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ABSTRACT 

 

Designing appropriate control intervention programs for handling of infectious disease such as 

tuberculosis (TB) involves elongated engagement with complex and challenging tasks. Several 

researches used mathematical model and control system theory as a valuable tool in studying 

the infectious disease dynamics and control. TB despite being a curable and preventable disease 

has become the world’s leading infectious killer with an estimated total of 1.5 million deaths 

per annum. Although considerable progress has been made in developing a theoretical structure 

for studying TB’s dynamics and control strategies, many challenging and critical open questions 

remain. Models that integrate the role of public awareness and isolation on controlling TB are 

rare. This thesis explores the conceptual use of optimal and adaptive control theory for the 

analysis of the TB dynamical model. The study looked at three different scenarios.  

In the first scenario, a novel model of TB is analyzed using saturated incidence rate. Global 

asymptotic stability of the equilibria is established by a threshold quantity; the reproduction 

number (𝑅0) and proved using Lyapunov theory. Optimal control theory is applied to the model 

to demonstrate the use of control strategies in managing the disease. Two time-dependent 

control functions are employed to minimize infectious populations. The significance of the 

public awareness (measured by 𝛿), and the optimal control functions, are illustrated numerically. 

The second instance integrates three time-dependent control functions into a TB dynamical 

model, to find an optimal control strategy that minimizes the population of exposed and infected 

people and also the cost of executing the control actions. The necessary conditions for achieving 

the optimal controls are derived and solved numerically using Pontryagin’s principle. Besides, 

an analysis of cost-effectiveness is carried out using an incremental cost-effectiveness ratio 

(ICER). The findings showed that a program of disease control incorporating vaccination, case 

holding, and case finding control measures would effectively curtail TB prevalence. 

In the design of the optimal control approach, system parameters are assumed to be prior known 

and accurate. However, if the system contains uncertain parameters, the conventional control 
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techniques will not provide the desired results. Hence, in the third scenario, a robust nonlinear 

adaptive sliding mode control (ASMC) strategy is applied to the TB model considering 

parameter uncertainties. The control aims to decrease the population of individuals that are 

exposed and infected to zero by tracking a predefined reference trajectory. Adaption law is 

defined to update the parameter values to ensure the robustness of the control system against 

uncertainties. The stability of the closed-loop system is proved using the Lyapunov Function 

Theory, and the result is validated through numerical simulations.  

The study identifies alternative solutions in finding practically useful optimal and adaptive 

control strategies and illustrates the essential applications of open-loop and closed-loop control 

systems. The work highlights a new methodology to inform realistic approaches towards 

realizing the United Nations (UN) 2030 plan for eradicating TB disease.  

Keywords: Epidemiology; optimal control; adaptive control; sliding mode control; cost-

effectiveness analysis; Lyapunov stability 
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ÖZET 

 

Tüberküloz (TB) gibi bulaşıcı hastalıkların tedavisi için uygun kontrol müdahale programlarının 

tasarlanması, karmaşık ve zorlu görevlerle uzun süreli katılımı içerir. Birçok araştırma, bulaşıcı 

hastalık dinamikleri ve kontrolünü incelemek için matematiksel model ve kontrol sistemi 

analizini değerli bir araç olarak kullanmıştır. Tedavi edilebilir ve önlenebilir bir hastalık 

olmasına rağmen TB, yılda yaklaşık 1.5 milyon ölümle dünyanın önde gelen bulaşıcı katili 

haline gelmiştir. Her ne kadar TB'nin dinamiklerini ve kontrol stratejilerini incelemek için teorik 

bir yapı geliştirilmesinde kayda değer ilerleme kaydedilmiş olsa da, birçok zorlu ve eleştirel 

açık soru halen devam etmektedir. TB'nin kontrolünde kamuoyu bilinci ve izolasyonunun 

rolünü birleştiren modeller nadirdir. Bu tez, TB dinamik modelinin analizi için optimal ve 

uyarlanabilir kontrol teorisinin kavramsal kullanımını araştırmaktadır. Çalışma üç farklı 

senaryoya almiştir. 

İlk senaryoda, yeni bir TB modeli doymuş olay oranı kullanılarak analiz edilir. Dengenin küresel 

asimptotik kararlılığı bir eşik miktarıyla belirlenir; üreme sayısı (R0) ve Lyapunov teorisi 

kullanılarak kanıtlanmıştır. Hastalığın yönetiminde kontrol stratejilerinin kullanımını göstermek 

için modele optimal kontrol teorisi uygulanır. Enfeksiyöz popülasyonları en aza indirmek için 

iki zamana bağlı kontrol fonksiyonu kullanılır. Kamuoyu bilincinin önemi (𝛿 le ölçülür) ve 

optimal kontrol fonksiyonları sayısal olarak gösterilmiştir. 

İkinci örnek, maruz kalan ve enfekte kişilerin popülasyonunu en aza indiren ve aynı zamanda 

kontrol eylemlerini yürütmenin maliyetini en aza indiren optimal bir kontrol stratejisi bulmak 

için üç zamana bağlı kontrol fonksiyonlari bir TB dinamik modeline entegre eder. Optimal 

kontrollere ulaşmak için gerekli koşullar Pontryagin prensibi kullanılarak sayısal olarak elde 

edilir ve çözülür. Ayrıca, maliyet-etkinlik analizi, artımlı maliyet-etkinlik oranı (ICER) 

kullanılarak gerçekleştirilir. Bulgular, aşılama, vaka tutma ve vaka bulma kontrol önlemlerini 

içeren bir hastalık kontrol programının TB yayginlik etkili bir şekilde azaltacağını göstermiştir. 

Optimal kontrol yaklaşımının tasarımında, sistem parametrelerinin önceden bilindiği ve doğru 

olduğu varsayılmaktadır. Bununla birlikte, sistem belirsiz parametreler içeriyorsa, geleneksel 

kontrol teknikleri istenen sonuçları vermeyecektir. Bu nedenle, üçüncü senaryoda, parametre 
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belirsizlikleri göz önünde bulundurularak TB modeline güçlü bir doğrusal olmayan adaptif 

kayma modu kontrol (ASMC) stratejisi uygulanır. Kontrol, önceden tanımlanmış bir referans 

yörüngeyi takip ederek sıfıra maruz kalan ve sıfıra bulaşan bireylerin popülasyonunu azaltmayı 

amaçlamaktadır. Uyum yasası, kontrol sisteminin belirsizliklere karşı sağlamlığını sağlamak 

için parametre değerlerini güncellemek üzere tanımlanmıştır. Kapalı döngü sisteminin 

kararlılığı Lyapunov Fonksiyon Teorisi kullanılarak kanıtlanmıştır ve sonuç sayısal 

simülasyonlarla doğrulanmıştır. 

Çalışma, pratik olarak kullanışlı optimal ve uyarlanabilir kontrol stratejileri bulmak için 

alternatif çözümler tanımlamakta ve açık-döngü ve kapalı-döngü kontrol sistemlerinin temel 

uygulamalarını göstermektedir. Çalışma, Birleşmiş Milletler TBC hastalığının ortadan 

kaldırılmasına yönelik 2030 planını gerçekleştirmeye yönelik gerçekçi yaklaşımları 

bilgilendirmek için yeni bir metodolojiyi vurgulamaktadır. 

Anahtar kelimeler: Epidemiyoloji; optimal kontrol; uyarlanabilir kontrol; kayan mod 

kontrolü; maliyet-etkinlik analizi; Lyapunov kararlılığı 
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CHAPTER 1                                                                                                         

INTRODUCTION 

 

 

1.1 Introduction 

Epidemic diseases such as tuberculosis (TB) have been a contributing cause of billions of deaths 

in several decades. The entire world is committed to finding effective control and prevention 

strategies to contain the epidemic outbreak. Several researches used mathematical modelling 

and control system theory to study the infectious disease dynamics and facilitate the design of 

control intervention programs to curtail the spread of the diseases (Chalub & Souza, 2011; 

Giamberardino & Iacoviello, 2018; Heesterbeek et al., 2015; Li, 2015; Matthew & Keeling, 

2008; Metcalf, Edmunds & Lessler, 2015; Zhang & Zhou, 2012). Recent reports from the world 

health organization (WHO) on the TB incidences have indicated that, despite the global pledge 

to eradicate the disease by 2030, the spread of TB persists (WHO, 2019). As a consequence, 

improved research is required so as to provide effective control strategies that will break the 

trajectories of TB and meet the global target. In this regard, this thesis explored the potential 

applications of optimal and adaptive control theory in the implementation of TB epidemic 

disease control strategies. The study can be used to suggest TB epidemic control programs and 

will serve as a support for the public health authorities. 

1.2 Background of Study 

Tuberculosis (TB) is a bacterial infection that usually starts in the body of a susceptible person 

(a healthy person that can contract the disease) as a result of infection by Mycobacterium 

tuberculosis (MTB). The disease is commonly transmitted through the air by the breath of 

healthy person and infected individuals, and the common symptoms of TB include coughing 

blood, fever and weight loss (Jumbo, Obaseki & Ikuabe, 2013). An infected person with MTB 

may develop active TB or remain latent. Latently infected people are asymptomatic and do not 

transmit the disease, but may progress to infectious (active TB) after a latency period (Rocha, 
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Silva & Torres, 2018). TB is treatable and can be cured. Nonetheless, inability to comply with 

the medication may lead to the emergence of drug-resistant TB (Bhunu, 2011). Various control 

interventions are available for TB prevention and treatment. Vaccination is the most preferred 

method of treating TB which is used to protect the susceptible individual from contracting the 

disease and subsequently prevent further dissemination of the infection. Reactivation of TB in 

an exposed person (latently infected individuals) can be controlled through a control effort 

known as “case finding”, which involves the monitoring action by public health workers to find 

and treat the exposed individuals to stop them from becoming infectious. Furthermore, the 

development of drug-resistant TB can be prevented by employing intervention program referred 

to as “case holding”. The case holding control effort represent the interventions made by health 

workers to ensure adherence to the proper treatment of the infected people  (Chaulet, 1983; 

Gomes et al., 2007). 

In order to predict the future characteristics of the infectious disease and plan reliable control 

intervention programs to minimize disease outbreak, a thorough understanding of dynamics of 

the disease transmission among populations is essential (Lin et al., 2020; Yang et al., 2020). 

Mathematical modelling and control theory has been one of the important tools for studying the 

dynamics and control of infectious disease (Lin et al., 2020; Sofia et al., 2015). Design and 

control analysis of epidemic models, however, involves a complex and quite challenging 

process; due to the inherent non-linearity, complexity, and parameter uncertainties associated 

with epidemic processes. This is in addition to the economic constraint of optimizing the 

demands of the control goals and minimization of the cost of implementing the control actions 

(Djouima et al., 2017; Gambhire et al., 2020). 

Many studies on the mathematical modelling of the dynamics of TB transmission have been 

performed (Lopes et al., 2014; Okuonghae & Omosigho, 2011; Verver et al., 2005; Windarto & 

Anggriani, 2015). However, some of the previous TB predictive models included vaccination 

and control treatments and analyzed the disease management by evaluating the role of 

parameters of disease transmission in decreasing the value of the basic reproduction number, 

𝑅0, below the threshold limit (Lopes et al., 2014; Okuonghae & Omosigho, 2011; Windarto & 
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Anggriani, 2015). Generally, a reproduction number 𝑅0 < 1 suggests that the disease is 

eradicated on its own, while 𝑅0 > 1 shows that the disease will persist in the population (Li, 

Zhou & Hyman, 2004; Matthew & Keeling, 2008; Yi, Zhang, Mao, Yang & Li, 2009). These 

approaches have a major limitation of not taking into consideration the time-dependent control 

inputs.  

Optimal control theory developed from the calculus of variation enables the incorporation of 

time-dependent control functions, and offers reliable tools to study the time-varying disease 

control strategies and determines the trade-offs between different control strategies and the cost 

of implementation (Zaman et al., 2017). The application of optimal control theory provides the 

public health authorities with useful suggestions on the impact of one control policy compared 

to others (Gani & Halawar, 2018). Optimal control has been applied in several biomedical 

problems, especially to cancer chemotherapy models (Chen et al., 2019; Saad & Hincal, 2018). 

These methods when implemented to infectious disease models, can offer tremendous insight 

into the best pathway to reduce disease burden. Many studies have considered the application 

of optimal control for specific diseases (El et al., 2019; Khamis et al., 2018; Lambura et al., 

2020; Yaro et al., 2019). 

Furthermore, the application of conventional optimal control methods requires that the 

epidemiological parameters are well known and accurate. This assumption is not always 

practical because the process of estimating such parameters from experimental data can result 

in inconsistent values.  As a consequence, in the presence of modelling uncertainties and 

parametric variations, the conventional control techniques can yield unsatisfactory results. 

Meanwhile, robust and adaptive control techniques which employs feedback will provide more 

consistent results. The closed-loop control design can achieve the desired control goals 

irrespective of the model’s parameter variations (Aghajanzadeh et al., 2017; Bera, Kumar & 

Biswas 2019; Rajaei, Vahidi-Moghaddam, Chizfahm & Mojtaba 2019). 
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1.3 Research Problem and Statement 

The impact of tuberculosis (TB) on the economy and social life is quite devastating, including 

discrimination, anxiety, and poverty. TB, despite being a curable and preventable disease, has 

become the world’s leading infectious killer with an estimated total of 1.5 million deaths per 

annum (WHO, 2019). The increase of new cases has been attributed to the collapse of public 

health programs, lack of funding in the developing countries, lack of awareness among the 

general public and exogenous re-infection, where a latently-infected individual acquires a new 

infection from another infectious (Bowong & Aziz Alaoui, 2013; Silva & Torres, 2013; Yang 

et al., 2016). 

While considerable progress has been made in developing a theoretical framework for studying 

TB’s dynamics and control methods, there are still many challenging and critical open questions. 

For instance, models integrating the role of public awareness on controlling TB are rare. Frost 

has recommended that TB incidences could be avoided by considering isolation and awareness 

in the control process (Frost, 1937). Moreover, there is a need for more studies on the optimal 

control applications which will provide detailed cost-effectiveness analysis and compare 

different control strategies to show the impact of a particular control strategy with respect to 

others. Another problem that needs to be addressed is the fact that conventional optimal control 

systems are affected by the variation in system parameters such as transmission rate, death rate 

and other epidemiological parameters. Subsequently, the performance of the system may be 

affected by uncertain parameters. When there are uncertain parameters in the system, the desired 

result cannot be obtained by conventional control techniques anymore.  

This study will investigate the application of optimal and adaptive control theory for the analysis 

of TB transmission dynamics. The research would also consider the significance of 

incorporating public awareness into the TB control program. This method allows the most cost-

effective intervention to be analyzed and the performance of the various combinations of the 

control measures to be compared. In the case of parameter uncertainty, the adaptive control 

design can ensure the robustness of the TB model. 
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1.4 Research Aim and Objectives 

This research work aims to design and analyze optimal and adaptive control strategies for the 

control of TB epidemics, to study how these control measures can be implemented, over a given 

period of time, in order to reduce the population of exposed and infectious individuals, while 

minimizing the cost of implementation of the control interventions.  

Following research objectives would facilitate the accomplishment of this aim: 

1. Propose a novel mathematical model to study the dynamics of tuberculosis with saturated 

incidence rate. 

2. Design and analysis of optimal TB control systems with different control strategies, and cost-

effectiveness analysis to compare the implementation of the various control strategies. 

3. Design and analysis of adaptive sliding mode control for the TB model considering parameter 

uncertainties. 

1.5 Scope of the Study 

The main emphasis of this research is on performing an analysis of the dynamics of TB epidemic 

with optimal and adaptive controls. The study would be based on SEI (susceptible-exposed-

infectious) compartmental TB model with fast and slow progression. Within the SEI model, the 

entire population is divided into three groups, namely; susceptible (group of people that are 

healthy but can contract the disease), exposed (group of people that have been in contact with 

the disease agent but have not shown the symptoms of the disease) and infectious (individuals 

who have already developed the disease and now are infected). The research objectives will be 

addressed in three separate scenarios. Optimal control theory should be used in the first scenario 

to study the TB dynamics with saturated incidence rate. In this scenario, the control analysis 

will employ two time-dependent functions, namely the “case holding” and “case finding” as 

control inputs. The former represents the surveillance procedure concerning finding and treating 

people that are exposed to prevent them from being infectious. The later signifies the efforts 

rendered by health professionals to ensure adherence to the proper treatment of the infected 
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persons. The significance of public awareness (measured by 𝛿) will be shown numerically. In 

the second scheme, the optimal control theory analysis would incorporate three time-dependent 

control functions, where the vaccination campaign program is used in addition to the two 

controls mentioned in the first scenario. To show how the parameter uncertainties will be 

handled, the study would consider the adaptive control system design based on sliding mode 

control scheme in the final scenario. 

The optimal control strategies are implemented to reduce the exposed and infectious population 

while minimizing the cost of executing the control actions. The necessary conditions required 

to achieve the optimal controls will be derived using the Pontryagin’s maximum principle. 

Incremental cost-effectiveness ratio (ICER) is used for the cost-effectiveness analysis. The 

asymptotic stability of the closed-loop system is shown analytically using the Lyapunov 

Function Theory. All the numerical simulations will be performed with the help of 

MATLAB/SIMULINK 2019b. 

The study is limited to the deterministic compartmental model that considers the nature of the 

disease at the population level. The analysis of the TB dynamics is confined to three 

compartments, the susceptible, exposed, and infectious. Several estimates, selections, and 

assumptions were made as consideration of practical and feasible design. 

1.6 Thesis Organization 

The thesis report is organized in six chapters; and the research objectives are thoroughly 

elaborated in chapter 3, 4 and 5, which can be read independently from each other. The chapters 

are arranged as follows: 

Chapter 1: In this chapter, the background of the study is presented. The chapter also discusses 

the problem statement, objective and scope of the study. 

Chapter 2: Reviews the basic theories of epidemic modelling, optimal control and sliding mode 

control techniques. It also provides a thorough and concise literature review of the other related 

studies. 
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Chapter 3: This chapter illustrates the development of a new model of TB dynamics, 

considering the saturated incidence rate. The chapter further addresses the optimal control 

design and analysis of the proposed model.  

Chapter 4: This chapter described another scenario of the optimal control strategy. In this 

scheme, besides the optimal control design, cost-effectiveness analysis of the different control 

interventions is also discussed.  

Chapter 5: This chapter presents the step by step analysis of the TB dynamics with adaptive 

control scheme considering parameter uncertainties.  

Chapter 6: In this chapter, the conclusion of the thesis work is presented along with 

recommendations for future work. 
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CHAPTER 2  

LITERATURE REVIEW 

 

2.1 Introduction 

In this chapter, the literature review on the relevant studies is presented. The chapter begins by 

reviewing the fundamental theories about mathematical modelling of epidemiology and basic 

mathematical epidemic models. The chapter also discusses the control strategies employed in 

epidemiology study including the constant control, optimal control and adaptive control 

strategies. Finally, a precise and concise review of the previous studies on the mathematical 

models and control strategies of TB are presented.  

2.2 Mathematical Modelling of Epidemiology 

Epidemiology is the topic which studies health and disease trends, and related factors in a 

particular population. The term “epidemiology” is derived from the Greek words “epi” meaning 

"over", “demos”, meaning "people" and “logos”, which means "study". It follows that the 

concept of epidemiology refers to the study of disease trends over human populations. The word 

"epidemiology" is believed to have been first used by a Spanish physician de Villalba's 1802 to 

explain the study of epidemics (Martcheva, 2013). However, Hippocrates (460-377 B.C.E.) is 

considered to be the father of epidemiology, because of his initial work of describing the disease 

to environment connection. Today, diseases like heart attack, cancer and stroke also received 

considerable attention in epidemiology (WHO, 2018). It is pertinent here, to define the 

following three epidemiology terms; endemic, epidemic and pandemic. The continuing outbreak 

of the disease is called endemic, while a sudden increase in the disease population is referred to 

as an epidemic, and a worldwide disease that impacts a high number of people is described as 

pandemic (Brauer, 2017). 

Infectious disease refers to clinically proved illness occasioned by the incidence of a pathogenic 

microbial agent. These agents that trigger contagious diseases may be parasitic, fungal, bacterial 
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or toxic protein. For instance, the bacterial agents caused pneumonia and tuberculosis; whereas 

dermatomycoses are examples of fungal disease; macro parasites like helminth and protozoa are 

caused by parasitic infections; while virus infections cause diseases like influenza and HIV. The 

spread of the disease over a population is influenced by several factors, which include 

population increase, inadequate sanitation in developing countries, and modern infrastructure 

that allows foreign border crossings.  

The disease is usually transmitted through person-person by either direct or indirect contact. 

Indirect contact means passing an infectious material, blood, or other substance in the body. 

Direct contact involves physical touch or sexual activity. Influenza can be contracted by indirect 

contact while human immunodeficiency virus (HIV) is spread through direct contact. Other 

forms of transmission occur when a healthy person inhales infected air. Infectious diseases 

under this category include tuberculosis, smallpox, chickenpox, pneumonia and measles. 

