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ABSTRACT 

 

Diabetes Mellitus (DM), a chronic, metabolic disorder, is a rapidly growing global problem with 

great social, health and economic consequences. In 2010, it is estimated that 285 million people 

(6.4% of the adult population) were exposed to this disease. This number is increased to 415 

million in 2017. Without better control or recovery it is estimated that it will increase up to 642 

million by 2040. Diabetes is the most important endocrine system disease. It is caused by 

impaired insulin levels in the blood. The insulin hormone is secreted from the pancreas. To avoid 

the negative effects of diabetes, human beings use continuous glucose monitoring systems to 

measure blood glucose concentrations in real-life conditions. In such patients, blood data are 

recorded within 24 hours to prove the accuracy of treatment. In practical applications, the data are 

known to be added to the noise due to various reasons. Minimizing the noise level in the data 

ensures the success of the treatment. For this purpose, the application was realized by providing 

an additional contribution to Morlet wavelet based on continuous wavelet transform. The 

continuous wavelet transform (Morlet Wavelet) is a powerful and formal tool for the analysis of 

signals that must be evaluated according to the time-frequency content, allowing a signal to be 

fully represented by allowing the translation and wavelet scale to change continuously. 

Undoubtedly, it is the coefficient values that make the wavelet the most effective one. Different 

methods are used in the calculation of coefficient values in the literature. The method foreseen in 

this research is provided by the method applied for the first time in the scaling matrix which 

increases the compatibility of the coefficients. The deviations in the calculation of the coefficient 

values in the classical method were minimized by the prescribed method. The proposed method is 

compared with the widely used Savitzky-Golay filter and the standard Morlet wavelet in the 

literature. The superiority of the new method is tabulated with PSNR and relative error values. 

The actual data obtained for this research was approved by the Near East University Hospital 

Ethics Committee. 

Keywords: Continuous glucose monitoring(CGM); Savitzky-Golay Filter; Noise Effects; Noise 

Reduction; Continuous Wavelet Transform (CWT); Type 1 Diabetes; Fast Fourier 

Transformation; Morlet wavelet.  
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ÖZET 

 

Diabetes Mellitus (DM), kronik, metabolik bir hastalık, büyük sosyal, sağlık ve ekonomik 

sonuçlarla birlikte hızla büyüyen bir küresel sorundur. 2010 yılında 285 milyon insanın 

(yetişkin nüfusun% 6,4'ü) bu hastalığa maruz kaldığı tahmin edilmektedir. Bu sayı 2017 

yılında 415 milyona yükselmiştir. Daha iyi kontrol veya iyileşme olmadan 2040 yılına kadar 

642 milyona çıkacağı tahmin edilmektedir. Diyabet en önemli endokrin sistem hastalığıdır. 

Kandaki bozulmuş insülin seviyelerinden kaynaklanır. İnsülin hormonu pankreastan 

salgılanır. Diyabetin olumsuz etkilerini önlemek için, insanlar gerçek yaşam koşullarında kan 

şekeri konsantrasyonlarını ölçmek için sürekli glikoz izleme sistemlerini kullanır. Bu tür 

hastalarda, tedavinin doğruluğunu kanıtlamak için 24 saat içinde kan verileri kaydedilir. 

Pratik uygulamalarda, verilerin çeşitli nedenlerden dolayı gürültüye ekleneceği bilinmektedir. 

Verilerdeki gürültü seviyesinin en aza indirilmesi, tedavinin başarısını garantiler. Bu amaçla, 

sürekli dalgacık dönüşümü temelinde Morlet dalgacıklarına ek bir katkı sağlayarak uygulama 

gerçekleştirilmiştir. Sürekli dalgacık dönüşümü (Morlet Dalgacık), zaman-frekans içeriğine 

göre değerlendirilmesi gereken sinyallerin analizi için güçlü ve resmi bir araçtır, çeviri ve 

dalgacık ölçeğinin sürekli değişmesine izin vererek bir sinyalin tam olarak temsil edilmesini 

sağlar. Kuşkusuz dalgayı en etkili kılan katsayı değerleridir. Literatürde katsayı değerlerinin 

hesaplanmasında farklı yöntemler kullanılmaktadır. Bu araştırmada öngörülen yöntem, 

katsayıların uyumluluğunu artıran, ölçeklendirme matrisinde ilk defa uygulanan yöntem ile 

sağlanmaktadır. Klasik yöntemde katsayı değerlerinin hesaplanmasındaki sapmalar öngörülen 

yöntemle en aza indirilmiştir. Önerilen yöntem literatürde yaygın olarak kullanılan Savitzky-

Golay filtresi ve standart Morlet dalgacık ile karşılaştırılmıştır. Yeni yöntemin üstünlüğü, 

PSNR ve göreceli hata değerleri ile gösterilmiştir. Bu araştırma için elde edilen gerçek veriler, 

Yakın Doğu Üniversitesi Hastane Etik Kurulu tarafından onaylanmıştır. 

Anahtar Kelimeler: Sürekli glikoz izlemesi (CGM); Savitzky-Golay Filtresi; Gürültü Etkileri; 

Gürültü Azaltma; Sürekli Dalgacık Dönüşümü (CWT); Tip 1 Diyabet; Hızlı Fourier 

Dönüşümü; Morlet dalgacık. 
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CHAPTER 1 

 

INTRODUCTION 

 

Diabetes is an autoimmune system disease due to insufficient pancreatic secretion in 

insulin secretion. Insulin is a hormone secreted in beta cells in the pancreas that is found in 

the back of the stomach in our body, leaves the sugar in the blood to enter the cell, thus the 

level of sugar in the blood is reduced. The most important fuel for the human is blood 

glucose, by insulin and negative feedback system its level is controlled strictly. Solid 

glycemic control has been shown to significantly reduce short and long-term complications 

of diabetes and has been shown in studies of diabetes control and complications. The 

normal range of blood sugar should be between 70-120 mg/dL. 

The decrease in the amount of glucose in the blood is called hypoglycemia, when the blood 

glucose level is between 50-70 mg/dl stimulation of the sympathetic nervous system, 

sweating, weakness, palpitations, paleness of color, tremors, feeling of faintness and acute 

hunger is seen. Hyperglycemia is a condition in which blood circulates excessively in the 

blood plasma. This is usually a blood sugar level of higher than 200 mg/dl, but even higher 

values such as (~250-300 mg/dl) may not be noticed, resulting in retinopathy, nephropathy, 

and diabetic neuropathy, leading to prolonged vascular complications. 

Diabetes refers to a group of diseases that affect the body's blood glucose. Blood glucose is 

vital for our health because it is a significant source of energy for the cells that make up the 

muscles and tissues. It is also the main fuel source of the brain. The underlying cause of 

diabetes varies by species. However, regardless of the type of diabetes, blood can cause 

excess sugars. Too much sugar in the blood can cause serious health problems. In 2000, it 

was stated that 366 million people would be affected by the disease in 2030. In 2002, the 

number of people affected by the disease exceeded 200 million and in 2010,  285 million 

people, 6.4% of the adult population in the world were affected by this disease, which 

reached 415 million in 2017 and is expected to rise to 642 million by 2040                      

(Shi & Hu, 2014). Diabetes can lead to possible complications such as heart disease, 

vascular diseases, vision loss, renal failure, and nervous system diseases                            

(Diabetes Fact sheet N.312.WHO, 2013). The most common  diabetes types are as follows: 
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 Type 1 diabetes is a status in which the pancreas in our body is damaged as a result 

of autoimmune events and cannot produce insulin. Insulin therapy in type 1 

diabetes is essential from the very beginning, and these patients cannot maintain 

their lives if they do not use insulin. 

 Type 2 diabetes is more common in the community and accounts for about 90% of 

patients. Type 2 diabetes is a form of diabetes in which insulin resistance, 

predominantly genetic factors, is involved in a large proportion of patients, but also 

in which insulin secretion is involved. 

As a result, monitoring is necessary to ensure proper glucose level control, thus improving 

life quality. At discrete time instances, blood glucometers are utilized to measurements. 

While continuous glucose monitoring (CGM) equipment supply invasive minimal 

mechanism to measure and record the status of the patient’s current glycemic as often as 

each minute. Throughout the day diabetic patients provide maximum information about 

changes in blood glucose, leading to optimal treatment decisions. A variety of factors may 

contribute to hyperglycemia in individuals with diabetes mellitus, which include choices of 

food, and physical activity, including diseases, non-diabetic drugs, or not taking a 

sufficient amount of glucose-lowering drugs. Hyperglycemia therapy is important because, 

if not treated, hyperglycemia can be severe and lead to substantial complications, such as 

urgent care similar to diabetic coma. From the view of long-term, permanent 

hyperglycemia can cause complications that affect your nerves, your eyes, your kidneys, 

and your heart, even if they are not severe. By regular blood glucose monitoring and 

adjusting insulin dosage accordingly, intensive insulin therapy can decrease the risk of 

these complications by providing nearly normal levels of blood sugar levels. This 

dissertation focuses on the different types of errors in continuous glucose monitoring data 

and the solution that can be performed on continuous glucose monitoring. Because glucose 

is an important fuel for humans, the level, should be kept at a reliable range. CGM sensors 

are utilized to monitor the blood glucose level. The most significant error is the random 

audio component which is connected to sensor physics that affects continuous glucose 

monitoring devices. Continuous glucose monitoring signal is affected by high-frequency 

random fluctuations. Measurements have been unreliable, because of these noises at the 

sensor output. These noise components must be extracted before any signal processing 

application. DSP is committed to analyzing and modifying a signal to optimize or improve 

its effectiveness or performance. It involves applying different mathematical and 
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computational algorithms to analog and digital signals to produce a signal to a higher 

standard than the original signal. Digital Signal Processing is mainly used to identify errors 

and filter and compress analog signals in transit. 

Our body often reports data about our health. These data include heart rate, oxygen nerve 

conduction, saturation levels, blood glucose, blood pressure, brain movement, and so on, 

measured by physiological materials. Traditionally, such measurements are taken at 

specific times and marked on the patient's schedule. Biomedical signal processing includes 

the analysis of these measurements to provide useful information to these clinicians to 

decide. Engineers have discovered new techniques to manipulate these signals with various 

mathematical formulas and algorithms.  

The turning point in the treatment of diabetes was the discovery of insulin and the 

introduction of insulin therapy (American Diabetes Association, 2014). Monitoring blood 

glucose is the cornerstone of diabetes management and monitoring blood glucose levels by 

patients significantly changes diabetes care (Boland et al., 2001; Karter et al., 2001; 

Uwadaira et al., 2015). Blood sugar test results are important in determining the diet of the 

diabetic patient, determining the amount and type of the drug, and maintaining the 

recommended exercise. Blood glucose self-monitoring is defined as coping with diabetes 

and regulating glycemic control. Healthy diabetics should keep blood glucose levels as 

close to normal as possible. This situation allows for the recognition and prevention of 

hypoglycemia and hyperglycemia and reducing the risk of long-term complications of 

diabetes plays an important role. To date, all the equipment for blood testing at home is 

divided into two parts as invasive and non-invasive. Invasive contact devices are based on 

taking blood, so you need to pierce your finger (Kasemsumran et al., 2006; Jin et al., 

2014). If the non-contact glucometer takes the biological fluid for analysis from the 

patient's skin, the sweat secretions are often treated. Such an analysis is less informative 

than a blood test (Chuah et al., 2010). Type 1 diabetes patients should monitor levels of 

blood glucose continuously because they cannot produce insulin and if necessary may take 

insulin at doses specified by their physician (Cobelli et al.,  2011). Although this process 

may seem simple, patients may forget to take insulin or use the wrong dose of insulin. An 

artificial pancreas designed to mimic the function of a pancreatic in a healthy individual; It 

consists of an insulin pump placed under the skin and a small system that continuously 

monitors blood sugar. An artificial pancreas, which is connected via Bluetooth to 

smartphones, shares the data of blood glucose in the smartphone and learn how much 
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insulin should be pumped into the body with the specific application to the artificial 

pancreas on the phone. The artificial pancreas tries to keep the blood glucose levels at the 

levels predicted by the algorithms rather than directly. The most important components of 

an artificial pancreas are CGM devices and CGM  devices are an important option for self-

monitoring of conventional blood glucose (Klonoff, 2005; Zhao, 2015; Zhao, 2017; 

Mastrototaro, 2000). Continuous Glucose Monitoring (CGM) devices follow day and night 

glucose levels. Continuous Glucose Monitoring systems provide glucose measurements at 

regular intervals of 24 hours per day. Recorded values are converted to dynamic data and 

glucose direction and exchange rate reports are generated (Ward, 2004). Cobelli et al. 

(Facchinetti and Guerra, 2013; Facchinetti et al., 2013; Facchinetti et al., 2015) have been 

indicated that continuous noise monitoring sensors affected by random noise can 

significantly affect performance. Digital filtering can be utilized to minimize the random 

error noise content and improve the quality of the signal. It is necessary to extract random 

noise from the digital filter to improve continuous glucose monitoring signals quality. The 

purpose of digital filters can be used for various purposes, such as strengthening or 

attenuating certain frequencies of the signal, completely suppressing, isolating. Digital 

filters carry the general advantages of digital systems and are widely used, especially in 

that the filter characteristic is very simple to change. A low pass filter (LPF)  transmits 

signals with a frequency less than a selected cut frequency and weakens signals with 

frequencies higher than the cut-off frequency. (Steil et al. 2010; Kaya &İnce, 2012). The 

precise frequency response of the filter depends on the filter design. LPF is one of the 

common methods used to remove noise from measured signals. (Panteleon et al., 2000).  

One of the main disadvantages of this filter is that it causes a large delay to distort actual 

signals. Delayed signals are unnecessary to stimulate abnormal glycemic events. To reduce 

random noise, Medtronic miniMed is an FIR (finite impulse response) filter, where filtered 

signals and zk values are measured in the real-time continuous glucose monitoring system 

(Steil et al., 2010; Kaya & İnce, 2012) where 𝑧 𝑘 = 𝑏 0𝑧 𝑘 + 𝑏 1𝑧 𝑘−1 + ⋯ + 𝑏 𝑀𝑦𝑧𝑘−𝑀is widely 

used (Panteleon et al.2003). In practice, a seventh stage filter was normally utilized 

(Knobbe & Buckingham, 2005). DexCom utilized an infinite impulse response filter (IIR), 

defined as in the data collection system 𝑧 𝑘 = −𝑏 1𝑧 𝑘−1 − ⋯ − +𝑏 𝑁𝑧 𝑘−𝑁 + 𝑐 0𝑦 𝑘 + 𝑐 1𝑦 𝑘−1 +

⋯ + 𝑐 𝑀𝑧 𝑘−𝑀. (Knobbe & Buckingham, 2005). The Dexcom Seven Plus continuous glucose 

monitoring system is also used to elaborate this equation (Brauker et al., 2005). The most 

important problem with these methods is that no criterion determines how to define the 
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appropriate parameters in the filtering of the measured signals. To improve filter 

performance, another method called Kalman filter is considered. To status forecast, the 

Kalman filter is known as a common approach that uses recursive maximum likelihood. 

Initially, Bequette (Bequette, 2004) utilized the Kalman filter to balance blood glucose 

with a delay in carrying subcutaneous glucose and predict future blood glucose. The 

Kalman filter was then utilized to address continuous glucose monitoring data by the 

subsequent development of the model developed by Knobbe and Buckingham (Knobbe & 

Buckingham, 2005). However, since the filter parameters are fixed after determining, they 

do not reflect the noise variability. Noise level may vary between variability between 

individuals (overtime for the same patient) and interpersonal variability (from patient to 

patient) (Facchinetti and Sparacino et al., 2013). The stabilizer module has been an 

important part of the "smart sensor" to develop the  CGM sensor's accuracy. However, it 

constantly calculates the methods and updates the filter parameters, but it does not always 

change in the practical application, which increases the noise complexity and brings a 

heavy load. The most important problem here is to develop an appropriate evaluation rule 

to determine if the noise level has changed to adjust the filter parameters. In this 

dissertation, the suggested method with the real data is compared with the Savitzky-Golay 

filter and the standard Morlet wavelet to prove its superiority. In this research, an improved 

Morlet wavelet which is a powerful tool for analyzing according to time-frequency content 

has been proposed. 

1.1 The contribution of the Thesis 

The data used in the study are actual measurement values. The patient profile and details of 

the data are described in the section on obtaining the blood glucose concentration data of 

the dissertation. In such studies, the noise profile is known to be of Gaussian type. Thus, 

Gaussian, which is parallel to the real noise in the data analysis, was chosen. The standard 

application was used in the analysis of the results. However, the data were analyzed with 

values above the noise levels used in other articles and the validity of the applied method 

has been proven. 
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The major contributions to this dissertation are summarized as follows: 

 The proposed method ensures that the parameters that make up the filter are 

more optimal so that the error at the filter output of the continuous glucose 

monitoring signal is minimized. 

 Considering the simplicity of the proposed method and not increasing the 

processing time, it will make it more efficient and economical in real-time 

operations. Compared to other alternatives, it will stand out with this aspect. 

 As a result of the proposed method, the noise level is reduced to the lowest 

level compared to the classical methods, which reduces the fluctuations, fast 

climbing, and sensitivity of the values which have negative effects on the signal 

and it has been proved its superiority with relative error calculations. 

 Thus, continuous glucose monitoring signal analysis, which is closer to the real 

data free of noise, provides a high validity rate of treatment for the patient. 

 

1.2 Thesis Overview 

Other parts of the dissertation are as shown below: 

 Chapter 2 relates to state-of-the-art literature on historical perspective 

and literature review about  Diabetes Mellitus, Signal filtering, Fourier 

transform, and wavelet transform. 

