NANYAK ZINGFA GALAM

APOPTOTIC AND ANTICANCER POTENTIAL STUDIES OF SILK FIBROIN LOADED CARBOPLATIN PARTICLES

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF APPLIED SCIENCES OF NEAR EAST UNIVERSITY

By NANYAK ZINGFA GALAM

In Partial Fulfillment of the Requirements for The Degree of a Doctor of Philosophy

> in Biomedical Engineering

> > NICOSIA, 2020

APOPTOTIC AND ANTICANCER POTENTIAL NEU STUDIES OF SILK FIBROINLOADED 2020 CARBOPLATIN PARTICLES

APOPTOTIC AND ANTICANCER POTENTIAL STUDIES OF SILK FIBROIN LOADED CARBOPLATIN PARTICLES

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF APPLIED SCIENCES OF NEAR EAST UNIVERSITY

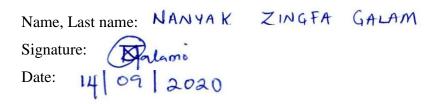
By NANYAK ZINGFA GALAM

In Partial Fulfillment of the Requirements for The Degree of a Doctor of Philosophy in Biomedical Engineering

NICOSIA, 2020

Nanyak Zingfa GALAM: APOPTOTIC AND ANTICANCER POTENTIAL STUDIES OF SILK FIBROIN LOADED CARBOPLATIN PARTICLES

Approval of Director of Graduate School of Applied Sciences


Prof. Dr. Nadire ÇAVUŞ

We certify this thesis is satisfactory for the award of the degree of Doctor of Philosophy in Biomedical Engineering

Examining Committee in Charge:

Committee Chairman, Department of Prof. Dr. TulinBodamyali Health Sciences', Faculty of Health Sciences, GAU Doç. Dr. Terin Adali Co-Supervisor, Department of Biomedical of Engineering, Faculty of Engineering, NEU Doç. Dr. Pinar Tulay Supervisor, Department of Medical Genetics, Faculty of Medicine, NEU Prof. Dr. Elvan Yilmaz Committee Member, Department of Medical Department of Chemistry, EMU Committee Member, Department of Medical Doç. Dr. Mahmut Ç. Ergoren Biology, Faculty of Medicine, NEU Prof. Dr. Mustafa Gazi Committee Member, Department of Medical Department of Chemistry, EMU

I hereby declare that all the information in this document has been obtained and presented in accordance with the academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all materials and results that are not original to this work.

ACKNOWLEDGEMENTS

I would like to express my profound gratitude to my supervisors Assoc. Prof. Dr Pinar Tulay and Assoc. Prof. Dr. Terin Adali for their expert advice, immense help and invaluable support to supply all necessary chemicals and materials for the experiment to make this work possible. I sincerely want to thank my parents, Mr & Mrs Z.D Galam, my siblings Zingkur, Lungya, Ponyil and Mantim, this feat would not have been possible without your support. To Lohkat, Xhanfa and Xhandul I must say I am grateful. I also wish to thank Zendi Mikuk, Nander Salmwang, Jesse Ninmol, Pantong Mark, Maxwell Dagba, Lord Joro, Santos Larab, Nanpon Miri Dashe, Gomerep Lord Jimam, Wilson Gogwim, Nanman Kparbong, Prof. Y.N. Lohdip and Mangai your immense contributions served as the much-needed tonic to keep me going.

I would like to thank the University of Jos for granting me permission to undergo studies. I take this opportunity to express my gratitude to Near East University Department of Biomedical Engineering academic staff. My sojourn in the Turkish republic of Northern Cyprus has left an indelible mark of placing humanity first as embodied in their culture of caring and sharing

I thank Nadire who supported me in all laboratory studies and I also would like to thank my Cyprus family Dinji Kangdim, Changz, yuba, Jide Badru, BimpeBadru, Nanbal Ladan, Coston, Chidi, Lois, Panshak, Inar Ian, Martins and Manta Dakyen you guys made Cyprus a home away from home. My acknowledgement would be incomplete without appreciating Prof. Seddi Maimako, Mr. Danjem and all of those who prayed and kept faith in me, Thank you all so much.

To Xhanfa and Xhandul

ABSTRACT

Cancer of the breast is the 5th leading cause of mortality worldwide. Its management entails the use of anticancer regimen either as adjuvant or neoadjuvant drugs. It is associated with adverse effects resulting in poor compliance as well as collateral damage to bystander cells, thus the need to develop bio-compatible drug carrier system for treatment of cancer. This study set out to create a colloidal drug-delivery system by integrating carboplatin into silk fibroin using the ionic gelation technique then investigate the micro-particle ability to induce programmed cell death on MCF7 adenocarcinoma cells invitro. Silk fibroin- carboplatin particles were made and its physical properties examined using FTIR, SEM, mastersizer & bio-degradation studies. The quantity of CP loaded was determined using a UV-VIS spectrophotometric technique. MCF7 adenocarcinoma cells were cultured with 10µg/ml-200µg/ml of SF-CP micro-particles for 24hr, 48hr, and 72 hours. Apoptosis screening was done using the Apostrand Elisa Apoptosis kit. Results obtained were analyzed using the graphpad prism tool. Fourier transform infra-red spectra and studies to determine the release of carboplatin showed successful encapsulation of the drug in silk fibroin. Thus SF-carboplatin microparticle successfully induced apoptosis in MCF7 adenocarcinoma cells invitro.

Keywords: Carboplatin, Breastcancer, Silk fibroin, Ionic Gelation

ÖZET

Meme kanserinin dünya çapında beşinci önde gelen ölüm nedeni olduğu söylenir. Yönetimi, antikanser rejiminin adjuvan veya neoadjuvan ilaçlar olarak kullanılmasını gerektirir. Yandaş hücrelere zayıf uyumun yanı sıra kollateral hasara yol açan yan etkilerle ilişkilidir, bu nedenle kanser tedavisi için biyo-uyumlu ilaç taşıyıcı sistemi geliştirme ihtiyacı. Bu çalışma, iyonik jelasyon tekniğini kullanarak karboplatini ipek fibroine entegre ederek kolloidal bir ilaç verme sistemi geliştirmeyi amaçladı ve daha sonra MCF7 adenokarsinom hücreleri invitro üzerinde programlanmış hücre ölümünü indükleme için mikro partikül yeteneğini araştırdı. İpek fibroin-karboplatin, FTIR, SEM, mastersizer ve biyo-bozunma analizi kullanılarak sentezlendi ve karakterize edildi. Yüklenen ilacın miktarı bir uv-vis spektrofotometrik teknik kullanılarak belirlendi. MCF7 adenokarsinom hücreleri, sırasıyla 24, 48 ve 72 saat boyunca 10 ug / ml-200 ug / ml SFCP mikropartikülleri ile kültürlendi. Apoptoz taraması Apostrand Elisa Apoptosis kiti kullanılarak yapıldı. Elde edilen sonuçlar graphpad prizma aracı kullanılarak analiz edildi. Fourier dönüşümü kızıl ötesi spektrumları ve karboplatin salınımını belirlemeye yönelik çalışmalar ilacın ipek fibroininde başarılı bir şekilde kapsüllendiğini göstermiştir. Bu nedenle SF-karboplatin mikropartikül, MCF7 adenokarsinom hücrelerinde invitroda apoptozu başarıyla indükledi.

Anahtar Kelimeler: Karboplatin, Meme Kanseri, İpek fibroin, İyonik Jelleşme

TABLE OF CONTENTS

AKNOWLEDGEMENT	ii
DEDICATION,	iii
ABSTRACT	iv
OZET	v
TABLE OF CONTENTS	vi
LIST OF FIGURES	X
LIST OF TABLES	xi
LIST OF ABREVIATIONS	xii

CHAPTER 1: INTRODUCTION

1.1 Thesis Problem	1
1.2 Aim of Study	3
1.3 Significance of the Study	3
1.4 Limitations of the Study	3
1.5 Overview of the Study	3
1.6 Conclusion	4

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction.	5
2.2 Breast Cancer Biology	7
2.2.1 Breast cancer genetics	8
2.2.2 Breast cancer vascularity and EPR effect	8
2.3 Apoptosis & the Hallmarks of Breast Cancer	9

2.4 Current Treatment Techniques & Approaches to New Technologies	10
2.5 Cytotoxic Drugs used in Breast Cancer Chemotherapy	12
2.5.1 Carboplatin	14
2.6 Biomaterials as Drug Delivery Systems	15
2.7 Naturally Occurring Biomolecules as Medication Bearers	18
2.8 Use of Chitosan as Drug Carriers	18
2.9 Silk Fibroin	20
2.9.1 Molecular properties of silk fibroin	21
2.9.2. Molecular weight	22
2.9.3 Biocompatibility	24
2.9.4 Silk fibroin as drug bearers	24
2.10 Targeting Tumours Utilizing Silk Fibroin Molecules	25
2.11 Silk Fibroin and Apoptosis	
2.12 Procedure for Making Silk Fibroin Particles	
2.12.1 Desolvation method	30
2.12.2 Salting out method	31
2.12.3 Supercritical fluid technologies	31
2.12.4 Electro-spraying	32
2.12.5 Mechanical communition	33
2.12.6 Micro emulsion method	33
2.12.7 Capillary microdot method	33
2.12.8 Polyvinyl alcohol blend method	34
2.12.9 Ionic gelation method	34

CHAPTER 3: MATERIALS AND METHOD

3.1 Materials	36
3.2 Preparation of Pure Silk Fibroin	36
3.2.1 Degumming	36
3.2.2 Dissolution	37

3.2.3 Dialysis	38
3.3 Incorporation of Drug and Synthesis of Particle	
3.3.1 Synthesis of micro particles	39
3.4 Particle Characterization	
3.4.1 Particle size analysis	39
3.4.2 SFCP micro particles morphology	40
3.4.3 Biological degradation test	40
3.4.4 Fourier Transforms Infrared Spectroscopy (FTIR)	40
3.5 In-vitro Drug Release Profile	40
3.6 Cell Culture	40
3.6.1 Apoptosis evaluation	41
3.7 Statistical Analysis	

CHAPTER 4: RESULTS AND DISCUSSION

4.1 Encapsulation of Silk Fibroin Carboplatin Particles (Synthesis and	
Characterization)	43
4.2 Biodegradation Analysis	45
4.3 FTIR Spectra Analysis	47
4.4 Encapsulation Percentage of SFCP Particles	48
4.5 Drug release of SFCP Particle	. 48
4.6 SFCP Particles and Apoptotic Activity	49

CHAPTER 5: CONCLUSION

5.1 Conclusion	51
5.2 Conclusion	52

APPENDICES

Appendix 1: Ethical Approval Document	73
Appendix 2: Signed Similarity Report	74
Appendix 3: Raw Data for SFCP Encapsulation	75
Appendix 4: Raw Data In vitro Drug Release	76
Appendix 5: Descriptive statistics Drug Release	77
Appendix 6: Raw Data Absorbance vs Time	78
Appendix 7: Table of Absorbance vs Time	79
Appendix 8: One way Anova Absorbance vs Time	80
Appendix 9: Transmittance of SFCP particles	81
Appendix 10: Transmittance of Pristine Silk Fibroin	210
Appendix 11: Curriculum Vitae	337

LIST OF FIGURES

Figure 2.1:	Hypothetical Image showing stages of transformation of ductal breast cancer	8
Figure 2.2:	Schematic representation of the EPR effect	9
Figure 2.3:	Schematic representation of the hallmark of cancer development	10
Figure 2.4:	Schematic diagram of classification of cytotoxic drugs	13
Figure 2.5:	Molecular structure of carboplatin (C ₆ H ₁₂ N ₂ O ₄ Pt)	15
Figure 2.6:	Bombyx morii worm, cocoon and the genenal formula for silk fibroin	21
Figure 2.7:	Image of the process of ionic gelation	35
Figure 3.1:	(A) Silk cocoons (B) Clean and cut cocoons (C) Process of degumming	37
Figure 3.2:	Process of dissolution	38
Figure 3.3:	Showing the process of dialysis and pure silk fibroin respectively	38
Figure 3.4:	MCF7 cells at > 60% confluence	41
Figure 4.1:	Reaction scheme of the crosslinking between SF, CP and TPP	43
Figure 4.2:	Size distribution graph of Silk fibroin carboplatin microparticle	44
Figure 4.3:	Micrographs of SFCP from Scanning electron microscope (a) 5μm, (b) 10μm (c), 20μm ,	45
Figure 4.4:	Graph showing Silk Fibroin Carboplatin biodegradation analysis using protease solution at 37°C	47

Figure 4.5:	FTIR spectrum showing transmittance against wave number cm ⁻¹ for silk	
	fibroin protein microparticles (a) and (b) spectrum for SFCP	
	micropartictles	48

Figure 4.6: Graph showing CP release from SFCP microparticles over time in hours...... 49

LIST OF TABLES

Table 4.1 : Master Sizer Analysis of Particle Size Distribution	44
Table 4.2 : Silk fibroin – Carboplatin micro particles synthesis conditions	46
Table 4.3 : Silk Fibroin Carboplatin biodegradation analysis using protease solution at 37°C	46

LIST OF ABBREVIATIONS

AIDS:	Acquired immune deficiency syndrome
BCL:	B cell lymphoma
BRCA:	Breast cancer gene
DNA:	Deoxyribonucliec acid
EGFR:	Epidermal growth factor receptor
ELISA:	Enzyme linked immunosorbent assay
EPR:	Enhanced permeability and retention effect
FDA:	Food and drug administration
5FU:	Five fluorouracil
GDM:	Geldamycin
HELA:	Human epithelial cell line
HER:	Human epithelial growth factor receptor
HSF:	Silk fibroin hydrosylate
HSP 90:	Heat shock protein 90
MCF-7:	Michigan cancer foundation 7
MDA-MB231 MD:	Anderson metastatic breast cancer 231

MTT:	Tetrazolium dye
MYC :	Family of regulatory protiens
PAX:	Paired box gene
pH:	Power of hydrogen
RNA:	Ribonucliec acid
SF:	Silk fibroin
SFCP:	Silk fibroin carboplatin
WHO:	World Health Organization

CHAPTER 1 INTRODUCTION

1.1Thesis Problem

The second highest investigated malignant tumor affecting women in the world is breast cancer. A worldwide gauge of over 2.09 million cases exists out of which 627,000 ladies died in 2018 (WHO, 2019). Breast cancer is presently handled using surgical procedure and chemotherapy (Chou et al., 2019). In any case, there are issues identified with chemotherapy because of built up resistance as well as unfavorable impacts of the medication (Al-Zarhani et al., 2019). In this way, designing chemotherapeutic medication conveyance frameworks or drug delivery systems are critical for effective cancer treatment. Within the last decade, significant time has been spent in targetable drug delivery frameworks for carcinoma treatment (Khan et al., 2017). In spite of the fact that the results after carcinoma treatment have improved, drawbacks like adverse drug effects are as yet a major issue (Singh et al., 2017). The pro-drug strategy causes lost dependability and medication action following modification. Colloidal drug conveyance systems are regularly utilized to encase dynamic medications to increase solvency, balance, and adsorption attributes of proteins, similar to silk fibroin (Mc Clements, 2018). As of late, colloidal medication transporter frameworks turned into a developing field for antineoplastic drug delivery systems (Singh et al., 2017). Drug dissemination and intracellular up-take are driven by both nanoparticle and microparticle processes in neoplastic cell (Wei et al., 2019). They are believed to exploit the nonhomogenous makeup of tumor vasculature that is commonly convoluted by broadened endothelial gaps as well as intersections in many areas of the tumor, hence taking advantage of the improved transport and detention reaction also known as the enhanced permeability and retention effect (EPR) thereby guaranteeing confinement of medications toward tumor target site (Brigger, et al 2012). The molecules, for example, drugs including nanoparticles, microparticles, and large scale drugs, concentrate inside the tumor tissue in greater amounts contrasted with the traditional tissues. This might be because of the aperture in the cyst vasculature as opposed to traditional tissue. EPR effect plays a significant role in enabling the molecules have access to the cyst site as well as staying present owing to weak lymphatic channel leading to the cyst site (Prabhakar et al., 2013). Varieties of antineoplastic medications are getting utilized considering the reaction of doxorubicin-stacked liposomes and paclitaxel bound albumin. Then again, a number indicated that the medication delivered was not significant (Gao, 2017). This infers particles must be biologically compatible and effectively degradable in biological systems, to evade an aggregation of constituents in the location of the tumor. Since the origin of silk fibroin proteins are from domestic silkworm Bombyx mori (B. Mori) cocoons, they are considered as natural polymers. This essential protein is a key naturally occurring large molecule, utilized to construct anticancer medication conveyance channels (Pham et al., 2019). On account of its biocompatibility (Pham et al., 2019. Tulay, etal 2018) biodegradability, Haemocompatibility (Adali and Uncu, 2016). Drugs have been encased using silk fibroin (Adali, et al 2019). Polymeric nano-and microparticles are regularly made utilizing the essential protein silk fibroin (Tomeh et al, 2019) Silk fibroin particles have not just been utilized convey drugs, they were also employed in transporting genes in various types of cancers (Tomeh et al, 2019). Worthy of note is the fact that, there is no record of the use of silk fibroin particles in conveying cisplatin which is a subtype of carboplatin inside the cancer cells.

Carboplatin is a platinum containing drug used as an anticancer medication for the treatment of various kinds of malignant growth. Because carboplatin contains bidentate dicarboxylate chelate, they have a lower reaction rate when compared to cisplatin which is used as platinum anticancer medication (Ho *et al*, 2016). Carboplatin exerts its antineoplastic impacts by its interactions with genomic DNA and proteins.

Until this point in time, a variety of techniques have been employed in the production of nanoand microparticles. Techniques like electrospray are considered such strategies (Cao *et al.*, 2017). Be that as it may, one of its disadvantages is that more amount of surfactants as well as solvents are needed, the primary reason why the technique is expensive. Moreover, it brings about producing huge amounts of debris, can remain lethal to the vicinity having minimum drug production specificity (Tapia-Hernández *et al.*, 2015).

1.2 Aim of the Study

The aims of the study are;

- i. To synthesize and characterize silk fibroin microparticles and load them with carboplatin using the ionotropic gelation method.
- To evaluate the apoptotic activity of SFCP on MCF-7 breast cancer cells invitro using Apostrand Elisa kit.

In this study we made a null hypothesis that there would not be any significant cell death impact on MCF-7 breast cancer cells in vitro following culture with SFCP.

1.3 Significance of the Study

Evasion of apoptosis has been described as one of the hallmarks of carcinogenesis. The development of a conjugate drug carrier like silk fibroin – Carboplatin particles (SFCP) that can successfully induce apoptosis provides a platform for future functionalization with more drugs or agents such as antibodies to improve drug targeting.

1.4 Limitations of the Study

The study is restricted by the usage of a solitary cell line, MCF7 breast cancer cells. Use of other metastatic cell lines like MDA-MB-231 and normal adenocarcinoma cells like MCF10A would add value to future studies.

1.5 Overview of the Thesis

In this study SFCP particles were synthesized utilizing a procedure known as ionic gelation, characterized as well as its cell death potential investigated using Apostrand Elisa apoptotic kit on MCF-7 breast cancer cells. The particles showed good and sustained apoptotic potential over 72hours.

1.6 Conclusions

Chemotherapy of malignancy is plagued with the issue of poor targeting modalities, deficient streamlining and restriction of the anticancer agent inside the disease cell just as the issues of cytotoxicity to quickly increasing normal cells. Other problems incorporate satisfactory takeup and delivery of the chemotherapeutic agent inside the tumor cells. These difficulties have driven specialists to concentrate on bio-material use in drug conveyance systems. Silk fibroinbased bio-materials have magnificent biocompatibility, biodegradability, and low immunogenicity. These biomaterials additionally have high binding potential for different medications and they can control drug discharge through changing the size and different properties of the protein. It also has established utilization in medication conveyance of a few medications including anticancer medications.

Future possibilities in these studies could incorporate the upgrade of targeting potential with likely functionalization of nano-particles with antibodies to tumor cell markers, just as the blend of a total anticancer routine stacked on a bio-material. Further thought could likewise be given to the multi-functionalization of the silk fibroin bio-materials making it a stage for therapeutic conveyance, checking as well as diagnostics in a concept known as theranostics.

Therefore, the aim of this study was to develop SFN loaded with carboplatin using the ionic gelation method to evaluate its apoptotic effect on MCF-7 breast cancer cell invitro.

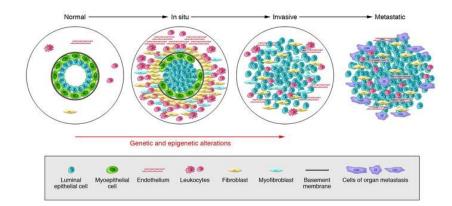
CHAPTER 2

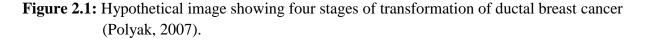
LITERATURE REVIEW

2.1 Introduction

Malignant tumours are gathering of illnesses described by dysfunctional cell division and gene expression, bringing about impaired regulation of the harmony between cell multiplication and apoptosis. Normal cells are distinct from cancer cells by the expression of cytokine receptors or transcription factors as well as size, functions and structure. This results in abnormal cell growth control, interaction as well as proliferation and integration of the abnormal cell (Siegel et al., 2016). The uncontrolled growth and cell interactions eventually results in the cancer invading surrounding and adjacent tissues ultimately destroying them with its resultant sequelae. Malignant cells may also metastasize via the cardiovascular and lymphatic system. The ability of cancer cells to metastasize as well as its functional and morphological differences distinguishes them from benign masses. Benign masses usually retain the similarity to normal cells morphologically as well as functionally. The loss of function of cancer cells and the invasion of normal tissues may lead to a variety of sequalae, which include albeit not exhaustively; pain, cachexia, immune-suppression, anaemia, and even venous thrombosis which is said to be the leading cause of mortality in cancer (Noble & Pasi, 2010). Several studies have considered the epidemiology, pathophysiology, and progression of cancer. The role of PAX proteins as transcription factors, how they affect embryonic development, their role in governing cell proliferation, self-renewal, failure of apoptosis, movement of embryonic precursor cells and the co-ordination of distinctive differentiation programs has been established. PAX proteins are known to play a vital role in sustaining tissue specific stem-cells by inhibiting end-point differentiation and apoptosis. These properties are exploited by cancer mechanism especially when there is an abnormality in the function of the PAX protein (Lang et al., 2007). Cancer cachexia is a syndrome of nutritional depletion and sequelae of cancer characterized by progressive weight loss. It occurs due to complex communications between the host and the malignancy resulting in the production of catabolic mediators which degrade host tissues, though other factors like age and physical activity may play a significant role (Skipworth*et al.*, 2007). Cancer induced bone pain may be as a result of a combination of inflammatory and neuropathic signals (Urch, 2004). Cancer related anaemia may also occur at the advanced stage of the disease and worsens during chemotherapy and radiotherapy. The anaemia is associated with the activation of immune and inflammatory systems by the malignancy leading to increase production of interleukin 1, tumour necrosis factor, and interferon's which potentially mediate anaemia. (Nowrusian, 2002).

Malignancy is evaluated to be one of the main sources of death. Truth be told, malignant growth causes a larger number of loss lives compared to AIDS, tuberculosis and malaria fever. Besides, the occurrence of death because of malignant growth is much higher in developed nations with it being the second most basic reason for death following cardiovascular sickness in the USA (Jemal *et al.*, 2008)


Breast malignancy was accounted for being the 2nd most frequently occurring malignant tumour on earth in 2013 (Desantis *et al.*, 2014), furthermore, one in every eight women are expected to develop malignant tumour of the breast making it the 2nd most frequent cause of cancer related mortality amongst women (Baeks & Nelson, 2017). The main risk factor for breast cancer is genetic predisposition, mutations in *BRCA1* and *BRCA2*, which presents as an autosomal dominant inheritance. In addition, epidemiological investigations have related breast malignancy with various predisposing factors including intrinsic oestrogen concentration, early menarche and late menopause (Carmichael, 2006). Along these lines, it has stayed a reason of worry among specialist in health care provision and researchers over the world thus continuous researches are being undertaken to comprehend the pathology of the malignant growth so as to develop better treatment methodologies. Using histological markers breast cancer can be subdivided based on the availability of oestrogen, progesterone, and human epidermal growth factor receptors (EGFR). Those that lack receptors for the hormones and growth factor mentioned above are described as triple negative breast cancer cells (Baeks& Nelson, 2017).


Malignancy treatments must be target specific to keep away from harming normal cells (Philchenkov et al., 2004). Ordinarily, surgery, radio and chemo therapies are the three well known methods of elimination of malignancy. Contingent upon the phase of the malignancy, abscissions are employed for evacuation of the cyst or tumors. Be that as it may, before surgery there is a need to apply chemotherapy in other to constrict the cyst prior to removal, and adjuvant chemotherapy to manage the malignant growth cells not removed by surgery. The aforementioned modalities pose both emotional and financial burden to all involved (Folprecht, 2005). There are several adverse effects such as systemic toxicity, collateral injury etc to the use of radiotherapy in the removal of tumors (Wu et al., 2016). In chemotherapy, the treatment methodology relies upon the distinction in malignant growth cell science and normal cell science to accomplish passive or focused tumor targeting so as to improve tumour cell decimation without harming non-cancerous cells. In spite of the fact that chemotherapy is broadly utilized in the treatment of numerous tumours including breast cancer, there is a danger of collateral injury to ordinary cells and systemic toxicity (Johnstone et al, 2002). Cisplastin and doxorubicin have shown increase effectiveness when used on oestrogen responsive MCF-7 breast cancer cell lines which were pre exposed to 100pg/ml of oestrogen for three months (Chang & Singh, 2017).

2.2 Breast Cancer Biology

Breast cancers are categorized based on its anatomical location in the breast. The breast is basically made up of milk secreting glands (lobules), ducts (channels through which milk exits to the nipple) and fats. Though there has been varying opinions as regards the presence of cancerous cells in the breast, it is generally accepted that once cells with atypical hyperplasia are seen it denotes the presence of a precancerous entity. These cells can be limited to the lobules and thus called lobular carcinoma *in-situ* or more commonly in the ducts and are referred to as ductal carcinoma *in-situ*. The evolution of these precancerous cells to invasive malignant tumours are poorly understood, however it has been associated with a complex interaction between endogenous (genetic) and exogenous (environmental) factors.

Microscopic metastasis may be seen even with small tumours resulting in the need for adjuvant chemotherapy (Polyak, 2007).

2.2.1 Breast cancer genetics

Breast cancer has been attributed to several genetic changes affecting any of the following types of genes: (1) Oncogenes- tumour promoting (2) Tumour suppressor genes (3) Modifier genes- involved in DNA repair. All these types of genes are involved in the control of cell proliferation, apoptosis and differentiation. Some genes commonly associated with breast cancer include but are not limited to BRCA1, BRCA2, increase in expression of MYC genes, BCL1 overexpression or mutation of erB2/neu/HER2, others include the over expression of the antiapoptotic BCL2 or the mutated version of TSG101 tumour suppressor gene (Nathanson *et al.*,2001).

2.2.2 Breast cancer vascularity and EPR effect

The breast is supplied blood normally by the internal thoracic artery a branch of the subclavian artery and the axillary artery, however there is neovascularization in cancers resulting in increased regional vascularity of the tumour maintaining a prominent vessel with impaired structural architecture (grubstein*et al*, 2010). This altered architecture results in widened

endothelial gaps and decreased lymphatic drainage of solid tumours which forms the underlying basis of passive targeting using small molecules known as enhanced permeability and retention effect (EPR). The small molecules reach the solid tumour via the widened endothelial gaps but find it difficult to exit the tumour site as a result of poor lymphatic drainage (Yin, Liao & Fang, 2014).

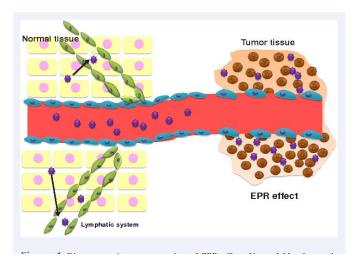


Figure 2.2: image showing the EPR effect.

2.3 Apoptosis and the Hallmarks of Breast Cancer

Simply defined as programmed cell death, is the physiological deletion of aged cells and error prone cells. The process of apoptosis involves both extrinsic and intrinsic pathways characterized by the upregulation of caspase activity, and subsequently cell suicide. Certain morphological and biochemical features are known to accompany apoptosis these includes chromatin condensation, nuclear fragmentation and pyknosis whilst biochemical changes include the activation of caspases, degradation of DNA as well as modification of surface proteins and membranes to enable easy identification of apoptotic cells by phagocytes (Koff *et al.*, 2015). A major hallmark of cancer cells is their ability to avoid the process of apoptosis

(Nguyen *et al.*, 2009) others include rapid proliferation, sustained angiogenesis and tissue invasion and metastasis (Hannahan & Weinberg 2011, Raposo, 2017).

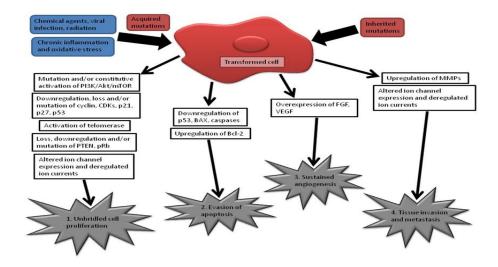


Figure 2.3: diagramatic representation of the hallmark of cancer development. (Raposo, 2017)

2.4 Current Treatment Techniques for Breast Malignancy and Approaches to more Current Technologies

Management of malignant neoplasms of the breast relies upon the sort, stage and spread of the disease to distant sites. Careful surgical excision is the highest quality level for early disease. Chemotherapy all alone or simultaneously with radiotherapy, is normally administered when the malignant growth is progressed or widely metastasized to decrease the spread or militate against the effect of the tumors, so as to improve the quality of life and its expectancy thereof (Simmons *et al.*, 2009). Some chemotherapeutic agents usually utilized in treatment of breast malignancy include; docetaxel, paclitaxel and platinum containing agents (cisplatin and carboplatin). Be that as it may, these medications utilized in chemotherapy have a few difficulties that incorporate absence of localization or distinctive bio-distribution and decreased therapeutic index. Also, the chemical agents are confronted with physiological and

anatomical barriers and thus very often, higher doses are mandatory. This expands the danger of harming the division of normal cells and systemic toxicity. Amongst the developing innovations in chemical management of malignancy is to effectively deliver drugs utilizing biomolecules. focused medication conveyance frameworks with the utilization of biomolecules, especially those having the attributes of good bio-compatibility and biodegradability, smart-drug conveyance systems are developed (Torchilin, 2011). The utilization of nanoparticles as medication conveyance framework try to solve these issues by positively modifying the capacity for specific targeting of malignant growth cells, expanding surface area to volume proportion just as lessening systemic toxicity and the crossfire or spectator effect (Hiremath and Hota, 1999).

Common targets for the nanoparticles include receptors expressed by the cancer cells, others include cell-cycle proteins such as cyclin-dependent kinases which govern the cell cycle, they do this together with check point kinases, aurora kinases. This has all been targeted in the management of breast cancer (Otto & Piot, 2017). It is in view of this that different novel drug-delivery systems to include the use of biomolecules as well as nano-particles are employed. Docetaxel loaded poly glycolic lactic acid particles have shown improved efficacy of treatment in taxane resistant triple negative breast cancer cells using mouse models (Bowerman, 2016). There is however a problem of inflammation caused by the debris of the necrotic tumour cells and studies have suggested the use of proinflammatory-resolving mediators like maresin-1 a key mediator of resolution which is synthesized by human macrophages from endogenous decosahexanioc acid. This maresin 1 thus enhances resolution by resolving inflammation and endogenous clearance of tumour cell debris by macrophage phagocytosis (Vatrick *et al.*, 2016), it thus implies that it would be better to use biodegradable, biocompatible and stable nanocarriers as evolved colloidal drug-delivery system in the chemical management of cancer (Boyd, 2008).

2.5 Cytotoxic Drugs used in Breast Cancer Chemotherapy

Cytotoxic drugs used in cancer chemotherapy directly or indirectly cause cell death. They may achieve this feat by either decreasing micro-tubule function, protein synthesis and function or DNA synthesis. Cytotoxic drugs may be cell cycle dependent with the exception of alkylating agents which may act independent of the cycle (Hickman, 1992). A confounding problem to all classes of cytotoxic drugs is the problem of multi-drug resistance, which is a key determinant in the failure of chemical management of cancer. Enhanced efflux of the cytotoxic by ABC transporters on the membranes of the cells have been adduced as a major component in the development of drug resistance and thus the strive by researchers to adopt several approaches including the determination of targets on the surface of this transporters. The utilization of prostaglandin-glycoprotein inhibitors, RNA interference and nano-medicine to counteract this problem (Li et al., 2016). Drugs in this various classes have been used singly or in combination as a regimen to treat breast cancer. These drugs are usually used in combination with other modes of management to cure or reduce the cancer bulk and burden. Several researches are being done daily to enhance the activity of various classes of the cytotoxic drugs on breast cancer cells whilst limiting their toxicity to normal tissue. Geldamycin (GDM) a potent inhibitor of heat shock protein 90 (Hsp90), a protein necessary for folding during protein synthesis was tried as an antitumor drug in breast cancer but later discontinued during clinical trials due to its hepato-toxicity. Further studies have reported enhanced activity of a super paramagnetic iron oxide based polymeric nanocomposite of GDM which showed augmented antineoplastic activity, with increased cellular damage and necrosis of MCF-7 breast adenocarcinoma cells and little or negligible damage to MCF10A normal breast epithelial cells. It does this at lower doses when compared to the pristine drug. It has also been shown via in-vivo studies to have a 2.7-fold delay in tumour progression as well negligible hepatotoxic effect (Prabhu et al., 2017).

Gemcitabine an analogue of deoxycitidine mediates its anti-cancer potential by opposing DNA synthesis ultimately resulting in tumour cell death. It has been used extensively in the management of breast cancer. The conjugation of gemcitabine with a nanoparticle in cancer chemotherapy improved its efficacy and overcame its limitation of a short biological half-life. It also showed less resistance susceptibility (Djawanapelly*et al.*, 2017).

