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ABSTRACT

In this research paper, we extended an existing SIR epidemic integer model containing two
strains and two vaccinations by using a system of fractional ordinary differential equations in
the sense of Caputo derivative of order o € (0,1]. Four equilibrium points were established:
disease free equilibrium, strainl disease free equilibrium, strain2 disease free equilibrium and
endemic equilibrium. Detailed analysis of the equilibrium points of the model was given
applying fractional calculus and Routh-Hurwitz criterion.

Analytically, the threshold value of the basic reproduction number was obtained and the
description of the existence of the equilibrium points established. It was shown that when the
two reproduction number R; and R, are less than one, the disease die out over time and when
either of them are greater than one, the pandemic persist in relation to the thriving strain. In
addition, the strain with the higher reproduction number thrives and outshines the other with
smaller magnitude. Stability analysis of the equilibrium points was carried out employing the
Jacobian matrix. Numerical simulations were iterated to support the analytic results adopting
real life data from the Global Influenza Surveillance and Response System (GISRS) of the
World Health Organization. It was further discovered that the less presence of vaccine of a
given strain in the population, the more the populace of infective in the other strain
compartment. Finally, with the fractional order technique, the memory effect of the system is

made visible and easy for prognosis.

Keywords: Epidemic model; two strain; two vaccine; fractional calculus; fractional-order

model; Routh-Hurwitz criterion; basic reproduction number; stability



OZET

Bu arastirmamizda, o € (0,1] dereceli Caputo tiirevi anlaminda bir kesirli adi diferansiyel
denklem sistemi kullanilarak iki tiir ve iki asilama igeren mevcut bir SIR epidemik model
genisletilmistir. Hastaligin olmadigy, 1. tiirde hastaligin olmadigi, 2. tiirde hastaliin olmadigi
ve endemik durum olmak iizere 4 tane denge noktasi olusturulmustur. Modelin denge

noktalarinin detayli analizinde kesirli kalkiiliis ve Routh-Hurwitz kriteri uygulanmistir.

Analitik olarak, temel lireme sayisinin esik degeri hesaplanmis ve denge noktalarinin
varliginin agiklamasi verilmistir. Temel iireme sayist R; Ve R, birden kii¢iik oldugunda,
hastaligin zamanla yok oldugu ve herhangi biri birden biiyiik oldugunda ise pandeminin
gelisen tiirle iligkili olarak devam ettigi gosterilmistir. Buna ek olarak, daha biiyiik cogalma
sayisina sahip tiir, kiigiik bir biiytlikliiklede olsa, digerini gecer ve golgede birakir. Denge
noktalarinin stabilite analizi Jacobian matrisi ile yapilmustir. Diinya Saglik Orgiitii’niin
Kiiresel Grip Gozetim ve Miidahale Sisteminden gergek hayat verilerini benimseyen analitik
sonuclar1 desteklemekicin sayisal simiilasyonlar yinelenmistir. Ayrica, popiilasyonda belirli
bir tiirde as1 varlig1 ne kadar az olursa, diger tiir bolmesindeki enfeksiyonlu popiilasyonun o
kadar fazla oldugu kesfedilmistir. Son olarak, kesirli mertebe teknigi ile, sistemin hafiza

etkisi goriiniir ve prognoz i¢in kolay hale getirilmistir.

Anahtar Kelimeler: Salgin modeli; iki tiir; asi; kesirli kalkiiliis; kesirli-mertebe modeli;

Routh-Hurwitz kriteri; temel iireme sayisi; stabilite
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CHAPTER 1

INTRODUCTION

1.1. Fractional Calculus

The notion of fractional calculus was first conceptualized by Leibniz, a German
mathematician and early founder of classical calculus in 1695, and was further developed by
L. Euler in 1730 (J.Tenreiro Machado et al, 2011).

Fractional calculus is a generalization of the integer calculus such that the order of the
derivatives and integrals could be allowed to be fractions, irrational or complex numbers
(1 Podlubny, 1999).

For example, Legendre’s symbol for the generalized factorial is:

F'(n+1) n—-a
rn+1-a)

D% (x™) =

where a is the order of the derivative.

1.1.1. Definition

The fractional integral of order a > 0 of a function f: R* — R is defined by

IF () = 15 o (¢ = )°7'909)

where I'(.) is the gamma function.