 Chapter 3 explains Continuous Glucose Monitoring Systems.  

 Chapter 4 is about noise, noise types,  additive white gaussian noise,  

and, filter design propertıes. 

 Chapter 5 explains types, transforms of wavelet, Morlet wavelet filter, 

and calculation of Morlet wavelet parameters. 

 Chapter 6 presents the most significant objective of this dissertation, the 

fundamental objective of this dissertation is to noise reduction methods, 

setting parameters and experimental outcomes for continuous glucose 

monitoring(CGM) signal using the MATLAB environment.  

 Chapter 7 presents conclusions and suggestions. 
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CHAPTER 2 

HISTORICAL PERSPECTIVE AND LITERATURE REVIEW 

 

2.1 Overview 

In this section, historical perspective and literature review about  Diabetes Mellitus, Signal 

filtering, Fourier transform, and wavelet transform have been focused. 

2.2 Diabetes Mellitus (DM) 

Diabetes is known as a complex, chronic disease. In 1993, Black & Matasarin-Jacobs 

discovered diabetes as a metabolic disorder characterized by glucose intolerance. Systemic 

diseases caused by supply-demand imbalance are called insulin (Friderichsen and 

Maunsbach, 1997).  

 7.0 mmol/L or upward is the glucose of fasting plasma  

 11.1 mmol/L or upward is the glucose of causal plasma 

were defined to be a metabolic criterion, in order to diabetes. (Baumann et al., 2002). 

Insulin is a hormone secreted by beta cells in the body organ called pancreas located under 

the stomach and behind our body. It allows the sugar in the blood to leave the blood and 

enter the cell. Thus, the level of sugar in the blood is not increased, adjusts blood glucose 

levels that regulate glucose storage and production. To reply to a reduction of insulin or 

insulin produced in the pancreas, metabolism of carbohydrates, proteins, and fats leads to 

anomalies and, is, therefore, leads to a reduction in the ability of the body. The result of 

hyperglycemia may lead to metabolic acute complications such as long-term ketoacidosis 

complications and chronic microvascular disease (Smeltzer & Bare, 1992). In 1987, Phipps 

et al. Described diabetes as a complex, chronic disorder characterized by macrovascular 

and neuropathic development over time, with regular carbohydrate destruction, fat and 

protein metabolism, and microvascular complications. Diabetes is a metabolic disease that 

is caused by an increase in the amount of glucose in the blood. It is a life-long disease 

caused by deficiency or ineffectiveness of insulin hormone. Glucose, which is normally 

obtained from foods or released from the blood in the liver from the stores, enters the cell 

with the help of the insulin hormone secreted by the pancreas and transforms it into energy 

there. As a result of the lack of insulin or insulin, the body cannot use glucose and the 

blood sugar increases. In diabetes, the organism cannot use carbohydrates, fats, and 

proteins sufficiently. Failure to control blood sugar can lead to death, long-term eye, 
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kidney, nerve, heart, and vascular system disorders also impair the quality of life. Diabetes 

is one of the oldest known diseases in history. Diabetes mellitus is formed by the 

combination of the old Greek siphon and sugar. Increased blood sugar in the body 

increases the amount of urine and causes a lot of urine to be produced so that patients' 

urine production occurs. The presence of sugar in the urine called glucosuria occurs when 

the sugar in the blood called glycemia reaches very high values. There is another type of 

diabetes called diabetic insipid, which is accompanied by an intense feeling of thirst and an 

excessive amount of urine production, but it is caused by other mechanisms that have 

nothing to do with diabetes. World Health Organization defines that a fasting blood sugar 

level of 7.0 mmol/L (126 mg/dL) or higher indicates type 2 diabetes. Under normal 

conditions, fasting blood glucose should not exceed 110 mg/dl. Fasting blood glucose 

levels between 110-126 mg/dl are interpreted as a hidden sugar. Two Canadian scientists, 

Frederick Banting, and Charles Best discovered that the cells in a section called the 

Langerhans islets in the pancreas in 1921 produced hormone insulin started to be used as 

medication and the lives of the patients who have survived for an average of 22 months 

have changed. With the discovery of insulin, there has been a breakthrough in the 

treatment of diabetes. 

2.3 Historical Perspective to Signal Filtration   

Filters were initially seen as periodic selective behavioral circuits or systems. In electrical 

engineering, one of the most fundamental circuits is the series or parallel tuned circuit, and 

in the early crystal set a wave trap is a very significant component. In the IF band of most 

radio receivers; more sophisticated versions of this idea are available. Here, tuned circuits 

coupled with amplifiers and transducers are utilized to form a stop band in which amplified 

frequencies are characterized by a transition band and attenuation. Something more 

complex than tuned circuit collections is required for many applications and as a result, a 

wide set of filter design theory has been developed. Some places are fixed k and m 

derivative filters (Skilling, 1957) followed by Chebyshev filters, Butterworth filters and 

elliptic filters (Storer, 1957). In recent years, a comprehensive numerical algorithm for 

filter design has been developed. Amplitude and phase response characteristics are 

provided and a filter is designed to match these features with the help of computer-aided 

design packages that enable interactive operation. Normally, there are restrictions in the 

filter structure that must be met; These limits may include impedance levels, component 

types, component numbers, etc. For many years nonlinear filters have been utilized. The 
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simplest is the AM envelope detector, a combination of diodes and a low-pass filter 

(Terman, 1955). Similarly, an AGC (Automatic Gain Control) circuit utilizes a nonlinear 

element and a low pass filter (Terman, 1955). The phase-locked loop utilized for 

Frequency Modulation reception is another nonlinear filter example (Viterbi, 1966) and 

has recently been used to increase the signal-to-noise ratio (SNR) of Dolby systems in 

voice recordings. The presence of the filter as an appliance that processes continuous-time 

signals and exhibits periodic selective behavior is further enhanced by two major 

improvements. The digital filtration which is the first development was made feasible by 

the latest innovations in integrated circuit technology (Gold & Rader, 1969; Rabiner and 

Gold, 1975; Oppenheim and Schafer, 1975). Circuit modules, which are completely 

different from those utilized in conventional filters, appear in digital filters such as    

analog-to-digital converters and digital-to-analog, digital recordings, read-only memories, 

and even microprocessors. Thus, although the final objectives of digital and conventional 

filtration are the same, the practical aspects of the digital filter structure are very little or 

not compared to the practical aspects of the m-derivative filter structure. In digital 

filtration, it is no longer possible to minimize the number of active elements, inductor 

length, termination impedance distortion, or distribution of reactive elements. Instead, it 

may want to minimize round-off error, word length, the number of wiring operations in 

structure, and process delay. In addition to the potential cost advantages, this new approach 

to filtering has other advantages. Perhaps most importantly, the filter parameters are set 

and maintained at a high sensitivity level, so that normal filtering can achieve filter 

properties that are not normally reliably achieved. The parameters can be easily reset or 

less adapted at an additional cost this is another advantage. Also, some microprocessor 

digital filters can be shared time, so that many concurrent tasks can be performed 

efficiently. The second important improvement came from the implementation of statistical 

ideas to filtration problems (Wiener, 1949, Kolmogorov, 1941, Wainstein and Zubakov, 

1962; Kalman and Bucy, 1961; Kalman, 1960; Kalman, 1963; Kailath, 1974). 

Conventional approaches to filtering, at least explicitly, are these beneficial signals placed 

in a periodic band and are often unwanted signals which are called noise, spread elsewhere, 

but only overlap in some way. On the other hand, statistical approaches to filtration assume 

that full statistical features have beneficial unwanted noise and signal. The measurements 

consist of the sum of the signal and noise, and the tasks continue to make as much noise as 

feasible by processing the filter measurements in some ways. The oldest Wiener and 
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Kolmogorov statistical ideas (Wiener, 1949; Kolmogorov, 1941) are concerned with 

statistical features that do not change over time, that is, they change with continuous 

processes. It proved to be able to correlate useful signal and unwanted high statistical 

properties with periodic field properties for operations. Therefore, there is a notional 

connection with classical filtration. An important aspect of the statistical approach is to 

define the eligibility criterion or filter performance. Roughly, the best filter is, on average, 

the closest to the correct or useful signal output. A unique impulse response corresponding 

to the best performance value or suitability is given by the fact that the filter is linear and 

formulated in terms of performance and impulse response and signal and noise statistical 

features. As mentioned above, the supposition that basic signal and noise operations are 

constant and are very important for Wiener and Kolmogorov theory. Until the late 1950s 

and early 1960s, a theory that did not require this stagnation supposition was developed 

(Kalman and Bucy, 1961; Kalman, 1960; Kalman, 1963; the theory stems from the fact 

that Wiener and Kolmogorov's theory remains inadequate). the new theory soon acquired 

the Theory of Kalman Filter in order to cope with some applications where the stationary 

material is specific to the lumbar. however, there is still significant contact because, for 

another reason, a static process is a non-stationary type of process; Kalman noise reduction 

theory can now be easily realized As mentioned above, Kalman noise reduction theory was 

developed at the time the application was called, and the same interpretation was real, for 

the Wiener filtration theory. It is also important to note that the difficulties experienced in 

the application of Kalman filters and the time of application difficulties of the Wiener filter 

are compatible with the technology. Wiener filters can be applied with time-invariant 

network elements such as amplifiers, capacitors, and resistors, while Kalman filter can be 

applied with digitally integrated circuit modules. The point of contact between the last two 

streams, such as enhancement, statistical filtering, and digital filtering, occurs when you 

encounter a problem applying the discrete-time Kalman filter using digital hardware. In the 

future, it may be attractive to explicitly incorporate the practical limitations associated with 

digital filtering in the mathematical expression of the statistical filtration problem. 

However, this is not done today, and as a result, there is little contact between the two 

streams. 

 

 



11 
 

2.4  A Historical Perspective from Fourier Transform to Wavelet Transform: 

Digital filtering techniques are used to improve signal quality and minimize random noise 

error component(Anderson&Moore, 2005). The signal from the Continuous Glucose 

Monitoring sensor can be defined as in the following formula. 

      𝑦(𝑡) = 𝑥(𝑡) + 𝜎. 𝑛(𝑡)                                                                                                 (1)                                                                                                                        

Appropriate signal processing methods, to elicit the basic dynamics corresponding to the 

signals and to acquire information from such signals have been necessary. Typically,  

processing of the signal is to convert a time-domain signal to another area that is not easily 

observed in its original state to extract the characteristic information embedded in the time 

form. By representing a number of coefficients (Chui 1992; Qian 2002) based on the 

comparison among a number of known template functions {𝜓 𝑛(𝑡)} 𝑛∈𝑧 and the x (t) signal 

as mathematically this time-domain signal can be obtained.  

       𝑐 𝑛 = ∫ 𝑥(𝑡)𝜓 ∗ 𝑛(𝑡)𝑑𝑡
+∞

−∞
                                                                                           (2)                                                                                              

𝑥(𝑡)  and 𝜓 𝑛(𝑡) are the interior product between the two functions is described as the 

interior product between the two functions:  

〈𝑥, 𝜓 𝑛〉 = ∫ 𝑥(𝑡)𝜓 ∗ 𝑛(𝑡)𝑑𝑡                                                                                                (3)                                                                                              

(·)*, it means the complex conjugate of the function of (·). Then the equation (2) can 

generally be expressed as follows: 

       𝑐 𝑛 = 〈𝑥, 𝜓 𝑛〉                                                                                                                (4) 

In essence, the inner product of (4),  defines the similarity comparison process between the 

x (t) signal and the degree of proximity between two functions is known as the template 

function {𝜓 𝑛(𝑡)} 𝑛∈𝑧. The more similar 𝑥(𝑡) is to 𝜓 𝑛(𝑡), the larger the interior product 

𝑐 𝑛 will be. The wavelet transform historical background is explained in this section. This 

is accomplished by observing differences in wavelet transform and other common 

techniques as well as in terms of selection of template functions {𝜓 𝑛(𝑡)} 𝑛∈𝑧. 

2.5 Fourier Transform 

The most commonly used signal processing tool in engineering and science named The 

Fourier transform has been discovered by the French mathematician Joseph Fourier in 

1807. Fourier has shown here that any periodic signal can be determined by converting the 

time domain from the frequency domain with a number of cosines and sinuses with a 

weighted sum. The frequency composition of the time series is represented as x (t). 
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2.6 Literature review on Wavelet Transform 

Alfred Haar's Ph.D. thesis entitled The Theory of Orthogonal Function Systems at the 

University of Göttingen in 1909 was the first reference for wavelets in the history of 

science. Haar's research (Haar, 1910) on orthogonal function systems enabled the 

improvement of a series of rectangular basic functions. Then, the Haar wavelet had been 

the simplest wavelet family ever selected based on these functions in all applications of the 

wavelet family. 

After Haar's work, little progress can be reported in the wavelet zone until the physicist 

Paul Levy's investigation of Brownian's movement in the 1930s. 

The scale has discovered that the fundamental function of the changing function, i.e, Haar, 

is more appropriate to examine the fine details in the Brownian movement than the Fourier 

basic functions. 

In addition, Norman H. Ricker (Ricker 1953) and Elias M. Stein (Jaffard et al. 2001),  

Richard Paley (Littlewood and Paley 1931), John Littlewood, conducted research on the 

wavelet from 1930 to 1970. 

It was attributed to Jean Morlet in the mid-1970s, who implemented and applied a great 

advancement, scaling, and shift technique analysis in this field of research, which today is 

called wavelet (Mackenzie, 2001). When Morlet uses the STFT  *.  he determined that 

keeping the width of the function constant cannot be the solution. As a solution to the 

problem, Morlet (Mackenzie 2001) tried to keep the window constant while changing the 

window width by squeezing or expanding the window function. Morlet Wavelet was 

named after the waveform obtained and this wavelet was the beginning of the research 

process. 

The theoretical wavelet transformation formation was first introduced by Jean Morlet and 

Alex Grossmann. 

In this study(Grossmann and Morlet 1984), it has been suggested that a signal can be 

restored to its original state without any loss of information. 

(*Short-term Fourier Transform (STFT): The short-term Fourier transform is a Fourier-related conversion used to determine the 

frequency of the signal and the phase content of the local portions of the signal as it changes over time to divide a time signal into short 

portions of equal length and then to calculate it Fourier transforms separately in each short section.. This reveals the Fourier spectrum in 

each short segment, one that usually draws varying spectra as a function of time.) 

In the analysis of the different frequency components within a signal (Mallat 1998), it was 

shown that wavelet transformation enables variable window sizes, as opposed to the Short-

Term Fourier Transformation technique, where the window size is constant. 
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This is accomplished by scaling the signal (i.e, contraction and dilatation) and searching 

for similarities by comparing it with a series of template functions obtained by shifting a 

base wave (i.e, rotating along the time axis) 𝜓(𝑡). It can also be expressed as the wavelet 

transform of a 𝑥(𝑡) signal using the display of the internal product: 

      𝑤𝑡(𝑠, 𝜏) = 〈𝑥, 𝜓 𝑠,𝜏〉 =
1

√𝑠
∫ 𝑥(𝑡)𝜓 ∗ (

𝑡−𝜏

𝑠
)

∞

−∞
𝑑𝑡                                                            (5) 

After Morlet and Grossmann's effective work, many researchers have made considerable 

efforts to further develop the wavelet transform theory. The following case studies include 

Strömberg's studies on 1983 intermittent fluctuations (Strömberg 1983). Examples include 

Grossmann, Morlet, and Paul scaling random signals as a scale and analyzing the single-

base wavelet function translation (Grossmann et al., 1985, 1986), and in 1993 Newman's 

Harmonic Wavelet Transformation (Newland 1993). 

Stephane Mallat Yves Meyer (Meyer 1989, 1993) and (Mallat 1989a, b, 1999) by the 

method of multi-analysis of the use of wavelets is seen as the most important step in 

facilitating the use. The present invention is presented by Meyer (Meyer 1989) in an article 

on orthogonal fluctuations named Orthonormal Wavelet. To design the scaling function of 

fluctuations to allow other researchers, to create their own basic wavelets in the simple 

mathematical way is key for multiple analyses. For example, Ingrid Daubechies formed 

her own wavelet family in 1988, based on the concept of multiple waves named as 

Daubechies wavelets (Daubechies 1988, 1992). This wavelet type is orthogonal and can be 

applied utilizing techniques of digital filtering that are not very difficult. 

2.7 Summary 

In this section, historical perspective and literature review of Diabetes Mellitus, Signal 

filtering, Fourier transform and wavelet transform are described. 
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CHAPTER 3 

  AN OVERVIEW ON MONITORING of CONTINUOUS GLUCOSE SYSTEMS 

 

3.1  Overview 

Since the 21st century early days,  continuous glucose monitoring system has begun to be 

utilized in order to constant glucose levels with measuring concentrations of interstitial 

glucose. When carefully used to understand the properties of this system, it can potentially 

develop diabetes care. Although there is approximately 5-15 minutes delay among 

interstitial and blood levels of glucose, the system is regarded as the most appropriate 

appliance for precise control of glucose and prevention of hypoglycemia. Many studies 

have examined validity, clinical effectiveness, and reliability. WL Clarke who conceived 

analysis of continuous glucose-error grid assesses continuous glucose monitoring clinical 

trials. With analyzing the "temporal" features of the data and analyzing the reference pairs 

reading and the sensor as a timeline, they are represented by a "two-dimensional" time 

sequence and the natural physiological time delays are accounted for. Even if there are 

other methodologies for evaluation, the investment in the continuous glucose-error grid is 

clearly significant. Each method complementary utilize is the most effective proving way 

the correctness of apparatus. Devices have progressively developed and there is actual-time 

monitoring of continuous glucose commercially present that allows you to monitor the 

blood sugar level in real time. The use of actual-time monitoring of continuous glucose can 

potentially cause over or under treatment with insulin. Education of the patient is 

significant through the proper and effective use of new devices to develop diabetes care. 