Moreover, four different types of transmission are considered for modelling purposes: direct, 

where the pathogen is transferred from human to human; vector-spread where the transfer is 

vector-to-human; vertical where the transfer is mother-to-child at birth; and environmental when 

human become infected by contact with pathogen through the environment (Hethcote, 2000; 

Sokat et al., 2019). 

This thesis focused on the study of TB epidemic which is caused by bacteria (Mycobacterium 

tuberculosis) and transmitted from person to person through air.  

2.2.1 Basic mathematical epidemic models  

Epidemic models may be defined as mathematical models that deal with the spread of infectious 

diseases within a human population. The term mathematical model refers to system 

representation, using mathematical terminologies and techniques. Mathematical models can be 

extended to any process in engineering or natural sciences such as epidemiology, biology or 

some other well-defined systems. A mathematical model is built to characterize a system 

accurately, evaluate the effects of its various components, provide a rational understanding of 
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experimental data, interpret the response pattern of the system, predict the future behavior of 

the system and enhance system performance (Martcheva, 2013). 

Figure 2.1 illustrates how the epidemic models are developed. The first step is to obtain an 

accurate scientific description of the system. Mathematical equations (usually differential 

equations) are then used to represent the system behavior. Subsequently, an extensive 

mathematical analysis is undertaken to show the existence, uniqueness and stability of the 

model’s solution. Once the model is formulated, and the mathematical analysis is completed, 

the model is validated using accurate experimental data through a model fitting, and the model’s 

parameters can be estimated. This is accompanied by a sensitivity analysis to assess the 

influence of the various system parameters on the system performance. Many useful information 

can be obtained via numerical simulations as well (Martcheva, 2013). 

 

Figure 2.1: Epidemic model development (Martcheva, 2013) 
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This study focused on deterministic compartmental epidemic model. But stochastic models have 

been developed and used in the literature as well (Allen, 2017; Britton, 2010; Rao, 2014). In the 

stochastic models, probability distributions are used to represent the system state variables, 

while in deterministic models, the state variables are distinctively determined by model 

parameters and the initial states of the variables (Allen, 2017).  The origin of compartmental 

epidemic models is dated back to the early twentieth century, with Kermack and McKendrick’s 

work in 1927 (Wilkinson, Ball, & Sharkey, 2016). These models consider the nature of a disease 

outbreak at the population level. The whole population is grouped into separate compartments. 

Some mathematical parameters which serve as a link between the compartments defined the 

transfer of individuals from one group to another.  Compartmental models are analyzed by using 

differential equations, and they are employed to forecast the behavior of the disease progression, 

such as prevalence, deaths, or the duration of the outbreak. It also provides an understanding of 

the most efficient technique for controlling the disease. The major types of compartmental 

models are discussed in the subsequent subsections; however, a comprehensive review of the 

subject can be found from (Keeling & Rohani, 2008). 

i. SIR epidemic model  

The SIR model is one of the most basic epidemic model developed by Kermack and 

McKendrick in 1927 ( Wilkinson et al., 2016). Many variants of SIR model exist in the literature, 

usually modifying the principal model to include more information (Ameen, Baleanu, & Ali, 

2020; Wang, 2015; Zhang, 2015). The SIR model describes the transmission of the disease by 

dividing the people into three groups. The first group known as susceptible (denoted by 𝑆), 

comprises of people that are healthy but can contract the disease. The second group called 

infectious (represented by 𝐼) contains individuals who have already developed the disease and 

now are infected. The recovered compartment (denoted by 𝑅) accommodates the individuals 

that have recovered from the disease.   

The process of transfer from one group to another is depicted in Figure 2.2. The susceptible 

individuals that become infected move from S compartment to I and the transmission rate is 

given by 𝛽. The recovery rate denoted by α signifies the rate at which individuals who have 
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recovered or died move from the infectious class to the recovered group. The number of people 

in the three compartments is a function of time, and can be written as S(t), I(t), and R(t). 

Therefore, the total size of the population at any instant of time N(t), is equal to the summation 

of the number of people in the three compartments, i.e. N = S(t)+I(t)+R(t). 

 

 

 

 

 

Figure 2.2: SIR epidemic model 

The differential equations describing the system is given in Equation (2.1): 

{
𝑆̇ = −𝛽𝑆𝐼

𝐼̇ = 𝛽𝑆𝐼−∝ I 

𝑅̇ =∝ 𝐼 

                             (2.1) 

with initial conditions 𝑆(0), 𝐼(0), and 𝑅(0) (Wilkinson et al., 2016).  

ii. SEIR epidemic model  

Another essential type of epidemic model is the SEIR model, in which an additional 

compartment; exposed, denoted by E(t) is added between the susceptible and infectious classes. 

This is due to the fact that for several diseases when susceptible individuals become in contact 

with the disease agent (exposed), they do not proceed to the infected class instantly as in SIR 

model (Huang, 2008). The pathogen requires some time to reproduce in the host and to establish 

itself. The time the individual gets infected and is not yet infectious is deemed the latent stage. 

The Transfer Diagram for the SEIR model is shown in Figure 2.3.  

The differential equations describing the system is given in Equation (2.2): 

S I R 
𝜷 𝜶 
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{
 
 

 
 𝑆̇ = −𝛽𝑆𝐼

𝐸̇ = 𝛽𝑆𝐼 − 𝛾E

𝐼̇ = 𝛾E−∝ I 

𝑅̇ =∝ 𝐼 

                  (2.2) 

where 𝛾 is the rate at which the exposed individuals proceed to the infectious class. Hence, the 

approximate time in the exposed class, also known as the latency period is given by 1/𝛾 (Huang, 

2008). 

 

Figure 2.3: SEIR epidemic model  

 

2.3 Control Strategies 

Measures for infectious disease prevention and control include vaccination, treatment, and 

prophylaxis. In vaccination control strategy, inactivated micro-organisms will be introduced in 

to healthy person’s body. The body's immune system detects and treats those vaccination agents 

as foreign ones. This leads to reactivation of the body immune response, and antibodies are 

produced to fight them. Consequently, when similar micro-organisms are detected in the body 

the antibodies will kill them much faster. Therefore, a person who is immunized is healthy from 

the disease. Thus, it is much harder for epidemic outbreak to occur where a sufficient number 

of individuals are vaccinated. Treatment involves use of specific procedure, agents, or regimen, 

like bed rest or a drugs in order to cure or lessen the disease. For certain infectious diseases, 

medications actually exist that can cure or decrease the influence of the disease. For instance, 

malaria and TB can be cured through medication. Prophylaxis is a set of steps employed to avoid 

S I R

𝜷

𝜶

E
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a particular infectious disease. There precautions may be wearing safety clothes, washing hands, 

physical distancing.  

Researchers in the field of mathematical modelling and control systems analyzes the effects of 

these control measures by including them in to the epidemic models as a constant coefficient or 

as a time-dependent variable. The control strategy that incorporate the control measures as 

constant coefficient is regarded as constant control strategy. On the other hand, control strategies 

that consider the control measures as time-varying functions are classified as time-dependent 

control strategies. In the literature the time-dependent control strategies are often designed as 

either open-loop control system or closed-loop (feedback) control systems. The open-loop 

control system design is based on optimal control techniques while the closed loop s often based 

on feedback linear control methods or nonlinear adaptive control techniques (see Figure 2.5). 

 

 

Figure 2.4: Control strategies 
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2.3.1 Constant control strategy 

In the constant control strategy, the control measures such as vaccination, treatment, and 

prophylaxis are integrated in to the model as constant coefficients. Reproduction number is then 

computed for the mathematical models involving the control measures. The reproduction 

number depends on the control coefficient, and can be used to analyze the impact of the controls 

on the dynamics of the disease. 

i. Basic reproduction number 

The notion of basic reproduction number was first established by Sir Ronald Ross formed in the 

book titled "The Prevention of Malaria” published in 1911. The author discovered in this work 

that malaria is being transmitted between mosquitoes and humans. He then formulated a 

mathematical model to represent the dynamics of malaria and obtained a threshold quantity, 

now identified as the basic reproduction number (Hardy & Magnello, 2002).  

The basic reproduction number, symbolized as 𝑅0, is described as the estimated number of new 

infections which would be induced by only one infected person in a population of entirely 

susceptible, during the infectious cycle. For simple models, 𝑅0, can be obtained by following 

the new cases in the population produced by single infective, by using the following expression:  

 

𝑅0 = (𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑐𝑡) × (𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑎 𝑐𝑜𝑛𝑡𝑎𝑐𝑡)

× (𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠) 

 

Nevertheless, for complex epidemic models with heterogeneity or seasonality with different 

susceptibility, following the new cases approach is not feasible. To handle these shortcomings, 

a more generalized method, based on a unique square matrix called the next-generation matrix 

(NGM), was introduced by (Diekmann, Heesterbeek, & Metz, 1990; Roddam, 2001). In the 

next-generation matrix approach, 𝑅0 is calculated as the spectral radius of the ‘next-generation 
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operator’. The operator formation involves the determination of two compartments from the 

model; namely the infected and non-infected compartments (Roddam, 2001). 

To illustrate this concept, consider a compartmental epidemic model in which there are 𝑚 

compartments, among which 𝑛 are infectious. Let 𝑥𝑖 for 𝑖 = 1,2, … . . , 𝑚 denotes the number of 

people in 𝑖𝑡ℎ compartment, 𝐹𝑖(𝑥𝑖) refers to the rate at which new infections occur in 

compartment 𝑖, and 𝑉𝑖(𝑥𝑖) = 𝑉𝑖
−(𝑥𝑖) − 𝑉𝑖

+(𝑥𝑖) , where 𝑉𝑖
− is the rate at which individuals are 

moved from the 𝑖𝑡ℎ compartment and 𝑉𝑖
+ is the rate at which individuals are moved to the 𝑖𝑡ℎ 

compartment by some other means. 

According to Hefferman (Heffernan et al., 2005), the NGM operator 𝐺 can be defined  as a 

product of two partial derivatives matrices of  𝐹𝑖and  𝑉𝑖: 

𝐺 = 𝐹𝑉−1                  (2.3) 

and  

𝑅0 = 𝜌(𝐹𝑉−1)                  (2.4) 

Where 

𝜌(𝐺) is the dominant eigenvalue (spectral radius) of matrix 𝐺,  

 

𝐹 = [
𝜕𝐹𝑖(𝑥0)

𝜕𝑥𝑗
],  

𝑉 = [
𝜕𝑉𝑖(𝑥0)

𝜕𝑥𝑗
], 

𝑥0 = 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑓𝑟𝑒𝑒 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 and 𝑖, 𝑗 = 1,…… . , 𝑛  

In mathematical epidemiology, 𝑅0 is used as a threshold quantity to analyze the disease 

transmission dynamics. 

2.3.2 Optimal control strategy 

In the constant control strategies, the control coefficients are considered to be constant in time, 

but in reality, control strategies are variable in time. The control theory used to derive optimal 

control strategies that vary in time is called optimal control theory. In this section, we introduce 

the basic theory of optimal control. 
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i. Basic theory of optimal control 

Optimal control is an essential area in modern control theory, which provides a systematic 

approach to design a controller that satisfies predefined performance criteria like time 

minimization, cost minimization and error minimization. Alternatively stated, optimal control 

theory is concerned with finding a set of control functions with corresponding system state 

trajectories that minimize (or maximize) a pre-defined cost function (performance index) while 

simultaneously satisfying some physical constraints (Bryson, 1996). The emergence of optimal 

control theory, as a recognized field, can be dated back to the mid-20th century. This is attributed 

to the advances made in the area of automatic control, along with several achievements made in 

mathematical theory, particularly regarding Bellman’s dynamic programming, Wald’s 

sequential analysis and Pontryagin’s maximum principle (Grass et al., 2008). Being the 

intersection of control systems theory and mathematics, optimal control theory can be regarded 

as one of the most interdisciplinary research areas of today (Yaro et al., 2019). 

The mathematics behind the optimal control theory is rooted from an essential aspect of 

mathematical analysis; the calculus of variation, developed in the 17th century. The famous 

Johann Bernoulli’s "brachistochrone" problem solved in the mid-1600, is often considered as 

the pioneering work in the calculus of variation.  In 1662, Fermat used calculus of variation to 

find the solution to a minimum time problem, which lead to the derivation of the law of 

refraction. In the same period, Isaac Newton applied calculus of variation to decide the optimal 

shape of a ship’s bow as a tradeoff between low water resistance and high ship cargo load. The 

evolution of calculus of variation theory was further advanced in 18th and 19th centuries by the 

works of Euler, Lagrange, Jacobi, Weistrass and Hamilton (Grass et al., 2008; Kamien & 

Schwart, 2000). In the 1950s, Soviet Union engineers sought the help of mathematicians in 

solving the problems that occur in steering aircraft. Pontryagin and his team got incolved in this 

area, and their work culminated in the prominent maximum principle; the method used in this 

study and several other optimal control solutions. The advent of the Pontryagin’s Maximum 

Problem establishes a new age of optimal control theory as it offers optimum conditions for 
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optimization problems where constraints are defined by differential equations and paves the way 

for thorough work in the field (Pontryagin et al., 1962).  

There are several methods to formulating problems involving optimal control, in which the 

system can be represented by the system of ordinary differential equations (ODEs), difference 

equations, partial differential equations (PDEs), stochastic differential equations (SDEs) etc. 

Optimal control theory is a well-developed for both nonlinear and linear systems. The progress 

in numerical and computational techniques, coupled with the emergence of faster computers, 

allows for the application of optimal control to solve more sophisticated science and engineering 

problems. It has been broadly applied in numerous fields of research, including electrical, 

mechanical, finance, economics and management, aerospace and aeronautic, biology, 

biomedical, health sciences, robotics, epidemiology, natural resources, demography, 

environment and so on. 

ii. Optimal control solution using Pontryagin’s maximum principle 

The optimal control problem usually includes the description of the control system (process to 

be controlled) using ordinary differential equations (ODEs), control objectives, physical 

constraints and performance index.  

Given the following ODEs-system 

{
𝑑𝑥

𝑑𝑡
= 𝒚(𝒙(𝑡), 𝑡)

𝒙(0) = 𝒙𝟎
,                 (2.5)   

In which the unknown vector 𝒙:ℝ+ → ℝ𝑛 is considered to be piecewise differentiable and 

continuous with given initial conditions 𝒙𝟎 ∈ ℝ
𝑛 and 𝒚: ℝ𝑛 → ℝ𝑛, Equation (2.5) is the system 

model which describes the dynamics of the process. 

Accordingly, the above system becomes Let us generalize the system in Equation (2.5) by 

adding a new time-dependent function 𝒖(𝑡) to the right-hand side, such that 𝒖:ℝ+ → 𝐷, where 

𝒖 is from a set, 𝐷 ⊂ ℝ𝑚. 
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{
𝑑𝑥

𝑑𝑡
= 𝒚(𝒙(𝑡), 𝒖(𝑡), 𝑡)

𝑥(0) = 𝑥0
,                (2.6)   

The variable 𝒖(𝑡) is known as the “control” and the new system described in Equation (2.6) is 

referred to as the “controlled system”.  Now, due to the existence of the control variable, the 

corresponding solution 𝒙(𝑡) (system response) depends on the system initial conditions 𝑥0 and 

the control variable. The vectors 𝒙, 𝒖 and function 𝒚 can be generalized as: 

𝒙(𝑡) =

[
 
 
 
 
 
𝑥1(𝑡)
𝑥2(𝑡)
.
.
.

𝑥𝑛(𝑡)]
 
 
 
 
 

 , 

𝒖(𝑡) =

[
 
 
 
 
 
𝑢1(𝑡)
𝑢2(𝑡)
.
.
.

𝑢𝑚(𝑡)]
 
 
 
 
 

,  

and 

𝒚(𝒙(𝑡), 𝒖(𝑡), 𝑡) =

[
 
 
 
 
 
𝑦1(𝑥1(𝑡), 𝑥2(𝑡), …𝑥𝑛(𝑡), 𝑢1(𝑡), 𝑢2(𝑡), … , 𝑢𝑚(𝑡))

𝑦2(𝑥1(𝑡), 𝑥2(𝑡), … 𝑥𝑛(𝑡), 𝑢1(𝑡), 𝑢2(𝑡), … , 𝑢𝑚(𝑡))
.
.
.

𝑦𝑛(𝑥1(𝑡), 𝑥2(𝑡), … 𝑥𝑛(𝑡), 𝑢1(𝑡), 𝑢2(𝑡), … , 𝑢𝑚(𝑡))]
 
 
 
 
 

.   

After the development of the controlled system, next, the control objective is defined using a 

suitable performance index.  In respect of epidemic control models, the aim is to obtain a cost 

of control inputs that will minimize the prevalence and/or minimize the cost of controlling the 

disease. More explicitly, the objective functional is given by: 
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𝐽[𝒖] = ∫ 𝐿(𝒙(𝑡), 𝒖(𝑡))𝑑𝑡
𝑇

0
,                (2.7) 

Where  𝒙(𝑡) solves (2.6) for specified control 𝒖(𝑡). The Lagrangian function 𝐿 is continuous 

and differentiable representing the running payoff, such that 𝐿: ℝ𝑛 × 𝐷 → ℝ. Both the final time 

𝑇 and the function 𝐿 are given. Thus the optimal control problem is to determine the control 𝑢∗ 

that minimizes the objective functional (2.7) subject to the system state (2.6) over the closed 

interval [0, 𝑇], that is, 

𝐽[𝒖∗] = min
𝒖∈℧

𝐽[𝒖].                  (2.8) 

Where ℧ is the set of admissible controls defined by 

℧ = {𝒖(𝑡) ∈ 𝐿1(0, 𝑡𝑓)|𝒖(𝑡) ∈ 𝐷}.  

The control 𝑢∗(𝑡), if exist, is referred to as the optimal control. The next step is to check the 

existence of the optimal control pair (𝑢∗, 𝑥∗), this can be achieved by using theorem 4.1 from 

(Bather et al., 1976a): 

Theorem 2.1: Suppose that,  

I. 𝒚 is of class 𝐶1 and there exist a constant 𝜀 exists such that  

|𝑦(𝑡, 0, 0)| ≤ 𝜀,  

 |𝑦𝑥( 𝑡, 𝒙, 𝒖)| ≤ 𝜀(1 + | 𝒖|), and 

 |𝑦𝑢( 𝑡, 𝒙, 𝒖)| ≤ 𝜀; 

II. The admissible set 𝜑 of solutions to system (2.7) along with initial conditions and 

associated control in ℧ is nonempty; 

III. 𝑦( 𝑡, 𝒙, 𝒖) = 𝑎( 𝑡, 𝒙) + 𝑏( 𝑡, 𝒙)𝒖; 

IV. The optimal control set 𝑈 is closed, compact and convex; 
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V. The objective functional integrand 𝐿(𝒙(𝑡), 𝒖(𝑡)) is convex in 𝑈. 

Then there exists an optimal control 𝑢∗ and the corresponding optimal solution 𝑥∗ to the problem 

(2.8). Now that the existence of the optimal control has been proved, the solution of the optimal 

control is provided by the Pontryagin’s maximum principle (Pontryagin et al., 1962). Let 

introduce a time-varying Lagrange multiplier vector 𝜆(𝑡) and define a new function 𝐻 (called 

Hamiltonian function) for all time 𝑡 ∈ [0, 𝑡𝑓] as 

𝐻(𝒙(𝑡), 𝒖(𝑡), 𝜆(𝑡), 𝑡) = 𝐿(𝒙(𝑡), 𝒖(𝑡)) + ∑ 𝜆𝑗(𝑡)𝑦𝑗(𝒙(𝑡), 𝒖(𝑡), 𝑡)
𝑛
𝑗=1     (2.9) 

Theorem 2.2: (Pontryagin’s Maximum Principle). For the optimality of control 𝑢∗(𝑡) and 

associated optimal trajectory, 𝑥∗(𝑡), it is necessary that there exists a nonzero co-state vector 

𝜆∗(𝑡) that is a solution to the co-state system 

𝑑𝜆

𝑑𝑡
= −

𝜕𝐻(𝒙(𝑡),𝒖(𝑡),𝜆(𝑡),𝑡)

𝜕𝑡
               (2.10) 

Such that 

𝐻(𝒙(𝑡), 𝒖(𝑡), 𝜆(𝑡), 𝑡) = min
𝒖∈℧

𝐻(𝑥∗(𝑡), 𝒖(𝑡), 𝜆∗(𝑡))  

Consequently, the necessary conditions for optimizing the Hamiltonian are (Neilan & Lenhart, 

2010): 

1. Optimality condition 

𝑑𝐻

𝑑𝑡
= 0  

2. The co-state system 

𝑑𝜆𝑗(𝑡)

𝑑𝑡
= −

𝜕𝐻(𝒙(𝑡),𝒖(𝑡),𝜆(𝑡),𝑡)

𝜕𝑥𝑖
  

3. Transversality condition 

𝜆𝑗(𝑡𝑓) = 0.  
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For minimization, we must also have 

𝜕2𝐻

𝜕𝑢2
≥ 0 at  𝑢∗.  