1.1.2. Definition

The general definition of the caputo derivative 1s defined as:

1
a — r(n-a)
atn

t _ n—-oa—1 dnf(S) . _
INGEE)! —o-ds,ifn—1<a<nneN

, fao=n,neN

where a is the order of the derivative and it’s allowed to be a real or complex number.

1.1.3. Definition

The general definition of the Riemann-Liouville derivative 1s defined as:

n
. F(nl_a) ddf,(f) fot(t —5)"* 1 f(s)ds, ifn—1 < a<n,neN
D% f()= Ao B N
—m o fa=mnne

where o is the order of the derivative and it’s allowed to be a real or complex number

(Santanu Saha Ray and subhadashan Sahoo, 2019).

Caputo’s fractional derivative formula has shown to be more applicable in real life scenario

since the derivative of a constant is zero as in the case of Riemann-Liouville’s derivative.

Many Scientists like (Sardar et al, 2015) and (Dumitru Baleanu et al, 2010) have found

fractional-order derivatives to be imperative and integrative in formulating models for

analyzing dynamical systems. Recent research also has shown fractional calculus to be

essential and applicable in control and synchronization of chaotic systems (Ahmad Taher et

al, 2017) and many other fields of engineering.



1.2. SIR Model

The SIR model is a mathematical model that depicts how an infection is spread over a
population. It is one of the simplest compartments and generic model that birthed other
models, often applied in epidemiological analysis. It was first idealized by Ronald Ross and
William Hammer in the early twentieth century before been developed and theorized by
Kermack and Anderson Gray McKendrick between 1927 and 1933 (Murray, 2003). It consists
of three partitions: Susceptible, Infected and Removed population, hence the name SIR
model. The model is plausibly prognostic for infective diseases that are transmitted from

human to human and where recovery poses resistive limitations (Earn et a, 2000).

New trends have it that the application of SIR model have gone beyond health
epidemiological apprehension to conditions pertaining to marketing, informatics, sociology

and economy (Rodrigues, 2016).

The SIR model is given by:

— = —rsl,
dat

dl

— =rsl —al,
dt

dR

— =al,

dt

ds  dI  dR
Z4+S + =0,
at dt dt

where,

S(t) is the susceptible population



I(t) is the Infected population
R(t) is the Recovered population
r > 0 is the rate of gain in the infective class

a > 0 is the rate of removal of infective to the removed class.

With the condition:

S(t) + I(t) + R(t) = N.

Many other models like Susceptible-infected-susceptible (SIS) (Harko, 2014), Maternally
Derived Immunity-Susceptible-Infectious-Recovered (MSIC) and the susceptible-Exposed-
Infectious-Recovered (SEIR) have been derived from the classical SIR model (Brauer, F. and
Castillo-Chavez, C, 2001).

1.3. Influenza

Influenza also known as “flu” is a communicable disease caused by the influenza virus that is
transmitted via airborne droplets and attacks the respiratory system (WHO 2018). Some of its
common symptoms include: fevers sore throat, coughing, running noses and headache etc.
There are four types of seasonal influenzas virus: Type A, B, C and D. Type A and B virus
spread and cause seasonal epidemics however A is known to be more rampant than the others.

Influenza virus is substantiated by testing the sputum or mucus from the nose.

Vaccines and antiviral drugs have been formulated and recommended by the World Health
Organization (WHO) and Centers for Disease Control and Prevention (CDC) for curbing and
controlling the disease. It is estimated that over 35 million people living in the United State of
America (USA) have shown related symptomatic illness from the influenza virus between
2018 and 2019.

Xingyang (XuXingyang et al 2018) and many others have tried to work on a fractional order

epidemic model for influenza dynamics applying the reimbursements of the fractional-order



concept to influenza dynamic in order to postulate conditions under which the epidemic can
be contained. Other scientists like Moustafa-Elshahed (Moustafa-Elshahed et al, 2011) have
adopted the fractional-order unification on influenza dynamics and have even extended it to
an SIRC model.

1.4. Basic Reproduction
1.4.1. Definition

The next generation matrix is defined as the square matrix G in which the ijth element of G is
the expected number of secondary infections of type i caused by a single infected individuals

of type j assuming that the population of type i is completely susceptible.