Studies have shown combined drugs with known mechanisms of action with plant extracts or molecules which are said to have some therapeutic effect on the cells. A combination of doxorubicin and a phenolic extract of flaxseed oil which is rich in lignans a form of phytoestrogen on breast cancer cell lines MCF-7 and MDA-MB-231 showed improved induction of apoptosis and cytotoxicity to the cancer cell lines at lower doses when contrasted to the pure form of the drug (Guerreiro *et al.*, 2017).

Another study combined cisplastin, a platinum based antineoplastic agent to curcumin (diferuloyl methane) showed a potentiation of the anticancer activity of cisplastin *in vivo* using sprawgdrawley rats' model of breast cancer. It was also shown to ameliorate the nephrotoxic effect of cisplastin, by comparing the renal function as the gross and microscopic pathology of the kidneys of the test group, to the normal control and the cisplatin control group (Kumar *et al.*, 2017).

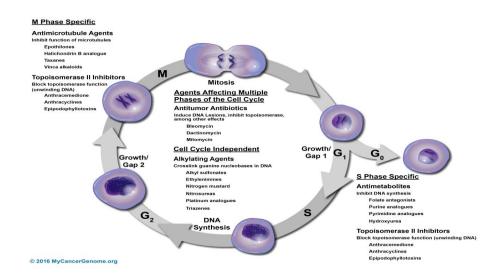
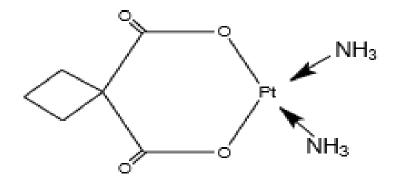



Figure 2.4: Schematic diagram of classification of cytotoxic drugs source: wikipedia.

2.5.1 Carboplatin

Carboplatin which is the drug of interest in the current study is a platinum based antineoplastic drug, which acts by interfering with DNA duplication. It is marketed under the trade name paraplatin. The drug is used for a variety of cancers which include but isn't limited to ovarian, lung, head and neck, breast and brain cancer. Common adverse reactions to Carboplatin include nausea, vomiting, electrolyte dysregulation and anaemia as a result of myelosuppression (Oliver *et al.*, 2005).

Myelosuppression is the major drawback of carboplatin and it occurs 21-28 days after the first treatment is given. Carboplatin however has a comparative advantage of having less nephrotoxicity when compared with cisplatin and also because all of its side effects are more easily controlled in comparison to cisplastin. The drug has a bioavailability of 100% and a retention half-life of 30 hours as opposed to the retention half-life of cisplastin which is between 1-3 hours, implying that the drug is more long lasting in circulation as well as within its target site. The drug is administered via the intravenous route and excreted by the kidneys. The clinical ratio of carboplatin is 4:1 of cisplastin as the latter is said to be more potent. Carboplatin has a more stable structure when compared to cisplastin and may be the reason why it has very good bioavailability as well as a high retention time. Its chemistry differs from that of cisplastin due to its bidentate ligand cyclobutane dicarboxylic acid. Its basic mechanism of action is believed to be via aquation hypothesis where it is thought to prevent the duplication of DNA by integrating one or more water molecules whilst displacing an anion necessary for the duplication process. It is also capable of exerting its action via the activation hypothesis implying that it is not limited to a single mechanism of action thus distinguishing it from cisplatin. (Natarajan et al., 1999).

Figure 2.5: Molecular structure of carboplatin (C₆H₁₂N₂O₄Pt).

2.6 Biomaterials as Drug Delivery Systems

Chemotherapy being the mainstay in cancer treatment as earlier mentioned has issues with targeted and specific drug delivery thus tempering with the natural pathway and physiology of other surrounding and rapidly dividing cells. This results in apoptosis or cell death, not only in the neoplastic cells but also in normal cells. This phenomenon is known as crossfire or bystander effect. Biomaterials help to surmount this as well as show pH dependent response in targeted drug delivery as a means of overcoming physiological and anatomical barriers (kanamala*et al.*, 2016).

More up to date drug conveyance systems are expected to enhance the adequacy of the medications or chemical drug agents. This is kept up by target specific medication conveyance systems. Intra-venous delivery of medications at solid tumor destinations can be affected by various factors. These factors are identified with the physiology of the tumour, micro and macro- environment of the tumour and the drug-delivery vehicle. More explicitly, the morphological features of the arteries, shifting penetrability of the arterial bed, pH of the micro-environment, the interstitial weight of the necrotic center, and the separation between the tissue mass and the vessels, hypoxia and absence of lymphatic drainage assume an essential job in the effective drug delivery systems (Mathur and Gupta, 2010).

The vast majorities of the bio-materials utilized for drug-delivery systems are polymeric molecules which over the years have appeared to improve drug entrapment and eventually improve efficacy with lower adverse effects. This anyway is not without its setbacks which incorporate issues with the bio-distribution and bringing down the efficacy of the medications. Engineered bio-materials like poly-lactic acid, poly-glycolytic acid, polylactic-coglycolytic acid and collagen have been utilized as fibres, hydrogels, dendrimers, and liposomes to convey drugs (Makadia and Siegel, 2011). Difficulties poised by these group of bio-materials are constrained functionalization, the metabolism, its collection inside cell, bio-availability and eventually the disposal from the body (Langer, 2000). To resolve these issues, research studies has shifted to the utilization of nature's own bio-materials like chitosan and silk fibroin, alginate, peptides, protein's and nucleic acids in drug conveyance systems.

Studies have shown the importance of nano-carriers, the coupling of drugs with specific stimuli triggered drug release system; especially pH triggered drug delivery systems due to the fact that the tumour micro-environment is basically acidic. Thus, the drug and biomaterial wasdesigned to be pH sensitive. The role of protonation, charge reversal or cleavage of bonds in facilitating drug uptake or release is also shown (Kanamala*et al.*, 2016).

Polysaccharides of marine origin (alginate, carrageenan, fucoidan and the chitosan family) have been exploited as bio-materials for drug delivery due to their bio-compatibility, bio-degradability and anti- inflammatory activity they also have adhesive and anti-microbial activity. They can also be easily tuned in terms of size and shapes. They also exhibit response dependence to external stimuli such as PH and temperature (Cardoso *et al.*, 2016).

Studies have shown how immunogenic cell death is enhanced when a cell death inducer like oxaliplatin is coupled with nanoparticles developed from known biomaterials (Zhao *et al*, 2016). Another study functionalized graphene oxide with carboxymethyl chitosan and flourescien isothiocyanate and lactobionic acid. The composite loaded with doxorubicin and tested on SMMC-7721 liver cancer cell line showed enhance activity of the drug when compared to the non-functionalized composites. The lactobionic acid functionalized

composites selectively induced cell death to the cancer cell lines whereas the nonfunctionalized composites were toxic to even normal liver cell line L929 (Pan, 2016). Nanographene has been used to develop stimulus responsive drug-delivery system for cancer chemotherapy (Yang *et al.*, 2016).

Since most cancer chemotherapy regimens are a cocktail of cytotoxic drugs, there has been efforts to get biomaterials with the capacity to deliver the whole regimen. The combinations of a good biomaterial and nanotechnology have enabled researchers to harmonize the pharmacokinetics of different drugs, thus exploiting their effects of potentiation, synergy and additive properties. This also improves compliance and reduces the burden of multiple administrations on the patients (Hu *et al.*, 2016).

Consequent upon the difficulty as well as the need to overcome the resistance poised by certain physiological and anatomical barriers, multifunctional aptamer-based nanoparticles have been exploited. Functional DNA nanostructures loaded with doxorubicin and tested on resistant cancer cells have been shown. The structure comprised of a DNA aptamer and a double stranded DNA, thus forming an aptamer DNA complex with the ability to intercalate into the host cancer cell DNA whilst delivering the drug. This study showed that the aptamer DNA complex loaded with doxorubicin efficiently changed the resistance of human breast cancer cells to doxorubicin (Liu *et al.*, 2016).

2.7 Naturally Occurring Bio-Molecules as Medication Bearers

The requirement for biodegradable organically determined vehicles for drug delivery especially at the nano-scale, with practically no dangerous impact on the surrounding normal tissues as well as no poisonous by-products has been the significant drive into exploring bio-macromolecules. It is accepted that the naturally derived particles or vehicles would have attributes that upgrades take-up, focusing on and maintenance of the captured remedial agents in this manner improving its efficacy. These molecules are derivatives of plants or animal cells (Gupta *et al.*, 2009). The biomolecules, for example, silk fibroin and chitosan can beat barriers that synthetic vehicles have found hard to supersede (Decuzzi*et al.*, 2010). Ideally the

developments of bio-macromolecules as stimulus responsive vehicles are planned for creating smart medication delivery systems (Lorenzo and Colcheiro, 2008). A few investigations have concentrated on utilizing bio-macromolecules as such, including silk fibroin and chitosan framing a three-dimensional scaffold stacked with VEGF for bone tissue engineering (Tong *et al.*, 2016) and chitosan-based nanoparticles sustained the delivery of bone morphogenetic protein 2 for bone tissue engineering (Bastami*et al.*, 2017). Despite the fact that there are a lot of normally ocurring biomolecules, for example, silk fibroin, chitosan, characteristic collagen, and poly nucleotides, chitosan and silk fibroin will be widely talked about in this study.

2.8 Use of Chitosan as Drug Carriers

A few examinations have been done utilizing chitosan to carry a few anti-cancer agents for treatment in breast malignant growth cells. Chitosan nano-particles were utilized to entrap carboplatin anticancer medication in MCF-7 adenocarcinoma cell line showing optimal entrapment, great targeting on bringing about specific cytotoxicity to the disease cells (Khan *et al.*, 2017). Biodegradable chitosan nano-particles encapsulating paclitaxel likewise brought about great apoptotic and anti-cancer activity in triple MDA-MB-231 breast malignancy cell lines (Gupta *et al.*, 2017). Targeted medication release studies indicated that the nanoparticles discharged 50% of the stacked medication. It likewise indicated enhanced cytotoxicity on the MDA-MB-231 breast malignant growth cell lines as well as scaled up the antitumor action when contrasted with free taxanes (Gupta *et al.*, 2017). These recent studies showed that the nanoparticle-drug complexes have less haemolytic toxicity, enhanced apoptotic activity and more effective anticancer activity when compared with the conventional drug delivery systems.

Chitosan was used as a drug-delivery system to carry a known cytotoxic in drug in combination with a small interfering RNA (SiRNA) molecule to treat cancer cells invitro with increasing efficacy (Xiao & Merlin, 2017). Hyaluronic acid coated chitosan nanoparticles have been demonstrated to enhance the delivery of 5 fluorouracil (5-FU) in tumor cells which exhibit high expression of CD44. It was established that biocompatible and biodegradable

hyaluronic acid coated chitosan nanoparticle encapsulating 5FU enhanced the accumulation of 5FU in the tumor cells, particularly those that overexpressed the CD44 antigen. It caused increased apoptosis by inducing mitochondrial damage via increasing the production of reactive oxygen species (Wang *et al.*, 2017). In like vain trimethyl chitosan has been used to deliver SiRNA drug conjugates on metastatic breast cancer cell line (MDA-MB-231). They study delivered a conjugation of high mobility protein group 2 (HMGA-2) SiRNA and doxycycline and it showed significant inhibition of the breast cancer cell growth (Eivazy*et al.*, 2017).

Solid lipid nanoparticles have been crushed upon one another using chitosan along with hyaluronic acid carapace. They were loaded with paclitaxel and tested on breast cancer cell lines (MCF-7). Results indicated that chitosan- hyaluronic acid coated solid nanoparticle facilitated time-dose dependence, directness of drug transport and cellular uptake by discharge of paclitaxel which then aid its chemotherapy activity (Campos *et al.*, 2017).

Ionic gelation method used in preparing biotinylated N Palmitoyl chitosan and magnetite, was characterized and an in vitro cytotoxic test was conducted. This showed the particles loaded with doxorubicin had anti spread impact on MCF-7 adenocarcinoma cells up until the lowest concentration used (Balan *et al.*, 2017).

Smart glucose based focused drug-delivery systems coupled with enzyme sensitive release strategy were developed using magnetic nanoparticles which were grafted to carboxy methyl chitosan and beta cyclodextrin then loaded with prodigiosin. It was tested on MCF-7 adenocarcinoma cell lines and compared with the pristine form. The test drug showed an enhanced efficacy over the breast cancer cell lines than did the pristine form (Rasjegari*et al.*, 2017).

Chitosan modified with poly (lactic co glycolic acid) nanoparticles encapsulating epirubicin was tagged with a 5TR1 DNA aptamer against MUC1 receptor. The fabricated nanoparticles with or without the aptamer showed significantly better therapeutic efficiency on MCF-7

breast cancer cell when compared with the free epirubicin, whilst in murine colon cancer cells the targeted nano-particles showed better therapeutic efficiency when compared with the non-targeted nanoparticles carrying epirubicin (Taghavi*et al.*, 2017).

Tamoxifen which is known to have poor aqueous solubility and bioavailability, when combined with chitosan and palmitic acid circumvent the earlier listed issues. This was demonstrated in study where a copolymer derived from palmitic acid and chitosan loaded with tamoxifen showed enhanced cytotoxicity and bioavailability when tested invitro with MCF-7 adenocarcinoma cell line (Thotakura, *et al.*, 2017).

Curcumin loaded folate modified chitosan nano-particles have been synthesized via a selfassembling process. It was then characterized and tested for cytotoxicity using the MTT assay against MCF-7 breast cancer cell lines. Drug release studies were undertaken and it showed the nanoparticle released curcumin with decreasing PH. The MTT assay showed enhanced cytotoxicity and hence efficacy with the folate modified chitosan nanoparticles (Esfandiarpour *et al.*, 2017).

2.9 Silk Fibroin

SF is gotten from the cocoons of insects or the Bombyx mori worms, and in its immaculate crude structure, it comprises of fibroin and sericin. The sericin parcel which is sticky like is normally haemotoxic and must be expelled to upscale the biocompatibility of silk fibroin. The fibroin protein comprises of layers of antiparallel beta sheets of rotating amino acids basically glycine, alanine and serine (Hakimi *et al*, 2007). It comprises of assorted amino acids with various functional groups, which makes it easy to functionalize or include a connection. Silk fibroin can be adjusted by means of hereditary designing to suit wanted attributes for drug conveyance (Megeed*et al.*, 2002)

Figure 2.6: Bombyx morii worm, cocoon and the genenal formula for silk fibroin.

2.9.1 Molecular properties of silk fibroin

Silk obtained from bombyx mori worm is made of structural proteins, the fibroin heavy chain (325 kDa) and light chain (25 kDa). A glue-like protein named sericin binds the chains together. Sericins have been associated with immune response it is particularly said to be hemotoxic. It is has higher hydrophylicity when contrasted to fibroin, thus it can be removed by boiling the cut silk fibroin coccoons in alkaline solutions (Altman *et al.*, 2003). The heavy chain contains alternating hydrophobic and hydrophilic blocks. The hydrophobic blocks consist of highly ordered sequence repeats of GAGAGS and less ordered repeats of GAGAGX (where X is either Valine or Tyrosine) that make up the crystalline regions of silk fibroin by folding into β -sheets. The hydrophilic part of the core is non-repetitive and short in comparison to the hydrophobic repeat (Altman *et al.*, 2003). Its amino acid sequence bestows on silk fibroin the ease of chemical modification and manipulation. Opportunities for chemical modification. Amines, alcohols, phenols, carboxyl groups, and thiols have been explored as potentially reactive side groups for the chemical modification of silk fibroin (Murphy *et al.*, 2008). It is believed that by introducing and modifying functional groups in silk fibroin a variety of drugs in different amounts can be added.

2.9.2 Physical properties

1. Molecular Weight

The molecular weight of silk fibroin influences its mechanical properties and biodegradability, and, hence its quality as a drug-delivery vehicle. If a wide variety of weight ranges are available it would definitely affect the ratio of the silk fibroin to drug, how quickly it would be degraded as well as the drug release kinetics. Silk fibroin prior to processing exhibits large molecular weights. After processing there is a decrease in molecular weight which is proportional to the duration and temperature of boiling the cocoons in alkaline solution. This implies that the longer the duration you boil the lower the resultant molecular weight (Cai *et al.*, 2002). Because this method may lead to production of materials of variable molecular weight and biodegradability, researchers have called for the use of genetically engineered cocoons (Megeed*et al.*, 2002).

2. Crystallinity and Solubility

As earlier mentioned, silk fibroin predominantly consists of hydrophobic blocks. This block of silk fibroin builds up the crystalline regions of the polymer. The do so by their capability to form intermolecular β -sheets. Several treatments ensure the transition of the random coil silk I state of silk fibroin, to silk II conformation, which is highly stable and characterized by a finger print of increased β -sheet. The commonest method of stabilizing silk fibroin by increasing its β sheet content is by treating the protein with methanol. Other methods which achieve this purpose include freeze drying at temperatures lower than -20 degrees Celsius, treatment with water vapour or incubation at high humidity. Increased stability results in decrease water solubility (Monti *et al.*, 1998). It is worthy of note that increase in β -sheet content results in increased mechanical strength, crystallinity and an attendant increase in brittleness of the material. Treatment with methanol has shown the highest percentage of β -sheet transformation. (Min *et al.*, 2006)

Crystalline SF is insoluble in most solvents that are widely used to dissolve polymers for drugdelivery applications, as well as in water. what is usually used to dissolve silk fibroin are high electrolyte solutions, lithium bromide, lithium thiocyanate, calcium thiocyanate or calcium chloride. These electrolyte solutions are able to disrupt the hydrogen bonds that stabilize β sheets (Philips *et al.*, 2004).

3. Stability

The stability of materials used as drug delivery vehicles are of utmost importance. Recall that factors necessary for aggregation and of silk fibroin solutions through increasing the β -sheet content had been discussed earlier. Note that untreated silk fibroin solution which is poor in β -sheet content is hygroscopic and are very sensitive to humidity (Min *et al.*, 2006). Thus, the β -sheet content is very vital for the purpose of storage and stability. Silk fibroin shows impeccable thermal stability with its structure remaining unaltered at temperatures as high as 140 °C. The glass transition temperature of proteins plays a vital part in protein self-assembly (Baimark*et al.*, 2010).

4. Mechanical Properties

Mechanical properties are more important in making drug delivery scaffolds than it is in making nanoparticles. This is due to the fact that they serve the purpose of drug delivery as well as load bearing. Crystalline silk fibroin has outstanding mechanical properties and does not necessarily require crosslinking. It shows remarkable mechanical strength and resilience (Kim *et al.*, 2005).

5. Biodegradation

The drug delivery rate in any drug delivery system is of outmost importance, as this to a large extent determines the bioavailability of the drug. This is usually dependent on the proteolytic degradation of the polymer involved. In using scaffolds for drug delivery particularly as regards tissue regeneration, care must be taken to use materials that would not compromise the strength and the load carrying capacity of the material. While using particles the degradation rate determines the duration of drug release as well as the ability to maintain sustained release of the drug. The crystalline nature of treated silk fibroin makes it a good candidate for drug

delivery vehicles as it can be tailored to suite the required release kinetics of the drug. It is also worthy of note that the rate of proteolytic biodegradation of silk fibroin relates directly to β -sheet content (Jin*et al.*, 2005).

2.9.3 Biocompatibility

Silk fibroin has been shown to be very biocompatible. It basically provokes little or no immune response and thus is very safe compared to other materials used for drug delivery (Meinel*et al.*, 2005).

2.9.4 Silk fibroin as drug bearers

Silk fibroin derived particles for biomedical applications, laid emphasis on silk fibroin particles demonstrating high accessibility at the site of diseases or target destinations, long term sustained release as well as insignificant harmfulness when utilized as medication conveyance system (Mathur and Gupta, 2010). In this way, SF has kept on creating enthusiasm for biomedical research being a protein and a decent vehicle for drug conveyance, hence its uses as sutures and scaffolds for tissue engineering. Its bio-compatibility, rigidity and thermal stability guarantee that it is a decent candidate for smart-drug discharge products.

The properties of SF make it a perfect candidate for drug-conveyance systems. Silk fibroin nano-particles have been set up by specialists utilizing different techniques which incorporate desolvation, salting out, mechanical communition, electrospraying and supercritical fluid technology and used either as micro-spheres, nano-coatings for drug stacked liposomes, smaller scale coatings for polylactic glycolic acid particles. These are utilized to move micro-molecules, chemicals, genes and growth factors to their ideal site of activity (Zhao, *et al.*, 2015).

Silk fibroin coating of lipid nanocarriers or its hybridization with the nano-carriers has been said to greatly assist the drug carriers in overriding several problems and limitations associated with lipid carriers (Gaber *et al.*, 2017). Researchers have also considered the development of a novel carrier in carrier system bringing together the pros in regenerative medicine and

nanotechnology thus the development of a system in which mesenchymal stem cells were loaded with silk fibroin nanoparticles encapsulating curcurmin for cancer therapy (Perteghella, *et al.*, 2017).

2.10 Targeting Tumors Utilizing Silk Fibroin Molecules

Biomaterials employed in targeting tumors could be active or passive. Targeting tumors are considered passive, when they take advantage of the improved transit via the tortuous vessels in the tumours and poor exit due to impaired lymphatic drainage. For this situation, the biomaterials effectively penetrate over the vasculature of the tumor cells because of more extensive holes within the endothelial cells as well as are held at the site of the tumor due to the weak lymphatic channel at the tumor site. This procedure anyway has the issue of varying degrees of penetration among various tumors or diverse tumor destinations and consequently the idea of active tumor targeting has risen. Focused tumor targeting then again may include the conjugation of the nano-particles, ligands and most likely antibodies, aptamers, or radio isotopes which target specific epitopes communicated on the cell surface of the tumors (Iyer*et al.*, 2006).

SF nano-particles has demonstrated itself to be a decent possibility for the two types of focusing because of its biocompatibility, flexibility, capacity to shape beta-pleated sheets and self-assemble just as the wide cluster of functional groups it communicates along its length in this manner making it simple for it to be bound to ligands and be further functionalized (Yu *et al.*, 2014). In this manner, drug conveyance systems have been made utilizing silk fibroin biomaterials. SF nano-spheres stacked with paclitaxel in lymphatic malignant growth chemotherapy indicated great discharge properties of nine days to about fourteen days following in vitro discharge studies (Chen *et al.*, 2012). Silk fibroin nano-spheres stacked with floxuridine with normal size of 210-510nm was tried in vitro utilizing HeLa cells (Yu *et al.*, 2014).

The nano-spheres demonstrated great adherence to the cells, great discharge properties as well as curative and cell murdering effect on the disease cells. SF nano-coating's have been utilized to cover liposomes to alter their energy for sustained active drug delivery. Silk fibroin covered emodin stacked liposomes exhibited that the silk fibroin changed the kinetics of emodin by guaranteeing it was absolutely a diffusional procedure as against swelling. This eased back the discharge and upgraded the efficacy of emodin on the keloid cells (Gobin*et al.*, 2006). Research studies explored and improved the potency, conveyance and efficacy of emodin by a tyrosine kinase inhibitor for the treatment of breast malignant growth. The silk fibroin covered liposomal emodin indicated upgraded take-up of emodin by the disease cells bringing about expanded cytotoxicity, drug retention, and diminished pace of discharge and metabolism, accordingly guaranteeing continued discharge and by and large improved efficacy (Cheema *et al.*, 2007). Further examinations indicated silk fibroin nano-particles embodying curcumin to latently target HER2 over expressing breast cancer cells as well as HER 2 negative cells with improved apoptotic action, as well as cytotoxicity in both cell lines (Gupta *et al.*, 2009).

Active tumor targeting utilizing doxorubicin stacked magnetic silk fibroin nano-particles appeared to enhance the movement and targeting of the refined orthotropic breast cancer cells by the chemotherapeutic agents (Tian *et al.*, 2014). Moreover, the silk fibroin stacked doxorubicin indicated expanded release when in contact with the acidic condition of lysosomes of breast malignancy cell lines MCF-7, because of the low pH changing the electrostatic interaction of the silk fibroin protein (Sieb*et al.*, 2013). More studies demonstrated utilization of silk protein rods designed and stacked with anastrazole, an FDA approved anti-cancer agent. Its pharmacokinetic information was examined while in-vitro testing it on breast malignant growth cells in Sprague drawley rodent models, utilizing fluid chromatography; this together with mass spectroscopy indicated a zero-order sustained anastrazole discharge for 91 days (Yucel *et al.*, 2014).

SF nano-particles have been used to develop magnetic silk core nano shell nanoparticle to deliver curcumin into human breast cancer cells. The magnetic silk core nanoparticles showed sustained release of curcumin with its release rate regulated by varying the concentration of silk fibroin. These particles also showed enhanced cytotoxic and entrapment on cultured

human breast adenocarcinoma cell line MDA-MB-231, evaluated by using the MTT and cellular uptake assays (Song *et al.*, 2017).

In another study biodegradable eri silk nanoparticles were used to deliver Apo-bovine lactoferin (2% Fe saturated) and Fe- bovine lactoferin (100% iron saturated) to MDA-MB-231 breast cancer cell lines. With the nanoparticles showing sustained and controlled targeted release of the drugs (Patel *et al.*, 2016)

Studies have also shown the use of silk fibroin loaded with paclitaxel and conjugated with a recombinant protein (anti- EGFR- iRGD) in the therapy of breast cancer. The nanoparticles were prepared using the carbonamide-mediated coupling procedure. After evaluation of their characteristics they were then tested invivo in a HELA xenograft rat model. The results obtained indicated that the conjugated silk fibroin paclitaxel nanoparticle with the recombinant protein had more targeting and antineoplastic activity in cells with the EGFR antigen expression when compared with the pristine silk fibroin nanoparticles loaded with paclitaxel (Bian*et al.*, 2016).

In other studies, self-assembling silk fibroin nanoparticles have been used to demonstrate the release of binary drugs in the treatment of breast carcinoma, in a study done by Li and colleagues, they loaded the silk fibroin with 5FU and curcumin with a loading efficiency of 45% and 15% respectively. The nanoparticles were then tested on cultured murine breast cancer cells for the invitro test and cell apoptosis was measured by flow cytometry an assessment of reactive oxygen species was also undertaken. The invivo test was conducted on mice grafted with the cancer cells and apoptosis was assessed via histology using the haematoxylin and eosin stain. The results indicated an increase in apoptosis by the silk fibroin loaded nanoparticles carrying the binary drugs when compared to the pristine forms of the individual and the combined drugs of 5FU and curcumin. The increase in reactive oxygen species correlated directly with apoptosis and suggested that the nanoparticle binary drug complex induced programed cell death in the cancer cells via stimulating the increase in reactive oxygen species. (Li *et al.*, 2016)

Injectable silk fibroin nano-gel were developed and loaded with doxorubicin characterized and tested on human breast cancer cell line MDA-MB-231 both invitro and invivo. The invitro studies showed that doxorubicin loaded silk nanogel fibers had better outcome in terms of cell viability on the short term when compared with free doxorubicin but had an equivalent outcome with free doxorubicin on the long term. The invivo studies on the other hand showed that the doxorubicin loaded silk nano-gels showed better inhibition of the tumour growth with less normal cellular toxicity and was corroborated by findings on histological studies utilizing the haematoxylin and eosin stain (Wu *et al.*, 2016).

Silk fibroin nano-diamond composites have been used to demonstrate the delivery of anticancer drug doxorubicin as well as coexisting imaging potential by fluorescence emission by the diamond component thus suggesting the potential of not only ensuring drug delivery but tracking, monitoring, treatment as well as diagnosing new sites of spread via imaging. This thus provides us with the possibility of having a multifunctional platform for therapy in future (Khalid *et al.*, 2016).

2.11 Silk Fibroin and Apoptosis

Apoptosis also known as programmed cell death basically involves the removal of aged cells as well as elimination of cells which contain dysfunctional DNA. Evading this process has been described as the hallmark of all cancers (Nguyen *et al.*, 2009). This implies that any process that could induce programmed cell death in cancers may as well reverse the proliferation of cancer cells and ensure their elimination. Silk fibroin particles have been used in several studies as carriers for anticancer drugs. This brief review aims to examine the apoptotic effect of SF particles.

Mandal and Kundu (2009) demonstrated the apoptotic effect of self-assembled silk sericin/ polaxamer nano-carriers of hydrophilic and hydrophobic drugs for the treatment of cancers including breast cancers. They were able to demonstrate via western blot the up regulation of the proapoptotic Bax protein, decrease in anti- apoptotic Bcl-2 protein and cleavage of PARP as well as demonstrate via confocal microscopic studies apoptosis following staining of MCF- 7 cells with Annexin V. Similarly, Chon and colleagues (2013) were able to demonstrate the apoptotic effect of silk fibroin hydrosylate (HSF) using annexin V / propidium iodide flow cytometry method, as well as a double staining technique in MCF-7 breast cancer cells. They also demonstrated upregulation of Baxprotien, decrease Bcl-2, increase in caspase activity as well as cleavage of PARP, thus determining that HSF achieves its apoptotic effect through mitochondrial caspase dependent pathway.

Mathur and Gupta (2010) in their article alluded to the apoptotic effect of silk fibroin curcumin nanoparticles on MCF-7 breast cancer cells. This was further buttressed by Panda *et al* (2017), in their paper where they highlighted the use of silk fibroin nanoparticles to deliver curcumin to breast cancer cells, with a resultant enhanced uptake of curcumin by the MCF-7 cells, and a corresponding increase in cytotoxic and apoptotic potential. They thus suggested that SF particles be used as potential carriers for anti-tumor drugs in targeted cancer therapy.

Roy and colleagues (2015) used Eri silk fibroin nanoparticles to deliver apo bovine lactoferina known anticancer milk protein to MCF-7 and MDA-MB-231. This was easily internalized by the MCF 7 cells due to the expression of transferrin 1 and transferrin 2 by the cells. Apoptotic screening was performed using the apoptotic marker annexin V to treat and stain the cells. The results of annexin V assay showed higher degree of apoptosis with SF- loaded beta lactoferin treated cells when compared to cells treated with pristine lactoferrin. Lozano-Perez and colleague (2015) also demonstrated the apoptotic effect silk fibroin particles loaded with cisplastin using the known apoptotic marker annexin v.

(Pham *et al.*, 2019) using a DNA gel electrophoresis method demonstrated DNA fragmentation and ladder formation in MCF-7 breast cancer cells treated with cross-linked SF particles loaded with Alpha magostin.

SF particles does not only play a vital role in delivering drugs with apoptotic potential to target cells invitro but it may also act in synergy with this drugs to induce apoptosis in MCF-7 breast

cancer cells in-vitro, thus making it a choice vehicle for the delivery of cancer drugs to target cells in future.

2.12 Procedures for Making Silk Fibroin Nanoparticles

Silk fibroin nanoparticles used in drug targeting system has numerous approaches to its production. Here this research would focus on a few of them. Methods used in the development of SF nanoparticles comprises the following; desolvation method, electrospray method, salting out, mechanical communition, supercritical fluid technologies, microdot capillary method, PVA blend method etc. Most of these methods have their pros and cons some of which would be discussed in this study (Zhao *et al.*, 2015).

2.12.1 Desolvation method

Desolvation or coaacervation method is said to be the most widely used method for making protein-based nanoparticles, this is as a result of its relatively mild conditions. This method basically lessens protein solubility which results to phase separation and also it involves inclusion of a desolvating substitute usually natural salts or alcohol, which leads to modification shift in the protein configuration hence leading to protein precipitation. An adequate and balanced particle size is achieved via initial process term; thus further inclusion of non-solvent would enhance particle production. In using desolvation method, careful consideration is given to the charge as a net zero charge is said to yield nanoparticles at a rapid as well as productive manner. The PH of the protein solution which is adjustable is tuned based on the desired condition of the particle size and yield required (Sundar et al., 2010). Subia and Kundu in their report in 2012 described the preparation of silk fibroin albumin conjugates by desolvation method after which the loaded it with methotrexate and used it on cancer cell lines with optimum entrapment and efficiency (Subia& Kundu, 2012). Loncharoenkal et al in their review article described how organic solvents such as acetone and ethanol were utilized to induce conformational shift in the protein configuration which leads to protein precipitation and coacervation (Lonchaoenkal et al., 2014).

2.12.2 Salting out method

Salting out approach is another procedure used in developing nano-particale made from proteins and thus forming coacervates with the solution of protein. This exploits the chemistry of proteins to decrease its solubility in solution. Proteins are known to be made of amino acids which could be either hydrophilic or hydrophobic. When proteins are in solution the hydrophilic portion interacts with water molecules forming hydrogen bonds and stabilizing the proteins whilst the hydrophobic part forms the core of the protein. Deionized salts are known to have higher affinity for water molecules thus increasing the salt concentration in a protein solution would result in the salt interacting with the water molecules competitively against the hydrophilic aminoacids components of the protein hence resulting in a decrease in water barrier between the protein molecules as well as enhanced protein to protein interaction thus aggregating as a result of hydrophobic interactions (Zhao *et al.*, 2015).

Lammel and his colleagues in their publication in 2010, described the use of 1.25M potassium phosphate at varying PH to develop silk fibroin nanoparticles which were subsequently loaded with drugs, thus establishing the use of salting out technique to develop a drug delivery system from protein solutions (Lammel *et al.*, 2010).

Tian and colleagues also demonstrated the use of salting out to form doxorubicin loaded magnetic silk fibroin nanoparticles, it was subsequently utilized to investigate its activity for targeted drug delivery with the aid of an external magnetic field on multidrug resistant cancer cells (Tain *et al.*, 2014).

2.12.3 Supercritical fluid technologies

This involves the use of fluids above their critical temperature or pressure to micronize solutions. This method circumvents the disadvantages of the conventional method. Supercritical Carbon dioxide is the most widely used supercritical substance and has shown great potential in the field of micronization of materials due to its favorable critical conditions with a critical temperature of 31.1 degrees Celsius and at a critical pressure of 7.38 Mpa, it is also the cheapest amongst materials used in supercritical fluid technologies, it is nontoxic and non-flammable and thus its preference in pharmaceutical and food industries. Though this may

be one of the best methods of fabrication of nanoparticles it is relatively expensive and requires more technical expertise when compared to the conventional methods (Zhao *et al.*, 2015).

Zhao and colleagues demonstrated the fabrication of silk fibroin nanoparticles with the use of supercritical CO_2 which the published in 2012. The resulting nanoparticles exhibited good spherical shape and mean diameter of 50nm. Characterization of the particles demonstrated conformational transition from the random coil structure to beta sheets thus giving them physical and thermal stability as well as water insolubility before and after alcohol treatment. The particles were then used to carry non-steroidal anti-inflammatory drugs (Zhao *et al.*, 2012).