2.3.3 Feedback control strategy  

The optimal control strategy used in the existing studies are mostly designed as an open-loop 

control system. Open loop control scheme is often affected by changes in the control system 

parameters. Therefore, the optimal control strategies are applied with the assumption that the 

system parameters are well known and accurate. This is a critical unrealistic situation as the 

estimation from experimental data of such parameters can lead to inaccurate values. This 

scheme, though used quite frequently, cannot always assure the desired result. 

Closed loop control, also known as feedback control, eliminates the shortcomings of open loop 

control. Feedback control has been recently employed in the design of control strategies for  

epidemic models (M. De la Sen et al., 2012; N. Yi et al., 2009). For instance, various vaccination 

laws based on feedback control theory have appeared in the literature during the last years such 

as state-feedback control (M. De la Sen et al., 2012), feedback linearization (Manuel de la Sen 

et al., 2011; Giamberardino & Iacoviello, 2019), observer-based control (Alonso-Quesada et al., 

2012), and pulse vaccination (S. Gao, Chen, et al., 2008; S. Gao, Teng, et al., 2008).  

However, many of the above controllers are linear, while the epidemic models are nonlinear. 

Also, epidemic models contain uncertain parameters which are attributed to errors in recording 

the infection incidences, unreported cases and errors resulting from the process of estimating 

the model parameters (Huynh et al., 2015; Jung, 2002).  Design of control systems for systems 

with considerable parameter uncertainty can be approached by adaptive control. Adaptive 

design methods extract knowledge of the plant parameters online and update the control law. 

There are several strategies to design adaptive controllers such as 𝐻∞, fuzzy, or neural network 

based techniques (C. Y. Chen & Chiu, 2008; Gaya et al., 2014; Khodaei-mehr et al., 2018; Tong 

et al., 2007).  Among them, sliding-mode control is one of the most well-known technique due 
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to its simple design process, accuracy and reliability. The historical background and basic theory 

of the adaptive sliding mode control will be discussed in the forthcoming section. 

i. Adaptive sliding mode control  

Sliding mode control (SMC) technique is among the most successful robust control approaches 

applied to complex nonlinear systems operating in the presence of both structured and 

unstructured uncertainties. The study of sliding mode operation is dated back to 1950s in the 

Soviet Union and was first used in variable structure systems (VSS). Over the last decades, 

several researchers from control engineering community have been giving so much attention to 

SMC strategy which leads to numerous improvements in the area (Sra-Ramirez, 1989; V. I. 

Utkin, 1977; Young et al., 1999). The design of SMC basically begins with the development of 

the switching function that will keep the system state on the sliding surface, followed by the 

formulation of the control law that maintains the system trajectory on the sliding manifold under 

the influence of uncertainties.  

There are many different robust controller design strategies such as back-stepping control 

(Krstic et al., 1995), neural network control (M. Wang et al., 2011), fuzzy control (Tong et al., 

2007) and H∞ control (B. M. Chen, 2000). The critical advantage of SMC over other robust 

control strategies include high performance in controlling nonlinear systems, design simplicity, 

suitability for discrete-time and multi-input multi-output (MIMO) systems. It doesn’t also 

require exact modelling of the plant since its less sensitive to parameter variation and un-

modelled system dynamics and guarantees stability and robustness in many uncertain systems 

where linear controllers fail (Gambhire et al., 2020). In SMC design the control action is a 

discontinuous function which implies that the controller can be implemented with traditional 

power converters using “on/off” as the admissible operation mode (Iordanou & Surgenor, 1996). 

The practical application of the conventional SMC faced so many challenges due to its 

chattering feature. The reason behind chattering is attributed to the fast dynamics of SMC, in 

the sense that the controller switching frequency is assumed to be infinite in the ideal SMC. 

Nevertheless, in practical applications, although the frequency is high, it is finite because of the 
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nonlinearity of the system. As a result, the sliding mode takes place around the neighborhood 

of the sliding surface with very high frequency that is inversely proportional to the controller’s 

switching frequency. The chattering issue associated with conventional SMC was addressed by 

the introduction of second-order sliding in the middle of 1980s  (Levant, 1993). 

After the successful implementation of the “second-order sliding” many improved versions of 

the SMC were developed. The recent development in SMC design methods is central to 

addressing the salient issues associated to the conventional SMC such as removal of chattering, 

improvement of closed-loop performance, reducing the computational complexity, the 

implementation for higher-order systems, compensating the effects of un-modelled dynamics 

and adaptability in uncertain systems. In the early 2000s, higher-order SMC concepts were 

developed to address the restriction on the sliding order. Higher-order SMC provide an nth order 

of sliding precision in terms of sampling interval as against the first order of the conventional 

SMC (Levant, 2003).  

In the traditional SMC system, states may take infinite time before reaching the equilibrium. 

The issue of the convergence to equilibrium was solved with the emergence of terminal sliding 

mode control (TSMC) (Y. Feng et al., 2014; Venkataraman & Gulati, 1993). Though TSMC 

ensures the convergence of the system states to equilibrium in a finite time, however, the sliding 

surface is nonlinear and the convergence takes longer time when the initial conditions are very 

far from the origin. This leads to the introduction of improved TSMC known as “fast terminal 

sliding mode control” which is often written as (FTSMC). FSTMC further manages to achieve 

faster convergence of the system states due to the introduction of linear counterpart in the 

terminal sliding manifold (Abolvafaei & Ganjefar, 2019; Hernández et al., 2020). TSMC also 

encounters a problem of singularity, in which control law is infinite in some portion of the state 

space; thus another variant of TSMC, called “non-singular terminal sliding mode control 

(NTSMC)” was developed (Y. Feng et al., 2013; J. Yang et al., 2013). Furthermore, a new 

concept referred to as “Integral Sliding Mode Control (ISMC)” was also proposed in the 

literature. In ISMC, the order of the motion equation in this new type of Sliding Mode is equal 

to the dimension of the state space. Therefore, the robustness of the system can be guaranteed 
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throughout an entire response of the system, starting from the initial time instance (V. Utkin & 

Shi, 1996).  

The recent development in SMC approaches includes the adaptive SMC, event-triggered SMC 

and intelligent SMC approaches. In case of event-triggered SMC, the control action is only 

applied when the event takes place, and the system response remains in the bounded region of 

the desired sliding surface (Behera et al., 2018; Wu et al., 2017; Yu & Hao, 2016). The adaptive 

SMC method includes adaptive control gain with regards to internal parameter uncertainties and 

external disturbances, to ensure the robustness of the controlled system in the presence of prior 

unknown uncertainties (Inverter, 2018; Taylor et al., 2010; V. I. Utkin & Poznyak, 2013). 

Lately, many researchers combine the robustness of SMC and different capacities of the 

intelligent control techniques (neural network and fuzzy logic) to improve the performance of 

the standard SMC  (Ajoudani & Erfanian, 2009; Esmaili & Haron, 2017, 2015).  

ii. Basic theory of adaptive sliding mode control 

From the theory perspective, SMC is a control method that regulates the given closed-loop 

dynamics so as to match a sliding surface. Since feedback-controlled systems behavior depends 

on the dynamics of the closed-loop system, the system is controlled by designing the closed-

loop behavior by selecting a desirable sliding surface.  

To demonstrate the design of SMC, consider a sliding surface 𝑠, defined as 

𝑠 = 𝑒̇ + 𝜆𝑒 = 0                (2.11) 

Where 𝜆 is a positive constant, 𝑒 and 𝑒̇ are the trajectory error and derivative of the error, 

respectively. It is clear from Equation (2.11) that the error converges exponentially. 

Now, consider a second-order system in Equation (2.12) 

𝑥̈ = 𝑦(𝑥) + 𝑢                (2.12) 

Where 𝑥 is the state of the system, and 𝑢 is the equivalent control law. using Equation (2.11) 

and defining the trajectory error as 𝑒 = 𝑥 − 𝑥𝑑, we have  
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 𝑥̈ = 𝑥̈𝑑 − 𝜆𝑒̇, 

Thus the control law 𝑢 may be  expressed as 

𝑢 = 𝑥̈𝑑 − 𝜆𝑒̇ − 𝑦                           (2.13) 

A discontinuous term says Γ𝑆𝑔𝑛(𝑠) is added in the control law, for Γ > 0, so as to make the 

dynamics of the system converged to the sliding surface in finite time, despite the existence of 

parameter uncertainties. Thus, control law becomes 

𝑢 = 𝑥̈𝑑 − 𝜆𝑒̇ − 𝑦 − Γ𝑆𝑔𝑛(𝑠)               (2.14) 

and  

 𝑠̇ = 𝑦 − 𝑦̂ − Γ𝑆𝑔𝑛(𝑠)               (2.15) 

Young et al. (Young et al., 1999) have shown that the convergence and stability of the controlled 

system can be achieved by selecting Γ > ‖𝑦 − 𝑦̂‖. The asymptotic stability of the system can 

be achieved using the conventional SMC in the presence of uncertainties. 

2.4 Mathematical Modelling and Control Study of TB 

TB is caused by bacterial infection and spread from one person to another indirectly through the 

air. When a person with TB sneezes, cough or spit, he releases the TB germs into air, and healthy 

individual becomes infected by inhaling only a few of these germs (WHO, 2019). Mathematical 

models, which are generally based on differential equations, have been very useful in modelling 

the dynamics of epidemic diseases such as TB. They help in understanding the nature of the 

diseases transmission within a population and assist public health authorities in planning control 

interventions (Hethcote, 2000). In this section, some key previous studies on the mathematical 

modelling and control of TB are presented. 

2.4.1 Mathematical modelling of TB 

The study of TB has received so much attention from researchers due to the increase in the 

burden and losses caused by TB in many societies, especially in the developing countries. As a 
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result, numerous mathematical models of TB have been investigated in the literature. These 

models have attempted to addressed many of the characteristics of the TB dynamics, ranging 

from latency among the exposed individuals, fast and slow progression, reinfection coinfection 

and multi-strain among others (see Figure 2.5).   

 

Figure 2.5: TB Epidemic models 

Fast and slow progression are two distinct ways used by many models to show how susceptible 

people transfer to the active TB class after infection. This is attributed to the fact that when 

susceptible individuals come in contact with the infectious group, not all individuals exposed 

automatically developed the active TB, hence, they consider fast and slow infection 
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development. The exposed population initially have an elevated chance of progressing to active 

TB; over time, the pace of growth slows down (Bowong, 2010; Mccluskey, 2006).  Zhang et al. 

studied the dynamics of tuberculosis with fast and slow progression and media coverage (Zhang 

et al., 2019). 

Meanwhile some models (Liu & Zhang, 2011) have also consider the probability of reinfection 

among the latent and recovered individuals. Such models indicated that TB dynamics might be 

influenced by reinfection, but only occurs while infectious and latent population come in (Cohen 

et al., 2007; Disease et al., 1997; Rodrigues et al., 2007; Verver et al., 2005; Vynnycky & Fine, 

1997). Because the recovery from TB does not grant maximum protection as stated by (Verver 

et al., 2005),  Many models also discussed the effect of exogenous reinfection on the dynamics 

of TB  (Bowong, 2010; Z. Feng et al., 2000; Mccluskey, 2006; D. Okuonghae et al., 2010; Silva 

& Torres, 2013b). Rocha et al. (Rocha et al., 2018) used the dynamic model provided by Lopez 

et al (Lopes et al., 2014), to checked the impact of immigration from areas with an outbreak of 

tuberculosis to another country. Also, a study by (Khajanchi et al., 2018) analysis the dynamics 

of TB transmission with exogenous reinfections and endogenous reactivation. Recent work by 

Das et al. investigated the transmission dynamics of tuberculosis with multiple re-infections 

(Das et al., 2020) 

Moreover, other studies considered the dynamics of TB co-infection with other epidemics. This 

include, HIV-TB co-infection (Mallela et al., 2016; Pinto & Carvalho, 2017; Tanvi & Aggarwal, 

2020b). Helminth-TB co-infection (Babu & Nutman, 2016). Influenza and TB co-infection 

(Walaza et al., 2020). The co-infection model is also developed and evaluated for the 

propagation mechanisms of human papillomavirus ( HPV) and TB to gain insight into the effect 

of the dissemination of both of the two pathogens (Omame et al., 2020). 

Drug-resistant strain (McBryde et al., 2017). Chavez and Feng (Castillo-chavez & Feng, 1997) 

and Bhunu (Bhunu, 2011) have developed some models that take into account various strains 

of TB, drug-sensitivity, drug-resistance, and multiple-drug-resistance. Two-strain TB model is 

described in (Castillo-chavez & Feng, 1997) with drug-resistant and drug-sensitive strains. 

Meskaf et al. studied the global stability of a two-strain epidemic model with non-monotone 
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incidence rates (Meskaf et al., 2020). A Multi-strain mathematical model is developed in 

(Fofana et al., 2017) to investigate the role of pyrazinamide in the emergence of extensively 

drug- resistant TB. In (Houska et al., 2016) a nonlinear multi-strain TB model is analyzed with 

three strains drug-sensitive, emerging multi-drug resistant and extensively drug-resistant.  

The literature survey shows that substantial number of the current TB dynamic models are of 

the SEIR types and also used bilinear incidence rates. Meanwhile, many other nonlinear 

incidence rates are still available in the literature; such as non-monotone, saturated and 

fractional incidence rates (Windarto & Anggriani, 2015) which were used in modelling of 

several other diseases offering useful and more practical information (Chong et al., 2013; Ojo 

et al., 2018; P. Wang & Jia, 2019).  

2.4.2 Control strategies of TB 

Many studies on the mathematical modelling of the dynamics of TB transmission, especially 

compartmental TB predictive models included vaccination and control treatments and analysed 

the disease management by evaluating the role of parameters of the control measures in 

decreasing the value of the basic reproduction number, 𝑅0, below the threshold limit (Lopes et 

al., 2014; Okuonghae & Omosigho, 2011; Windarto & Anggriani, 2015). Generally, It is 

considered that the disease becomes endemic and remain in the population if 𝑅0 > 1, and the 

disease is deemed to vanish from the society gradually if 𝑅0 < 1 (Baba & Hincal, 2017; Das et 

al., 2020; Khajanchi et al., 2018; Y. D. Zhang et al., 2019). These approaches have a major 

limitation of not taking into consideration the time-dependent control variables. 

In 2002 Jung et al. (Jung, 2002) published what many believe to have been the first application 

of time-dependent optimal control strategies on the TB dynamic model, with two types of latent 

and infectious persons (infected with normal and resistant strain TB) with the aim of reducing 

the number of resistant TB infected and latent populations. To accomplish the goal, two control 

measures were proposed: a case finding intervention, used to identify individuals latently 

afflicted with normal TB that have more chances of developing the active TB disease and hence 

may benefit from preventive treatment; and a case holding control, describing the attempt to 
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deter medication relapse in normal contagious individuals with TB and relating to activities and 

strategies used to guarantee the regularity of drug consumption over a sufficient period of time 

to acheive a cure. Afterwards, many researchers employed the optimal control strategy on 

various TB models, suggesting different objective criteria according to specific control goals. 

In (Hattaf et al., 2009) the problem of reducing the population of infectious is addressed by 

incorporating a control input, which represent the effort to prevent exogenous reinfection. The 

application of case finding intervention is proposed by (D. Okuonghae et al., 2010), reflecting 

the fraction of active people infected detected and isolated in a building, for successful care and 

avoidance of interaction with vulnerable and exposed people, and a control plan focused on the 

medical screening of immigrants before they are given permission to stay. Denysiuk et al. 

(Denysiuk et al., 2018) found a model for TB-HIV and suggested effective control strategies 

using optimal control theory. The control objectives were to reduce the number of people 

diagnosed with HIV and the cost associated with disease prevention and treatment.  

Similarly, Gao and Huang in (D. peng Gao & Huang, 2018)  incorporated three control concepts 

and extended the optimal control principle to the Liu and Zhang (Liu & Zhang, 2011) SILT type 

model with vaccination compartment. Athithan and Ghosh (Athithan & Ghosh, 2015) employed 

an SEIR TB model and used detection as a control strategy to reduce the spread of the disease. 

Their proposed approach minimizes the objective function, taking into account the number of 

persons exposed and infected and the cost of detection. Mallela et al. (Mallela et al., 2016) 

proposed optimal control analysis and investigated the effect of simultaneous treatment of HIV 

and TB  in the case of people with  HIV–TB co-infection. Their analysis revealed that co-

infection prevention strategies alone are insufficient to cure the diseases; for optimal disease 

eradication, multiple therapies and medications treating individuals infected with a particular 

disease are required. Optimal control of a nonlinear fractional multi-strain TB model is studied 

by (Houska et al., 2016). The model incorporates three strains drug-sensitive, emerging multi-

drug resistant and extensively drug-resistant. Four control variables were considered and the 

study compared the performance of the optimal control method and the generalized Euler 

method. Recently, Tanvi & Aggarwal (Tanvi & Aggarwal, 2020), studied the dynamics of HIV-
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TB co-infection with detection as optimal intervention strategy, With the aim of minimizing 

infective and the cost of applying effort towards the detection and the treatment. 

Besides, there is a high degree of studies using SMC techniques, due to its essential properties. 

Currently, SMC is commonly used as an automatic controller in various applications such as 

power electronics (Chang et al., 2008; Chiu & Shen, 2012; Ding et al., 2018), robotic 

manipulators (Abadi et al., 2020; Ma & Sun, 2018; Y. Wang et al., 2019; S. Yi & Zhai, 2019), 

multiple robot synchronization (Esmaili & Haron, 2017, 2015), biomedical engineering 

applications (Asadi & Nekoukar, 2018; Djouima et al., 2017; Riani et al., 2018), chemical 

processes (Aksu & Coban, 2019; Herrera et al., 2020; Musmade et al., 2020; Zhu et al., 2020), 

and many more.  Despite the many successes achieved by SMC in various applications, there is 

less attention to this control strategy in epidemic models. However, (Ibeas et al., 2013) present 

a superficial application of SMC for the design of a vaccination law in the context of epidemic 

models. Hence, this study will develop an adaptive sliding mode controller for TB epidemic 

model. 

In chapter 3, mathematical modelling and optimal control of a novel TB model is proposed with 

saturated incidence rate. The saturated incidence rate will be used to analyze the impact of public 

awareness on the control of the disease transmission (Ojo et al., 2018). Moreover, in chapter 4, 

optimal control and cost-effectiveness analysis of a TB model with three different control 

interventions will be discussed. The study incorporated three time-dependant control 

interventions, representing the vaccination, case finding and case holding, with aim finding the 

most suitable and cost-effective control strategy for the elimination of TB. We further, show the 

effect of the parameter uncertainties on the open-loop optimal control system numerically. Also 

in chapter 5, we develop an adaptive sliding mode control for the TB model in the present of 

parameter uncertainties.  

The analysis in chapter 4 and chapter 5 are based on modified nonlinear TB model proposed by 

(Mccluskey, 2006).  The model is described by a system of ODEs: 
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𝑑𝑆

𝑑𝑡
= 𝛬 − 𝛽𝑆𝐼 − µ𝑆

dE

𝑑𝑡
= (1 − 𝑝)𝛽𝑆𝐼 − 𝜅𝐸 − µE

𝑑𝐼

𝑑𝑡
= 𝑝𝛽𝑆𝐼 + 𝑎𝐸 − dI − µI

      (2.16) 

The system parameters, along with their meanings, are summarised in Table 2.1.  

Table 2.1: Parameter description as presented in (Mccluskey, 2006) 

Parameter Symbol Parameter description 

𝛬 Overall recruitment into susceptible compartment 

µ Natural death rate 

D Disease induced death rate 

𝛽 Disease transmission coefficient 

𝑝 The proportion of newly infected individuals that undergo fast 

progression to the infectious class 

𝑎 The rate at which exposed individuals move to the infectious 

compartment 

 

The population is separated into three compartments depending on the epidemiological status:  

individuals that are healthy but can contract the disease are categorised as susceptible class 𝑆(𝑡); 

the exposed class 𝐸(𝑡) contains individuals that have been in contact with the infected class but 

are not yet showing any symptoms; and the infectious class 𝐼(𝑡) represents individuals with 

active TB. It is assumed that the rate of disease transmission to susceptible individuals is bilinear 

𝛽𝑆𝐼, with a fraction 𝑝 undergoing fast progression to the infectious compartment, and the 

remaining (1 − 𝑝) exhibiting slow progress into the exposed class. It is considered that the time 

taken by the exposed individuals to move to the infectious class follows an exponential 
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distribution, with a mean waiting time of 1 𝑎⁄ . The exposed class are assumed to have latent TB 

which can be cured and removed upon receiving adequate treatment; otherwise, they will 

progress to the infectious class.  
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CHAPTER 3                                                                                                                    

DYNAMICS AND OPTIMAL CONTROL OF TB EPIDEMIC WITH SATURATED 

INCIDENCE RATE 

 

 

3.1 Introduction 

This chapter presents mathematical modelling and optimal control analysis of TB dynamics 

using saturated incidence rate. A detailed mathematical analysis of the proposed model is given 

in the chapter, this include the derivation of the basic reproduction number, 𝑅0, proving the 

existence and uniqueness of model’s solution as well as global stability of the equilibria. The 

mathematical analysis is then followed by model fitting to real data and sensitivity analysis to 

identify the influence of the model parameters on the output quantity. The optimal control 

problem that integrates time-dependent control functions is then formulated. The necessary 

conditions for optimal disease control are obtained by using Pontryagin’s maximum principle. 

