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ABSTRACT

Density, viscosity and cetane number are important physical properties of biodiesel as they

participate in the fuel metering, calibration and nozzle process during combustion. High accuracy of

the properties of biodiesel will lead to improved better efficiency. The aim of this study is to seek

good and high precision by combining properties and comparing the analysis between ANN and

RSM. From previous study, A total of 1360 data have been collected and 39 possible combinations

were analyzed and compared by ANN and RSM. The result of simulation is: The best

combinations: = ( ) , = ( ) , = ( ) with respectively equal to (0.9998,

0.9998 , 0.9987) and R equal to ( 0.9997,0.99971,0.9984) obtained  with ANN simulation provide

more accuracy than ( 0.808 , 0.799 , 0.911 ) and  R ( 0.837, 0.739 , 0.920) obtained with RSM

simulation . Also there is a good relationship between fatty acid and others properties since they

provide good result. In general the overall regression coefficient R and the correlation coefficient

values of the combinations   obtained in the simulation with the ANN provide good accuracy

since their values are close to each other and all close to 1, and their mse tend towards 0. While the

one obtained with RSM are distant from each other and distant of 0 so they provide an acceptable

accuracy.it is important to note that high accuracy of properties using RSM must have at least

combination of three parameters. Also after many combination, fatty acid and others properties

provide good result and it will be benefit for the future.

Keywords: viscosity; density;cetane number fatty acid; overall coefficient; regression coefficient;

ANN; RSM
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ÖZET

Yoğunluk, viskozitevesetansayısı, yanmasırasındayakıtölçümü,

kalibrasyonvenozulişleminekatıldıklarıiçinbiyodizelinönemlifizikselözellikleridir.

Biyodizelinözelliklerininyüksekdoğruluğu, dahaiyiverimliliksağlar. Bu çalışmanınamacı,

özellikleribirleştirerekve YSA ile RSM

arasındakianalizikarşılaştırarakiyiveyüksekhassasiyeteldeetmektir.

Öncekiçalışmadantoplam1360veritoplanmışve 39 olasıkombinasyonanalizedilmişve YSA ve RSM

ilekarşılaştırılmıştır. Simülasyonunsonucu: Eniyikombinasyonlar: ρ = f (Fa), ν = f (Fa), cn = f (Fa)

R ^ 2 sırasıyla (0.9998, 0.9998, 0.9987) ve R eşittir (0.9997) ANN simülasyonuileeldeedilen

0.99971,0.9984), RSM simülasyonuileeldeedilen R ^ (0.808, 0.799, 0.911) ve R (0.837, 0.739,

0.920) 'den dahafazladoğruluksağlar.

Ayrıcaiyisonuçverdikleriiçinyağasidivediğerözellikleriarasındaiyibirilişkivardır. Genelolarak,

simülasyondaeldeedilenkombinasyonların ANN ileeldeedilentoplamregresyonkatsayısı R

vekorelasyonkatsayısı R ^ 2 değerleri, değerleribirbirineyakınvetümü 1'e

yakınolduğuvemse'nin0'aeğilimliolduğuiçiniyidoğruluksağlar. RSM ileeldeedilen,

birbirindenuzakve 0 uzaktır, bunedenlekabuledilebilirbirdoğruluksağlarlar. RSM

kullananözelliklerinyüksekdoğruluğununenazüçparametreninbirleşiminesahipolmasıgerektiğinibelir

tmekönemlidir. Ayrıcabirçokkombinasyondansonra,

yağasidivediğerözellikleriyisonuçverirvegelecekiçinfaydasıolacaktır.

AnahtarKelimeler: viskozite; yoğunluk; setansayısıyağasidi; toplamkatsayı; regresyonkatsayısı;
ANN ; RSM
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CHAPTER I

INTRODUCTION

I 1Background

Inflate in rivalry and outbreak in energy resource costs lead researchers to pursue technologies

that are in line with the international market. Despite the environmental quality of diesel

problems, costs tend to rise due to the lack of coal reserves. In addition to all this, companies

are increasingly turning to renewable sources of energy including biodiesel. Biodiesel is a

sustainable and biodegradable fuel that can be made and processed domestically from

vegetable oils, animal fat / tallow and restaurant grease recycled. Fuel consisting with mono-

alkyl ester of a long fatty acid chain is a Biodiesel in compliance with the American Society of

Testing and Materials (ASTM) D6751 specifications and the European EN 14214 standard.

Biodiesel is currently used extensively by automotive and thermal engines because of its

accessibility, low cost and biodegradable.  That energy source is long-lasting (Pratas et al,

2010). Diesel provides good safety in the domestic storage of liquids since it is less fuel-

efficient.  Biodiesel has many physical properties but few are very significant as it helps to

determine efficiency, fuel atomization, control process actuation, and possible engine design.

Although viscosity and density are involved in fuel combustion during injection, cetane

number, on the other hand, suggests fuel quality during the process of combustion. Several

researchers are still developing new fashioned techniques to forecast physical properties

present in diesel. Instead, a technique based on the Kay mixing rule and the contribution

method for predicting the density of ten biodiesel samples as a function of temperature was

applied by Freitas et al. to different models for contemplating the viscosity of biodiesel at

multiple temperatures. More empirical correlations were established by Rodriguez-Rodriguez,

Ramirez – Verduzco LF in (2011) and Geacais, Julian O, Nitra I in (2015) to predict the

viscosity of biodiesel blends at different temperatures (T) and volume fraction (VF). Empirical
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correlations were also extended by (Ramirez-Verduzco et al.) to predict the density, viscosity,

cetane number and higher heating value (HHV) of biodiesel from its chemical composition.

Ramirez – Verduzco recently developed analytical correlations to estimate the viscosity and

density at different temperatures of the methyl esters of fatty acids and biodiesel. Average

Relative Deviation (ADD) are expected values of 6.39 per cent for viscosity and 0.43 per cent

for density.

Expansion of prediction methods provides more than greater value in estimating biodiesel

properties. Relevant literature research studies have been found. Balabin et al tested other

artificial neural networks that were developed and found that their artificial neural network

had a slight mean square error referring to other models. Saldana et al., gave a description of

different artificial neural network models with a coefficient of correlation between 0.985 and

0.995. Kumar and Bansal resulted in a mean square error of 0.02 and 5.510 (-6) for the

viscosity of diesel and biodiesel blends.

I.2 Advantages of Biodiesel

Biodiesel is considered renewable energy and is biodegradable and can be mixed with other

(diesel) fuels. It has lower Diesel flammability Comparing to diesel, materials used to

manufacture biodiesel are cheap and available (Raimrez-Verduzco LF, 2013). Biodiesel may

also be used as fuel engine for any other vehicle, such as diesel or other engines.

The material used for biodiesel processing, namely animal and vegetable fats, is accessible

and cheaper.

Many plants are increasingly harvested and used also for the production of biodiesel. Which

reduces production and manufacturing costs as compared to diesel which is much more costly

to handle.

Referring to engine, Very good lubrication results in decreased engine wear when using

biodiesel, it provides more oxygen, resulting in better combustion and therefore less fine

particles, cleaner fuel.
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I.3 Disadvantage of Biodiesel

Like any other side of the coin biodiesel also has disadvantages. It has higher viscosity and

lower energy content disadvantage that can be solved by mixing both diesel and biodiesel

(Ramirez – Verduzco LF.2013).

Referring to engine, with long operation , the engine oil must be changed more often. On a

first use of biodiesel, the fuel filter must be changed no later than the second full, as biodiesel

tends to clean the tank and lines.

Also during cold weather, there is a thickening of biodiesel, which increases its kinematic

viscosity and therefore reduces engine performance.This problem is solved by blending the

biodiesel with a diesel.

I.4 Aim of the Study

The purpose of this work is to predict biodiesel properties (density, viscosity, cetane number)

using the artificial neural network (ANN) and surface response methodology (RSM) analysis

curve for comparison and analysis results. To achieve this goal and obtain high accuracy

prediction:

1. Data will be collected and properties combined.

2. Data will be analyzed with ANN and RSM approchs.

I.5 Thesis Outline

this section addresses design, description, advantages and disadvantages. Chapter 2 provides a

study of the various methods used to predict biodiesel properties, descriptions of theories and

explanations. Chapter 3 presents the collection of data grouped into two groups: first related to

the collection of fatty acids, and second related to other properties (density, viscosity, flash

point, cloud level, cetane number) also Result discussion and presentation of different curve

are presented in chapter 4.  Chapter 5concludes, and suggests future work.
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CHAPTER 2

BIODIESEL

2.1Literature Review

Researchers have developed various methods for predicting density, kinematic viscosity,

cetane number, pour point, cloud point, biodiesel flash point, and FAME. Nonetheless, due to

their high involvement in the concept of fuel during the combustion process, their implications

for engine design and parameter control during operation, biodiesel properties(density,

viscosity and cetane number) are increasingly used (L. F. Ramirez–Verduzco, 2013). The

viscosity and density allow for the size needed for proper operation during engine time

(combustion), while the cetane number indicates the combustion efficiency.  Thus, several

steps and methods allow for the measurement of biodiesel properties to obtain high precision

(Geacai et al, 2015; EbnaAlam Fahd et al., 2014; Gülüm&Bilgin, 2016).