1.4.2. Definition

The basic reproduction number is defined as the dominant Eigen value of the new generation

matrix G such that:

G = Fv—l F = [afl(xo)] V= [avl(xo)]

ox;j ox;j
where,
f, are new infections,
v, are transferred infections from one compartment to another,

X o IS the disease free equilibrium state.

The basic reproduction R, is informally connoted as the likely number of secondary cases

originated by a single infection in an entirely susceptible populace (Murray, 2003).

Ro o (lnfectlon)x (constant)x ( time ) _ aﬁ)/

constant time infection

where,



a represents the transmissibility,
B represents the average rate of constant between susceptible and infected individuals.

y represents the duration of infectiousness

Studies have shown that if R, < 1 then there will not be an epidemic and the disease will die

out naturally. However, if R, > 1 it implies that the odds of a pandemic are high.

Influenza is known to have an average reproduction number, R, of 2 to 3 (Mills, 2004),

plausible enough to explain its contagion.

1.5. Stability

Stability in general sense is a state in which something isn’t prone to a significant alteration.
In dynamics, the concept of stability hypothesizes a system capable of returning (or at least

approaching) its original state after perturbation.

A system is said to be stable if all the roots of the characteristic equation lie on the left half

plane; i.e. are negative.

1.5.1. Definition

Let X be a metric space with metric d. Let | be an additive semi-group of real numbers. A

dynamical system on X (also known as flow) is defined by a continuous mapping:
mXxXI]I-X,
with the following properties:

. 7n(x,0)=x forallx€X,
Il.  n(r(x,t),s) = n(x,t+s), foralltel

1.5.2. Definition

A point x* € X is called an equilibrium or rest point of a dynamical system



mXXR-X, if

n(x,t) = x* forallt € R.

1.5.3. Definition
An equilibrium point x* € X of a dynamical system
mXXR-oX,
is called stable if for every € > 0 there exist a § = § ¢ such that
d(x,y) < & umplies that d(x,m(x,t)) < € forallt >0
And asymptotically stable if x* is stable and there exist a § such that

tlim n(y,t) =x, forally € X with d(x,y) < 6.

1.5.4. Definition
A function V € C(X) is called a Lyapunov function with respect to f if

Viix) = gradV (x)T f(x) < 0 forallx € X.

With this definition the following proposition was formulated and proven.

If there exists a Lyapunov function V € C(X) with respect to f which is positive definite

with respect to some rest point x € X, which satisfies the condition
V(x)=0andV (x) > 0 forallx € X, x+ X,
then x is stable.
If in addition
V(f)=0andf/(x) < Oforallx € X, x # X,

then x is asymptotically stable.



1.5.5. Theorem

Let

LI = £ ), x(0) =x, ,

be an autonomous nonlinear fractional-order system with
0<a<1andx€eR"

and the equilibrium points of the above system are solutions to the equation
f(x)=0.

An equilibrium is locally asymptotically stable if all Eigen values 4,; of the Jacobian matrix

] = g—i evaluated at the equilibrium satisfy |arg2,;| > a%_

1.6. Routh- Hurwitz Stability Criterion

The Routh-Hurwitz criterion provides the necessary and sufficient condition for stability of a
linear system. It used to ascertain if the roots of a polynomial will be negative without directly

solving for them.

Routh- Hurwitz stability Criterion for second order polynomials:
P(s) =s?+a;s+ ag, P(s) =0 isstableifandonlyif a;,a, > 0.
Routh- Hurwitz stability Criterion for third order polynomials:
P(s) =s®+a,s?+ a;, P(s)=0,
is stable if and only if
a,a, >0anda,a, >0,
Routh-Hurwitz stability Criterion for higher order polynomials:
Let D(s) = a,s" + ap_1s" 1+ +a;s+ ag.

8



We construct the Routh array as follows:

an ap—2 Ap—s
ap-1 QAap-3 ap-s

by Dby bs
€1 C2 C3
b = An—1 X An-2; — An X Apn—(21+1)
¢ an-1 ’

_ b X an_(2141) = An-1 X byyq
c, = by )

The polynomial D(s) has all negative roots if and only if all first-column elements of the

Routh array have the same sign.