3.2  Historical views of CGM System  

Diabetes management has seen changes in the lives of patients caught in the past 30 years. 

(Deeb, 2008). Development in the measurement of glucose was initiated at the end of the 

1980s by self-monitoring of blood glucose, one of these significant changes. As the second 

appliance in order to measure glucose blood levels, the monitoring of continuous glucose 

system was introduced into the market at this century beginning. Local fluctuations supply 

the best information about decisions of optimal treatment in order to glucose levels and 

diabetes control throughout the day. (Klonoff, 2005). In 1999, in the United States, the 

glucose continuous monitoring device was approved by the Food and Drug Administration. 

Since then, the appliance has been dramatically developed and integrated into the actual-

time monitoring of continuous glucose and insulin pump system has already been 
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commercially launched in the US and Europe. In Japan, monitoring of continuous glucose 

history is relatively short. Health Ministry, Labor Ministry, and Social Security approved 

the monitoring of continuous glucose appliance in 2009 about 10 years after the US. 

What's more, the second generation blind monitoring of continuous glucose, Medtronic's 

MiniMed Gold, has become the only approved appliance in Japan under the government-

sponsored insurance of health. New wireless but blind monitoring of continuous glucose 

will soon be on the Japanese market. CGM, which has a different background, has been 

extensively studied in Europe and the USA to date. At this stage, it is necessary to know 

that Japanese clinician has already called. Particularly, it is significant to know whether the 

monitoring of continuous glucose system is a correct, safe and clinically effective device 

(Golicki et al., 2008). The blood sugar of a person with a metabolic disease, whose body 

cannot produce any or sufficient insulin, leads to high levels of glucose in the blood, which 

constantly changes throughout the person's life every hour of the day. Patients can use 

glucose meters to check blood sugar, but it only gives blood glucose values at a specific 

time when tested. However, since a patient's blood sugar levels change from minute to 

minute, it may not be enough to check with blood glucose meters. In addition, 60% of 

glucose deficiencies may not occur by blood glucose self-monitoring alone                            

(Pitzer et al., 2001). Another standard way of monitoring glucose of blood is the 

glycosated hemoglobin measurement, more commonly known as hemoglobin A1C 

(HbA1C). However, since HbA1C can not monitor glycemic variability as long as it ensures 

information about glucose exposure, it does not tell the entire story. HbA1C is a very 

beneficial test to determine how well the sugar of blood has been controlled during the 

previous 3 months. Nevertheless, since HbA1C demonstrates the average blood sugar, how 

much fluctuation does not give a correct picture. Indeed, if a patient often has low blood 

sugar, low HbA1C (HbA1C indicates an average value) and a false sense of security for the 

patient and the doctor may result, even the blood sugar is usually high and in fact under 

control. Therefore, although SMBG (Self-monitoring of blood glucose) and HbA1C are 

significant, they do not give us a complete picture, particularly about the patient variability 

of glycemic. Monitoring of continuous glucose can help formalize the patient glucose 

control. An effective way to understand how blood sugar changes throughout the day and 

monitor sugar levels to understand the course of the patient's glycemic tours is through the 

help of a technology named the CGM system. During the continuous glucose monitoring 

system study period, we read 288 readings per day and read sugar levels every 10 seconds 
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and keep a record every 5 minutes. A small, sterile, flexible electrode measuring interstitial 

fluid (ISF) glucose is placed just below the skin. This data is then loaded into the computer 

and can be clearly seen in the graphic format that everyone understands. In many patients 

with high blood sugar during single hours of the day, you are unaware that blood and blood 

sugar cannot be detected by routine testing after fasting sugar (postprandial blood sugar), 

or that night blood sugar levels may be low. The CGMS use may ensure significant 

information for the physician to allow the physician to change his/her treatment 

appropriately to better control the sugar of blood throughout the day. 

 

Figure 3.1: Fingersticks alone (CGMS) (Kannampilly, 2013) 

3.2.1 What is the monitoring of continuous glucose 

Diabetes helps people with the management of diabetes, disease and prevent related 

problems. To make decisions about food, physical activity, and medications, a person can 

utilize glucose monitoring. The most common way to control levels of glucose is to use a 

glucose meter to measure the level of glucose in the blood sample, then sewing a fingertip 

with an automatic fingertip to get a  blood sample. 

 

Figure 3.2: Diabetics typically use a tie-down tool to get a sample of blood and a glucose 

counter to measure the level of glucose in the sample  

(National Diabetes Information Clearinghouse, 2008) 

 

There are many glucose meters types present and they are accurate and reliable when used 

correctly. Some measuring devices use a blood sample, like the upper arm, forearm or 

thigh, which is less sensitive than the fingertip. Monitoring continuous glucose systems 

utilizes a small sensor placed deep under the tissue fluid to control levels of glucose. The 
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sensor will remain in place in order to a few days and then replaced. A transmitter sends a 

pager-like wireless monitor with information about beak levels via radio waves from the 

sensor. The utilizer must check samples of blood with a meter of glucose to program the 

instruments. Monitoring of accepted glucose systems now utilizes a small sensor device; 

These devices are not as precise and secure as standard blood glucose meters, and utilizes 

should verify glucose levels with one meter before making any changes in the treatment. 

 

Figure 3.3: Continuous glucose monitoring systems frequently measures glucose once per 

minute. The meter is transmitted to a wireless monitor  

(National Diabetes Information Clearinghouse, 2008)  

Continuous glucose monitoring systems are more expensive than customary glucose 

monitoring but may provide preferable glucose control. Monitoring of continuous glucose 

appliances manufactured by Medtronic, Abbott, and DexCom have been approved and 

presented to the US Food and Drug Administration. These devices supply real-time 

glucose levels measurements displayed with glucose levels at 5 minutes or 1-minute 

intervals. Utilizers can set alarms to alert when levels of glucose are too low or too high. 

There is private software present in order to download data from devices to monitor and 

analyze trends from the models, and the systems may display trend graphics on the monitor 

screen. 

 

Figure 3.4: Those who utilize monitoring of continuous glucose can download data to the 

computer to see patterns and trends in glucose levels.                                                        

(National Diabetes Information Clearinghouse, 2008)  
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What are the hopes in order to pancreas of artificial? 

To come from the top of today's insulin limiting treatments, investigators have long been 

trying to link glucose monitoring and delivery of insulin with implementing artificial 

pancreas. An artificial pancreas is a system that mimics the way the healthy pancreas 

perceives changes in blood sugar levels and automatically responds to the suitable insulin 

secretion amount. Although there is no cure, an artificial pancreas has a significant 

potential to develop and monitor diabetes care and management and to lower blood sugar. 

An artificial pancreas based on mechanical instruments needs at least three components: 

 A computer program that “ closes the loop” by tuning insulin delivery based on 

changes in glucose levels.  

 A system of insulin delivery 

 Monitoring of continuous glucose system 

Latest technological developments have taken the first steps towards the closing cycle. The 

first pairing of monitoring of continuous glucose system with an insulin pump is the first 

step in joining the glucose monitoring and insulin delivery systems utilizing the most 

improved technology present, not the artificial pancreas, the MiniMed Paradigm REAL-

Time System. In the 1970s, blood glucose meters were available and self-monitoring of 

diabetes turned into self-monitoring. Nevertheless, glucose periodic blood measurements 

with blood glucose meters indicate blood glucose images at any time during the test. As 

you can see in the figure below, blood sugar measurement tests only ensure activity of 

glucose snapshots; Glucose periodic blood measurements may not really show the patient's 

profile control of glucose. CGM tells you that the story is just a "movie", just a snapshot of 

levels of glucose. It provides information on glucose trends among sugar of blood tests, 

develops knowledge and developed control of glucose. 

3.2.2 Fundamentals of continuous glucose monitoring 

The sensor is placed deep underneath and measures the glucose, named ISF, that is fluid 

among the veins and the cells. Blood sugar in blood counters is measured in blood 

capillaries. Glucose (primarily from carbohydrates) passes through cells into the blood 

vessels via the ISF. Thus, the glucose level saved in ISF decreases the registered glucose 

level. 
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Figure 3.5: CGM system curve (Kannampilly, 2013) 

Continuous glucose monitoring technology utilizes a glucose sensor replaced in the images 

in the ISF, penetrating the semi-permeable sensor membrane and reacting with the glucose 

oxidase present in the sensor. This reaction supplies the measured electrons as we call the 

input signal (ISIG) (the electron values indicate the value of the input signal captured by 

the sensor in the nanoamperes). This ISIG is then converted to the sensor glucose value 

utilizing the values of calibration blood glucose. Plasma (G1) and ISF (G2) glucose kinetic 

models are given below (Figure 3.3 A and B). Subcutaneous ISF glucose sensing 

accurately reflects levels of plasma glucose across a wide glucose profiles spectrum,  

changes regardless of plasma insulin. 

 

Figure 3.6: Model of a plasma (G1) and ISF (G2) glucose kinetics. (A) Glucose goes from 

vessels of blood to interstitial fluid and cells; (B) Interstitial glucose, plasma glucose 

(Kannampilly, 2013)  
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3.2.3 What kind of monitoring does continuous glucose systems have? 

There are two types of CGMS: 

 Individual (Real Time) monitoring of continuous glucose 

 Professional monitoring of continuous glucose 

Professional CGM (in order to Health Care Providers) 

 No alarm 

 Ideal for short-term blinded monitoring of continuous glucose assessment and 

retrospective analysis 

 Can be utilized in all patients with diabetes to reveal patterns and patterns 

 Minimal patient education 

 Quick and easy installation 

Personal (REAL-Time) CGM (for Patients) 

 The motivation and training of the patient is the key to success. 

 Glucose sensor readings are updated on the monitor every 5 minutes. 

 Trend charts, arrows, and warnings help the patient to achieve the lowest and 

highest levels. 

3.2.4 Who is a good candidate in order to CGM? 

The information supplied by the IPro2 System can help you design personalized programs 

of diabetes care. The data is also beneficial as an educational tool to increase motivation 

and co-operation with patients. The system may be particularly beneficial in assessing the 

following situations and situations when it is effectively used with patients with diabetes: 

 Elevated A1c levels 

 Patients who test infrequently 

 Logbooks not reflecting A1c 

 Fluctuating levels of glucose 

 Poor glycemic control (patients who desire better control) 

 Nocturnal hypoglycemia (low glucose of blood) and hypoglycemic 

unawareness 

 Pregnant women with diabetes 

 Postprandial hyperglycemia(high glucose of blood) 

 Children with diabetes 
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3.2.5 Monitoring of continuous glucose benefits 

CGM not only indicates a glucose levels snapshot but also indicates the full picture of 

glucose activity. Utilizers and clinicians supply real-time information about glucose levels 

and developed insight by indicating glucose trends among the finger bars, thereby 

developing control of glucose. Monitoring of continuous glucose also supplies additional 

information beyond “averaging” the total glucose levels represented by HbA1c. A recent 

study indicated that patients who utilized continuous glucose monitoring in order to at least 

6 days a week decreased Alc levels significantly without increasing hypoglycemia when 

compared to patients who utilized less (Pitzer et al., 2001; Tamborlane et al., 2008).  

Readings of continuous glucose help to better manage disease diabetes by interfering with 

real-time to decrease the frequency and hypoglycaemic severity or hyperglycemic 

episodes. Patients can learn how diet, exercise, drug utilize, lifestyle, and illness periods 

affect levels of glucose. Moreover, historical analysis supplies information that can 

translate patients and health professionals (HCPs) into treatment regimens and 

optimization. Many studies have shown that A1C results are a significant difference based 

on adjustments made to insulin regimens in response to CGM (Ludvigsson & Hanas, 2003; 

Tavris & Shoaibi, 2004; Kaufman et al., 2004). Hirsch, 2002 have shown that use of 

monitoring of continuous glucose in clinical practice may ensure necessary monitoring tool 

to decrease variability of glycemic and superoxide overdose, and may potentially decrease 

complications of diabetic (Hirsch, 2005). 

 

Figure 3.7:  Individual monitoring of continuous glucose (A) Guardian Actual-Time; (B) 

MiniMed Paradigm ACTUAL-Time (Kannampilly, 2013)  
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3.3 CGM System Elements 

The Diabetes Control and Complications Test confirm that patients treated intensively by 

insulin give preferable outcomes than those traditionally treated in diabetic microvascular 

complications prevention. Nevertheless, It is also known that intensive insulin therapy 

increases hypoglycemia risk. For detecting hypoglycemia, patients with a hypoglycemia 

history frequently heal various abnormalities and forfeit talent. This is called 

"hypoglycemia unconsciousness" and fulfills the "recurrent hypoglycemia vicious cycle". 

Nevertheless, there is strong evidence that hypoglycaemic attacks can be reversed in a 

more rigorous manner through glucose control, often counterproductive regulatory defects 

(Wolpert, 2007). For rigorous glucose control and hypoglycemia prevention, monitoring of 

continuous glucose is a beneficial appliance that provides maximum information about 

fluctuating levels of blood sugar throughout the day. (Sachedina& Pickup, 2003; De Block 

et al., 2006; Augstein et al., 2007; Rhee et al., 2007; Weinstein et al., 2007; Zhou et al., 

2009; Foundation of Juvenile Diabetes  Research CGM Study Group, 2010; Foundation of 

Juvenile Diabetes  CGM Study Group et al., 2011). The fingertip test only provides 

information about the blood sugar at one point; So even if "hypoglycemia is unconscious" 

among the measurement points, we can not detect it. By monitoring continuous glucose, 

we can achieve both better control of intensive insulin treatment and avoiding 

"hypoglycemia unconsciousness". Monitoring of continuous glucose is a method that 

supplies continuous blood glucose control level by measuring concentrations of glucose in 

the interstitial fluid (Fogh-Andersen et al., 1995). At present, Medtronic's MiniMed Gold, 

which is utilized under government-based health insurance in Japan, has a sensor placed in 

subcutaneous tissue beneath the abdomen skin. The sensor includes a flexible, platinum-

coated electrode that can be utilized in order to 72 hours, placed in a permeable membrane. 

By glucose oxidase method, level of subcutaneous glucose is measured and a monitor 

showing a mean blood glucose figure every 5 seconds, and every 10 seconds the interstitial 

glucose shows the measured level. Blood sugar values are computed utilizing the software. 

MiniMed Gold computes blood sugar values between  40-400 mg/dL. Although the owner 

can not reach actual-time glucose levels, the measured data can be downloaded as a 

spreadsheet (Corstjens et al., 2006). A significant procedure that needs to be repeated is 

calibration. At least four times a day this is done utilizing a finger bar test on MiniMed 

Gold. Self-monitoring of blood glucose means that at any point in time it is closer to true 
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glucose levels, venous glucose levels. Care should be taken that the device is delayed 

among blood and interstitial levels of glucose. 

3.4  Delay among interstitial and blood levels of glucose 

In 2002 (Cheyne et al., 2002), CGM-related articles were published during controlled 

hypoglycemia in healthy volunteers. No information was present about the sensor 

performance during continuous hypoglycemia or during hypoglycemia recovery at that 

time. For this reason, they use hyperinsulinemic glucose clamps to prove interesting 

findings(Cheyne et al., 2002). Venous blood glucose levels dropped to 45 mg/dL for 60 

minutes after 60 minutes of study at the end of the study, but eventually returned to 

diencephalon. Measurements of blood glucose are compared with the interstitial worths 

saved by the sensor. Profiles of the sensor decrease each glucose levels of three points with 

correlation coefficient 0.79 and 7% average absolute error. Reduce in blood glucose 

measured by drop sensor at a glucose level of the blood level, but the development in 

hypoglycemia was postponed by an average of 26 minutes (Cheyne et al., 2002).                

In 2003, the device was probably the first generation MiniMed of continuous glucose, that 

is less accurate than second-generation MiniMed Gold. (Boyne et al., 2003) the first 

generation tried to measure a time delay among MiniMed monitoring of continuous 

glucose and blood glucose, as well as among different sensors at the same time. In each of 

the 14 patients with type 1 diabetes, there were two sensors placed subcutaneously in their 

masts, taken every 5 minutes. Blood sugar was also sampled for 8 hours every 5 minutes. 

The results indicated that the time difference among blood and interstitial glucose levels 

varied between 4 and 10 minutes with interstitial glucose left behind by glucose of blood at 

81% of cases. The difference of mean (± MD) among two sensors in each patient was 

6.7±5.1 minutes The authors also found that  

 (10.1±10.1 minutes, P<0.001) increase in delay times in glucose levels  

 (6.9±8.5 minutes, P=0.017) falls  

 (9.4±7.7 minutes, P<0.001) lowest   

In both cases, the level of blood sugar was at the pre-interstitial glucose level (Boyne et al., 

2003). Although there were some variations among different studies, the other groups 

reported similar results (Kulcu et al., 2003; Klonoff, 2004; Nielsen et al., 2005). Thus, the 

main results were a time lag among measured interstitial levels of glucose (Stout et al., 

2004; Schrot, 2007) and because the true levels of blood and the different sensors have 
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different sensitivities without measuring the interstitial levels of glucose (Boyne et al., 

2003; Wentholt et al., 2005).   

3.5  Summary 

Diabetic patients control glucose, manage the direction of the disease and prevent related 

problems. The most common way to control glucose levels is to place a finger to pick up a 

blood sample and utilize a glucose counter to measure the level of glucose in the sample. 