2.12.4 Electro-spraying

This method utilizes electrical forces to atomize liquids. It is an emerging method for rapid and high throughput production of nano-particles (Zhao *et al.*, 2015).

Qu and colleagues demonstrated the use of the electrospray method to manufacture silk fibroin nanoparticles using an organic solvent. The particles were shown to be spherical and having an average size of 59nm. The particles were loaded with Cis-dichlorodiamminoplatinum (CDDP) and tested on cancer cell lines in-vitro. The particle drug complex demonstrated sustained drug release and efficient killing of the tumour cells with minimal effect on the normal cell lines (Qu *et al.*, 2014).

2.12.5 Mechanical communition

This simply implies the decreasing of solid materials from a certain particle size to a smaller size by crushing, grinding or milling. It however has the defect of long milling times and the presence of impurities (Zhao *et al.*, 2015).

2.12.6 Micro emulsion method

This is the thermodynamically stable dispersion of immiscible liquids, aided by the use of surfactants. Micro emulsion could be basically classified into water in oil or oil in water. The method has the advantage of the researcher having a better control of the particle size (Zhoa*et al.*, 2015).

(Myung *et al.*, 2008) generated fluorescent silk fibroin nanoparticles using a reverse micro emulsion method. The silk fibroin is dissolved in concentrated lithium bromide solution followed by dialysis. They then mix the coloured dye with the aqueous solution the surfactant used for the micro emulsion is then removed via treatment with ethanol and methanol to yield a colour dye doped silk fibroin Nano particle measuring about 167nm in size. A Fourier transform infra-red spectroscopy showed beta sheet conformation of the nano particles (Zhao *et al.*, 2008).

This method however is said to have the problem having to add an organic solvent before removing it with the attendant risk of having residual organic solvent with its possible toxic effects (Sundar *et al.*, 2010).

2.12.7 Capillary microdot method

In this method silk fibroin solution is dispensed on a glass slide using micro capillary, the slides are then frozen over the night and freeze dried. The resulting dots are scrapped of the slides and crystallized by methanol treatment. After the crystallization the nano-particles are recruited via centrifugation and rinsed with phosphate buffer saline, it is then characterized. This method was used by Gupta and colleagues to form silk fibroin encapsulated curcumin nano-particles less than 100 nm in size and used against cancer cell line (Gupta *et al.*, 2009).

2.12.8 Polyvinyl alcohol blends film method

This process is based on phase separation between SF and polyvinyl alcohol. The silk fibroin and polyvinyl blend solution is dried into a film, then water insoluble particles are fabricated by dissolution of the film in water after which centrifugation is done to rid it of polyvinyl alcohol. Drugs can be loaded into the silk fibroin by mixing the model drug into the original silk fibroin solution. This method was demonstrated by Wang and colleagues to make silk fibroin nano spheres and micro spheres with controllable size and shape (Wang *et al.*, 2010).

2.12.9 Ionic gelation method

Ionic gelation method or ion induced method simply involves the interaction of an ionic polymer with oppositely charged ions to induce crosslinking. It thus eliminates the use of harsh chemicals to generate micro or nanoparticles (Ahirraoet al., 2013. Kunjachanet al., 2014). It has been used to encapsulate probiotics with 100% encapsulation yield. After lyophilization the particles were also shown to protect the lactobacillus from acid media (Sanchez et al., 2017). Benavides and colleagues in a study successfully encapsulated thyme and essential oils with an encapsulation efficiency of approximately 85% using ion induction to generate alginate microspheres (Benavides et al., 2016). Chitosan indomethacin nanocarriers for intra ocular administration have been produced via ionic gelation using tripolyphosphate (Bandawi, et al., 2008). Regenerated silk fibroin has been used to develop injectable hydrogels with laponite nanoparticles using polyelectrolyte complexation method with the resultant effect of increased cell proliferation and osteogenicity in bones (Suet al., 2016). Silk fibroin nanoparticles carriers has been shown to successfully encapsulate anticancer drug doxorubicin with 65% encapsulation efficiency after 11 days using the ion induction method (Wang et al, 2015). Bearing in mind the problems of ionic gelation which include improper surface morphology, fragile particulate system, low stability (Kujachanet al., 2014) and in an attempt to avoid the use of harsh chemicals and enhance the encapsulation efficiency this study focuses on the encapsulation of carboplatin in silk fibroin using ionic gelation method in other to improve the stability of the SFCP particle by formation of beta pleated sheets following lyophilization (Li et al, 2001) and enhance encapsulation efficiency.

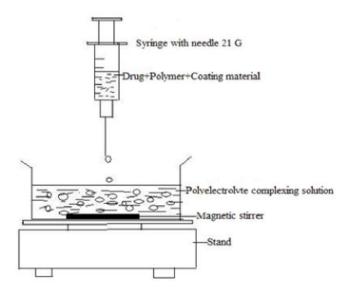


Figure 2.7: Image of the process of ionic gelation

CHAPTER 3 MATERIALS AND METHOD

3.1 Materials

Silk fibroin used was of the domesticated mulberry cocoons gotten from Buyuk Han in the North of Cyprus. Apostrand Elisa apoptosis kit (Enzo, Switzerland), MCF-7 breast cancer cells (ATCC[®] HTB-22TM,Manassa, Virginia, US), 10 % FBS Thermofisher, Grand Island, New York, US, 1% penicillin / streptomycin (Thermofisher, Grand island, New York, US), insulin in DMEM / F12 (thermofisher US), $C_6H_{12}N_2O_4Pt$, Sigma Aldrich, Germany, Na₂CO₃, Sigma Aldrich, Schneldorf, Germany,sodium triphosphate pentabasic(TPP) Sigma Aldrich, CaCl₂, Sigma Aldrich, Schneldorf, Germany, C₂H₅OH, Sigma Aldrich, Schneldorf, Germany and dialysis membrane (cut off MW 12,400) with full average diameter 16 mm and flat width 25mm capacity of 60ml/ft were purchased from Sigma Aldrich. All other reagents were of analytical grade and also purchased from Sigma Aldrich.

3.2 Preparation of Pure Silk Fibroin

The process of making pure silk fibroin involves degumming, dissolution and dialysis respectively.

3.2.1 Degumming

The degumming of silk involves the cleavage of peptide bonds either by hydrolytic or enzymatic methods of the sericin in silk fibroin. This can be done either in an acidic, alkaline or neutral condition. In this study we employed the hydrolytic method of boiling off in an alkaline solution of sodium bicarbonate solution. 5g of cut and cleaned silk cocoons was boiled with 500ml of 0.1 molar sodium bicarbonate at 70-degrees Celsius for three hours on the magnetic stirrer at a speed of 1.5rpm, this was repeated three times with the silk washed with ultra-pure water after each episode.

Figure 3.1: (A) Silk cocoons (B) Clean and cut cocoons (C) Process of degumming

3.2.2 Dissolution

The dissolution achieves changing of the physical state of silk fibroin from a solid to liquid form by breaking the polypeptide chains using strong electrolyte solution consisting of calcium chloride, water and ethanol in a ratio of 1:8:2 calculated as 27.75 g of calcium chloride, 29.15mL of absolute ethanol and 36ml of deionized water. The required grams to get 6% at 6g/100mL w/v was calculated and mixed on the magnetic stirrer and heated at 75 degrees Celsius until complete dissolution is achieved.

Figure 3.2: Process of dissolution

3.2.3 Dialysis

Dialysis is done to remove the ions involved in the dissolution process, and consequently yield pure silk fibroin. A semipermeable membrane tube or cassette is used to perform the dialysis of liquid silk fibroin against deionized or ultra-pure water in other to allow the diffusion of the ions and salt into the water compartment from the silk fibroin. In this study a snake skin dialysis membrane with molecular cut off (MCO) 7000 was used over nine hours in three divided rounds. The silk fibroin is measured and put into the dialysis membrane, a 2000mL beaker is filled with ultra-pure water and the tube containing the silk fibroin is placed into the beaker which contains a magnetic stirring bar and is placed on the stirrer at 1rpm for three hours after which the water is changed and the process repeated two more times. The pure silk fibroin is then removed with the aid of a syringe.

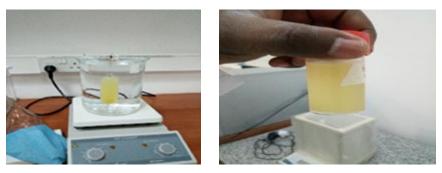


Figure 3.3: Showing the process of dialysis and pure silk fibroin respectively

3.3 Incorporation of Drugs and Synthesis of Particles

In this work the direct incorporation method of the drug is used, the drugs are dissolved into a known quantity of pure silk fibroin and subsequently made into nanoparticles using an ionic gelation method based on the usage of a cross linker known as sodium triphosphate pentabasic (TPP). Since silk fibroin has strongly polar side groups, it does not require activation before conjugation with drugs or other molecules. The drug was added and stirred vigorously with the aid of a magnetic stirrer till it was well mixed.

3.3.1 Synthesis of microparticles

The solution of the SF and drugs are then added drop wise with the aid of a micrometer gauge syringe while stirring into 50mL of 0.1M TPP Solution. The mixture is then ultra-sonicated, and centrifuged at 400rpm for 10minutes. The top most layers are collected separately, making it possible to employ spectroscopy to investigate the quantity of carboplatin present which would then enable the calculation of the amount of loaded carboplatin.

The collected nanoparticles are washed with ultra-pure water and sterilized using an autoclave.

Calculations are done by:

% Encapsulation =
$$\frac{weight of drug inmicroparticle}{weight of drug} \times 100$$
 (4.1)

3.4 Particle Characterization

3.4.1 Particle size analysis

Mastersizer 2000 version 5.60 serial no: MAL100704 (Malvern, UK) was of Middle East Technical University (METU) Central Laboratory located in Ankara, Turkey and used to analyze the size of the SFCP microparticle.

3.4.2 SFCP microparticles morphology

Scanning electron microscope (S-3400N: Hitachi, Japan) was used to detect the surface morphology while gold nanoparticles were utilized in the encrustation of particles. The voltage for photography was 15KV. Experiments were carried out at room temperature. Mastersizer 2000 (Malvern, UK) was used to decide the particle size during distribution.

3.4.3 Biological degradation test

At 37°C, 0.2mg/ml of protease was employed to investigate the biological degradation of SFCP nanoparticles. Thus, biological degradation can be determined by:

$$Biodegradation (weight loss)\% = \frac{weight (t)}{initial weight} x100$$
(4.2)

3.4.4 Fourier Transforms Infrared Spectroscopy (FTIR)

Fourier transform infrared spectroscopy is employed on silk fibroin nanoparticles to know its configuration and evolution including the encasing of carboplatin in silk fibroin, using a Perkin Elmer FTIR spectroscopy.

3.5 In-vitro Drug Release Profile

The *in-vitro* release profile is assed via dialysis method. The SFCP (2g) micro-particles is sealed in a snake skin dialysis membrane MCO 10,000 and dialyzed against phosphate buffer at pH of 4.8 mimicking the acidic nature of the tumour microenvironment and 7.4 mimicking physiological pH respectively. The amount of carboplatin released is assessed with the aid of UV spectroscopy using an indirect method described by Basotra and colleagues (Basotra *et al.*, 2013) this is done while keeping the volume of PBS constant over a known time interval.

3.6 Cell Culture

Human adenocarcinoma cell line MCF-7 was used for intracellular accumulation and cytotoxicity studies. Breast adenocarcinoma cells were maintained inside an incubator at 37

degree Celsius, with air supplemented with CO2 (5%),10% PBS, 1% penicillin/streptomycin, 4 mg insulin in DMEM/ F12 in a humidified atmosphere and incubated. The media was changed every other day until it reached 70% confluence after which it was passaged.

Figure 3.4: MCF7 cells at > 60% confluence

3.6.1 Apoptosis evaluation

Kit used in this process is known as Apostrand Elisa apoptosis kit, the cells are seeded in a 96 well plate and the culture media for the experimental and control groups are used. A micro plate reader is used to assess the denatured DNA as a result of formamide action on the cells. Apostrand Elisa kit is sensitive to the DNA of Cells during apoptosis by formamide denaturation, this was only possible by the utilization of single DNA strand having monoclonal antibody. 96 well plates were prepared and a minimum of 5000 cells was implanted. A day later, the cells are expected to have seeded properly and the optimum density achieved. The cells were then incubated with 50,100,150 and $200\mu g/mL$ SFCP nanoparticles for 24-72hours specifically. Positive controls are cultured cells of carboplatin and the negative control was without carboplatin. Percentage of cytotoxicity was expressed as IC₅₀. The results for apoptosis were calculated as well as standard error of mean \pm (SEM).

3.7 Statistical Analysis

Data acquired were indicated by standard error mean \pm . One-way variance analysis was used to test for group significant differences; having statistical importance of 0.05 level of probability using graphpadinstat tool.

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Encapsulation of Silk Fibroin Carboplatin Particles (Synthesis and Characterization)

Basically the research purpose was to construct silk fibroin-carboplatin microparticle as a vehicle for focused drug delivery utilizing ionic-gelation approach. The reaction scheme showing interaction between SF, TPP, and CP is shown in Figure 4.1. Several methods have been used in the past to encapsulate carboplatin, however, none of the data used showed the use of ionic gelation approach. The distribution of the silk fibroin carboplatin microparticle was achieved using Mastersizer of about 0.02-2000µm having a sensitivity and obscuration of 12.24%. Silk fibroin carboplatin microparticle used has a volume of 0.0728%. Therefore, the mean value for the volume weighted and surface weighted are seen in Table 4.1 as 40.629µm and 79.695µm.

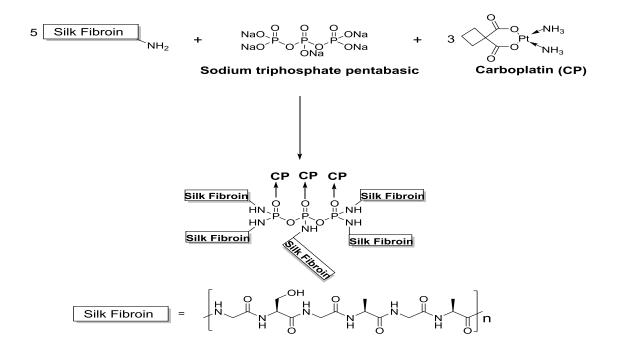
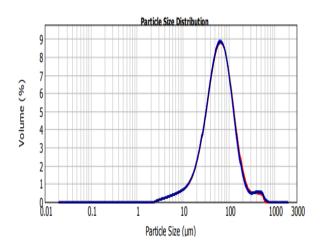
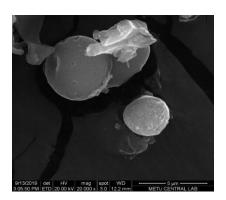
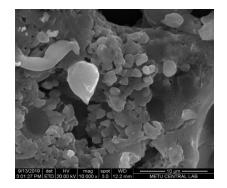


Figure 4.1: Reaction scheme of the crosslinking between SF, CP and TPP

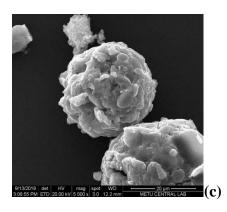
Table 4.1: Master	Sizer A	Analysis	of Particle	Size I	Distribution
-------------------	---------	----------	-------------	--------	--------------

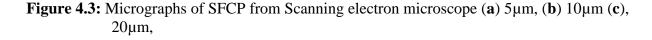
Size Distribution Analysis of Silk Fibrion Carboplatin Microparticle				
Residue Weighted	0.802%			
Sensitivity	Normal			
Size range	0.02-2000µm			
Concentration	0.0728% Volume			
Specific surface area	$0.184 m^2/g$			
Volume Weighted Mean D (4, 3)	79.695µm			
Surface Weighted Mean D (3, 2)	40.629µm			
E44d (0.1)	22.212µm			
d (0.5)	61.728µm			
d (0.9)	146.080µm			


Figure 4.2: Size distribution graph of Silk fibroin carboplatin microparticle

SEM was used for the morphological analysis of Silk fibroin carboplatin microparticle. From the micrograph provided by the SEM from the silk fibroin carboplatin microparticle, it showed that the shape of the analyte is spherical (Figure 4.3a), nonetheless, the particles showed a size


range of 5-146.08µm. Globules presented in figure (4.3b) consist of little pseudospherical particle with aggregate forms (4.3c).

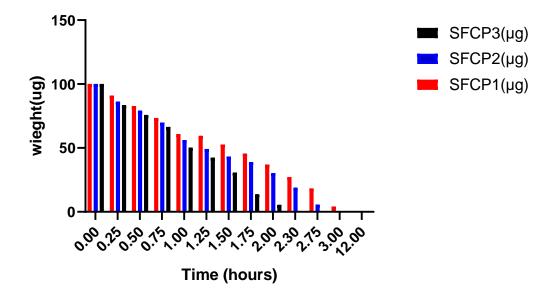


(a)

(b)

4.2 Biodegradation Analysis

SFCP microparticles were analyzed using solution of protease $(0.2 \text{mg}/100 \text{ml H}_2\text{O})$ at 37°C. Table 1 & 2 showed the synthesis condition and biodegradation profile of the silk fibroin carboplatin microparticle. SFCP showed faster degradation with increase in the amount of carboplatin in the particle. The rate of biodegradation is determined by the quantity or amount of carboplatin in the silk fibroin carboplatin microparticle in the reaction as proven by the result.


SAMPLE	3% SILK	CARBOPLATIN(ML)	TPP (0.1M) ML
	FIBRION(ML)	10%V/V	
SFCP1	10	0.01	50
SFCP2	10	0.05	50
SFCP3	10	0.10	50
~			

 $Table \ 4.2 \ Silk \ fibroin - Carboplatin \ micro \ particles \ synthesis \ conditions \$

Sodium Triphosphate Pentabasic: TPP

Table 4.3 Silk Fibroin Carboplatin biodegradation analysis using protease solution at 37°C

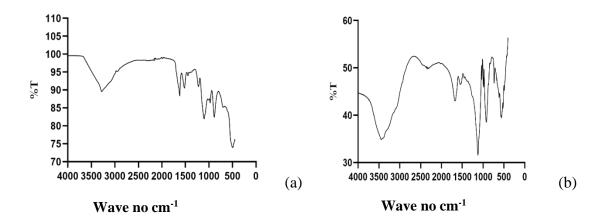

Time w(hr)	SFCP1(µg)	SFCP2(µg)	SFCP3(µg)
0.00	100	100	100
0.25	90.88	86.30	83.40
0.50	82.64	79.22	75.76
0.75	73.40	69.85	66.41
1.00	60.87	56.20	50.22
1.25	59.41	49.23	42.35
1.50	52.73	43.32	30.72
1.75	45.53	38.90	13.65
2.00	36.90	30.24	05.44
2.30	27.23	18.84	0
2.75	18.35	05.67	0
3.00	04.23	0	0
12	0	0	0
24	0	0	0
25	0	0	0
26	0	0	0

Figure 4.4: Graph showing Silk Fibroin Carboplatin biodegradation analysis using protease solution at 37°C

4.3 FTIR Spectra Analysis

Fourier transforms infrared demonstrated (FTIR) distinctive silk fibroin indications. Silk fibroin and carboplatin results from FTIR analysis are in agreement with studies in the past (Lozano-Perez *et al.*, 2005; Jose *et al.*, 2016). SFCP particle exhibited a decrease in transmittance; perhaps due to the ring-like form of carboplatin, thereby resulting in an increase in absorbance an invariably a decrease in transmittance by the SFCP. SFCP particles tracing demonstrated high absorptivity and low transmittance in contrast to silk fibroin alone. However, SFCP particles and silk fibroin indicated peaks expressive of OH group at 3452cm⁻¹ (Figure 4.4a) and 3273cm⁻¹ for silk fibroin alone (Figure 4.b). Another peak showed 1680cm⁻¹ indicated a carbonyl functional group for SFCP microparticles while 1622cm⁻¹ peak indicated amide1 for silk fibroin particles. Observable secondary bends of NH were seen at 1554cm⁻¹ for SFCP and 1517cm⁻¹ for silk fibroin particles. SFCP microparticles peak for carbonyl group was seen at 1123cm⁻¹. All spectral shift, characteristics and features are that of carboplatin stacked silk fibroin particles (Lozano-Perez *et al.*, 2015).

Figure 4.5: FTIR-spectrum showing transmittance against wave number cm⁻¹ for silk fibroin protein microparticles (a) and (b) spectrum for SFCP micro-particles.

4.4. Encapsulation Percentage of SFCP Microparticles

Encapsulation percentage was investigated by weighing the drug within the particle divided by the quantity of the feeding drug through the indirect procedure used by Basotra and colleagues (Basotra*et al*,2013). The starndard deviation of particle synthezised and encapsulation percentage through ionic gelation was calculated. Thus, mean encapsulation percentage of carboplatin in SF utilizing TPP to induce ionic gelation was 83.22 ± 0.07 . Therefore, the process of ionic gelation procedure of carboplatin encapsulation in silk fibroin protein was demonstrated for the first time in this study.

4.5 Drug Release of SFCP

The cumulative drug release was measured at varying pH for the synthetized particles for over 48hr;(figure 6). Particles indicated an initial fast rate of drug release and afterwards, became steady with time. At acidic pH, a higher rate of drug concentration was released. There was a significant fast delivery with successive regularization of the amount from the particles which agrees with previous studies (Perez et al, 2015). Results therefore, verifies study by Subia and colleagues(Subia, *et* al, 2013) and thus conform with the properties of anticancer candidate treatment approach considering that cancer microenvironment is known to be acidic.

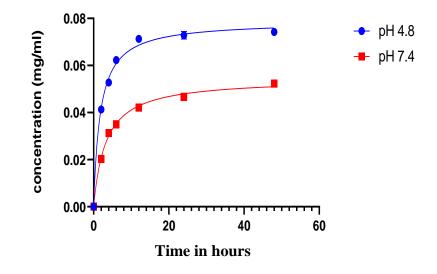


Figure 4.6: Graph showing CP release from SFCP microparticlesover time in hours.

4.6 SFCP Particles and Apoptotic Activity

Student's t test and analysis of variance were used to analyze the absorbance Values recorded. Incubation results of SF-CP on MCF-7 adenocarcinoma cell lines at various time-intervals 24, 28 and 72 hours at 450nm. Significant apoptotic activity at 95% confidence interval was observed on SF-CP particles prepared by inoic gelation procedure over the control experiment (figure 7). At varying incubation times, there was no significant difference recorded. Therefore, this may show a balance in the activity of the drug over 72hr. SFCP particles has an IC_{50} of 9.23μ g/mL.

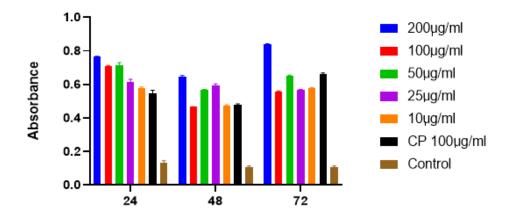


Figure 4.7 SFCP particles ANOVA analysis on MCF-7 cell lines after 24, 48 and 72hr.

Apoptotic activity and absorbance 450nm are directly proportional and thus, indicated an optimal activity at 72hr which was dose dependent. There were statistical significance (p<0.00001) on the concentration of SFCP microparticles when contrasted with the control experiment. No significant difference was demostrated between apoptotic activity of positive control and SFCP microparticles, considering that when apoptosis fails to occur, cancer develops (Nguyen *et al.*, 2009). Thus, prodecures that can alter apoptosis can also reverse the spread of cancer cells. There are many studies in the past where silk fibroin particles were employed as target transporters for anticancer drug delivery. Silk fibroin when encased with natural materials or products inhibited cancer proliferation and causes apoptosis in breast cancer (Mathur & Gupta, 2010; Panda *et al.*, 2017). This research study is the first to investigate and prove encapsulation of SFCP microparticles with carbiplatin anticancer drug by ionic gelation procedure that indicated apoptotic activity at 95% significant confidence interval compared to control experiment. Therefore, this result shows an uninterrupted activity over a period of three days; considering the efficiency of SFCP microparticles as having apoptotic reaction on MCF-7 breast cancer cell lines.

CHAPTER 5 CONCLUSION

5.1 Conclusions

The particles synthesized shown in Table 4.1 as 40.629 µm and 79.695 µm as mean values of volume weighted and surface weighted is above the range of the nanoparticle (Singh et al., 2009) and is consistent with the sizes of silk fibroin microparticles though larger than nanoparticles synthesized by Subia and colleagues(Subia et al, 2014), particles of this size would also easily utilize the EPR effect to access the tumour site due to widened endothelial gaps as well as poor lymphatic drainage in solid tumours (Meng et al, 2011). Utilization of such particles may have problems as regards the heterogeneity of the tumour vasculature. Particularly when comparing primary tumours and secondaries that result from them. These being a result of the fact that secondary tumour do not have as much vascularization as the primary tumours. Secondary tumours however are associated with more macrophages a component of the mononuclear phagocyte system. This fact confers on our vehicle the silk fibroin microparticles some advantages since studies have shown that modification of the biodistribution profile of cytotoxic and cytostatic drugs attached to biodegradable carriers, precede in a way that ensures its delivery to the mononuclear phagocyte system (Briggeret al., 2012). This implies that our drug does not only present a platform for passive targeting of primary tumours but may be very important in the management of secondaries as well. The results of the percentage encapsulation suggest good encapsulation using the ionic gelation method; this may be due to the cross linker effect of TPP (Patil et al, 2012). Though electrospray method have been used to synthesize silk fibroin cisplatin particles it has been described as very expensive utilizing a lot of chemicals and producing residual waste which may be harmful (Tapia-Hernandez et al, 2015) Ionic gelation on the other hand requires fewer chemicals with very little or no harmful residue generated .The biodegradation profile shows that biodegradation of SFCP progresses faster with increase in the carboplatin concentration relative to the SF and TPP, suggesting that the degradation of the SFCP can be regulated by

varying the amount of carboplatin solution. The cumulative drug release over a 48hour period was characterized by a rapid release phase followed by normalization of the concentration of drug exuded from the particles synthesized. Micro-particles synthesized however showed a pH-dependent release with more of the CP released at acidic pH, this corraburates the study done by Subia and colleagues (Subia *et al*, 2014).

Apoptosis which is in other words called programmed cell death is primarily the removal of aged cells or the elimination of cells with dysfunctional DNA. Evading this process has been described as the hallmark of all cancers. This implies that whatever causes apoptosis in cancers can also alter the proliferation of cancer cells and ensure their elimination. Studies in the past have demonstrated the silk fibroin particles are good transporters of anticancer drugs. To date, a number of studies have used silk fibroin encapsulated drugs or natural products to test the proliferation and apoptotic activities in breast adenocarcinoma cells. SFCP showed an outstanding MCF7 cell death activity, showing a 95% confidence interval as to the control experiment, with no significant differences between the doses and the pristine drug. This showed the effectiveness of the drug at the end of 72-hour period. This therefore, shows the promising *in vitro* apoptotic action of SFCP on MCF-7 breast cancer cells.

5.2 Conclusion

This study successfully established the use of ionic gelation method to synthesize SFCP microparticles for the first time. The indirect technique utilized by Basotra and colleagues was used to determine the amount of CP encapsulated (Basotra *et al*, 2013). The distinctive attributes of SF and carboplatin was affirmed using Fourier transform infrared spectra. Drug cumulative release profile was of the primitive feature of antineoplastic agents favouring an acidic micro environment an important feature for passive drug targeting, bearing in mind that the tumour microenvironment is traditionally acidic. There was good apoptotic activity shown *in vitro* against MCF7 breast adenocarcinoma cell line, which is the hallmark for ensuring cancer cell death. SFCP particles created via ionic gelation method promises to present an

excellent platform for cancer chemotherapy, with prospects for further functionalization for drug targeting and theranostics.

REFERENCES

- Adalı, T., &Uncu, M. (2016). Silk fibroin as a non-thrombogenic biomaterial. *International journal of biological macromolecules*, 90, 11-19
- Adali, T., Kalkan, R., &Karimizarandi, L. (2019). The chondrocyte cell proliferation of a chitosan/silk fibroin/egg shell membrane hydrogels. *International journal of biological macromolecules*, 124, 541-547.
- Ahirrao, S, Gide, P, Shrivastav, B., & Sharma, P. (2014). Ionotropic gelation: a promisingcross linking technique for hydrogels. *Res Rev J Pharm Nanotechnol*, *2*, 1-6.
- Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J,(2003) Silkbased biomaterials. *Biomaterials24*,401-416.
- Alvarez-Lorenzo, C., &Concheiro, A. (2008). Intelligent drug delivery systems: polymeric micelles and hydrogels. *Mini reviews in medicinal chemistry*, 8, 1065-1074.
- Al-Zharani, M., Nasr, F., Abutaha, N., Alqahtani, A., Noman, O, Mubarak, M., &Wadaan, M.
 A. (2019). Apoptotic Induction and Anti-Migratory Effects of Rhazya Stricta Fruit Extracts on a Human Breast Cancer Cell Line. *Molecules*, 24, 3968.
- American Cancer Society (2018). Global Cancer Facts & Figures 4th Edition. Atlanta: American Cancer Society. Retrieved June 12 2019 from https://www.cancer.org
- Badawi A, El-Laithy H, El Qidra, R, & El Mofty, H. (2008). Chitosan based nanocarriers for indomethacin ocular delivery. *Archives of pharmacal research*, *31*, 1040.
- Baek, A., & Nelson E. (2016). The Contribution of Cholesterol and Its Metabolites to the Pathophysiology of Breast Cancer. *Hormones and Cancer*, *7*, 219-228.

- Balan, V., Butnaru, M., &Verestiuc, L. (2017). Preparation, Characterization and Preliminary Evaluation of Magnetic Nanoparticles based on Biotinylated N-palmitoyl Chitosan. In International Conference on Advancements of Medicine and Health Care through Technology; 12th-15th October 2016, Cluj-Napoca, Romania (pp. 333-336). Springer, Cham.
- Ban, K. A., &Godellas, C. V. (2014). Epidemiology of breast cancer. Surgical oncology clinics of North America, 23, 409-422.
- Basotra, M., Singh, S. K., & Gulati, M. (2013). Development and validation of a simple and sensitive spectrometric method for estimation of cisplatin hydrochloride in tablet dosage forms: application to dissolution studies. *International Scholarly Research Notices*, 2013.
- Bastami, F., Paknejad, Z., Jafari, M., Salehi, M., Rad, M. R., &Khojasteh, A. (2017). Fabrication of a three-dimensional β-tricalcium-phosphate/gelatin containing chitosanbased nanoparticles for sustained release of bone morphogenetic protein-2: Implication for bone tissue engineering. *Materials Science and Engineering:* 72, 481-491.
- Benavides, S., Cortés, P., Parada, J., & Franco, W. (2016). Development of alginate microspheres containing thyme essential oil using ionic gelation. *Food chemistry*, 204, 77-83.
- Bian, X., Wu, P., Sha, H., Qian, H., Wang, Q., Cheng, L., ... & Liu, B. (2016). Anti-EGFRiRGD recombinant protein conjugated silk fibroin nanoparticles for enhanced tumor targeting and antitumor efficiency. *OncoTargets and therapy*, 9, 3153.
- Bowerman, C. J., Byrne, J. D., Chu, K. S., Schorzman, A. N., Keeler, A. W., Sherwood, C. A.,
 ... & Napier, M. E. (2016). Docetaxel-Loaded PLGA Nanoparticles Improve Efficacy
 in Taxane-Resistant Triple-Negative Breast Cancer. *Nano letters*, *17*, 242-248.