CHAPTER 2

A TWO-STRAIN EPIDEMIC MODEL WITH TWO VACCINATIONS



2.1. Description of the Integer Model

Many authors like (Yukihiko Nakata et al, 2014) and (Rahman A, Zou X, 2011) have proposed
several epidemic models and carried out stability research. One of such is the two-strain
epidemic model with two vaccinations proposed by (Bilgen Kaymakamzade et al, 2017) as

follows:

14

utv,

Figure 1.1: Transmission diagram

Figl.1 illustrates the flow and transfer of the disease dynamics of influenza with two strain
and two vaccinations. Arrows pointing to a compartment represent an addition of population
while an arrow pointing away from compartment signifies removal of population from the

compartment.

The model is derived as follows:

ds

E = /\_(ﬁlll-l- ﬁzlz‘l‘ A)S,
dv ,

FTR 1S —(ky L+ WV,

10



%=r25—(k211+ wVs, (2.1)
dl

2 = (kV, + B1S), —aqly,

dt

% = (kiVy + BS)L —asly,

dR

i Yili + V2l —uR

Where,
A=n+rnt+u, a=p+Vi+y,a, =u+V,y + v,
With the condition that:

S +V1+V2+11+12+R= N

The population N (t) is separated into six partitions: S,V {, V ,, I, I, and R which represent
the dimension of susceptible, inoculated with the vaccination for strain 1, inoculated with the
vaccination for strain 2, infected with strain 1, infected with strain 2 and recovered cubicle
respectively. Equal birth and death in the population without dual infection were assumed

with respect to all variables and constraint.

Table 2.1: Variables and Parameter.

Parameter Description
N total population

A recruitment rate of individuals

11



average time of life expectancy

7 rate of vaccination with strain 1

T, rate of vaccination with strain 2

k4 transmission coefficient of vaccinated individuals V' ; to strain 2
k, transmission coefficient of vaccinated individuals V , to strain 1
B transmission coefficient of susceptible individuals to strain 2

B2 transmission coefficient of susceptible individuals to strain 1

1 average infection period of strain 1

Y1

1

V2 average infection period of strain 2

Vv, infection induced death rate of strain 1

Vv, infection induced death rate of strain 2

The authors carried out an integer order stability analysis on the model employing Lyapunov
functions, with influenza as the epidemic disease. Numerical analysis was carried out to
further buttress the analytic outcomes. Without conflict of interest they concluded that the
system was globally stable if the reproduction coefficients were less than one. They further
discovered that the strain with higher reproduction ratio dominates the other with less and the
recruitment parameter as the most significant factor influencing the reproduction ratio and

hence the global stability of each boundary equilibrium.

CHAPTER 3

12



THE FRACTIONAL TWO-STRAIN EPIDEMIC MODEL WITH TWO
VACCINATIONS

3.1. The Fractional Model

Integrating fractional order on model (2.1) with same parameters, and o as the order of the

differential equation we arrive at the following:

% = AN=(pilh+ Bl + 1) S,

d’V 4(t)

die nS —(kilz+ WV,

%= S —(ky i+ WV 5,

deL () (3.1)
FI (kaV o + BiS)L —aqly,

d°I,(t)
d;" = (kiV 1+ B2S); —aly,

d°R(t)
a0 N Iy +v20l; - R,

Where ¢ € (0,1] is the order of the fractional derivative.

The fractional derivative of model (2.1) is in the sense of Caputo as Caputo technique is often
used in real life application as it allows initial values for the fractional differential equations

with Caputo derivatives similar to the integer order differential equations.

Theorem 3.1: The biological feasible region of model (3.1) is

A
<P={(S,V1,V2,11,IZ,R ER?_: OSNS;}

and positively invariant.

Proof:

13



0 <50 L dVa® | dVa®  dTh(®) | a0 d?R(t)
-  dto dato dat? dat? dato atc

=/\_ll(S +V1+V2+11+12+R)_V111_V2[2
<A —u(N)
= 0<A—uN

> N<

®I>

Observe that all parameters used are nonnegative. So, since the system is bounded given any
initial condition the solution is defined for any time t > 0 and remains in the region.

Therefore, the region ¢ is positively invariant.

