network while the discriminator is a convolutional neural network

(Erdmann et al., 2019).
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One of the challenges working with GAN is the fact that they sometimes from mode collapse

in which they fail to adequately generalize, miss out on whole modes from the input

information. For instance, a GAN trained on the MNIST data set possessing numerous

samples of every single digit could however miss out a sub set of the digits from its output.

This problem could be due to a feeble discriminative network, which fails to identify the

pattern of omission. Another possible cause of this problem may be a wrong choice of

objective application.

With GANs, two networks are setup against each other. The generator fools the discriminator

by generating urging fake inputs. The discriminator differentiates if the input is authentic or

artificial.

The three main steps in the process include:

 Using the generator to generate fake inputs on the basis of noise

 Equipping the discriminator with the real and artificial inputs

 Equip the entire model. This architecture is developed with the discriminator chained

to the generator. In this third phase, the weights of the discriminator are frozen.

The aim of chaining the networks is to disallow for any possible feedback on the output from

generator.

GAN has a number of applications as follows:

 They are employed for the creation of image models of imaginary style without

necessarily hiring a model, photographer, makeup artist and so on.

 They have been used to enhance images of astronomy as well as simulate gravitational

lensing for investigations in dark matter. In 2019, they were engaged in successfully

distributing dark matter in a uni-directionally in space as well as to foretell the

occurrence of gravitational lensing (Erdmann et al., 2019).

 They have been suggested as a rapid and precise means of modeling high energy jet

production as well as to model showers via calorimeters of high energy scientific

investigations.
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 GANS have been equipped for the accurate estimation of bottlenecks in simulations

whose computation is costly like in scientific studies involving particle physics

(Paganini et al., 2018).

 GAN techniques have been demonstrated to accelerate the simulation and

enhancement simulation fidelity in functions involving CERN experiments.

 GANs are employed in video game modeling as a means of scaling up low resolution

two dimensional textures in video games by having to recreate them in 4k or higher

resolutions through the training of pictures and then sampling them down to fit the

native resolution of the game with outputs which resemble the super sampling

technique of anti- aliasing. With adequate training, GANs make provision for a much

clearer and sharper two dimensional texture picture with magnitudes greater in quality

compared to the original, whereas fully retaining the level of details of the original.

Some examples of the employment of GANs in video games include Final Fantasy

VIII, Final Fantasy IX, Resident Evil and Max Payne (Musella et al., 2018).

3.6 ResNets

Residual neural networks (ResNet) is an artificial neural network that is developed on

constructs known from pyramid cells found in the cerebral cortex. This is conducted by using

skip connections or shortcuts for skipping some levels. Actual ResNet architectures are

employed with double or triple jumps which contain non-linearities (ReLu) as well as batch

normalization between. Extra weight matrix could be utilized to learn the jump weights. Such

architectures are referred to as HighwayNets. Architectures with numerous parallel jumps are

known as DenseNets. With respect to ResNets, a non-residual network is referred to as plain

network.

An advantage of jumping over levels is the avoidance of the challenge involved with

vanishing gradients through the reuse of activations from a prior level to the point where the

nearby level becomes familiar to its weights. In the course of training, the weights adjust to

mute the upstream level as well as amplify the layer which was previously jumped. In the
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simplest instance, just the weights of the nearby layer’s link are adjusted in the absence of

explicit weights for the upstream layer. This performs adequately when a single non-linear

level is skipped or when the intermediary layers are all linear. Otherwise, an explicit weight

matrix ought to be learned for the jumped connection.

 ResNet 18 is a convolutional neural network with 18 layers in depth. A previously

trained derivative of the network equipped on more than a million pictures from the

ImageNet database. The previously equipped network has the ability to classify

pictures into 1000 object classes like keyboard, mouse, pencil and more. As such, the

network has learned the representations of rich characteristics for an extensive range of

pictures. The network has an image input dimension of 224*224.

 ResNet 50 is a convolutional neural network with 50 layers in depth. A previously

equipped derivative of the network equipped on over a million images from the

ImageNet database. The previously equipped network has the ability to classify

pictures into 1000 object classes like keyboard, mouse, pencil and more. As such, the

network has learned the representations of rich characteristics for an extensive range of

pictures. The network has an image input dimension of 224*224.