(Freitas et al. S.V.D. Freitas, M.J. Pratas,2011) diversified models at various temperatures

have made it possible to estimate the viscosity of biodiesel. thus the Kay method based on

mixing and group contribution to estimate the density of ten samples were proposed (Pratas et

al. M.J. Pratas, S.V.D. Freitas, 2011).

the hourly and monetary costs, the results and graphical interpretations, the models mentioned

were used to estimate the properties of biodiesel (Betiku et al., 2014); (Wakil et al., 2015)dels

Prieto et al., 2015); (Barabás&Todoruţ, 2011); (Barabás, 2013); (neuro fuzzy, Mostafaei et al.,

2016);(Hosoz et al., 2013); and artificial neural neuralneural (Barabás, 2013).

(Piloto-Rodriguez et al. 2013) successfully implemented the ANNs to foresee the biodiesel

cetane number with compositions of ten FAMEs as inputs, and multiple linear regression

mode provided less accuracy than the ANNs process. (Yuan et al. 1949) elaborated a mixing

topological index way to envisage the kinematic viscosity of biodiesel.
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In the aforementioned work, the biodiesel kinematic viscosity from its composition FAME

was calculated by applying the simplified version of the Grunberg –Nissan equation (2009)

used by (Allen et al. 1999), neglecting the interactions between the individual components.

Knothe and Steidley further simplified the Grunberg –Nissan equation (2009).By using the

values, and neglecting their logarithms (viscosity) made it possible to calculate the kinematic

viscosity based on the viscosities of the individual FAMES .

Due to its chemical composition, the biodiesel properties (number, density, viscosity and

higher heating value) have been established (Ramirez-Verduzco et al., 2012).

The biodiesel properties (density and viscosity) of methyl esters of n-Alkanoic acids were

expected (K.Y. Liew et al. 2000). Methyl esters were selected based on hexanoic acid,

heptanoic acid, octanoic acid, decanoic acid, and dodecanoic acids.

At coeval time (Ramirez 2000), a four-parameter modifiable analytical model was anticipated

to consider biodiesel properties (dynamic viscosity of FAMEs). In connection with molecular

burden, number of double bonds, and temperature, he measured biodiesel property (viscosity)

with unsaturated FAMEs.

Referring to the work done by Baroutian et al. and Veny et al., it has been observed that the

application of the empirical method of Janarthanan, the Spencer, and the Danner model, to

envisage the biodiesel densities of Jatropha and Palm at several temperatures, are in good

agreement in order to obtain good accuracy.

Vogel equalization was used to make a correlation of the viscosity of some biodiesel samples

with temperature by (Yuan et al., 2000).

addition, combination and testing between the different components of biodiesel (density,

viscosity and calorific value) have shown that there is a high regression between its properties.

(Rao et al.  , 2010).

The calculation of the higher heating value of different vegetable oil and their biodiesel from

their density, viscosity and flash point developed mathematical equations (A. Dermibas, 2008)

research on the properties of the biodiesel soap nut oil mixture has been studied (Y.H. Chen,

T.H. Chiang, J.H. Chen, 2013) and the correlation amongdiverse fuel properties was
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established and recommended. (Atabani et al. 2014) expanded and examined the physico-

chemical properties of various mixed biodiesels such as Croton megalocarpus,

Calophylluminophyllum, Moringaolefera, Palm and Coconut biodiesel and, based on the

results, found a strong affiliation between diesel and biodiesel mixture properties.

There is a good affiliation between biodiesel and blend after many experimentations, some

study. Then (Raheman and Ghadge, 2007) and (Godigunur et al. 2009) proposed a very low

mahua biodiesel blend of up to 20 percent.

Research conducted by (Sarin et al. 2009, 2016, 2021) palm oil biodiesel was mixed with

biodiesel Jatropha and Pongamia to improve low temperature flow properties such as cloud

point and pour point temperature.

2.2 Biodiesel

Biodiesel is a renewable fuel which can be made from vegetable oils, animal fat / tallow and

restaurant grease recycled. Technically, biodiesel is a fuel composed of mono-alkyl ester from

a long chain of fatty acids that obeys with the American Society of Testing and Materials

(ASTM) D6751 (2003) and the European EN 14214 (2003) necessities. Biodiesel is used in

many energy fields, due to its flexibility and various benefits. The raw material required for

biodiesel (animal fat restaurant) production is accessible and less expensive. The high use as

plant raw material for producing this same biodiesel also creates and develops more jobs in

parallel. It is biodegradable and can be mixed with a variety of other sources of energy

(diesel). Like every other side of coin, there are also drawbacks such as higher viscosity levels

relating to diesel (Nogueira et al., 2010). Biodiesel at low temperatures poses a thickening

problem that increases viscosity and decreases engine efficiency. Biodiesel also has a lower

energy content and can be achieved by combining biodiesel with gasoline. There are many

properties of biodiesel but density, viscosity and cetane number (cn) are very important due to

their direct involvement in the determination of fuel quality during the combustion process,

injection system operation and control (Ramirez-Verdasco, LF 2013).
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2.3 Biodiesel Properties

2.3.1 Viscosity
Viscosity is a quantitative indicator of fluid flow resistance. On the other hand, it is known

asinternal fluid friction, there are normally two types of viscosity measurements:

kinematicviscosity and dynamic viscosity

2.3.2 Dynamic viscosity
Defined as the measurement of fluid resistance to flow when applying external force, the

constant proportionality between shear stress and velocity gradient is also defined in the other

hand. The shear stress ratio with the fluid's velocity gradient is also known as absolute

velocity. If two layers of fluid, the distance dy apart, travel at different speeds one over the

other, the top layer causes shear stress on the adjacent lower layer while the lower layer causes

shear stress on the adjacent top layer. The shear stress (ÿ) is proportional to the y-respect rate

of change.

Figure 3.1: dynamic viscosity modelization

The external force:= (3.1)with = , the local shear velocity

isUsually applied when the goal is to keep the top plate going at constant velocity.

Centipoises is a traditional dynamic viscosity measurement device. It is of the poise of 1/1000.
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Poise is the name of the French scientist Jean Louis Poiseuille (1799-1869), (Tushar., 2007).

Many other units are commonly used: Ns / m^2, Pa. S or Kg/(m)s, N is the newton and Pa is

the Pascal.

2.3.3 Kinematic viscosity
Is the measure of fluid resistance intrinsic to flow when there is no external force, except that

gravity acts upon it. On the other hand, under the weight of gravity it is calculation of the

resistive flow of air. It's expressed by the complex viscosity ratio to a substance's density at the

same temperature.

= (3.2)Where ν is the kinematic viscosity in , ρ is the density of the fluid in

and u is the dynamic

viscosity. Fluid viscosity is generally affected by type of fluid, condition of utilization and

inter molecules between fluid. Then it is useful to pay attention in order to check temperature

of fluid.

2.3.4 Density
This means that the density of a substance should be the same regardless of how much of the

material is present. The density of different materials is also different

Figure 3.2: density modelisation

In other hand, density is defined as the ratio of the mass over the volume and it is expressed

by:= (3.3)
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Where is the density in ⁄
m, the mass in g

v , volume in

Biodiesel density is a very important property since it is involved in atomizing fuels during

combustion. High density promotes the combustion of the gas mixture needed for good

combustion and performance.

2.3.5Cetane number
Cetane number is an indicator of diesel and biodiesel combustion efficiency. This is a

significant expression of diesel fuel efficiency, a variety of other overall diesel fuel quality.

These other diesel fuel quality metrics include pressure, lubricity, cold flow and sulfur content.

Higher numbers of cetanes result in more efficient combustion. In comparison, cetane is the

amount in volume of cetane in the mixture having the same value as the fuel being measured.

It is also the measurement of the delay in the ignition of the fuel, the time period between the

start of the injection and the first identifiable increase in the fuel pressure.Often essential

biodiesel properties, it is useful to examine the fuel quality during the combustion process. It

is dimensionless and a cetane number of 45 has been suggested by most automakers

2.4 Response Surface Methodology (RSM)

RSM is widely and extensively used based on statistical approach during problem solving.