Monitoring continuous glucose systems utilizes a small sensor placed deep under the tissue 

fluid to control levels of glucose. A transmitter sends measurements of glucose to the 

wireless monitor. An artificial pancreas based on mechanical devices includes a computer 

program in order to monitor the continuous glucose system, adjusting the insulin delivery 

system, and administering insulin according to changes in levels of glucose. It is crucial to 

understand glucose variability in a patient, and some research suggests that variable blood 

sugars may be more harmful than continuous high blood glucose, fluctuations in glucose 

levels may cause oxidative stress, and possibly increase risk in order to cell damage and 

complications. Microvascular and macrovascular. The utilize of continuous glucose 

monitoring in clinical practice may supply the necessary monitoring tools to decrease the 

variability of the glycemic and excess oxidant dose and potentially reduce diabetic 

complications. According to the American Clinical Endocrinologists (AACE), monitoring 

continuous glucose technology is not only new, but it can also develop patients' lives in a 

comprehensive diabetes management plan. 
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CHAPTER 4 

NOISE, NOISE TYPES,  ADDITIVE WHITE GAUSSIAN NOISE,  AND, FILTER 

DESIGN PROPERTIES 

 

4.1 Overview 

Generally, the concept of noise in electronic circuits can be described as unwanted signal 

confusion. Particularly in electronic-communication technology and high-frequency RF 

(radio frequency) circuits, signals are transmitted using a conductor and electromagnetic 

waves. However, a continuous unwanted component is present on this transmitted signal. 

This component is sometimes too small to be noticed, and sometimes it can be annoyingly 

high. Such situations are also known as parasites among the public. Signal filtering is widely 

utilized in systems with various signal processing methods such as data communication 

biomedical implementations military and civil electronic systems industrial 

implementations. In general, it is described as separation of a signal into desired frequency 

components (such as noise) according to selected filter characteristic and improvement of 

the overall structure of signal (gain, amplitude, phase and group delay, etc.). 

Digital de-noising is one of the powerful digital signal processing devices. Except for clear 

cleaning errors, passive component fluctuations, time and temperature, operational 

fluctuations (active filters), etc. Advantages associated with filtration are numerical 

filtration-capable performance explanations; this is achieved with an Analog 

implementation, even if performance is not feasible, if not feasible, at best. Also, digital 

filtrate features can easily be changed under software control. For this reason, they are 

commonly utilized in adaptive filtration implementations such as the cancellation of echoes 

in modems, voice recognition, and recognition of speech. In processing signals, the function 

of a filter is to remove unwanted signal parts such as random noise or to remove useful signal 

components such as components within a certain periodic interval. 

4.2 Noise in processing of signal 

A signal may be subject to noise during transmission, capture, storage, conversion, or 

processing, The general statement used for undesirable and often unknown changes in signal 

processing is called noise. (Tuzlukov, 2010). Occasionally word does not carry random 

(unpredictable) signals and helpful data; even if they do not interfere with other signals or 

are intentionally inserted as in comfort noise. De-noising is a widespread process used, in 
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the design of signal processing systems. In particular, filters are a significant tool, to separate 

the original signal from the noisy signal. Nyquist-Shannon sampling theorem is 

mathematical limits for de-noising are determined by information theory. 

4.2.1 Noise Types 

Noise, in signal processing, can also be classified according to the statistical properties, 

occasionally named how it changes the intended signal and the "color" of noise. 

Additional noises described below are added to the unwanted signal: 

 Gaussian  

 Contaminated Gaussian, whose probability density function is a linear   

                  mixture of Gaussian probability density functions 

 White  

 Pink or Flicker, with 1/f power spectrum 

 Power-law  

 Additive white Gaussian  

 Black  

 Brownian or brown, with 1/f2 power spectrum 

 Cauchy  

 Random time shifts in a signal known as phase noise 

 Shot noise caused by static electricity discharge 

 An error of quantization because of conversion from continuous values to 

discrete values 

 Typical of signals that are rates of discrete events known as Poisson noise 

 A short pulse followed by disruption of oscillations known as transient noise 

 Multiplicative noise modulates or multiplies the intended signal 

 Powerful but only during short intervals known burst noise 

4.2.2 Noise in certain signal types 

Often noise can be generated by signals that are of particular interest to technical and various 

scientific fields: 

 Noise (audio), such as "hum" or "hiss", in audio signals 

 To fill silent Gaps comfort noise added to voice communications  

https://en.wikipedia.org/wiki/Gaussian_noise
https://en.wikipedia.org/wiki/Contaminated_Gaussian
https://en.wikipedia.org/wiki/White_noise
https://en.wikipedia.org/wiki/Pink_noise
https://en.wikipedia.org/wiki/Flicker_noise
https://en.wikipedia.org/wiki/Power-law_noise
https://en.wikipedia.org/wiki/Additive_white_Gaussian_noise
https://en.wikipedia.org/wiki/Black_noise
https://en.wikipedia.org/wiki/Brown_noise
https://en.wikipedia.org/wiki/Cauchy_noise
https://en.wikipedia.org/wiki/Multiplicative_noise
https://en.wikipedia.org/wiki/Noise_(audio)


 

27 

 

 Audible noise due to electromagnetic vibrations, electromagnetically excited noise in 

systems containing electromagnetic fields 

 Background noise caused by spurious sounds during signal capture 

 Noise (video), such as "snow" 

 In radio transmissions, Noise (radio), such as "static"  

In signal processing, there is an absolute list of noise measures to measure noise based on 

some standard noise levels or desired signal levels. The most significant ones are given 

below. 

 Dynamic range, frequently described by the inherent noise level 

 The noise power ratio to signal power is named as SNR (Signal-to-noise ratio)    

 In the system, PSNR (Peak signal-to-noise ratio) is the maximum signal-to-noise 

ratio  

4.3 Additive white Gaussian noise(AWGN) 

4.3.1 Gaussian Noise 

Gaussian noise, also known as Gaussian distribution, named after Carl Friedrich Gauss, is A 

statistical noise equal to that of a probability density function normal distribution. In another 

saying, values that noise can take on are Gaussian-distributed. The density  of  function 

probability “p” of a Gaussian random variable ”z” is given in equation 4.1: 

𝑝𝐺(𝑧) =
1

𝜎√2𝜋
𝑒 − 

(𝑧−𝜇) 2

2𝜎 2                                                                                                        (4.1) 

where mean value μ, "z" represents a gray level and standard deviation 𝜎. A special case is 

the white Gaussian noise, where the values in any pair are evenly distributed and are 

statistically independent (and therefore unrelated). Gaussian noise is used to generate 

additional white Gaussian noise in communication channel modeling and testing. To mimic 

the effects of many random processes occurring in nature additive white Gaussian noise is a 

basic noise model utilized in information theory. Modifiers denote certain characteristics: 

 Additive: Because it is added to any noise that may be specific to information 

system. 

 White: expresses idea that it is uniform to provide power in frequency band for 

information system. It is likened to white with uniform emissions at all 

frequencies in visible spectrum. 

https://en.wikipedia.org/wiki/Noise_(video)
https://en.wikipedia.org/wiki/Noise_(radio)
https://en.wikipedia.org/wiki/Dynamic_range
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 Gauss: has a normal distribution because average time-domain value is zero in 

time domain. 

Broadband noise, thermal vibrations of atoms (called Johnson Nyquist noise or thermal 

noise) in conductors, shot noise, blackbody radiation from earth and other hot objects, and  

Sun. Central limit theorem of probability theory, having a distribution called Gauss or 

Normal, indicates that many random processes are prone to summation. Additive white 

Gaussian noise is often used as a channel model in which only disturbance in communication 

is a linear addition of broadband or white noise with a fixed spectral density (bandwidth 

expressed in watts per hertz) and Gaussian amplitude distribution. Model not taken into 

account; 

 frequency selectivity, 

 nonlinearity  

 fading,  

 dispersion,  

 or interference.  

However, it produces simple and tractable mathematical models that are helpful to gain 

insight into underlying behavior of a system before these other phenomena are considered. 

4.3.2 A Simple but Powerful Model: Additive White Gaussian Noise 

A simple model of how noise affects a signal reception transmitted over a channel and 

processed by receiver. Noise in this model: 

Additive: When a sample value Y[k] is taken at kth sampling time, receiver interprets it as 

sum of two components: first is noiseless component 𝑌 0[𝑘], i.e sample value taken is 

noiseless “k”. at sampling time, as a result of passing input waveform only through channel 

distortion; second, noise component considered to be independent of input waveform is W 

[k]. So we can write; 

𝑌[𝑘] = 𝑌 0[𝑘] +  𝑊[𝑘]                                                                                                      (4.2) 

In absence of distortion, which is what we are assuming here, 𝑌 0[𝑘] will be either                       

V0 or V1. 

Gaussian: W [k] noise component is random, but we suppose that each sample is taken from 

a constant Gaussian distribution at time; for concreteness, we consider this to be a Gaussian 

random variable distribution “W”, so that each W [k] is distributed exactly like ”W” reason 

why a Gauss makes sense is that noise frequently results of collection of several distinct and 

https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Nonlinearity
https://en.wikipedia.org/wiki/Fading
https://en.wikipedia.org/wiki/Dispersion_(optics)
https://en.wikipedia.org/wiki/Interference_(communication)
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independent factors that allow us to obtain a significant result from the probability and 

statistics, often named central limit theorem. This indicates that sum of individual random 

variables is well predicted by a Gaussian random variable (approximately improves when 

more variables are added). Gaussian distribution is better than a range of perspectives, not 

at least because it is characterized. with only two numbers: variance σ2 and mean μ or 

standard deviation σ. In our noise model, average noise distribution will be assumed to be 0. 

This assumption is not a major concession: any consistent non-zero perturbation is easy to 

compensate. Zero average Gaussian noise fully characterizes noise as variance or equivalent 

for standard deviation. As a measure of expected “amplitude” of noise standard deviation σ 

can be considered and captures expected power of square. Distance between noiseless value 

of sample and digitization threshold must be sufficiently large than expected amplitude or 

standard deviation of noise so that noise does not disturb digitization of a bit detection model. 

White: This feature relates to temporal change in individual noise samples that affect signal. 

If these Gaussian noise samples are independent from one sample to next, underlying noise 

process is called white Gaussian noise. “White” refers to frequency separation of group of 

noise samples and indicates that noise signal includes components with expected power at 

all frequencies. This noise model is often referred to as AWGN for additional white Gaussian 

noise. 

4.4 Digital Noise Reduction Basic Concepts 

Digital noise reduction has some features that you should pay particular attention to when 

analog signal input needs to meet specific needs. Also, when converting output digital signal 

to an analog form, signal must be further processed to obtain correct result. Digital de-

noising process, block diagram was shown in figure 4.1 

 

 

Figure 4.1: Digital noise reduction process 

Transforming an analog signal to form of digital is performed by sampling with the “fs” 

frequency of end sampling. If an input signal includes frequency components higher than 

the “fs/2” (half-sampling frequency), it will distort original spectrum. This is first reason for 

implementing input signal filtering utilizing a low pass filter that cleans components of high 
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frequency from input frequency spectrum. This filter is known for its aliasing in foreground 

anti-aliasing filter. After de-noising and sampling, a digital signal is available for filtering 

utilizing an appropriate digital filter. Output signal is, in some cases, a digital signal that 

must be converted analogously. After Digital-Analog Conversion, signal includes some 

frequency components higher than “fs/2”, which must be cleared. 

4.5  Filters 

The human mind can concentrate on only one point at a time. No matter how many stimuli 

around us, only one point can be observed. In electronic systems, although there is too much 

signal or input data in environment, systems are designed to operate with only one. This 

process of transmitting a single signal is called a filter. As with rectifier and filter circuit 

modules, filter circuits prevent unwanted signals. It only transmits signals that are 

appropriate for operation of system. These unwanted signals may be interference, noise, and 

other system signals. In its simplest definition, electronic filter is a circuit that passes and 

suppresses certain signals with similar frequencies. Theoretically, selected filter can filter 

specific frequency ranges. In practice, however, an applicable frequency selector circuit 

cannot perfectly and completely filter selected frequencies. Instead, filters attenuate any 

input signal having a frequency content other than specified frequency band. (Reduces or 

extinguishes the effect.) 

4.5.1 Purpose of Use 

Filter circuits, one of most significant elements of signal processing systems, are those which 

provide desired attenuation or delay feature in a given frequency domain. Filters in almost 

all signal processing systems allow a given frequency band to pass, while frequencies outside 

this band are attenuated and designed for this purpose. 

4.5.2 Uses of Filters 
 

Filters are often utilized to filter correct components, reduce noise, avoid resonance, or 

generate resonance, signal shaping, signal attenuation, and power factor correction. Filters, 

which are very important elements in electrical and electronic systems, are necessary 

circuits, especially for radio, television, audio, video, and data communication. Seismology, 

geophysics, medical electronics, brain waves, and distance measurement is also important 

in many types of scientific research. 

4.5.3 Classification of Filters 

Various types of filters are available for elimination of these signals in electrical-electronics, 

where signals are so diverse. There are dissimilar criteria for classification of filters. These: 
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 According to construction elements (passive filters, active filters) 

 According to working principle (bandpass filter, high pass filter, low pass filter, 

bandstop filter) 

Passive circuits are formed by basic circuit elements such as resistance, capacitor, and 

inductor. Active circuits are circuits that require a power supply to operate. These circuits 

have circuit elements such as transistors or microprocessors. However, in these circuits,  

filtering elements are passive elements. Low pass filter is called a low pass filter if it passes 

and weakens frequencies below specified frequency. Bandpass filter is called a band-stop 

filter if it exceeds frequencies in a given frequency range, or a band-stop filter if it weakens 

frequency range. 

4.6 Design of filter 

Signal processing design of filter is a process of designing a filter, some of which meet 

several conflicting requirements. Aim is to find that filter that meets each of needs is 

sufficiently applied to ensure that it is beneficial. A problem of optimization, where each 

necessity contributes to an error function that needs to be minimized, can be described as the 

filter design process. Parts specific to the design process can be automated, but an 

experienced electrical engineer is normally required to get a good outcome. 

4.6.1 Requirements for typical design 

In design process typical requirements considered for filters  are: 

 must be causal 

 must be stable 

 computational complexity must be below 

 must have a certain phase shift or group delay 

 must be localized (step or pulse inputs should cause infinite time output) 

 must have a specific frequency response 

 must be applied especially as hardware or software 

 must have a specific impulse response 

4.6.2 Function of frequency 

A significant parameter is needed for frequency response. Particularly, the complexity and 

for filter order and feasibility steepness of response curve is a decisive factor. A first-order 

recursive filter will have only one frequency-dependent component. This is the meaning that 

the response of frequency slope is limited to 6 dB per octave. This is not enough for many 
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aims. Higher grade filters are needed to achieve steeper slopes. Concerning the desired 

frequency function, there may also be a parity weighting function for each frequency that 

describes how significant it is for the desired frequency function to approach the desired 

function more weight, more obvious closest approach. Typical examples of frequency 

function have been given below: 

 Proportional to frequency, a differentiator has an amplitude response. 

 High frequencies pass quite well with a filter of the high pass; a filter of low-pass 

is utilized to cut signals of unwanted high-frequency is useful as a filter to cut 

unwanted low-frequency components. 

 In frequency response, a peak EQ filter makes a peak or dip commonly utilized 

in parametric equalizers. 

 By a specific amount a low shelf filter passes all frequencies but increases or 

decreases the frequencies below shelf frequency. 

 A bandpass filter passes through a limited frequency range. 

 The bandstop filter passes frequencies above and below a specific range. A very 

narrow bandstop filter is known as a notch filter. 

 A high shelf filter passes all frequencies but increases or decreases frequencies 

above shelf frequency by a certain amount. 

4.6.3 Phase and group delay 

 The entire pass filter passes through all frequencies unchanged but changes the 

signal phase. To synchronize group delay of recursive filters such filters can be 

utilized. For phase effects, this filter is also utilized. 

 A  filter of fractional delay is an all-pass with a fixed group or phase delay that 

is specified for all frequencies.  

 At unchanged amplitude, Hilbert transform is a certain full-pass filter that passes 

sinusoid but changes each sinusoid phase by ±90 𝑜. 

4.6.4 Response of impulse 

Between the frequency function of the filter and the impulse response, there is a direct 

relationship. This is the meaning that any necessity of the frequency function is a necessity 

for the impulse response and vice versa. Nevertheless, in specific implementations, filter 

may have a clear impulse response and design process aims to produce a close response to 

desired impulse response as possible, given all other requirements. To take into account a 
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frequency function and impulse response of independently selected filter in some cases, it 

may even be appropriate. For instance, we may want both filters to have a certain function 

of frequency and resulting filter to have an effective width as small as possible in signal 

field. By taking into account a very narrow function as the desired impulse response of filter 

second condition can be achieved but this function is not related to desired frequency 

function. To achieve a filter that tries to meet both of these contradictory design objectives 

as much as feasible is purpose of the design process. 

4.6.5 Causality 

Filters based on real-time run time should be causal: the response of filters is based only on 

the present and past inputs. A standard approach is to leave this obligation to the final stage. 

If the resulting filter is not causal, it can be causal by adding a convenient time shift or delay. 

If the filter is part of a larger system that is normal, such delays should be given carefully, 

as this affects the operation of the entire system.  

4.6.6 Stability 

To produce a limited filter response a stable filter allows each limited input signal. A filter 

that does not meet this necessity may not work or even be harmful in some cases. Some 

design approaches can only guarantee stability by utilizing circuits such as the finite impulse 

response filter. On the other hand, filters based on feedback circuits have other advantages, 

and consequently, even if there are unstable filters, this filter class can be preferred. In this 

instance, to avoid instability filters must be carefully designed. 