Figure 3.6: ResNet 50 architecture
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3.� Transfer learning

State-of-the-art deep neural networks (DNNs) typically have millions of parameters (i.e.

weights) so that they can easily overfit datasets with small number of training samples. One

method that has been shown effective for alleviating this problem is transfer learning or

weights pre-training, where the parameters of the DNN are first trained on another large

dataset (Tan et al., 2018). The DNN at this stage is referred to as a ‘pre-trained DNN’. In this

fashion, the early layers in the pre-trained DNN is expected to have learned primitive features

such as strokes, edges, corners, etc. from the large dataset. Interestingly, the primitive features

learned are general to many vision tasks so that learning (i.e. features) can be transferred from

pre-trained DNNs to other DNNs (Tan et al., 2018; Weiss et al, 2016). As such, the new task,

where we have a small dataset can benefit from transfer learning. After pre-training, the

second stage for transfer learning is referred to as ‘fine-tuning’. The goal of the fine-tuning

stage is to align the weights of the pre-trained DNN for the new task using the dataset of

interest. That is, we retrain the pre-trained DNN using the new dataset.

Generally, for transfer learning, some of the early layers in the pre-trained DNN are frozen (i.e.

the weights are excluded during the backpropagation training updates), while the other layers

are updated during backpropagation training. In this manner, one can consider that the starting

(i.e. initial) weights for the new task with small dataset are the weights learned on the previous

task using a large dataset. Furthermore, the output layer of pre-trained DNN is replaced with a

new layer, where the number of output units corresponds to the number of classes in the new

task. In addition, since we expect that most of the features learned during pre-training are

general and useful for the new task, a small learning rate is used for the fine-tuning stage.

3.8 The Segmentation of White Blood Cells

In this write-up, the dataset employed is the LISC dataset (LISC dataset 2019). The initial

graphics contain the leucocytes coupled with other background factors which are insignificant

for the classification of the various leucocytes. These insignificant background factors are

responsible for an extensive portion of the graphics. Figure 3.7 thus the outcomes in a
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decreased signal to noise proportion for equipping; this can be of detrimental effect on the

operation of equipped DNN classifiers.

As a result, the section of graphics with leucocytes was segmented with the use of masks

according to the dataset; the bounding points which capture the non-zero pixels in the masks is

utilized for cropping out the leucocytes to fitness as the input of the developed DNN

prototypes. Figure 3.7 presents samples of leucocytes with their corresponding masks.

3.9 Data augmentation for Improving DNN Classification Operation

The main obstacle involved in the development of a classification architecture for leucocytes

is the limited availability of training data; numerous data for covering the variability of these

cells are frequently not readily available. The limited availability of information from a class

generates imbalance which discriminates learning; prototypes trained from imbalanced data

frequently underperform in the course of testing (Johnson et al., 2019). The subsequent

subsections elaborate the various techniques which are explored for the generation of

additional information that can be utilized for the improvement of the accuracy of

classification of the DNN classifiers.

3.9.1 Additional data via data transformation operations

In this section, the performance on image transformation are applied for the production of

surplus data instances from the initial data. Precisely, the graphic transformation performance

that are employed involve haphazard rotations within an angle of 0 to 360 degrees, haphazard

shearing within an angle range of 0 to 20 degrees, anti-clockwise, haphazard horizontal tosses

as well as random height and breath shifts of up to 0.2 of the graphic height and breath.

The above performances of transformation are employed to produce the required proportion of

data instances.
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Figure 3.�: Leucocyte segmentation. Top: original graphics of various leucocytes. Middle:
masks for segmentation of leucocytes. Bottom: segmented leucocytes from the
initial images

3.9.2 Additional data with the use of generative adversarial network (GAN)

Generative adversarial network is an architecture which can be utilized to produce new data

points from a distribution with similar traits to that of the learning data. GAN is fundamentally

dependent on the min-max game concept (Goodfellow et al., 2014) in which the differentiator

and generator operate in opposites so as to outperform each other. The function of the

generator is the produce fake new data cases with the semblance of the reality whereas the

differentiator operates by identification of false cases. The objective is for the generator to

learn to produce data instances which have similarity to the actual data scenarios.

As a result, the generation of novel data points by equipping GAN on the initial data is

suggested in this investigation. The data points produced from the equipped GAN vary from

the initial data cases and as such are of significance to the training characteristics which

generalize to unrecognized cases in the course of testing. Of particular interest is the

consideration of traditional GAN (Goodfellow et al., 2014) for the generation of new data

points as surplus data.