Defined as an assembly of mathematical and statistical modeling techniques applied to

multiple regression and analysis, RSM (response surface methodology) is also used to

calculate the relationship between one or more measured responses and the critical input

measurement. On the other hand, it can also be described as a set of statistical techniques for

experiment design, model construction, assessing the effects of factors and searching for

optimum conditions (Kalil et al., 2000). Referring to (Montgomery and Douglas, 2005), RSM

may be characterized as a modeling system used for complex process development,

improvement, and optimisation. RSM is useful because it allows a reduction in the number of
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experimental runs to obtain statistically acceptable result. Least squares were used to analyze

the values of the parameters and it is define by:= ∑ + ∑ ∑ (3.3)

Where Y represents the predicted response (kinematic viscosity, density, CP or PP, FP); βo is

the offset term; βi is the linear coefficient; ßij is the interaction coefficient; and xi and xj are

the independent variables. Our studies will rely on curve analysis and statistical response.

2.5 Artificial Neural Network (ANN)

The persistent use of the ANN for the past two decades makes it an enticing inplement for

modeling nonlinear and multivariable systems (K.M Desai, B.K. Vaidya, and R.S Singhal

2004). ANNs is a numerical approach which is based on processing units of artificial neurons

that are connected together to form a direct graph (Haykin, 2009). More utilized, ANN method

is frequently used as an option way to conventional technique and in a many energy

application. ANN application can model various systems such as linear and nonlinear system.

Input layer, hidden layer, connection weights and biases, activation function and summation

node are the main components of ANN architecture.

There is two main stages of ANN: learning stage and generalization stage. The learning

techniques includes reinforcement, evolutionary, supervised and unsupervised learning. This

stage consist on simulation of a particular input that leads to a specific target output.

According to the difference between the output and the target. The simulation in the network

is adjusted. This action is repeated until the network output matches the target and the mean

square error (mse) is determined. The mean square error permits to obtain the performance

result.  It evaluates the performance of network according to the mean of squared errors.

Obtaining of the learning process result is done when the mse is minimized. This his result of

try and error methodthat consist on simulation, analysis, resimulation by adding more layer if

theif the discount result is not obtained.
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CHAPTER 3

MATERIALS AND METHODS

During this study, several steps allowed us to obtain and collect data necessary for the

estimation of biodiesel properties. In this thesis some essential and foremost steps will be

listed.

3.1 Experimental Database

Many articles from different researcher has been exploited and data gathered. A total of 1360

data were obtained (228 data for density, 268 data for viscosity, 266 data flash point, 207 data

for cloud point, 179 data for pour point and 220 data for cetane number). Then a total of 39

combinations have been done and in each combination the calculation of the minimum value,

maximum value and standardization value was made. Random data division was made in three

groups: 20% to validation 20% to testing and 60% to training before entering parameters for

simulation (ANN). The same combinations was used to run data in Minitab (RSM). Table

below shows different combinations used in this work.

3.2 Data Collection

Data have been grouped in two groups: first group related to fatty acid another to others

properties. Table 4.1 and 4.2 give account of the data collected.
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Table 3.1: Fatty Acids Collection

C14:0 C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 C20:0 C22:0
11.7 3.97 21.27 53.7 8.12 1.23
17.2 2.7 40.5 36.6 0.5 0.9 1.5
11.4 1.3 27.1 60.2
4.9 2.3 32.6 59.4 5.6 0.5
5.2 1.4 66 18.9 1.9 1

0.5 49.5 2.9 38.6 6.6
4.8 11.5 1.4 15.9 1.8
1.6 27.3 2.9 36.1 25.7 1.9

6.7 3.7 21.7 15.8 52.1
6.4 2.2 13.9 76 0.2
4.3 1.9 61.5 20.6 8.3

39.3 4.1 43.2 10.6 0.2
0 14.2 1.4 6.9 43.1 34.4
0 9.8 6.2 72.2 11.8

0.2 11 0.8 5.7 20.6 66.2 0.8 0.4
0.1 40.3 0.1 4 23.4 53.2 7.8 0.3 0.1

3.1 43.4 13.2
0.1 14.2 7.1 43.2 34.9 0.2 0.2
0.9 44.5 4.9 39.6 9.3 0.2 0.4
0.1 10.8 43 23.7 53.1 7.2 0.4

0.07 5.41 0.25 1.89 62.14 21.79 6.14 0.57 0.3
0.14 10.54 0.65 4.02 54.71 28.07 0.29 0.37 0.65
0.28 9.91 4.52 4.19 41.13 35.65 0.35 0.3 0.56
0.08 10.35 0.12 4.53 21.39 0.42 0.38
0.31 14.22 0.93 4.09 36.37 0.44 0.21
0.06 5.58 0.25 1.94 55.11 0.64 0.32
0.96 25.32 0.59 2.79 15.91 0.18 0.1
1.01 44.39 0.22 4.28 38.48 0.39 0.68
0.08 13.74 0.91 6.84 44.26 0.21

3.92 1.13 13.62 15.15 13.39 0.65
2.98 0.16 1.19 16.04 15.11 13.29

0.08 6.3 0.1 1.6 12.43 78.94 0.1 0.3
6.44 0.1 2.26 13.25 76.8 0.07 0.31

0.1 14.6 7.6 31.9 0.3 0.3
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C14:0 C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 C20:0 C22:0
11.5 4 24.5 53 7
12 4 25 53 6

17.2 4.4 15.7 55.6 7.1
16.4 4.8 16.5 55.3 2

0.1 12.4 0.1 3.8 24.2 50.3 7.3 0.3
1.5 21.9 3.2 12.3 41.9 17.9 1.1 0.2
0.1 11.2 0.1 4.5 22.3 53.7 7.7 0.1
1.2 17.4 3.2 9 33.2 26.3 1.5 0.2
0 5.63 1.57 62.97 21.34 6.99 0.46

0.1 37.29 4.04 40.42 17.84 0.18 0
4.5 7 0.9 12.2 6.7
0.6 47.2 0 3 40.8 8.2 0.2
0.1 16.1 0 4 31.4 46.6 2.3
0 11 0 4.2 22.6 55 7.2

11.76 5.23 26.43 46.62 6.96
12 5.3 26.79 49.26 6.65

12.28 5.18 28.25 48.32 6.17
12.69 5.22 29.16 47.23 5.7
11.95 4.94 27.91 49 6.2
12.08 4.69 29.03 48.69 5.51

0.21 25.89 3.11 59.8 10.6
2.45 0.1 0.41 68.18 27.23 0.56 0.02

0.8 21.53 18.9 39.1 19.35 0.16 0.62

0.1 14.6 7.6 44.6 31.9 0.3 0.3

18.3 9.2 2.9 6.9 1.7 0
0.1 10.3 4.7 22.5 54.1 8.3
1.3 43.9 4.9 39 9.5 0.3
0 11 3.6 75.3 9.5 0.6

0.1 3.9 3.1 60.2 21.1 11.1
0 25.8 5.3 52.1 0 12

0.5 23.4 5 29.4 34 3.2
4 6.23 47.61 13.69 3.66 2.6

0.08 21.53 18.96 39.1 19.55 0.16 0.62
13.05 11.48 30.61 26.06 0.24

Table 3.1: continued
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28.7 0 0.9 13 57.4 0
3.5 0 0.9 64.1 22.3 8.2

C14:0 C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 C20:0 C22:0
7.3 0 1.9 13.6 77.2 0
6.4 0.1 2.9 17.7 72.9 0

42.6 0.3 4.4 40.5 10.1 0.2
13.9 0.3 2.1 23.2 56.2 4.3
4.9 0.2 2.6 83.6 8.5 0.2
3.7 2.4 44.5

0.09 12.01 2.5 12.95 34.05
0.7 11.67 2.6 19.2
2.2 8.7 8 17
0.2 16 0.24 9 25

0.045 5.85 0.3 5.47 20
1.4 13.6 7.1 34.3

0.6 6.9 3 75.2 12.4 1.2 0.4
3.8 1.9 63.9 19 9.7 0.6
4.9 1.6 33 20.4 7.9
4.2 2 57.4 21.3 11.2 1.2
9.4 4.1 22 55.3 8.9

10.8 3 26.5 47.3 9
4.2 3.3 63.6 27.6 0.2

0.5 43.4 4.6 41.9 8.6 0.3 0.3
12.1 1.8 27.2 56.2 1.3 0.4
11.6 4.4 49.6 33.7 0.7
11.6 3.1 74.9 7.8 0.6

