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ABSTRACT 

In this research paper, we extended an existing SIR epidemic integer model containing two 

strains and two vaccinations by using a system of fractional ordinary differential equations in 

the sense of Caputo derivative of order 𝜎 ∈ (0,1]. Four equilibrium points were established: 

disease free equilibrium, strain1 disease free equilibrium, strain2 disease free equilibrium and 

endemic equilibrium. Detailed analysis of the equilibrium points of the model was given 

applying fractional calculus and Routh-Hurwitz criterion.  

Analytically, the threshold value of the basic reproduction number was obtained and the 

description of the existence of the equilibrium points established. It was shown that when the 

two reproduction number  𝑅1 and 𝑅2 are less than one, the disease die out over time and when 

either of them are greater than one, the pandemic persist in relation to the thriving strain. In 

addition, the strain with the higher reproduction number thrives and outshines the other with 

smaller magnitude. Stability analysis of the equilibrium points was carried out employing the 

Jacobian matrix. Numerical simulations were iterated to support the analytic results adopting 

real life data from the Global Influenza Surveillance and Response System (GISRS) of the 

World Health Organization. It was further discovered that the less presence of vaccine of a 

given strain in the population, the more the populace of infective in the other strain 

compartment. Finally, with the fractional order technique, the memory effect of the system is 

made visible and easy for prognosis. 

 

Keywords: Epidemic model; two strain; two vaccine; fractional calculus; fractional-order 

model; Routh-Hurwitz criterion; basic reproduction number; stability 
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ÖZET 

Bu araştırmamızda, 𝜎 ∈ (0,1] dereceli Caputo türevi anlamında bir kesirli adi diferansiyel 

denklem sistemi kullanılarak iki tür ve iki aşılama içeren mevcut bir SIR epidemik model 

genişletilmiştir. Hastalığın olmadığı, 1. türde hastalığın olmadığı, 2. türde hastalığın olmadığı 

ve endemik durum olmak üzere 4 tane denge noktası oluşturulmuştur. Modelin denge 

noktalarının detaylı analizinde kesirli kalkülüs ve Routh-Hurwitz kriteri uygulanmıştır.  

Analitik olarak, temel üreme sayısının eşik değeri hesaplanmış ve denge noktalarının 

varlığının açıklaması verilmiştir. Temel üreme sayısı 𝑅1 ve 𝑅2 birden küçük olduğunda, 

hastalığın zamanla yok olduğu ve herhangi biri birden büyük olduğunda ise pandeminin 

gelişen türle ilişkili olarak devam ettiği gösterilmiştir. Buna ek olarak, daha büyük çoğalma 

sayısına sahip tür, küçük bir büyüklüklede olsa, diğerini geçer ve gölgede bırakır. Denge 

noktalarının stabilite analizi Jacobian matrisi ile yapılmıştır. Dünya Sağlık Örgütü’nün 

Küresel Grip Gözetim ve Müdahale Sisteminden gerçek hayat verilerini benimseyen analitik 

sonuçları desteklemekiçin sayısal simülasyonlar yinelenmiştir. Ayrıca, popülasyonda belirli 

bir türde aşı varlığı ne kadar az olursa, diğer tür bölmesindeki enfeksiyonlu popülasyonun o 

kadar fazla olduğu keşfedilmiştir. Son olarak, kesirli mertebe tekniği ile, sistemin hafıza 

etkisi görünür ve prognoz için kolay hale getirilmiştir. 

 

Anahtar Kelimeler: Salgın modeli; iki tür; aşı; kesirli kalkülüs; kesirli-mertebe modeli; 

Routh-Hurwitz kriteri; temel üreme sayısı; stabilite 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1.  Fractional Calculus 

The notion of fractional calculus was first conceptualized by Leibniz, a German 

mathematician and early founder of classical calculus in 1695, and was further developed by 

L. Euler in 1730 (J.Tenreiro Machado et al, 2011). 

Fractional calculus is a generalization of the integer calculus such that the order of the 

derivatives and integrals could be allowed to be fractions, irrational or complex numbers       

(I Podlubny, 1999).   

 For example, Legendre’s symbol for the generalized factorial is: 

 

𝐷α(𝑥𝑛) = 
Γ(𝑛+1)

Γ(𝑛+1−α)
 𝑥𝑛−α, 

 

 where α is the order of the derivative. 