4.6.7 Locality 

In some embodiments, we need to address signals containing components that can be defined 

as local phenomena, such as beats or stages of a given time. One consequence of filtering a 

signal is to extend duration of local events to the width of the filter in heuristic terms. This 

is the meaning that it is occasionally significant to keep the response of impulse function 

width of the filter as short as feasible. According to the relation of  Fourier transform 

uncertainty, the width of impulse response function of the filter and the width of the 

frequency function must exceed a specific constant of the product. This is the meaning that 

any necessity in position of the filter also depends on the width of the frequency function. 

As a result, it may not be possible to simultaneously meet impulse response function and 

frequency function requirements of the filter. This is a typical example of conflicting needs. 

 



 

34 

 

4.6.8 Computational complexity 

The general demand in any design is that the number of operations (addition and 

multiplication) needed to calculate the filter response is as low as feasible. In some 

embodiments, this desire is a strict necessity, e.g., because of limited computing resources, 

limited power supplies, or limited time. The final limitation is typical for real-time 

implementations. There are several ways that a filter can have distinct computational 

complexities. e.g., the order of a filter is less or more proportional to the number of processes. 

This is the meaning that calculation time can be reduced by selecting a low-grade filter. For 

discrete filters, to the number of filter coefficients, computational complexity is more or less 

proportional. If filter has multiple coefficients, it may be appropriate to decrease coefficients 

number closer to zero in case of multidimensional signals such as tomography data. Number 

of coefficients in very fast filters to which input signal is sampled (e.g at critical frequency) 

and which takes advantage of bandwidth limits sampled after filtration. Another problem 

with computational complexity is separability, i.e whether and how a filter can be written as 

convolution of two or more simple filters. This problem is especially important for 

multidimensional filters. In this case, if filter can be divided into horizontal direction of a 

1D filter and vertical direction of 1D filter, an important reduction in computational 

complexity can be achieved. One consequence of filter design process may be, for example, 

approaching the desired filter as a separable filter or as sum of separable filters. 

4.7 Fundamentals of Filter  

Digital filters are a very significant part of digital signal processing. Their outstanding 

performance is one of the main reasons why digital signal processing is so popular. Filters 

are used for two different purposes; 

 When a signal is disturbed by noise, interference, or other signals, the signal must 

be separated from them.  

 When a signal is somehow damaged, the signal needs restoration.  

Analog or digital filters are attacking these problems. Which is better? Analog filters have a 

wide dynamic range in both amplitude and frequency, they are cheap and fast. In contrast, 

To the achievable level of performance digital filters are significantly superior. Analog filters 

are approximately thousands of times behind digital filters. When approaching filtration 

issues, this makes a dramatic difference. Limitations in the use of electronic components, in 

analog filters, such as the stability and accuracy of capacitors and resistors are emphasized. 
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In contrast, digital filters are so good that filter achievement is often overlooked. Emphasis 

is placed on theoretical issues related to the limitation and processing of signals. In digital 

signal processing, it is known that the input and output signals of a filter are in the time 

domain. This is because the signals are generally produced at regular intervals by sampling. 

However, this is not just a sampling way. Equal spacing in space is the second most 

widespread way of sampling. Nevertheless, time and space are the most widespread. In 

digital signal processing It should be noted that when the term time domain is seen, it may 

refer to samples taken overtime or a general reference to any area from which samples are 

received. As indicated in Figure 4.1, each linear filter response of the impulse contains the 

responses of the step and frequency. Each of these answers includes full data about the filter 

in a separate format. The other two are fixed, if one of the three is stated, and can be 

calculated directly. Because they define how the filter reacts under distinct conditions all 

three of these expressions are significant. 

 

Figure 4.2: Filter parameters 



 

36 

 

Combining input signals with pulse response of digital filters is the simplest way to apply a 

digital filter. All suitable linear filters can be made in this way. When pulse response is 

utilized in this way, filter designers give a special name: filter core. There is another way to 

do digital filters named recursion. When a filter is applied by convolution, each sample in 

the output is calculated by weighting and pooling samples at inlet. Recursive filters are an 

extension of this, utilizing points in input and values previously calculated from output. 

Instead of utilizing a filter core, iterative filters are described by a series of iteration 

coefficients. What is important now is that all linear filters have impulse responses, even if 

you do not utilize them to apply filter. To find the recursive filter response of impulse, feed 

it with an impulse, and see what happens. Recursive filters response of impulses consists of 

exponentially disrupted sinusoids in amplitude. In principle, it prolongs the impulse response 

forever. However, at the end of the amplitude, it falls below the rolling noise of the system 

and the remaining samples can be ignored. Because of this feature, recursive filters are also 

called infinite impulse response filters. Unlike, convolution filters are named finite impulse 

response filters. As is known, when input is an impulse, the response of impulse is the output 

of a system. Similarly, step response is output when input is a step. Since step is integral of 

impulse, step response is integral of impulse response. This step provides two ways to find  

answer:  

 It can be seen easily what comes out, by feeding a step waveform into the filter. 

 Infinite impulse response. (To be mathematically correct: integration is utilized 

with continuous signals, while discrete integration, i.e. a sum that works with 

discrete signals) is used. By taking the discrete Fourier transform (utilizing fast 

Fourier transform) of the response of impulse frequency response can be found.  

4.7.1 Information represented by signals 

A most significant part of any digital signal processing task is to understand how data is 

incorporated into signals you are working on. To add data to a signal there are many ways. 

This is particularly true if signal is man-made. Fortunately, there are only two ways to 

represent data in naturally occurring signals. Data specified in the time and frequency 

domains will be searched. When something happened, and the amplitude of the event the 

data represented in the time domain explains.  
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Many things in the universe indicate periodic motion unlike the data specified in the 

frequency domain is more indirect. Step response defines how system changes data 

represented in the time domain. Unlike, frequency response indicates how the data 

represented in frequency domain changes. Since it is not feasible to optimize a filter for both 

implementations, this separation is critical in filter design. Good performance over time, low 

performance on frequency, or vice versa. 

4.7.2 Time Domain Parameters 

The step response can be very important when the field response is created. The reason why 

the pulse response is not an important parameter that can be explained as follows, it is the 

human mind's understanding and processing of data. It should be noted that all step, impulse, 

and frequency responses include the same data in similar regulations. The step response 

helps analyze time signals because it is related to how people show the data contained in the 

signals. The step function is the simplest way to represent the difference between two 

different regions. It can mark when an event started or ended. The human mind displays 

time-domain data as follows: a group of step functions that divide data into regions with 

similar properties. The step response is significant because it defines how to replace the 

dividing lines with the filter. In design of the filter, parameters of the step response that are 

significant are illustrated in figure 4.3. To allocate events from a signal, the step response 

time must be shorter than the range of the event. This indicates that the step response should 

be as fast as feasible. 
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Figure 4.3: Parameters to evaluate time-domain performance 

Generally, overvoltage must be extracted because in the signal it changes the samples 

amplitude, in the time domain this is fundamental data corruption. Finally, it is desirable to 

be symmetrical with lower half of upper half of step response. This symmetry is necessary 

for rising edges to look same as falling edges. This symmetry is named a linear phase because 

frequency response has a phase with a straight line. Make sure you understand these three 

parameters; it is key to evaluating time domain filters. 
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4.7.3 Parameters to frequency domain 

Four basic frequency responses are shown in Figure 4.3. These filters aim to let some 

frequencies to pass unchanged while completely blocking other frequencies. Transition band 

includes frequencies blocked, while transition band refers to transmitted frequencies. 

Between transition band. Fast-rolling means that transition belt is too narrow. Section 

between transition band and transition band is named cut-off frequency.  

 

Figure 4.4: The four common frequency responses 

in figure 4.5 three parameters that measure how well a filter carries out in the frequency 

domain have been illustrated.  
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Figure 4.5: Parameters to evaluate frequency domain performance 

Why is there nothing in-phase related to these parameters? First, phase is not substantial in 

most frequency-domain implementations. e.g., the audio signal phase is almost completely 

random and includes small beneficial data. Second, if the phase is substantial, with an 

excellent phase response, digital filters are very easy to design, that is, with zero phase shift, 

all frequencies pass through the filter. 
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4.7.4 Classification of filter 

Digital filter classification by their utilization and their application has been summarized in 

Table 4.1. The use of digital filters can be divided as the time domain, custom, and frequency 

domain into three categories and given in table 4.1. 

Table 4.1: Filter classification(Smith, 1999)              

Filter Used For  Filter Implemented By 

Convolution                       Recursion 

 (FIR)                                (IIR) 

 

Time Domain 

(smoothing, DC removal) 

Frequency Domain                                          

(separating frequencies) 

Custom 

(Deconvolution 

 

 

 

 

 

 

                      

 Moving Average               Single pole  

 

          

          Windowed-sinc               Chebyshev 

 

 

             FIR custom             Iterative design 

 

Filters are utilized when the waveform of the data signal is encoded as a time domain. Time-

domain filtration is utilized for such actions, these are: 

 Waveform shaping,  

 Elimination of DC  

 Smoothing etc.  

In contrast, filters of frequency-domain are utilized when data is added to the amplitude, 

frequency, and component sinusoids phase. To separate one frequency band from another is 

the purpose of these filters. When the filter requires special handling, which is more detailed 

than the four fundamental responses (high pass, low pass, bandpass, and band rejection) 

Special filters are utilized. In two ways as convolution and recursion, digital filters can be 

implemented. Convolution filters can perform much better than recursive filters, but run 

much slower. 
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4.8 Signals and Data  

A signal is a quantity change that is delivered concerning a case, feature, composition, orbit, 

evolution, and behavior, or data source target. A signal is transmitting data about case(s) of 

variable. Data transmitted in a signal can be utilized by people or machines for 

communication, making of control, decision of geophysical, discovery, forecasting, forensic 

medicine, and medical diagnosis, etc. Signal types which signal processing deals with 

contain; 

 Medical 

 Ultrasonic 

 Image 

 Biological 

 Audio 

 Subsonic 

 Financial  

 Textual data  

 Seismic signals 

 Electromagnetic 

 

4.9 Summary 

Savitzky-Golay filter and wavelet transform are important de-noising methods used for 

demodulation of signal. However, with these methods, it is very difficult for them to be able 

to remove the weak signal from a noisy signal and identify early-stage defects. The signal 

purification issue has a powerful link with continuous glucose monitoring. Removing weak 

signals from noise is very significant for continuous glucose monitoring, so the features of 

the signal are frequently very weak and masked by noise. The standard approach to removing 

signals from a noisy background is to design a convenient filter that extracts the components 

of noise and also, to pass unchanged allows the desired signal. Depending on the reduction 

of noise and the type, noise must be applied and different filters must be designed. However, 

conventional design of filter can become a very difficult task, when the frequency range and 

noise type are unknown. For this reason, this research has been focused to find alternative 

methods. Wavelet transform is widely utilized in signal interference because of its ability to 

represent frequency of extraordinary time. Generally, most of the signal interference 
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suppression approaches relate to detecting smooth curves of noisy raw signals. This unique 

property restricts the implementation of the traditional signal noise removal method. Noise 

removal method based on Morlet wavelet analysis has been recommended to clear 

continuous glucose monitoring signals from noise. This method is sought for optimal 

wavelet filters that give only the greatest kurtosis value for the converted signals, ignoring 

the periodicity of signal. In this dissertation, the success of wavelet decomposition and 

wavelet filter based noise removal methods are compared. Although the comparison 

outcomes show that the wavelet filter is more appropriate and dependable to determine weak 

and impulse-like signals of continuous glucose monitoring signals, the method of removing 

wavelet separation noise can achieve sufficient results in correct detection of the signal. 

Process of two-step optimization is recommended to choose the most suitable parameters for 

the Wavelet filter. Morlet wavelet is utilized as a criterion to optimize the shape factor of 

minimal Shannon entropy. Detection of periodicity method based on SVD (Single Value 

Discrimination) is utilized to select a scale for the wavelet transform. Noise reduction results 

from both experimental data and simulated signals are presented in this thesis and both 

supported the proposed method. 
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CHAPTER 5 

TYPES, TRANSFORMS OF WAVELET, MORLET WAVELET FILTER, AND  

CALCULATION OF MORLET WAVELET PARAMETERS 

 

5.1 Overview 

Wavelets are widely used in a wide variety of technical fields. Generally, wavelets are 

indicated by mathematical formulas but can be understood for signals or correlations analyzed 

by simple comparisons. Wavelet filters, which allow us to actually utilize them in processing 

of digital signal, can be seen as a powerful tool in Morlet Wavelet Transform and Wavelet 

Transform time-frequency analysis, a kind of Wavelet transform. For the wavelet filter, two-

stage optimization is recommended on top of all the tools in the time-frequency analysis, the 

Fourier transform is a well-known method to select the most appropriate parameters. 

Optimizing the shape factor of the Morlet wavelet, minimum entropy of Shannon is utilized. 

5.2  Overview of wavelet 

A wavelet is a limited time period waveform with an average value of zero. Theoretically, 

unlike minus to infinite sinusoids, wavelets have a beginning and an end. Figure 5.1 illustrates 

the continuous sinusoid representation and a putative "continuous" wave. 

     For identifying fixed frequency signals sinusoids are smooth and predictable. Wavelets are 

better at defining anomalies, pulses and other events that start and stop within the signal, they 

are irregular, limited duration and frequently not symmetrical. 

 

Figure 5.1: Representation of a continuous sinusoid and a supposed ”continuous” wavelet. 

(Chui, 1992) 

 

5.2.1 Wavelets Types 

 

In literature, Wavelets which are named as functions of mathematical, divide data into 

frequency different components and then to its scale investigate each component with an 

appropriate resolution. These basic functions are limited-time short waves, so the term 

“wavelet” is utilized. By frequency, basic wavelet transform functions are scaled. There are 

many distinct wavelets that can be utilized as a basic function are shown as 𝜓 (t) basic 
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function, also named as mother wavelet which is used as a transforming function. The main 

wavelet term is named for its two important wavelet properties. A small wave means,  

wavelet term. Smallness means the length of this (window) function is limited (supported 

compactly). The wave refers to the condition in which this function is released. The main 

wavelet is a prototype used to generate other window functions. In another saying, the term 

mother means that functions, which are a region support region, are utilized in the process of 

transformation derived from the main wavelet or the main function. 

A wide wavelet function can be written as shown in equation 5.1. Usually, 𝜓(t) wavelet is a 

complex-valued function. 

𝜓 𝑠,𝜏(𝑡) = |𝑠|
1

2
𝜓[(𝑡 − 𝜏)/𝑠]                                                                                                (5.1) 

This τ shift parameter determines the window position over time, thus specifying which part 

of the 𝑥(𝑡)   signal is analyzed. By frequency variable 𝜔, scale variable 𝑠 is replaced and the 

𝑡1 variable of time-shift is replaced by 𝜏  in an analysis of wavelet transform. These functions 

of mother wavelet are used by Wavelet transform and perform signal decomposition 𝑥(𝑡)  

into a  scaled weighted set 𝜓(𝑡) wavelet functions. Wavelets are localized in space this is 

main advantage of utilizing wavelets. Different kind of wavelets are demonstrated below: 

 dbN: Daubechies Wavelets  

 

𝑁 is order in Daubechies Wavelets. Some of Daubechies Wavelets are utilized as 2𝑁 in place 

of 𝑁. Daubechies wavelets have no clear statement other than db1, which is Haar wavelet. 𝜓  

and 𝜑 support length are 2𝑁 −  1. The lost moments' number 𝜓 is 𝑁. For some asymmetry, 

most dbNs are not symmetrical, very evident if order tidiness increases. When 𝑁 gets very 

bigger, 𝜓  and 𝜑  belong to 𝐶 𝜇𝑁 where 𝜇 equals about 0.2 pessimistic 𝑁 for small order. It 

should be noted that at specific points than others and analysis is vertical functions are more 

regular. 

 

 symN: Symlet Wavelets  
 

𝑁 is order in Symlet Wavelets. Some of Symlet Wavelets are utilized, as 2𝑁 in place of 𝑁. 