2.9 24.3 22.8 40.2 3.3 0.7 0.2
7.7 18.8 3.9 15 4.6 0.3 0.2

12.7 5.5 39.1 41.5 0.2 0.2
12.5 30.9 34.4 20.4
11.8 4.4 25.3 49.5 7.1 0.3
15.7 3.1 29.6 41.5 1
7.3 1.9 13.6 77.2

18.5 9.1 2.7 6.5 1.7
17.1 7.3 1.9 5.5 1.4

2.6 1.2 20.6 20.6 13.3
0.5 14.3 8 35.6 35 4

Table 3.1: continued
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C14:0 C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 C20:0 C22:0
18.22 5.14 28.46 48.18

3.16 19.61 5.16 5.24 20.94 2.69 0.9 4.75 1.55
0.54 14.18 0.74 3.77 47.51 24.83 4.97 0.8 0.1
5.08 18.39 7.55 4 20.76 3.78 0.99 0.15 0.09

6.8 0.5 1.98 81.46 3.72 2.78
5.45 3.71 2.13 1.78 30.71 38.87

0.7 36.7 0.1 6.6 46.1 8.6 0.3 0.4 0.1
0 11.6 1 3.1 75 7.8 0.6 0.3 0.1

0.1 8 0 1.8 53.3 28.4 0.3 0.9 3
0 4.9 0 1.6 33 20.4 7.9 0 0
0 11.3 0.1 3.6 24.9 53 6.1 0.3 23
0 6.2 0.1 3.7 25.2 63.1 0.2 0.3 0.3

0.1 6.9 0.1 4 19 69.1 0.3 0.3 0.1
0 4.6 0.1 3.4 62.8 27.5 0.1 0.3 0
0 10.4 0.5 2.9 77.1 7.6 0.8 0.3 0
0 6.5 0.6 1.4 65.6 25.2 0.1 0.1 0.1

0.8 35.7 1.1 4.1 19.4 0 0 5.7
21.4 23.6 33.2 0.8 1.5 0 0 0
3.3 23.6 48.2 0.8 3.6 0 0 0
0.5 16.8 1.2 3.4 15.5 35.8 14.9 2.1
5.8 32.2 29.6 1 20.1 1.3 0 0
6.6 25.6 60.6 0.9 3.2 0 0 0
0.5 15.8 1.6 0.6 7.1 12.8 1 0
0.6 12.9 1.4 0.5 4.4 8.5 1.2 0
0.5 13.4 1.3 0.6 5.7 11.8 1 0
2.7 6.1 2.8 16.8 17 35.6 1.4

Table 3.1: continued
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density viscosity flash p cloud p pour p cetane n
885 4.1 175 51
886 5.3 193 54
886 4.4 167 55
886 4.4 183 52
886 4.6 177 55
885 4.7 189 62
878 3.2 131 62
877 4.9 167 55
900 3.8 -4 -5
900 4.1 -5 -8
900 4.3 -5 -13
900 4

4.4 163 4 57
4.2 141 4 55
4.1 180 4 56
4 160 4 58
4.5 135 16 55

881 4.3 177
875 4.4
885 4.3
883 4.4
887 5.2
878 4.9
886 4 177 0
884 4.2 177 3
885 4.4 183 -3
882 4 173 9
876 4.5 171 16
880 4.4 176 2
884 5.8 171 5.8 -3
886 5.7 170 7.5 -3
886 4.1 175 -5 -13
860 4.9 -10 -12

Table 3.2 : others properties
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Density viscosity Flash p Cloud p Pour p cetane

864 4.5
873 2.83 110 -3 -12 51
883 4.03
885 4.3 169 6

4 116 0.5 47.1
4.6 138 9.6 57.8
4 176 -0.5 55.3

4.4 171 6.4 61.8
-3.5 -10
15 12

2.38 -10.1 -22.5 56.02
4.52
4.55
4.06
4.03
4.16
4.1

4.24
4.35
4.09

884 4.67 142
887 4.69 169 49.2
882 4.2 170

873.8 4.39
870 4.1 180

864.02 4.48
874.2 2.726
885.4 4.019

Table 3.2:  continued
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Density viscosity Flash p Cloud p Pour p Cetane n
880 4.6 49
884 4.1 46
880 5.7 62
876 4.9 54

3.6 63
877 4.1 58

876 4.37 163 13 3 52
888.6 4.5 151 13.2 4.3 57.3
904 3.98 127 5 6 51
860 5.8 4 -8 37
874 4 1.7 -10 41.2
863 61 8 6 63.5
860 3.5 -12 49
912 34 51
865 108 1.7 4 28
879 4.9 52
864 3.7 162 10 5 46
879 4.52 170 -5

3.08 5 -3
115 0

883 4.34 120 -1 -6
884 4.18 110 -3 -9
874 4.06 170 -3 -4
887 3.98 170 6 -4 45.5
850 4.96 4
870 4.8 178 -1 51

881.5 4 176 7 -5 48
4.7 170 -2 -3

9 6

Table 3.2 : continued
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density viscosity Flash p Cloud p Pour p Cetane n
864.4 3.7 178 13 56.2
876 4.84 176 1 5

880.2 4.83 170 1 9
4.31 166 -6 56

880 4.03 -6
833 4.4 149 3 5 49.8
872 4.03 3 3 45.5

3.97 85 9 37
876 5.2 120 9 6

888.5 4.1 100 -2 4
920 5.81 124 6

5.7 141 1
5.66 125 4 54.9

165
5.01 160 6 -9
5.2 162 0 -6

103
4.7 141

876 4.63 181
892 3.69 180
880 4.31 147

4.5 176 61
4.5 178 57
4.6 176 53
4.4 170 55
4.2 171 49
4.2 172 40
4.1 175 48
4.4 174 53
4.2 172 57
4.4 170 53

Table 3.2: continued
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Density viscosity Flash p Cloud p Pour p Cetane n
900 3.7 47.3
900 4 44
900 4.2 55

900 3.9 57.8
900 3.6 32.9
900 3.5 27.7
900 3.4 28.3

3.8 136 3 -7 50.4
4.38 153 -2 -6 53.7
2.75 113 -3 -9 59.3
4.19 171 -3 -2 55.7
4.75 152 5 0 55.7
4.61 163 14 61.9
4.5 169 -3 -10 53.7

4.14 174 -4 -7 51.1
4.26 159 0 -4 51.3
4.42 175 2 -2 51.1
4.69 124 13 10 58.9
4.8 161 8 3 56.9

875.78 3.96 174
874.43 4.75 168

866 2.64 162
864.39 2.64 154
862.94 4.55 172
875.39 4.55 181.5
877.58 3.97 152.5

864 3.9 130.5
864.69 3.62 127.5
867.22 3.77 124
870.43 3.14 126.5
865.22 3.33 124.5
866.22 3.14 146
869.74 4.17 167.5

Table 3.2: continued
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Density viscosity Flash p Cloud p Pour p Cetane n
867.88 3.89 150.5
873.88 4.02 138.5
870.14 3.92 136.5
874.3 4.83 157.2 10
881.6 4.4 159 -1.8 -8 54.8
917.6 160.5 42.1
876.3 4.81 162.2 7.5 4.4 57
870.8 2.78 127.7 -1.2 -3.8
882.2 4.32 165.7 -3.2 -5.1 52.5
879 4.7 165.4 1.2 -0.2 53.3

883.2 4.48 174.5 -4 -6.3 50.6
887.3 4.3 162.6 -0.3 -4 51
877.9 4.55 163.5 53.8
878.7 4.72 158.5 5.7 -0.9 55.7
882.9 5.04 163.6 7.6 55.4
873 4.89 153.5

891.5 4.06 170.3 1.7 -8 51.3
874.5 5.06 150.6 4 4 56.9
876.2 4.72 162.5 0.1 54.2
881.2 5.05 171 -2 -5 58.9
874.7 4.61 161.9 61.2
882.9 4.77 174.5 4.3 2.7 54.9
882.2 4.63 164.4 -3.3 -9.7 54.1
880.9 4.7 157.8 5 -0.9 56.3
882.3 4.79 158.3 3.6 -7 50.4
883.8 4.1 169.9 -4.9 -8.1 51.8
882.8 4.29 158.8 0.1 -3 51.9
882.9 4.53 172 0.9 -3.8 56.2
880 4.75 161.7 5.3 -0.3
879 4.5 52
874 5.19 160 1

892.5 3.75 -3.8

Table 3.2: continued
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Density viscosity Flash p Cloud p Pour p Cetane n
884 4.9 178 1
883 5.7 176 5
876 4.95 164