67

3.9.3 Additional data employing both data transformation operations and a trained GAN

In this technique concerned with the generation of surplus data for equipping, data scenarios

achieved from the performances of transformation are coupled with new scenarios produced

from equipped GAN. This novel data is then utilized for equipping the various DNN

prototypes. In this case, close attention is paid on the likelihood of such data combination on

improving the operation of the equipped DNN prototypes.

3.10 Deep Neural Networks for Leucocyte Classification

With respect to the classifier, various top quality DNNs such as VGG-16, ResNet and

DenseNet are equipped on the established. In addition, three main training scenarios are

considered which can affect the operation of the DNNs, particularly with the unavailability of

training data. These scenarios are considered below:

3.10.1 Random initialization of the DNN

The weights of the DNN are haphazardly initialized and equipped from scratch with the use of

prominent initialization strategies such as (Glorot et al., 2010; He et al., 2015). For the

haphazard initialization, the objective is the symmetrical disintegration of weights at the onset

of training. This is to provide for ease of exploration of different components of the solution

space by the DNN. In other words, haphazard initialization prevents the optimization of DNN

from being hooked in a certain basin of attraction which could be sub-standard in the solution

space.

3.10.2 The initialization of DNN weights from weights trained on a large dataset

The initialization of DNN weights are equipped on the CIFAR-100 classification dataset. This

contains 60,000 natural equipping graphics which can be identified to 100 various classes

(CIFAR dataset 2019). The initialization of DNN weights from trained weights on extensive

sets of data have demonstrated an improvement on the generalization of prototypes

particularly with the limitation with accessible equipping data (Cote-Allard et al., 2019; Yang

et al., 2019). The paramount idea responsible for this success is the fact that DNNs frequently

possess numerous proportions of characteristics and so have the likelihood for over-fitting
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even in the lack of an extensive equipping data. Strikingly, the weights in the initial layers of

the DNNs equipped on extensive sets of data have the semblance to generic traits and so can

be used for the isolation of characteristics in other functions (Yan et al., 2019). On a general

basis, following the initialization of the DNN with weights equipped on CIFAR-100 sets of

data, the precise layer weights requiring training with the use of current sets of data are

heuristically decided on through investigation, a process known as fine regulation (Kornblith

et al., 2019).

Frequent techniques for fine regulation of DNNs include: (i) upgrading all layer weights (ii)

upgrading the weights of some specific layers and fixing those of other layers. On a general

basis, the soft max (output) layer is haphazardly initialized and equipped from scratch. By

investigating with the various techniques mentioned above concerning the initialization of

weights of DNNs, the outperformance of one technique can be seen over the others.

3.10.3 Deep convolutional neural network depth

The number of layers of DNNs is a significant aspect for their performance (Oyedetun et al.,

2018). The trend is predictable as deeper DNNs often produce improved results compared to

shallower ones (Oyedotun et al., 2018; He et al., 2016; Srivastava et al., 2015). Therefore,

from the DNNs previously mentioned, the effect of the number of layers or depth on their

operation for classifying white blood cells are readily seen. With respect to the VGG

prototypes, 16 and 19 architectures are taken into consideration. For the ResNet, the 18 and 50

architectures are taken into consideration. With respect to DenseNets, architectures 121 and

169 are taken into consideration.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Experiments

This portion of the thesis presents the details of the data set as well as the experiments that

were performed, coupled with the precise settings, outcomes of experiments and the

discussions. Every experiment was conducted with the use of a work station with 32GB RAM,

an intel core-i7 processor, NVidia GTX1080Ti GPU as well as a functional Windows 10

operating system.

4.2 Original Dataset

For the purpose of showing the improvement in leucocyte classification of this suggested

technique, the LISC dataset is employed (LISC dataset 2019). This dataset encompasses all

five classes of leucocytes. In total, the dataset possesses 242 data cases. The proportion of data

cases per in every class in the initial dataset is shown in Table 4.1.

4.3 Training Settings for Models

This portion introduces the details of the various learning settings as well as data enhancement

techniques.