Symlets are only near symmetric. Idea includes reusing function m0 presented in  dbN, 

considering  |𝑚  0(𝑤)| 
2
 as a function 𝑤 of,  𝑧=𝑒 

𝑤
. Then we can factor 𝑤 in several distinct ways 

in  𝑤(𝑧)=𝑈(𝑧)𝑈form because 𝑤 roots with modulus not equal to 1 go in pairs. If one of roots is 

z1, then  𝑧1 is furthermore a root.  
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dbN Daubechies wavelets minimum phase filter which is 𝑈 filter has been established by 

choice 𝑈 such that modulus of all its roots is definitely less than 1. 

 db1: Wavelet of Haar 

 

Daubechies wavelets wavelet family written as dbl contains Haar wavelet, simplest wavelet 

imaginable and definitely earliest. Haar function of wavelet is demonstrated below: 

   𝜓(𝑥) = {

1     0 ≤ 𝑥
1

2

−1  
1

2
≤ 𝑥 < 1

 0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}                                                                                                 (5.2) 

 

 coifN: Coiflet Wavelets  
 

𝑁 is order in Coiflet Wavelets. Some of Coiflet Wavelets are utilized 2𝑁 in place of 𝑁. 𝜓 

function has 2𝑁 moments equal to 0 and, what is more extraordinary, function 𝜑  has 2𝑁 − 1 

moments equal to 0.  Two functions have 6𝑁 − 1 support of length,  coifN  𝜑 and 𝜓 are much 

more symmetrical than dbNs. coifN has to be compared to sym3N or db3N according to 

support length. Regarding the lost moments' number of 𝜓, coifN has to be compared to 

sym2N or db2N. If 𝑠 is enough orderly continuous-time signal, for large 𝑗 coefficient  

〈 𝑠,∅ −𝑗,𝑘〉 is estimated by   2 −
𝑗

2 𝑠(2 
−𝑗𝑘). If 𝑠 is a degree polynomial 𝑑, 𝑑 ≤  𝑁 − 1, then 

estimation becomes equality.  Connected with sampling problems this property is utilized, the 

difference between an expansion through ∅ 𝑗,𝑘 of a specific signal and sampled version. 

 biorNr.Nd: Pairs of biorthogonal Wavelet 

 

New family is expanding the wavelet family. In the subband filtering assembly, if the same 

finite impulse response filters are utilized for restoration and separation it is well known that 

symmetry and complete reconstruction (except Haar wavelet) are incompatible. One, �̅�, is 

utilized in analysis, and a signal coefficients 𝑠 are 𝐶̅ 𝑗,𝑘 = ∫𝑠(𝑥)�̅� 𝑗,𝑘 (𝑥)𝑑𝑥. Other, 𝜓, is used 

in synthesis, 𝑠 = ∑  𝑗,𝑘𝑐̅ 𝑗,𝑘𝜓 𝑗,𝑘. Additionally, wavelets 𝜓 and �̅� are related by duality in 

following sense: ∫ �̅� 𝑗,𝑘(𝑥)𝜓 𝑗,𝑘 (𝑥)𝑑𝑥 = 0. As soon as 𝑗 = 𝑗 ′ or  𝑘 = 𝑘 ′ and even, 

∫𝜑 0,𝑘 (𝑥)𝜑 0,𝑘     
′(𝑥)𝑑𝑥 = 0 as soon as 𝑘 = 𝑘 ′.  𝜓,�̅�, 𝜑 and �̅� functions are zero outside of 

a segment. 
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 Meyr: Wavelet of Meyer 

In frequency domain Wavelet of Meyer and function of scaling is described as follows:  

Wavelet function 

                              (5.3) 

Scaling function  

 

                                 (5.4) 

 

You get a different family of wavelets by changing auxiliary function. For necessary features 

of auxiliary function 𝑣. Wavelet is extremely different, this allows wavelet vertical analysis. 

 mexh: Wavelet of Mexican Hat 

 

Wavelet of Mexican Hat function is given as: 

 

𝜓(𝑥) = (
2

√3
𝜋 
−1

4⁄ ) ∗ (1 − 𝑥 2) ∗ 𝑒 
−𝑥 2

2⁄                                                                              (5.5) 

 

This function is commensurate to the Gaussian probability density function second derivative. 

Analysis is not vertical since the function does not exist. 
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 morl: Morlet Wavelet 
 

Morlet Wavelet function is given as: 

 

𝜓(𝑥) = 𝐶𝑒 
−𝑥 2

2⁄    𝑐𝑜𝑠5𝑥                                                                                                      (5.6) 

 

Morlet wavelet does not fully meet requirement. For normalization, in reconstruction view, 

constant 𝐶 is utilized. 

5.3 Wavelet transform 

From ψ (𝑎,𝑏)(t) that is a single function by translation and dilation methods wavelet is 

achieved: 

ψ (𝑎,𝑏)(𝑡) =
1

√𝑎
ψ(

𝑡−𝑏

𝑎
)                                                                                                         (5.7) 

In the above expression “a” is supposed parameter of scaling, 𝑏 is parameter of time 

localization and mother wavelet is named as 𝜓(𝑡). 𝑏 ∈ 𝑅 translation parameters and               

𝑎 > 0 dilations, may be discrete or continuous. 𝑥(𝑡) wavelet transform that is a finite energy 

signal with wavelet analysis 𝜓(𝑡) is 𝑥(𝑡) convolution with a  wavelet of scaled and 

conjugated that is given expression 5.8. 

𝑊(𝑎, 𝑏) =
1

√𝑎
∫ 𝑥(𝑡)𝜓 ∗ (

𝑡−𝑏)

𝑎
) 𝑑𝑡

+∞

−∞
                                                                                    (5.8) 

ψ * (t) is complex conjugation of 𝜓 (t), as translation functions 𝑏 with each scale 𝑎  wavelet 

transform 𝑊(𝑎, 𝑏) can be considered. Equation (5.8) demonstrates that the analysis of 

wavelet is an analysis of time-frequency or time-scaled. For a signal multi-scale analysis by 

dilatation and translation wavelet, transform can be utilized, unlike Short Term Fourier 

Transform, thereby effectively extracting time-frequency characteristics of a signal. This 

allows original signal to be reconstructed, wavelet transform can also be reversed. A classical 

reversing formula for wavelet transform has been given in equation 5.9. 

   𝑥(𝑡) = 𝐶  −1ψ∬𝑊(𝑎, 𝑏)ψ (𝑎,𝑏)(𝑡)
𝑑𝑎

𝑎 2
𝑑𝑏                                                                          (5.9) 

Where 

𝐶 ψ = ∫
|�̅�(𝑤)| 2

|𝑤|
𝑑𝑤 < ∞

+∞

−∞
                                                                                                 (5.10) 

�̅�(𝑤) = ∫ �̅�(𝑡) exp(−𝑗𝑤𝑡) 𝑑𝑡                                                                                            (5.11) 
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5.4. De-noising based on Wavelet decomposition 

For noisy signal underlying model is fundamentally given as the following form: 

𝑥(𝑛) = 𝑠(𝑛) + 𝜎𝑤(𝑛), 𝑛 = 0,1… . . , 𝑁 − 1                                                                       (5.12) 

𝜎 is noise level and 𝑤(𝑛) is standard Gaussian white noise in this simplest model, 

independent identically distributed indicated by 𝑤(𝑛)~𝑁(0,1). It is a noise-generating object 

to extinguish the signal noise portion 𝑥(𝑛) and rescue 𝑠(𝑛). Thus, by reconstructing a signal 

from an average error between 𝑠(𝑛) and noisy data, this signal is minimized, theoretically 

obtainable. Method 𝑠(𝑛)  can be seen as a non-parametric estimate and the model can also be 

used as a regression model using a vertical basis over time. 

 De-noising of Wavelet is based on a multi-resolution analysis principle (Donoho and 

Johnstone, 1995). A discrete detail coefficient and approximate coefficient can be achieved 

with multi-level wavelet dissociation. (Grossmann, 1988) showed that white noise details 

decrease regularly as the level of variance and amplitude increases at various levels; By 

modifying wavelet coefficients according to this feature noise can be reduced or even 

removed. Basic version of the general de-noising method can be divided into three parts, these 

are: 

 Reconstruction of signal 

The reconstruction wave is calculated using original approximate coefficients at 

the 𝑁 level and in this step, the detailed coefficients modified  are from 1 𝑡𝑜 𝑁. 

 Decomposition of signal 

In this step, wavelet base and 𝑁 level are selected, then at level 𝑁, the wavelet 

signal decomposition is computed. 

 Detail coefficients of Threshold 

In this step, a threshold from 1 𝑡𝑜 𝑁 for each level and application soft threshold 

according to detailed coefficients are selected. 

In general, this method provides almost optimal de-noising while maintaining a signal and 

works very well on Gaussian noise. However, the problems that attract intensive research 

efforts were given below. 
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 How to choose optimal wavelet for a particular signal type. Fundamentally, if  

wavelet basis "resembles" signal under analysis, wavelet decomposition is better. 

Currently, there is still no common guide on how to choose optimal wavelet base 

or how to choose, corresponding scale level and shape parameter for a particular 

implementation.  

 Concerns threshold choice and how to perform thresholding. (Donoho, 1995, 

Chang & Vetterli, 2000, Hansen & Yu, 2000, Donoho & Johnstone, 1994).  

 Rarity of coefficients of wavelet.  

Wavelet decomposition method is based on basic idea that signal energy will concentrate on 

several coefficients in field of wavelet. Therefore, the nonlinear threshold function will look 

to maintain several large coefficients representing the signal and will also tend to decrease 

noise coefficients to zero. if it is a smooth curve with small or no sudden change signal 𝑠(𝑛) 

works well. Nevertheless, it is very difficult to obtain a sparse wavelet representation, if 

signal 𝑠(𝑛)  includes an impulse component plurality. This adds great difficulty in wavelet 

noise removal. 

5.5 Optimal wavelet filter  

5.5.1 Wavelet filter principle 

Another method used to obtain useful data from a noisy signal is the wavelet filter. A  Fourier 

transform significant feature is that convolution in one field corresponds to proliferation in 

others. Thus, equation 5.8 can take an alternate form in equation 5.13. 

𝑊(𝑎, 𝑏) = √𝑎𝐹 −1{𝑋(𝑓)𝜓 ∗(𝑎𝑓}                                                                                      (5.13) 

𝑥(𝑡)  Fourier transforms and 𝜓(t) is 𝑋 (𝑓) and 𝜓(f), respectively, and inverse Fourier 

transform is indicated as F-1. Equation 5.10 illustrates that transform of wavelet can also be 

considered as a special filtering process. By expanding analysis wavelet frequency 

segmentation is achieved. In another saying, in wavelet convolution process transformation is 

simply a filtration process if slide considered as a wavelet filter core. Wavelet filter response 

of frequency changes as basic scale changes and wavelet shape, so the wavy coefficients can 

be reconstructed at selected scales to form low pass, bandpass, high pass or even multi 

bandpass filters. Equation 5.8, 𝑊(𝑎, 𝑏) at a different resolution, levels to give 𝑥 (𝑡) 

information and also 𝑥 (𝑡) signal and measure similarity between wavelet function. This 

means that if wavelet utilized is similar to components hidden in signal, a wavelet can be used 

for element discovery. To some extent, daughter wavelet and this analyzed signal convolution 
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process are look like to another  notion of classical signal processing: matching filtering 

actually derived from the process of correlation. Therefore, the detection of weak signal 

purposes is to assign target signals rather than reconstruct signal.  

5.6 Morlet Wavelet 

In practice, the Morlet wavelet is the most popular complex wavelet utilized. Morlet wavelet 

has a very similar form to Gabor transformation. The significant difference is that the window 

function dose is also scaled by the scaling parameter, the window size in the Gabor 

transformation is fixed. Morlet wavelet is defined in equation 5.14. 

𝜓(𝑤) = exp (−2𝜋 2(𝑣 − 𝑣 0) 
2)                                                                                        (5.14) 

The above statement is a complex wavelet and is divided into two parts, equation 5.15 

illustrates real and equation 5.16 illustrates imaginary parts:  

𝜓 𝑟(𝑡) =
1

√2𝜋
exp (−

𝛽 2𝑡 2

2
) cos (2𝜋𝑣 0𝑡)                   (5.15) 

𝜓 𝑖(𝑡) =
1

√2𝜋
exp (−

𝛽 2𝑡 2

2
) cos (2𝜋𝑣 0𝑡)                                                                            (5.16) 

where 𝛽 is shape parameter and 𝑣 0 is constant that balances Morlet wavelet time and 

frequency resolutions. Usually, only Morlet wavelet real part is utilized. A distorted cosine 

signal folded both left and right, is the real part of the Morlet wavelet and its function is very 

close to an impulse. In continuous glucose monitoring signal implementations this similarity 

applies Morlet wavelet in a very attractive and widespread manner. By scale expansion and 

time translation from main wavelet a daughter Morlet wavelet is achieved; 

𝜓 𝑎,𝑏(𝑡) =  𝜓 (
𝑡−𝑏

𝑎
) = 𝑒 

− 
𝛽 2(𝑡−𝑏) 2

2𝑎 2 𝑐𝑜𝑠 [
𝜋(𝑡−𝑏)

𝑎
]                                                                   (5.17) 

where“b” is for time translation and for dilation 𝑎 is scale parameter. A wavelet of daughter 

Morlet that closely matches continuous glucose monitoring signals shape can be constructed 

as shown in (Chapter-6 figure 6.4) by carefully selecting parameters 𝑎 and 𝛽,  and if wavelet 

conversion is performed according to this filter core from the noisy signal should be able to 

sense similar components. 

5.7 Shape factor 𝒃 optimum selection based on Shannon entropy 

To evaluate wavelet transforms efficiency scarcity of coefficients of wavelet is frequently 

utilized. Wavelet corresponding to dominant and a signal minimum wavelet conversion 

coefficients is ideal. The transform of  optimal wavelet should be able to intensify the signal 

with several large coefficients. The simplest rarity description indicates that most elements 

are zero in a vector or sparse matrix.  By various criteria, rarity of a series can be evaluated. 
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The simplest way was given in equation 5.18 and equation 5.19 as follows to measure 

sparseness is 𝐿 0 norm: 

𝐿 0 = ∑ 𝑣 𝑖;         𝑣 𝑖 ∈ {0,1}𝑖                                                                                                (5.18) 

{𝑥 𝑖 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 → 𝑣 𝑖 = 1;     𝑥 𝑖 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 → 𝑣 𝑖 = 0  }                                        (5.19) 

vector “x” is completely sparse, if 𝐿 0 = 0, (i.e includes only zero). Quite clearly, 𝐿 0 norm, in 

order to measure noisy data rarity, is not very practical. Addition of a very small measurement 

noise makes the data fully rare. Therefore, 𝐿 𝑝 norm, kurtosis, Tanh-function, and so on. 

Various rarity measurement criteria such as are suggested. Among these, Shannon entropy is 

one of well-accepted infrequency criteria. In 1948, in connection with communication theory 

entropy of Shannon was first introduced by Shannon. (Shannon and Weaver, 1949, Kapur and 

Kesavan, 1992). Shannon entropy is defined as: 

𝐻(𝑝) = −∑ 𝑝 𝑖 ∗ log  𝑝 𝑖
𝑛
𝑖=1    ,     ∑ 𝑝 𝑖 = 1

𝑛
𝑖=1                                                                    (5.20) 

where 𝑝 𝑖 is observing probability “ith” feasible random variable value 𝑋 ∈  [𝑥 1, 𝑥 2,…𝑥 𝑛]. As 

a measure of uncertainty entropy of  Shannon is central role of theory of knowledge, 

occasionally referred.  In distribution of probability terms and can be indicated to be a good 

randomness measure and rarity the random variable entropy is described. To appraise 

flexibility of coefficients of wavelet (Jin and Liangsheng, 2000) Shannon Entropy can thus be 

utilized. As last outcome coefficients of  Wavelet transform with at least entropy of  Shannon 

can be considered. Therefore, as optimal outcome, corresponding 𝑏 shape factor can be 

adopted. 

5.8 Scale based optimal selection on singular value decomposition  

With minimal entropy of  Shannon criterion next step is to select a suitable transformation 

scale of wavelet 𝑎, After shape factor 𝛽 is determined, in another saying, wavelet filter 

frequency range so that noisy signal periodic pattern can be detected. The wavelet coefficients 

periodicity can be utilized as a criterion to choose the optimum scale 𝑎 because the purpose of 

noise reduction is to assign components of weak periodic from a noisy signal. The 𝑎 scale, 

which can find the strongest periodicity from the wavelet coefficients, will be chosen as the 

transformation of the optimum wavelet scale. Traditionally, signal detection periodicity is 

Fourier analysis, density of power spectral, periodogram, and so on. each component 

(Kanjilal, P., et al., 1999). Furthermore, impulse series poor dominance compared to 

background noise imposes another limitation on conventional methods. These constraints lead 

to a new detection of periodicity improvement method. To determine periodicity of time 

series, Single Value Separation (SVD) can be applied (Kanjilal and Palit, 1995). In 
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information content terms and robustness, it is much stronger and more sensitive than existing 

tools based on Fourier decomposition (Kanjilal, P., et al., 1999). The mxn matrix SVD, 𝐷 is 

defined as dissociation (Golub &Van Load, 1989).  

𝐷 = 𝑈𝐸𝑉 𝑇                                                                                                                          (5.21) 

where V is 𝑛𝑥𝑛 square matrix with orthogonal columns and U is 𝑚𝑥𝑚 square matrix so that; 

𝑈 𝑇𝑈 = 𝐼, 𝑉 𝑇𝑉 = 𝐼                                                                                                            (5.22) 

Additionally, 𝐸 is a 𝑚𝑥𝑛 diagonal matrix, 𝐸 = 𝑑𝑖𝑎𝑔(𝜎 1,𝜎 2, … , 𝜎 𝑝), with 𝑝 = min (𝑚, 𝑛) 

and a matrix diagonal elements[𝜎 1,𝜎 2, … , 𝜎 𝑝], 𝐸 is matrix singular values 𝐷 and 

nonnegative numbers [𝜎 1,𝜎 2, … , 𝜎 𝑝] are traditionally ordered as 𝜎 1 ≥ 𝜎 2 ≥ ⋯ ≥ 𝜎 𝑛 ≥ 0.  

SVD power becomes evident as its connections with other linear algebra basic topics are 

explored. e.g., if 𝐷 𝑟 > 0 and has rank 𝑟 then 𝐷 has exactly 𝑟 strictly positive singular values 

so that all its singular values are nonzero 𝜎 𝑟 > 0 and 𝜎 𝑟+1 = ⋯ = 𝜎 𝑝 = 0 if 𝐷 has full rank. 

Consider a periodic signal 𝑋 = [𝑥 1,, … , 𝑥 𝑙] with a period of length 𝑛. By dividing the series 

into periods and placing each period as the 𝑥 sequence, an 𝑋 matrix can be created in the 5.23 

equation. 

𝑋 =

(

 
 
 

𝑥(1)…    𝑥(𝑛)
𝑥(𝑛 + 1…   𝑥(2𝑛)

.

.