899 4.4
885 4.8 170 -2.8

879.5 3.98 135 2.7
850 5.21

884.5 4.2
867.3 4.83 170 -6.8
877.2 5.2
882
903 4.824 10
874 4.55
882 0

885 2.3 117
880 3.04 170
874 3.59 183
873 3.62 174
871 3.75 170
867 3.94 169
866 4.03 167
865 4.08 161
885 4.08 124
864 4.11

Table 3.2: continued
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Density viscosity Flash p Cloud p Pour p Cetane n
863 4.16 154
860 4.18

4.41
857 4.6 145
876 4.8 131
883 4.83 185

5.24
872 5.78 160
876 190
832 3.6 53
840 3.63 52
848 3.97 51
875 4.71 50

879.4 181 52
862 135 6 2
869 140 13.2 4.3
880 4.37 163 13 3
890 4 151 13.2 4.3
904 3.98 130 4 1
860 5.81 135 4.5 -8
874 4 2 -10
863 70 7 6
860 3.5 152 12
912 34
865 108 1.7 -5
879 4.9 181
864 3.7 162 10 5
870 4.7 85 50
860 5 4 51
870 4.5 -6

Table 3.2: continued
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density viscosity Flash p Cloud p Pour p Cetane n
882 4.32 52.5
875 4.61
861 3.23 114
873 4.96 172

869.9 4.83 153

884.5 4.92 11
883.7 4.41 125
852 3.95 151
878 4.88 172 58

874.5 5 174 12.5
870 147 -3 52.8
876 .75 152 0 55.7
879 4.5 169 -10 53.7
882 4.26 159 4 51.3
862 4.6 113 -2.2 -12
866 4.6 85 -1.9

3.8 151 10
913 3.2 3
930 3 98
880 3.04 170
865 4.08 161
863 4.16 154

Table 3.2:continued
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3.3 Combinations

The goal of this study is to predict and find the best accuracy using biodiesel properties

(density, viscosity, cetane number). Different combination have been made. Table below

shows different combination used in this thesis for both simulations (ANN, RSM)

Table 2.3: Network Model with Different Input Combinations

Property Combination of input Model name= ( ) Network1= ( ) Network2= ( ) Network3= ( ) Network4= ( ) Network5= ( , , ) , , Network6= ( , ) ρ , , Network7= ( ) 14: 0, 16: 0, 16: 1, 18: 0, 18: 1,
C18:2, c18:3, c20:0, c22:0

Network8= ( ) Network9= ( ) Network10= ( ) Network11= ( ) Network12= ( , ) , Network13= ( , , ) , , Network14= ( ) 14: 0, 16: 0, 16: 1, 18: 0, 18: 1
c18:2, c18:3, c20:0, c22:0

Network15= ( ) Network16= ( ) Network17= ( ) Network18= ( , ) , Network19= ( , , ) , , Network20= ( ) 14: 0, 16: 0, 16: 1,c18:0,c18:1
c18:2, c18:3, c20:0, c22:0

Network21= ( ) Network22= ( ) Network23= ( ) Network24= ( , ) , Network25= ( ) c14:0, c16:0, c16:1, c18:0, c18:1,
C18:2, c18:3, c20:0, c22:0

Network26= ( ) Network27= ( ) c14:0, c16:0, c16:1, c18:0,
c18:1,C18:2, c18:3, c20:0, c22:0

Network28
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= ( ) c14:0, c16:0, c16:1, c18:0, c18:1,
C18:2, c18:3, c20:0, c22:0

Network29= ( , , ) , , Network30= ( , , , ) , , , Network31= ( ) Network32= ( ) Network33= ( ) Network34= ( ) Network35= ( ) Network36= ( , , ) , , Network37= ( , ) , Network38= ( , , ) , , Network39

Table 3.3 : continued
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Table 3.4:Network Model with Combinations, Output and Regression Values (RSM)

Combination Output (adj) (pre)= ( ) = 3.78 + 0.00035 2.19 1.66 0= ( ) = 4.05 + 0.00032 0.00 0.00 0.00= ( ) = 4.3375 + 0.023 4.00 3.10 0.32= ( ) = 4.4009 + 0.018 4.11 3 0.00= ( ) = 4.100 + 0.0042 1.12 0.21 0. 00= ( , , ) = 1.47 + 0.0031 + 0.0015 +0.0058 1.45 0.00 0.00= ( , ) = 2.69 + 0.0012 + 0.0037 2.49 1.12 0.00= ( ) = 4.23 − 0.070 14: 0 + 0.000011 16: 0+0.0037 16: 1 + 0.0018 18: 0 + 0.0049 18: 1
0.00068c18:2-0.0060c18:3+0.0042c20:0+0.0034c22:0

17.71 14.85 2.15

= ( ) = 8.78.43 − 0.0088 0.04 0.00 0.00= ( ) = 878.88 − 0.14 0.32 0.00 0.00= ( ) = 876.30 − 0.25 1.98 0.65 0.00= ( ) = 898.4 − 0.35 2.78 0.00 0.00= ( , ) = 861.9 + 0.10 − 0.029 3.79 0.97 0.00= ( , , ) = 865 + 0.08 − 0.089 − 0.15 7.36 1.57 0.00= ( ) = 876.91 − 0.32 14: 0 + 0.0018 16:+2.43 16: 1+ 0.045 18: 0 + 0.071 18: 1− 0.057 18: 2 + 0.47c18: 3− 0.51c20: 0 − 0.37c22: 0
6.56 0.00 0.00

= ( ) = 150.96 − 0.247 0.14 0.00 0.00= ( ) = 145.59 − 1.24 5.57 4.77 1.95= ( ) = 95.6 + 1.057 2.54 0.00 0.00= ( , ) = 141.15 + 1.044 − 2.05 8.17 6.23 0.53= ( , , ) = 123.2 + 1.79 − 2.67 + 0.37 11.92 7.45 0.00= ( ) = 144.26 + 0.007 14: 0 +0.111 16: 0 +3.15c16:1+0.28c18:0+0.16c18:1+0.18c1
8:2+0.37c18:3+4.36c20:0-4.12c22:0

7.73 2.08 0.00

= ( ) = −4.88 + 1.71 4.00 3.10 0.93= ( ) = 4.09 + 0.59 52.79 52.43 51.14= ( ) = 0.99 + 0.058 0.57 0.00 0.00= ( , ) = 6.92 + 0.5138 − 0.05 46.39 44.92 40.95= ( ) = 4.97 − 0.22 14: 0 − 0.0042 16: 0 + 2.09 16: 1+0.042 18: 0 − 0.020 18: 1 − 0.09 18: 2− 0.129 18: 3 + 0.079 20: 0+ 1.24 22: 0
24.99 16.11 0.00

= ( ) = 0.58 − 0.022 0.05 0.00 0.00
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= ( ) = −1.25 − 0.53 14: 0 − 0.0036 16: 0+ 2.98 16: 1 + 0.21 18: 0− 0.035 18: 1 − 0.055 18: 2− 0.017 18: 3 + 0.49 20: 0+ 2.82 22: 0
21.62 11.69 0.00

= ( ) 50.32 + 0.046 14: 0 − 0.0021 16: 0 + 0.042 16: 1+ +0.072 18: 0 + 0.049 18: 1+ 0.018 18: 2 − 0.034 18: 3− 0.73 20: 0 − 0.079 22: 0 8.95 0.05 0.00

= ( , , ) = 0.033 + 0.00031 − 0.00610 + 0.0072 1.27 0.00 0.00= ( , , , ) = −0.256 + 0.00039 − 0.0093 + 0.0108+ 0.0059 2.68 0.00 0.00= ( ) = −0.077 + 0.077 0.08 0.00 0.00= ( ) = −0.86 + 0.00107 0.18 0.00 0.00= ( ) = −0.102 + 0.00189 0.21 0.00 0.00= ( ) = 0.43 + 0.0015 0.11 0.00 0.00= ( ) = 0.59 − 0.0074 0.06 0.00 0.00= ( , , ) = −2.09 + 0.105 + 0.0020 − 0.0015 2.60 0.52 0.00= ( , ) = 0.0586 − 0.0037 + 0.0056 1.25 0.00 0.00= ( , , ) = 0.033 + 0.000317 − 0.0061 + 0.0072 1.27 0.00 0.00

Table 3.4: continued
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3.4 Functional Analysis

Used to solve nonlinear, variables, multivariable and multipart problem, ANN follows

different and specific step to accomplish a specific model. Figure below shows synoptic used

in this work for ANN development models.
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Figure 3.3: analysis description
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3.5 Test Conditions

input, unseen and output layer are three main layers which constitute ANN structure. Data

from external source are called input.  In the input layer, Data are transferred from outer

source to unseenlayer byhandling elements (neurons). The burdens are the values of

connection between cells. The outing information   is obtained using data from neurons in the

input and hidden layer, the bias, and stimulationfunctions. Constituted of outing layer, the

outing of the network is obtained by handlingdata from unseen layer and send to external

source.