4.3.1 GAN training setting

The information provided in Table 1 are utilized with two convolutional levels and a single

fully linked level for the generative and biased networks. Based on the studies conducted by

(Goodfellow et al., 2014) the generative adversarial network is learned for sixty epochs with

the use of a training frequency of 0.01 and a momentum frequency of 0.5.

4.3.2 DNN classifier training and evaluation settings

The various deep neural networks are learned with the use of mini-batch gradient descent

technique. A batch sample of 128 is utilized for every prototype. All the DNN prototypes with

haphazardly initialized weights are equipped with an original training frequency of 0.1 and for
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300 epochs. All DNN prototypes initialized with weights equipped on CIFAR-100 dataset

(CIFAR dataset 2019) are equipped with an original training frequency of 0.005 and for 150

epochs. A momentum frequency of 0.9 is utilized for all prototypes and the original training

frequency is decreased by a factor of 0.1 for every moment the training loss is not decreased

by 0.001 for five sequential epochs. A weight decay factor of 0.0001 is employed for the

regularization of all DNN prototypes. The segmented leucocyte graphics are cropped to 32×32

pixels for input to every DNN prototypes.

For the evaluation of the performance of the equipped DNNs, a 10-fold cross-validation

scheme is utilized. In essence, the data is partitioned into ten segments, the DNN prototype is

equipped on nine distinct data folds and validated on the left over data fold. This process is

redone ten times with the use of distinct nine data folds for equipping and one distinct data

fold for assessment. The mean authentication accuracy over the ten distinct data folds is

recorded.

4.4 Data Augmentation Methods

4.4.1 Transformation operations for data augmentation

In this section, the previously mentioned data transforming functions are applied. These

functions are provided in Section 3.10.1 to the data cases in the various classes for the

augmentation of the initial dataset. Three novel datasets known as Trans_aug1, Trans_aug2

and Trans_aug3 which presently respectively have 100 data classes, 150 data instances and

200 data instances. Every one of the previously mentioned data sets are utilized for training

and authenticating the distinct DNN prototypes.

4.4.2 GAN method for data augmentation

Three various data sets are developed from the equipped GAN which are referred to as

GAN_aug1, GAN_aug2 and GAN_aug3 with 100, 150 and 200 data classes respectively.

Some of the data classes developed from the equipped GAN are depicted in Fig. 6.
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4.5 Results and Discussion

The outcomes of the DNN prototypes equipped and evaluated on the segmented leucocytes are

shown in Table 4.2 to 4.9. Table 4.2 demonstrates the outcomes of the deep neural networks

equipped on the initial data (void of the data being augmented) with the use of haphazardly

initialized weights. Table 4.3 depicts similar outcomes to Table 4.2 safe the fact that the deep

neural network weights were initialized with the weights previously equipped on the CIFAR-

100 data set. Table 4.4 depicts the outcomes of the deep neural network prototypes which were

initialized haphazardly and equipped with Trans_aug1, Trans_aug2 and Trans_aug3.

Figure 4.1: Samples of data instances generated from the trained GAN for data augmentation

Table 4.1: Original LISC data set specifics
White blood cell type Number of instances

Neutrophils 50

Eosinophils 39

Lymphocytes 52

Monocytes 48

Basophils 53
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Table 4.2: 10-fold cross authentication of DNN prototypes initialized with random weights
Model Original data (without augmentation) %

VGG-16 90.6%

VGG-19 91.8%

ResNet-18 91.1%

ResNet-50 92.7%

DenseNet-121 93.9%

DenseNet-169 94.4%

Table 4.3: 10-fold accuracy cross validation of DNN models initialized with pre-equipped
weights

Model Original data (without augmentation) %

VGG-16 90.9%

VGG-19 92.4%

ResNet-18 91.5%

ResNet-50 93.3%

DenseNet-121 94.5%

DenseNet-169 95.2%

Table 4.4: 10-fold cross validation accuracy of the DNN prototypes initialized with haphazard
weights

Model Trans_aug1

(100 inst./class)

Trans_aug2

(150 inst./class)

Trans_aug3

(200 inst./class)

VGG-16 91.5% 92.1% 92.9%

VGG-19 92.3% 92.8% 93.4%

ResNet-18 91.4% 92.6% 93.2%

ResNet-50 93.5% 94.0% 94.7%

DenseNet-121 94.4% 94.8% 95.4%

DenseNet-169 94.9% 95.4% 95.8%
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Table 4.5: 10-fold cross validation accuracy of the DNN models initialized with pre-equipped
weights