- Boyd, B. J. (2008). Past and future evolution in colloidal drug delivery systems. *Expert Opinion on Drug Delivery*, *5*, 69-85.
- Brigger, I., Dubernet, C., &Couvreur, P. (2012). Nanoparticles in cancer therapy and diagnosis. *Advanced drug delivery reviews*, 64, 24-36.
- Brown, J. M., &Giaccia, A. J. (1998). The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. *Cancer research*, 58, 1408-1416.
- Cai K, Yao K, Lin S, Yang Z, Li X, Xie H, (2002). Poly(D,L-lactic acid) surfaces modified by silk fibroin: effects on the culture of osteoblast in vitro. *Biomaterials23*,1153-1160
- Campos, J., Varas-Godoy, M., & Haidar, Z. S. (2017). Physicochemical characterization of chitosan-hyaluronan-coated solid lipid nanoparticles for the targeted delivery of paclitaxel: a proof-of-concept study in breast cancer cells. *Nanomedicine*, 12, 473-490.
- Cao, Y., Liu, F., Chen, Y., Yu, T., Lou, D., Guo, Y & Ran, H. (2017). Drug release from core-shell PVA/silk fibroin nanoparticles fabricated by one-step electrospraying. *Scientific reports*, 7, 1-9.
- Cardoso, M. ., Costa, R., & Mano, J. (2016). Marine origin polysaccharides in drug delivery systems. *Marine drugs*, *14*, 34.
- Carmichael, A. R. (2006). Review article: Obesity as a risk factor for development and poor prognosis of breast cancer. BJOG: An International Journal of Obstetrics &Gynaecology, 113, 1160-1166.
- Chang, Y. & Singh, K.(2017). Elevated level of estrogen enhances chemotherapeutic efficacy potentially through epigenetic mechanism in human breast cancer cells.*Cancer Research2017*, 1-5

- Cheema, S. K., Gobin, A. S., Rhea, R., Lopez-Berestein, G., Newman, R. A., & Mathur, A. B. (2007). Silk fibroin mediated delivery of liposomal emodin to breast cancer cells. *International journal of pharmaceutics*, 341, 221-229.
- Chen, M., Shao, Z., & Chen, X. (2012). Paclitaxel-loaded silk fibroin nanospheres. *Journal of Biomedical Materials Research Part A*, *100*, 203-210.
- Chon, J. W., Jo, Y. Y., Lee, K. G., Lee, H. S., Yeo, J. H., &Kweon, H. (2013). Effect of silk fibroin hydrolysate on the apoptosis of MCF-7 human breast cancer cells. *International Journal of Industrial Entomology*, 27, 228-236.
- Chou, H. H., Kuo, W. L., Yu, C. C., Tsai, H. P., Shen, S. C., Chu, C. H., ... & Lin, Y. C. (2019). Impact of age on pathological complete response and locoregional recurrence in locally advanced breast cancer after neoadjuvant chemotherapy. *Biomedical journal*, 42, 66-74
- Decuzzi, P., Godin, B., Tanaka, T., Lee, S. Y., Chiappini, C., Liu, X., & Ferrari, M. (2010). Size and shape effects in the biodistribution of intravascularly injected particles. *Journal of Controlled Release*, 141, 320-327.
- DeSantis, C., Ma, J., Bryan, L., & Jemal, A. (2014). Breast cancer statistics, 2013. *CA, a cancer journal for clinicians*, 64, 52-62
- Diamantis, N., & Banerji, U. (2016). Antibody-drug conjugates—an emerging class of cancer treatment. *British journal of cancer*, *114*, 362.
- Dyawanapelly, S., Kumar, A., & Chourasia, M. K. (2017). Lessons Learned from Gemcitabine: Impact of Therapeutic Carrier Systems and Gemcitabine's Drug Conjugates on Cancer Therapy. *Critical Reviews™ in Therapeutic Drug Carrier Systems*, 34, 63-96

- Eivazy, P., Atyabi, F., Jadidi-Niaragh, F., AghebatiMaleki, L., Miahipour, A., Abdolalizadeh, J., &Yousefi, M. (2017). The impact of the codelivery of drug-siRNA by trimethyl chitosan nanoparticles on the efficacy of chemotherapy for metastatic breast cancer cell line (MDA-MB-231). *Artificial cells, nanomedicine, and biotechnology*, 45, 889-896.
- Esfandiarpour-Boroujeni, S., Bagheri-Khoulenjani, S., Mirzadeh, H., & Amanpour, S. (2017).
 Fabrication and study of curcumin loaded nanoparticles based on folate-chitosan for breast cancer therapy application. *Carbohydrate Polymers*, *168*, 14-21.
- Fabbri, A., Carcangiu, M. L., & Carbone, A. (2008). Histological classification of breast cancer. In *Breast Cancer* (pp. 3-14). Springer Berlin Heidelberg
- Folprecht, G., Grothey, A., Alberts, S., Raab, H. R., &Köhne, C. H. (2005). Neoadjuvant treatment of unresectable colorectal liver metastases: correlation between tumour response and resection rates. *Annals of Oncology*, *16*, 1311-1319.
- Foster, C., Haviland, J., Winter, J., Grimmett, C., Seymour, K. C., Batehup, L., ... & May, C.
 M. (2016). Pre-surgery depression and confidence to manage problems predict recovery trajectories of health and wellbeing in the first two years following colorectal cancer: results from the CREW cohort study. *PloS one*, 11
- Gaber, M., Medhat, W., Hany, M., Saher, N., Fang, J. Y., &Elzoghby, A. (2017). Protein-lipid nanohybrids as emerging platforms for drug and gene delivery: Challenges and outcomes. *Journal of Controlled Release*.254, 75-91
- Gao, H. (2016). Shaping tumor microenvironment for improving nanoparticle delivery. *Current drug metabolism*, 17, 731-736.

- Gobin, A. S., Rhea, R., Newman, R. A., & Mathur, A. B. (2006). Silk-fibroin-coated liposomes for long-term and targeted drug delivery. *International Journal of Nanomedicine*, 1,81–87.
- Greenwalt, J. C., Mendenhall, N. P., Kennedy, W. R., Lightsey, J., Morris, C. G., & Bradley,
 J. A. (2016). Radiation Therapy in the Treatment of Inflammatory Breast Cancer
 (IBC): A Retrospective Review of IBC Patients. *International Journal of Radiation* Oncology• Biology• Physics, 96, 1-2.
- Grubstein, A., Yepes, M., &Kiszonas, R. (2010). Magnetic resonance imaging of breast vascularity in medial versus lateral breast cancer. *European journal of radiology*, 75, 9-11.
- Guerriero, E., Sorice, A., Capone, F., Storti, G., Colonna, G., Ciliberto, G., &Costantini, S. (2017). Combining doxorubicin with a phenolic extract from flaxseed oil: Evaluation of the effect on two breast cancer cell lines. *International journal of oncology*, 50, 468-476.
- Gupta, U., Sharma, S., Khan, I., Gothwal, A., Sharma, A. K., Singh, Y., & Kumar, V. (2017). Enhanced apoptotic and anticancer potential of paclitaxel loaded biodegradable nanoparticles based on chitosan. *International Journal of Biological Macromolecules*, 98, 810-819.
- Gupta, V.; Aseh, A.; Ríos, C.N.; Aggarwal, B.B.; Mathur, A.B(2009), Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy. *International Journal. Nanomedicine*. 4, 115–122.
- Hakimi, O., Knight, D. P., Vollrath, F., &Vadgama, P. (2007). Spider and mulberry silkworm silks as compatible biomaterials. *Composites Part B: Engineering*, *38*, 324-337.

- Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. *cell*, 144, 646-674.
- Hickman, J. A. (1992). Apoptosis induced by anticancer drugs. *Cancer and Metastasis Reviews*, 11, 121-139.
- Hiremath, S. R. R., &Hota, A. (1999). Nanoparticles as drug delivery systems. *Indian journal of pharmaceutical sciences*, *61*, 69.
- Ho, G. Y., Woodward, N., & Coward, J. I. (2016). Cisplatin versus carboplatin: comparative review of therapeutic management in solid malignancies. *Critical reviews in* oncology/hematology, 102, 37-46.
- Hu, Q., Sun, W., Wang, C., & Gu, Z. (2016). Recent advances of cocktail chemotherapy by combination drug delivery systems. *Advanced drug delivery reviews*, 98, 19-34.
- Iyer, A. K., Khaled, G., Fang, J., & Maeda, H. (2006). Exploiting the enhanced permeability and retention effect for tumor targeting. *Drug discovery today*, *11*, 812-818.
- Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T., & Thun, M. J. (2008). Cancer statistics, 2008. *CA: a cancer journal for clinicians*, 58,71-96.
- Jin HJ, Park J, Karageorgiou V, Kim UJ, Valluzzi R, CebeP,(2005). Waterstable silk films with reduced beta-sheet content. *Adv Funct Mater*, *15*,1241-1247
- Johnstone, R. W., Ruefli, A. A., & Lowe, S. W. (2002). Apoptosis: a link between cancer genetics chemotherapy and the *Cell*, *108*(2), 153-164.
- Kanamala, M., Wilson, W. R., Yang, M., Palmer, B. D., & Wu, Z. (2016). Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. *Biomaterials*, 85, 152-167.

- Key, T. J., Verkasalo, P. K., & Banks, E. (2001). Epidemiology of breast cancer. *The lancet oncology*, 2(3), 133-140.
- Khalid, A., Mitropoulos, A. N., Marelli, B., Tomljenovic-Hanic, S., &Omenetto, F. G. (2016). Doxorubicin loaded nanodiamond-silk spheres for fluorescence tracking and controlled drug release. *Biomedical optics express*, 7, 132-147.
- Khan, M. A., Zafaryab, M., Mehdi, S. H., Quadri, J., & Rizvi, M. M. A. (2017). Characterization and carboplatin loaded chitosan nanoparticles for the chemotherapy against breast cancer in vitro studies. *International Journal of Biological Macromolecules*, 97, 115-122
- Kim UJ, Park J, Kim HJ, Wada M, Kaplan DL (2005). Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials, *26*, 2775-2785.
- Kumar, P., Barua, C. C., Sulakhiya, K., & Sharma, R. K. (2017). Curcumin ameliorates cisplatin-induced nephrotoxicity and potentiates its anticancer activity in SD rats: Potential role of curcumin in breast cancer chemotherapy. *Frontiers in pharmacology*, *8*, 132
- Kunjachan, S., Jose, S., & Lammers, T. (2014). Understanding the mechanism of ionic gelation for synthesis of chitosan nanoparticles using qualitative techniques. Asian Journal of Pharmaceutics (AJP): Free full text articles from Asian J Pharm, 4, 148-153
- Kunwar, A., Barik, A., Mishra, B., Rathinasamy, K., Pandey, R., &Priyadarsini, K. I. (2008). Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells. *Biochimica et Biophysica Acta (BBA)-General Subjects*, 1780, 673-679.
- Lammel, A. S., Hu, X., Park, S. H., Kaplan, D. L., & Scheibel, T. R. (2010). Controlling silk fibroin particle features for drug delivery. *Biomaterials*, 31, 4583-4591

- Lang, D., Powell, S. K., Plummer, R. S., Young, K. P., & Ruggeri, B. A. (2007). PAX genes: roles in development, pathophysiology, and cancer. *Biochemical pharmacology*, 73, 1-14.
- Langer, R. (2000). Biomaterials in drug delivery and tissue engineering: one laboratory's experience. *Accounts of Chemical Research*, *33*, 94-101.
- Li, H., Tian, J., Wu, A., Wang, J., Ge, C., & Sun, Z. (2016). Self-assembled silk fibroin nanoparticles loaded with binary drugs in the treatment of breast carcinoma. *International journal of nanomedicine*, 11, 4373-4380
- Li, M., Lu, S., Wu, Z., Yan, H., Mo, J., & Wang, L. (2001). Study on porous silk fibroin materials. I. Fine structure of freeze dried silk fibroin. *Journal of applied polymer science*, 79, 2185-2191.
- Li, W., Zhang, H., Assaraf, Y. G., Zhao, K., Xu, X., Xie, J., ... & Chen, Z. S. (2016). Overcoming ABC transporter-mediated multidrug resistance: molecular mechanisms and novel therapeutic drug strategies. *Drug Resistance Updates*, 27, 14-29.
- Liu, J., Wei, T., Zhao, J., Huang, Y., Deng, H., Kumar, A., ... & Liang, X. J. (2016). Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance. *Biomaterials*, 91, 44-56.
- Lohcharoenkal, W., Wang, L., Chen, Y. C., & Rojanasakul, Y. (2014). Protein nanoparticles as drug delivery carriers for cancer therapy. *BioMed research international*, 2014, 1-12
- Lozano-Pérez, A. A., Gil, A. L., Pérez, S. A., Cutillas, N., Meyer, H., Pedreño, M., ... & Ruiz, J. (2015). Antitumor properties of platinum (iv) prodrug-loaded silk fibroin nanoparticles. *Dalton transactions*, 44, 13513-13521

- Makadia, H. K., & Siegel, S. J. (2011). Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. *Polymers*, *3*, 1377-1397.
- Mandal, B, & Kundu, S (2009). Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery. *Nanotechnology*, 20, 355101.
- Mathur, A.& Gupta, V. (2010). Silk fibroin-derived nanoparticles for biomedical applications. *Nanomedicine*, *5*, 807-820.
- McClements, D. J. (2018). Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review. *Advances in colloid and interface science*, 253, 1-22
- Megeed Z, Cappello J, Ghandehari H (2002) Genetically engineered silkelastinlike protein polymers for controlled drug delivery. *Adv Drug Del Rev 54*,1075-1091
- Megeed, Z., Cappello, J., &Ghandehari, H. (2002). Genetically engineered silk-elastinlike protein polymers for controlled drug delivery. *Advanced drug delivery reviews*, 54, 1075-1091.
- Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G, (2005). The inflammatory responses to silk films in vitro and in vivo. *Biomaterials*, *26*,147-155.
- Min BM, Jeong L, Lee KY, Park WH (2006). Regenerated silk fibroin nanofibers: water vapor-induced structural changes and their effects on the behavior of normal human cells. *Macromol Biosci*, 6,285-292
- Monti P, Freddi G, Bertoluzza A, Kasai N, Tsukada M (1998). Raman spectroscopic studies of silk fibroin from Bombyx mori. *J Raman Spectrosc*, 29,297-304

- Murphy AR, St John P, Kaplan DL (2008). Modification of silk fibroin using diazonium coupling chemistry and the effects on hMSC proliferation and differentiation. *Biomaterials29*, 2829-2838.
- Myung, S.J., Kim, HS, Kim, Y. Chen, P. Jin, H.J, (2008). Fluorescent silk fibroin nanoparticles prepared using a reverse . *Macromolecular Research16*, 604-608
- Natarajan G, Malathi R, Holler E (1999). "Increased DNA-binding activity of cis-1,1cyclobutanedicarboxylatodiammineplatinum(II) (carboplatin) in the presence of nucleophiles and human breast cancer MCF-7 cell cytoplasmic extracts: activation theory revisited". *Biochemical Pharmacology*. 58, 1625–29
- Nathanson, K. N., Wooster, R., & Weber, B. L. (2001). Breast cancer genetics: what we know and what we need. *Nature medicine*, *7*, 552-556
- Nguyen, D. X., Bos, P. D., & Massagué, J. (2009). Metastasis: from dissemination to organspecific colonization. *Nature Reviews Cancer*, *9*, 274-284
- Noble, S., &Pasi, J. (2010). Epidemiology and pathophysiology of cancer-associated thrombosis. *British journal of cancer*, *102*, 2-9.
- Nowrousian, M. R. (2002). Pathophysiology of cancer-related anemia. In *Recombinant Human Erythropoietin (rhEPO) in Clinical Oncology* (pp. 39-62). Springer Vienna.
- Oliver R.T, Mason MD, Mead G.M, Von der Maase H, Rustin G.J, Joffe J.K, De Wit R, Aass N, Graham J.D, Coleman R, Kirk SJ, Stenning SP (2005). "Radiotherapy versus single-dose carboplatin in adjuvant treatment of stage I seminoma: a randomised trial". *Lancet.366*, 293–300

- Pan, Q., Lv, Y., Williams, G. R., Tao, L., Yang, H., Li, H., & Zhu, L. (2016). Lactobionic acid and carboxymethyl chitosan functionalized graphene oxide nanocomposites as targeted anticancer drug delivery systems. *Carbohydrate polymers*, 151, 812-820.
- Panda, A. K., Chakraborty, D., Sarkar, I., Khan, T., & Sa, G. (2017). New insights into therapeutic activity and anticancer properties of curcumin. *Journal of experimental pharmacology*, 9, 31-45.
- Patil, P, Chavanke, D, & Wagh, M. (2012). A review on ionotropic gelation method: novel approach for controlled gastroretentivegelispheres. International Journal of Pharmacy and Pharmceutical Science, 4, 27-32
- Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. *Nature nanotechnology*, 2(12), 751-760.
- Perteghella, S., Crivelli, B., Catenacci, L., Sorrenti, M., Bruni, G., Necchi, V.,& Chlapanidas, T. (2017). Stem cell-extracellular vesicles as drug delivery systems: New frontiers for silk/curcumin nanoparticles. *International journal of pharmaceutics*, 520, 86-97.
- Pham, D, Saelim, N, & Tiyaboonchai, W. (2019). Alpha Mangostin Loaded Crosslinked Silk Fibroin-Based Nanoparticles for Cancer Chemotherapy. *Colloids and Surfaces B: Biointerfaces, 181*, 705-713
- Philchenkov, A., Zavelevich, M., Kroczak, T. J., & Los, M. J. (2004). Caspases and cancer: mechanisms of inactivation and new treatment modalities. *Experimental oncology*, 26, 82-97.
- Phillips DM, Drummy LF, Conrady DG, Fox DM, Naik RR, Stone MO (2004). Dissolution and regeneration of Bombyx mori silk fibroin using ionic liquids. J Am Chem Soc, 126, 14350-14351

- Polyak, K. (2007). Breast cancer: origins and evolution. *The Journal of clinical investigation*, *117*, 3155-3163
- Prabhakar, U., Maeda, H., Jain, R. K., Sevick-Muraca, E. M., Zamboni, W., Farokhzad, O. C., ... & Blakey, D. C. (2013). Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. *Cancer research*, 73, 2412-2417
- Prabhu, S., Ananthanarayanan, P., Aziz, S. K., Rai, S., Mutalik, S., &Sadashiva, S. R. B. (2017). Enhanced effect of geldanamycin nanocomposite against breast cancer cells growing in vitro and as xenograft with vanquished normal cell toxicity. *Toxicology and applied pharmacology*, 320, 60-72.
- Qu, J., Liu, Y., Yu, Y., Li, J., Luo, J., & Li, M. (2014). Silk fibroin nanoparticles prepared by electrospray as controlled release carriers of cisplatin. *Materials Science and Engineering: C*, 44, 166-174.
- Rapôso, C. (2017). Scorpion and spider venoms in cancer treatment: state of the art, challenges, and perspectives. *Journal of clinical and translational research*, *3*(2), 233.
- Rastegari, B., Karbalaei-Heidari, H. R., Zeinali, S., &Sheardown, H. (2017). The enzymesensitive release of prodigiosin grafted β-cyclodextrin and chitosan magnetic nanoparticles as an anticancer drug delivery system: Synthesis, characterization and cytotoxicity studies. *Colloids and Surfaces B: Biointerfaces*,158, 581-601
- Ross, J. S., Fletcher, J. A., Linette, G. P., Stec, J., Clark, E., Ayers, M., ... & Bloom, K. J. (2003). The Her-2/neu gene and protein in breast cancer 2003: biomarker and target of therapy. *The oncologist*, 8, 307-325.

- Roy, K., Patel, Y. S., Kanwar, R. K., Rajkhowa, R., Wang, X., & Kanwar, J. R. (2016).
 Biodegradable Eri silk nanoparticles as a delivery vehicle for bovine lactoferrin against
 MDA-MB-231 and MCF-7 breast cancer cells. *International journal of nanomedicine*, *11*, 25-44
- Seib, F. P., Jones, G. T., Rnjak-Kovacina, J., Lin, Y., & Kaplan, D. L. (2013). pH-Dependent Anticancer Drug Release from Silk Nanoparticles. *Advanced healthcare materials*, 2,1606-1611.
- Siegel, R. ., Miller, K., & Jemal, A. (2016). Cancer statistics, 2016. *CA: a cancer journal for clinicians*, 66, 7-30.
- Simmons, C., Miller, N., Geddie, W., Gianfelice, D., Oldfield, M., Dranitsaris, G., & Clemons, M. J. (2009). Does confirmatory tumor biopsy alter the management of breast cancer patients with distant metastases? *Annals of Oncology*, 20, 1499-1504
- Singh, S. K., Singh, S., Lillard Jr, J. W., & Singh, R. (2017). Drug delivery approaches for breast cancer. *International journal of nanomedicine*, *12*, 6205- 6218
- Skipworth, R. J., Stewart, G. D., Dejong, C. H., Preston, T., & Fearon, K. C. (2007). Pathophysiology of cancer cachexia: much more than host–tumourinteraction?.*Clinical nutrition*, 26, 667-676.
- Skorik, Y. ., Golyshev, A. A., Kritchenkov, A., Gasilova, E., Poshina, D. N, Sivaram, A., & Jayakumar, R. (2017). Development of drug delivery systems for taxanes using ionic gelation of carboxyacyl derivatives of chitosan. *Carbohydrate Polymers*, 162, 49-55
- Song, W., Muthana, M., Mukherjee, J., Falconer, R. J., Biggs, C. A., & Zhao, X. (2017). Magnetic-Silk Core-Shell Nanoparticles as Potential Carriers for Targeted Delivery of Curcumin into Human Breast Cancer Cells. ACS Biomaterials Science & Engineering.3, 1027-1038

- Su, D., Jiang, L., Chen, X., Dong, J., & Shao, Z. (2016). Enhancing the gelation and bioactivity of injectable silk fibroin hydrogel with laponite nanoplatelets. ACS applied materials & interfaces, 8, 9619-9628.
- Subia, B., Chandra, S., Talukdar, S., & Kundu, S. C. (2014). Folate conjugated silk fibroin nanocarriers for targeted drug delivery. *Integrative Biology*, *6*(2), 203-214.
- Sundar, S., Kundu, J., & Kundu, S. C. (2010). Biopolymeric nanoparticles. *Science and Technology of Advanced Materials*, *11*, 014104.
- Taghavi, S., Ramezani, M., Alibolandi, M., Abnous, K., &Taghdisi, S. M. (2017). Chitosanmodified PLGA nanoparticles tagged with 5TR1 aptamer for in vivo tumor-targeted drug delivery. *Cancer letters*, 400, 1-8.
- Tapia-Hernández, J. A., Torres-Chávez, P. I., Ramírez-Wong, B., Rascón-Chu, A., Plascencia-Jatomea, M., Barreras-Urbina, C. G., ... & Rodríguez-Félix, F. (2015). Micro-and nanoparticles by electrospray: advances and applications in foods. *Journal of agricultural and food chemistry*, 63, 4699-4707.
- Thotakura, N., Dadarwal, M., Kumar, R., Singh, B., Sharma, G., Kumar, P., ... & Raza, K. (2017). Chitosan-palmitic acid based polymeric micelles as promising carrier for circumventing pharmacokinetic and drug delivery concerns of tamoxifen. *International Journal of Biological Macromolecules*, 102, 1220-1225.
- Tian, Y., Jiang, X., Chen, X., Shao, Z., & Yang, W. (2014). Doxorubicin-loaded magnetic silk fibroin nanoparticles for targeted therapy of multidrug-resistant cancer. *Advanced Materials*, 26, 7393-7398.
- Tomeh, M. A., Hadianamrei, R., & Zhao, X. (2019). Silk Fibroin as a Functional Biomaterial for Drug and Gene Delivery. *Pharmaceutics*, *11*, 494-516

- Tong, S., Xu, D. P., Liu, Z. M., Du, Y., & Wang, X. K. (2016). Synthesis of the New-Type Vascular Endothelial Growth Factor–Silk Fibroin–Chitosan Three-Dimensional Scaffolds for Bone Tissue Engineering and In Vitro Evaluation. *Journal of Craniofacial Surgery*, 27, 509-515.
- Torchilin, V. (2011). Tumor delivery of macromolecular drugs based on the EPR effect. Advanced drug delivery reviews, 63, 131-135.
- Tulay, P., Galam, N., &Adali, T. (2018). The Wonders of Silk Fibroin Biomaterials in the Treatment of Breast Cancer. Critical Reviews[™] in Eukaryotic Gene Expression, 28, 129-134
- Urch, C. (2004). The pathophysiology of cancer-induced bone pain: current understanding. *Palliative Medicine*, *18*, 267-274.
- Vatnick, D. R., Lehner, K., Gilligan, M., Panigrahy, D., Gus-Brautbar, Y., Ramon, S., ... &Serhan, C. (2016). Control of Breast Cancer through the Resolution of Inflammation. *The FASEB Journal*, *3*, 698-703.
- Wang, J., Zhang, S., Xing, T., Kundu, B., Li, M., Kundu, S. C., & Lu, S. (2015). Ion-induced fabrication of silk fibroin nanoparticles from Chinese oak tasarAntheraeapernyi. *International journal of biological macromolecules*, 79, 316-325.
- Wang, T., Hou, J., Su, C., Zhao, L., & Shi, Y. (2017). Hyaluronic acid-coated chitosan nanoparticles induce ROS-mediated tumor cell apoptosis and enhance antitumor efficiency by targeted drug delivery via CD44. *Journal of nanobiotechnology*, 15, 7-19.
- Wang, X., Yucel, T., Lu, Q., Hu, X., & Kaplan, D. L. (2010). Silk Nanospheres and Microspheres from Silk/PVA Blend Films for Drug Delivery. *Biomaterials*, 31, 1025– 1035.

- Wei, Q. Y., He, K. M., Chen, J. L., Xu, Y. M., & Lau, A. T. (2019). Phytofabrication of Nanoparticles as Novel Drugs for Anticancer Applications. *Molecules*, 24, 4246-4265
- World Health Organization (2019). Cancer fact sheet Retrieved on 16 August 2019 from: http://www.who.int/news-room/fact-sheets/detail/ cancer.
- Wu, H., Liu, S., Xiao, L., Dong, X., Lu, Q., & Kaplan, D. L. (2016). Injectable and pHresponsive silk nanofiber hydrogels for sustained anticancer drug delivery. ACS applied materials & interfaces, 8(27), 17118-17126.
- Wu, W., Nie, L., Yu, K. N., Wu, L., Kong, P., Bao, L., & Han, W. (2016). Low Concentration of Exogenous Carbon Monoxide Modulates Radiation-Induced Bystander Effect in Mammalian Cell Cluster Model. *International journal of molecular sciences*, 17, 2051.
- Xiao, B., Ma, L., & Merlin, D. (2017). Nanoparticle-mediated co-delivery of chemotherapeutic agent and siRNA for combination cancer therapy. *Expert opinion on drug delivery*, 14, 65-73.
- Y. Baimark, P. Srihanam, Y. Srisuwan, P. Phinyocheep (2010), Preparation of porous silk fibroin microparticles by a water-in-oil emulsification-diffusion method J. Appl. Polym. Sci., 118, 1127-1133
- Yang, K., Feng, L., & Liu, Z. (2016). Stimuli responsive drug delivery systems based on nanographene for cancer therapy. *Advanced drug delivery reviews*, 105, 228-241.
- Yin, H., Liao, L., & Fang, J. (2014). Enhanced permeability and retention (EPR) effect-based tumor targeting: the concept, application and prospect. *JSM Clin Oncol Res*, 2, 1010.
- Yu, S., Yang, W., Chen, S., Chen, M., Liu, Y., Shao, Z., & Chen, X. (2014). Floxuridineloaded silk fibroin nanospheres. *RSC Advances*, 4, 18171-18177.

- Yucel, T., Lovett, M. L., Giangregorio, R., Coonahan, E., & Kaplan, D. L. (2014). Silk fibroin rods for sustained delivery of breast cancer therapeutics. *Biomaterials*, 35, 8613-8620.
- Zhao, X., Yang, K., Zhao, R., Ji, T., Wang, X., Yang, X., ... & Ren, H. (2016). Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy. *Biomaterials*, 102, 187-197.
- Zhao, Z., Chen, A., Li, Y., Hu, J., Liu, X., Li, J., ... & Zheng, Z. (2012). Fabrication of silk fibroin nanoparticles for controlled drug delivery. *Journal of Nanoparticle Research*, 14, 736.
- Zhao, Z., Li, Y., & Xie, M. B. (2015). Silk fibroin-based nanoparticles for drug delivery. International journal of molecular sciences, 16, 4880-4903

APPENDICES

ETHICAL APPROVAL DOCUMENT

ETHICAL APPROVAL DOCUMENT

Date:12/08/2020

To the Graduate School of Applied Sciences,

For the thesis project entitled as "APOPTOTIC AND ANTICANCR POTENTIAL STUDIES OF SILK FIBROIN LOADED CARBOPLATIN PARTICLES", the researchers declare that they did not collect any data from human/animal or any other subjects. Therefore, this project does not need to go through the ethics committee evaluation.

Title: Assoc. Prof. Dr. Name Surname: Pinar Tulay

Signature:

Role in the Research Project: Supervisor

SIGNED SIMILARITY REPORT

Ph.D

INBOX | NOW VIEWING NEW PAPERS .

SUTHOR	MILE	STARL STARL	ARITY	GRADE	RESPONSE	FILE	PRPER ID	OWNE
Nanyak Galam	Abstract	0%		~	aut	۵	1376964191	31-Aug-2020
Nanyak Galam	Acknowledgments	0%		**	**	٥	1376967053	31-Aug-2020
Nanyak Galam	Conclusion	0%		NGL		٥	1376967321	31 Aug 2020
Nanyak Galam	Results and Discussion	7%				0	1378127496	02-Sep-2020
Nanyak Galam	Entire Thesis Final	8%			-	0	1377454821	01-Sep-2020
Nanyak Galam	introduction	10%			-	0	1378127740	02-Sep-2020
Nanyak Galam	Literature Review	13%		-	-	٥	1376975367	31-Aug-2020
Nanyak Galam	Materials and Method	15%	192	-	-		1378127883	02-Sep-2020
					// \	her	-	
					02	f. Pina	/ Tula	1

74

RAW DATA ENCAPSULATION

Synthesis – 10mg 0f carboplatin was loaded on SF (10mg/ml)

Loading dose= 10mg

Concentration in nanoaggregates = loading dose – concentration in supernatant

Absorbance was read at 706nm

Appendix 3: Raw data for ionic gelation method
--

S/N	ABSORBANCE	CONCENTRATION IN	CONCENTRATION IN
		SUPERNATANT(MG/ML)	PARTICLES (MG/ML)
1	0.260	1.668	8.332
2	0.261	1.674	8.326
3	0.259	1.661	8.339

RAW DATA DRUG RELEASE

S/N	2 hours	4 hours	6 hours	12 hours	24 hours	48 hours
1	4.10	5.20	6.20	7.10	7.10	7.41
2	4.20	5.40	6.20	7.20	7.35	7.43
3	4.10	5.20	6.30	7.09	7.40	7.43

Appendix 4a: Drug release at pH 4.8

Appendix 4b: Drug release at pH 7.4

S/N	2 hours	4 hours	6 hours	12 hours	24 hours	48 hours
1	2.00	3.10	3.50	4.18	4.70	5.20
2	2.00	3.20	3.60	4.20	4.72	5.30
3	2.10	3.10	3.51	4.25	4.60	5.19

DESCRIPTIVE STATISTICS FOR DRUG RELEASE

	2 hours	4 hours	6 hours	12hours	24 hours	48 hours
Number of values	3	3	3	3	3	3
Minimum	4.100	5.200	6.200	7.090	7.100	7.410
Maximum	4.200	5.400	6.300	7.200	7.400	7.430
Range	0.1000	0.2000	0.1000	0.1100	0.3000	0.02000
Mean	4.133	5.267	6.233	7.130	7.283	7.423
Std. Deviation	0.05774	0.1155	0.05774	0.06083	0.1607	0.01127
Std. Error of Mean	0.03333	0.06667	0.03333	0.03512	0.09280	0.006506

Appendix 5a: Descriptive statistics for drug release at pH 4.8

Appendix 5b: Descriptive statistics for drug release at pH 7.4

	2 hours	4 hours	6 hours	12 hours	24hours	48 hours
Number of values	3	3	3	3	3	3
Minimum	2.000	3.100	3.500	4.180	4.600	5.190
Maximum	2.100	3.200	3.600	4.250	4.720	5.300
Range	0.1000	0.1000	0.1000	0.07000	0.1200	0.1100
Mean	2.033	3.133	3.537	4.210	4.673	5.230
Std. Deviation	0.05774	0.05774	0.05508	0.03606	0.06429	0.06083
Std. Error of Mean	0.03333	0.03333	0.03180	0.02082	0.03712	0.03512

Time	200µg/ml	100µg/ml	50µg/ml	25µg/ml	10µg/ml	СР	Control
(hours)						(100µg/ml)	
24	0.764	0.704	0.720	0.600	0.575	0.535	0.125
	0.766	0.702	0.700	0.620	0.573	0.541	0.130
	0.768	0.715	0.728	0.628	0.586	0.568	0.147
48	0.650	0.465	0.569	0.580	0.473	0.470	0.102
	0.642	0.466	0.570	0.590	0.470	0.472	0.100
	0.652	0.467	0.571	0.603	0.479	0.486	0.116
72	0.841	0.545	0.653	0.570	0.574	0.662	0.100
	0.839	0.556	0.650	0.565	0.572	0.650	0.115
	0.843	0.559	0.656	0.569	0.582	0.668	0.100

Appendix 6: Raw data absorbance vs time

ABSORBANCE VS TIME

	200µg/ml	100µg/ml	50µg/ml	25µg/ml	10µg/ml	СР	Control
						100µg/ml	
24ho	0.766 ± 0.0	0.707 ± 0.0	0.716±0.0	0.616±0.0	0.578 ± 0.0	0.548 ± 0.0	0.134±0.0
urs	020	070	144	144	070	176	115
48	0.648 ± 0.0	0.466 ± 0.0	0.570 ± 0.0	0.591±0.0	0.474 ± 0.0	0.476 ± 0.0	0.106 ± 0.0
hours	053	010	010	115	046	087	087
72	0.841 ± 0.0	0.555 ± 0.0	0.653 ± 0.0	0.568 ± 0.0	0.576 ± 0.0	0.660 ± 0.0	0.105 ± 0.0
hours	020	074	030	0265	053	092	087

Appendix 7: Absorbance Vs Time

ONE WAY ANALYSIS OF VARIANCE ABSORBANCE VS TIME

Appendix 8: Transmittance of Pristine Silk Fibroin

Table Analyzed	Data 2				
Data sets analyzed	A-G				
ANOVA summary					
F	19.78				
P value	< 0.0001				
P value summary	****				
Significant diff. among means (P <					
0.05)?	Yes				
R squared	0.8945				
Brown-Forsythe test					
F (DFn, DFd)	0.7821 (6, 14))			
P value	0.5978				
P value summary	ns				
Are SDs significantly different (P <					
0.05)?	No				
Bartlett's test					
Bartlett's statistic (corrected)					
P value					
P value summary					
Are SDs significantly different (P < 0.05)?					
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value
				F (6, 14) =	
Treatment (between columns)	0.7235	6	0.1206	19.78	P<0.0001
Residual (within columns)	0.08532	14	0.006095		
Total	0.8088	20			
Data summary					
Number of treatments (columns)	7				
Number of values (total)	21				

TRANSMITTANCE FOR SFCP MICROPARTICLES

Created as New	Sample 039 By Administrator	September 06 2019
Dataset cm ⁻¹	Date Friday %T	
4000	44.72	
3999	44.72	
3998	44.72	
3997	44.72	
3996	44.71	
3995	44.71	
3994	44.71	
3993	44.7	
3992	44.7	
3991	44.7	
3990	44.7	
3989	44.7	
3988	44.7	
3987	44.69	
3986	44.69	
3985	44.68	
3984	44.68	
3983	44.68	
3982	44.68	
3981	44.67	
3980	44.67	
3979	44.67	
3978	44.66	

3977	44.66
3976	44.66
3975	44.66
3974	44.66
3973	44.65
3972	44.65
3971	44.65
3970	44.65
3969	44.65
3968	44.64
3967	44.64
3966	44.64
3965	44.63
3964	44.63
3963	44.62
3962	44.62
3961	44.62
3960	44.62
3959	44.62
3958	44.62
3957	44.62
3956	44.61
3955	44.61
3954	44.6
3953	44.6
3952	44.59
3951	44.58
3950	44.57