In    this present work, the feedforward architecture with three layers (input, unseen and

output) is used. Also TRAINLM is used as training function that updates the burden and bias

values of neuron connections, according to Levenberg-Maquardt (LVM) optimization.

Depending of the type of the neural network to be designed, tangent function and hyperbolic

function, Threshold function, step stimulation function, sigmoid function are selected and

regularlyused.Figure below shows the functional diagram of neural network.
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INPUT                                                      HIDDEN LAYER                                   OUTPUT

Figure 3.4: ANN model used in this work
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Referring to stimulation function, many studies used a sigmoid function. In the present study,

this function is used as function which output is in between 0 and 1. It is defined by:( ) = (4.4)

Standardization of data in this study in the range of 0.01 to 0.09 is obtained by using the

following equation:( ) = (5.5)

3.6 Empirical Models

Modelization of different combinations (kinematic viscosity, density, and cetane number) was

made using:

i) artificial neural network (ANN)

ii) response surface methodology (RSM)

Input data is obtained in function of target we want to obtain. (Density , flash point , cloud

point, pour point , cetane number , fatty acid ) as input for viscosity , ( flash point , cloud point

, pour point , cetane number) as input  for fatty acid .( fatty acid ) as input for  cetane number .

Also to achieve this simulations, limit of input data and range of determination of RRSME is

listed. Figure 4.5 and 4.6 below show different limits and range.
Table 3.5: Margin values for input and output variables

Limits values Units
MIN MAX

Viscosity 2.3 5.81 /
Density 807 903 /

Flash point 11 264 ᵒC
Cloud point -13.4 19 ᵒC
Pour point -22.5 24 ᵒC

Cetane number 27.7 177 -
Fatty acid 0 77 mass fraction (w)

The following table shows the condition followed in this work to run data in ANN network
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Table 3.6: ANN condition

Network type Multi – layer feedforward

Training function TRAINLM

Adaptive learning function LEARNGDM

Performance function MSE

Number of inputs varied from 1 to 6

Number of outputs 1

Number of hidden layer varied from 2 to 8

The optimum Number of neurons 2

Transfer function Log sigmoid

Also RSM design used number of unceasing factors of 3, number of categorical factor of 1,

number of block of 1 and number of replicate of 1. In order to have and to identify best ANN

result, the relative root medium square erratum (RRSME) is used in this study and it is

described as follow.

Table 3.7: RRSME margin

Margin of RRSME Evaluation

< 10% Excellent

10 % < RRMSE< 20% good

20 % < RRMSE< 30% fair

> 30% poor

CHAPTER 4
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RESULTS AND DISCUSSIONS

4.1 Model Used to Develop ANN

Artificial neural network (ANN) and response surface methodology (RSM) are used to

identify the most variable, which affect the estimation of kinematic viscosity,density and

cetane number. The input parameters identified are flash point, viscosity, density, cetane

number ,fatty acid,  cloud point and pour point. In order to check the prediction accuracy using

the identified parameters, 39 ANN and RSM models are developed .The following statistical

indicators were employed correlation  coefficient ( ), medium square erratum (mse),

comparative root medium square(RRMSE) Depending on the value of mse, the number of

neurons will be continuallyaugmented and the action re-training. in this study unseen layer

varies from 5 to 8 . Following figure and table show different result obtained and explained. .
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Table 4.1: Network performance with regression values

Network 1 performance
S. no target Network

input
Transfer
function

RRMSE R mse

1 ν Log
sigmoid

5.80% 0.9994 0.9995 0.0000727

2 ν Log
sigmoid

7% 0.9992 0.9993 0.0001060

Network 2 performance
1 ν Log

sigmoid
9.24% 0.9983 0.9990 0.000124

2 ν Log
sigmoid

10.5% 0.9973 0.9984 0.000309

Network 3 performance

1 ν Log
sigmoid

6.95% 0.99902 0.9985 0.000145

2 ν Log
sigmoid

10% 0.9959 0.9951 0.000472

Network 4 performance
1 ν Log

sigmoid
11.1% 0.9983 0.9972 0.000262

2 ν Log
sigmoid

10.25% 0.9984 0.9987 0.000183

3 ν Log
sigmoid

11.48.50% 0.9983 0.9984 0.000130

Network 5 performance
1 ν , , Log

sigmoid
7.70% 0.9994 0.9990 0.000296

2 ν , , Log
sigmoid

6.80% 0.9990 0.9954 0.000190

Network 6 performance
1 ν , , Log

sigmoid
7.50% 0.9985 0.9989 0.000188

2 ν , , Log
sigmoid

6.60% 0.9992 0.9989 0.000655
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3 ν , , Log
sigmoid

6.65% 0.9987 0.9979 0.000101

Network 7 performance
1 ν Log

sigmoid
9.50% 0.9996 0.9993 0.0000408

2 ν Log
sigmoid

5.50% 0.9997 0.9998 0.0000347

3 ν Log
sigmoid

6% 0.9994 0.9997 0.0000524

Network 8 performance
1 ρ Log

sigmoid
6.65% 0.9994 0.9991 0.0000738

2 ρ Log
sigmoid

10.5% 0.9989 0.9992 0.0000878

Network 9 performance
1 ρ Log

sigmoid
10.75% 0.9980 0.9971 0.000237

2 ρ Log
sigmoid

9.85% 0..9985 0.9982 0.000276

Network 10 performance
1 ρ Log

sigmoid
10.22% 0.9934 0.9971 0.000237

2 ρ Log
sigmoid

11.5% 0.9922 0.9965 0.000522

Network 11 performance
1 ρ Log

sigmoid
9.75% 0.9968 0.9973 0.000291

2 ρ Log
sigmoid

11.78% 0.9946 0.9972 0.000683

Network 12 performance
1 ρ , Log

sigmoid
10.22% 0.9986 0.9989 0.000291

Table 4.1: continued
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Network 13 performance
1 ρ , , Log

sigmoid
6.80% 0.9993 0.9973 0.000291

2 ρ , , Log
sigmoid

10.58% 0.9962 0.9973 0.000230

Network 14 performance
1 ρ Log

sigmoid
10.25% 0.9981 0.9986 0.000236

2 ρ Log
sigmoid

5.5% 0.9995 0.9996 0.0000884

3 ρ Log
sigmoid

4.35% 0.9997 0.9998 0.0000324

Network 15 performance
1 Log

sigmoid
4.88% 0.9997 0.9997 0.0000516

2 Log
sigmoid

12.2% 0.9962 0.9997 0.0000543

Illustration of this statistical values are showed in the following figures. The best of each

combination will be showed.
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Figure 4.1 shows the regression analysis for fatty acid in comparison to viscosity.

The validation and training of this combination give a good result between fatty acid and

viscosity. The overall coefficient R and the correlation coefficient are closer each to other
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Figure 4.1: Fatty Acid Regression with Viscosity
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and they are near to 0. Then referring to this result we can assume that this combination give

et good accuracy. In order to predict biodiesel properties this combination is useful.

Figure 4.2 shows viscosity versus fatty acid mse

Also the mse value of this combination is near to 0 .this give more than more a good

statements of good combination.

Figure 4.2: Viscosity versus fatty acid MSE
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Figure 4.3 density versus flash point regression
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Figure 4.3: Density versus Flash Point Regression
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In comparison with the previous result, this combination also give a good accuracy since theirs

correlations coefficient and and overall coefficient are closer each other and near to 0. But

error is 0.0003 and it is large than the combination viscosity and fatty acid which is 0.

Figure 4.4 shows density versus flash point mse

The mse value of the combination density function flash point is fair since the it is closer to 0.

Figure 4.4: Density versus Flash Point MSE
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Figure 4.5 : shows the regression analysis of cetane number function fatty acid
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cetane number function fatty acid is very good combination since the training and validation

values are almost the same and . accuracy in this case is also fair since R and are closer.

Figure 4.6: shows the mse regression value of cetane number function fatty acid.
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Figure 4.5: Cetane Number versus Fatty acid Regression
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Also in this combination the mse value of the combination density fatty acid and cetane

number is fair since it tend to 0.

Figure 4.6: cetane n versus fatty acid mse
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4.2 Statistical observation of ann model

Many properties have been used to simulate combinations. The best performance is achieved

by repeating the simulation until the minimum possible performance of mse is obtained.