 

1.1.1. Definition  

The fractional integral of order α > 0 of a function f: ℝ+ → ℝ is defined by 

𝐼αF (t) = 
1

Γ(α)
∫ (𝑡 − 𝑠)α−1
𝑡

0
g(s), 

where Γ(. ) is the gamma function. 
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1.1.2. Definition  

The general definition of the caputo derivative ıs defıned as: 

 

𝐷α𝑡 𝑓(𝑡) = {  

1

Γ(n−α)
∫ (𝑡 − 𝑠)𝑛−α−1
𝑡

0

𝑑𝑛𝑓(𝑠)

𝑑𝑠𝑛
𝑑𝑠, if n − 1 < α < 𝑛, 𝑛𝜖ℕ                        

𝑑𝑛𝑓(𝑡)

𝑑𝑡𝑛
 ,   𝚤𝑓α = 𝑛, n𝜖ℕ                                                                                   

  

 

where α is the order of the derivative and it’s allowed to be a real or complex number. 

 

1.1.3. Definition  

The general definition of the Riemann-Liouville derivative ıs defıned as: 

 

𝐷α𝑡 𝑓(𝑡)={  

1

Γ(n−α)

𝑑𝑛𝑓(𝑡)

𝑑𝑡𝑛
∫ (𝑡 − 𝑠)𝑛−α−1
𝑡

0
𝑓(𝑠)𝑑𝑠, if n − 1 < α < 𝑛, 𝑛𝜖ℕ                        

𝑑𝑛𝑓(𝑡)

𝑑𝑡𝑛
 ,   𝚤𝑓 α = 𝑛, n𝜖ℕ                                                                                   

 

 

where α is the order of the derivative and it’s allowed to be a real or complex number 

(Santanu Saha Ray and subhadashan Sahoo, 2019).  

Caputo’s fractional derivative formula has shown to be more applicable in real life scenario 

since the derivative of a constant is zero as in the case of Riemann-Liouville’s derivative. 

 

Many Scientists like (Sardar et al, 2015) and (Dumitru Baleanu et al, 2010) have found 

fractional-order derivatives to be imperative and integrative in formulating models for 

analyzing dynamical systems. Recent research also has shown fractional calculus to be 

essential and applicable in control and synchronization of chaotic systems (Ahmad Taher et 

al, 2017) and many other fields of engineering. 
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1.2. SIR Model 

The SIR model is a mathematical model that depicts how an infection is spread over a 

population. It is one of the simplest compartments and generic model that birthed other 

models, often applied in epidemiological analysis. It was first idealized by Ronald Ross and 

William Hammer in the early twentieth century before been developed and theorized by 

Kermack and Anderson Gray McKendrick between 1927 and 1933 (Murray, 2003). It consists 

of three partitions: Susceptible, Infected and Removed population, hence the name SIR 

model. The model is plausibly prognostic for infective diseases that are transmitted from 

human to human and where recovery poses resistive limitations (Earn et a, 2000). 

 

New trends have it that the application of SIR model have gone beyond health 

epidemiological apprehension to conditions pertaining to marketing, informatics, sociology 

and economy (Rodrigues, 2016). 

 

The SIR model is given by: 

 

S    I    R 

            

𝑑𝑠

𝑑𝑡
= −rsI , 

𝑑𝐼

𝑑𝑡
= rsI − aI , 

𝑑𝑅

𝑑𝑡
= aI ,        

𝑑𝑠

𝑑𝑡
 + 
𝑑𝐼

𝑑𝑡
  + 

𝑑𝑅

𝑑𝑡
= 0.    

 

where, 

S(t) is the susceptible population  
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 I(t) is the Infected population 

 R(t) is the Recovered population 

 𝑟 > 0 is the rate of gain in the infective class  

 𝑎 > 0 is the rate of removal of infective to the removed class. 

 

With the condition: 

S(t) + I(t) + R(t) = N. 

 

Many other models like Susceptible-İnfected-susceptible (SIS) (Harko, 2014), Maternally 

Derived Immunity-Susceptible-Infectious-Recovered (MSIC) and the susceptible-Exposed-

Infectious-Recovered (SEIR) have been derived from the classical SIR model (Brauer, F. and 

Castillo-Chávez, C, 2001). 

 

 

1.3. Influenza 

Influenza also known as “flu” is a communicable disease caused by the influenza virus that is 

transmitted via airborne droplets and attacks the respiratory system (WHO 2018). Some of its 

common symptoms include: fevers sore throat, coughing, running noses and headache etc. 

There are four types of seasonal influenzas virus: Type A, B, C and D. Type A and B virus 

spread and cause seasonal epidemics however A is known to be more rampant than the others. 

Influenza virus is substantiated by testing the sputum or mucus from the nose. 

Vaccines and antiviral drugs have been formulated and recommended by the World Health 

Organization (WHO) and Centers for Disease Control and Prevention (CDC) for curbing and 

controlling the disease. It is estimated that over 35 million people living in the United State of 

America (USA) have shown related symptomatic illness from the influenza virus between 

2018 and 2019. 