3949	44.57
3948	44.56
3947	44.56
3946	44.57
3945	44.57
3944	44.57
3943	44.57
3942	44.57
3941	44.57
3940	44.57
3939	44.57
3938	44.56
3937	44.55
3936	44.53
3935	44.52
3934	44.51
3933	44.51
3932	44.52
3931	44.53
3930	44.54
3929	44.53
3928	44.53
3927	44.52
3926	44.52
3925	44.51
3924	44.5
3923	44.49
3922	44.49

3921	44.48
3920	44.47
3919	44.47
3918	44.47
3917	44.48
3916	44.49
3915	44.49
3914	44.49
3913	44.49
3912	44.49
3911	44.47
3910	44.46
3909	44.44
3908	44.43
3907	44.42
3906	44.41
3905	44.4
3904	44.39
3903	44.38
3902	44.39
3901	44.42
3900	44.44
3899	44.45
3898	44.43
3897	44.42
3896	44.41
3895	44.4
3894	44.4

3893	44.41
3892	44.41
3891	44.39
3890	44.36
3889	44.34
3888	44.35
3887	44.36
3886	44.35
3885	44.33
3884	44.31
3883	44.32
3882	44.35
3881	44.36
3880	44.35
3879	44.32
3878	44.31
3877	44.32
3876	44.33
3875	44.32
3874	44.29
3873	44.27
3872	44.28
3871	44.3
3870	44.3
3869	44.27
3868	44.26
3867	44.27
3866	44.29

3865	44.29
3864	44.27
3863	44.25
3862	44.25
3861	44.24
3860	44.23
3859	44.22
3858	44.21
3857	44.2
3856	44.21
3855	44.24
3854	44.26
3853	44.22
3852	44.15
3851	44.13
3850	44.15
3849	44.18
3848	44.17
3847	44.16
3846	44.16
3845	44.15
3844	44.14
3843	44.12
3842	44.12
3841	44.12
3840	44.14
3839	44.15
3838	44.15

3837	44.12
3836	44.1
3835	44.09
3834	44.1
3833	44.11
3832	44.1
3831	44.08
3830	44.07
3829	44.07
3828	44.07
3827	44.06
3826	44.04
3825	44.02
3824	44.02
3823	44.04
3822	44.06
3821	44.04
3820	44
3819	43.99
3818	44.02
3817	44.04
3816	44.02
3815	43.97
3814	43.94
3813	43.95
3812	43.96
3811	43.96
3810	43.94

3809	43.95
3808	43.95
3807	43.93
3806	43.89
3805	43.87
3804	43.89
3803	43.93
3802	43.93
3801	43.89
3800	43.84
3799	43.84
3798	43.86
3797	43.87
3796	43.86
3795	43.84
3794	43.83
3793	43.83
3792	43.83
3791	43.81
3790	43.8
3789	43.79
3788	43.78
3787	43.77
3786	43.76
3785	43.75
3784	43.74
3783	43.73
3782	43.73

3781	
	43.73
3780	43.72
3779	43.71
3778	43.7
3777	43.69
3776	43.69
3775	43.68
3774	43.66
3773	43.64
3772	43.64
3771	43.64
3770	43.63
3769	43.61
3768	43.6
3767	43.6
3766	43.6
3765	
5705	43.59
3764	43.59 43.56
3764	43.56
3764 3763	43.56 43.55
3764 3763 3762	43.56 43.55 43.55
3764 3763 3762 3761	43.56 43.55 43.55 43.54
3764 3763 3762 3761 3760	43.56 43.55 43.55 43.54 43.53
3764 3763 3762 3761 3760 3759	43.56 43.55 43.55 43.54 43.53 43.51
3764 3763 3762 3761 3760 3759 3758	43.56 43.55 43.55 43.54 43.53 43.51 43.49
3764 3763 3762 3761 3760 3759 3758 3757	43.56 43.55 43.55 43.54 43.53 43.51 43.49 43.48
3764 3763 3762 3761 3760 3759 3758 3757 3756	43.56 43.55 43.55 43.54 43.53 43.51 43.49 43.48 43.46

3753	43.42
3752	43.42
3751	43.41
3750	43.39
3749	43.36
3748	43.34
3747	43.35
3746	43.38
3745	43.38
3744	43.33
3743	43.27
3742	43.24
3741	43.25
3740	43.23
3739	43.18
3738	43.14
3737	43.13
3736	43.15
3735	43.19
3734	43.22
3733	43.24
3732	43.21
3731	43.15
3730	43.1
3729	43.08
3728	43.07
3727	43.05
3726	43.04

3725	43.04
3724	43.04
3723	43.04
3722	43.04
3721	43.02
3720	43.01
3719	43
3718	42.99
3717	42.98
3716	42.98
3715	42.96
3714	42.94
3713	42.92
3712	42.89
3711	42.86
3710	42.84
3709	42.83
3708	42.82
3707	42.81
3706	42.79
3705	42.77
3704	42.76
3703	42.75
3702	42.74
3701	42.71
3700	42.68
3699	42.65
3698	42.63

3697	42.61
3696	42.58
3695	42.55
3694	42.52
3693	42.5
3692	42.49
3691	42.48
3690	42.47
3689	42.45
3688	42.39
3687	42.34
3686	42.32
3685	42.31
3684	42.29
3683	42.26
3682	42.23
3681	42.2
3680	42.16
3679	42.12
3678	42.1
3677	42.1
3676	42.1
3675	42.06
3674	42.01
3673	41.99
3672	41.99
3671	41.98
3670	41.95

3669	41.89
3668	41.85
3667	41.84
3666	41.82
3665	41.79
3664	41.75
3663	41.71
3662	41.67
3661	41.62
3660	41.58
3659	41.54
3658	41.51
3657	41.48
3656	41.42
3655	41.36
3654	41.31
3653	41.27
3652	41.22
3651	41.17
3650	41.13
3649	41.08
3648	41.04
3647	41.01
3646	40.97
3645	40.95
3644	40.92
3643	40.89
3642	40.85

3641	40.8
3640	40.76
3639	40.71
3638	40.66
3637	40.61
3636	40.55
3635	40.5
3634	40.44
3633	40.38
3632	40.33
3631	40.29
3630	40.28
3629	40.26
3628	40.22
3627	40.19
3626	40.19
3625	40.19
3624	40.18
3623	40.16
3622	40.15
3621	40.15
3620	40.13
3619	40.08
3618	40.02
3617	39.97
3616	39.94
3615	39.92
3614	39.9

3613	39.86
3612	39.8
3611	39.75
3610	39.7
3609	39.65
3608	39.61
3607	39.57
3606	39.53
3605	39.49
3604	39.44
3603	39.39
3602	39.34
3601	39.29
3600	39.25
3599	39.2
3599 3598	39.2 39.16
3598	39.16
3598 3597	39.16 39.11
3598 3597 3596	39.16 39.11 39.07
3598 3597 3596 3595	39.16 39.11 39.07 39.03
3598 3597 3596 3595 3594	39.16 39.11 39.07 39.03 38.99
3598 3597 3596 3595 3594 3593	 39.16 39.11 39.07 39.03 38.99 38.94
3598 3597 3596 3595 3594 3593 3592	 39.16 39.11 39.07 39.03 38.99 38.94 38.9
3598 3597 3596 3595 3594 3593 3592 3591	 39.16 39.11 39.07 39.03 38.99 38.94 38.9 38.85
3598 3597 3596 3595 3594 3593 3592 3591 3590	 39.16 39.11 39.07 39.03 38.99 38.94 38.9 38.85 38.8
3598 3597 3596 3595 3594 3593 3592 3591 3590 3589	 39.16 39.11 39.07 39.03 38.99 38.94 38.9 38.85 38.8 38.77
3598 3597 3596 3595 3594 3593 3592 3591 3590 3589 3588	39.16 39.11 39.07 39.03 38.99 38.94 38.9 38.85 38.85 38.8 38.77 38.73

3585	
	38.63
3584	38.6
3583	38.57
3582	38.53
3581	38.49
3580	38.46
3579	38.42
3578	38.39
3577	38.35
3576	38.32
3575	38.28
3574	38.24
3573	38.2
3572	38.15
3571	38.1
3570	38.04
3569	38
3568	37.97
3567	37.95
3566	37.94
3565	37.92
	37.92 37.9
3565	
3565 3564	37.9
3565 3564 3563	37.9 37.87
3565 3564 3563 3562	37.9 37.87 37.83
3565 3564 3563 3562 3561	37.9 37.87 37.83 37.8
3565 3564 3563 3562 3561 3560	37.9 37.87 37.83 37.8 37.8

3557	37.68
3556	37.65
3555	37.61
3554	37.58
3553	37.55
3552	37.52
3551	37.48
3550	37.45
3549	37.41
3548	37.37
3547	37.34
3546	37.31
3545	37.29
3544	37.27
3543	37.25
3542	37.23
3541	37.2
3540	37.17
3539	37.14
3538	37.11
3537	37.08
3536	37.06
3535	37.03
3534	37.01
3533	36.98
3532	36.95
3531	36.92
3530	36.89

3529	36.86
3528	36.83
3527	36.8
3526	36.77
3525	36.74
3524	36.72
3523	36.7
3522	36.68
3521	36.65
3520	36.63
3519	36.61
3518	36.58
3517	36.56
3516	36.53
	0.6 7
3515	36.5
3515 3514	36.5 36.47
3514	36.47
3514 3513	36.47 36.44
3514 3513 3512	36.47 36.44 36.41
3514 3513 3512 3511	36.47 36.44 36.41 36.39
3514 3513 3512 3511 3510	36.47 36.44 36.41 36.39 36.37
3514 3513 3512 3511 3510 3509	36.47 36.44 36.41 36.39 36.37 36.35
3514 3513 3512 3511 3510 3509 3508	36.47 36.44 36.41 36.39 36.37 36.35 36.32
3514 3513 3512 3511 3510 3509 3508 3507	36.47 36.44 36.41 36.39 36.37 36.35 36.32 36.3
3514 3513 3512 3511 3510 3509 3508 3507 3506	36.47 36.44 36.41 36.39 36.37 36.35 36.32 36.3 36.3 36.27
3514 3513 3512 3511 3510 3509 3508 3507 3506 3505	36.47 36.44 36.41 36.39 36.37 36.35 36.32 36.3 36.32 36.3 36.27 36.24
3514 3513 3512 3511 3510 3509 3508 3507 3506 3505 3504	36.47 36.44 36.41 36.39 36.37 36.35 36.32 36.3 36.32 36.27 36.24 36.21

3501	36.14
3500	36.12
3499	36.1
3498	36.08
3497	36.05
3496	36.03
3495	36.01
3494	35.99
3493	35.96
3492	35.94
3491	35.92
3490	35.89
3489	35.87
3488	35.84
3487	35.82
3486	35.8
3485	35.77
3484	35.75
3483	35.73
3482	35.7
3481	35.67
3480	35.65
3479	35.63
3478	35.6
3477	35.58
3476	35.56
3475	35.54
3474	35.51

3473	35.49
3472	35.46
3471	35.43
3470	35.39
3469	35.36
3468	35.33
3467	35.31
3466	35.29
3465	35.27
3464	35.25
3463	35.23
3462	35.2
3461	35.18
3460	35.15
3459	35.13
3458	35.11
3457	35.09
3456	35.06
3455	35.04
3454	35.02
3453	35
3452	34.98
3451	34.96
3450	34.94
3449	34.92
3448	34.91
3447	34.9
3446	34.89

3445	34.88
3444	34.88
3443	34.88
3442	34.87
3441	34.87
3440	34.87
3439	34.87
3438	34.87
3437	34.88
3436	34.88
3435	34.89
3434	34.9
3433	34.91
3432	34.93
3431	34.94
3430	34.95
3429	34.97
3428	34.98
3427	35
3426	35.01
3425	35.02
3424	35.03
3423	35.04
3422	35.05
3421	35.06
3420	35.07
3419	35.09
3418	35.1

3417	35.11
3416	35.11
3415	35.12
3414	35.12
3413	35.13
3412	35.14
3411	35.14
3410	35.15
3409	35.16
3408	35.16
3407	35.17
3406	35.17
3405	35.18
3404	35.17
3403	35.17
3402	35.17
3401	35.17
3400	35.17
3399	35.17
3398	35.18
3397	35.19
3396	35.19
3395	35.19
3394	35.19
3393	35.19
3392	35.19
3391	35.19
3390	35.2

35.21
35.22
35.23
35.24
35.25
35.26
35.27
35.28
35.29
35.3
35.32
35.34
35.36
35.38
35.41
35.44
35.46
35.49
35.51
35.54
35.57
35.6
35.64
35.69
35.73
35.77
35.8
35.84

3361	35.88
3360	35.91
3359	35.95
3358	35.98
3357	36.02
3356	36.05
3355	36.09
3354	36.12
3353	36.14
3352	36.17
3351	36.19
3350	36.22
3349	36.25
3348	36.28
3347	36.31
3346	36.34
3345	36.36
3344	36.38
3343	36.4
3342	36.43
3341	36.44
3340	36.46
3339	36.48
3338	36.5
3337	36.52
3336	36.55
3335	36.57
3334	36.59

3333	36.61
3332	36.62
3331	36.64
3330	36.66
3329	36.67
3328	36.68
3327	36.69
3326	36.71
3325	36.72
3324	36.74
3323	36.75
3322	36.77
3321	36.78
3320	36.8
3319	36.81
3318	36.82
3317	36.83
3316	36.84
3315	36.85
3314	36.86
3313	36.87
3312	36.88
3311	36.88
3310	36.89
3309	36.89
3308	36.9
3307	36.9
3306	36.91

3305	36.92
3304	36.94
3303	36.95
3302	36.96
3301	36.98
3300	36.99
3299	37
3298	37
3297	37.01
3296	37.02
3295	37.02
3294	37.03
3293	37.04
3292	37.05
3291	37.06
3290	37.08
3289	37.09
3288	37.11
3287	37.12
3286	37.13
3285	37.15
3284	37.16
3283	37.17
3282	37.18
3281	37.2
3280	37.21
3279	37.23
3278	37.24

3277	37.25
3276	37.26
3275	37.28
3274	37.29
3273	37.31
3272	37.32
3271	37.34
3270	37.36
3269	37.38
3268	37.4
3267	37.42
3266	37.45
3265	37.47
3264	37.49
3263	37.51
3262	37.53
3261	37.55
3260	37.57
3259	37.59
3258	37.61
3257	37.63
3256	37.65
3255	37.68
3254	37.7
3253	37.73
3252	37.75
3251	37.78
3250	37.8

3249	37.82
3248	37.84
3247	37.87
3246	37.89
3245	37.92
3244	37.95
3243	37.98
3242	38.01
3241	38.04
3240	38.07
3239	38.1
3238	38.12
3237	38.15
3236	38.17
3235	38.2
3235 3234	38.2 38.23
3234	38.23
3234 3233	38.23 38.25
3234 3233 3232	38.23 38.25 38.29
3234 3233 3232 3231	38.23 38.25 38.29 38.32
3234 3233 3232 3231 3230	38.23 38.25 38.29 38.32 38.36
3234 3233 3232 3231 3230 3229	38.23 38.25 38.29 38.32 38.36 38.39
3234 3233 3232 3231 3230 3229 3228	38.23 38.25 38.29 38.32 38.36 38.39 38.42
3234 3233 3232 3231 3230 3229 3228 3227	38.23 38.25 38.29 38.32 38.36 38.39 38.42 38.46
3234 3233 3232 3231 3230 3229 3228 3227 3226	38.23 38.25 38.29 38.32 38.36 38.39 38.42 38.46 38.49
3234 3233 3232 3231 3230 3229 3228 3227 3226 3225	38.23 38.25 38.29 38.32 38.36 38.39 38.42 38.42 38.46 38.49 38.52
3234 3233 3232 3231 3230 3229 3228 3227 3226 3225 3224	38.23 38.25 38.29 38.32 38.36 38.39 38.42 38.42 38.46 38.49 38.52 38.55

3221	38.64
3220	38.68
3219	38.71
3218	38.74
3217	38.77
3216	38.81
3215	38.84
3214	38.87
3213	38.91
3212	38.94
3211	38.97
3210	39.01
3209	39.04
3208	39.08
3207	39.11
3206	39.14
3205	39.18
3204	39.21
3203	39.24
3202	39.28
3201	39.31
3200	39.34
3199	39.38
3198	39.41
3197	39.45
3196	39.48
3195	39.51
3194	39.54

3193	39.58
3192	39.61
3191	39.64
3190	39.67
3189	39.7
3188	39.73
3187	39.76
3186	39.79
3185	39.82
3184	39.85
3183	39.88
3182	39.91
3181	39.94
3180	39.96
3179	39.99
3178	40.01
3177	40.04
3176	40.07
3175	40.09
3174	40.12
3173	40.14
3172	40.16
3171	40.18
3170	40.2
3169	40.22
3168	40.25
3167	40.27
3166	40.29

3165	40.3
3164	40.32
3163	40.34
3162	40.36
3161	40.37
3160	40.39
3159	40.4
3158	40.42
3157	40.43
3156	40.44
3155	40.45
3154	40.46
3153	40.46
3152	40.47
3151	40.49
3150	40.5
3149	40.52
3148	40.53
3147	40.54
3146	40.55
3145	40.56
3144	40.57
3143	40.58
3142	40.59
3141	40.59
3140	40.6
3139	40.62
3138	40.63

3137	40.64
3136	40.66
3135	40.67
3134	40.69
3133	40.71
3132	40.72
3131	40.74
3130	40.76
3129	40.78
3128	40.8
3127	40.82
3126	40.84
3125	40.86
3124	40.88
5124	
3123	40.9
3123	40.9
3123 3122	40.9 40.92
3123 3122 3121	40.9 40.92 40.94
3123 3122 3121 3120	40.9 40.92 40.94 40.97
 3123 3122 3121 3120 3119 	40.9 40.92 40.94 40.97 40.99
 3123 3122 3121 3120 3119 3118 	40.9 40.92 40.94 40.97 40.99 41.01
 3123 3122 3121 3120 3119 3118 3117 	40.9 40.92 40.94 40.97 40.99 41.01 41.03
 3123 3122 3121 3120 3119 3118 3117 3116 	40.9 40.92 40.94 40.97 40.99 41.01 41.03 41.06
 3123 3122 3121 3120 3119 3118 3117 3116 3115 	40.9 40.92 40.94 40.97 40.99 41.01 41.03 41.06 41.09
 3123 3122 3121 3120 3119 3118 3117 3116 3115 3114 	$\begin{array}{c} 40.9\\ 40.92\\ 40.94\\ 40.97\\ 40.99\\ 41.01\\ 41.03\\ 41.06\\ 41.09\\ 41.11\end{array}$
 3123 3122 3121 3120 3119 3118 3117 3116 3115 3114 3113 	$\begin{array}{c} 40.9\\ 40.92\\ 40.94\\ 40.97\\ 40.99\\ 41.01\\ 41.03\\ 41.06\\ 41.09\\ 41.11\\ 41.14\end{array}$

3109	41.22
3108	41.24
3107	41.26
3106	41.28
3105	41.3
3104	41.31
3103	41.32
3102	41.34
3101	41.35
3100	41.36
3099	41.37
3098	41.38
3097	41.39
3096	41.4
3095	41.41
3094	41.42
3093	41.42
3092	41.43
3091	41.43
3090	41.44
3089	41.45
3088	41.45
3087	41.46
3086	41.47
3085	41.48
3084	41.49
3083	41.5
3082	41.51

3081	41.52
3080	41.53
3079	41.55
3078	41.57
3077	41.59
3076	41.61
3075	41.63
3074	41.66
3073	41.68
3072	41.7
3071	41.72
3070	41.74
3069	41.76
3068	41.78
3067	41.81
3066	41.84
3065	41.87
3064	41.9
3063	41.93
3062	41.96
3061	41.99
3060	42.02
3059	42.05
3058	42.08
3057	42.11
3056	42.14
3055	42.18
3054	42.21

3053	42.24
3052	42.27
3051	42.3
3050	42.34
3049	42.37
3048	42.41
3047	42.45
3046	42.48
3045	42.52
3044	42.55
3043	42.59
3042	42.63
3041	42.67
3040	42.71
3039	42.76
3038	42.8
3037	42.84
3036	42.88
3035	42.92
3034	42.96
3033	43.01
3032	43.06
3031	43.1
3030	43.15
3029	43.2
3028	43.25
3027	43.3
3026	43.34
3020	75.57

3025	43.39
3024	43.44
3023	43.49
3022	43.55
3021	43.6
3020	43.65
3019	43.7
3018	43.76
3017	43.82
3016	43.88
3015	43.94
3014	43.99
3013	44.05
3012	44.1
3011	44.15
3010	44.21
3009	44.26
3008	44.31
3007	44.36
3006	44.41
3005	44.46
3004	44.51
3003	44.56
3002	44.61
3001	44.65
3000	44.7
2999	44.74
2998	44.79

2997	44.83
2996	44.88
2995	44.92
2994	44.96
2993	45.01
2992	45.05
2991	45.09
2990	45.13
2989	45.17
2988	45.21
2987	45.26
2986	45.3
2985	45.34
2984	45.37
2983	45.41
2982	45.45
2981	45.49
2980	45.53
2979	45.57
2978	45.61
2977	45.65
2976	45.69
2975	45.73
2974	45.77
2973	45.8
2972	45.84
2971	45.88
2970	45.91

15.04
45.94
45.98
46.01
46.05
46.09
46.12
46.16
46.2
46.24
46.28
46.32
46.36
46.4
46.44
46.48
46.52
46.55
46.59
46.62
46.65
46.68
46.68 46.7
46.7
46.7 46.72
46.7 46.72 46.73
46.7 46.72 46.73 46.75

2941	46.81
2940	46.82
2939	46.84
2938	46.86
2937	46.88
2936	46.9
2935	46.92
2934	46.93
2933	46.95
2932	46.97
2931	46.99
2930	47.01
2929	47.04
2928	47.07
2927	47.1
2927 2926	47.1 47.14
2926	47.14
2926 2925	47.14 47.19
2926 2925 2924	47.14 47.19 47.24
2926 2925 2924 2923	47.14 47.19 47.24 47.29
2926 2925 2924 2923 2922	47.14 47.19 47.24 47.29 47.34
2926 2925 2924 2923 2922 2921	47.14 47.19 47.24 47.29 47.34 47.39
2926 2925 2924 2923 2922 2921 2920	47.14 47.19 47.24 47.29 47.34 47.39 47.44
2926 2925 2924 2923 2922 2921 2920 2919	47.14 47.19 47.24 47.29 47.34 47.39 47.44 47.5
2926 2925 2924 2923 2922 2921 2920 2919 2918	47.14 47.19 47.24 47.29 47.34 47.39 47.44 47.5 47.56
2926 2925 2924 2923 2922 2921 2920 2919 2918 2917	47.14 47.19 47.24 47.29 47.34 47.39 47.44 47.5 47.56 47.61

2913	47.86
2912	47.92
2911	47.98
2910	48.03
2909	48.08
2908	48.13
2907	48.18
2906	48.22
2905	48.26
2904	48.3
2903	48.34
2902	48.38
2901	48.42
2900	48.46
2899	48.49
2898	48.53
2897	48.57
2896	48.6
2895	48.64
2894	48.67
2893	48.71
2892	48.74
2891	48.77
2890	48.81
2889	48.84
2888	48.86
2887	48.89
2886	48.92

2885	48.94
2884	48.97
2883	48.99
2882	49.01
2881	49.04
2880	49.06
2879	49.08
2878	49.1
2877	49.13
2876	49.15
2875	49.17
2874	49.19
2873	49.21
2872	49.24
2871	49.26
2870	49.29
2869	49.31
2868	49.33
2867	49.36
2866	49.38
2865	49.41
2864	49.43
2863	49.46
2862	49.49
2861	49.52
2860	49.55
2859	49.57
2858	49.59

2857	49.61
2856	49.62
2855	49.63
2854	49.65
2853	49.66
2852	49.69
2851	49.72
2850	49.75
2849	49.8
2848	49.85
2847	49.9
2846	49.96
2845	50
2844	50.05
2843	50.09
2842	50.12
2841	50.15
2840	50.18
2839	50.21
2838	50.24
2837	50.26
2836	50.29
2835	50.31
2834	50.34
2833	50.36
2832	50.39
2831	50.41
2830	50.43

2020	50.45
2829	50.45
2828	50.47
2827	50.5
2826	50.52
2825	50.54
2824	50.56
2823	50.58
2822	50.6
2821	50.62
2820	50.65
2819	50.67
2818	50.69
2817	50.7
2816	50.72
2815	50.74
2814	50.77
2813	50.79
2812	50.81
2811	50.83
2810	50.85
2809	50.87
2808	50.88
2807	50.9
2806	50.92
2805	50.94
2804	50.96
2803	50.98
2802	51

2001	51 00
2801	51.02
2800	51.04
2799	51.06
2798	51.08
2797	51.1
2796	51.12
2795	51.14
2794	51.16
2793	51.17
2792	51.19
2791	51.21
2790	51.23
2789	51.25
2788	51.27
2787	51.29
2786	51.31
2785	51.32
2784	51.34
2783	51.36
2782	51.38
2781	51.4
2780	51.41
2779	51.43
2778	51.44
2777	51.46
2776	51.48
2775	51.49
2774	51.51

2773	51.53
2772	51.54
2771	51.56
2770	51.57
2769	51.59
2768	51.61
2767	51.62
2766	51.64
2765	51.65
2764	51.67
2763	51.69
2762	51.7
2761	51.72
2760	51.73
2759	51.74
2758	51.76
2757	51.77
2756	51.79
2755	51.8
2754	51.82
2753	51.83
2752	51.84
2751	51.86
2750	51.87
2749	51.88
2748	51.9
2747	51.91
2746	51.92

2745	51.93
2744	51.95
2743	51.96
2742	51.97
2741	51.99
2740	52
2739	52.01
2738	52.02
2737	52.03
2736	52.05
2735	52.06
2734	52.07
2733	52.08
2732	52.09
2731	52.1
2731 2730	52.1 52.11
2730	52.11
2730 2729	52.11 52.12
2730 2729 2728	52.11 52.12 52.13
2730 2729 2728 2727	52.11 52.12 52.13 52.14
2730 2729 2728 2727 2726	52.11 52.12 52.13 52.14 52.15
2730 2729 2728 2727 2726 2725	52.11 52.12 52.13 52.14 52.15 52.16
2730 2729 2728 2727 2726 2725 2724	52.11 52.12 52.13 52.14 52.15 52.16 52.17
2730 2729 2728 2727 2726 2725 2724 2723	52.11 52.12 52.13 52.14 52.15 52.16 52.17 52.18
2730 2729 2728 2727 2726 2725 2724 2723 2722	52.11 52.12 52.13 52.14 52.15 52.16 52.17 52.18 52.19
2730 2729 2728 2727 2726 2725 2724 2723 2722 2721	52.11 52.12 52.13 52.14 52.15 52.16 52.17 52.18 52.19 52.2
2730 2729 2728 2727 2726 2725 2724 2723 2722 2721 2720	52.11 52.12 52.13 52.14 52.15 52.16 52.17 52.18 52.19 52.2 52.21

2717	52.24
2716	52.25
2715	52.25
2714	52.26
2713	52.27
2712	52.28
2711	52.28
2710	52.29
2709	52.3
2708	52.31
2707	52.31
2706	52.32
2705	52.33
2704	52.33
2703	52.34
2702	52.34
2701	52.35
2700	52.36
2699	52.36
2698	52.37
2697	52.37
2696	52.37
2695	52.38
2694	52.39
2693	52.39
2692	52.39
2691	52.4
2690	52.4

2689	52.41
2688	52.41
2687	52.42
2686	52.42
2685	52.42
2684	52.43
2683	52.43
2682	52.43
2681	52.43
2680	52.44
2679	52.44
2678	52.45
2677	52.45
2676	52.45
2675	52.45
2674	52.45
2673	52.46
2672	52.46
2671	52.46
2670	52.47
2669	52.47
2668	52.47
2667	52.47
2666	52.47
2665	52.47
2664	52.47
2663	52.47
2662	52.48

2661	52.48
2660	52.48
2659	52.48
2658	52.48
2657	52.48
2656	52.48
2655	52.48
2654	52.48
2653	52.48
2652	52.48
2651	52.48
2650	52.47
2649	52.47
2648	52.47
2647	52.47
2646	52.47
2645	52.47
2644	52.46
2643	52.46
2642	52.46
2641	52.46
2640	52.45
2639	52.45
2638	52.45
2637	52.44
2636	52.44
2635	52.44
2634	52.43

2633	52.43
2632	52.43
2631	52.42
2630	52.42
2629	52.41
2628	52.41
2627	52.41
2626	52.4
2625	52.4
2624	52.4
2623	52.39
2622	52.39
2621	52.38
2620	52.38
2619	52.37
2618	52.37
2617	52.36
2616	52.36
2615	52.35
2614	52.35
2613	52.34
2612	52.34
2611	52.33
2610	52.33
2609	52.32
2608	52.32
2607	52.31
2606	52.31

2605	52.3
2604	52.3
2603	52.29
2602	52.28
2601	52.28
2600	52.27
2599	52.27
2598	52.26
2597	52.25
2596	52.25
2595	52.24
2594	52.24
2593	52.23
2592	52.22
2591	52.22
2590	52.21
2589	52.2
2588	52.2
2587	52.19
2586	52.18
2585	52.18
2584	52.17
2583	52.16
2582	52.15
2581	52.15
2580	52.14
2579	52.13
2578	52.12

2577	52.11
2576	52.1
2575	52.09
2574	52.09
2573	52.08
2572	52.07
2571	52.06
2570	52.05
2569	52.04
2568	52.03
2567	52.02
2566	52.01
2565	52.01
2564	52
2563	51.99
2562	51.98
2561	51.97
2560	51.95
2559	51.94
2558	51.94
2557	51.93
2556	51.92
2555	51.91
2554	51.9
2553	51.89
2552	51.88
2551	51.87
2551	

2549	51.85
2548	51.84
2547	51.83
2546	51.82
2545	51.81
2544	51.8
2543	51.79
2542	51.78
2541	51.77
2540	51.76
2539	51.75
2538	51.74
2537	51.73
2536	51.72
2535	51.71
2534	51.69
2533	51.68
2532	51.67
2531	51.66
2530	51.65
2529	51.64
2528	51.63
2527	51.62
2526	51.61
2525	51.6
2524	51.58
2523	51.57
2522	51.56

2521	51.55
2520	51.54
2519	51.53
2518	51.51
2517	51.5
2516	51.48
2515	51.47
2514	51.46
2513	51.45
2512	51.43
2511	51.42
2510	51.41
2509	51.39
2508	51.38
2507	51.36
2506	51.35
2505	51.33
2504	51.32
2503	51.3
2502	51.29
2501	51.27
2500	51.26
2499	51.24
2498	51.22
2497	51.21
2496	51.19
2495	51.18
2494	51.16

2493	51.15
2492	51.13
2491	51.11
2490	51.09
2489	51.08
2488	51.06
2487	51.04
2486	51.03
2485	51.01
2484	50.99
2483	50.97
2482	50.96
2481	50.94
2480	50.93
2479	50.91
2479 2478	50.91 50.9
2478	50.9
2478 2477	50.9 50.88
2478 2477 2476	50.9 50.88 50.86
2478 2477 2476 2475	50.9 50.88 50.86 50.85
2478 2477 2476 2475 2474	50.9 50.88 50.86 50.85 50.83
2478 2477 2476 2475 2474 2473	50.9 50.88 50.86 50.85 50.83 50.83
2478 2477 2476 2475 2474 2473 2472	50.9 50.88 50.86 50.85 50.83 50.83 50.82 50.81
2478 2477 2476 2475 2474 2473 2472 2471	50.9 50.88 50.86 50.85 50.83 50.83 50.82 50.81 50.79
2478 2477 2476 2475 2474 2473 2472 2471 2470	50.9 50.88 50.86 50.85 50.83 50.82 50.81 50.79 50.78
2478 2477 2476 2475 2474 2473 2472 2471 2470 2469	50.9 50.88 50.86 50.85 50.83 50.82 50.81 50.79 50.78 50.76
2478 2477 2476 2475 2474 2473 2472 2471 2470 2469 2468	50.9 50.88 50.86 50.85 50.83 50.82 50.81 50.79 50.78 50.76 50.75

50.72
50.71
50.7
50.68
50.68
50.67
50.66
50.65
50.64
50.64
50.63
50.62
50.62
50.61
50.61
50.6
50.6
50.59
50.59
50.59
50.58
50.58
50.58
50.58
50.58
50.57
50.57

2437	50.57
2436	50.57
2435	50.57
2434	50.57
2433	50.57
2432	50.56
2431	50.56
2430	50.56
2429	50.56
2428	50.56
2427	50.56
2426	50.56
2425	50.55
2424	50.55
2423	50.55
2422	50.55
2421	50.54
2420	50.54
2419	50.54
2418	50.53
2417	50.53
2416	50.53
2415	50.52
2414	50.52
2413	50.51
2412	50.51
2411	50.5
2410	50.49

2409	50.49
2408	50.48
2407	50.48
2406	50.47
2405	50.46
2404	50.46
2403	50.45
2402	50.44
2401	50.43
2400	50.42
2399	50.41
2398	50.41
2397	50.4
2396	50.39
2395	50.38
2394	50.37
2393	50.36
2392	50.35
2391	50.34
2390	50.32
2389	50.31
2388	50.28
2387	50.26
2386	50.23
2385	50.19
2384	50.17
2383	50.14
2382	50.14

2381	50.14
2380	50.17
2379	50.2
2378	50.23
2377	50.24
2376	50.24
2375	50.22
2374	50.2
2373	50.18
2372	50.16
2371	50.15
2370	50.15
2369	50.14
2368	50.14
2367	50.14
2366	50.13
2365	50.12
2364	50.11
2363	50.12
2362	50.11
2361	50.09
2360	50.06
2359	50.06
2358	50.08
2357	50.13
2356	50.21
2355	50.26
2354	50.24

2353	50.12
2352	50.03
2351	50.04
2350	50.15
2349	50.28
2348	50.26
2347	50.07
2346	49.81
2345	49.68
2344	49.72
2343	49.81
2342	49.89
2341	49.96
2340	50.02
2339	50.05
2338	50.05
2337	50.05
2336	50.07
2335	50.08
2334	50.08
2333	50.03
2332	49.98
2331	49.93
2330	49.92
2329	49.93
2328	49.94
2327	49.95
2326	49.95