Likewise when the value of increases the value of mse must decrease, this indicates the

correct functioning of the software. Otherwise the simulation is interrupted. Thus referring to

what is said above and the assessment of RRSME the networks (7, 1, 14, and 4, 6) present

combinations with good and high accuracy due to the fact that their margin of error is between

0 and 0.0003, R and are close to each other and close to 1. Also the RRSME values for this

combination are less than 30%.

In other hand combinations (2, 3, 15,5,8, 9,10, 11,12, 13) have values with less and fair

accuracy because of a large margin between their respective values of and R  and also their

percentage of RRSME between 10% and 20% for some and between 20% and 30% for others.

4.2.1 Analysis of best performance

Table 2.3: Best performance analysis

Network Target Combination Mse Error%

1 ν 0.9994 0.9995 0.0000727 0.0001

ν 0.9993 0.9994 0.000106 0.0001

7 ν 0.9996 0.9993 0.0000408 0.0003

ν 0.9997 0.9998 0.0000347 0

ν 0.9994 0.9997 0.0000524 0.0003

14 ρ 0.9981 0.9986 0.000236 0.0005

ρ 0.9995 0.9996 0.0000884 0.0001

ρ 0.9997 0.9998 0.0000324 0.0001

4 0.9984 0.9987 0.000183 0.0001

0.9983 0.9984 0.000130 0.0001

6 ν , 0.9985 0.9989 0.000188 0.0004

ν , 0.9992 0.9989 0.0000655 0.0003
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4.22Analyze Using Response Surface Methodology
The same data cited in the literature review above are used for analysis with Minitab. Only the

combinations used in the analysis with ANN will be used here and the compared each other.
Table 4.3: Network Model with Combinations, Output and Regression Values (RSM)

Combination Output (adj) (pre)= ( ) = 3.78 + 0.00035 2.19 1.66 0= ( ) = 4.05 + 0.00032 0.00 0.00 0.00= ( ) = 4.3375 + 0.023 4.00 3.10 0.32= ( ) = 4.4009 + 0.018 4.11 3 0.00= ( ) = 4.100 + 0.0042 1.12 0.21 0. 00= ( , , ) = 1.47 + 0.0031 + 0.0015 +0.0058 1.45 0.00 0.00= ( , ) = 2.69 + 0.0012 + 0.0037 2.49 1.12 0.00

= ( ) = 4.23 − 0.070 14: 0 + 0.000011 16: 0+0.0037 16: 1 + 0.0018 18: 0 + 0.0049 18: 1
0.00068c18:2-

0.0060c18:3+0.0042c20:0+0.0034c22:0

17.71 14.85 2.15

= ( ) = 8.78.43 − 0.0088 0.04 0.00 0.00= ( ) = 878.88 − 0.14 0.32 0.00 0.00= ( ) = 876.30 − 0.25 1.98 0.65 0.00= ( ) = 898.4 − 0.35 2.78 0.00 0.00= ( , ) = 861.9 + 0.10 − 0.029 3.79 0.97 0.00= ( , , ) = 865 + 0.08 − 0.089 − 0.15 7.36 1.57 0.00

= ( ) = 876.91 − 0.32 14: 0+ 0.0018 16:+2.43 16: 1+ 0.045 18: 0 + 0.071 18: 1− 0.057 18: 2 + 0.47c18: 3− 0.51c20: 0 − 0.37c22: 0 6.56 0.00 0.00

= ( ) = 150.96 − 0.247 0.14 0.00 0.00= ( ) = 145.59 − 1.24 5.57 4.77 1.95= ( ) = 95.6 + 1.057 2.54 0.00 0.00= ( , ) = 141.15 + 1.044 − 2.05 8.17 6.23 0.53= ( , , ) = 123.2 + 1.79 − 2.67 + 0.37 11.92 7.45 0.00

= ( ) = 144.26 + 0.007 14: 0 +0.111 16: 0 +3.15c16:1+0.28c18:0+0.16c18:1+0.1
8c18:2+0.37c18:3+4.36c20:0-4.12c22:0

7.73 2.08 0.00= ( ) = −4.88 + 1.71 4.00 3.10 0.93= ( ) = 4.09 + 0.59 52.79 52.43 51.14
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= ( ) = 0.99 + 0.058 0.57 0.00 0.00= ( , ) = 6.92 + 0.5138 − 0.05 46.39 44.92 40.95= ( ) = 0.58 − 0.022 0.05 0.00 0.00

= ( ) = −1.25 − 0.53 14: 0 − 0.0036 16: 0+ 2.98 16: 1 + 0.21 18: 0− 0.035 18: 1 − 0.055 18: 2− 0.017 18: 3 + 0.49 20: 0+ 2.82 22: 0 21.62 11.69 0.00

= ( ) 50.32 + 0.046 14: 0 − 0.0021 16: 0+ 0.042 16: 1 + +0.072 18: 0+ 0.049 18: 1 + 0.018 18: 2− 0.034 18: 3 − 0.73 20: 0− 0.079 22: 0 8.95 0.05 0.00

= ( , , ) = 0.033 + 0.00031 − 0.00610+ 0.0072 1.27 0.00 0.00

= ( , , , ) = −0.256 + 0.00039 − 0.0093+ 0.0108 + 0.0059 2.68 0.00 0.00= ( ) = −0.077 + 0.077 0.08 0.00 0.00= ( ) = −0.86 + 0.00107 0.18 0.00 0.00= ( ) = −0.102 + 0.00189 0.21 0.00 0.00= ( ) = 0.43 + 0.0015 0.11 0.00 0.00= ( ) = 0.59 − 0.0074 0.06 0.00 0.00= ( , , ) = −2.09 + 0.105 + 0.0020 − 0.0015 2.60 0.52 0.00= ( , ) = 0.0586 − 0.0037 + 0.0056 1.25 0.00 0.00= ( , , ) = 0.033 + 0.000317 − 0.0061+ 0.0072 1.27 0.00 0.00

However the biodiesel properties were used and at each combination the 3 parameter equation

was obtained. Each combination equation is combined in table 4.3 .

Table 4.3 : continued
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Figure 4.7 shows response Surface Regression: viscosity versus pour p

Table 4.4: Analysis of variance viscosity versus flash point

Source DF Adj SS Adj MS F-Value P-Value

Model 1 1.433 1.4326 3.69 0.058

Linear 1 1.433 1.4326 3.69 0.058

pour p 1 1.433 1.4326 3.69 0.058

Error 86 33.413 0.3885

Lack-of-Fit 35 9.798 0.2799 0.60 0.941

Pure Error 51 23.616 0.4631

Total 87 34.846

We can also observe that this configuration present almost the same configuration as the

previous combination.

Figure 4.7:Response Surface Regression: viscosity versus flash point
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Figure 4.8 shows Response Surface Regression: viscosity versus density, flash p, cloud p,

pour p

Table 4.5: Analysis of variance viscosity versus density, flash p, cloud point, pour point

Source DF Adj SS Adj MS F-Value P-Value
Model 4 0.5939 0.148472 0.38 0.818
Linear 4 0.5939 0.148472 0.38 0.818
density 1 0.0191 0.019062 0.05 0.825
flash p 1 0.2565 0.256537 0.66 0.420
cloud p 1 0.0552 0.055246 0.14 0.707
pour p 1 0.0366 0.036598 0.09 0.760
Error 40 15.4383 0.385957
Lack-of-Fit 39 15.4383 0.395853
Pure Error 1 0.0000 0.000000

Figure 4. 8:Response Surface Regression: viscosity versus density, flash p,cloud p, pour p
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Total 44 16.0322

Figure 4.9 shows Response Surface Regression: viscosity versus density, flash p

Table 4.6: Analysis of varianceviscosity versus density, flash point

Source DF Adj SS Adj MS F-Value P-Value

Model 2 1.5196 0.75979 1.81 0.167

Linear 2 1.5196 0.75979 1.81 0.167

density 1 0.0368 0.03678 0.09 0.768

flash p 1 1.4685 1.46852 3.50 0.063

Error 142 59.5338 0.41925

Lack-of-Fit 134 59.3538 0.44294 19.69 0.000

Pure Error 8 0.1800 0.02250

Total 144 61.0534

Figure 4.9:Response Surface Regression: viscosity versus density, flash point
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Figure 4.10 shows Response Surface Regression: density versus flash p, cloud p

Table 4.7: Analysis of variancedensity versus flash point, cloud point.