.
𝑥((𝑚 − 1)𝑛 + 1)…𝑥(𝑚𝑛))

 
 
 

                                                                                   (5.23) 

𝑋 matrix has 𝑚 recurred rows and is of rank 1. Consequently, 𝑋 matrix should have only 

 𝑚 − 1 zero singular values and 1 non-zero value of singular 𝜎 1. Now if we take into account 

a periodic waveform case with amplitude of time-varying plus noise, suppose time series 

period length 𝑋 = [𝑥 1,, … , 𝑥 𝑙] is still 𝑛, a dissimilar size matrix 𝑋(𝑟𝑜𝑢𝑛𝑑(
𝑙

𝑖
), 𝑖),2 ≤ 𝑖 ≤ 𝑙/2 

can be created by dividing time series into segments with dissimilar lengths 𝑖. Due to noise 𝑋 

matrix may now be full rank, but 𝜎 1, would be very large compared to the rest of singular 

values when 𝑖 = 𝑛 hence, by equation 5.24 below the ratio is indicated: 

𝛿 𝑖 = (
𝜎 1
𝜎 2
)  2                                                                                                                                      (5.24) 

at 𝑖 = 𝑛 will show its maximal value then to forecast periodicity of signal 𝛿 𝑖 can be utilized. 

The algorithm of two-stage optimal parameter selection can be designed by connecting two 

optimization processes as shown in figure 5.2 below. 
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Figure 5.2: Flowchart to select optimum wavelet transform scale and shape factor 
 

5.9 Continuous Wavelet Transform (CWT) 

An analysis of wavelet function, 𝑎 is position parameter of the wavelet and 𝑏 is the scaling 

(dilatation) parameter of the wavelet where ψ * (t) is the mother wavelet complex conjugate  

ψ (t). It should be noted that 𝑎 is any real number and 𝑏 is any positive real number. 

𝑋 𝑤(𝑎, 𝑏) =
1

√𝑏
∫ 𝑥(𝑡)
+∞

−∞
 𝜓 ∗ (

𝑡−𝑎

𝑏
)𝑑𝑡, {

𝑎 ∈ (−∞,+∞

𝑏 ∈ [0, +∞]
}                                                     (5.9) 

5.9.1 Wavelet Filter and how is it different from a Wavelet? 

Wavelets are a child of digital age. Some wavelets are described in a mathematical expression 

and drawn continuously and infinitely. These are named as raw wavelets. However, to utilize 

them with our digital signal, they must first be converted to wavelet filters with a limited 

number of discrete points. In other words, we evaluate the raw wavelet equation at desired 

time (generally evenly spaced) to create filter values of that time. 
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5.10 Summary 

From the noisy continuous glucose monitoring signal, de-noising, and weak signal extraction 

are very significant, in this case, its properties are frequently are masked by background noise 

and very weak. By signal coefficients, relative energy levels and white noise coefficients 

performance of de-noising based conventional methods on decomposition of wavelet is 

greatly influenced. When dealing with smooth signals, by manipulating threshold usually 

satisfactory outcomes can be obtained. The main reason for this is that few large coefficients 

can characterize the original signal with smooth signals. Nevertheless, where wavelet 

coefficients are not very intense, to obtain noise-canceling impulse series signals it is much 

more difficult.  This method is based on the idea of identifying impulse-like components 

known as Morlet wavelet filter-based suppression of noise by designing a daughter Morlet 

from a noisy signal wavelet on a "b" scale "a" with a special shape factor "b". From a signal 

of continuous glucose monitoring where defect characteristics are impulse-like, this method is 

very appropriate in order to detect a weak signal. An optimum the shape factor of wavelet “b” 

with resolution of optimum time-frequency can be achieved by applying the lowest Shannon 

entropy criterion. For which results cannot be detected is Wavelet transform periodic 

separation-based periodicity evaluation with a single value optimal scale can be determined 

based on the assumption that the signal. 
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CHAPTER 6 

NOISE REDUCTION  METHODS, SETTING PARAMETERS AND 

EXPERIMENTAL OUTCOMES FOR CONTINUOUS GLUCOSE 

MONITORING(CGM) SIGNAL 

6.1. Overview 

Complex chronic disease is the inability of the body to produce one or sufficient insulin. 

This ensures an advantageous model for studying bio-behavioral processes in metabolic 

disease blood (diabetes), resulting in elevated glucose levels. However, an academic 

remotely is at the same time an increasing public health problem. Monitoring of continuous 

glucose, which aims to develop clinical care for diabetic patients, has led to the questions of 

research development that can be asked about diabetes. Most of the monitoring of continuous 

glucose studies were intended to demonstrate a clinical benefit for diabetes control and to 

describe patient satisfaction in the clinical setting. Continuous glucose monitoring systems 

gather and store data of glucose in a mode that lasts several days at a time. The main 

advantage of CGM is that it can help determine fluctuations and trends that will not be 

noticed by other glucose precautions. 

The data used in the study are actual measurement values. In this, dissertation the patient 

profile and details of the data have been described in the section obtaining the blood glucose 

concentration data. In such studies, the noise profile is known to be of Gaussian type. Thus, 

Gaussian, which is parallel to the real noise in the data analysis, was chosen. The standard 

application was used in the analysis of the results. However, the data were analyzed with 

values above the noise levels used in other articles and the validity of the applied method 

has been proven. 

6.2. Filtering of Continuous Glucose Monitoring Signal 

Digital filtering techniques are utilized to minimize the random noise error component and 

improve signal quality. The formula described below shows the signal from the continuous 

glucose monitoring sensor; 

        𝑦(𝑡) = 𝑥(𝑡) + 𝑛(𝑡)                                                                                                          (6.1) 

The glucose level (actual signal) indicated by x (t) has been measured at a time t. n (t) is the 

basic white Gaussian noise model that affects it. The signal from the continuous glucose 

monitoring sensor is indicated by y (t). One of the main problems for low-pass filtering is 
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that it is very difficult to clean the White Gaussian noise, represented by n (t), without 

damaging the actual glucose level signal indicated by x (t).  Because the signal and noise 

spectra have been normally overlapped. The purpose of the noise filtering is divided into 

two parts, the separation of the combined signals and the restoration of the distorted signals 

in some way. Noise filtering in continuous glucose monitoring is shown in  figure 6.1. 

 

 

 

 

 

  

Figure 6.1: Block diagram of noise filtering from continuous glucose monitoring signal 

Digital filtering is the process of decoding a signal from a signal. Both analog and digital 

signal processing devices have all the features that make them sensitive to noise. The noise 

may be random or white noise with an equal frequency distribution or the frequency-

dependent noise generated by the mechanism of a device or signal processing algorithms. In 

order to minimize the noise contribution that may occur in the continuous glucose 

monitoring signal, an improved Morlet wavelet was proposed and compared with the current 

Savitzky-Golay filter and standard Morlet wavelet. 

6.2.1. Savitzky-Golay Filter 

The digital filter that can be applied to various digital data points to increase the accuracy of 

the data without disturbing the signal trend is known as the Savitzky-Golay filter. In 1964, 

Abraham Savitzky and Marcel Jules Edouard Golay published the tables of convolution 

coefficients for various polynomials and subset sizes in their original article. This is achieved 

by combining the lowest-squares method with a low-grade polynomial to concatenate the 

successive subsets of adjacent data points in a process known as convolution. When the data 

points are placed at equal intervals, an analytical solution can be found as a single 

"convolution coefficient" that can be applied to all data subgroups to give signal estimates.  

It is a method based on mathematical operations created at the center of each subset: 

k

k zazazaaY  ...2

210                                                                                           (6.2) 

Savitzky-Golay, in their article entitled Smoothing and Differentiation of Least Squares 
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(Equation 6.3), showed that a moving polynomial alignment can be used in the same way as 

a numerically full weighted moving average (Jianwen and Jing, 2005; Savitzky and Golay). 

, 1964; Kavalcıoğlu and Dağman, 2016); 

 n

T gggSSSG ,...,,)( 10

1  

                                                         (6.3) 

The matrix 
(2 ) ( 1)m x nG 

 includes the Savitzky-Golay filter convolution coefficients for distinct 

symmetry or distinct layout differentiation in the center of different origins. (i.e, the center 

of symmetry) given by correction and differentiation equations (Jianwen & Jing, 2005; 

Savitzky & Golay, 1964). 
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                                                                                                (6.5)                                                                                                                                               

In Equations 6.4 and 6.5, “n” and “2m”, which are evaluated in the “t” position, smoothing 

by )1( ns   using the equation 𝑓 𝑛(𝑡)  and 𝑓 𝑛  (𝑠)(𝑡)  of the differentiation values at the 

moment of sampling. 

6.2.2. Continuous Wavelet Transform (CWT) 

CWT is utilized to divide a signal into fluctuations. The wavelet is a wave-like oscillation 

with an amplitude starting at zero and then increasing to zero (Aydın and Aslan, 2017). 

Although the Fourier transforms effectively transmit all-time localization information, the 

main functions of the continuous wavelet transform are scaled and shifted versions of 

localized wavelets, even when the signal is divided into infinite long sinuses and cosines. 

Continuous wavelet transform is utilized to produce a time-frequency representation of a 

signal that provides a very good frequency and time localization. continuous wavelet 

transform transformation is an ideal and perfect tool to determine whether a signal is 

globally constant to plan the changing properties of non-stationary signals. When a signal 

is evaluated as non-constant, the continuous wavelet transform can be used to identify the 

fixed parts of the data flow. Basic calculations in FlexPro's continuous wavelet transform 

procedures are usually followed by Torrence and Compo algorithms listed in the 

following references list. The terminology utilized in the following equations is also 

utilized in the Torrence and Compo article (Daubechies, 1990; Torrence & Compo, 1998). 
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The equations of continuous wavelet transform are as follows: (Chui, 1992;  Qian, 2002; 

Meyer, 1993): 

𝑊(𝑎, 𝑏) =
1

√𝑎
 ∫ 𝑥(𝑡)𝜓 ∗ (

𝑡−𝑏

𝑎
)

+∞

−∞
𝑑𝑡                                                                            (6.6) 

𝑊 𝑛(𝑠) = ∑ 𝑥 𝑛 ′
𝑁−1
𝑛 ′=0 √

𝛿𝑡

𝑠
 Ψ 0 ∗ [

(𝑛 ′−𝑛)𝛿𝑡

𝑠
]                                                                      (6.7) 

𝑊 𝑛(𝑠) = 𝐹𝐹𝑇 −1 [∑ �̂� 𝑘
𝑁−1
𝑘=0 (√

2𝜋𝑠

𝛿𝑡
 �̂� 0 ∗(𝑠𝜔 𝑘)𝑒 𝑗𝜔 

𝑘 𝑛𝛿𝑡 )]                                           (6.8)     

𝑥 ̂ 𝑘 =
1

𝑁
∑ 𝑥 𝑛𝑒 −2𝜋𝑖𝑘𝑛𝑁−1

𝑛=0                                                                                            (6.9) 

𝜔 𝑘 = 𝑖𝑓(𝑘) ≤
𝑁

2
,

2𝜋𝑘

𝑁𝛿𝑡
, −

2𝜋𝑘

𝑁𝛿𝑡
                                                                                     (6.10) 

The continuous wavelet transform is a transformation of the data set with a scaled and 

translated version of the main wavelets of the main function. It should be noted that there is 

a continuous function except for continuous wavelet transform, discrete data sequence, and 

discrete Fourier transform. (Daubechies, 1988; Daubechies, 1992; Grossmann & Morlet, 

1984; Jaffard et al., 2001;  Mackenzie 2001). In these expressions, * denotes a complex 

conjugation, The length of the data sequence has been referred to as N, s wavelet scale, δt 

sampling interval, n localized time index, and ω angular frequency. Each expression includes 

normalization, so the wavelet function includes unit energy at any scale. For continuous 

wavelet transform, the correlation between the successive segments of the scaled wavelets 

and the data flow is calculated for each value of the scale used. Unless restructuring is 

required, there is no restriction in the continuous wavelet transform depending on the scale 

used or the distance between the scales. The continuous wavelet transformation spectrum 

can utilize logarithmic or linear scales with any desired density. If necessary, a high-

resolution spectrum can be produced for a narrow frequency range. Shells can be made at 

any scale up to ”N” and all "N “ times should be done if using fast Fourier transform. 

The continuous wavelet transform involves the  "N" spectral values that require a     reverse-

speed Fourier transform for each scale. The calculation load and memory requirements of 

the continuous wavelet transform are therefore noteworthy. (Arslan & Ökdem, 2015; 

Karaboğa & Kamışlıoğlu, 2015; Üstündağ et al., 2014). Morlet wavelets are usually the 

wavelets used for time-frequency analysis of non-stationary time series data. In this study, 

improved Morlet wavelet has been compared with standard Morlet wavelet. 
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6.2.3. Morlet wavelet 

The most important parameter of the Morlet wavelets is the width of Gaussian that touches 

the sine waves. This parameter selection plays an important role in time-frequency change. 

Morlet wavelet is defined by the following function. 

𝜓(𝜔) = exp (−2𝜋 2(𝑣 − 𝑣 0) 2)                                                                                   (6.11) 

Morlet wavelet (Eq. 6.11) is expressed in complex function, it is possible to parse into real 

and virtual parts. 

𝜓 𝑟(𝑡) =
1

√2𝜋
exp (−

𝛽 2𝑡 2

2
) cos (2𝜋𝑣 0𝑡)                                                                       (6.12) 

𝜓 𝑖(𝑡) =
1

√2𝜋
exp (−

𝛽 2𝑡 2

2
) sin (2𝜋𝑣 0𝑡)                                                                        (6.13)          

𝑊(𝑎, 𝑏) = √𝑎 𝐹 −1{𝑋(𝑓)𝜓 ∗(𝑎𝑓)}                                                                                (6.14) 

A constant value of " 𝑣 0" as defined in equations (6.12) and (6.13) refers to the formatting 

parameter that compensates for the resolution of the frequency of the ”β“ Morlet wavelet. In 

equation (6.14), 𝑋(𝑓)  and  ∗(𝑓) are the Fourier transform of the x (t) signal, respectively, 

and the inverse Fourier transformation of 𝜓 ∗(𝑡). 𝐹 −1. Usually, only the real part of the 

Morlet wavelet is utilized. The real part of the Morlet wave is an exponentially decreasing 

cosine signal on both the left and right sides and is alike to the impulse signal. All the basic 

functions that make up the Morlet wavelet are created by the translation of the time unit and 

scale expansion of the main wavelet (Grossmann & Morlet, 1984; Grossmann & Morlet, 

1985; Grossmann et al., 1986). 

𝜓 𝑎,𝑏(𝑡) = 𝜓 (
𝑡−𝑏

𝑎
) = 𝑒 

𝛽 2(𝑡−𝑏) 2

2𝑎 2 𝑐𝑜𝑠 [
𝜋(𝑡−𝑏)

𝑎
]                                                                  (6.15)  

In equation (6.15), “a” refers to the scale parameter and “b“ time translation for expansion. 

The most important feature that makes the Morlet wavelet superior in noise cleaning is the 

flexibility of the basic function thanks to the appropriate parameters. This thesis succeeded 

to obtain the most appropriate parameters  “a” and a “β ” for the first time. The parameters 

have completed the basic functions that can represent the noise inside the signal very well. 
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6.3. Methodology 

Basically, the most appropriate Morlet wavelet is the one that represents the signal with the 

least coefficients. Generally, the wavelet forming parameters are evaluated with the 

following formula: 

𝐻(𝑝) = − ∑ 𝑝 𝑖 ∗ log 𝑝 𝑖 ,      ∑ 𝑝 𝑖 = 1𝑛
𝑖=1   𝑛

𝑖=1                                                                (6.16) 

Equation (6.16) in 𝑝 𝑖, X∈ [𝑥 1, 𝑥 2, … , 𝑥 𝑛] is the probability of observing the possible value 

of the random variable instantaneously. The coefficients with the lowest Shannon entropy 

are considered to be the clearest result. Therefore, figure 6.2  was drawn using Shannon 

entropy. 

.   

                                     (a)                                                                      (b) 

Figure 6.2: (a) Determination of wavelet conversion coefficient β by Shannon entropy 

 (b) Periodicity in different scales and stages. 

It is necessary to explore the most suitable shape factor β to design the wavelet filter to 

produce periodic pulses from the noisy signal. In order to calculate the entropy of the 

coefficients by increasing the "β ” value from 0.1 to 20, the most appropriate shape factor     

" β ” value which provides the minimum Shannon entropy relationship is selected.  As shown 

in figure 6.2 (a), the minimum value of entropy indicates β=0.54. Therefore, as the most 

suitable shape factor, β = 0.54 was chosen. The optimum  "β" factor and the wavelet 

transform scale "a" have been determined with minimum Shannon entropy criterion. In this 

dissertation, it is essential to reveal the periodic particles in the signal, since the main purpose 

is to separate the noise from weak signals. For this purpose, periodic parameters that make 

up the wave are used. The parameters that changed periodically in the determination of “a” 

were used as a criterion. The "a" scale, which reveals the strongest periodicity of the wavelet 
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coefficients, has been utilized as the most appropriate scale of the wavelet transform. 

Generally, signal periodic detection, Fourier analysis, power spectral density, periodogram, 

etc. are used as Spectral analysis methods. However, conventional Fourier-based methods, 

where only the sinusoidal model of the signal is allowed, it is assumed that each component 

may be separated into more than one component. In this thesis, the Single Value 

Decomposition (SVD) method has been implemented to define the time series continuity. 

The singular value decomposition is defined by a ”mxn“ matrix as follows.  