2325	49.94
2324	49.91
2323	49.89
2322	49.9
2321	49.92
2320	49.95
2319	49.98
2318	50.02
2317	50.05
2316	50.05
2315	50.02
2314	49.97
2313	49.92
2312	49.88
2311	49.86
2310	49.85
2309	49.85
2308	49.86
2307	49.87
2306	49.89
2305	49.91
2304	49.91
2303	49.9
2302	49.89
2301	49.88
2300	49.89
2299	49.9
2298	49.91

2297	49.92
2296	49.94
2295	49.95
2294	49.97
2293	49.99
2292	50.01
2291	50.03
2290	50.04
2289	50.06
2288	50.07
2287	50.09
2286	50.1
2285	50.12
2284	50.14
2283	50.14
2282	50.15
2281	50.15
2280	50.15
2279	50.15
2278	50.16
2277	50.16
2276	50.17
2275	50.18
2274	50.18
2273	50.19
2272	50.19
2271	50.2
2270	50.2

2269	50.21
2268	50.21
2267	50.22
2266	50.22
2265	50.23
2264	50.23
2263	50.24
2262	50.24
2261	50.25
2260	50.26
2259	50.26
2258	50.27
2257	50.28
2256	50.29
2255	50.3
2255 2254	50.3 50.3
2254	50.3
2254 2253	50.3 50.31
2254 2253 2252	50.3 50.31 50.32
2254 2253 2252 2251	50.3 50.31 50.32 50.33
2254 2253 2252 2251 2250	50.3 50.31 50.32 50.33 50.34
2254 2253 2252 2251 2250 2249	50.3 50.31 50.32 50.33 50.34 50.35
2254 2253 2252 2251 2250 2249 2248	50.3 50.31 50.32 50.33 50.34 50.35 50.36
2254 2253 2252 2251 2250 2249 2248 2247	50.3 50.31 50.32 50.33 50.34 50.35 50.36 50.36
2254 2253 2252 2251 2250 2249 2248 2247 2246	50.3 50.31 50.32 50.33 50.34 50.35 50.36 50.36 50.37
2254 2253 2252 2251 2250 2249 2248 2247 2246 2245	50.3 50.31 50.32 50.33 50.34 50.35 50.36 50.36 50.37 50.38

224050.42223950.43223850.44223750.45223650.45223550.46223450.47223350.48223150.49222950.5222850.51222550.53222450.53222350.54222150.54222250.54222350.54222450.55222550.54222150.55222350.54222150.55221950.56221750.57221550.58221450.58221450.58	2241	50.41
223850.44223750.45223650.45223550.46223450.47223350.48223250.48223150.49222950.5222850.51222650.52222550.53222450.53222550.54222050.55221050.55222150.55222350.54222150.55221950.56221750.57221650.57221550.58	2240	50.42
223750.45223650.45223550.46223450.47223350.48223250.48223150.49223050.49222950.5222850.51222650.52222550.53222350.54222450.53222550.54222050.55221050.55221950.56221750.57221650.57221550.58	2239	50.43
223650.45223550.46223450.47223350.48223250.48223150.49223050.49222950.5222850.51222650.52222550.53222350.54222450.53222250.54222150.55222050.55221950.56221750.57221650.57221550.58	2238	50.44
223550.46223450.47223350.48223250.48223150.49223050.49222950.5222850.51222650.52222550.53222450.53222250.54222250.54222150.55222050.55221950.56221750.57221650.57221550.58	2237	50.45
223450.47223350.48223250.48223150.49223050.49222950.5222850.51222650.52222550.53222450.53222250.54222250.54222150.55222050.55221950.56221750.57221650.57221550.58	2236	50.45
223350.48223250.48223150.49223050.49222950.5222850.51222650.52222550.53222450.53222250.54222150.55222050.55221950.56221750.57221650.57221550.58	2235	50.46
223250.48223150.49223050.49222950.5222850.51222650.52222550.53222450.53222250.54222250.54222150.55221950.56221750.57221650.57221550.58	2234	50.47
223150.49223050.49222950.5222850.51222750.51222650.52222550.53222450.53222250.54222250.54222150.55221950.56221750.57221650.57221550.58	2233	50.48
223050.49222950.5222850.51222750.51222650.52222550.53222450.53222350.54222150.55222050.55221950.56221750.57221650.57221550.58	2232	50.48
222950.5222850.51222750.51222650.52222550.53222450.53222350.54222250.54222150.55222050.55221950.56221750.57221650.57221550.58	2231	50.49
222850.51222750.51222650.52222550.53222450.53222350.54222250.54222150.55221950.56221750.57221650.57221550.58	2230	50.49
222750.51222650.52222550.53222450.53222350.54222250.54222150.55222050.55221950.56221750.57221650.57221550.58	2229	50.5
222650.52222550.53222450.53222350.54222250.54222150.55222050.55221950.56221750.57221650.57221550.58	2228	50.51
222550.53222450.53222350.54222250.54222150.55222050.55221950.56221750.57221650.57221550.58	2227	50.51
222450.53222350.54222250.54222150.55222050.55221950.56221850.56221750.57221650.57221550.58	2226	50.52
222350.54222250.54222150.55222050.55221950.56221850.56221750.57221650.57221550.58	2225	50.53
222250.54222150.55222050.55221950.56221850.56221750.57221650.57221550.58	2224	50.53
222150.55222050.55221950.56221850.56221750.57221650.57221550.58	2223	50.54
222050.55221950.56221850.56221750.57221650.57221550.58	2222	50.54
221950.56221850.56221750.57221650.57221550.58	2221	50.55
221850.56221750.57221650.57221550.58	2220	50.55
221750.57221650.57221550.58	2219	50.56
221650.57221550.58	2218	50.56
2215 50.58	2217	50.57
	2216	50.57
2214 50.58	2215	50.58
	2214	50.58

2213	50.59
2212	50.6
2211	50.61
2210	50.61
2209	50.62
2208	50.63
2207	50.63
2206	50.64
2205	50.65
2204	50.66
2203	50.66
2202	50.67
2201	50.68
2200	50.68
2199	50.69
2198	50.7
2197	50.7
2196	50.71
2195	50.72
2194	50.72
2193	50.73
2192	50.73
2191	50.74
2190	50.74
2189	50.75
2188	50.75
2187	50.75

2185	50.76
2184	50.76
2183	50.76
2182	50.77
2181	50.77
2180	50.77
2179	50.77
2178	50.77
2177	50.77
2176	50.77
2175	50.77
2174	50.77
2173	50.78
2172	50.77
2171	50.77
2170	50.77
2169	50.77
2168	50.77
2167	50.78
2166	50.78
2165	50.78
2164	50.79
2163	50.79
2162	50.79
2161	50.8
2160	50.8
2159	50.81
2158	50.82

2157	50.83
2156	50.83
2155	50.84
2154	50.84
2153	50.85
2152	50.85
2151	50.86
2150	50.86
2149	50.87
2148	50.88
2147	50.88
2146	50.88
2145	50.89
2144	50.89
2143	50.89
2142	50.89
2141	50.9
2140	50.9
2139	50.9
2138	50.9
2137	50.9
2136	50.9
2135	50.91
2134	50.91
2133	50.91
2132	50.91
2131	50.92
2130	50.92

2129	50.93
2128	50.93
2127	50.94
2126	50.94
2125	50.94
2124	50.95
2123	50.95
2122	50.95
2121	50.96
2120	50.96
2119	50.96
2118	50.96
2117	50.96
2116	50.96
2115	50.97
2114	50.97
2113	50.97
2112	50.97
2111	50.97
2110	50.97
2109	50.97
2108	50.97
2107	50.97
2106	50.98
2105	50.98
2104	50.98
2103	50.99
2102	50.99

2101	51
2100	51.01
2099	51.02
2098	51.03
2097	51.04
2096	51.05
2095	51.05
2094	51.06
2093	51.07
2092	51.08
2091	51.08
2090	51.09
2089	51.09
2088	51.1
2087	51.1
2086	51.11
2085	51.11
2084	51.11
2083	51.11
2082	51.12
2081	51.13
2080	51.13
2079	51.13
2078	51.13
2077	51.13
2076	51.14
2075	51.14
2074	51.14

2073	51.14
2072	51.14
2071	51.14
2070	51.14
2069	51.14
2068	51.14
2067	51.14
2066	51.14
2065	51.14
2064	51.13
2063	51.13
2062	51.13
2061	51.13
2060	51.12
2059	51.12
2058	51.12
2057	51.12
2056	51.11
2055	51.11
2054	51.11
2053	51.1
2052	51.1
2051	51.09
2050	51.09
2049	51.09
2048	51.08
2047	51.08
2046	51.07

2045	51.07
2044	51.06
2043	51.06
2042	51.06
2041	51.05
2040	51.05
2039	51.04
2038	51.03
2037	51.03
2036	51.02
2035	51.02
2034	51.01
2033	51.01
2032	51
2031	50.99
2051	50.77
2030	50.99
2030	50.99
2030 2029	50.99 50.98
2030 2029 2028	50.99 50.98 50.98
2030 2029 2028 2027	50.99 50.98 50.98 50.97
2030 2029 2028 2027 2026	50.99 50.98 50.98 50.97 50.97
2030 2029 2028 2027 2026 2025	50.99 50.98 50.98 50.97 50.97 50.96
2030 2029 2028 2027 2026 2025 2024	50.99 50.98 50.98 50.97 50.97 50.96 50.95
2030 2029 2028 2027 2026 2025 2024 2023	50.99 50.98 50.98 50.97 50.97 50.96 50.95 50.94
2030 2029 2028 2027 2026 2025 2024 2023 2022	50.99 50.98 50.98 50.97 50.97 50.97 50.96 50.95 50.94
2030 2029 2028 2027 2026 2025 2024 2023 2022 2021	50.99 50.98 50.98 50.97 50.97 50.97 50.96 50.95 50.94 50.94 50.93
2030 2029 2028 2027 2026 2025 2024 2023 2022 2021 2020	50.99 50.98 50.98 50.97 50.97 50.97 50.96 50.95 50.94 50.94 50.93 50.92

2017	50.9
2016	50.9
2015	50.9
2014	50.9
2013	50.9
2012	50.9
2011	50.91
2010	50.92
2009	50.93
2008	50.94
2007	50.95
2006	50.95
2005	50.96
2004	50.96
2003	50.97
2002	50.97
2001	50.97
2000	50.97
1999	50.97
1998	50.96
1997	50.96
1996	50.96
1995	50.96
1994	50.96
1993	50.96
1992	50.95
1991	50.94
1990	50.94

1989	50.94
1988	50.93
1987	50.92
1986	50.91
1985	50.91
1984	50.9
1983	50.89
1982	50.89
1981	50.88
1980	50.87
1979	50.87
1978	50.86
1977	50.86
1976	50.85
1975	50.84
1974	50.84
1973	50.83
1972	50.82
1971	50.81
1970	50.81
1969	50.8
1968	50.79
1967	50.78
1966	50.78
1965	50.77
1964	50.76
1963	50.75
1962	50.74

1961	50.72
1960	50.71
1959	50.71
1958	50.71
1957	50.71
1956	50.7
1955	50.68
1954	50.67
1953	50.66
1952	50.65
1951	50.64
1950	50.63
1949	50.63
1948	50.62
1947	50.61
1947 1946	50.61 50.6
1946	50.6
1946 1945	50.6 50.59
1946 1945 1944	50.6 50.59 50.59
1946 1945 1944 1943	50.6 50.59 50.59 50.57
1946 1945 1944 1943 1942	50.6 50.59 50.59 50.57 50.56
1946 1945 1944 1943 1942 1941	50.6 50.59 50.59 50.57 50.56 50.55
1946 1945 1944 1943 1942 1941 1940	50.6 50.59 50.59 50.57 50.56 50.55 50.54
1946 1945 1944 1943 1942 1941 1940 1939	50.6 50.59 50.59 50.57 50.56 50.55 50.54 50.53
1946 1945 1944 1943 1942 1941 1940 1939 1938	50.6 50.59 50.59 50.57 50.56 50.55 50.54 50.53 50.51
1946 1945 1944 1943 1942 1941 1940 1939 1938 1937	50.6 50.59 50.59 50.57 50.56 50.55 50.54 50.53 50.51 50.5

1933	50.46
1932	50.45
1931	50.44
1930	50.43
1929	50.42
1928	50.41
1927	50.4
1926	50.4
1925	50.4
1924	50.39
1923	50.37
1922	50.36
1921	50.36
1920	50.35
1919	50.34
1918	50.32
1917	50.32
1916	50.32
1915	50.31
1914	50.3
1913	50.29
1912	50.29
1911	50.28
1910	50.28
1909	50.27
1908	50.26
1907	50.25
1906	50.24

1905	50.24
1904	50.23
1903	50.22
1902	50.21
1901	50.21
1900	50.2
1899	50.19
1898	50.18
1897	50.18
1896	50.17
1895	50.16
1894	50.15
1893	50.15
1892	50.15
1891	50.14
1890	50.12
1889	50.11
1888	50.1
1887	50.09
1886	50.08
1885	50.07
1884	50.06
1883	50.04
1882	50.03
1881	50.03
1880	50.01
1879	50
1878	49.99

1877	49.98
1876	49.97
1875	49.96
1874	49.94
1873	49.94
1872	49.94
1871	49.93
1870	49.92
1869	49.92
1868	49.91
1867	49.89
1866	49.88
1865	49.86
1864	49.85
1863	49.82
1862	49.81
1861	49.79
1860	49.78
1859	49.76
1858	49.75
1857	49.74
1856	49.73
1855	49.72
1854	49.7
1853	49.69
1852	49.67
1851	49.66
1850	49.65

1849	49.64
1848	49.63
1847	49.61
1846	49.6
1845	49.59
1844	49.57
1843	49.55
1842	49.55
1841	49.54
1840	49.52
1839	49.49
1838	49.47
1837	49.46
1836	49.44
1835	49.42
1834	49.41
1833	49.4
1832	49.39
1831	49.38
1830	49.37
1829	49.35
1828	49.33
1827	49.31
1826	49.29
1825	49.26
1824	49.25
1823	49.23
1822	49.21

1821	49.19
1820	49.16
1819	49.14
1818	49.12
1817	49.1
1816	49.09
1815	49.08
1814	49.05
1813	49.04
1812	49.02
1811	49
1810	48.98
1809	48.96
1808	48.95
1807	48.92
1806	48.89
1805	48.88
1804	48.86
1803	48.84
1802	48.81
1801	48.79
1800	48.78
1799	48.76
1798	48.74
1797	48.72
1796	48.69
1795	48.67
1794	48.64

1793	48.62
1792	48.6
1791	48.57
1790	48.54
1789	48.52
1788	48.49
1787	48.45
1786	48.41
1785	48.38
1784	48.36
1783	48.34
1782	48.32
1781	48.29
1780	48.26
1779	48.23
1778	48.2
1777	48.17
1776	48.14
1775	48.12
1774	48.11
1773	48.08
1772	48.05
1771	48.02
1770	47.97
1769	47.92
1768	47.86
1767	47.82
1766	47.79

1765	47.76
1764	47.73
1763	47.69
1762	47.65
1761	47.6
1760	47.56
1759	47.52
1758	47.48
1757	47.42
1756	47.36
1755	47.32
1754	47.28
1753	47.22
1752	47.17
1751	47.13
1750	47.11
1749	47.08
1748	47.03
1747	46.98
1746	46.93
1745	46.87
1744	46.81
1743	46.76
1742	46.72
1741	46.68
1740	46.63
1739	46.58
1738	46.54

1737	46.49
1736	46.44
1735	46.38
1734	46.32
1733	46.29
1732	46.26
1731	46.2
1730	46.13
1729	46.05
1728	45.98
1727	45.92
1726	45.87
1725	45.81
1724	45.75
1723	45.68
1722	45.63
1721	45.58
1720	45.54
1719	45.49
1718	45.42
1717	45.37
1716	45.31
1715	45.21
1714	45.11
1713	45.03
1712	44.95
1711	44.86
1710	44.77

1709	44.69
1708	44.62
1707	44.55
1706	44.46
1705	44.38
1704	44.31
1703	44.23
1702	44.16
1701	44.1
1700	44.05
1699	44.02
1698	43.98
1697	43.93
1696	43.85
1695	43.76
1694	43.69
1693	43.64
1692	43.59
1691	43.53
1690	43.47
1689	43.42
1688	43.38
1687	43.35
1686	43.33
1685	43.3
1684	43.24
1683	43.19
1682	43.16

1681	43.11
1680	43.06
1679	43.02
1678	43.01
1677	43
1676	42.98
1675	42.99
1674	43
1673	43.01
1672	43.01
1671	43.01
1670	43.02
1669	43.03
1668	43.02
1667	43.03
1666	43.03
1665	43.05
1664	43.06
1663	43.08
1662	43.12
1661	43.14
1660	43.17
1659	43.21
1658	43.26
1657	43.31
1656	43.37
1655	43.47
1654	43.56

1653	43.65
1652	43.76
1651	43.84
1650	43.88
1649	43.93
1648	43.99
1647	44.07
1646	44.16
1645	44.24
1644	44.31
1643	44.36
1642	44.42
1641	44.49
1640	44.56
1639	44.64
1638	44.72
1637	44.8
1636	44.87
1635	44.93
1634	44.98
1633	45.02
1632	45.05
1631	45.1
1630	45.16
1629	45.25
1628	45.35
1627	45.45
1626	45.55

1625	45.66
1624	45.78
1623	45.91
1622	46.05
1621	46.18
1620	46.29
1619	46.42
1618	46.58
1617	46.74
1616	46.91
1615	47.05
1614	47.17
1613	47.27
1612	47.36
1611	47.48
1610	47.6
1609	47.72
1608	47.81
1607	47.9
1606	47.97
1605	48.03
1604	48.07
1603	48.12
1602	48.15
1601	48.16
1600	48.16
1599	48.17
1598	48.18

48.18
48.18
48.19
48.19
48.17
48.16
48.14
48.12
48.1
48.07
48.03
48
47.96
47.91
47.87
47.83
47.79
47.74
47.7
47.67
47.62
47.56
47.5
47.45
47.38
47.32
47.26

1569	47.15
1568	47.08
1567	47.04
1566	46.99
1565	46.94
1564	46.89
1563	46.86
1562	46.84
1561	46.84
1560	46.82
1559	46.8
1558	46.79
1557	46.77
1556	46.72
1555	46.67
1554	46.62
1553	46.58
1552	46.56
1551	46.55
1550	46.53
1549	46.51
1548	46.5
1547	46.5
1546	46.51
1545	46.53
1544	46.55
1543	46.58
1542	46.63

1541	46.66
1540	46.66
1539	46.64
1538	46.62
1537	46.61
1536	46.59
1535	46.59
1534	46.59
1533	46.6
1532	46.62
1531	46.63
1530	46.64
1529	46.66
1528	46.69
1527	46.71
1526	46.73
1525	46.77
1524	46.8
1523	46.84
1522	46.87
1521	46.88
1520	46.89
1519	46.9
1518	46.92
1517	46.94
1516	46.98
1515	47.02
1514	47.08

1513	47.15
1512	47.24
1511	47.34
1510	47.42
1509	47.52
1508	47.64
1507	47.74
1506	47.82
1505	47.9
1504	47.95
1503	47.97
1502	47.98
1501	48.01
1500	48.05
1000	
1499	48.1
	48.1 48.16
1499	
1499 1498	48.16
1499 1498 1497	48.16 48.23
1499 1498 1497 1496	48.16 48.23 48.34
1499 1498 1497 1496 1495	48.16 48.23 48.34 48.45
1499 1498 1497 1496 1495 1494	48.16 48.23 48.34 48.45 48.54
1499 1498 1497 1496 1495 1494 1493	48.16 48.23 48.34 48.45 48.54 48.63
1499 1498 1497 1496 1495 1494 1493 1492	48.16 48.23 48.34 48.45 48.54 48.63 48.71
1499 1498 1497 1496 1495 1494 1493 1492 1491	48.16 48.23 48.34 48.45 48.54 48.63 48.71 48.78
1499 1498 1497 1496 1495 1494 1493 1492 1491 1490	48.16 48.23 48.34 48.45 48.54 48.63 48.71 48.78 48.83
1499 1498 1497 1496 1495 1494 1493 1492 1491 1490 1489	48.16 48.23 48.34 48.45 48.54 48.63 48.71 48.78 48.83 48.83

1485	48.84
1484	48.82
1483	48.81
1482	48.79
1481	48.78
1480	48.76
1479	48.74
1478	48.72
1477	48.7
1476	48.69
1475	48.66
1474	48.63
1473	48.6
1472	48.56
1471	48.51
1470	48.46
1469	48.41
1468	48.36
1467	48.32
1466	48.28
1465	48.24
1464	48.21
1463	48.17
1462	48.13
1461	48.09
1460	48.06
1459	48.04
1458	47.99

47.93
17.95
47.9
47.9
47.88
47.87
47.87
47.91
47.95
48
48.05
48.07
48.08
48.07
48.08
48.1
48.11
48.1
48.1 48.11
48.11
48.11 48.11
48.11 48.11 48.11
48.11 48.11 48.11 48.1
48.11 48.11 48.11 48.1 48.1
48.11 48.11 48.11 48.1 48.11 48.12
48.11 48.11 48.1 48.1 48.11 48.12 48.11
48.11 48.11 48.1 48.1 48.11 48.12 48.11 48.08

1429	48.02
1428	48.01
1427	47.99
1426	47.97
1425	47.94
1424	47.91
1423	47.9
1422	47.87
1421	47.83
1420	47.8
1419	47.77
1418	47.73
1417	47.68
1416	47.65
1415	47.62
1414	47.59
1413	47.55
1412	47.52
1411	47.51
1410	47.49
1409	47.47
1408	47.46
1407	47.45
1406	47.45
1405	47.44
1404	47.44
1403	47.45
1402	47.46

1401	47.45
1400	47.44
1399	47.44
1398	47.43
1397	47.42
1396	47.41
1395	47.4
1394	47.39
1393	47.36
1392	47.34
1391	47.32
1390	47.3
1389	47.28
1388	47.25
1387	47.22
1386	47.2
1385	47.19
1384	47.19
1383	47.2
1382	47.2
1381	47.2
1380	47.19
1379	47.18
1378	47.18
1377	47.18
1376	47.18
1375	47.19
1374	47.2

1373	47.19
1372	47.19
1371	47.19
1370	47.19
1369	47.19
1368	47.19
1367	47.19
1366	47.19
1365	47.19
1364	47.18
1363	47.18
1362	47.17
1361	47.15
1360	47.13
1359	47.12
1358	47.1
1357	47.08
1356	47.06
1355	47.05
1354	47.03
1353	47
1352	46.97
1351	46.95
1350	46.92
1349	46.9
1348	46.88
1347	46.85
1346	46.83

1345	46.8
1344	46.77
1343	46.75
1342	46.74
1341	46.73
1340	46.71
1339	46.7
1338	46.68
1337	46.66
1336	46.65
1335	46.64
1334	46.64
1333	46.63
1332	46.62
1331	46.61
1330	46.6
1329	46.59
1328	46.58
1327	46.58
1326	46.57
1325	46.55
1324	46.53
1323	46.51
1322	46.49
1321	46.46
1320	46.44
1319	46.42
1318	46.39

1317	46.36
1316	46.32
1315	46.29
1314	46.25
1313	46.22
1312	46.18
1311	46.16
1310	46.13
1309	46.09
1308	46.05
1307	46.02
1306	45.98
1305	45.95
1304	45.91
1303	45.88
1302	45.84
1301	45.81
1300	45.76
1299	45.72
1298	45.68
1297	45.64
1296	45.6
1295	45.55
1294	45.51
1293	45.46
1292	45.41
1291	45.37
1290	45.32

1289	45.27
1288	45.22
1287	45.17
1286	45.12
1285	45.07
1284	45.01
1283	44.96
1282	44.91
1281	44.86
1280	44.81
1279	44.75
1278	44.7
1277	44.64
1276	44.59
1275	44.54
1274	44.49
1273	44.44
1272	44.38
1271	44.33
1270	44.29
1269	44.24
1268	44.19
1267	44.15
1266	44.12
1265	44.09
1264	44.06
1263	44.04
1262	44.02

1261	44.01
1260	43.99
1259	43.98
1258	43.97
1257	43.95
1256	43.94
1255	43.94
1254	43.94
1253	43.93
1252	43.92
1251	43.9
1250	43.89
1249	43.87
1248	43.85
1247	43.84
1246	43.83
1245	43.81
1244	43.78
1243	43.75
1242	43.72
1241	43.69
1240	43.66
1239	43.63
1238	43.6
1237	43.57
1236	43.53
1235	43.49
1234	43.46

1233	43.42
1232	43.38
1231	43.33
1230	43.29
1229	43.24
1228	43.19
1227	43.14
1226	43.09
1225	43.03
1224	42.97
1223	42.9
1222	42.83
1221	42.76
1220	42.68
1219	42.6
1219 1218	42.6 42.52
1218	42.52
1218 1217	42.52 42.44
1218 1217 1216	42.52 42.44 42.35
1218 1217 1216 1215	42.52 42.44 42.35 42.27
1218 1217 1216 1215 1214	42.52 42.44 42.35 42.27 42.18
1218 1217 1216 1215 1214 1213	42.52 42.44 42.35 42.27 42.18 42.1
1218 1217 1216 1215 1214 1213 1212	42.52 42.44 42.35 42.27 42.18 42.1 42.02
1218 1217 1216 1215 1214 1213 1212 1211	42.52 42.44 42.35 42.27 42.18 42.1 42.02 41.96
1218 1217 1216 1215 1214 1213 1212 1211 1210	42.52 42.44 42.35 42.27 42.18 42.1 42.02 41.96 41.91
1218 1217 1216 1215 1214 1213 1212 1211 1210 1209	42.52 42.44 42.35 42.27 42.18 42.1 42.02 41.96 41.91 41.87
1218 1217 1216 1215 1214 1213 1212 1211 1210 1209 1208	42.52 42.44 42.35 42.27 42.18 42.1 42.02 41.96 41.91 41.87 41.84

1205	41.78
1204	41.74
1203	41.68
1202	41.62
1201	41.54
1200	41.45
1199	41.37
1198	41.28
1197	41.17
1196	41.05
1195	40.93
1194	40.81
1193	40.68
1192	40.54
1191	40.41
1190	40.28
1189	40.14
1188	40
1187	39.86
1186	39.72
1185	39.58
1184	39.43
1183	39.29
1182	39.16
1181	39.02
1180	38.88
1179	38.74
1178	38.6

1177	38.47
1176	38.33
1175	38.21
1174	38.1
1173	37.98
1172	37.87
1171	37.74
1170	37.62
1169	37.48
1168	37.34
1167	37.22
1166	37.11
1165	37
1164	36.9
1163	36.8
1162	36.68
1161	36.56
1160	36.41
1159	36.28
1158	36.15
1157	36.02
1156	35.9
1155	35.79
1154	35.7
1153	35.61
1152	35.52
1151	35.44
1150	35.37

1149	35.3
1148	35.22
1147	35.13
1146	35.01
1145	34.84
1144	34.63
1143	34.4
1142	34.15
1141	33.89
1140	33.64
1139	33.43
1138	33.27
1137	33.14
1136	33.04
1135	32.95
1134	32.86
1133	32.74
1132	32.58
1131	32.42
1130	32.25
1129	32.07
1128	31.91
1127	31.78
1126	31.69
1125	31.62
1124	31.57
1123	31.56
1122	31.58

1121	31.62
1120	31.68
1119	31.78
1118	31.91
1117	32.06
1116	32.22
1115	32.41
1114	32.61
1113	32.82
1112	33.04
1111	33.27
1110	33.52
1109	33.77
1108	34
1107	34.21
1106	34.41
1105	34.57
1104	34.7
1103	34.82
1102	34.94
1101	35.04
1100	35.15
1099	35.25
1098	35.37
1097	35.47
1096	35.58
1095	35.71
1094	35.85

1093	36
1092	36.15
1091	36.32
1090	36.48
1089	36.64
1088	36.78
1087	36.93
1086	37.07
1085	37.2
1084	37.33
1083	37.48
1082	37.63
1081	37.77
1080	37.91
1079	38.07
1078	38.25
1077	38.43
1076	38.62
1075	38.82
1074	39.03
1073	39.24
1072	39.46
1071	39.7
1070	39.96
1069	40.22
1068	40.5
1067	40.79
1066	41.1

1065	41.4
1064	41.7
1063	41.99
1062	42.28
1061	42.56
1060	42.84
1059	43.13
1058	43.42
1057	43.7
1056	43.99
1055	44.3
1054	44.63
1053	44.99
1052	45.37
1051	45.79
1050	46.23
1049	46.67
1048	47.1
1047	47.53
1046	47.94
1045	48.35
1044	48.75
1043	49.13
1042	49.49
1041	49.81
1040	50.09
1039	50.31
1038	50.46

1037	50.52
1036	50.46
1035	50.26
1034	49.91
1033	49.41
1032	48.81
1031	48.23
1030	47.79
1029	47.62
1028	47.76
1027	48.11
1026	48.56
1025	49.02
1024	49.45
1023	49.87
1022	50.28
1021	50.68
1020	51.05
1019	51.36
1018	51.59
1017	51.75
1016	51.84
1015	51.87
1014	51.84
1013	51.76
1012	51.64
1011	51.48
1010	51.28

1009	51.04
1008	50.77
1007	50.47
1006	50.14
1005	49.8
1004	49.44
1003	49.07
1002	48.69
1001	48.32
1000	47.95
999	47.59
998	47.24
997	46.91
996	46.62
995	46.38
994	46.22
993	46.13
992	46.08
991	46.03
990	45.98
989	45.96
988	46.09
987	46.46
986	47.08
985	47.82
984	48.54
983	49.13
982	49.53

981	49.73
980	49.78
979	49.71
978	49.55
977	49.34
976	49.09
975	48.82
974	48.53
973	48.23
972	47.92
971	47.59
970	47.26
969	46.91
968	46.56
967	46.21
966	45.87
965	45.52
964	45.17
963	44.83
962	44.5
961	44.18
960	43.87
959	43.57
958	43.29
957	43.02
956	42.77
955	42.53
954	42.32

953	42.12
952	41.93
951	41.76
950	41.6
949	41.45
948	41.31
947	41.18
946	41.04
945	40.9
944	40.75
943	40.6
942	40.45
941	40.3
940	40.15
939	40
939 938	40 39.86
938	39.86
938 937	39.86 39.72
938 937 936	39.86 39.72 39.57
938 937 936 935	39.86 39.72 39.57 39.44
938 937 936 935 934	39.86 39.72 39.57 39.44 39.31
938 937 936 935 934 933	39.86 39.72 39.57 39.44 39.31 39.19
938 937 936 935 934 933 932	39.86 39.72 39.57 39.44 39.31 39.19 39.07
 938 937 936 935 934 933 932 931 	39.86 39.72 39.57 39.44 39.31 39.19 39.07 38.97
 938 937 936 935 934 933 932 931 930 	39.86 39.72 39.57 39.44 39.31 39.19 39.07 38.97 38.87
 938 937 936 935 934 933 932 931 930 929 	39.86 39.72 39.57 39.44 39.31 39.19 39.07 38.97 38.87 38.79

925	38.55
924	38.52
923	38.51
922	38.51
921	38.53
920	38.57
919	38.61
918	38.67
917	38.74
916	38.83
915	38.94
914	39.06
913	39.2
912	39.34
911	39.49
910	39.66
909	39.82
908	39.98
907	40.15
906	40.32
905	40.49
904	40.67
903	40.85
902	41.03
901	41.21
900	41.38
899	41.57
898	41.77

897	41.97
896	42.17
895	42.39
894	42.62
893	42.87
892	43.12
891	43.39
890	43.66
889	43.93
888	44.21
887	44.49
886	44.76
885	45.02
884	45.27
883	45.5
882	45.71
882 881	45.71 45.9
881	45.9
881 880	45.9 46.07
881 880 879	45.9 46.07 46.22
881 880 879 878	45.9 46.07 46.22 46.34
881 880 879 878 877	45.9 46.07 46.22 46.34 46.44
881 880 879 878 877 876	45.9 46.07 46.22 46.34 46.44 46.5
881 880 879 878 877 876 875	45.9 46.07 46.22 46.34 46.44 46.5 46.53
881 880 879 878 877 876 875 874	45.9 46.07 46.22 46.34 46.44 46.5 46.53 46.52
 881 880 879 878 877 876 875 874 873 	45.9 46.07 46.22 46.34 46.44 46.5 46.53 46.53 46.52 46.49

869	46.49
868	46.52
867	46.56
866	46.62
865	46.7
864	46.82
863	46.99
862	47.22
861	47.49
860	47.79
859	48.09
858	48.39
857	48.68
856	48.95
855	49.21
854	49.46
853	49.68
852	49.89
851	50.08
850	50.25
849	50.41
848	50.55
847	50.69
846	50.8
845	50.89
844	50.96
843	51.01
842	51.04

841	51.05
840	51.04
839	51.01
838	50.98
837	50.93
836	50.88
835	50.84
834	50.8
833	50.78
832	50.78
831	50.79
830	50.81
829	50.83
828	50.84
827	50.85
826	50.85
825	50.86
824	50.88
823	50.9
822	50.92
821	50.94
820	50.96
819	50.99
818	51.01
817	51.04
816	51.08
815	51.13
814	51.19

813	51.26
812	51.33
811	51.4
810	51.47
809	51.54
808	51.6
807	51.66
806	51.72
805	51.78
804	51.84
803	51.9
802	51.95
801	52
800	52.04
799	52.08
798	52.12
797	52.15
796	52.18
795	52.21
794	52.23
793	52.26
792	52.28
791	52.3
790	52.3
789	52.3
788	52.3
787	52.3
786	52.3

785	52.31
784	52.3
783	52.28
782	52.26
781	52.24
780	52.21
779	52.2
778	52.18
777	52.16
776	52.14
775	52.11
774	52.09
773	52.06
772	52.04
771	52.03
770	52.03
769	52.02
768	52.02
767	52.02
766	52.02
765	52.03
764	52.03
763	52.04
762	52.05
761	52.05
760	52.05
759	52.05
758	52.04

757	52.03
756	52
755	51.95
754	51.89
753	51.81
752	51.73
751	51.63
750	51.51
749	51.35
748	51.17
747	50.95
746	50.7
745	50.41
744	50.09
743	49.72
742	49.32
741	48.87
740	48.39
739	47.92
738	47.48
737	47.11
736	46.86
735	46.76
734	46.81
733	47
732	47.28
731	47.6
730	47.93