Source DF Adj SS Adj MS F-Value P-Value

Model 2 555.8 277.906 1.32 0.273

Linear 2 555.8 277.906 1.32 0.273

flash p 1 554.2 554.158 2.64 0.109

cloud p 1 1.6 1.560 0.01 0.932

Error 64 13427.2 209.800

Lack-of-Fit 60 13418.2 223.637 99.62 0.000

Pure Error 4 9.0 2.245

Total 66 13983.0

Figure 4.10: Response Surface Regression: density versus flash p, cloud p
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Figure 4.11 shows Response Surface Regression: viscosity versus density, flash p, cloud

p

Table 4.8: Analysis of varianceviscosity versus density, flash p, cloud p

Source DF Adj SS Adj MS F-Value P-Value
Model 3 0.3238 0.107943 0.30 0.826
Linear 3 0.3238 0.107943 0.30 0.826
density 1 0.1257 0.125662 0.35 0.557
flash p 1 0.0868 0.086806 0.24 0.626
cloud p 1 0.0619 0.061917 0.17 0.680
Error 61 22.0281 0.361116
Lack-of-Fit 60 22.0281 0.367134

Figure 4.11:Response Surface Regression: viscosity versus density, flash p, cloud p



54

Pure Error 1 0.0000 0.000000

Total 64 22.3519
Figure 4.12 shows Response Surface Regression: density versus flash p, cloud p, pourp

Table 4.9: Analysis of variancedensity versus flash p, cloud p, pour p

Source DF Adj SS Adj MS F-Value P-Value

Model 3 501.78 167.260 1.27 0.295

Linear 3 501.78 167.260 1.27 0.295

flash p 1 362.02 362.016 2.75 0.104

cloud p 1 6.35 6.349 0.05 0.827

pour p 1 23.28 23.279 0.18 0.676

Error 48 6315.21 131.567

Lack-of-Fit 45 6306.23 140.138 46.82 0.004

Pure Error 3 8.98 2.993

Figure 4.12: Response Surface Regression: density versus flash p, cloud p, pour p
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Total 51 6816.99

Figure 4.13 shows Response Surface Regression: viscosity versus c14:0, c16:0, c16:1,

c18:0, c18:1, c18:2, c18:3, c20:0, c22:0

Table 4.10: Analysis of variance viscosity versus fatty acid

Source DF Adj SS Adj MS F-Value P-Value
Model 9 21.017 2.3353 6.19 0.000

Linear 9 21.017 2.3353 6.19 0.000
c14:0 1 15.126 15.1260 40.11 0.000
c16:0 1 0.000 0.0002 0.00 0.980
c16:1 1 0.103 0.1027 0.27 0.602
c18:0 1 0.019 0.0190 0.05 0.823
c18:1 1 2.913 2.9134 7.73 0.006
c18:2 1 0.054 0.0542 0.14 0.705
c18:3 1 0.410 0.4098 1.09 0.298

Figure 4.13: Response Surface Regression: viscosity versus c14:0, c16:0, c16:1, c18:0, c18:1, c18:2,
c18:3, c20:0, c22:0
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c20:0 1 0.005 0.0047 0.01 0.911
c22:0 1 0.007 0.0066 0.02 0.895

Error 259 97.674 0.3771
Lack-of-Fit 174 58.454 0.3359 0.73 0.959

Pure Error 85 39.220 0.4614
Total 268 118.691

Figure 4.14 shows Response Surface Regression: density versus c14:0, c16:0, c16:1,

c18:0, c18:1, c18:2, c18:3, c20:0, c22:0

Table 4.11: Analysis of variance density versus fatty acid

Source DF Adj SS Adj MS F-Value P-Value
Model 9 1194.2 132.692 0.59 0.799

Linear 9 1194.2 132.692 0.59 0.799

Figure 4.14: Response Surface Regression: density versus c14:0, c16:0, c16:1, c18:0, c18:1,
c18:2, c18:3, c20:0, c22:0

Table 4.11 continued
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c14:0 1 64.8 64.827 0.29 0.592
c16:0 1 5.9 5.928 0.03 0.871
c16:1 1 47.8 47.781 0.21 0.645
c18:0 1 4.6 4.595 0.02 0.886
c18:1 1 157.4 157.367 0.70 0.405
c18:2 1 143.1 143.076 0.64 0.427

c18:3 1 731.4 731.354 3.27 0.075
c20:0 1 45.2 45.226 0.20 0.654
c22:0 1 1.1 1.142 0.01 0.943

Error 76 17021.0 223.960
Lack-of-Fit 53 12219.3 230.554 1.10 0.409

Pure Error 23 4801.6 208.767

Total 85 18215.2

Figure 4.15 shows Response Surface Regression: cetane n versus c14:0, c16:0, c16:1,

c18:0, c18:1, c18:2, c18:3, c20:0, c22:0

Figure 4.15: Response Surface Regression: cetane n versus c14:0, c16:0, c16:1, c18:0,
c18:1, c18:2, c18:3, c20:0, c22:0

Table 4.11 : continued
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Table 4.12: Analysis of variancecetane number versus fatty acid

Source DF Adj SS Adj MS F-Value P-Value
Model 9 334.49 37.166 1.01 0.442

Linear 9 334.49 37.166 1.01 0.442
c14:0 1 2.20 2.201 0.06 0.808
c16:0 1 9.54 9.542 0.26 0.613
c16:1 1 10.99 10.988 0.30 0.587
c18:0 1 6.74 6.744 0.18 0.670
c18:1 1 110.77 110.772 3.00 0.087
c18:2 1 18.01 18.012 0.49 0.487
c18:3 1 5.43 5.434 0.15 0.702
c20:0 1 107.03 107.031 2.89 0.092
c22:0 1 3.30 3.298 0.09 0.766

Error 92 3401.67 36.975
Lack-of-Fit 72 3179.75 44.163 3.98 0.001
Pure Error 20 221.92 11.096

Total 101 3736.16
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4.3 RSM Result Interpretation

The aim of the study is to find a good accuracy combination by using ANN and RSM

combination result. The results obtained with the RSM method are less favorable since their p-

value and f-value are very distant from each other. It is also important to note that obtaining an

acceptable result using this method requires the combination of at least three other properties.

also the combination of viscosity, density and cetane number properties with the fatty acid

individually does not provide a better result.



60

4.4 Analysis of Comparison between (ANN) and (RSM)

In this section there is a brief and comparison between R obtained from ANN analysis and

RSM obtained with RSM analysis. Table below shows a description.
Table 4.13: ANN and RSM Comparison

Combination (ANN) (RSM)= ( ) 0.9998 0.9112

ρ = ( ) 0.9998 0.799= ( ) 0.9987 0.766

4.5 Evolution diagram (ANN)

In this section analysis done with ANN shows the ascending curve and it is almost near to 1
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4.6 Evolution Diagram   (RSM)
Analysis

done with

RSM is

more and

more

uncertain

and decrease

and it is almost

near to 0

Figure 4.16: R2 Evolution Diagram (ANN)

Figure 4.17: R2 RSM Evolution
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4.7 R2(ANN) and R2 (RSM) Evolution Diagram
This figure shows in this combination and simulation  done with ANN are more reliable due to

the fact that it is constant while the combination and simulation done with RSM is not reliable

since it change as far as possible and it decreases .

Figure 4.18 is a combination comparison between ANN and RSM
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CHAPTER 5

(ann)

Figure 4.18: Combination and Comparison with ANN and RSM
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CONCLUSION AND FUTURE WORKS

5.1 Conclusion
Density, viscosity, and Cetane number are important physical properties of biodiesel because

of their direct implications in the combustion of fuel in the operation of machinery. Then poor

accuracy prediction of these properties has a direct impact on engine performance.Throughout

this thesis, different prediction methods were used to search for or obtain the best accuracy.

Thus combinations obtained have been simulated and analyzed mathematically in two

different software applications: ANN and RSM. As a result, it is clear that:

The overall regression coefficient R and the correlation coefficient values of the

combinations   obtained in the simulation with the ANN provide better and good accuracy

since their values are close to each other and all close to 1, and their mse tend towards 0.

While the result obtained with RSM are distant from each other and distant of 0 so they

provide an acceptable accuracy. It is also important to note that after analysis of the graphs

obtained by the RSM method, the achievement of good and high accuracy requires the

combination of at least 3 properties of biodiesel. It should be also added in this thesis that the

combinations made with the FAME produce more and better yield meaning there is a good

relationship between the FAME and the properties density, viscosity and cetane number.

However some studies remain to discover since our goal in this study were focused only on

viscosity, density and cetane number. Combining other properties will therefore be future

objectives.

5.2 Future Works
The purpose of this study being to recover high accuracy, we have combined and simulated

properties in two different software namely RSM and ANN. however our duty was based on

three specific properties of biodiesel (density, viscosity, cetane number). Thus in forthcoming

studies it will be discussed not only to focus on other properties of biodiesel(pour point, cloud
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point, flash point ), but also later use other software to find the best combination(s) needed to

increase the power and efficiency of diesel engines.
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