3.2. Model Analysis

Instead of analyzing system (3.1), owing to non-existence of the recovered compartment, we

investigate the behavior of the following system:

L0 = A= (Bl + Bl + DS,
%= 1S — (ki + WV,
0 = 1S — ey i+ WV 5, (3-2)
o1, (t)
d;" = (kV, + B1S)L —aqly,
d?L,(t)
o (V1 + BoS) —asl;.
3.2.1. Equilibria

The equilibrium points are computed by equating system (3.2) to zero and solving
concurrently. The following equilibria are therefore gotten:
I.  Disease free equilibrium point E, to the coordinates
(5008, VO 1(D,V05(0),1°(6), 1°(8) ) s given by By = (%, =2, 22,0,0).

A ui

14



Il.  Strainl disease free equilibrium E; to the coordinates

(S, V10,V 2(6), [,(8), I,(t) ) is given by

S A
S(t) " Baly+ A’
_ Ary _ Ar, _
Va(t) = , Vo) =———=, L) =0.
1(8) (k1 I + (B2l +4) 2(t) p(Blz + ) 10
and I,(t) is the root of the quadratic
AL +BL+C=0, (3.3)

where,
A= azkiB; B= azki A+ auf, — Nk1f,

C = a 2/1/1 - /\lel - /\ﬂﬁz

E; will only be biologically meaningful and hence exist if I,(t) is positive.

We can see this by employing the Routh-Hurwitz criterion and so the polynomial

(3.3) which can also be expressed in this form:
=2 B 7+ Cc
12 + Z 12 + Z —_ O
will have positive roots if % < 0and % >0 or % > 0 and % < 0. Since A'is clearly

positive it suffices to consider if B < 0and C >0 or B> 0and C < 0.

Suppose for contradictionthat B < 0 and C > 0.

B<0 > a2k11+ azﬂﬁz_/\klﬁ2<0

Nk1 B2 (3.4)
ki A+ up;

C>0 > azl/[/’{_/\rlkl_/\,uﬁz>0

= af2<

Ariki+AupB, (35)

= A, >
2 A

Simplifying (3.4) and (3.5) we get that,

Ariki+Aup; Ak1B>
T R g, < —22
ua 2 Ry A+ pB,

15



and therefore

Ariki+AuBz — AkiB2
ul ki A+ pupa

<0,

it follows that

Arika®+AuBorika+Au?Bo°
uA(ky A+ uB2)

<0,

contradiction since all parameters are non-negative. Hence, B > 0 and C < 0.
And so E; exist if

Ar1k+AUB>
o > 1. (3.6)

Strain2 disease free equilibrium E, to the coordinates
( S‘(t) ) V 1(t), V 2 (t), il(t)i fZ (t)) iS given by

A _ 75 _ Arq
S0 = Bili+ A’ Vi@ = u(B1l1 +2)

7 ,(t) = AT , L) =o.
(ky Iy + W (Bl + )

and I, (t) is the root of the quadratic

ALZ+Bl,+Cc=0,

where,
A= azkif; B= aky; A+ aufy— Nk,

C=a«a 1,U./1 - /\rzkz - /\:uﬁl .

Similarly E, will only be biologically meaningful and hence exist if I,(t) is positive.

And therefore C < 0 so

Araka+ApB

Tt (3.7)

16



IV.  Double strain infection equilibrium E; to the coordinates

(S@®),V 1),V (), L(t), L (t) ) is given by

A V@) = Ary
Bili + Boly + A7 ! (ky I+ W)(Brly + Bl + 1) °

S(t) =

Ary
(ky Iy + W) (B1ly + B2l + A) .

V.0 =

I, (t) is the root of the equation

A L*+B LI, +Cl, +D;I, +E; =0,
where,
A; = —a kyfy, By = —a1frky, Gy = Nkafy —aqdk; —aupfy,
Dy = —aup, E1= Nkyry —aqpd+ Aups.
And
I, (t) is the root of the equation
Ay L> + By LI, 4+ Cyly +DyI, +E, =0,
where,
Ay = —akifr, By = —afiky G = —aupy,
Dy = Nkyfy — a Ak —aufy Ey = Ny —a, p A+ Aups,

The equilibrium E exist and would be biologically meaningful if I, (t) and I, (t) are
positive.