729	48.26
728	48.56
727	48.84
726	49.07
725	49.27
724	49.43
723	49.56
722	49.65
721	49.73
720	49.79
719	49.87
718	49.93
717	49.98
716	50
715	49.99
714	49.98
714 713	49.98 49.96
713	49.96
713 712	49.96 49.93
713 712 711	49.96 49.93 49.89
713 712 711 710	49.96 49.93 49.89 49.85
713712711710709	49.96 49.93 49.89 49.85 49.81
 713 712 711 710 709 708 	49.96 49.93 49.89 49.85 49.81 49.76
 713 712 711 710 709 708 707 	49.96 49.93 49.89 49.85 49.81 49.76 49.72
 713 712 711 710 709 708 707 706 	49.96 49.93 49.89 49.85 49.81 49.76 49.72 49.67
 713 712 711 710 709 708 707 706 705 	49.96 49.93 49.89 49.85 49.81 49.76 49.72 49.67 49.63
 713 712 711 710 709 708 707 706 705 704 	49.96 49.93 49.89 49.85 49.81 49.76 49.72 49.67 49.63 49.58

701	49.45
700	49.4
699	49.37
698	49.33
697	49.28
696	49.22
695	49.17
694	49.12
693	49.07
692	49.01
691	48.95
690	48.89
689	48.82
688	48.75
687	48.68
686	48.61
685	48.53
684	48.44
683	48.34
682	48.24
681	48.15
680	48.05
679	47.96
678	47.87
677	47.78
676	47.69
675	47.6
674	47.51

673	47.43
672	47.37
671	47.39
670	47.55
669	47.75
668	47.82
667	47.65
666	47.33
665	47.05
664	46.87
663	46.76
662	46.7
661	46.64
660	46.57
659	46.52
658	46.47
657	46.43
656	46.4
655	46.36
654	46.33
653	46.27
652	46.21
651	46.16
650	46.12
649	46.06
648	46.01
647	45.96
646	45.92

45.86
45.81
45.77
45.74
45.7
45.65
45.6
45.56
45.52
45.47
45.44
45.4
45.35
45.29
45.23
45.17
45.1
45.02
44.92
44.83
44.72
44.6
44.49
44.37
44.23
44.08
43.93
43.83

617	43.79
616	43.84
615	43.96
614	44.11
613	44.25
612	44.36
611	44.46
610	44.53
609	44.57
608	44.59
607	44.62
606	44.65
605	44.65
604	44.63
603	44.6
603 602	44.6 44.56
602	44.56
602 601	44.56 44.49
602 601 600	44.56 44.49 44.38
602 601 600 599	44.56 44.49 44.38 44.26
602 601 600 599 598	44.56 44.49 44.38 44.26 44.12
602 601 600 599 598 597	44.56 44.49 44.38 44.26 44.12 43.96
602 601 600 599 598 597 596	44.56 44.49 44.38 44.26 44.12 43.96 43.79
602 601 600 599 598 597 596 595	44.56 44.49 44.38 44.26 44.12 43.96 43.79 43.62
602 601 600 599 598 597 596 595 594	44.56 44.49 44.38 44.26 44.12 43.96 43.79 43.62 43.47
602 601 600 599 598 597 596 595 595 594	44.56 44.49 44.38 44.26 44.12 43.96 43.79 43.62 43.47 43.31

42.56
42.35
42.15
41.95
41.73
41.5
41.28
41.06
40.83
40.59
40.37
40.2
40.04
39.91
39.81
39.77
39.76
39.75
39.77
39.81
39.83
39.82
39.79
39.76
39.7
39.63
39.56
39.52

561	39.48
560	39.45
559	39.45
558	39.47
557	39.51
556	39.55
555	39.63
554	39.72
553	39.81
552	39.87
551	39.95
550	40.05
549	40.14
548	40.23
547	40.34
546	40.46
545	40.58
544	40.67
543	40.74
542	40.81
541	40.86
540	40.89
539	40.93
538	40.98
537	41.04
536	41.12
535	41.27
534	41.5

41.76
42.02
42.26
42.45
42.56
42.55
42.44
42.25
42.02
41.79
41.62
41.55
41.53
41.54
41.62
41.77
41.97
42.18
42.42
42.72
43.06
43.42
43.78
44.12
44.43
44.73
45.07
45.43

505	45.74
504	45.96
503	46.12
502	46.23
501	46.3
500	46.33
499	46.33
498	46.27
497	46.1
496	45.83
495	45.55
494	45.35
493	45.25
492	45.21
491	45.22
490	45.28
489	45.39
488	45.59
487	45.87
486	46.19
485	46.47
484	46.69
483	46.86
482	46.99
481	47.05
480	47.07
479	47.1
478	47.16

477	47.21
476	47.22
475	47.24
474	47.27
473	47.29
472	47.34
471	47.43
470	47.58
469	47.74
468	47.89
467	48.06
466	48.24
465	48.42
464	48.6
463	48.79
462	48.97
461	49.13
460	49.3
459	49.51
458	49.73
457	49.9
456	50.04
455	50.19
454	50.36
453	50.52
452	50.66
451	50.83
450	51

449	51.16
448	51.29
447	51.4
446	51.5
445	51.62
444	51.77
443	51.93
442	52.06
441	52.14
440	52.23
439	52.35
438	52.48
437	52.57
436	52.6
435	52.6
435 434	52.6 52.58
434	52.58
434 433	52.58 52.57
434 433 432	52.58 52.57 52.58
434 433 432 431	52.58 52.57 52.58 52.6
434 433 432 431 430	52.58 52.57 52.58 52.6 52.59
434 433 432 431 430 429	52.58 52.57 52.58 52.6 52.59 52.55
434 433 432 431 430 429 428	52.58 52.57 52.58 52.6 52.59 52.55 52.51
434 433 432 431 430 429 428 427	52.58 52.57 52.58 52.6 52.59 52.55 52.51 52.49
434 433 432 431 430 429 428 427 426	52.58 52.57 52.58 52.6 52.59 52.55 52.51 52.49 52.5
434 433 432 431 430 429 428 427 426 425	52.58 52.57 52.58 52.6 52.59 52.55 52.51 52.49 52.5 52.53

421	53.06	
420	53.33	
419	53.57	
418	53.69	
417	53.72	
416	53.79	
415	53.89	
414	54.02	
413	54.17	
412	54.38	
411	54.61	
410	54.77	
409	54.86	
408	55	
407	55.21	
406	55.49	
405	55.79	
404	56.1	
403	56.34	
402	56.41	
401	56.38	
400	56.38	

APPENDIX 10

TRANSMITTANCE FOR PRISTINE SF

cm ⁻¹	%T
4000	99.56
3999	99.56
3998	99.55
3997	99.55
3996	99.55
3995	99.56
3994	99.56
3993	99.56
3992	99.56
3991	99.56
3990	99.56
3989	99.56
3988	99.56
3987	99.55
3986	99.55
3985	99.55
3984	99.55
3983	99.55
3982	99.56
3981	99.56
3980	99.55
3979	99.55
3978	99.55

3977	99.54
3976	99.54
3975	99.55
3974	99.55
3973	99.55
3972	99.55
3971	99.55
3970	99.55
3969	99.55
3968	99.55
3967	99.55
3966	99.55
3965	99.55
3964	99.55
3963	99.55
3962	99.55
3961	99.56
3960	99.56
3959	99.56
3958	99.56
3957	99.56
3956	99.56
3955	99.56
3954	99.55
3953	99.55
3952	99.55
3951	99.55
3950	99.55

3949	99.56
3948	99.56
3947	99.56
3946	99.56
3945	99.56
3944	99.56
3943	99.56
3942	99.57
3941	99.57
3940	99.57
3939	99.57
3938	99.56
3937	99.56
3936	99.55
3935	99.55
3934	99.54
3933	99.54
3932	99.55
3931	99.55
3930	99.55
3929	99.55
3928	99.55
3927	99.55
3926	99.55
3925	99.56
3924	99.56
3923	99.56
3922	99.56

3921	99.56
3920	99.56
3919	99.56
3918	99.56
3917	99.56
3916	99.56
3915	99.56
3914	99.56
3913	99.56
3912	99.56
3911	99.56
3910	99.56
3909	99.56
3908	99.55
3907	99.55
3906	99.55
3905	99.55
3904	99.55
3903	99.55
3902	99.56
3901	99.56
3900	99.56
3899	99.56
3898	99.56
3897	99.55
3896	99.55
3895	99.55
3894	99.55

99.55
99.56
99.57
99.57
99.57
99.56
99.55
99.54
99.54
99.54
99.55
99.55
99.56
99.57
99.57
99.57
99.56
99.55
99.54
99.54
99.55
99.55
99.54
99.54
99.55
99.55
99.54
99.54

99.54
99.54
99.55
99.55
99.54
99.54
99.54
99.55
99.55
99.56
99.55
99.55
99.55
99.56
99.57
99.56
99.55
99.55
99.54
99.53
99.53
99.53
99.53
99.54
99.54
99.54
99.54
99.55

3837	99.55
3836	99.55
3835	99.54
3834	99.54
3833	99.54
3832	99.54
3831	99.55
3830	99.55
3829	99.54
3828	99.54
3827	99.54
3826	99.54
3825	99.54
3824	99.54
3823	99.53
3822	99.53
3821	99.53
3820	99.54
3819	99.54
3818	99.54
3817	99.54
3816	99.54
3815	99.54
3814	99.55
3813	99.54
3812	99.54
3811	99.53
3810	99.53

3809	99.53
3808	99.52
3807	99.52
3806	99.52
3805	99.52
3804	99.52
3803	99.51
3802	99.51
3801	99.51
3800	99.51
3799	99.51
3798	99.51
3797	99.51
3796	99.52
3795	99.53
3794	99.53
3793	99.53
3792	99.52
3791	99.52
3790	99.51
3789	99.52
3788	99.52
3787	99.53
3786	99.53
3785	99.53
3784	99.53
3783	99.53
3782	99.53

3781	99.53
3780	99.52
3779	99.52
3778	99.52
3777	99.51
3776	99.51
3775	99.51
3774	99.51
3773	99.51
3772	99.51
3771	99.51
3770	99.51
3769	99.51
3768	99.52
3767	99.52
3766	99.53
3765	99.53
3764	99.52
3763	99.52
3762	99.51
3761	99.51
3760	99.51
3759	99.51
3758	99.51
3757	99.5
3756	99.5
3755	99.49
3754	99.48

99.48
99.47
99.48
99.48
99.48
99.49
99.51
99.52
99.52
99.51
99.5
99.49
99.48
99.47
99.47
99.46
99.46
99.46
99.48
99.5
99.51
99.51
99.5
99.49
99.48
99.48
99.47
99.47

3725	99.47
3724	99.46
3723	99.46
3722	99.47
3721	99.47
3720	99.48
3719	99.48
3718	99.47
3717	99.47
3716	99.46
3715	99.46
3714	99.46
3713	99.45
3712	99.46
3711	99.46
3710	99.47
3709	99.47
3708	99.46
3707	99.46
3706	99.46
3705	99.46
3704	99.45
3703	99.45
3702	99.45
3701	99.45
3700	99.45
3699	99.45
3698	99.45

3697	99.45
3696	99.45
3695	99.45
3694	99.45
3693	99.45
3692	99.44
3691	99.44
3690	99.44
3689	99.44
3688	99.42
3687	99.41
3686	99.4
3685	99.39
3684	99.39
3683	99.39
3682	99.39
3681	99.38
3680	99.37
3679	99.37
3678	99.36
3677	99.35
3676	99.33
3675	99.32
3674	99.31
3673	99.3
3672	99.29
3671	99.28
3670	99.28

3669	99.27
3668	99.26
3667	99.25
3666	99.24
3665	99.23
3664	99.21
3663	99.2
3662	99.19
3661	99.18
3660	99.16
3659	99.15
3658	99.14
3657	99.11
3656	99.09
3655	99.07
3654	99.05
3653	99.03
3652	99.01
3651	98.98
3650	98.94
3649	98.9
3648	98.87
3647	98.84
3646	98.81
3645	98.79
3644	98.78
3643	98.76
3642	98.74

3641	98.72
3640	98.7
3639	98.67
3638	98.64
3637	98.61
3636	98.58
3635	98.54
3634	98.51
3633	98.48
3632	98.47
3631	98.44
3630	98.4
3629	98.35
3628	98.3
3627	98.27
3626	98.25
3625	98.24
3624	98.23
3623	98.23
3622	98.22
3621	98.21
3620	98.18
3619	98.14
3618	98.11
3617	98.09
3616	98.07
3615	98.05
3614	98.03

98.02
98
97.98
97.94
97.91
97.87
97.85
97.83
97.82
97.8
97.78
97.76
97.73
97.7
97.68
97.66
97.63
97.6
97.56
97.53
97.5
97.49
97.48
97.47
97.44
97.4
97.36
97.33

3585	97.3
3584	97.28
3583	97.26
3582	97.24
3581	97.21
3580	97.19
3579	97.16
3578	97.15
3577	97.13
3576	97.11
3575	97.09
3574	97.06
3573	97.04
3572	97.02
3571	97.01
3570	96.99
3569	96.96
3568	96.92
3567	96.87
3566	96.83
3565	96.79
3564	96.77
3563	96.75
3562	96.74
3561	96.72
3560	96.71
3559	96.68
3558	96.66

3557	96.64
3556	96.62
3555	96.6
3554	96.57
3553	96.54
3552	96.51
3551	96.49
3550	96.47
3549	96.45
3548	96.43
3547	96.4
3546	96.37
3545	96.34
3544	96.32
3543	96.3
3542	96.28
3541	96.26
3540	96.24
3539	96.22
3538	96.2
3537	96.18
3536	96.16
3535	96.14
3534	96.12
3533	96.09
3532	96.06
3531	96.04
3530	96.02

3529	95.99
3528	95.96
3527	95.93
3526	95.91
3525	95.88
3524	95.85
3523	95.82
3522	95.8
3521	95.78
3520	95.76
3519	95.74
3518	95.72
3517	95.7
3516	95.68
3515	95.65
3514	95.62
3513	95.6
3512	95.57
3511	95.55
3510	95.53
3509	95.5
3508	95.48
3507	95.46
3506	95.43
3505	95.41
3504	95.37
3503	95.34
3502	95.31

95.29
95.28
95.26
95.25
95.23
95.2
95.17
95.14
95.11
95.09
95.07
95.05
95.03
95
94.98
94.96
94.94
94.93
94.91
94.88
94.86
94.83
94.81
94.78
94.76
94.74
94.72
94.7

3473	94.67
3472	94.65
3471	94.62
3470	94.59
3469	94.57
3468	94.54
3467	94.52
3466	94.5
3465	94.48
3464	94.47
3463	94.45
3462	94.42
3461	94.4
3460	94.39
3459	94.37
3458	94.35
3457	94.32
3456	94.3
3455	94.27
3454	94.25
3453	94.22
3452	94.2
3451	94.18
3450	94.16
3449	94.14
3448	94.11
3447	94.08
3446	94.05

3445	94.03
3444	94.01
3443	93.99
3442	93.97
3441	93.95
3440	93.93
3439	93.91
3438	93.89
3437	93.86
3436	93.84
3435	93.82
3434	93.79
3433	93.76
3432	93.74
3431	93.71
3430	93.69
3429	93.67
3428	93.65
3427	93.64
3426	93.62
3425	93.6
3424	93.57
3423	93.54
3422	93.51
3421	93.47
3420	93.45
3419	93.43
3418	93.41

93.39
93.38
93.36
93.33
93.3
93.28
93.25
93.23
93.21
93.19
93.17
93.15
93.12
93.09
93.06
93.04
93.01
92.99
92.97
92.95
92.93
92.91
92.89
92.87
92.84
92.82
92.79
92.78

3389	92.76
3388	92.74
3387	92.73
3386	92.7
3385	92.67
3384	92.64
3383	92.62
3382	92.6
3381	92.58
3380	92.57
3379	92.55
3378	92.53
3377	92.51
3376	92.48
3375	92.47
3374	92.45
3373	92.43
3372	92.41
3371	92.39
3370	92.36
3369	92.34
3368	92.33
3367	92.31
3366	92.29
3365	92.28
3364	92.27
3363	92.25
3362	92.23

3361	92.21
3360	92.19
3359	92.16
3358	92.14
3357	92.11
3356	92.08
3355	92.06
3354	92.04
3353	92.03
3352	92.01
3351	91.99
3350	91.97
3349	91.94
3348	91.91
3347	91.89
3346	91.87
3345	91.85
3344	91.82
3343	91.8
3342	91.77
3341	91.75
3340	91.72
3339	91.7
3338	91.68
3337	91.65
3336	91.62
3335	91.59
3334	91.56

3333	91.53
3332	91.51
3331	91.48
3330	91.45
3329	91.41
3328	91.38
3327	91.34
3326	91.3
3325	91.27
3324	91.24
3323	91.21
3322	91.18
3321	91.15
3320	91.11
3319	91.08
3318	91.04
3317	91
3316	90.96
3315	90.92
3314	90.88
3313	90.85
3312	90.81
3311	90.78
3310	90.74
3309	90.69
3308	90.65
3307	90.61
3306	90.56

3305	90.52
3304	90.47
3303	90.42
3302	90.38
3301	90.33
3300	90.28
3299	90.24
3298	90.19
3297	90.14
3296	90.1
3295	90.05
3294	90.01
3293	89.96
3292	89.9
3291	89.86
3290	89.81
3289	89.77
3288	89.74
3287	89.71
3286	89.68
3285	89.65
3284	89.62
3283	89.59
3282	89.57
3281	89.56
3280	89.56
3279	89.55
3278	89.55

3277	89.55
3276	89.55
3275	89.55
3274	89.55
3273	89.57
3272	89.59
3271	89.61
3270	89.63
3269	89.65
3268	89.67
3267	89.69
3266	89.71
3265	89.73
3264	89.75
3263	89.77
3262	89.8
3261	89.82
3260	89.84
3259	89.86
3258	89.88
3257	89.91
3256	89.93
3255	89.95
3254	89.97
3253	89.99
3252	90.01
3251	90.03
3250	90.06

3249	90.08
3248	90.1
3247	90.12
3246	90.13
3245	90.14
3244	90.15
3243	90.16
3242	90.18
3241	90.19
3240	90.21
3239	90.24
3238	90.26
3237	90.28
3236	90.3
3235	90.31
3234	90.32
3233	90.33
3232	90.33
3231	90.34
3230	90.35
3229	90.37
3228	90.38
3227	90.39
3226	90.41
3225	90.42
3224	90.44
3223	90.45
3222	90.47

90.48
90.49
90.5
90.52
90.53
90.54
90.55
90.56
90.57
90.59
90.6
90.62
90.64
90.66
90.67
90.68
90.69
90.7
90.72
90.73
90.75
90.76
90.77
90.78
90.8
90.81
90.83
90.85

3193	90.86
3192	90.87
3191	90.88
3190	90.9
3189	90.92
3188	90.94
3187	90.95
3186	90.97
3185	90.98
3184	91
3183	91.01
3182	91.03
3181	91.05
3180	91.06
3179	91.08
3178	91.1
3177	91.11
3176	91.13
3175	91.15
3174	91.16
3173	91.18
3172	91.19
3171	91.21
3170	91.23
3169	91.25
3168	91.27
3167	91.28
3166	91.29

3165	91.3
3164	91.32
3163	91.34
3162	91.36
3161	91.37
3160	91.39
3159	91.41
3158	91.43
3157	91.45
3156	91.46
3155	91.48
3154	91.49
3153	91.5
3152	91.52
3151	91.54
3150	91.56
3149	91.58
3148	91.6
3147	91.61
3146	91.62
3145	91.64
3144	91.65
3143	91.67
3142	91.68
3141	91.7
3140	91.72
3139	91.74
3138	91.76

3137	91.78
3136	91.79
3135	91.8
3134	91.81
3133	91.82
3132	91.84
3131	91.86
3130	91.88
3129	91.9
3128	91.91
3127	91.93
3126	91.94
3125	91.95
3124	91.96
3123	91.97
3122	91.99
3121	92
3120	92.02
3119	92.04
3118	92.05
3117	92.06
3116	92.08
3115	92.09
3114	92.1
3113	92.11
3112	92.12
3111	92.14
3110	92.15

92.16
92.17
92.18
92.19
92.2
92.21
92.22
92.23
92.24
92.25
92.26
92.27
92.29
92.3
92.31
92.32
92.33
92.34
92.36
92.38
92.39
92.41
92.43
92.44
92.46
92.47
92.49
92.5

3081	92.52
3080	92.53
3079	92.54
3078	92.55
3077	92.56
3076	92.58
3075	92.59
3074	92.61
3073	92.63
3072	92.65
3071	92.68
3070	92.7
3069	92.73
3068	92.75
3067	92.77
3066	92.79
3065	92.8
3064	92.82
3063	92.84
3062	92.86
3061	92.89
3060	92.91
3059	92.94
3058	92.97
3057	92.99
3056	93.02
3055	93.05
3054	93.08

3053	93.11
3052	93.14
3051	93.17
3050	93.2
3049	93.22
3048	93.25
3047	93.29
3046	93.32
3045	93.36
3044	93.39
3043	93.42
3042	93.44
3041	93.46
3040	93.48
3039	93.51
3038	93.54
3037	93.57
3036	93.61
3035	93.64
3034	93.67
3033	93.7
3032	93.72
3031	93.75
3030	93.77
3029	93.79
3028	93.82
3027	93.85
3026	93.88

93.91
93.94
93.96
93.99
94.01
94.04
94.06
94.09
94.12
94.15
94.18
94.21
94.24
94.26
94.28
94.29
94.31
94.33
94.35
94.37
94.39
94.41
94.43
94.45
94.48
94.5
94.52
94.54

2997	94.56
2996	94.58
2995	94.6
2994	94.62
2993	94.64
2992	94.66
2991	94.69
2990	94.71
2989	94.74
2988	94.76
2987	94.8
2986	94.84
2985	94.89
2984	94.94
2983	94.99
2982	95.05
2981	95.1
2980	95.15
2979	95.2
2978	95.24
2977	95.28
2976	95.31
2975	95.34
2974	95.36
2973	95.37
2972	95.36
2971	95.35
2970	95.33

2969	95.31
2968	95.29
2967	95.27
2966	95.25
2965	95.23
2964	95.22
2963	95.22
2962	95.21
2961	95.21
2960	95.2
2959	95.19
2958	95.19
2957	95.18
2956	95.18
2955	95.18
2954	95.18
2953	95.19
2952	95.19
2951	95.2
2950	95.2
2949	95.21
2948	95.21
2947	95.21
2946	95.22
2945	95.22
2944	95.22
2943	95.21
2942	95.22

2941	95.22
2940	95.22
2939	95.22
2938	95.22
2937	95.22
2936	95.23
2935	95.24
2934	95.25
2933	95.26
2932	95.27
2931	95.29
2930	95.31
2929	95.33
2928	95.35
2927	95.37
2926	95.39
2925	95.41
2924	95.42
2923	95.44
2922	95.45
2921	95.47
2920	95.48
2919	95.5
2918	95.52
2917	95.54
2916	95.57
2915	95.59
2914	95.61

2913	95.63
2912	95.66
2911	95.68
2910	95.7
2909	95.73
2908	95.75
2907	95.77
2906	95.79
2905	95.81
2904	95.82
2903	95.84
2902	95.86
2901	95.88
2900	95.91
2899	95.93
2898	95.95
2897	95.96
2896	95.98
2895	95.99
2894	96
2893	96.01
2892	96.02
2891	96.03
2890	96.05
2889	96.06
2888	96.08
2887	96.09
2886	96.11

 96.12 96.13 96.14 96.14 96.15 96.16 96.17
96.13 96.14 96.14 96.15 96.16
96.14 96.14 96.15 96.16
96.14 96.15 96.16
96.15 96.16
96.16
96.17
96.18
96.19
96.2
96.21
96.22
96.23
96.23
96.24
96.25
96.26
96.27
96.28
96.29
96.3
96.32
96.33
96.35
96.36
96.37

96.39
96.4
96.4
96.4
96.41
96.42
96.44
96.45
96.46
96.48
96.49
96.51
96.52
96.53
96.55
96.57
96.58
96.6
96.61
96.61
96.62
96.63
96.64
96.64
96.65
96.66
96.67
96.68

96.69
96.7
96.71
96.72
96.73
96.74
96.74
96.75
96.76
96.77
96.78
96.79
96.8
96.81
96.81
96.82
96.83
96.84
96.85
96.86
96.87
96.88
96.88
96.89
96.9
96.9
96.91
96.92

2801	96.93
2800	96.94
2799	96.95
2798	96.95
2797	96.96
2796	96.97
2795	96.97
2794	96.97
2793	96.98
2792	96.99
2791	96.99
2790	97
2789	97.02
2788	97.03
2787	97.04
2786	97.05
2785	97.06
2784	97.06
2783	97.06
2782	97.07
2781	97.07
2780	97.08
2779	97.08
2778	97.09
2777	97.1
2776	97.11
2775	97.12
2774	97.13

97.14
97.15
97.15
97.16
97.17
97.18
97.18
97.19
97.2
97.21
97.22
97.23
97.23
97.24
97.24
97.24
97.25
97.26
97.28
97.29
97.3
97.3
97.31
97.31
97.32
97.33
97.34
97.35

2745	97.36
2744	97.37
2743	97.37
2742	97.38
2741	97.38
2740	97.39
2739	97.39
2738	97.4
2737	97.4
2736	97.41
2735	97.41
2734	97.41
2733	97.42
2732	97.43
2731	97.44
2730	97.45
2729	97.46
2728	97.46
2727	97.47
2726	97.48
2725	97.48
2724	97.49
2723	97.49
2722	97.5
2721	97.51
2720	97.51
2719	97.52
2718	97.52

2717	97.52
2716	97.53
2715	97.54
2714	97.55
2713	97.55
2712	97.56
2711	97.57
2710	97.57
2709	97.58
2708	97.58
2707	97.59
2706	97.6
2705	97.61
2704	97.62
2703	97.63
2702	97.63
2701	97.64
2700	97.64
2699	97.64
2698	97.65
2697	97.65
2696	97.66
2695	97.66
2694	97.67
2693	97.67
2692	97.68
2691	97.68
2690	97.69

2688	97.69
A < 0 T	97.69
2687	97.7
2686	97.7
2685	97.71
2684	97.71
2683	97.72
2682	97.73
2681	97.73
2680	97.74
2679	97.75
2678	97.76
2677	97.76
2676	97.77
2675	97.78
2674	97.78
2673	97.79
2672	97.79
2671	97.8
2670	97.81
2669	97.81
2668	97.82
2667	97.82
2666	97.82
2665	97.82
2664	97.82
2663	97.82
2662	97.82

97.82
97.82
97.83
97.83
97.84
97.84
97.85
97.86
97.86
97.87
97.88
97.89
97.89
97.9
97.91
97.91
97.92
97.92
97.93
97.93
97.93
97.94
97.94
97.95
97.96
97.98
97.99
97.99

2633	97.99
2632	97.99
2631	97.99
2630	98
2629	98.01
2628	98.02
2627	98.02
2626	98.03
2625	98.03
2624	98.03
2623	98.03
2622	98.03
2621	98.04
2620	98.05
2619	98.05
2618	98.06
2617	98.07
2616	98.08
2615	98.08
2614	98.08
2613	98.09
2612	98.09
2611	98.1
2610	98.1
2609	98.1
2608	98.11
2607	98.11
2606	98.11

2605	98.12
2604	98.12
2603	98.13
2602	98.13
2601	98.14
2600	98.14
2599	98.14
2598	98.14
2597	98.14
2596	98.14
2595	98.14
2594	98.15
2593	98.16
2592	98.17
2591	98.17
2590	98.17
2589	98.16
2588	98.16
2587	98.16
2586	98.17
2585	98.18
2584	98.19
2583	98.19
2582	98.2
2581	98.2
2580	98.2
2579	98.2
2578	98.2

2577	98.2
2576	98.21
2575	98.21
2574	98.21
2573	98.21
2572	98.21
2571	98.21
2570	98.21
2569	98.2
2568	98.2
2567	98.21
2566	98.22
2565	98.23
2564	98.24
2563	98.25
2562	98.25
2561	98.25
2560	98.25
2559	98.25
2558	98.24
2557	98.25
2556	98.25
2555	98.26
2554	98.27
2553	98.27
2552	98.27
2551	98.28
2550	98.28

2549	98.28
2548	98.28
2547	98.29
2546	98.3
2545	98.3
2544	98.31
2543	98.31
2542	98.32
2541	98.31
2540	98.31
2539	98.3
2538	98.3
2537	98.29
2536	98.3
2535	98.3
2534	98.3
2533	98.31
2532	98.32
2531	98.33
2530	98.33
2529	98.32
2528	98.32
2527	98.32
2526	98.32
2525	98.32
2524	98.32
2523	98.32
2522	98.33

2521	98.33
2520	98.32
2519	98.31
2518	98.31
2517	98.3
2516	98.3
2515	98.3
2514	98.31
2513	98.31
2512	98.31
2511	98.32
2510	98.32
2509	98.32
2508	98.31
2507	98.31
2506	98.31
2505	98.31
2504	98.3
2503	98.3
2502	98.3
2501	98.31
2500	98.31
2499	98.32
2498	98.32
2497	98.32
2496	98.32
2495	98.31
2494	98.31

98.31
98.31
98.31
98.32
98.32
98.31
98.3
98.3
98.3
98.3
98.3
98.31
98.31
98.31
98.32
98.32
98.33
98.32
98.32
98.31
98.3
98.29
98.28
98.28
98.28
98.28
98.29
98.3

2465	98.3
2464	98.3
2463	98.3
2462	98.3
2461	98.29
2460	98.28
2459	98.27
2458	98.26
2457	98.26
2456	98.26
2455	98.26
2454	98.26
2453	98.25
2452	98.25
2451	98.26
2450	98.27
2449	98.28
2448	98.29
2447	98.29
2446	98.29
2445	98.28
2444	98.27
2443	98.26
2442	98.26
2441	98.27
2440	98.28
2439	98.29
2438	98.28

2437	98.27
2436	98.27
2435	98.28
2434	98.28
2433	98.29
2432	98.29
2431	98.28
2430	98.28
2429	98.28
2428	98.29
2427	98.29
2426	98.3
2425	98.3
2424	98.3
2423	98.29
2422	98.29
2421	98.29
2420	98.29
2419	98.29
2418	98.3
2417	98.3
2416	98.31
2415	98.31
2414	98.31
2413	98.3
2412	98.3
2411	98.3
2410	98.3

2409	98.3
2408	98.31
2407	98.31
2406	98.31
2405	98.31
2404	98.31
2403	98.32
2402	98.32
2401	98.32
2400	98.32
2399	98.32
2398	98.32
2397	98.32
2396	98.31
2395	98.31
2394	98.31
2393	98.31
2392	98.31
2391	98.31
2390	98.31
2389	98.32
2388	98.33
2387	98.33
2386	98.34
2385	98.34
2384	98.34
2383	98.35
2382	98.35

2381	98.35
2380	98.35
2379	98.35
2378	98.35
2377	98.35
2376	98.34
2375	98.34
2374	98.34
2373	98.34
2372	98.34
2371	98.35
2370	98.36
2369	98.37
2368	98.38
2367	98.37
2366	98.36
2365	98.35
2364	98.34
2363	98.33
2362	98.33
2361	98.32
2360	98.32
2359	98.32
2358	98.33
2357	98.33
2356	98.34
2355	98.33
2354	98.32

2353	98.31
2352	98.31
2351	98.31
2350	98.31
2349	98.3
2348	98.29
2347	98.28
2346	98.28
2345	98.28
2344	98.28
2343	98.27
2342	98.26
2341	98.26
2340	98.26
2339	98.26
2338	98.26
2337	98.26
2336	98.25
2335	98.25
2334	98.26
2333	98.26
2332	98.27
2331	98.27
2330	98.26
2329	98.24
2328	98.21
2327	98.17
2326	98.12

98.09
98.09
98.1
98.12
98.14
98.15
98.15
98.15
98.16
98.16
98.17
98.18
98.19
98.19
98.2
98.2
98.2
98.2
98.21
98.21
98.2
98.2
98.21
98.21
98.21
98.21
98.2
98.19

2297	98.18
2296	98.17
2295	98.16
2294	98.15
2293	98.14
2292	98.13
2291	98.12
2290	98.11
2289	98.11
2288	98.1
2287	98.09
2286	98.1
2285	98.12
2284	98.14
2283	98.16
2282	98.16
2281	98.15
2280	98.14
2279	98.14
2278	98.14
2277	98.16
2276	98.18
2275	98.2
2274	98.2
2273	98.2
2272	98.19
2271	98.18
2270	98.18

2269	98.19
2268	98.21
2267	98.23
2266	98.25
2265	98.26
2264	98.25
2263	98.24
2262	98.24
2261	98.24
2260	98.23
2259	98.22
2258	98.22
2257	98.23
2256	98.25
2255	98.28
2254	98.3
2253	98.3
2252	98.29
2251	98.27
2250	98.26
2249	98.26
2248	98.25
2247	98.24
2246	98.23
2245	98.22
2244	98.23
2243	98.24
2242	98.26

2241	98.26
2240	98.26
2239	98.26
2238	98.26
2237	98.25
2236	98.25
2235	98.26
2234	98.29
2233	98.32
2232	98.34
2231	98.35
2230	98.35
2229	98.35
2228	98.34
2227	98.31
2226	98.27
2225	98.26
2224	98.26
2223	98.28
2222	98.3
2221	98.31
2220	98.31
2219	98.32
2218	98.33
2217	98.34
2216	98.34
2215	98.34
2214	98.33

2213	98.33
2212	98.34
2211	98.34
2210	98.34
2209	98.32
2208	98.32
2207	98.33
2206	98.36
2205	98.38
2204	98.37
2203	98.35
2202	98.34
2201	98.34
2200	98.33
2199	98.32
2198	98.31
2197	98.31
2196	98.33
2195	98.36
2194	98.38
2193	98.39
2192	98.38
2191	98.37
2190	98.37
2189	98.36
2188	98.36
2187	98.37
2186	98.37