In order to complement the analytical analysis, the chapter is concluded with some numerical 

simulations. 

3.2 Model Formulation 

The study presents an SEI compartmental TB model using saturated incidence rate. The SEI 

model is a variant of SEIR compartmental model mentioned in Equation (2.2). The model 

transfer diagram is illustrated in Figure 3.1. In the transfer diagram 𝑆, 𝐸, and 𝐼, respectively, 

represent the group of the susceptible, exposed and infectious people. The exposed group 

comprises of individuals that were in contact with contagious persons but did not reveal any 

symptoms of infection. A fraction of the exposed group is eliminated through successful 

chemoprophylaxis or by natural death, while others are transferred into the infectious 

compartment. In the infectious compartment, there are people who got infected with active TB 

and can infect others. The population is assumed to be homogeneous with equal natural death 

rate (𝜇).  
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The recruitment is performed through the susceptible compartment at a constant rate Λ, and the 

disease is transmitted as the result of interaction between infectious and susceptible persons with 

a saturated incidence rate  
𝛽𝑆𝐼

1+𝛿𝐼
. In each group, the rate of natural death µ is assumed to be the 

same, and the disease-induced death occurs only in the infectious class at the rate 𝑑 ≥ µ. The 

fraction 𝑝 of the newly infected persons proceed to the infectious group immediately, while the 

rest (1 − 𝑝) undergoes gradual progression via the exposed group. The rate of transfer from the 

exposed group to  the infectious class is (1 − 𝑟1)𝐸, and 𝑟2𝐼 is the rate at which individuals, 

because of ineffective therapy, move back from the infectious group to the exposed group.  

 

Figure 3.1: Model (3.1) transfer diagram 
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The dynamical model is given by the following system of ordinary differential equations 

(ODEs).  

𝑆̇ = 𝛬 − µ𝑆 −
𝛽𝑆𝐼

1 + 𝛿𝐼

𝐸̇ =
𝛽(1 − 𝑝)𝑆𝐼

1 + 𝛿𝐼
+ 𝑟2I − (µ + (1 − 𝑟1))E

𝐼̇ = (1 − 𝑟1)𝐸 +
𝛽𝑝𝑆𝐼

1 + 𝛿𝐼
− (𝑟2 + µ + 𝑑)𝐼

                                                      (3.1) 

For simplicity, let 𝑎 = (1 − 𝑟1) and b = 𝑟2 + µ + d, and the system (3.1) becomes; 

𝑆̇ = 𝛬 − µ𝑆 −
𝛽𝑆𝐼

1 + 𝛿𝐼

𝐸̇ =
𝛽(1 − 𝑝)𝑆𝐼

1 + 𝛿𝐼
+ 𝑟2I − (µ + 𝑎)E

𝐼̇ = 𝑎𝐸 +
𝛽𝑝𝑆𝐼

1 + 𝛿𝐼
− 𝑏𝐼

                                                                (3.2) 

3.2.1 Existence of equilibria  

Following the model formulation, two equilibrium points are obtained by setting equations in 

(3.2) to zero, and solving simultaneously.  The equilibrium points are the disease-free 

equilibrium (𝐺0) and the endemic equilibrium (𝐺1). The disease-free equilibrium is the state 

where the disease vanishes. Whereas the endemic equilibrium is the state under which the 

disease cannot be eradicated entirely but persist within the population. The two equilibrium 

points will be described in sections i and ii. 

i. Disease-free equilibrium (DFE) 

The system Disease-Free Equilibrium (DFE) model 𝐺0 = (𝑆0, 𝐸0, 𝐼0) = (
𝛬

µ
, 0,0)  always exists, 

since 𝑆0, 𝐸0, 𝐼0 ≥ 0. 

ii. Endemic equilibrium (EE) 

The system Endemic Equilibrium (EE) model 𝐺1 = (𝑆1, 𝐸1, 𝐼1) exists if 𝑆1, 𝐸1, 𝐼1 ≥ 0.  
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That is 

𝑆1 =
𝑎𝑏 − 𝑎𝑟2 + 𝑎𝛿𝛬 + µ𝑏 + 𝛿𝑝𝛬µ

(𝑎 + 𝑝µ)(𝛿µ + 𝛽)
 

     =
1

µ𝛿 + 𝛽
[
𝛽𝑆0[µ𝑏 + 𝑎(𝑏 − 𝑟2)

𝛽𝑆0(𝑎 + µ𝑝)
+
𝛿𝛬(𝑎 + µ𝑝)

(𝑎 + µ𝑝)
] 

𝑆1 =
1

µ𝛿 + 𝛽
[
𝛽𝑆0
𝑅0

+ 𝛿𝛬]                                                                                 (3.3) 

 𝑆1 always exists. 

𝐸1 =
(−𝑏 + 𝑏𝑝 − 𝑝𝑟2)(𝑎µ𝑏 − 𝑎µ𝑟2 − 𝛬𝛽𝑎 − 𝛬𝛽𝑝µ + µ2𝑏)

(𝑎𝛿µ𝑏 − 𝑎𝛿µ𝑟2 + 𝑏𝛽𝑎 − 𝛽𝑎𝑟2 + µ2𝛿𝑏 + 𝛽𝑏µ)(𝑎 + 𝑝µ)
 

      =
−[𝑏(1 − 𝑝) + 𝑝𝑟2][−𝛬𝛽(𝑎 + µ𝑝) + µ(µ𝑏 + 𝑎(𝑏 − 𝑟2)]

[µ𝛿(µ𝑏 + 𝑎(𝑏 − 𝑟2)] + 𝛽(µ𝑏 + 𝑎(𝑏 − 𝑟2)(𝑎 + µ𝑝)
 

       =
−µ(𝑏(1 − 𝑝) + 𝑝𝑟2)

(µ𝛿 + 𝛽)(𝑎 + µ𝑝)
[1 − 𝑅0] 

𝐸1 =
µ(𝑏(1 − 𝑝) + 𝑝𝑟2)

(µ𝛿 + 𝛽)(𝑎 + µ𝑝)
[𝑅0 − 1]                                                                 (3.4) 

 𝐸1 exists if 𝑅0 ≥ 1. 

 𝐼1 = −
𝑎µ𝑏 − 𝑎µ𝑟2 − 𝛬𝛽𝑎 − 𝛬𝛽𝑝µ + µ2𝑏

𝑎𝛿µ𝑏 − 𝑎𝛿µ𝑟2 + 𝑏𝛽𝑎 − 𝛽𝑎𝑟2 + µ2𝛿𝑏 + 𝛽𝑏µ
 

       =
−[−𝛽𝛬(𝑎 + µ𝑝)] + µ[µ𝑏 + 𝑎𝑏 − 𝑎𝑟2]

µ𝛿[𝑎(𝑏 − 𝑟2) + µ𝑏] + 𝛽[𝑎(𝑏 − 𝑟2) + µ𝑏]
 

𝐼1 =
µ

µ𝛿 + 𝛽
[𝑅0 − 1]                                                                                     (3.5) 

 𝐼1 exists if 𝑅0 ≥ 1. 
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3.2.2 Basic reproduction number (𝑹𝟎)   

This is described as the number of new infections an infectious person will cause in a population 

of fully susceptible people. In epidemiology, it is supposed that the epidemic will vanish when 

𝑅0 ≤ 1, and endures when 𝑅0 > 1. 

In this study, the basic reproduction number 𝑅0 is derived through next-generation matrix 

(NGM) technique (Roddam, 2001). Let define; Ƒ𝑖(𝑥) as the amount of emergence of new 

infections in 𝑖𝑡ℎ group per unit time, 𝜐𝑖
+(𝑥) rate at which individuals are moving in to 𝑖, and  

𝜐𝑖
−(𝑥) rate at which individuals are moving out of 𝑖. 

𝐹(𝑥𝑖) = [
𝜕Ƒ𝑖(𝑥0)

𝜕𝑥𝑗
]  𝑎𝑛𝑑 𝑉(𝑥𝑖) = [

𝜕𝜐𝑖(𝑥0)

𝜕𝑥𝑗
] ,    𝑖 ≤ 𝑗 ≤ 𝑚  

𝑤ℎ𝑒𝑟𝑒 𝜐𝑖(𝑥) = 𝜐𝑖
−(𝑥) − 𝜐𝑖

+(𝑥) 

𝑅0 = 𝜌(𝐹𝑉−1) 

𝑤ℎ𝑒𝑟𝑒 𝜌(Χ) is the spectral radius of Χ 

Now, for the model described in (3.2),  

Ƒ𝑖 =

[
 
 
 
 

0
𝛽(1 − 𝑝)𝑆𝐼

1 + 𝛿𝐼
𝛽𝑝𝑆𝐼

1 + 𝛿𝐼 ]
 
 
 
 

 

  𝜐𝑖 = [
−𝛬 + µ𝑆 +

𝛽𝑆𝐼

1 + 𝛿𝐼
−𝑟2𝐼 + (µ + 𝑎)𝐸

−aE + 𝑏I

] 

𝐹 =

[
 
 
 
 0

𝛽(1 − 𝑝)𝑆

1 + 𝛿𝐼
−
𝛽(1 − 𝑝)𝑆𝐼𝛿

(1 + 𝛿𝐼)2

0
𝛽𝑝𝑆

1 + 𝛿𝐼
−

𝛽𝑝𝑆𝐼𝛿

(1 + 𝛿𝐼)2 ]
 
 
 
 

                                                         (3.6) 
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At Disease-free equilibria  

𝐹(𝐺0) = (
0 𝛽(1 − 𝑝)𝑆0
0 𝛽𝑝𝑆0

) 

𝑉(𝐺0) = (
µ + 𝑎 −𝑟2
−𝑎 𝑏

) 

𝑉−1 =
1

µ𝑏 + 𝑎𝑏 − 𝑎𝑟2
(
𝑏 𝑟2
𝑎 µ + 𝑎

)                                                             (3.7) 

It follows that, 

𝐹𝑉−1 =
1

µ𝑏 + 𝑎𝑏 − 𝑎𝑟2
(
𝑎𝛽(1 − 𝑝)𝑆0 (µ + 𝑎)𝛽(1 − 𝑝)𝑆0

𝑎𝛽𝑝𝑆0 (µ + 𝑎)𝛽𝑝𝑆0
)          (3.8) 

The eigenvalues are; 

𝜆1 = 0, 𝜆2 =
(µ𝑝 + 𝑎)𝛽𝑆0
µ𝑏 + 𝑎𝑏 − 𝑎𝑟2

                                                                           (3.9) 

And the spectral radius of  𝐹𝑉−1 is given by                                  

𝜌(𝐹𝑉−1) = 𝑅0 =
(µ𝑝+𝑎)𝛽𝑆0

µ𝑏+𝑎𝑏−𝑎𝑟2
              (3.10) 

3.3 Mathematical Analysis 

In this section, the proposed model is analyzed mathematically to show the existence, 

uniqueness and stability of the model’s solution. We start by determining the invariant region 

and showing that all solutions of the model (3.2) are positive for all 𝑡 ≥ 0. 

3.3.1 Existence and uniqueness of solution  

Theorem 3.1: 𝐷𝜀 = {(𝑆, 𝐸, 𝐼) ∈ 𝑅+
3 : 0 ≤ 𝑆 + 𝐸 + 𝐼 ≤

𝛬

µ
+ 𝜀} is positively invariant and 

absorbing set which attracts all the solutions of (3.2). 

Proof 3.1: Consider a function 
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𝑍(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡)  

𝑍̇ = 𝑆̇ + 𝐸̇ + 𝐼̇

    = 𝛬 − µ𝑆 −
𝛽𝑆𝐼

1+𝛿𝐼
+

𝛽(1−𝑝)𝑆𝐼

1+𝛿𝐼
+ 𝑟2I − (µ + a)E + aE + 

𝛽𝑝𝑆𝐼

1+𝛿𝐼
− 𝑏I    

    = 𝛬 − µ𝑍 − 𝑑𝐼 ≤ 𝛬 − µ𝑍

     (3.11) 

Which means, 

𝑍̇ ≤ 0, 𝑓𝑜𝑟 𝑍 >
𝛬

µ
                 (3.12) 

Which implies 𝐷ɛ is positively invariant set. 

Now, solving (3.11),  

𝑍̇ + µ𝑍 ≤ 𝛬 

Using the integrating factor as 𝑒∫µ𝑑𝑡 = 𝑒µ𝑡 

𝑍̇𝑒µ𝑡 + µ𝑍𝑒µ𝑡 ≤ 𝛬𝑒µ𝑡 

𝑑

𝑑𝑡
(𝑍𝑒µ𝑡) ≤ 𝛬𝑒µ𝑡                (3.13) 

Integrating both sides, 

𝑍𝑒µ𝑡 ≤
𝛬

µ
𝑒µ𝑡 + 𝑐 

Where c is a constant of integration, which implies that 

𝑍 ≤
𝛬

µ
+ 𝑐𝑒−µ𝑡                (3.14) 

Using the initial conditions, when 𝑡 = 0, as 𝑍(0) 

𝑍 ≤
𝛬

µ
+ 𝑍(0)𝑒−µ𝑡                (3.15) 

𝑎𝑠 𝑡 → ∞,   0 ≤ 𝑍(𝑡) ≤
𝛬

µ
+ 𝜀  
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Which implies that 𝐷 is an attractive set, hence, every solution remains in the region 𝐷. 

Therefore, the region 𝐷 is positively-invariant (i.e solutions remain positive for all times) and 

the model is well posed. 

3.3.2 Global stability analysis  

Theorem 3.2: If 𝑅0 ≤ 1, then the DFE model 𝐺0 is globally asymptotically stable on  

𝐷 = {(𝑆, 𝐸, 𝐼) ∈ 𝑅+
3 : 0 ≤ 𝑆 + 𝐸 + 𝐼 ≤

𝛬

µ
}. 

Proof 3.2: Consider the following Lyapunov function; 

𝑉 = 𝑎𝐸 + (µ + 𝑎)𝐼                                      (3.16) 

The time derivative of Equation (3.16), is obtained as 

 𝑉̇(𝑆, 𝐸, 𝐼) = 𝑎𝐸̇ + (µ + 𝑎)𝐼 ̇

                   = 𝑎 [
𝛽(1−𝑝)𝑆𝐼

1+𝛿𝐼
+ 𝑟2I − (µ + a)E] + (µ + 𝑎) [aE + 

𝛽𝑝𝑆𝐼

1+𝛿𝐼
− 𝑏I] 

                  = 𝑎
𝛽(1−𝑝)𝑆𝐼

1+𝛿𝐼
+ 𝑎𝑟2I − a(µ + a)E + a(µ + a)E + (µ + a)

𝛽𝑝𝑆𝐼

1+𝛿𝐼
−

                         (µ + 𝑎)𝑏𝐼 

                   =
𝛽𝑆𝐼

1+𝛿𝐼
(𝑎 − 𝑎𝑝 + µ𝑝 + 𝑎𝑝) + (𝑎𝑟2 − 𝑏µ − 𝑎𝑏)𝐼 

                   = [
𝛽𝑆(𝑎+µ𝑝)

1+𝛿𝐼
− (𝑏µ + 𝑎(𝑏 − 𝑟2))] 𝐼 

                   ≤ [𝛽𝑆(𝑎 + µ𝑝) − (𝑏µ + 𝑎(𝑏 − 𝑟2))]𝐼 

                   ≤ [𝛽𝑆0(𝑎 + µ𝑝) − (𝑏µ + 𝑎(𝑏 − 𝑟2))]𝐼 

                   = (𝑏µ + 𝑎(𝑏 − 𝑟2)) [
𝛽𝑆0(𝑎+µ𝑝)

𝑏µ+𝑎(𝑏−𝑟2)
−

𝑏µ+𝑎(𝑏−𝑟2)

𝑏µ+𝑎(𝑏−𝑟2)
] 𝐼 

                   = −(𝑏µ + 𝑎(𝑏 − 𝑟2))[1 − 𝑅0]                                                (3.17) 
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This implies 𝑉̇(𝑆, 𝐸, 𝐼) ≤ 0  𝑖𝑓  𝑅0 ≤ 1. 

By Lasalle invariant principle (Bhatia & Szegö, 1970), the DFE is, therefore globally 

asymptotically stable. 

Theorem 3.3: The EE 𝐺1 is globally asymptotically stable if 𝑅0 > 1. 

Proof 3.3: Consider the following Lyapunov function 

𝑉 = (𝑆 − 𝑆1𝑙𝑛𝑆) +
𝑎

µ𝑝+𝑎
(𝐸 − 𝐸1𝑙𝑛𝐸) +

µ+𝑎

µ𝑝+𝑎
(𝐼 − 𝐼1𝑙𝑛𝐼)                      (3.18) 

The time derivative of Equation (3.18), is given by 

𝑉̇ = (1 −
𝑆1
𝑆
) 𝑆̇ +

𝑎

µ𝑝 + 𝑎
(1 −

𝐸1
𝐸
) 𝐸̇ +

µ + 𝑎

µ𝑝 + 𝑎
(1 −

𝐼1
𝐼
) 𝐼̇

    = (1 −
𝑆1
𝑆
) [𝛬 − µ𝑆 −

𝛽𝑆𝐼

1 + 𝛿𝐼
] +

𝑎

µ𝑝 + 𝑎
(1 −

𝐸1
𝐸
) [
𝛽(1 − 𝑝)𝑆𝐼

1 + 𝛿𝐼
+ 𝑟2𝐼 − (µ + 𝑎)𝐸]

    +
µ + 𝑎

µ𝑝 + 𝑎
(1 −

𝐼1
𝐼
) [𝑎𝐸 +

𝛽𝑝𝑆𝐼

1 + 𝛿𝐼
− 𝑏𝐼]

    = (1 −
𝑆1
𝑆
) [µ𝑆1 +

𝛽𝑆1𝐼1
1 + 𝛿𝐼1

− µ𝑆 −
𝛽𝑆𝐼

1 + 𝛿𝐼
]

    +
𝑎

µ𝑝 + 𝑎
(1 −

𝐸1
𝐸
) [
𝛽(1 − 𝑝)𝑆𝐼

1 + 𝛿𝐼
+ 𝑟2𝐼 − 

𝛽(1 − 𝑝)𝑆1𝐼1
1 + 𝛿𝐼1

𝐸

𝐸1
− 𝑟2𝐼1

𝐸

𝐸1
]

    +
µ + 𝑎

µ𝑝 + 𝑎
(1 −

𝐼1
𝐼
) [𝑎𝐸 +

𝛽𝑝𝑆𝐼

1 + 𝛿𝐼
− 𝑏𝐼]

 

≤
−µ(𝑆 − 𝑆1)

2

𝑆

+𝛽𝑆1𝐼1 [(1 −
𝑆1
𝑆
) (
−𝑆𝐼

𝑆1𝐼1
+ 1) +

𝑎

µ𝑝 + 𝑎
(1 − 𝑝) (1 −

𝐸1
𝐸
) (

𝑆𝐼

𝑆1𝐼1
−
𝐸

𝐸1
)

    +
µ + 𝑎

µ𝑝 + 𝑎
𝑝 (1 −

𝐼1
𝐼
) (

𝑆𝐼

𝑆1𝐼1
−
𝐼

𝐼1
) +

µ + 𝑎

µ𝑝 + 𝑎
(
𝑎(1 − 𝑝)

µ + 𝑎
)(1 −

𝐼1
𝐼
) (

𝐸

𝐸1
−
𝐼

𝐼1
)]

   +𝑟2𝐼1 [
𝑎

µ𝑝 + 𝑎
(1 −

𝐸1
𝐸
) (

𝐼

𝐼1
−
𝐸

𝐸1
) +

µ + 𝑎

µ𝑝 + 𝑎
(

𝑎

µ + 𝑎
) (1 −

𝐼1
𝐼
) (

𝐸

𝐸1
−
𝐼

𝐼1
)]

 (3.19) 
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Let  

𝑥1 =
𝑆

𝑆1
, 𝑥2 =

𝐸

𝐸1
, 𝑥3 =

𝐼

𝐼1
 

 

   (3.20) 

Then  

𝑉̇ ≤
−µ(𝑆 − 𝑆1)

2

𝑆

+𝛽𝑆1𝐼1 [(1 −
1

𝑥1
) (−𝑥1𝑥3 + 1) +

𝑎

µ𝑝 + 𝑎
(1 − 𝑝) (1 −

1

𝑥2
) (𝑥1𝑥3 − 𝑥2)

 +
µ + 𝑎

µ𝑝 + 𝑎
𝑝 (1 −

1

𝑥3
) (𝑥1𝑥3 − 𝑥3) +

µ + 𝑎

µ𝑝 + 𝑎
(
𝑎(1 − 𝑝)

µ + 𝑎
)(1 −

1

𝑥3
) (𝑥2 − 𝑥3)]

 +𝑟2𝐼1 [
𝑎

µ𝑝 + 𝑎
(1 −

1

𝑥2
) (𝑥3 − 𝑥2) +

µ + 𝑎

µ𝑝 + 𝑎
(

𝑎

µ + 𝑎
)(1 −

1

𝑥3
) (𝑥2 − 𝑥3)]

 

=
−µ(𝑆 − 𝑆1)

2

𝑆
+ 𝛽𝑆1𝐼1 [1 + 𝑥3 −

1

𝑥1
+

𝑎

µ𝑝 + 𝑎
(1 − 𝑝) (1 −

𝑥1𝑥3
𝑥2

− 𝑥3 −
𝑥2
𝑥3
) 

+
µ + 𝑎

µ𝑝 + 𝑎
𝑝(1 − 𝑥1 − 𝑥3)] − 𝑟2𝐼1 [

𝑎

µ𝑝 + 𝑎

(𝑥2 − 𝑥3)
2

𝑥2𝑥3
]

 

 

 

(3.21) 

Hence,  𝑉̇ ≤ 0, if  

𝑛 = 1 + 𝑥3 −
1

𝑥1
+

𝑎

µ𝑝 + 𝑎
(1 − 𝑝) (1 −

𝑥1𝑥3
𝑥2

− 𝑥3 −
𝑥2
𝑥3
) +

µ + 𝑎

µ𝑝 + 𝑎
𝑝(1 − 𝑥1 − 𝑥3) ≤ 0 

Since  

𝜕𝑛(𝑥1, 𝑥2, 𝑥3, 𝑝)

𝜕𝑝
=
−𝑎(µ + 𝑎)

(µ𝑝 + 𝑎)2
[1 + 𝑥1 −

𝑥1𝑥3
𝑥2

−
𝑥2
𝑥3
] 

 

   (3.22) 

Fixing 𝑥1, 𝑥2,  and 𝑥3 implies that 
𝜕𝑛

𝜕𝑝
 has a constant sign for 𝑝. Hence, 𝑛 attains its maximum at 

𝑝 = 0 𝑜𝑟 𝑝 = 1. 
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If  𝑝 = 0, n variable will be rewritten as: 

𝑛 = 3 −
𝑥1𝑥3
𝑥2

−
𝑥2
𝑥3
−
1

𝑥1
 

If  𝑝 = 1, n variable will be rewritten as: 

𝑛 = 2 − 𝑥1 −
1

𝑥1
 

In both cases, 𝑛 ≤ 0 using the relation between geometric and arithmetic means. 