3.2.2. Reproduction Number

We proceed by computing the reproduction number by employing the new generation matrix
method discussed in chapter 2. Considering the infected compartment (1, (t), I,(t)), the
jacobian matrices F and V representing the new infectivity and the transfer of persons

connecting the compartments respectively, evaluated at E, are given by

_ k2V2+ﬁ1S) _(05111)
aF_(k1V1+,325 oV = ayl,

17



o (kZVO2 + B;S° 0 )
B 0 k,VO, + B,S°)

k0, + 8,50

0
— -1 _ aq
G=FV—= kqVO 1+ BS° |
O _ - e
a2
The Jacobian matrix of G will be:
0 0
|G —Ip| = 0 VO 4 + ByS O )
v
a2
k2V02+ﬁ150_ kiVO 1+ BS° _ _
= ( aq p)( a o p)_o
kV0 5, + 5180 VO, + 8,80
S py = SRS ), St
= pl =k27"2/\ + ﬁ]_/\ =k17"1/\ + ﬁz_/\

aquld a1’ bz a,uld a1’

Since the basic reproduction number is the dominant eigen value, then
RO = maX{er RZ}:

where

__kar oA B1A
Rl - alﬂl + all’

18



and

_ k1r1/\ + ﬁz/\
T oa,ul azA’

3.2.3. Stability Analysis

The Jacobian matrix of model (3.2) is given by

(B 1+ B,Ix+ M) 0 0 -p,S
r1 —(ky I+ p) 0 0
T2 0 —(ky 11+ 1) —kaV
,8111 0 k211 k2V2 +ﬁ15 — a1
B,1, ki1, 0 0

— ﬁz S
_kl V 1
0 (3.8)

0
k1V1+,325—052/

Theorem 3.2: The disease-free equilibrium Ej is locally asymptotically stable if

R, <1land R, < 1.

Proof:

Evaluating the Jacobian matrix (3.6) of model (3.2) at E, we get,

- B, A -B,S
_ 1 2
A0 0 1 7
—klrl/\
ri —u 0 0
ul
—ky 1y A
r, 0 —u % 0
k A\ A
0 0 0 2;/12 +ﬁ3 —a, 0
klrll\ ,82/\
0 0 0 0 i + 71

Solving for the Eigen values we arrive at

19




A= u=P - |(BE + 2 —ay) - p||(B22 + 22 —a,) -

ui ud A
p]ZO.

Further solving and simplifying, we get that
P1=—Ap,=p3=—U

and the quadratic
p’+apta,=0,

where

a; =(@;(-R;+1) +a,(—R,+ 1)),
a, = (a 1(Ry — Da (R, — 1))-

Observe that a; and a, will only be positive when R; < 1and R, < 1.

So, by Routh-Hurwitz criterion all eigenvalues are negative (|arg Al =m> ‘72—”,] =
12,...,5) if
R, <1land R, < 1.

Therefore, the disease-free equilibrium E| is locally asymptotically stable for o € (0,1]
if R, <land R, < 1.

Theorem 3.2: The Strainl disease equilibrium E; is locally asymptotically stable if R, < 1.

Proof:

Evaluating the Jacobian matrix (3.8) of model (3.2) at E; we get,

—p1A B2 A
—(B,L, + A 0 0
(Boly ) Bl + A Bl + A
oL+ 0 0 —Han A
r - n
! te (Boly + D) (ky I, + 1)
0 _kzrz/\ O
T —-u T
2 Bl + D
kor, A A
0 0 212 B —a, 0
Bl + N By + 4
ki A A
Bl ky I 0 0 = Pa

+ -«
Bola + D) (ki + w) Bl + 2 2
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Solving the matrix for the Eigen values we arrive at:

[~(Buly+ ) = pll—Chy L + @) = pll—u = pl | (e + L2 — ) -

Bz2l+ D p Balz+ 2
kyraA Ban _ _
p] [((3212+ 2) (k1 I+ 1) + Bt A & 2) p] =0

Further solving and simplifying previous equation, we get that

p1=—(pili + A), py=—(ks I + p), pP3s = — U,

and the quadratic:

p?+a;p+a,=0,

where

_ - ZA klrl/\ ﬁz/\ _ _ @ - 1/’{ _ _ @
al - <ﬁ212+l (Of zl(kl 12+ [,L) + a 22, 1 A )> + <ﬁ212+l (Rl 1 A )) !