Model Trans_aug1
(100 inst./class)

Trans_aug2
(150 inst./class)

Trans_aug3
(200 inst./class)

VGG-16 91.4% 91.8% 92.5%

VGG-19 92.9% 93.6% 94.4%

ResNet-18 91.2% 92.2% 92.8%

ResNet-50 94.1% 94.8% 95.5%

DenseNet-121 95.2% 95.7% 96.4%

DenseNet-169 95.8% 96.4% 96.9%

Table 4.6: 10 fold cross validation accuracy of the DNN models initialized with random
weights

Model GAN_aug1

(100 inst./class)

GAN_aug2

(150 inst./class)

GAN_aug3

(200 inst./class)

VGG-16 91.9% 92.6% 93.4%

VGG-19 92.6% 93.1% 93.5%

ResNet-18 92.7% 94.0% 94.6%

ResNet-50 93.8% 94.5% 94.9%

DenseNet-121 95.0% 95.6% 95.7%

DenseNet-169 95.3% 95.4% 95.8%

Table 4.5 shows the outcomes of DNN prototypes which were initialized with the previously

equipped weights with Trans_aug1, Trans_aug2 and Trans_aug3 datasets. In Table 4.6, the

outcomes of the DNN prototypes initialized with haphazard weights and equipped with

GAN_aug1, GAN_aug2 and GAN_aug3 datasets are shown. The results of the DNN

prototypes equipped with previously trained weights on GAN_aug1, GAN_aug2 and

GAN_aug3 datasets are given in Table 4.7.
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Further investigations are conducted by joining the data cases gotten from translation

operations and the equipped GAN. Hence, three distinct datasets known as

Trans_aug1+GAN_aug1, Trans_aug2+GAN_aug2 and Trans_aug3+GAN_aug3 with 200 data

cases, 400 data cases and 600 data cases respectively. In Table 4.8, the outcomes of the DNN

prototypes initialized with haphazard weights on Trans_aug1+GAN_aug1,

Trans_aug2+GAN_aug2 and Trans_aug3+GAN_aug3 datasets are shown. The outcomes of

the DNN prototypes initialized with previously equipped weights and trained on

Trans_aug1+GAN_aug1, Trans_aug2+GAN_aug2 and Trans_aug3+GAN_aug3 are shown in

Table 9. The final observation deduced from the experimental outcomes are thus:

The DNN prototypes which utilized previously equipped weights perform on a consistent

basis, same DNN prototypes trained on a similar dataset though with haphazardly initialized

weights.

Table 4.�: 10-fold cross validation accuracy of the DNN prototypes initialized with pre-
trained weights

Model GAN_aug1

(100 inst./class)

GAN_aug2 (150

inst./class)

GAN_aug3

(200 inst./class)

VGG-16 92.3% 93.0% 94.1%

VGG-19 93.3% 93.7% 95.0%

ResNet-18 92.9% 93.7% 94.2%

ResNet-50 94.7% 95.5% 95.8%

DenseNet-121 95.4% 96.2% 97.2%

DenseNet-169 96.1% 96.9% 97.2%
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Table 4.8: 10-fold cross validation accuracy of the DNN prototypes initialized with random
weights

Model Tran_aug1 +

GAN_aug1

(200 inst./class)

Tran_aug2 +

GAN_aug2

(300 inst./class)

Tran_aug3 +

GAN_aug3

(400 inst./class)

VGG-16 92.5% 93.2% 93.9%

VGG-19 93.3% 93.7% 94.4%

ResNet-18 93.2% 94.5% 95.1%

ResNet-50 94.2% 95.2% 95.6%

DenseNet-121 95.5% 96.1% 97.3%

DenseNet-169 95.9% 96.3% 97.3%

Table 4.9: 10 fold validation accuracy of the DNN prototypes initialized with pre-trained
weights

Model Tran_aug1 +

GAN_aug1

(200 inst./class)

Tran_aug2 +

GAN_aug2

(300 inst./class)

Tran_aug3 +

GAN_aug3

(400 inst./class)