3.4 Model Fitting 

Model fitting is used to validate a mathematical model. It is a process by which the conformity 

of a mathematical model to real-world data is established (Halder & Bhattacharya, 2011). After 

developing a model, model fitting is often used to get estimates of the parameters, and it also 

provides high reliability in the model. In order to fit an epidemic compartmental model, it is 

expected that data for at least one class in the model is available in time-series format. In 

epidemiology, the most widely used method for model fitting is the least-square technique. In 

the least-squares approach, the model response curve is fitted through the data points in such a 

way that the sum of the squares of the residual between the data points and the points on the 

fitted curve is minimal. For instance, if we are to fit the prevalence of a disease 𝐼(𝑡), and we 

have the real data set in the form of time series as {(𝑡1, 𝑌1),………… , (𝑡𝑁 , 𝑌𝑁)}, then following 

expression of sum-squared error (SSE) should be minimized: 

𝑆𝑆𝐸 = ∑ [𝑌𝑖 − 𝐼(𝑡𝑖)]
2𝑁

𝑖=1                (3.23) 

For the fitting of the proposed model, TB prevalence data is collected from (Centers for Disease 

Control and Prevention, 2018). The data includes the yearly tuberculosis cases in the United 

States from 1988 to 2018. However, minimization of (3.23) is a nonlinear optimization problem 

because the epidemic model is described by nonlinear differential equations and cannot be 

solved explicitly. Meanwhile, for our work, the solution is obtained numerically using 

Matlab2019b software.  
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Figure 3.2: Model fitting flowchart (Martcheva, 2013) 

The computation involves two stages: first, the differential equation is solved, followed by 

iterative minimization of the error function. An initial estimate of the parameter values is given, 

and the differential equations are solved with the initial values. The SSE is then evaluated, and 

accordingly parameters are adjusted to reduce the SSE. The differential equation is solved again, 

with the improved parameter values, and the procedure is repeated until the SSE converges 

(Martcheva, 2013).  
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The process can be concisely explained in the following steps (see Flowchart 3.2): 

Step 1: Initial estimate of the model parameters 

Step 2: Solve the model differential equations with the initially estimated parameters 

Step 3: Compute SSE 

Step 4: Adjust the values of the parameters so as to reduce the SSE 

Step 5: Repeat step 2 to 4 with the new values until the minimum value of SSE is obtained. 

3.5 Sensitivity Analysis 

While studying the infectious diseases mathematically, after the estimation of the model 

parameters, it is essential to determine the significant model parameters that influence disease 

transmission. Therefore, sensitivity analysis is performed in mathematical studies. This is 

critical in enabling us to identify the key input parameters that should be the center of focus for 

the disease to be contained. In this study, the sensitivity analysis is performed to ascertain the 

uncertainty of the parameters to the proposed TB model through the threshold quantity; the basic 

reproduction number 𝑅0.  The sensitivity analysis is carried out using the normalized sensitivity 

index. The normalized sensitivity index of an output quantity 𝑦, to an input parameter 𝑥 is 

represented as Π𝑥
𝑦

 and defined by (Woldegerima et al., 2018): 

𝑠̃𝑥 = Π𝑥
𝑦
=

𝑥

𝑦

𝜕𝑦

𝜕𝑥
               (3.24) 

Now, consider the basic reproduction number of the proposed TB model given by 

𝑅0 =
(µ𝑝−𝑟1+1)𝛽𝛬

µ((1− 𝑟1)(𝑟2+µ+d)−(1− 𝑟1)𝑟2+(𝑟2+µ+d)µ)
             (3.25) 

and the set of the input parameters for 𝑅0  

Υ = {𝛬, 𝛽, 𝑝, 𝑑, µ, 𝑟1, 𝑟2}               (3.26) 

The normalized sensitivity index of 𝑅0, to a parameter 𝑥 ∈ Υ is given by: 
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𝑠̃𝑥 = Π𝑥
𝑅0 =

𝑥

𝑅0

𝜕𝑅0

𝜕𝑥
               (3.27) 

Using the sensitivity index definition (3.27), following indices are obtained for 𝑅0 (3.25) relative 

to each of the parameters in (3.26): 

Π𝛬
𝑅0 =

𝛬

𝑅0

𝜕𝑅0

𝜕𝛬

         = (
(µ𝑝−𝑟1+1)𝛽

µ((1− 𝑟1)(𝑟2+µ+d)−(1− 𝑟1)𝑟2+(𝑟2+µ+d)µ)
)

         × (
µ((1− 𝑟1)(𝑟2+µ+d)−(1− 𝑟1)𝑟2+(𝑟2+µ+d)µ)

(µ𝑝−𝑟1+1)𝛽
)

        = 1

                                                    (3.28) 

Π𝛽
𝑅0 =

 𝛽

𝑅0

𝜕𝑅0

𝜕𝛽
= 1                (3.29)  

Π 𝑝
𝑅0 =

  𝑝

𝑅0

𝜕𝑅0

𝜕𝑝
=

𝑝µ

µ𝑝−𝑟1+1
               (3.30) 

Π𝑑
𝑅0 =

 𝑑

𝑅0

𝜕𝑅0

𝜕𝑑

         = −
𝑑(1−𝑟1+µ)

(1− 𝑟1)(𝑟2+µ+d)−(1− 𝑟1)𝑟2+(𝑟2+µ+d)µ

            (3.31) 

Π µ
𝑅0 =

  µ

𝑅0

𝜕𝑅0

𝜕µ

         =
−2𝑝µ3+((𝑝+3)𝑟1−𝑑𝑝−3+(−𝑟2−1)𝑝)µ

2+2(𝑟1−1)(𝑑−𝑟1+𝑟2+1)µ−𝑑(𝑟1−1)
2

(µ2+(𝑑−𝑟1+𝑟2+1)µ−𝑑(𝑟1−1))(µ𝑝−𝑟1+1)

      (3.32) 

Π𝑟1
𝑅0 =

 𝑟1

𝑅0

𝜕𝑅0

𝜕𝑟1

=
𝑟1µ((1−𝑟1)(𝑟2+µ+d)−(1−𝑟1)𝑟2+(𝑟2+µ+d)µ)((𝑝−1)µ+(𝑝−1)𝑑−𝑟2)

(µ𝑝−𝑟1+1)(µ2+(𝑑−𝑟1+𝑟2+1)µ−𝑑(𝑟1−1))
2

           (3.33) 

Π𝑟2
𝑅0 =

 𝑟2

𝑅0

𝜕𝑅0

𝜕𝑟2

= −
𝑟2µ

(1− 𝑟1)(𝑟2+µ+d)−(1− 𝑟1)𝑟2+(𝑟2+µ+d)µ

            (3.34) 

 



48 

 

3.6 Optimal Control System 

In this section, the optimal TB control system is formulated by modifying the TB model defined 

in (3.1). The purpose of the optimal control analysis is to obtain the optimal trajectories of the 

system states; 𝑆, 𝐸 and 𝐼 in response to the control scheme. The constants rate of 

chemoprophylaxis 𝑟1 and treatment rate 𝑟2 are substituted with control functions  𝑢1(𝑡) and 

𝑢2(𝑡) respectively. The control input 𝑢1(𝑡) characterized the monitoring action that involves 

finding and treating people that are exposed in order to stop them from becoming infectious 

(known as “case finding”), while 𝑢2(𝑡) symbolizes the interventions made by health workers to 

ensure adherence to the proper treatment of the infected people (known as “case holding”). The 

control inputs 𝑢1(𝑡) and 𝑢2(𝑡) are regarded as Lebesgue integrable and bounded functions 

having values within the closed range [0,1] (Gao & Huang, 2018). The parameters are the same 

as those in (3.1), and the optimal TB controlled system is described as: 

𝑆̇ = 𝛬 − µ𝑆 −
𝛽𝑆𝐼

1+𝛿𝐼

𝐸̇ =
𝛽(1−𝑝)𝑆𝐼

1+𝛿𝐼
+ 𝑢2(t)I − μE − (1 − 𝑢1(t))𝐸    

𝐼̇ = (1 − 𝑢1(t))𝐸 +
𝛽𝑝𝑆𝐼

1+𝛿𝐼
− 𝑢2(t)I − (𝜇 + 𝑑)I

           (3.35) 

and state variables set  

𝑋(𝑡) = (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡))              (3.36) 

The cost of implementation of the control is taken as quadratic, similar to (Jung, 2002b), and 

the aim is to reduce disease prevalence and cost of control actions. Consequently, the objective 

functional is defined as 

𝐽(𝑢1, 𝑢2) = ∫ (𝑎1𝐸(𝑡) + 𝑎2𝐼(𝑡) +
𝑤1

2
𝑢1
2(𝑡) +

𝑤2

2
𝑢2
2(𝑡))

𝑡𝑓
0

𝑑𝑡          (3.37) 

The constant factors 𝑎1, 𝑎2, 𝑤1 and 𝑤2 are positive weights associated with the exposed class, 

infectious class and the control measures.  
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3.6.1 Optimal control analysis 

The problem can then be stated as to identify optimal control inputs 𝑢1
∗ and  𝑢2

∗  and optimal 

system states 𝑋∗ = (𝑆∗, 𝐸∗, 𝐼∗), which minimizes the performance index (3.37) over a fixed-

time interval [0, 𝑡𝑓], subjects to the system constrain (3.35). States mathematically as 

𝐽(𝑋∗, 𝑢1
∗, 𝑢2

∗) = min
𝛤

𝐽(𝑋, 𝑢1, 𝑢2)                         (3.38) 

Where  

𝛤 = {𝑋 ∈ 𝑊1.1([0, 𝑡𝑓]; ℝ
3), (𝑢1, 𝑢2) ∈ 𝐿

1([0, 𝑡𝑓];  ℝ)|𝑋(0) ≥ 0, and (3.35) are satisfied} 

The criteria required for optimal disease control can be derived from the maximum principle 

introduced by Pontraygin (Bather et al., 1976b). Consider the Hamiltonian function 𝐻 described 

as: 

𝐻(𝑋, 𝑢1, 𝑢2, 𝜆) = 𝑎1𝐸(𝑡) + 𝑎2𝐼(𝑡) +
𝑤1

2
𝑢1
2(𝑡) +

𝑤2

2
𝑢2
2(𝑡)

                            +𝜆1 (𝛬 − µ𝑆 −
𝛽𝑆𝐼

1 + 𝛿𝐼
)                                     

                            +𝜆2 (
𝛽(1 − 𝑝)𝑆𝐼

1 + 𝛿𝐼
+ 𝑢2(t)I − μE − (1 − 𝑢1(t))𝐸) 

                            +𝜆3 ((1 − 𝑢1(t))𝐸 +
𝛽𝑝𝑆𝐼

1 + 𝛿𝐼
− 𝑢2(t)I − (𝜇 + 𝑑)I)

 

 

(3.39) 

For the minimization of the performance index (3.37) over a fixed final time 𝑡𝑓, the optimal 

control pair 𝑢1
∗ and  𝑢2

∗  and corresponding states 𝑋∗ = (𝑆∗, 𝐸∗, 𝐼∗) should satisfy the following 

necessary conditions: 

1. The conditions of optimality 

𝜕𝐻(𝑋,𝑢1,𝑢2,𝜆)

𝜕𝑢1
= 0

𝜕𝐻(𝑋,𝑢1,𝑢2,𝜆)

𝜕𝑢2
= 0

               (3.40) 
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2. The conditions for the optimal control system 

𝑆̇ =
𝜕𝐻(𝑋, 𝑢1, 𝑢2, 𝜆)

𝜕𝜆1
                      

 𝐸̇ =
𝜕𝐻(𝑋, 𝑢1, 𝑢2, 𝜆)

𝜕𝜆2
 

𝐼̇ =
𝜕𝐻(𝑋, 𝑢1, 𝑢2, 𝜆)

𝜕𝜆3
 

3. The conditions for the co-state system 

𝜆̇1 = −
𝜕𝐻(𝑋,𝑢1,𝑢2,𝜆)

𝜕𝑆
,

𝜆̇2 = −
𝜕𝐻(𝑋,𝑢1,𝑢2,𝜆)

𝜕𝐸
,

𝜆̇3 = −
𝜕𝐻(𝑋,𝑢1,𝑢2,𝜆)

𝜕𝐼
.

                (3.41) 

where 𝜆1, 𝜆2, and 𝜆3 are the co-state variables. 

4. The condition for the minimization 

𝐻(𝑋∗, 𝑢1
∗𝑡, 𝑢2

∗ , 𝜆∗) = min
0≤𝑢1,𝑢2≤1

𝐻(𝑋∗, 𝑢1, 𝑢2, 𝜆
∗), is valid for 𝑡 ∈ [0, 𝑡𝑓]. 

5. The conditions for the transversality 

𝜆𝑖(𝑡𝑓) = 0, 𝑖 = 1,2,3                     (3.42) 

are also true. 

Theorem 3.4: The optimal solutions, 𝑆∗, 𝐸∗, 𝐼∗ and relevant optimal control inputs 𝑢1
∗  𝑎𝑛𝑑 𝑢2

∗ , 

that minimizes  𝐽(𝑋, 𝑢1, 𝑢2) over Γ, exist. The co-state functions 𝜆1
∗(𝑡), 𝜆2

∗(𝑡), 𝜆3
∗(𝑡) also exist, 

so that 
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𝜆̇1(𝑡) = 𝜆1
∗(𝑡) (µ +

𝛽𝐼∗(𝑡)

1+𝛿𝐼∗(𝑡)
) − 𝜆2

∗(𝑡)
𝛽(1−𝑝)𝐼∗(𝑡)

1+𝛿𝐼∗(𝑡)
− 𝜆3

∗(𝑡)
𝛽𝑝𝐼∗(𝑡)

1+𝛿𝐼∗(𝑡)

𝜆̇2(𝑡) =  𝜆2
∗(𝑡) (µ + (1 − 𝑢1

∗(𝑡))) − 𝜆3
∗(𝑡)(1 − 𝑢1

∗(𝑡)) − 𝑎1                                

 𝜆̇3(𝑡) = 𝜆1
∗(𝑡)

𝛽𝑆∗(𝑡)

(1+𝛿𝐼∗(𝑡))
2 − 𝜆2

∗(𝑡) (
𝛽(1−𝑝)𝑆∗(𝑡)

(1+𝛿𝐼∗(𝑡))
2 + 𝑢2

∗(𝑡)) 

              −𝜆3
∗(𝑡) (

𝛽𝑝𝑆∗(𝑡)

(1+𝛿𝐼∗(𝑡))
2 − 𝑢2

∗(𝑡) − (𝜇 + 𝑑)) − 𝑎2

(3.43) 

Conditions for the transversality, 

𝜆𝑖
∗(𝑡𝑓) = 0,     𝑖 = 1,2,3               (3.44) 

Correspondingly, the continuous piecewise characterization of the two control inputs hold as 

follows: 

𝑢1
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 {0,

(𝜆3
∗ (𝑡)−𝜆2

∗ (𝑡))𝐸∗(𝑡)

𝑤1
} , 1}

𝑢2
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 {0,

(𝜆3
∗ (𝑡)−𝜆2

∗ (𝑡))𝐼∗(𝑡)

𝑤2
} , 1}

           (3.45) 

Proof 3.4: The existence of the optimal solutions and the equivalent control inputs are obtained 

from the boundedness of the system states solution and its Lipschitz property with  regard to 

state variables as well as the convexity of 𝐽 with regards to the control inputs 𝑢1 and 𝑢2. The 

optimal control functions given by (3.45) are unique because of boundedness of the state and 

co-state systems and the Lipschitz property of (3.35) and (3.43) (Bather et al., 1976). Also, the 

system (3.43) is derived from the conditions of the co-state system (3.40). At the same time, the 

characterization of the optimal control inputs (3.45) is extracted from the optimal system 

condition (3.40) defined in the Pontryagin’s principles.  

Eventually, the optimality system consists of the optimal control inputs (3.45), the condition of 

transversality (3.44), the optimal TB control system (3.35) and the initial conditions 𝑆0, 𝐸0, 𝐼0 ≥

0.  
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3.7 Simulation Results and Discussions 

This section presents the simulation results and discussions. Numerical simulations are usually 

performed using professional software to support the theoretical facts and provides a graphical 

representation of the results. In this section the result of the model fitting sensitivity analysis 

and the proposed TB model is presented. 

3.7.1 Model fitting results 

The proposed model has seven parameters from which four are estimated, while the remaining 

three are to be fitted. The values of the disease transmission rate (𝛽) and recruitment rate (Λ) 

are obtained from (Yang et al., 2016). The constant treatment rates 𝑟1 and 𝑟2 which takes values 

in the range [0,1], are estimated to be 0.95 and 0.2 respectively (McBryde et al., 2017). The 

fitted and estimated parameter values are presented in Table 3.1 in which the disease-induced 

death rate (𝑑), fraction of the susceptible that under goes fast progression to infected (𝑝) and 

the rate of natural death (𝜇) are found through the fitting method explained in section 3.4. Figure 

3.3 shows the fitting of the model through the data instances. 

Table 3.1: Parameter Estimation 

Parameter Value Unit 

Λ 1000 person year-1 

β 0.003 person-1 year-1 

r1 0.95 constant 

r2 0.2 constant 

μ 0.3 year-1 

p 0.5 constant 

d 0.55 year-1 
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Figure 3.3: Model fitting for TB cases 

 

3.7.2 Sensitivity analysis result 

The sensitivity index values of the model parameters with respect to 𝑅0 are computed using the 

normalized sensitivity coefficients obtained in equations (3.28)-(3.34) and the parameters 

defined in Table 3.1. The result is shown in Table 3.2. Parameters with positive index are 

directly proportional to the value of ℛ0, which means the prevalence of the disease increases as 

the parameter values increase. Whereas the negative index values indicate inverse 

proportionality; and hence, parameters with a negative index will decrease the prevalence of the 

disease when they are increased. The results in Table 3.2 show that 𝛽 (disease transmission rate) 

has the potential to worsen the TB outbreak. This suggests that reducing contact between healthy 

humans and infected individuals will help in controlling the spread of the disease. Moreover, 

the prevalence of the disease can be decreased by increasing the constant treatment rates 𝑟1 and 

𝑟2. Figure 3.4 shows the graphical representation of the index values 
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Table 3.2: Sensitivity index of parameter values with respect to 𝑅0 

Parameter (x) Index Value 

𝛬 1.00 

𝛽 1.00 

𝑝 0.75 

𝑑 −0.54 

µ −1.42 

𝑟1 −2.49 

𝑟2 −0.17 

 

 

Figure 3.4: Bar charts of the sensitivity index values 
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3.7.3 Model simulation results 

In this section the proposed TB model is simulated in the case without optimal controls and 

optimal controls. The initial values are defined as 𝑆0 = 3800, 𝐸0 = 1800 and 𝐼0 = 200 

respectively,  for the susceptible, exposed and infectious classes. The epidemiological 

parameters obtained in Table 3.1, along with the initial values of the state variables, are used in 

the simulations.  