2185	98.36
2184	98.35
2183	98.36
2182	98.39
2181	98.42
2180	98.43
2179	98.43
2178	98.43
2177	98.44
2176	98.45
2175	98.44
2174	98.43
2173	98.42
2172	98.41
2171	98.38
2170	98.33
2169	98.28
2168	98.24
2167	98.22
2166	98.21
2165	98.2
2164	98.18
2163	98.19
2162	98.25
2161	98.38
2160	98.57
2159	98.76
2158	98.85

2157	98.84
2156	98.79
2155	98.77
2154	98.76
2153	98.74
2152	98.71
2151	98.68
2150	98.68
2149	98.7
2148	98.72
2147	98.73
2146	98.72
2145	98.71
2144	98.69
2143	98.68
2142	98.66
2141	98.64
2140	98.63
2139	98.64
2138	98.67
2137	98.7
2136	98.75
2135	98.81
2134	98.84
2133	98.83
2132	98.79
2131	98.75
2130	98.72

2129	98.71
2128	98.7
2127	98.69
2126	98.68
2125	98.67
2124	98.67
2123	98.66
2122	98.65
2121	98.63
2120	98.6
2119	98.59
2118	98.58
2117	98.58
2116	98.57
2115	98.56
2114	98.54
2113	98.53
2112	98.51
2111	98.5
2110	98.51
2109	98.52
2108	98.54
2107	98.57
2106	98.58
2105	98.58
2104	98.58
2103	98.57
2102	98.58

2101	98.58
2100	98.59
2099	98.6
2098	98.61
2097	98.62
2096	98.64
2095	98.66
2094	98.66
2093	98.65
2092	98.64
2091	98.63
2090	98.64
2089	98.65
2088	98.67
2087	98.69
2086	98.7
2085	98.7
2084	98.68
2083	98.65
2082	98.62
2081	98.6
2080	98.59
2079	98.59
2078	98.6
2077	98.61
2076	98.62
2075	98.62
2074	98.63

2073	98.64
2072	98.65
2071	98.66
2070	98.66
2069	98.66
2068	98.66
2067	98.67
2066	98.68
2065	98.68
2064	98.67
2063	98.67
2062	98.68
2061	98.7
2060	98.71
2059	98.72
2058	98.72
2057	98.71
2056	98.7
2055	98.7
2054	98.69
2053	98.66
2052	98.63
2051	98.61
2050	98.63
2049	98.65
2048	98.68
2047	98.72
2046	98.77

2045	98.79
2044	98.79
2043	98.78
2042	98.76
2041	98.75
2040	98.75
2039	98.73
2038	98.71
2037	98.68
2036	98.68
2035	98.71
2034	98.77
2033	98.84
2032	98.91
2031	98.96
2030	98.98
2029	98.96
2028	98.92
2027	98.89
2026	98.89
2025	98.88
2024	98.88
2023	98.88
2022	98.87
2021	98.85
2020	98.84
2019	98.84
2018	98.85

2017	98.86
2016	98.87
2015	98.9
2014	98.92
2013	98.94
2012	98.96
2011	98.96
2010	98.97
2009	98.98
2008	99.02
2007	99.08
2006	99.13
2005	99.13
2004	99.09
2003	99.04
2002	98.98
2001	98.92
2000	98.87
1999	98.86
1998	98.88
1997	98.88
1996	98.88
1995	98.89
1994	98.91
1993	98.92
1992	98.93
1991	98.95
1990	98.96

1989	98.96
1988	98.93
1987	98.9
1986	98.87
1985	98.85
1984	98.83
1983	98.81
1982	98.79
1981	98.79
1980	98.83
1979	98.91
1978	98.99
1977	99.02
1976	99.02
1975	99.01
1974	99.02
1973	99.02
1972	99.02
1971	99.02
1970	99.04
1969	99.05
1968	99.06
1967	99.05
1966	99.03
1965	99
1964	98.99
1963	99.02
1962	99.05

1961	99.05
1960	99.04
1959	99.02
1958	99.03
1957	99.03
1956	99.04
1955	99.03
1954	99.02
1953	99
1952	98.97
1951	98.97
1950-	98.98
1949	99
1948	99
1947	99.01
1946	99.02
1945	99.03
1944	99.03
1943	99.02
1942	99.01
1941	98.99
1940	98.97
1939	98.96
1938	98.96
1937	98.96
1936	98.96
1935	98.95
1934	98.93

1933	98.91
1932	98.91
1931	98.93
1930	98.95
1929	98.95
1928	98.94
1927	98.94
1926	98.93
1925	98.94
1924	98.96
1923	98.97
1922	98.97
1921	98.94
1920	98.91
1919	98.89
1918	98.89
1917	98.89
1916	98.88
1915	98.88
1914	98.88
1913	98.88
1912	98.87
1911	98.86
1910	98.85
1909	98.85
1908	98.85
1907	98.86
1906	98.87

1905	98.87
1904	98.87
1903	98.87
1902	98.86
1901	98.84
1900	98.83
1899	98.81
1898	98.81
1897	98.81
1896	98.8
1895	98.8
1894	98.8
1893	98.79
1892	98.79
1891	98.79
1890	98.8
1889	98.8
1888	98.8
1887	98.79
1886	98.79
1885	98.78
1884	98.78
1883	98.78
1882	98.79
1881	98.79
1880	98.79
1879	98.79
1878	98.79

1877	98.79
1876	98.78
1875	98.79
1874	98.79
1873	98.78
1872	98.76
1871	98.74
1870	98.74
1869	98.75
1868	98.75
1867	98.76
1866	98.76
1865	98.75
1864	98.74
1863	98.74
1862	98.74
1861	98.73
1860	98.71
1859	98.7
1858	98.7
1857	98.71
1856	98.71
1855	98.72
1854	98.72
1853	98.72
1852	98.71
1851	98.71
1850	98.71

1849	98.7
1848	98.7
1847	98.69
1846	98.7
1845	98.7
1844	98.71
1843	98.72
1842	98.72
1841	98.71
1840	98.7
1839	98.68
1838	98.67
1837	98.66
1836	98.65
1835	98.65
1834	98.66
1833	98.66
1832	98.66
1831	98.65
1830	98.64
1829	98.63
1828	98.62
1827	98.62
1826	98.62
1825	98.63
1824	98.62
1823	98.61
1822	98.61

1821	98.61
1820	98.63
1819	98.65
1818	98.67
1817	98.67
1816	98.65
1815	98.63
1814	98.61
1813	98.59
1812	98.57
1811	98.57
1810	98.57
1809	98.56
1808	98.56
1807	98.56
1806	98.56
1805	98.55
1804	98.54
1803	98.54
1802	98.53
1801	98.53
1800	98.52
1799	98.52
1798	98.51
1797	98.49
1796	98.47
1795	98.46
1794	98.45

1793	98.46
1792	98.47
1791	98.48
1790	98.49
1789	98.48
1788	98.47
1787	98.47
1786	98.47
1785	98.47
1784	98.47
1783	98.46
1782	98.45
1781	98.44
1780	98.43
1779	98.43
1778	98.43
1777	98.43
1776	98.42
1775	98.4
1774	98.38
1773	98.37
1772	98.37
1771	98.37
1770	98.38
1769	98.38
1768	98.38
1767	98.38
1766	98.38

1765	98.37
1764	98.36
1763	98.35
1762	98.35
1761	98.35
1760	98.34
1759	98.33
1758	98.34
1757	98.33
1756	98.32
1755	98.3
1754	98.28
1753	98.27
1752	98.25
1751	98.24
1750	98.23
1749	98.21
1748	98.19
1747	98.18
1746	98.18
1745	98.17
1744	98.16
1743	98.15
1742	98.14
1741	98.13
1740	98.11
1739	98.09
1738	98.08

1737	98.07
1736	98.05
1735	98.05
1734	98.04
1733	98.02
1732	97.99
1731	97.98
1730	97.97
1729	97.96
1728	97.93
1727	97.91
1726	97.89
1725	97.87
1724	97.83
1723	97.8
1722	97.78
1721	97.75
1720	97.71
1719	97.66
1718	97.6
1717	97.54
1716	97.48
1715	97.43
1714	97.39
1713	97.33
1712	97.26
1711	97.18
1710	97.1

1709	97
1708	96.88
1707	96.72
1706	96.52
1705	96.29
1704	96.08
1703	95.93
1702	95.79
1701	95.6
1700	95.37
1699	95.23
1698	95.17
1697	95.15
1696	95.12
1695	95.07
1694	95.03
1693	94.99
1692	94.95
1691	94.89
1690	94.82
1689	94.73
1688	94.66
1687	94.6
1686	94.53
1685	94.4
1684	94.19
1683	94.03
1682	93.95

93.89
93.83
93.76
93.7
93.62
93.51
93.35
93.21
93.12
93.05
92.95
92.82
92.66
92.54
92.46
92.42
92.37
92.28
92.15
92.01
91.9
91.81
91.75
91.7
91.66
91.65
91.62
91.47

91.16
90.95
90.91
90.95
90.99
90.96
90.85
90.73
90.66
90.65
90.64
90.63
90.61
90.57
90.54
90.51
90.42
90.21
89.97
89.8
89.71
89.63
89.54
89.42
89.26
89.07
88.89
88.76

1625	88.66
1624	88.55
1623	88.44
1622	88.38
1621	88.42
1620	88.53
1619	88.69
1618	88.91
1617	89.16
1616	89.43
1615	89.71
1614	90
1613	90.31
1612	90.63
1611	90.94
1610	91.24
1609	91.54
1608	91.83
1607	92.11
1606	92.37
1605	92.62
1604	92.86
1603	93.07
1602	93.25
1601	93.42
1600	93.57
1599	93.71
1598	93.82

1597	93.93
1596	94.03
1595	94.12
1594	94.2
1593	94.29
1592	94.37
1591	94.45
1590	94.52
1589	94.58
1588	94.64
1587	94.69
1586	94.71
1585	94.73
1584	94.75
1583	94.76
1582	94.77
1581	94.76
1580	94.76
1579	94.75
1578	94.72
1577	94.67
1576	94.6
1575	94.54
1574	94.5
1573	94.48
1572	94.46
1571	94.41
1570	94.31

1569	94.2
1568	94.11
1567	94.05
1566	93.98
1565	93.9
1564	93.82
1563	93.76
1562	93.72
1561	93.7
1560	93.61
1559	93.39
1558	93.19
1557	93.11
1556	93.08
1555	93.04
1554	92.98
1553	92.9
1552	92.84
1551	92.77
1550	92.68
1549	92.58
1548	92.49
1547	92.43
1546	92.35
1545	92.26
1544	92.15
1543	92.04
1542	91.92

1541	91.75
1540	91.55
1539	91.4
1538	91.32
1537	91.29
1536	91.28
1535	91.26
1534	91.16
1533	91.03
1532	90.93
1531	90.89
1530	90.87
1529	90.84
1528	90.82
1527	90.77
1526	90.72
1525	90.68
1524	90.67
1523	90.67
1522	90.64
1521	90.58
1520	90.55
1519	90.56
1518	90.57
1517	90.56
1516	90.57
1515	90.61
1514	90.7

1513	90.83
1512	90.97
1511	91.11
1510	91.25
1509	91.4
1508	91.56
1507	91.7
1506	91.84
1505	91.99
1504	92.15
1503	92.31
1502	92.49
1501	92.66
1500	92.83
1499	92.97
1498	93.11
1497	93.25
1496	93.39
1495	93.52
1494	93.65
1493	93.78
1492	93.92
1491	94.05
1490	94.15
1489	94.23
1488	94.31
1487	94.39
1486	94.48

1485	94.56
1484	94.63
1483	94.69
1482	94.75
1481	94.79
1480	94.82
1479	94.86
1478	94.9
1477	94.93
1476	94.94
1475	94.94
1474	94.93
1473	94.9
1472	94.87
1471	94.85
1470	94.85
1469	94.86
1468	94.87
1467	94.86
1466	94.85
1465	94.81
1464	94.77
1463	94.74
1462	94.73
1461	94.72
1460	94.71
1459	94.69
1458	94.61

1457	94.49
1456	94.37
1455	94.3
1454	94.25
1453	94.21
1452	94.17
1451	94.12
1450	94.09
1449	94.06
1448	94.02
1447	93.98
1446	93.97
1445	93.97
1444	93.98
1443	94.01
1442	94.04
1441	94.08
1440	94.13
1439	94.2
1438	94.29
1437	94.37
1436	94.43
1435	94.49
1434	94.56
1433	94.64
1432	94.72
1431	94.78
1430	94.82

1429	94.86
1428	94.89
1427	94.92
1426	94.93
1425	94.94
1424	94.94
1423	94.93
1422	94.94
1421	94.95
1420	94.94
1419	94.89
1418	94.85
1417	94.82
1416	94.8
1415	94.79
1414	94.78
1413	94.77
1412	94.75
1411	94.74
1410	94.73
1409	94.73
1408	94.74
1407	94.75
1406	94.76
1405	94.77
1404	94.78
1403	94.8
1402	94.83

1401	94.86
1400	94.89
1399	94.9
1398	94.92
1397	94.94
1396	94.95
1395	94.96
1394	94.96
1393	94.96
1392	94.96
1391	94.97
1390	94.99
1389	95.01
1388	95.01
1387	95.01
1386	95.01
1385	95.01
1384	95.01
1383	95.02
1382	95.02
1381	95.02
1380	95.02
1379	95.01
1378	95.01
1377	95
1376	95
1375	94.98
1374	94.96

1373	94.94
1372	94.92
1371	94.92
1370	94.92
1369	94.92
1368	94.93
1367	94.95
1366	94.98
1365	95.01
1364	95.05
1363	95.08
1362	95.11
1361	95.14
1360	95.16
1359	95.19
1358	95.22
1357	95.24
1356	95.26
1355	95.28
1354	95.29
1353	95.31
1352	95.32
1351	95.34
1350	95.35
1349	95.36
1348	95.37
1347	95.37
1346	95.37

1345	95.37
1344	95.37
1343	95.37
1342	95.37
1341	95.37
1340	95.37
1339	95.36
1338	95.36
1337	95.36
1336	95.37
1335	95.38
1334	95.4
1333	95.42
1332	95.45
1331	95.47
1330	95.49
1329	95.52
1328	95.54
1327	95.57
1326	95.59
1325	95.62
1324	95.65
1323	95.68
1322	95.7
1321	95.72
1320	95.74
1319	95.75
1318	95.76

1317	95.77
1316	95.78
1315	95.79
1314	95.8
1313	95.8
1312	95.79
1311	95.79
1310	95.78
1309	95.78
1308	95.78
1307	95.78
1306	95.78
1305	95.78
1304	95.77
1303	95.77
1302	95.77
1301	95.77
1300	95.77
1299	95.77
1298	95.77
1297	95.77
1296	95.76
1295	95.76
1294	95.76
1293	95.76
1292	95.75
1291	95.74
1290	95.73

1289	95.72
1288	95.71
1287	95.7
1286	95.69
1285	95.67
1284	95.65
1283	95.63
1282	95.6
1281	95.58
1280	95.56
1279	95.53
1278	95.49
1277	95.45
1276	95.39
1275	95.33
1274	95.26
1273	95.19
1272	95.11
1271	95.04
1270	94.96
1269	94.88
1268	94.81
1267	94.73
1266	94.66
1265	94.59
1264	94.53
1263	94.47
1262	94.42

94.36
94.29
94.21
94.13
94.06
93.98
93.9
93.82
93.73
93.64
93.54
93.43
93.33
93.21
93.21 93.1
93.1
93.1 92.98
93.1 92.98 92.86
93.1 92.98 92.86 92.75
93.192.9892.8692.7592.63
 93.1 92.98 92.86 92.75 92.63 92.51
 93.1 92.98 92.86 92.75 92.63 92.51 92.39
 93.1 92.98 92.86 92.75 92.63 92.51 92.39 92.27
 93.1 92.98 92.86 92.75 92.63 92.51 92.39 92.27 92.15
 93.1 92.98 92.86 92.75 92.63 92.51 92.39 92.27 92.15 92.03
 93.1 92.98 92.86 92.75 92.63 92.51 92.39 92.27 92.15 92.03 91.91

1233	91.46
1232	91.38
1231	91.3
1230	91.24
1229	91.19
1228	91.15
1227	91.11
1226	91.09
1225	91.06
1224	91.04
1223	91.03
1222	91.03
1221	91.04
1220	91.05
1219	91.07
1218	91.09
1217	91.13
1216	91.16
1215	91.21
1214	91.26
1213	91.32
1212	91.38
1211	91.46
1210	91.56
1209	91.68
1208	91.81
1207	91.96
1206	92.11

1205	92.26
1204	92.41
1203	92.55
1202	92.68
1201	92.81
1200	92.92
1199	93.02
1198	93.11
1197	93.18
1196	93.23
1195	93.27
1194	93.31
1193	93.33
1192	93.34
1191	93.34
1190	93.33
1189	93.3
1188	93.26
1187	93.2
1186	93.14
1185	93.07
1184	92.98
1183	92.89
1182	92.78
1181	92.66
1180	92.52
1179	92.38
1178	92.22

1177	92.06
1176	91.89
1175	91.71
1174	91.53
1173	91.35
1172	91.15
1171	90.95
1170	90.75
1169	90.54
1168	90.34
1167	90.13
1166	89.93
1165	89.72
1164	89.5
1163	89.29
1162	89.07
1161	88.86
1160	88.64
1159	88.43
1158	88.23
1157	88.03
1156	87.83
1155	87.64
1154	87.45
1153	87.28
1152	87.11
1151	86.95
1150	86.8

1149	86.66
1148	86.53
1147	86.4
1146	86.28
1145	86.15
1144	86.03
1143	85.91
1142	85.79
1141	85.68
1140	85.58
1139	85.47
1138	85.37
1137	85.27
1136	85.15
1135	85.04
1134	84.92
1133	84.8
1132	84.67
1131	84.54
1130	84.4
1129	84.26
1128	84.12
1127	83.98
1126	83.84
1125	83.71
1124	83.59
1123	83.48
1122	83.38

1121	83.27
1120	83.17
1119	83.07
1118	82.97
1117	82.87
1116	82.77
1115	82.69
1114	82.61
1113	82.53
1112	82.45
1111	82.37
1110	82.3
1109	82.23
1108	82.16
1107	82.1
1106	82.05
1105	82
1104	81.95
1103	81.92
1102	81.9
1101	81.9
1100	81.93
1099	81.99
1098	82.08
1097	82.19
1096	82.3
1095	82.43
1094	82.56

1093	82.68
1092	82.79
1091	82.88
1090	82.97
1089	83.04
1088	83.09
1087	83.13
1086	83.15
1085	83.15
1084	83.15
1083	83.15
1082	83.15
1081	83.16
1080	83.17
1079	83.2
1078	83.27
1077	83.35
1076	83.46
1075	83.58
1074	83.72
1073	83.85
1072	84
1071	84.14
1070	84.29
1069	84.41
1068	84.52
1067	84.62
1066	84.71

1065	84.79
1064	84.87
1063	84.96
1062	85.06
1061	85.16
1060	85.25
1059	85.35
1058	85.47
1057	85.6
1056	85.74
1055	85.89
1054	86.04
1053	86.18
1052	86.3
1051	86.42
1050	86.52
1049	86.6
1048	86.68
1047	86.75
1046	86.82
1045	86.89
1044	86.94
1043	87
1042	87.05
1041	87.09
1040	87.14
1039	87.19
1038	87.24

1037	87.28
1036	87.32
1035	87.37
1034	87.4
1033	87.42
1032	87.43
1031	87.44
1030	87.44
1029	87.43
1028	87.41
1027	87.39
1026	87.37
1025	87.34
1024	87.31
1023	87.29
1022	87.28
1021	87.26
1020	87.24
1019	87.22
1018	87.2
1017	87.19
1016	87.19
1015	87.2
1014	87.23
1013	87.26
1012	87.29
1011	87.32
1010	87.35

1009	87.36
1008	87.36
1007	87.36
1006	87.35
1005	87.34
1004	87.33
1003	87.31
1002	87.3
1001	87.29
1000	87.29
999	87.3
998	87.32
997	87.36
996	87.39
995	87.42
994	87.45
993	87.49
992	87.53
991	87.57
990	87.61
989	87.63
988	87.62
987	87.59
986	87.55
985	87.48
984	87.39
983	87.28
982	87.15

87.02
86.88
86.76
86.66
86.56
86.48
86.43
86.4
86.41
86.46
86.53
86.62
86.75
86.89
87.04
87.2
87.37
87.55
87.73
87.91
88.08
88.26
88.42
88.57
88.71
88.84
88.96
89.08

953	89.2
952	89.3
951	89.4
950	89.49
949	89.57
948	89.64
947	89.71
946	89.76
945	89.8
944	89.82
943	89.84
942	89.84
941	89.84
940	89.84
939	89.83
938	89.81
937	89.79
936	89.76
935	89.72
934	89.68
933	89.63
932	89.56
931	89.48
930	89.39
929	89.27
928	89.14
927	89.01
926	88.88

925	88.74
924	88.59
923	88.43
922	88.25
921	88.06
920	87.87
919	87.67
918	87.48
917	87.28
916	87.07
915	86.85
914	86.62
913	86.39
912	86.16
911	85.95
910	85.74
909	85.52
908	85.29
907	85.06
906	84.84
905	84.62
904	84.41
903	84.2
902	84
901	83.8
900	83.61
899	83.43
898	83.26

897	83.11
896	82.97
895	82.84
894	82.73
893	82.63
892	82.55
891	82.49
890	82.45
889	82.43
888	82.42
887	82.42
886	82.45
885	82.49
884	82.55
883	82.63
882	82.73
881	82.84
880	82.95
879	83.04
878	83.13
877	83.21
876	83.3
875	83.4
874	83.52
873	83.65
872	83.78
871	83.92
870	84.06

869	84.2
868	84.34
867	84.49
866	84.67
865	84.84
864	85.01
863	85.15
862	85.29
861	85.41
860	85.55
859	85.7
858	85.86
857	86
856	86.14
855	86.28
854	86.4
853	86.51
852	86.61
851	86.72
850	86.84
849	86.97
848	87.1
847	87.22
846	87.35
845	87.47
844	87.6
843	87.71
842	87.8

841	87.88
840	87.96
839	88.04
838	88.13
837	88.22
836	88.3
835	88.37
834	88.44
833	88.5
832	88.56
831	88.62
830	88.69
829	88.76
828	88.82
827	88.88
826	88.93
825	88.98
824	89.03
823	89.09
822	89.14
821	89.17
820	89.19
819	89.23
818	89.27
817	89.3
816	89.33
815	89.35
814	89.38

813	89.41
812	89.45
811	89.47
810	89.49
809	89.51
808	89.52
807	89.52
806	89.53
805	89.55
804	89.57
803	89.58
802	89.59
801	89.6
800	89.63
799	89.65
798	89.67
797	89.67
796	89.65
795	89.64
794	89.63
793	89.62
792	89.6
791	89.58
790	89.57
789	89.56
788	89.54
787	89.52
786	89.51

785	89.49
784	89.47
783	89.43
782	89.38
781	89.34
780	89.32
779	89.31
778	89.29
777	89.26
776	89.21
775	89.15
774	89.1
773	89.05
772	89
771	88.96
770	88.91
769	88.87
768	88.84
767	88.8
766	88.77
765	88.74
764	88.7
763	88.66
762	88.62
761	88.58
760	88.52
759	88.46
758	88.4

757	88.35
756	88.31
755	88.27
754	88.25
753	88.23
752	88.21
751	88.18
750	88.14
749	88.1
748	88.05
747	88
746	87.95
745	87.89
744	87.83
743	87.78
742	87.73
741	87.68
740	87.62
739	87.56
738	87.49
737	87.42
736	87.34
735	87.26
734	87.19
733	87.13
732	87.06
731	87
730	86.94

729	86.86
728	86.75
727	86.65
726	86.55
725	86.48
724	86.4
723	86.33
722	86.26
721	86.18
720	86.1
719	86.03
718	85.96
717	85.89
716	85.82
715	85.74
714	85.67
713	85.6
712	85.53
711	85.48
710	85.42
709	85.37
708	85.31
707	85.26
706	85.23
705	85.23
704	85.24
703	85.24
702	85.21

701	85.16
700	85.13
699	85.12
698	85.14
697	85.17
696	85.19
695	85.19
694	85.19
693	85.18
692	85.17
691	85.17
690	85.18
689	85.18
688	85.18
687	85.2
686	85.23
685	85.26
684	85.29
683	85.31
682	85.32
681	85.33
680	85.34
679	85.36
678	85.39
677	85.42
676	85.45
675	85.48
674	85.5

673	85.52
672	85.53
671	85.55
670	85.58
669	85.57
668	85.5
667	85.45
666	85.46
665	85.5
664	85.52
663	85.52
662	85.51
661	85.5
660	85.49
659	85.47
658	85.45
657	85.43
656	85.42
655	85.41
654	85.4
653	85.38
652	85.34
651	85.3
650	85.28
649	85.27
648	85.27
647	85.26
646	85.23

645	85.2
644	85.17
643	85.17
642	85.17
641	85.17
640	85.14
639	85.11
638	85.11
637	85.11
636	85.12
635	85.12
634	85.13
633	85.14
632	85.13
631	85.1
	85.1 85.07
631	
631 630	85.07
631 630 629	85.07 85.04
631 630 629 628	85.07 85.04 85.03
 631 630 629 628 627 	85.07 85.04 85.03 85.03
 631 630 629 628 627 626 	85.07 85.04 85.03 85.03 85.03
 631 630 629 628 627 626 625 	85.07 85.04 85.03 85.03 85.03 85.01
 631 630 629 628 627 626 625 624 	85.07 85.04 85.03 85.03 85.03 85.01 84.95
 631 630 629 628 627 626 625 624 623 	 85.07 85.04 85.03 85.03 85.01 84.95 84.89
 631 630 629 628 627 626 625 624 623 622 	85.07 85.04 85.03 85.03 85.03 85.01 84.95 84.89 84.83
 631 630 629 628 627 626 625 624 623 622 621 	 85.07 85.04 85.03 85.03 85.01 84.95 84.89 84.83 84.79

617	84.6
616	84.48
615	84.37
614	84.29
613	84.24
612	84.2
611	84.18
610	84.16
609	84.13
608	84.11
607	84.11
606	84.12
605	84.13
604	84.12
603	84.11
602	84.11
601	84.08
600	84.04
599	83.99
598	83.95
597	83.91
596	83.87
595	83.83
594	83.81
593	83.79
592	83.77
591	83.75
590	83.71

589	83.65
588	83.57
587	83.49
586	83.41
585	83.35
584	83.3
583	83.26
582	83.23
581	83.16
580	83.04
579	82.89
578	82.77
577	82.65
576	82.54
575	82.43
574	82.34
573	82.25
572	82.17
571	82.09
570	82.02
569	81.9
568	81.75
567	81.58
566	81.39
565	81.19
564	80.97
563	80.76
562	80.57

561	80.37
560	80.12
559	79.85
558	79.57
557	79.3
556	79.06
555	78.85
554	78.65
553	78.4
552	78.1
551	77.82
550	77.61
549	77.42
548	77.22
547	77.02
546	76.86
545	76.73
544	76.57
543	76.38
542	76.17
541	76
540	75.88
539	75.82
538	75.79
537	75.73
536	75.62
535	75.54
534	75.51

533	75.48
532	75.42
531	75.37
530	75.35
529	75.34
528	75.32
527	75.28
526	75.22
525	75.13
524	75.03
523	74.97
522	74.95
521	74.94
520	74.89
519	74.82
518	74.74
517	74.65
516	74.55
515	74.48
514	74.42
513	74.36
512	74.29
511	74.28
510	74.34
509	74.39
508	74.37
507	74.28
506	74.18

505	74.09
504	74.02
503	74
502	74.02
501	74.05
500	74.06
499	74.09
498	74.13
497	74.15
496	74.12
495	74.09
494	74.08
493	74.03
492	73.95
491	73.9
490	73.89
489	73.91
488	73.94
487	74
486	74.11
485	74.2
484	74.22
483	74.22
482	74.26
481	74.32
480	74.41
479	74.54
478	74.7

4	77	74.83
4	76	74.9
4	75	74.96
4	74	75.04
4	73	75.09
4	72	75.09
4	71	75.08
		75.13
	69	75.18
	68	75.23
	67	75.28
		75.36
		75.41
4	64	75.42
4	63	75.46
4	62	75.58
4	61	75.72
4	60	75.84
4	59	75.89
4	58	75.96
4	57	75.98
4	56	75.92
4	55	75.85
	54	75.82
4	53	75.81
4	52	75.88
	51	76.06
4	50	76.31

APPENDIX 11 CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name Nationality Date and Place of Birth Marital Status : Galam Nanyak : Nigerian : 13 June 1980, Plateau : Married

EDUCATION

Degree	Institution	Year of Graduation
M.Sc.	Human Physiology, University of Jos	2014
MBBS	Medicine and Surgery	2006

WORK EXPERIENCE

Year	Place	Responsibilities
2019-present	Dept of Physiology, University of Jos	Nursing std Coordinator
2016-present	Faculty of Basic Medical Sc. Board Member	University of Jos
2011-2013	Dept of Physiology PG committee	Asst. Coordinator
2010 - 2014	Faculty Alumni Committee Member	University of Jos
2010-2014	Faculty of Medical Sciences Staff adviser	University of Jos
2008 - 2016	Faculty of Medical Sciences, Board Member	University of Jos

LANGUAGES SPOKEN

English, Hausa, Tarok

PUBLICATIONS IN PEER REVIEW JOURNALS IN COVERAGE OF SCI, SCIE, AND SCOPUS

- Galam, N., Tulay, P., &Adali, T. (2020). In Vitro MCF-7 Cells Apoptosis Analysis of Carboplatin Loaded Silk Fibroin Particles. *Molecules*, 25(5), 1110.
- Tulay, P., Galam, N., &Adali, T. (2018). The Wonders of Silk Fibroin Biomaterials in the Treatment of Breast Cancer. *Critical Reviews™ in Eukaryotic Gene Expression*, 28(2).
- Egesie, U. G., Chima, K. E., &Galam, N. Z. (2011). Anti-inflammatory and analgesic effects of aqueous extract of Aloe Vera (Aloe barbadensis) in rats. *African Journal of Biomedical Research*, *14*(3), 209-212.

PUBLICATIONS IN THE COVERAGE OF AJOL AND OTHER ONLINE JOURNALS

- Yilgwan, G., Idah, O. V., Dami, S. N., Rabiu, A. M., Wale, H. R., Galam, N. Z., ... & Sabo, A. M. (2019). Haemodynamic Changes in Response to Mild Acute Haemorrhage in Humans. *JOURNAL OF RESEARCH IN BASIC AND CLINICAL SCIENCES*, *1*(4), 303-308.
- Dimka, L. Y., Tsoho, F., &Galam, N. Z (2019). Comparative Assessment of Lung Function using Peak Expiratory Flow Rate (PEFR) Between Automobile Painters and Non-Painters within Mechanic Garages InFarin-Gada, Jos, Plateau State, Nigeria. *IOSR Journal of Dental and Medical Sciences 18*,(9),44-50
- Rabiu, A. M., Idah, O. V., Yilgwan, G., Wale, H. R., Dimka, L. Y., Musa, F. T.,N.Z Galam ... & Odeh, S. O. (2017). Smooth Muscle Motility: Comparing the Effect of a Synthetic Anti-Diarrhoeal Drug with a Probiotic on an Isolated Rabbit Intestine.

- Glory, A., Gambo, I. M., Luka, K., Enejo, A. C., Hamza, W., &Galam, N. Z (2016). Comparative Assessment of Lung Function using Peak Expiratory Flow Rate (PEFR) Between Tobacco Smoking and Non Smoking Students of the University of Jos. *Journal of Biology, Agriculture and Healthcare, 6*, 6-11
- Gambo, I. M., Husainy, A. Y., Galam, N. Z., & Enyikwola, O. (2015). The Effects of Aqueous Stem Bark Extract of Ceiba pentandraL. (silk cotton tree) on Ethanol and Indomethacin-induced Gastric Ulcer. *Annals of Borno*, 25(1), 113-120.
- Jimam, N. S., David, S., Galam, N. Z., Joseph, B. N., & Buoye, O. S. (2015). Patients' perception of the quality of malaria treatment in primary health care centers of Jos and Environs. *Medical Journal of Dr. DY Patil University*, 8(4), 441.
- Nanloh, Jimam S., Galam Z. Nanyak, and Dangiwa A. Dauda. "Assessment of the knowledge and attitude of Jos residents toward the prevention and treatment of fever." *Medical Journal of Dr. DY Patil University* 8, no. 3 (2015): 295.
- Galam, N. Z., Gambo, I. M., Habeeb, A. A., &Shugaba, A. I. (2013). The effect of aqueous extract of Garcinia kola seed on the liver histology. *J Nat Sci Res*, *3*, 8-87.
- Egesie, U. G., Galam, N. Z., Gambo, I. M., Ayodeji, A. A., Simji, G. S., Kwekyes, L. S., ... &Adaji, A. J. (2013). Evaluation of andrological indices and testicular histology following administration of varied doses of nicotine.
- Galam, N. Z., Gambo, I. M., Rabiu, A., Chinelo, N., &Dami, S. (2013). Antiinflammatory effect of aqueous extract of coffee plant leaves (Coffeacanephora) in rats. *J Nat Sci Res*, *3*(7), 191-3.

- Amadi, K., Sabo, A. M., Galam, N. Z., Dabun, L. J., &Ogunkeye, O. O. (2013). The Influence of Thyroid Hormones on Gamma Immunoglobulin Density (Ig-Gp) and Apgar Score. *International Journal of Basic, Applied and Innovative Research*, 2(4), 112-117.
- Galam, N., Gambo, I.M., Galam, Z.Z., Simji, G.S., AyakaLouis, O., Dami, S., Sale, G.S., Raymond, V.A., &Egesie, U.G. (2013). The Effect of Varied Doses of Nicotine on Some Morphometric Parameters of the Testis in Albino Wistar Rats. *Journal of Natural Sciences Research*, *3*, 187-190.
- Galam, N. Z., Gambo, I. M., Dami, S. N., Gomerep, S. S., Ayaka, L. O., Sendeht, A. J., &Egesie, G. U. (2013). Evaluation of some reproductive hormonal profile following the administration of varied doses of nicotine. *Journal of Medicine in the Tropics*, *15*(2), 82.