_ aZA klrl/\ M_ _@ all —_ _@
2= <.3212+l(0! 2A(kq I+ 1) + a4 1 1 )> <13212+)L (R1 ! A )> .

Applying equation (3.6), a; and a, will only be positive when R; < 1. So, by Routh-Hurwitz
criterion, all eigenvalues are negative (|arg/1j| =1 > %,j =1,2, 5) if R; < 1. Therefore,
the strain 1 disease equilibrium E; is locally asymptotically stable for o € (0,1] ifR; < 1.

Theorem 3.3: The Strain2 disease equilibrium E, is locally asymptotically stable if R, < 1.

Proof:

Evaluating the Jacobian matrix (3.8) of model (3.2) at E, we get
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_ - BaA — B2/
(Bh+ 4 0 0 Bl + A Bl + A
— kA
_ O 0 11
" H (B1l1+ D) p
_ _ koA
2 0 —leah+p) Bt 2) g i+ ) 0
koA Bin
Bily 0 ko Iy Brlt Dz it ) Balyt A O 1 0
kqryA Ban
0 0 0 0 Baht D p  panra X2
solving the matrix for the Eigen values we arrive at:
koraoA B1A

[~(Buy + A) = pll—u = pll~ (ko 1y + 1) = p] | (

a 1) B p] [((/31’::12) w ﬁﬁfil —a 2) B p] =0.

B1lh+ D(kz 1+ @) P11+ 4 B

Further solving and simplifying we get that
p1=—(BlL+ A), b2 = —L p3 = —(ky L + ),
and the quadratic

p?+a;p+a, =0,

where

_ - 11 kzrz/\ & _ _ & —-a 2/’1 _ _ &
al - <ﬁ111+A ((X 11(1{2 11+ [.L) + a 1l 1 A )> + <ﬁ111+l (Rz 1 A )) !

_ a 11 kz'l"z/\ ﬂ _ _ & a 2/’1 _ —_ &
a2 = <ﬁ111+/1 (a 1Ak I+ 1) + a1l 1 A )> (ﬁl[l-"/1 <R2 ! A )>

Applying equation (3.7), a, and a, will only be positive when R, < 1.

So, by Routh-Hurwitz criterion, eigenvalues are negative <|arg/1j| =1 > ‘;—",j =1,2, 5)
ifR, < 1.

Therefore, the strain 2 disease equilibrium E, is locally asymptotically stable for o € (0,1]
if R, <1.
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CHAPTER 4

NUMERICAL SIMULATIONS OF THE FRACTIONAL MODEL

In this chapter, numerical simulations were carried out to support the analytic results using the
Matlab code fde12.m which implements the Predictor-Corrector Method proposed by
(Diethelm, K., & Freed, A. D. 1998).

Parameters were calculated and adopted from previous studies (Ye, X., & Xu, C. 2019). The
assumed initial conditions are (S(t), V (), V,(t),1,(t), I, (t)) = (200,133,133,2,2) with a

time prospect of 100 days and varying values of the order of the derivative between 0 and 1.

To further buttress the simulation, real data were collected from the Global Influenza
Surveillance and Response System (GISRS) of the World Health Organization (WHO)

(World Health Organization 2020) and analyzed using SPSS.
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S alpha=0.4
300 1 — — —V1 alpha=0.6
V1 alpha=0.4 |/
V2 alpha=0.6 |/
250 — — —V2alpha=04 | ]
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— — —I1 alpha=0.4
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(=]
\
\
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50 L

Figure 4.1: Disease free equilibrium E,

Here both strains die out. Parameter values are: A= 200, 1 =0.01, r, =0.3, , =0.3 u =
0.02, @, = 0.0003, a, = 0.0003, B; = 0.00001, B, = 0.00001, k, = 0.007 k, =

0.009 and order of the derivative 0.6 and 0.4 simultaneously.
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Figure 4.2: Strain 1 disease free equilibrium E;