Using Matlab2019b platform with ode45 solver, the TB model given by the system (3.2) is 

solved numerically. The optimal control system which comprises of the system states and co-

states (6 ODEs) is solved by utilizing the forward-backwards sweeping technique. In this 

approach, the system of the state equations (3.35) is solved forward in time, by substituting the 

initial estimate of the control values and the values of the states’ initial conditions. Using the 

current state iteration value, control variables and the conditions of transversality (3.44), the co-

state equations are computed backwards in time. Subsequently, the system states and co-state 

values are substituted into the control characterization (3.45) to obtain the update of the control 

values. The procedure is repeated until the values converged. 

Figure 3.5 depicts the dynamic of TB when the reproduction ratio is less than one. It can be 

observed that both the number of the exposed (𝐸) and infectious (𝐼) individuals vanish; due to 

the fact that 𝑅0 < 1. In Figure 3.6, the dynamics of the tuberculosis is shown when the basic 

reproduction number is greater than one. It is clear from the figure that both population of the 

exposed (𝐸) and infected (𝐼) groups persist, and there is endemic because 𝑅0 > 1. 
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Figure 3.5: Both exposed and infected individuals vanished with  𝑅0 < 1 

 

Figure 3.6: Persistence of exposed and infectious population with  𝑅0 > 1 
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In order to express the influence of the public awareness parameter 𝛿, three different values are 

considered 𝛿 = 0.4, 0.6 and 0.8, and the result is illustrated in Figure 3.7. Thus it could be 

readily observed that there is a further decrease in the infectious population with an increase in 

the value of 𝛿. Which means the spread of the disease can be significantly reduced by increasing 

public awareness.  

 

Figure 3.7: Effect of awareness on the infectious population 

Figure 3.8 demonstrates the trajectories of the optimal control strategies. The control input 𝑢1(𝑡) 

(solid line) and the control input 𝑢2(𝑡), are plotted as function of time. From this figure it is 

suggested that the case finding intervention (𝑢1) should be maintained at the highest level during 

the entire period of the control program, to successfully mitigate the disease.  
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Figure 3.8: Optimal controls profile: with weight constant 𝑎1 = 20, 𝑎2 = 100,  

𝑤1 = 100 𝑎𝑛𝑑 𝑤2 = 8000.  

Figure 3.9 illustrates the effect of application of optimal control strategies on the infectious 

group. The influence of using the individual control strategy separately (𝑢1(𝑡) or 𝑢2(𝑡)) and 

employing the two control strategies (𝑢1(𝑡) and 𝑢2(𝑡)) simultaneously are shown in this figure. 

From the figure, it can be seen that the effect of combining the two control strategies in 

minimizing the infectious population (dash-dotted curve) is greater than the individual 

strategies. Using case finding (𝑢1)  strategy alone also has more impact in reducing the 

population of the infectious (dotted curve) than using the case holding (𝑢2) strategy alone. In 

Figure 3.10, the effect of integrating public awareness (measured by 𝛿) in the control 

intervention program is illustrated (dash-dotted curve). It shows that by using the  𝛿 =  0.8 (high 

public awareness) the influence of the optimal control strategies in minimizing the disease 

prevalence is further increased.  



59 

 

 

Figure 3.9: Effect of different optimal controls combination on the infected population 

 

Figure 3.10: Effects of combining optimal control with awareness 

The results demonstrate how the inclusion of optimal control management method help in 

reducing the population of the infectious and hence minimized the prevalence of the disease.  
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It is observed from the result (see Figure 3.10) that, at the end of the program, the total number 

of the infected individuals is 929 when there is no optimal control intervention, is 308 when 

the optimal control intervention is employed, and 282 when public awareness is included in the 

control implementation. It follows that by the completion of the control period, about 623 

infections will be avoided, and 647 if high public awareness campaign is integrated into the 

program. Therefore, the best method for minimizing the disease is to continuously conduct the 

control program and awareness to the general public. The analysis presented in this chapter 

differs from others (Bowong & Aziz Alaoui, 2013; Mushayabasa & Bhunu, 2013), since it 

incorporated saturated incidence rate and considered the impact of public awareness on the 

control of the disease transmission.  
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CHAPTER 4                                                                                                                  

OPTIMAL CONTROL AND COST-EFFECTIVENESS ANALYSIS OF TB WITH 

THREE DIFFERENT CONTROL INTERVENTIONS 

 

 

4.1 Introduction 

This chapter presents optimal control and cost-effectiveness analysis of a TB model with three 

different control interventions. The study incorporated three time-dependant control 

interventions and their various combinations, to find the most suitable and cost-effective control 

strategy for the minimization of the TB disease. Also, the effect of the parameter uncertainties 

on the open-loop optimal control system is shown through numerical simulations. The analysis 

in this chapter is based on the nonlinear TB model proposed by (Mccluskey, 2006), described 

in Equation (2.16). 

4.2 Optimal Control System 

In this scenario, the optimal control system with the three time-dependent control inputs 𝑢1(𝑡), 

𝑢2(𝑡) and 𝑢3(𝑡) is given by the following system of ODEs: 

{
 
 

 
 
𝑑𝑆

𝑑𝑡
= 𝛬 − 𝛽𝑆𝐼 − (µ + 𝑢1(t))𝑆

dE

𝑑𝑡
= (1 − 𝑝)𝛽𝑆𝐼 − 𝑎𝐸 − (µ + 𝑢2(t))E

𝑑𝐼

𝑑𝑡
= 𝑝𝛽𝑆𝐼 + 𝑎𝐸 − dI − (µ + 𝑢3(t))I

               (4.1) 

where the control input 𝑢1(𝑡) denotes the vaccination given to a fraction of the susceptible 

individuals to provide them with immunity from the disease, while  𝑢2(𝑡) and  𝑢3(𝑡) represents 

the control interventions through the case finding and case holding respectively. The optimal 

control inputs are assumed to be bounded, integrable, Lebesgue functions with values in the 

closed set [0,1]. The state variables and the objective functional (performance index) are defined 

in (4.2) and (4.3) respectively. 

𝑋(𝑡) = (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡))                 (4.2) 



62 

 

𝐽(𝑢1, 𝑢2, 𝑢3) = ∫ (𝑏1𝐸(𝑡) + 𝑏2𝐼(𝑡) +
𝑤1

2
𝑢1
2(𝑡) +

𝑤2

2
𝑢2
2(𝑡) +

𝑤3

2
𝑢3
2(𝑡))

𝑡𝑓
0

𝑑𝑡         (4.3) 

The control objective is to deter the outbreak of the disease by reducing/minimizing the 

population of both the exposed and infectious persons, and also, reduce the cost of implementing 

the control program. The total cost of the control includes the disease-induced cost and the cost 

of vaccination and control interventions. Moreover, the cost associated with the control actions 

is taken to be nonlinear and quadratic, as in  (Gao & Huang, 2018).  Subsequently, the optimal 

control problem is to find the optimal controls 𝑢1
∗, 𝑢2

∗  and  𝑢3
∗  along with an equivalent set of 

state variables 𝑋∗ = (𝑆∗, 𝐸∗, 𝐼∗) over the fixed time interval [0, 𝑡𝑓] that minimises the objective 

functional (4.4) subject to the control system’s dynamic constraints (4.1) as: 

𝐽(𝑋∗, 𝑢1
∗, 𝑢2

∗) = min
Ψ

𝐽(𝑋, 𝑢1, 𝑢2, 𝑢2)                           (4.4) 

with 

Ψ = {𝑋 ∈ 𝑊1.1([0, 𝑡𝑓];ℝ
3), (𝑢1, 𝑢2, 𝑢3) ∈ 𝐿

1([0, 𝑡𝑓];  ℝ)|𝑋(0) ≥ 0, (4.1) are satisfied} 

4.3 Optimal Control Analysis 

4.3.1 Existence of the optimal control 

Theorem 4.1: There exist optimal controls 𝑢1
∗ , 𝑢2

∗  𝑎𝑛𝑑 𝑢3
∗  and an associated optimal solution 

𝑆∗, 𝐸∗, 𝐼∗ to the problem defined in (4.4). 

Proof 4.1: This theorem can be proved by adopting the conditions stated in Theorem 4.1 and 

Corollary 4.1 from (Bather et al., 1976a) and verifying the nontrivial conditions. Let 𝜑(𝑋⃗, 𝑢⃗⃗, 𝑡) 

represent the right-hand side of (4.1), the following conditions should be satisfied to prove the 

existence of the optimal control solutions. 

Condition I: 𝜑 is of class 𝐶1 and a constant 𝜁 exists such that  

|𝜑(0, 0, 𝑡)| ≤ 𝜂,  
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 |𝜑𝑋⃗⃗(𝑋⃗, , 𝑢⃗⃗, 𝑡)| ≤ 𝜂(1 + |𝑢⃗⃗|), and 

 |𝜑𝑢⃗⃗⃗(𝑋⃗, , 𝑢⃗⃗, 𝑡)| ≤ 𝜂; 

Condition II: The admissible set ℱ of all solutions to system (4.1) along with associated control 

in Ψ is nonempty; 

Condition III: 𝜑(𝑋⃗, 𝑢⃗⃗, 𝑡) = 𝑎(𝑋⃗, 𝑡) + 𝑏(𝑋⃗, 𝑡)𝑢⃗⃗; 

Condition IV: The optimal control set 𝑈 = [0, 𝑢1𝑚𝑎𝑥
] × [0, 𝑢2𝑚𝑎𝑥

] × [0, 𝑢3𝑚𝑎𝑥
] is closed, 

compact and convex; 

Condition V: The objective functional integrand is convex in 𝑈. 

By writing 𝜑(𝑋⃗, 𝑢⃗⃗, 𝑡) as in (4.5), it is evident that 𝜑(𝑋⃗, 𝑢⃗⃗, 𝑡) is of class 𝐶1and |𝜑(0, 0, 𝑡)| = Λ. 

𝜑(𝑋⃗, 𝑢⃗⃗, 𝑡) = (

𝛬 − 𝛽𝑆𝐼 − (µ + 𝑢1(t))𝑆

(1 − 𝑝)𝛽𝑆𝐼 − 𝑎𝐸 − (µ + 𝑢2(t))E

𝑝𝛽𝑆𝐼 + 𝜅𝐸 − dI − (µ + 𝑢3(t))I

)             (4.5) 

also,  

|𝜑𝑋⃗⃗(𝑋⃗, 𝑢⃗⃗, 𝑡)| = |(

−𝛽𝐼 − µ − 𝑢1 0 −𝛽𝑆
(1 − 𝑝)𝛽𝐼 −𝑎 − 𝜇 − 𝑢2 (1 − 𝑝)𝛽𝑆

𝑝𝛽𝐼 𝜅 𝑝𝛽𝑆 − 𝑑 − µ − 𝑢3

)|(4.6) 

and 

|𝜑𝑢⃗⃗⃗(𝑋⃗, 𝑢⃗⃗, 𝑡)| = |(
−𝑆 0 0
0 −𝐸 0
0 0 −𝐼

)|                                                              (4.7) 

Owing to the boundedness of the state variables 𝑆, 𝐸 and 𝐼, a constant 𝜂 exists such that  

|𝜑(0, 0, 𝑡)| ≤ 𝜂, |𝜑𝑋⃗⃗(𝑋⃗, , 𝑢⃗⃗, 𝑡)| ≤ 𝜂(1 + |𝑢⃗⃗|), and |𝜑𝑢⃗⃗⃗(𝑋⃗, , 𝑢⃗⃗, 𝑡)| ≤ 𝜂,      (4.8) 

hence, the condition I is satisfied. 
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It can be deduced from condition I, for constant control, that a unique solution exists for the 

system (4.1), and it follows that condition II holds. 

Furthermore, 𝜑(𝑋⃗, 𝑢⃗⃗, 𝑡) can be expanded as 

𝜑(𝑋⃗, 𝑢⃗⃗, 𝑡) = (

𝛬 − 𝛽𝑆𝐼 − (µ + 𝑢1(t))𝑆

(1 − 𝑝)𝛽𝑆𝐼 − 𝑎𝐸 − (µ + 𝑢2(t))E

𝑝𝛽𝑆𝐼 + 𝑎𝐸 − dI − (µ + 𝑢3(t))I

)

                   = (

𝛬 − 𝛽𝑆𝐼 − µ𝑆
(1 − 𝑝)𝛽𝑆𝐼 − 𝑎𝐸 − µE
𝑝𝛽𝑆𝐼 + 𝑎𝐸 − dI − µI

)

3×1

+ ((
−𝑆 0 0
0 −𝐸 0
0 0 −𝐼

)

3×3

× (

𝑢1
𝑢2
𝑢3
)

3×1

)

  

therefore, condition III is also satisfied.  

Condition IV and condition V can be investigated by verifying the convexity of the integrand 

over the objective functional 𝑟(𝑋⃗, 𝑢⃗⃗, 𝑡). The convexity is satisfied if for any two control vectors 

𝑢⃗⃗ and  𝑣⃗ and a constant 𝜌 ∈ [0, 1] 

(1 − 𝜌)𝑟(𝑋⃗, 𝑢⃗⃗, 𝑡) + 𝜌𝑟(𝑋⃗, 𝑣⃗, 𝑡) ≥ 𝑟(𝑋⃗, (1 − 𝜌)𝑢⃗⃗ + 𝜌𝑣⃗, 𝑡)          (4.9) 

Where 

𝑟(𝑋⃗, 𝑢⃗⃗, 𝑡) = 𝑏1𝐸(𝑡) + 𝑏2𝐼(𝑡) +
𝑤1

2
𝑢1
2(𝑡) +

𝑤2

2
𝑢2
2(𝑡) +

𝑤3

2
𝑢3
2(𝑡)  

Considering the left-hand side of (4.9), we have 

(1 − 𝜌)𝑟(𝑋⃗, 𝑢⃗⃗, 𝑡) + 𝜌𝑟(𝑋⃗, 𝑣⃗, 𝑡) = 𝑏1𝐸(𝑡) + 𝑏2𝐼(𝑡) + (1 − 𝜌) [
𝑤1

2
𝑢1
2(𝑡) +

𝑤2

2
𝑢2
2(𝑡) +

𝑤3

2
𝑢3
2(𝑡) ] + 𝜌 [

𝑤1

2
𝑣1
2(𝑡) +

𝑤2

2
𝑣2
2(𝑡) +

𝑤3

2
𝑣3
2(𝑡) ]  

and the right-hand side of (4.10) gives 

𝑟(𝑋⃗, (1 − 𝜌)𝑢⃗⃗ + 𝜌𝑣⃗, 𝑡) = 𝑏1𝐸(𝑡) + 𝑏2𝐼(𝑡) +
𝑤1

2
[(1 − 𝜌)𝑢1 + 𝜌𝑣1]

2 +

𝑤2

2
[(1 − 𝜌)𝑢2 + 𝜌𝑣2]

2 +
𝑤3

2
[(1 − 𝜌)𝑢3 + 𝜌𝑣3]

2   
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it follows that, 

(1 − 𝜌)𝑟(𝑋⃗, 𝑢⃗⃗, 𝑡) + 𝜌𝑟(𝑋⃗, 𝑣⃗, 𝑡) − 𝑟(𝑋⃗, (1 − 𝜌)𝑢⃗⃗ + 𝜌𝑣⃗, 𝑡)

=
𝑤1

2
[(1 − 𝜌)𝑢1

2 + 𝜌𝑣1
2] +

𝑤2

2
[(1 − 𝜌)𝑢2

2 + 𝜌𝑣2
2] +

𝑤3

2
[(1 − 𝜌)𝑢3

2 + 𝜌𝑣3
2]

    −
𝑤1

2
[(1 − 𝜌)𝑢1 + 𝜌𝑣1]

2 −
𝑤2

2
[(1 − 𝜌)𝑢2 + 𝜌𝑣2]

2 −
𝑤3

2
[(1 − 𝜌)𝑢3 + 𝜌𝑣3]

2

=
𝑤1

2
{(1 − 𝜌)𝑢1

2 + 𝜌𝑣1
2 − [(1 − 𝜌)𝑢1 + 𝜌𝑣1]

2} +
𝑤2

2
{(1 − 𝜌)𝑢1

2 + 𝜌𝑣1
2 − [(1 − 𝜌)𝑢1 + 𝜌𝑣1]

2}

     +
𝑤3

2
{(1 − 𝜌)𝑢2

2 + 𝜌𝑣2
2 − [(1 − 𝜌)𝑢3 + 𝜌𝑣3]

2}

=
𝑤1

2
{𝜌(1 − 𝜌)(𝑢1 − 𝑣1)

2} +
𝑤2

2
{𝜌(1 − 𝜌)(𝑢2 − 𝑣2)

2} +
𝑤3

2
{𝜌(1 − 𝜌)(𝑢3 − 𝑣3)

2}

≥ 0,

   

consequently, both conditions IV and V are true, and the proof is completed. 

4.3.2 Optimal control system characterisation  

It has been proved in the previous section that the optimal controls that minimise the functional 

(4.3) subject to the system dynamic (4.1) exist. The necessary conditions for this control can be 

derived from the Pontryagin’s principle (Pontryagin et al., 1962). Following the Pontryagin’s 

principle, the control 𝑢1
∗, 𝑢2

∗   and  𝑢3
∗  with equivalent states variables 𝑋∗ are optimal and 

minimises the objective functional (4.3) for a fixed final time 𝑡𝑓, if the following conditions 

holds:  

1. The conditions for optimality 

{
 
 

 
 
𝜕𝐻(𝑋,𝑢1,𝑢2,𝑢3,𝜆)

𝜕𝑢1
= 0

𝜕𝐻(𝑋,𝑢1,𝑢2,𝑢3,𝜆)

𝜕𝑢2
= 0

𝜕𝐻(𝑋,𝑢1,𝑢2,𝑢3,𝜆)

𝜕𝑢3
= 0                                

            (4.10) 

2. The conditions for the optimal control system 
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{
 
 

 
 
𝑑𝑆

𝑑𝑡
=

𝜕𝐻(𝑋,𝑢1,𝑢2,𝑢3,𝜆)

𝜕𝜆1
𝑑𝐸

𝑑𝑡
=

𝜕𝐻(𝑋,𝑢1,𝑢2,𝑢3,𝜆)

𝜕𝜆2
𝑑𝐼

𝑑𝑡
=

𝜕𝐻(𝑋,𝑢1,𝑢2,𝑢3,𝜆)

𝜕𝜆3
                               

      

                  

3. The conditions for the co-state system 

{
 
 

 
 
𝑑𝜆1

𝑑𝑡
= −

𝜕𝐻(𝑋,𝑢1,𝑢2,𝑢3,𝜆)

𝜕𝑆
𝑑𝜆2

𝑑𝑡
= −

𝜕𝐻(𝑋,𝑢1,𝑢2,𝑢3,𝜆)

𝜕𝐸
𝑑𝜆3

𝑑𝑡
= −

𝜕𝐻(𝑋,𝑢1,𝑢2,𝑢3,𝜆)

𝜕𝐼

               (4.11) 

4. The condition for minimisation 

𝐻(𝑋∗, 𝑢1
∗, 𝑢2

∗ ,  𝑢3
∗ , 𝜆∗) = min

0≤𝑢≤1
𝐻(𝑋∗, 𝑢1, 𝑢2, 𝑢3, 𝜆

∗), holds for 𝑡 ∈ [0, 𝑡𝑓]. 

5. The conditions for the transversality 

𝜆𝑖(𝑡𝑓) = 0, 𝑖 = 1,2,3                (4.12) 

are also true. 