VGG-16 94.3% 94.9% 95.7%

VGG-19 94.8% 95.4% 95.9%

ResNet-18 94.1% 95.2% 95.4%

ResNet-50 95.8% 96.7% 97.4%

DenseNet-121 96.3% 97.4% 98.3%

DenseNet-169 96.9% 98.1% 98.8%

It is readily observed from Tables 4.2 to 4.9 that the ResNet and DenseNet models with

numerous parameterized levels and skip links perform better than the VGG models. In

addition, it is seen that augmenting the data enhances the operation of every other model as

depicted by contrasting Table 4.2 with Table 4.3 to Table 4.9. Utilizing similar quantity of

data classes, the enhanced data sets gotten from the equipped GAN result to improved DNN

performances compared to utilizing augmented datasets obtained from graphic transformation
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functions. The combination of data classes gotten from the equipped GAN with data classes

obtained from operations of graphic transformation result to much improved outcomes

compared to utilizing either the enhanced data obtained from trained GAN or operations of

image translation.

From the viewpoint of computations, Figure 4.2 reports the period needed by the various DNN

models to conduct inference with the authentication data from the 10 fold cross validation

training scheme. It is observed that the most appropriate models ResNet-50, DenseNet-121

and DenseNet-169 took up the greatest inference time. This is not unusual owing to the fact

that they possess numerous parameterized levels and so need more time for the computation of

their final outcomes.

Figure 4.2: Time for the DNN models to perform inference on the validation data. The
original data without data augmentation given in Table 4.1 is used for this
experiment

Table 4.10: Results comparison with other works
Model Accuracy (%)
ResNet-50 (Tran_aug3 + GAN_aug3) 97.4
DenseNet-121 (Tran_aug3 + GAN_aug3) 98.3
DenseNet-169 (Tran_aug3 + GAN_aug3) 98.8
Neural network (Hegde et al., 2018) 96.5
Linear discriminant analysis (LDA) (Ramesh et al., 2018) 93.9
W-Net 45 (Jung et al., 2019) 97.0
W-Net 45 (Jung et al., 2019) 96.0
Neural network + PCA 44 (Nazlibilek et al., 2014) 95.0
Neural network (Zheng et al., 2018) 95.2
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Table 4.10 presents a contrast of leucocyte classification accuracy from prior studies. The

contrast with prior studies is conducted which perform classification of leucocytes into five

classes. The DNN models suggested in paper (highlighted in bold) perform better than the

models from previous works.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATION

5.1 CONCLUSION

Blood is one of the major compositions of the human body. It is composed of plasma,

erythrocytes, leucocytes, and platelets also known as thrombocytes. However, the use of deep

learning has over the years proven to be very effective in different diagnosis with blood

included.

Deep learning techniques with the use of convolutional neural networks is at present the

method of choice for the recognition and classification of white blood cells in applications

involving medical imaging. As the convolutional neural networks accomplish satisfactory

outcomes on extensive datasets, they need much data as well as computational resources for

training. In several instances, the data set is restricted and may be insufficient for training a

convolutional neural network from scratch. Faced with such a situation, in a bid for leveraging

the potency of convolutional neural networks while simultaneously decreasing the cost for

computation, transfer learning can be employed.

In this thesis, the classification of white blood cells have been addressed using deep

convolutional neural networks. The proposed approach tackles the problem of insufficient data

for training white blood cells classification systems to reach decent performances. Specifically,

data augmentation techniques such as image transformation operations and trained generative

adversarial networks (GANs) are employed for increasing the size of training data. For the the

classification networks, we rely on modern models such as VGG, ResNet and DenseNet,

which are either trained from scratch or already trained. The obtained results show a marked

improvement in the performance of the different classifier networks in correspondence with

the additional data obtained via the aforementioned data augmentation techniques. Against

several earlier approaches, the proposed classification systems yield results that are more
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interesting. On top of this, the proposed classification system require no advanced image pre-

processing stages that are common in many earlier works. This feature dramatically improves

the development time and effort, along with the simplicity of the proposed classification

systems.

5.2 RECOMMENDATION

The use of deep learning has been very effective in several diagnosis studies. However, it is

recommended in future studies that a combination of different techniques as well as the use of

other networks such as VGG-19 is explored to experiment the level of diagnosis in terms of

accuracy and precision level. Moreover, the use of Support Vector Machine (SVM) have been

reported in several studies to be very effective as a combination technique with other networks.

However, the use of ResNet50-SVM, DenseNet121-SVM, and DenseNet169-SVM might be

very effective in getting a high level of accuracy.
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