Parameter values are: A=20, A =05, =03, =03 £t =0.02, a; =0.0721, a, =
0.0719, g; = 0.0000001, B, = 0.0000001, k; = 0.0089, k, = 0.0099 and order of the

derivative is 0.5.
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Figure 4.3: Strain 2 disease free equilibrium E,

Parameter values are: A= 43, A = 0.0001, r, = 0.03, , = 0.003 ¢ =0.02, a, =
0.000001, a, =0.01, B; = 0.00001, B, = 0.001, k; = 0.0089, k, = 0.0099 and order

of the derivative is 0.5
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Figure 4.4: Endemic equilibrium E;
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Parameter values are: A= 200, 1 =0.01, r, =0.3, , = 0.3 u =0.02, a; = 0.0003,

a, = 0.0003, §; = 0.001, B, = 0.001, k; = 0.0089, k, = 0.009 and order of the

derivative is 0.5
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Figure 4.5: Endemic effect of vaccine

A= 200, A =0.03, r, = 0.3, 7, = 0.3 p = 0.02,

a, = 0.0009, a,=0.0007,

B =

0.00003, B, = 0.00003, k; = 0.003 k, = 0.003 and order of the derivative 0.6 and 0.4

simultaneously.
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Figure 4.6: Endemic effect of low V

A= 200, 1=0.03, , =03, 1, =0.3 u=0.02, a,=0.07, a,=0.09, B, =0.00003,
B, = 0.00003, k; = 0.00001 k, = 0.00001 and order of the derivative is 0.2.
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Figure 4.7: Endemic effect of low V ,

A= 200, 1 =0.03, , =03, 1, =03 p=0.02, a;=0.07, a,=0.09, B; =0.00003,
B> = 0.00003, k; = 0.00001 k, = 0.00001 and order of the derivative is 0.2.
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Figure 4.8: Curve fitting of the influenza data
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CHAPTER 5

RESULTS AND CONCLUSION

In this paper, we have investigated a fractional order two strain epidemic model with two
vaccinations as a generalization of the integer order model proposed by (Baba, I. A., et al
2018). The reproduction number(R,) has been computed and used to prove the stability at

various equilibriums of the fractional-order model of the seasonal influenza disease.

Analytically and numerically, following mathematical analysis, the disease free equilibrium
is locally asymptotically stable when R; < 1and R, < 1 which implies that the disease will
die out in the population over a period of time. Also, the strainl disease free equilibrium
locally asymptotically stable if R; < 1and R, > 1 while the strain2 disease free equilibrium
locally asymptotically stable if R; > 1and R, < 1. This means that one disease strain
outperforms the other as it becomes endemic and the other dies out. In other words the strain
with a higher reproduction number thrives and the other with a reproduction less than 1 dies

out eventually.

Furthermore, the endemic equilibrium tends to be locally asymptotically stable when R; >

1and R, > 1 which means that both strains persist in the population.

It can be seen that the stability of the various equilibrium depends on the degree of the
threshold of the reproduction numbers:

k2T2/\ ﬁl/\
R, =220 4 AR
1 a 1ud + a1

and

— le 1/\ + ﬂz/\

2 Ul asA’

Therefore, to evade a pandemic of the disease, it is sufficient to shrink the threshold value of
the reproduction number below 1. The fastest way to accomplish this is by dropping the
occurrence of the recruitment rate. We see this from the numerical simulations that as the
population increases the magnitude of the infective also increases. Another way would be
vaccinating the entire population if possible so long as the vaccinations are effective and safe,

as many flu vaccines cause neurological disorder.
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More so, from the numerical simulations, the memory effect can clearly be appreciated,
deduced from incorporating the fractional order on the system as compared to the integer
order; where the values of the fractional order were varied between 0 and 1. It is easy to see
from Figure 4.5, Figure 4.6 and Figure 4.7 that when the vaccine for a strain is absent, the
strain amplifies as compared to when its vaccine is prevailing. In other words, more infective
will join a certain strain compartment when the vaccine for the other outperforms its vaccine

but in different magnitude, implying that one strain become stronger than the other.

Fig 4.8 clearly shows that the model predictive accuracy is good with a regression coefficient
of 0.988. We see how the predictive line from the curve fitting portends the real data

signifying mathematical prognosis and memory effect.
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