The Hamiltonian function (𝐻) is described as: 

𝐻(𝑋, 𝑢1, 𝑢2, 𝑢3, 𝜆) = 𝑏1𝐸(𝑡) + 𝑏2𝐼(𝑡) +
𝑤1

2
𝑢1
2(𝑡) +

𝑤2

2
𝑢2
2(𝑡) +

𝑤3

2
𝑢3
2(𝑡)

                                       +𝜆1[𝛬 − 𝛽𝑆𝐼 − (µ + 𝑢1(t))𝑆]                                     

                                       + 𝜆2[(1 − 𝑝)𝛽𝑆𝐼 − 𝑘𝐸 − (µ + 𝑢2(t))E] 

                                       + 𝜆3[𝑝𝛽𝑆𝐼 + 𝑘𝐸 − dI − (µ + 𝑢3(t))I]

 

Theorem 4.2: There exist co-state variables 𝜆1
∗(𝑡), 𝜆2

∗(𝑡), 𝜆3
∗(𝑡),   given the optimal solution,

𝑆∗, 𝐸∗, 𝐼∗ and associated control 𝑢1
∗ , 𝑢2

∗  𝑎𝑛𝑑 𝑢3
∗  that minimises 𝐽(𝑋, 𝑢1, 𝑢2, 𝑢3) over Ψ, such that 
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{
 
 

 
 
𝑑𝜆1

𝑑𝑡
= 𝜆1

∗(𝑡)[𝛽𝐼∗(𝑡) + µ + 𝑢1
∗(𝑡)] − 𝜆2

∗(𝑡)(1 − 𝑝)𝛽𝐼∗(𝑡) − 𝜆3
∗(𝑡)𝑝𝛽𝐼∗(𝑡)

𝑑𝜆2

𝑑𝑡
= 𝜆2

∗(𝑡)[µ + 𝑘 + 𝑢2
∗(𝑡)] − 𝑏1

𝑑𝜆3

𝑑𝑡
= 𝜆1

∗(𝑡)𝛽𝑆∗(𝑡) − 𝜆2
∗(𝑡)(1 − 𝑝)𝛽𝑆∗(𝑡) − 𝜆3

∗(𝑡)[𝑝𝛽𝑆∗(𝑡) − 𝑑 − µ − 𝑢3
∗(𝑡)] − 𝑏2

(4.13) 

Together with the transversality conditions 

𝜆𝑖
∗(𝑡𝑓) = 0, 𝑖 = 1,2,3                            (4.14) 

Equally, the piecewise characterization of the continuous optimal control function is given as: 

𝑢1
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 {0,

𝜆1
∗ (𝑡)𝑆∗(𝑡)

𝑤1
} , 1}

𝑢2
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 {0,

𝜆2
∗ (𝑡)𝐸∗(𝑡)

𝑤2
} , 1}

𝑢3
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 {0,

𝜆3
∗ (𝑡)𝐼∗(𝑡)

𝑤3
} , 1}

                                     (4.15)  

Proof 4.2: The co-state system (4.13) and the optimal control characterisation (4.15) are 

obtained from the specific application of conditions (4.11) and (4.10) of Pontryagin’s principle, 

respectively. The optimal control (4.15) is unique over an adequately short final time 𝑡𝑓, because 

of the Lipschitz property and boundedness of the state (4.1) and co-state (4.13) systems (Bather 

et al., 1976).  

The overall optimality system encompasses the system (4.1) and its initial conditions, the co-

state system (4.13) along with transversality conditions (4.14), and the optimal control 

characterisation (4.15); 
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{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
𝑑𝑆

𝑑𝑡
= 𝛬 − 𝛽𝑆𝐼 − (µ + 𝑢1(t))𝑆

dE

𝑑𝑡
= (1 − 𝑝)𝛽𝑆𝐼 − 𝑘𝐸 − (µ + 𝑢2(t))E

𝑑𝐼

𝑑𝑡
= 𝑝𝛽𝑆𝐼 + 𝑘𝐸 − dI − (µ + 𝑢3(t))I

𝑑𝜆1

𝑑𝑡
= 𝜆1

∗(𝑡)[𝛽𝐼∗(𝑡) + µ + 𝑢1
∗(𝑡)] − 𝜆2

∗(𝑡)(1 − 𝑝)𝛽𝐼∗(𝑡) − 𝜆3
∗(𝑡)𝑝𝛽𝐼∗(𝑡)

𝑑𝜆2

𝑑𝑡
= 𝜆2

∗(𝑡)[µ + 𝑘 + 𝑢2
∗(𝑡)] − 𝑏1

𝑑𝜆3

𝑑𝑡
= 𝜆1

∗(𝑡)𝛽𝑆∗(𝑡) − 𝜆2
∗(𝑡)(1 − 𝑝)𝛽𝑆∗(𝑡) − 𝜆3

∗(𝑡)[𝑝𝛽𝑆∗(𝑡) − 𝑑 − µ − 𝑢3
∗(𝑡)] − 𝑏2

𝑆(0), 𝐸(0), 𝐼(0) ≥ 0,

𝜆𝑖
∗(𝑡𝑓) = 0, 𝑖 = 1,2,3    

𝑢1
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 {0,

𝜆1
∗ (𝑡)𝑆∗(𝑡)

𝐵1
} , 1}

𝑢2
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 {0,

𝜆2
∗ (𝑡)𝐸∗(𝑡)

𝐵2
} , 1}

𝑢3
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 {0,

𝜆3
∗ (𝑡)𝐼∗(𝑡)

𝐵3
} , 1}

    (4.16) 

       

4.4 Simulation Results and Discussion  

In this section, numerical simulations are implemented to validate the analytical results. The 

epidemiological parameters used for the simulation are obtained from Table 3.1. The optimality 

system (4.16) is solved by employing the forward-backwards sweep technique described in 

(Lenhart & Workman, 2007). In this technique, the state equations are first solved forward in 

time using a 4th-order Runge Kutta algorithm, using the initial guess of the control variables and 

state variables initial conditions. The co-state equations are solved backwards in time using 4th-

order Runge Kutta algorism, using the current iteration values of the states and control variables 

and transversality conditions. The control variables are then updated by using the values of the 

states and co-states obtained from the current iteration. The process is repeated until the results 

converge.  

The dynamics of the three state variables (S, E and I) when there is no control intervention, are 

shown in Figure 4.1. From the simulation result, the number of exposed and infectious 

individuals at the final time is 1228 and 573, respectively. The result indicates that there is 
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endemic since no control measures have been taken. In figure 4.2, the dynamics of the 

populations is illustrated in the case when optimal controls are incorporated to avert the disease. 

It can be observed that at the end of the control program, both the number of exposed and 

infectious groups have been reduced to zero. This suggests that with a proper application of the 

three controls, the disease can be eliminated from the population.  

 

Figure 4.1: Dynamics of TB without control intervention 

 

Figure 4.2: Dynamics of TB with optimal control intervention 
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The profiles of the control functions are portrayed in Figure 4.3. The figure demonstrates the 

combination of the three control actions over time. For the successful containment of the disease, 

the tree controls should be maintained at the maximum level for the most of the period. 

However, at time 𝑡 = 12.5 the case finding applied to the exposed grouped and the case holding 

used to the infectious start to decrease smoothly to zero.    

 

Figure 4.3: Profiles of the optimal control functions: with weight constants  

𝑏1 = 20, 𝑏2 = 500, 𝑤1 = 50,𝑤2 = 500 and 𝑤3 = 500. 

For comparison, the trajectories of the exposed and the infectious people under different control 

strategies (with at least two control inputs) are shown in Figure 4.4 and 4.5 accordingly. It can 

be observed from Figure 4.4 and 4.5, incorporating different combinations of the control inputs 

have different effects on minimizing the population of the exposed and infectious individuals. 

It is noted that the population of the exposed can only be totally eliminated when all the three 

control inputs are used simultaneously. The combination of  𝑢1,  𝑢2, and  𝑢3 has the highest 

influence on the minimization of the exposed population, followed by  𝑢1 and  𝑢2,  𝑢1 and  𝑢3, 

 𝑢2 and  𝑢3 consecutively. Similarly, observing the dynamics of the infectious under different 

strategies revealed that the infectious population could be extinct by employing  𝑢1,  𝑢2, and 𝑢3 
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simultaneously or by effective use of  𝑢1, and  𝑢3. The influence of  𝑢1,  𝑢2 and  𝑢2,  𝑢3 on the 

infectious group is approximately the same. It is also observed that the combination of the three 

controls (vaccination, case finding and case holding) is more effective than the other 

combinations whereas,  𝑢2, and  𝑢3 has the least effect on curtailing the disease. This could be 

associated to the fact that the vaccination campaign (𝑢1) would prevent a portion of the 

susceptible that might potentially contract the disease by providing them with immunity.   

 

Figure 4.4: Exposed population trajectories under different control strategies 

 

Figure 4.5: Infectious population trajectories under different control strategies 
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Figure 4.6 and 4.7 described the effects of the parameter uncertainties on the system dynamics. 

In this regard, two levels of uncertainties (20% and 40%) are considered. Uncertainties in the 

epidemiological parameters are attributed to errors in recording the incidences, unreported 

incidences and errors associated with the process of estimating the model parameters (Huynh et 

al., 2015; Jung, 2002).  The simulations show that in the presence of the parameter uncertainties 

will have some effect on the system response. This can be linked to the fact that the optimal 

control system is an open-loop and design is carried out with the assumption that the system 

parameters are accurately estimated. 

 

Figure 4.6: Effects of parameter uncertainties on the trajectory of the exposed 

 

Figure 4.7: Effects of parameter uncertainties on the trajectory of the infectious 
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4.5 Cost-Effectiveness Analysis 

In this section, the cost-effectiveness of the various control strategies is investigated based on 

the incremental cost-effectiveness ratio (ICER), explained in (Tilahun et al., 2017). The analysis 

is conducted to establish the most effective strategy that creates a balance between the controls 

requirements and the cost of implementation. ICER reveals the level of the economic value of 

one policy to other alternative methods. The ICER is given by the ratio of the cost difference 

between two approaches (incremental cost) and the difference between the number of averted 

cases (incremental effect) (York, 2016).  The analysis considered only methods that combined 

two or more control inputs (see Table 4.2), in view of the fact that a single control input may 

not be enough in handling the disease. The cumulative number of incidences prevented by each 

method is calculated by subtracting the number of infectious at the end of the program from the 

number of infectious when there is no control. Additionally, the cost is considered to be equal 

to the corresponding objective cost value. 

As shown in Table 4.2, strategy A combined vaccination and case finding controls, strategy B 

combined vaccination with a case holding controls; strategy C applied case finding and case 

holding controls. In contrast, strategy D considered the vaccination, case finding and case 

holding controls simultaneously. The strategies are then compared in pairs as follows. We begin 

by comparing the cost-effectiveness of strategy (A) and strategy (B): 

𝐼𝐶𝐸𝑅(strategy A) =
13068

391
= 33  

𝐼𝐶𝐸𝑅(strategy B with respect to strategy A) =
(13068−15559)

(391−566)
= 14  

which shows that strategy B is less costly in relation to strategy A. Strategy A is then ignored, 

and the analysis continues by comparing strategy B with C as: 

𝐼𝐶𝐸𝑅(strategy B) =
15559

566
= 27  

𝐼𝐶𝐸𝑅(strategy C wth respect to strategy B) =
(15559−16705)

(566−391)
= −7  
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It follows that strategy C is cheaper compared to strategy B and hence, strategy B is ignored, 

and the analysis continues by comparing strategy C and strategy D as follows: 

𝐼𝐶𝐸𝑅(strategy C) =
16705

391
= 42  

𝐼𝐶𝐸𝑅(strategy D wth respect to strategy C) =
(16705−10105)

(391−0)
= 17  

Eventually, strategy D with ICER equal to 17 is more cost-effective compared to strategy C. 

Therefore, the control program that considers the application of strategy D (combined three 

controls simultaneously) will achieve a more efficient result. 

Table 4.1: Cost-effectiveness of the control methods 

Methods Infectious at the 

final time  𝑰(𝒕𝒇) 

Prevented cases Cost value (J) 

No control 573 NA NA 

Strategy A 

(𝑢1 𝑎𝑛𝑑 𝑢2) 

182 391 13068 

Strategy B 

(𝑢1 𝑎𝑛𝑑 𝑢3) 

7 566 15559 

Strategy C 

(𝑢2 𝑎𝑛𝑑 𝑢3) 

182 391 16705 

Strategy D 

(𝑢1, 𝑢2 𝑎𝑛𝑑 𝑢3) 

0 573 10105 

 

Comparable to this research (Jung, 2002b; Mushayabasa & Bhunu, 2013; Y. Yang et al., 2016) 

have presented optimal control analysis on TB with various time-dependent control inputs. 

Unlike this study, which analysed the implementation of three optimal controls (vaccination, 
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case finding and treatment of infectious via case holding) and their various combinations, Yang 

et al.  (2016) included vaccination and treatment only while Jung (2002) and Mushayabasa & 

Bhunu (2013) both limited their analysis to the use of case holding and case finding. Moreover, 

these studies have a general shortcoming of not performing a comprehensive numerical 

sensitivity analysis to evaluate the impact of parameter uncertainty on the dynamics of the 

system, as provided herein. In addition, the current study has expanded the optimal control 

analysis by conducting cost-effectiveness analysis to ascertain the cost and effectiveness of the 

proposed control measures.  
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CHAPTER 5                                                                                                                   

ADAPTIVE SLIDING MODE CONTROL ANALYSIS OF TB EPIDEMIC MODEL 

 

5.1 Introduction 

In optimal control design approach, system parameters are assumed to be priori known and 

accurate. However, if the system contains uncertain parameters, the conventional control 

techniques such as the linear feedback and optimal control will not provide the desired results. 

Since their design demand that the system parameters are predetermined. Nevertheless, robust 

adaptive control methods can guarantee the stability of the system and also provide adaptation 

law through which the estimation of the parameters can be updated.  In this chapter, 

development of adaptive sliding mode control for nonlinear uncertain tuberculosis epidemic 

model is presented. The design considered a compartmental nonlinear TB model proposed by 

(Mccluskey, 2006) of the SEI type (where S, E, and I represent the population of susceptible, 

exposed and infected, respectively) and two control variables 𝑢1and 𝑢2 (representing “case 

finding” and “case holding” programs). The control’s aim is decreasing the population of 

individuals that are exposed and infected to zero by tracking a predefined reference trajectory. 

To ensure the robustness of the control system against uncertainty an adaptation law is 

established in order to update the parameter value estimation. Moreover, Lyapunov stability of 

the closed-loop system is proved.  

5.2 Model Description 

The nonlinear tuberculosis control system is described by Equations (5.1) - (5.3).  

Ṡ = 𝛬 − 𝛽𝑆𝐼 − µ𝑆                  (5.1) 

Ė = (1 − 𝑝)𝛽𝑆𝐼 − 𝑎𝐸 − µ𝐸 − 𝑢1(t)E               (5.2) 

𝐼̇ = 𝑝𝛽𝑆𝐼 + 𝑎𝐸 − (𝑑 + µ)I − 𝑢2(t)I               (5.3) 

The description of the epidemiological parameters is the same as in chapter two. The system 

contains three state variables 𝑆, 𝐸 and 𝐼 representing the number of susceptible, exposed and 
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infected individuals, respectively, along with their initial conditions 𝑆0 = 𝑆(0), 𝐸0 = 𝐸(0) and 

𝐼0 = 𝐼(0). The control signal 𝑢1 is the rate of case finding control scheme that detects and treats 

a fraction of individual exposed, while 𝑢2 is the control initiative that guarantees successful 

treatment of individuals infected. The control inputs seek to reduce the population of individuals 

that are exposed and infected with the TB (hence appeared in Equations (5.2) and (5.3)). 

5.3 Adaptive Sliding Mode Control (ASMC) Structure  

The structure of ASMC for uncertain tuberculosis model is illustrated in Figure 5.1. The closed-

loop control system consists of the ASMC controller block, the uncertain tuberculosis model 

and adaptation laws. By setting appropriate control signals 𝑢1 and 𝑢2, the ASMC controller 

regulates the values of the state variables. The tuberculosis model contains uncertain parameters 

due to the discrepancies that occur in different communities. The adaptation laws are included 

for updating the controller gains in order to maintain the system stability and keep the system 

response close to the desired conditions despite the presence of the uncertainties.  

 

Figure 5.1: The structure of ASMC for uncertain TB model 

The control objectives are said to be achieved when the actual population of the exposed and 

infected groups (𝐸 𝑎𝑛𝑑 𝐼) accurately track a predefined desired reference trajectories 
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(𝐸𝑟 → 0 𝑎𝑛𝑑 𝐼𝑟 → 0). In order to realize the control objectives, this implies that the tracking 

error should be zero for all the time during the process. That is, 

𝑒(𝑡) = 0,    ∀ 𝑡 ≥ 0, 

𝐸̃ = 𝐸 − 𝐸𝑟 = 0, 

 𝐼 = 𝐼 − 𝐼𝑟 = 0. 

In which 𝐸̃ and 𝐼 denotes the tracking error of exposed and infected individuals, accordingly. 

Also, 𝐸𝑟 and 𝐸, and 𝐼𝑟 and 𝐼 represent the desired and actual number of exposed and infected 

populations, respectively. 

5.3.1  Adaptive sliding mode control design 

The step by step design procedure of the ASMC is presented here. Consider a sliding variable 

Θ(𝑡) with integral term (Ibeas et al., 2014): 

Θ(𝑡) = 𝑒(𝑡) + 𝜙 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0
                 (5.4) 

The sliding surface that guarantee the controller objectives is given as  

Θ(𝑡) = 𝑒(𝑡) + 𝜙 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0
= 0                (5.5) 

Where 𝜙 is a positive sliding surface constant gain, and the time derivative of the sliding surface 

is given by 

Θ̇(𝑡) = 𝑒̇(𝑡) + 𝜙𝑒(𝑡)                (5.6) 

Now, the characterization of 𝑢1(t), that guarantee the control of the exposed individuals can be 

obtained by re-written Equation (5.6) as  

Θ̇(𝑡) = 𝐸̇̃ + 𝜙1𝐸̃ = 0        
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Θ̇(𝑡) = Ė − 𝐸̇𝑟 + 𝜙1(𝐸 − 𝐸𝑟) = 0                (5.7) 

By replacing the dynamics of  exposed 𝐸 class from Equation (5.2) in to Equation (5.7), 

Θ̇(𝑡) = (1 − 𝑝)𝛽𝑆𝐼 − 𝑎𝐸 − µ𝐸 − 𝑢1(t)E − 𝐸̇𝑟 + 𝜙1(𝐸 − 𝐸𝑟)  

  

hence, the case finding 𝑢1(t) control input is obtained as: 

𝑢1(𝑡) = −
(𝐸̇𝑟−𝜙1(𝐸−𝐸𝑟))

𝐸
−

(1−𝑝)𝛽𝑆𝐼

𝐸
− 𝑎 − µ               (5.8) 

Similarly, the characterization of 𝑢2(t), that guarantee the control of the infected individuals 

can be achieved from  

Θ̇(𝑡) = 𝐼̇ + 𝜙2𝐼 = İ − 𝐼𝑟̇ + 𝜙2(𝐼 − 𝐼𝑟) = 0              (5.9) 

Also, substituting the dynamics of the exposed 𝐼 from Equation (5.3) into Equation (5.9), the 

case holding 𝑢2(t) control input is found to be 

𝑢2(t) = −
(𝐼𝑟̇−𝜙2(𝐼−𝐼𝑟))

𝐼
+ 𝑝𝛽𝑆 + 𝑎

𝐸

𝐼
− 𝑑 − µ                    (5.10) 

In pursuance of designing the adaptive control law, control inputs (5.8) and (5.10) will be 

express in terms of a matrix 𝑿 and a vector 𝜽 containing the state variables and the parameters 

of the system, respectively.  

𝑢1(𝑡) = −
(𝐸̇𝑟−𝜙1(𝐸−𝐸𝑟))

𝐸
+ 𝑿𝟏(𝑆,  𝐸,  𝐼)𝜽𝟏                        (5.11) 

𝑢2(t) = −
(𝐼𝑟̇−𝜙2(𝐼−𝐼𝑟))

𝐼
+ 𝑿𝟐(𝑆,  𝐸,  𝐼)𝜽𝟐                                              (5.12) 

Where, 𝑿𝟏 and 𝑿𝟐 are functions of system states variable  𝑆,  𝐸 𝑎𝑛𝑑 𝐼. While, 𝜽𝟏 and 𝜽𝟐 contain 

the uncertain parameters of the system.  