𝐴 = 𝑈𝐸𝑉 𝑇                                                    (6.17) 

In equation (6.17)  "U"  𝑚𝑥𝑚 square matrix and “V” matrix is considered to be the 𝑛𝑥𝑛 

square matrix with vertical columns; 

𝑈 𝑇𝑈 = 𝐼,       𝑉 𝑇𝑉 = 𝐼,                                                                                                  (6.18) 

In addition, 'E' is a 𝑚𝑥𝑛 diagonal matrix; 𝐸 = 𝑑𝑖𝑎𝑔(𝜎 1, 𝜎 2, … 𝜎 𝑝), p = min (m, n) and 

diagonal elements [𝜎 1, 𝜎 2, … 𝜎 𝑝]  The 'E' matrix is the singular value of the matrix “A” and 

non-negative numbers [𝜎 1, 𝜎 2, … 𝜎 𝑝] are generally arranged as 𝜎 1 ≥ 𝜎 2 ≥ ⋯ ≥ 𝜎 𝑛 ≥ 0. 

The power of the Single Value Decomposition appears when the connections with other 

basic linear algebra issues are examined. For example, if “A” ‘r’and r> 0 has exactly the 

exact values so that 𝜎 𝑟 > 0 and 𝜎 𝑟+1 = ⋯ = 𝜎 𝑝=0. If A has full degrees, all singular 

values are zero. When considering a periodic signal 𝑋 = [𝑥 1, … 𝑥 𝑙] with a length of “n”. an 

“X” matrix can be created by, dividing the series into sections and placing each period as 

the “X” line; 

𝐴 = (

𝑥(1)                           …                   𝑥(𝑀)

𝑥(𝑀 + 1)                     …                        𝑥(2𝑀)

𝑥((𝑁 − 1)𝑀 + 1)           …      𝑥(𝑁𝑀)
)                                                     (6.19) 

Equation (6.19) is also defined by 2 ≤ 𝑀 ≤
𝑛

2
, 𝑁𝑀 = 𝑛. To assess the periodicity of the 

signals, the SVR spectrum (if any, the SVR spectrum, a method of determining the period 

length of the periodic components in any signal or data set) can lead to a limitation or even 

failure to evaluate the periodicity of the signals. This is due to the fact that the "𝑀𝛿𝑡" 

assumption period and the actual period time “T” do not overlap. To solve this problem, an 

advanced matrix structure method has been proposed for the first time in this study.  



 
63 

 

In the proposed application it is possible to create the following new matrix when the 

complete periods of periodic particles are accepted as discrete signal                                                              

= [𝑥(1), 𝑥(2) … , 𝑥(𝑛)], 𝑚(𝑚 ≥ 2). 

𝐴 = (

𝑥(1)                        𝑥(2)       …                                             𝑥(𝑀)

   𝑥(𝑚 1 + 1)     𝑥(𝑚 1 + 2)                    …                        𝑥(𝑚 1 + 𝑀)

𝑥(𝑚 𝑁−1 + 1)    𝑥((𝑚 𝑁−1 + 2)                             …      𝑥(𝑚 𝑁−1 + 𝑀)
)              (6.20) 

𝑀 = 𝑟𝑜𝑢𝑛𝑑(𝑚), 𝑚 𝑘 = 𝑟𝑜𝑢𝑛𝑑(𝑘𝑚)(𝑟𝑜𝑢𝑛𝑑( )  is the nearest integer function, k = 1.2…)) 

is defined as 𝐴 ∈ 𝑅 𝑁𝑥𝑀. The initial error value in the “M” length is always less than half of 

the sampling time, in equal N lines, which is continuous in the matrix generated by the 

improved equation (6.20). With this method, in the previous application, errors are 

constantly collected and growth is eliminated. The following normalization equation has 

been defined in order to adapt to the theoretical SVD theorem. 

𝛿 =
𝜎 1−𝜎 2

𝜎 1
                                                                                                                       (6.21) 

Accordingly, each line in the wavelet coefficient matrix is the discrete signal as much as the 

“a“ conversion scale. Thus, the coefficients in the wavelet matrix are determined by the 

newly developed equation (6.20) method. In equation (6.21), “𝛿 ” is calculated by the normal 

SVD method. The highest value in the wavelet matrix coefficients created was considered 

as the best representing the period. The scaling value “a” corresponding to the highest value 

selected is chosen as the most suitable conversion scale. In the newly proposed application 

instead of the standard SVD, the scaling calculations are performed according to the 

following procedure. 

 Equation (6.8) is calculated with the new proposed version (Eq.6.20). In 

accordance, the wavelet coefficient matrix with the magnitude of mxn (m is the 

total number of scales, n is the signal-sampling number) has been acquired. 

 In the matrix representing the continuous wavelet coefficients, the scale value 

corresponding to the largest value 𝑎 𝑖 (1 ≤ 𝑖 ≤ 𝑚) determines the discrete signal 

𝑥 𝑖 values. 

 In the calculation cycle, 𝑖 = 𝑖 + 1 ∈ 𝑖 ∈ [1, 𝑚] is increased and the second step 

is repeated until 𝑖 = 𝑚 is achieved. 

 In the completed calculation, the highest value from each line within the wavelet 

matrix coefficients provides the optimal scaling threshold value to be used for 

the conversion. 
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The Morlet wavelet filter was created according to equation (6.14) with the most appropriate 

transformation scale “a”. 

6.4. Experimental Set-up 

This section will describe the data collection method used for patients with diabetes. 

6.4.1 Collection of blood glucose concentration data 

With the approval of the Near East University Hospital Ethics Committee, the data were 

successfully obtained from 4 randomly selected patients from the 120 patients who were 

hospitalized in the Internal Medicine (Endocrinology and Metabolism) Department over a 

period of 2 months. The research ethics committee approved 100% of the children and adults 

participating in this study. Table 6.1 shows information from 4 patients randomly selected 

among 120 patients who were hospitalized in the internal medicine (endocrinology and 

metabolism section). There are 1440 measured values for each patient. (Diabetes glucose 

concentration data from different patients were taken at one-minute intervals for one day 

with a continuous glucose monitoring device). For this study, MATLAB (R2018a) software 

was used with different filters to filter continuous glucose monitoring data. 

6.4.2 Monitoring of continuous glucose 

Various glucose meter types are available for monitoring the blood glucose concentration 

and are reliable when used correctly. Some measuring devices, like the upper arm, use a 

blood sample less sensitive than the fingertip, such as the forearm or thigh. Monitoring 

continuous glucose systems uses a small sensor placed under the tissue fluid to control 

glucose levels. The sensor remains in place for several days and then needs to be replaced. 

The transmitter transmits information about the data levels via radio waves to a wireless 

monitor, such as a sensor-to-pager. The user must check the blood samples with one-meter 

glucose to program the instruments. It uses a small sensor device for monitoring accepted 

glucose systems; These devices are not as precise and safe as standard blood glucose meters, 

and users should verify their glucose levels with a precision meter before any changes in 

treatment are made. CGM systems are more expensive than conventional glucose monitoring 

but may provide preferred glucose control. Monitoring of continuous glucose devices 

produced by Medtronic, Abbott, and DexCom was approved and submitted to the US Food 

and Drug Administration. These devices provide real-time glucose level measurements with 

glucose levels at 5-minute or 1-minute intervals. Beneficiaries can be adjusted to alarm when 

their glucose levels are too low or too high. To monitor and analyze trends in models, special 
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software is used to download data from devices and systems can display trend graphs on the 

monitor screen. Your interstitial glucose levels are measured 24 hours a day by Dexcom G4 

PLATINUM continuous glucose monitoring system, revealing a complete picture of glucose 

peaks, failure, and daily change rates. Unlike finger bars that give a specific number for a 

single point, continuous glucose monitoring ensures information of dynamic glucose that 

indicates how your glucose develops every 1 or 5 minutes. Dexcom studio data manager 

software Dexcom is an easy-to-use software program that transfers glucose data stored in a 

CGM system to a personal computer (PC). The software can be utilized by the clinician or 

the end-user. By connecting the receiver to the computer, glucose values and other data 

available on the Dexcom system can be downloaded. Every time the software is started, it 

will automatically call the receiver every few seconds and is designed to start downloading 

data as soon as possible. Universal Serial Bus (USB-micro) cable is required to connect the 

receiver to the computer. Figure 6.3 shows the method of recording and transferring data to 

a computer with the Dexcom G4 PLATINUM CGM system. 

 

 

 

Figure 6.3:  Continuous glucose monitoring (CGM) data record 

 

CGM data related to body weight, carbohydrate content (CHO), mealtime and 

measurement time were measured. The input parameters applied to different patients are 

shown in Table 6.1.  
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Table 6.1: Input parameters of 4 randomly selected patients among 120 patients 

hospitalized in NEU Hospital Internal Medicine Department (Endocrinology and 

Metabolism) Hospital 
Patient (1) 

The weight of the body (kg)=50 
Simulation duration (Hrs.)=24 

The Breakfast The Snack The Lunch The Snack The Dinner The Snack 

Time (hh:mm) 

Carbohydrate content (mg/kg                     
Weight of body) 

08:00 

25 

11:00 

0 

13:00 

56 

16:00 

23 

19:00 

38 

22:00 

0 

Patient (2) 

The weight of the body (kg)=75 

Simulation duration (Hrs.)=24 

The Breakfast The Snack The Lunch The Snack The Dinner The Snack 

Time (hh:mm) 

Carbohydrate content (mg/kg                                     

Weight of body) 

07:30 

50 

10:30 

10 

12:30 

40 

15:30 

10 

18:30 

40 

21:30 

10 

Patient (3) 

The weight of the body (kg)=75 

Simulation duration (Hrs.)=24 

The Breakfast The Snack The Lunch The Snack The Dinner The Snack 

Time (hh:mm) 

Carbohydrate content 

(mg/kg Weight of body) 

08:00 

25 

11:00 

0 

13:00 

56 

16:00 

23 

19:00 

38 

22:00 

0 

Patient (4) 

The weight of the body (kg)=97 

Simulation duration (Hrs.)=24 

The Breakfast The Snack The Lunch The Snack The Dinner The Snack 

Time (hh:mm) 

Carbohydrate content (mg/kg                      

Weight of body) 

07:30 

25 

10:30 

0 

12:30 

56 

15:30 

23 

18:30 

38 

21:30 

0 

For patient-1 blood glucose (mg / dL) measurement, the first 15 minutes of sample values 

are shown in Table 6.2. 

Table 6.2:  (Blood Glucose (Bl.gl. (mg / dL) measurement versus time over one minute 

(only 15 minutes for patient-1)) 

 

Time 

(Minute) 

Blood Glucose 

(mg / dl) 

Time 

(Minute) 

Blood Glucose 

(mg / dl) 

0 79 8 82 

1 80 9 82 

2 80 10 83 

3 80 11 84 

4 80 12 84 

5 81 13 85 

6 81 14 86 

7 81   
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6.5. Experimental results 

In this kind of study, the continuous glucose monitoring time series has been formed by 

selecting the Gaussian type of noise used as the noise profile in the signal obtained from the 

continuous glucose monitoring device. First, the Savitzky-Golay filter was tested after 

adding Gaussian noise to the recorded values. The second trial was repeated for the 

continuous wavelet transformed standard Morlet wavelet. The noise-cleaning performances 

of the filters were performed by the relative error calculation method. Figure 6.4 shows the 

noiseless blood glucose signals used in this study. 

 

Figure 6.4:  Noiseless blood glucose signal for patients 

 

Figure 6.4 shows the graphical variation of 1440 data from four randomly selected patients. 

The aim here is to clear the noise on the signal. For these values, the Gaussian type of noise, 

which is likely to be -20 dB, has been added.  

 



 
68 

 

 

Figure 6.5:  Noisy CGM signals for patients with noise value (SNR = -20 dB) 

 

Figure 6.5 shows continuous glucose monitoring signals with noise addition. The aim of this 

study is to reduce the noise by reducing the original values in Figure 6.4 with the least error. 

 

 

Figure 6.6:  Filtering of patients noisy (SNR = -20 dB) continuous glucose monitoring 

signals via improved Morlet wavelet 
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Figure 6.6 shows that the reconstructed signals are very close to the original signals of 

continuous glucose monitoring. Improvement was achieved by the newly proposed method. 

After the continuous glucose monitoring signals were cleared by the new method, the 

difference was determined by the relative error analysis. Relative error analysis is considered 

to be the difference between the values measured after using the formula below and the noise 

clearance. 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 = |
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒−𝑉𝑎𝑙𝑢𝑒 𝑎𝑓𝑡𝑒𝑟 𝑛𝑜𝑖𝑠𝑒 𝑓𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑉𝑎𝑙𝑢𝑒
| 𝑥100%                           (7.22) 

The results of this study are shown in Table 6.3, 6.4, 6.5. The Savitzky-Golay filter was 

applied to noisy continuous glucose monitoring signals in the standard Morlet wavelet and 

the additive Morlet wavelet conversion and compared to the noise-free continuous glucose 

monitoring signal. The related errors are calculated and tabulated for all three conditions. 

The relative errors calculated for filtering (%) are shown in table 6.3, table 6.4 and table 6.5, 

respectively. 

Table 6.3: Savitzky-Golay Filter Relative Errors (%) 

    Patient No PSNR Values (dB) Standard Morlet Wavelet 

Relative Error (%) 

Patient-1  +62,2166  21,13  

Patient-2  +62,3484  20,97  

Patient-3  +61,4041  22,16  

Patient-4  +60,4294   23,40  

 

In Table 6.3, the most successful relative error value of the Savitzky-Golay filter in the noisy 

four continuous glucose monitoring signals has been 20.97%. The same signal was carried 

out by noise reduction using the standard Morlet wavelet filter. 

Table 6.4: Relative errors for filtering made with Standard Morlet Wavelet (%) 

       Patient No PSNR Values (dB) Standard Morlet Wavelet 

Relative Error (%) 

Patient-1 +62,2629     21,076  

Patient-2 +62,3277     20,994  

Patient-3 +60,5412     23,258  

Patient-4 +61,0266    22,643  
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In Table 6.4 the standard Morlet wavelet was applied to determine the most successful 

relative error value, in the four continuous glucose monitoring signals the most successful 

result has been 20,994%. The resulting values are very close to the performance obtained in 

the Savitzky-Golay filter. Improved Morlet wavelet filter results have been shown in Table 

6.5. 

Table 6.5: Improved Morlet Wavelet relative errors (%) 

  Patient number PSNR values (dB)   Improved Morlet Wavelet   

         Relative Error (%) 

Patient-1 +70.504  10,63     

Patient-2 +68,681  12,94     

Patient-3 +66,181  16,11      

Patient-4 +66,772  15,36      

 

In Table 6.5, the most successful relative error rate was calculated as 10.63% in the 

application of the four CGM signals in the improved Morlet wavelet application. Table 6.3, 

6.4, 6.5 shows that the improved Morlet wavelet has the best performance on a continuous 

glucose monitoring signal when compared. The improved Morlet wavelet filter performance 

was found to be about 50% better compared to current methods in the literature. 

6.6 Summary 

The application was implemented by providing an additional contribution to Morlet wavelets 

based on CWT. Morlet wavelet is a powerful and formal tool that allows a complete 

representation of a signal by allowing translation and wavelet scale to change continuously 

to analyze signals that need to be evaluated according to time-frequency content. 

Undoubtedly, the coefficient values that make the wave the most effective. Different 

methods are used in the calculation of coefficient values in the literature. The method 

envisaged in this research is provided by the method applied for the first time in the scaling 

matrix, which increases the compatibility of the coefficients. The deviations in the 

calculation of the coefficient values in the classical method are minimized by the prescribed 

method. The proposed method is compared with the Savitzky-Golay filter and standard 

Morlet wavelet, which are commonly used in the literature. The superiority of the new 

method is shown by PSNR and relative error values. 
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CHAPTER 7 

CONCLUSION AND SUGGESTIONS 

7.1 Conclusion 

Excellent filtration of various noise signals in continuous glucose monitoring data allows 

further processing to detect hypo/hyperglycemic events. Unfortunately, continuous glucose 

monitoring data is affected by various error sources, such as deviation errors (erroneous / 

loss of calibration or sensor physics/chemistry) and random noise that manages the real 

signal at a high frequency. In diabetics, blood data are recorded within 24 hours to confirm 

the accuracy of treatment and treatment. In practical applications, data are known to be 

noisy for a variety of reasons. Minimizing the noise level in the data increases the success 

of the treatment. 

The feasibility of the proposed method was approved by the Near East University Hospital 

Ethics Committee. In this study, the various types of errors in CGM data and the solution 

for CGM devices were analyzed by random noise and the above results were obtained. The 

results show that the Morlet waveform developed to filter continuous glucose monitoring 

(CGM) signals is appropriate. The proposed method is compared to the Savitzky-Golay 

filter and the standard Morlet wavelet to prove its superiority. The main goal in the entire 

system is to get clear, high-quality output signals for good consultations. The minimum 

relative error rate was found to be 10.63% in the noisy CGM data used in the proposed 

Morlet wavelet. The same procedure was calculated as 20,97% in the Savitzky-Golay filter 

and 20,994% in standard Morlet wavelet. Accordingly, the proposed contribution has been 

proven to be approximately 50% improvement in the CGM signal. 

7.2 Suggestions 

The major contributions of this dissertation are summarized as follows: 

 The proposed method ensures that the parameters that make up the filter are more 

optimal so that the error at the filter output of the continuous glucose monitoring 

signal is minimized. 

 Considering the simplicity of the proposed method and not increasing the 

processing time, it will make it more efficient and economical in real-time 

operations. Compared to other alternatives, it will stand out with this aspect. 
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 As a result of the proposed method, the noise level is reduced to the lowest level 

compared to the classical methods, which reduces the fluctuations, fast climbing, 

and sensitivity of the values which have negative effects on the signal and it has 

been proved its superiority with relative error calculations. 

 Thus, continuous glucose monitoring signal analysis, which is closer to the real 

data free of noise, provides a high validity rate of treatment for the patient. 
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