Accordingly, 𝑿𝟏, 𝑿𝟐, 𝜽𝟏 and 𝜽𝟐 are defined as 
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𝑿𝟏 = [
𝑆𝐼

𝐸
 − 1 − 1]                (5.13) 

𝑿𝟐 = [𝑆 
𝐸

𝐼
 − 1 − 1 ]                                                                                        (5.14) 

𝜽𝟏 = [(1 − 𝑝)𝛽  𝑎  µ]𝑇               (5.15) 

𝜽𝟐 = [𝑝𝛽 𝜅 𝑎 µ]𝑇                                                                                          (5.16) 

Furthermore, since the actual system parameters 𝜽𝟏 and 𝜽𝟐 contain uncertainties, and the ASMC 

control laws are therefore designed using estimated model parameters 𝜽̂𝟏 and 𝜽̂𝟐, and adaptive 

laws that handle the mismatch between the actual and estimated parameters (Taylor et al., 2010): 

𝑢1(t) = −
(𝐸̇𝑟−𝜙1𝐸̃ )

𝐸
+ 𝑿𝟏(𝑆,  𝐸,  𝐼)𝜃1 + Υ̂1

𝑠𝑔𝑛(𝐸̃)

𝐸
                                                (5.17)  

𝑢2(t) = −
(𝐼𝑟̇−𝜙2𝐼)

𝐼
+ 𝑿𝟐(𝑆,  𝐸,  𝐼)𝜃2 + Υ̂2

𝑠𝑔𝑛(𝐼)

𝐼
                                                   (5.18) 

Where the vectors 𝜽̂𝟏 and 𝜽̂𝟐 denotes the estimated parameters, given by 

𝜽̂𝟏 = [(1 − 𝑝̂)𝛽̂  𝑎̂  µ̂]
𝑇
                                                                      (5.19) 

𝜽̂𝟐 = [p̂β̂  â  𝑑̂  𝜇̂]
𝑇
                                                                                  (5.20) 

The adaptation gains Υ̂1 and Υ̂2 are included to compensate the discrepancies between estimated 

and actual parameters so as to attain the control objectives. The adaptation gains are updated 

through the adaptation laws, defined as (Sharifi & Moradi, 2017): 

Υ̇̂1 = 𝜅1|𝐸̃|,                 Υ̂1(0) = Υ10 > 0             (5.21) 

Υ̇̂2 = 𝜅2|𝐼|,                  Υ̂2(0) = Υ20 > 0             (5.22) 

The positive constants 𝜅1 and 𝜅2 signifies the rate at which the adaptation gains are updated in 

reference to the tracking errors (𝐸̃ 𝑎𝑛𝑑 𝐼).  While Υ̂10  and Υ̂20 represent the initial values of the 

adaptation  gain.  
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5.3.2  Closed-loop TB control system 

In this section, the closed-loop control system of the tuberculosis is established by employing 

the ASMC designed in sub-section 5.3.1. In this regard, the control laws (5.17) and (5.18) are 

substituted into dynamics of 𝐸 and 𝐼 in Equations (5.2) and (5.3), respectively. 

   −
(Ė−𝐸̇𝑟+𝜙1𝐸̃ )

𝐸
= (1 − (𝑝̂ − 𝑝))(𝛽̂ − 𝛽)

𝑆𝐼

𝐸
− (𝑎̂ − 𝑎) − (µ̂ − µ) + Υ̂1

𝑠𝑔𝑛(𝐸̃)

𝐸
           (5.23) 

   −
(İ−𝐼𝑟̇+𝜙2𝐼 )

𝐼
= (𝑝̂ − 𝑝)(𝛽̂ − 𝛽)𝑆 + (𝑎̂ − 𝑎)

𝐸

𝐼
− (𝑑̂ − 𝑑) − (µ̂ − µ) + Υ̂2

𝑠𝑔𝑛(𝐼)

𝐼
   (5.24) 

Subsequently, the closed-loop dynamics are obtained as 

𝐸̇̃ = −𝜙1𝐸̃– 𝐸𝑿𝟏(𝑆,  𝐸,  𝐼)𝜃̃1 − Υ̂1𝑠𝑔𝑛(𝐸̃)             (5.25) 

𝐼̇ = −𝜙2𝐼– 𝐼𝑿𝟐(𝑆,  𝐸,  𝐼)𝜃̃2 − Υ̂2𝑠𝑔𝑛(𝐼)             (5.26) 

Where 𝐸̇̃ and 𝐼 ̇are the derivatives of the tracking errors, while 𝜽̃𝟏 and 𝜽̃𝟐 represent the bounded 

model parameter estimation errors defined as 

𝐸̇̃ = 𝐸̇ − 𝐸̇𝑟                  (5.27) 

𝐼̇ = 𝐼̇ − 𝐼𝑟̇                 (5.28) 

𝜽̃𝟏 = 𝜽̂𝟏 − 𝜽𝟏                (5.29) 

𝜽̃𝟐 = 𝜽̂𝟐 − 𝜽𝟐                (5.30) 

Now, owing to the fact that the system state variables (𝑆,  𝐸,  𝐼) and model parameter estimation 

errors (𝜽̃𝟏 and 𝜽̃𝟐) are bounded, one can establish that the terms 𝐸𝑿𝟏(𝑆,  𝐸,  𝐼)𝜽̃𝟏 and 

𝐼𝑿𝟐(𝑆,  𝐸,  𝐼)𝜽̃𝟐 are bounded (see (Taylor et al., 2010)), and therefore there exist some positive 

constants 𝜀1 and 𝜀2 such that: 

|𝐸𝑿𝟏(𝑆,  𝐸,  𝐼)𝜽̃𝟏| ≤  𝜀1               (5.31) 
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|𝐼𝑿𝟐(𝑆,  𝐸,  𝐼)𝜽̃𝟐| ≤  𝜀2               (5.32) 

5.3.3 Lyapunov stability of closed-loop TB control system 

Consider a quadratic Lyapunov function (Moradi et al., 2015) defined as: 

𝑉 =
1

2
[𝐸̃2 + 𝐼2 +

1

𝜅1
 (Υ̂1 − 𝜀1)

2
 +

1

𝜅2
 (Υ̂2 − 𝜀2)

2
]            (5.33) 

Based on Equation (5.33), 𝑉 is positive definite (𝑉 ≥ 0 ). Now, taking the derivative of (5.33), 

𝑉̇ = 𝐸̃𝐸̇̃ + 𝐼𝐼̇ +
1

𝜅1
 (Υ̂1 − 𝜀1)Υ̇̂1 +

1

𝜅2
 (Υ̂2 − 𝜀2)Υ̇̂2            (5.34) 

By substituting (5.25) and (5.26) in to (5.34) following expression is obtained as 

𝑉̇ = 𝐸̃[−𝜙1𝐸̃– 𝐸𝑋1(𝑆,  𝐸,  𝐼)𝜃̃1 − Υ̂1𝑠𝑔𝑛(𝐸̃)] +
1

𝜅1
 (Υ̂1 − 𝜀1)Υ̇̂1

  + 𝐼[−𝜙2𝐼– 𝐼𝑋2(𝑆,  𝐸,  𝐼)𝜃̃2 − Υ̂2𝑠𝑔𝑛(𝐼)] +
1

𝜅2
 (Υ̂2 − 𝜀2)Υ̇̂2

             = −𝜙1𝐸̃
2– 𝐸̃(𝐸𝑋1(𝑆,  𝐸,  𝐼)𝜃̃1) − Υ̂1𝐸̃𝑠𝑔𝑛(𝐸̃) +

1

𝜅1
 (Υ̂1 − 𝜀1)Υ̇̂1

    − 𝜙2𝐼
2– 𝐼(𝐼𝑋2(𝑆,  𝐸,  𝐼)𝜃̃2) − Υ̂2𝐼𝑠𝑔𝑛(𝐼) +

1

𝜅2
 (Υ̂2 − 𝜀2)Υ̇̂2

  (5.35) 

Considering the fact that 𝐸̃𝑠𝑔𝑛(𝐸̃) = |𝐸̃|  and 𝐼𝑠𝑔𝑛(𝐼) = |𝐼|, and by substituting the adaptation 

laws (5.21) and (5.22), 𝑉̇ is achieved as 

𝑉̇(𝑡) = −𝜙1𝐸̃
2– 𝐸̃(𝐸𝑋1(𝑆,  𝐸,  𝐼)𝜃̃1) − 𝛶̂1|𝐸̃| +

1

𝜅1
 (𝛶̂1 − 𝜀1)𝜅1|𝐸̃|

−𝜙2𝐼
2– 𝐼(𝐼𝑋2(𝑆,  𝐸,  𝐼)𝜃̃2) − 𝛶̂2|𝐼| +

1

𝜅2
 (𝛶̂2 − 𝜀2)𝜅2|𝐼|

          (5.36) 

Given (5.31) and (5.32) and further simplification it is reduced to 

𝑉̇ = −𝜙1𝐸̃
2 + 𝜀1|𝐸̃| − 𝛶̂1|𝐸̃| +

1

𝜅1
 (𝛶̂1 − 𝜀1)𝜅1|𝐸̃| − 𝜙2𝐼

2 + 𝜀2|𝐼| − 𝛶̂2|𝐼| +
1

𝜅2
 (𝛶̂2 − 𝜀2)𝜅2|𝐼|

        
   

 𝑉̇ = −𝜙1𝐸̃
2 − 𝜙2𝐼

2 ≤ 0                 (5.37) 
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Since 𝜆1 and 𝜆2 are positive constants, 𝑉̇ is negative semi-definite (𝑉̇ ≤ 0).  Hence, the designed 

adaptive control strategy given by (5.17) and (5.18) ensures the stability of the closed-loop 

tuberculosis control system. Moreover, employing the Barbalat’s lemma (Slotine & Li, 1991) 

the asymptotic stability of the system may be proved by taking the derivative of (5.37) 

𝑉̈ = −2𝜙1𝐸̃𝐸̇̃ − 2𝜙2𝐼𝐼 ̇                (5.38) 

Because of the boundedness of the exposed and infected dynamics (5.2) and (5.3), the 

derivatives Ė and İ equally bounded. Given (5.27) and (5.28) and the boundedness of 𝐸̇𝑟,  Ė, 𝐼𝑟̇ 

and İ, it can be established that 𝐸̇̃ and 𝐼 ̇are bounded too. It emerges that 𝑉̈ is bounded based on 

the Barbalat’s lemma (𝑉̇ → 0 𝑎𝑠 𝑡 → ∞). Subsequently, the tracking errors converge (𝐸̃ → 0 

and 𝐼 → 0), which means the population of the exposed and infected converges to their reference 

trajectories (𝐸 − 𝐸𝑟 and 𝐼 → 𝐼𝑟), and hence the closed-loop tuberculosis control system is 

asymptotically stable regardless of parameter uncertainties. 

5.4 Simulation Results and Discussion 

Numerical simulation is conducted on the developed closed-loop tuberculosis control system, 

and the result is reported here. The purpose of the simulation is demonstrating the effectiveness 

of the developed control system and hence supports the established theoretical facts. In this 

regard, various simulation scenarios are considered. In the first instance, the nonlinear 

tuberculosis model is simulated without control; afterwards, the closed-loop tuberculosis is 

simulated along with the control inputs and predefined reference trajectories. In the second 

scenario, the capabilities of the control system to handle parameter uncertainties are shown. 

Finally, a performance comparison between the adaptive controller and the optimal controller 

(discussed in chapter 4) is shown.  

The actual and estimated epidemiological parameters are given in Table 5.1. The actual 

parameters are assumed to be the same as the simulation parameters in the previous chapters. 

For brevity, the estimated parameters are considered to contained 20% and 40% uncertainties 

as given in Equation (5.39) and (5.40), respectively. 
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That is,  

𝛉̂𝟐𝟎 = 1.2𝛉𝑖                 (5.39) 

𝛉̂𝟒𝟎 = 1.4𝛉𝑖                 (5.40) 

for 𝑖 = 1, 2 

Where 𝛉,  𝛉̂𝟐𝟎 and 𝛉̂𝟒𝟎 represents the actual model parameters, estimated parameters with 20% 

uncertainty and estimated parameters with 40% uncertainty, respectively. 

Table 5.1: Simulation Parameters 

Nominal parameter Value 

𝛉𝟏 = [(1 − p)β  a  µ]T [0.0015  0.05  0.3]T 

𝛉𝟐 = [pβ a d µ]T [0.0015  0.05  0.55  0.3]T 

Uncertain parameter θ̂20 θ̂40 

𝛉̂𝟏 = [(1 − p̂)β̂  â  µ̂]
T
 [0.0018  0.06  0.36]T [0.0021  0.07  0.42]T 

𝛉̂𝟐 = [p̂β̂ â   d̂  μ̂]
T
 [0.0018  0.06  0.66  0.36]T [0.0021  0.07  0.77  0.42]T 

 

The reference trajectories for the reduction of the exposed and infected individuals (𝐸𝑟 , 𝐼𝑟) are 

designed as descending exponential functions to mimic a planned tuberculosis control 

intervention program that aimed at eliminating the tuberculosis epidemic by reducing the 

number of the exposed and infected population to zero. The reference trajectories over control 

program period 𝑡 are defined as:  

𝐸𝑟 = (𝐸0 − 𝐸𝑓)𝑒
−𝜖1𝑡 + 𝐸𝑓                          (5.41) 

𝐼𝑟 = (𝐼0 − 𝐼𝑓)𝑒
−𝜖2𝑡 + 𝐼𝑓               (5.42) 



85 

 

Where 𝐸0, 𝐸𝑓, 𝐼0, and 𝐼𝑓 represents the initial and final values of the exposed and infected 

population. The desired steady-state (final) number of the exposed and infected individuals are 

considered to be zero i.e. 𝐸𝑓 = 𝐼𝑓 = 0, 𝜖1 = 0.5, 𝜖1 = 0.5, 𝜖2 = 0.4, and the control program 

period 𝑡 = 15. Figure 5.2 shows the desired trajectories for the specified parameters. As shown 

in the figure, the decrease in the number of exposed is more gradual compared to the infected, 

since the spread of the disease can be better handle if the number of infected are eliminated 

faster then followed by the exposed. 

 

Figure 5.2: Control reference signals 

Figure 5.3 shows the trajectories of the susceptible, exposed and infected populations when 

there is no control intervention (control inputs 𝑢1 = 𝑢2 = 0). It can be vividly observed that the 

number of healthy susceptible people decreases while the population of the exposed and infected 

are increasing. This means there is an epidemic and the disease remain in the community. This 

undesirable situation can be averted by employing appropriate control inputs.  
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Figure 5.3: Dynamics of TB without control 

Afterwards, the closed-loop tuberculosis control system along with the adaptive control inputs 

𝑢1(𝑡) and 𝑢2(𝑡) is simulated using the actual system parameters, and desired reference values 

of the exposed and infected individuals (see Figure 5.4). The controller parameters are adjusted 

to 𝜙1 = 𝜙2 = 48,  Υ10 = Υ20 = 2,  𝜅1 = 0.2 and 𝜅2 = 1 to accomplish a high rate of 

convergence of the tracking errors with a settling time 𝑡𝑆𝐸 = 0.6522 and 𝑡𝑆𝐼 = 0.5435 for the 

exposed and infectious, respectively. Furthermore, it can be seen from figure 5.4, that there is 

high accuracy in the tracking of the descending reference trajectories of the exposed and infected 

population. The mean absolute tracking error (MAE) for the exposed and infectious trajectories 

is found to be equal to 0.080954 and 0.00002 respectively. 
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Figure 5.4: Closed-loop TB control system with adaptive control inputs 

For the purpose of comparison, the performance of the adaptive controller in handling the effect 

of the parameter uncertainties is compared with the optimal controller designed in chapter four. 

In this scenario, the optimal trajectories of the exposed and infected individuals obtained from 

the optimal controller in chapter 4, are used as reference inputs (𝐸𝑟 , 𝐼𝑟). Figures 5.5 and 5.6 

show the resulting dynamics of the exposed and infected individuals in case of the tuberculosis 

control system with adaptive control and the tuberculosis model with conventional optimal 

control in the presence of 20% and 40% uncertainties.  

As shown in Figure 5.5and 5.6, in the presence of parameter uncertainties, the performance of 

the conventional optimal controller is affected and the trajectories of both the exposed and 

infectious population deviated from the reference trajectories. The mean absolute tracking error 

(MAE), for the optimal controller in the presence of 20% uncertainty is 51.2283 and 69.1930 

for the exposed and infectious trajectories, and is found to be equal to 71.0222, 102.8563 in the 

presence of 40% uncertainty. Besides, the result of the adaptive controller demonstrated the 

robustness of the controller in handling the parametric uncertainties, with MAE of 0.8494, and 

0.7357 for the exposed and infectious under 20% uncertainty, and 0.9332 and 1.0780 in the 
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presence of 40% uncertainty. Hence, the adaptive controller successfully tracks the reference 

trajectories of the exposed and infectious population. 

 

Figure 5.5: Effect of 20% uncertainty in the estimated model parameters: (a) Exposed 

population (b) Infectious population 

(a) 

(b) 
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Figure 5.6: Effect of 40% uncertainty in the estimated model parameters: (a) Exposed 

population (b) Infectious population 

(a) 

(b) 
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CHAPTER 6  

CONCLUSION AND RECOMMENDATIONS 

 

6.1 Conclusion 

In this thesis, optimal and adaptive control analysis of TB model has been presented. The study 

is carried out in three configurations. In the first case, optimal control of TB dynamic model is 

presented with saturated incidence rate. The analysis considered two time-dependent control 

functions; which describe TB case findings among the individuals that are exposed and case 

holding treatment on the infectious, and a constant control coefficient 𝛿, describing the public 

awareness. The model’s global stability was established using Lyapunov function theory, and 

the optimal controls were characterized using the concept of Pontryagin’s principle. Through 

numerical simulations, the impact of the public awareness, as well as the optimal control inputs 

in managing the spread of the disease, has been demonstrated. The result indicated that 

incorporating public awareness in the TB control program will have a significant influence on 

the eradication of the disease.  

Similarly, in the second instance, the analysis combined three time-dependent control inputs 

with the third control function representing the vaccination campaign. The necessary conditions 

for the eradication of the disease were obtained by the application of the Pontrayagin’s principle. 

In this analysis, the effect of the various control strategies on the reduction of the exposed and 

infectious population was shown numerically. It was observed from the result that the 

combination of the three controls (vaccination, case finding and case holding) is more effective 

than the other combinations whereas, the combination of case finding and case holding without 

vaccination has the least effect on curtailing the disease. This suggested that vaccination 

campaign is essential in any epidemic control program as it prevents a fraction of the healthy 

individuals that might potentially contract the disease by providing them with immunity.  It has 

also been observed that parameter uncertainties may affect the system response. This can be 

attributed to the fact that the optimal control system is an open-loop and the design is done under 
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the basis that accurate parameters of the system are available. The economic feasibility of the 

proposed control approaches was investigated, and the result suggests that the cost-effective 

way to curb the disease outbreak is to jointly incorporate the three control measures.  

Furthermore, as observed from the second scenario, if the system contains uncertain parameters, 

the traditional optimal control method may not give the desired results. This lead to the third 

scenario where adaptive sliding mode control (ASMC) was implemented considering the 

parameter uncertainties. The goal of the control was to reduce the population of individuals that 

are exposed and infected to zero by tracking a predefined reference trajectory. Adaption law is 

established to update the parameter values to ensure the robustness of the control system against 

uncertainties. The stability of the closed-loop system is demonstrated using the Lyapunov 

Function Principle, and numerical simulations showed the result.  

The conclusion suggests that the proposed optimal and adaptive control systems are very useful 

and provide efficient tools for understanding TB transmission and control. The use of saturated 

incidence rate establishes another perspective in comprehending the spread of TB. The 

incorporation of public awareness in the analysis also revealed the fact that controlling social 

activities has a significant role in handling epidemic diseases. The optimal control analysis 

offers a solution to the problem of balancing the desired control goals and the cost of executing 

the control action them. In addition, the adaptive control system is robust against the various 

level of uncertainties and ensures the convergence of the number of exposed and infectious 

individuals to the desired values. The analysis explores possible approaches and highlights the 

important implementations of open-loop and closed-loop control systems in epidemiology. The 

research will serve as a reliable framework to inform practical methods for curtailing TB 

diseases in any society. 

6.2 Recommendations 

The procedure of development and analysis of mathematical epidemic models is complex and 

quite challenging, due to the inherent nonlinearity in epidemiological systems. Meanwhile, 

recent studies revealed that the application of data-driven methods such as machine learning 
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algorithms could alternatively produce accurate epidemic predictive models. Because there is 

increased in computational power, the use of machine learning algorithms in epidemiology is 

promising and should be thoroughly investigated.  

The conventional optimal control systems are generally designed through the indirect 

implementation of Pontryagin’s principle, which is an open-loop control system framework. 

The future work should consider closed-loop optimal control approaches such as the linear-

quadratic regulators (LQR) and model predictive controls (MPC). Moreover, some other 

promising control techniques such as observers, neural network (NN), inverse neural network, 

neuro-fuzzy and H∞ controllers can be applied. 

The future work will also consider the concurrent application of the optimal control and adaptive 

control systems to achieve an optimal adaptive control system. This is possible by first applying 

the optimal control strategy to obtain the optimal and cost-effective trajectories of the system 

state variables and utilize the result in as reference inputs (desired outputs) in the adaptive 

control design. 

The risk of developing active TB is higher in the developing countries. Although therapy is 

possible, precise diagnosis is needed first. In many cases X-ray machines are available in these 

countries, but often the radiological expertise is insufficient to correctly analyze the images. 

Machine learning algorithms that could easily and efficiently execute this task will greatly 

enhance the ability to diagnose and properly handle the disease.  
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