Xingyang (XuXingyang et al 2018) and many others have tried to work on a fractional order 

epidemic model for influenza dynamics applying the reimbursements of the fractional-order 
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concept to influenza dynamic in order to postulate conditions under which the epidemic can 

be contained. Other scientists like Moustafa-Elshahed (Moustafa-Elshahed et al, 2011) have 

adopted the fractional-order unification on influenza dynamics and have even extended it to 

an SIRC model. 

 

1.4. Basic Reproduction 

1.4.1. Definition 

The next generation matrix is defined as the square matrix G in which the ijth element of G is 

the expected number of secondary infections of type 𝑖 caused by a single infected individuals 

of type j assuming that the population of type i is completely susceptible.  

 

 

1.4.2. Definition 

The basic reproduction number is defined as the dominant Eigen value of the new generation 

matrix G such that: 

G = F𝑉−1 ,  𝐹 = ⌈
𝜕𝑓𝚤(𝑥0)

𝜕𝑥𝑗
⌉,      𝑉 = ⌈

𝜕𝑣𝚤(𝑥0)

𝜕𝑥𝑗
⌉,  

where, 

 𝑓𝚤 are new infections,  

 𝑣𝚤 are transferred infections from one compartment to another, 

 𝑥 0 is the disease free equilibrium state. 

 

The basic reproduction 𝑅0 is informally connoted as the likely number of secondary cases 

originated by a single infection in an entirely susceptible populace (Murray, 2003). 

 𝑅0 ∝ (
𝚤𝑛𝑓𝑒𝑐𝑡𝚤𝑜𝑛

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
) 𝑥 (

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑡𝚤𝑚𝑒
) 𝑥 (

𝑡𝚤𝑚𝑒

𝚤𝑛𝑓𝑒𝑐𝑡𝚤𝑜𝑛
) =  𝛼𝛽𝛾   

 where, 
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𝛼 represents the transmissibility, 

𝛽 represents the average rate of constant between susceptible and infected individuals. 

𝛾 represents the duration of infectiousness 

 

Studies have shown that if  𝑅0 < 1 then there will not be an epidemic and the disease will die 

out naturally. However, if  𝑅0 > 1 it implies that the odds of a pandemic are high. 

Influenza is known to have an average reproduction number, 𝑅0 of 2  to 3 (Mills, 2004), 

plausible enough to explain its contagion. 

 

1.5. Stability 

Stability in general sense is a state in which something isn’t prone to a significant alteration. 

In dynamics, the concept of stability hypothesizes a system capable of returning (or at least 

approaching) its original state after perturbation.  

A system is said to be stable if all the roots of the characteristic equation lie on the left half 

plane; i.e. are negative. 

 

1.5.1. Definition 

Let X be a metric space with metric d. Let I be an additive semi-group of real numbers. A 

dynamical system on X (also known as flow) is defined by a continuous mapping: 

𝜋: 𝑋 × 𝐼 → 𝑋 ,  

with the following properties: 

I. 𝜋(𝑥, 0) = 𝑥, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋, 

II. 𝜋(𝜋(𝑥, 𝑡), 𝑠) =  𝜋(𝑥, 𝑡 + 𝑠),    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ 𝐼. 

 

1.5.2. Definition 

A point 𝑥∗ ∈ 𝑋 is called an equilibrium or rest point of a dynamical system  
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 𝜋: 𝑋 × ℝ → 𝑋,      if                                   

 𝜋(𝑥, 𝑡) =  𝑥∗  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℝ. 

 

 

1.5.3. Definition 

An equilibrium point  𝑥∗ ∈ 𝑋 of a dynamical system 

 𝜋: 𝑋 × ℝ → 𝑋,   

is called stable if for every ℇ > 0 there exist a 𝛿 = 𝛿 ℇ such that 

𝑑(𝑥, y) ≤ 𝛿  𝚤𝑚𝑝𝑙𝚤𝑒𝑠 𝑡ℎ𝑎𝑡  𝑑(𝑥, 𝜋(𝑥, 𝑡)) ≤  ℇ  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0  

And asymptotically stable if 𝑥∗ is stable and there exist a 𝛿 such that  

lim
𝑡→∞

𝜋(𝑦, 𝑡) = 𝑥, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 ∈ 𝑋   𝑤𝚤𝑡ℎ  𝑑(𝑥, y) ≤ 𝛿.   

 

1.5.4. Definition 

 A function  𝑉 ∈  𝐶1(𝑋) is called a Lyapunov function with respect to 𝑓 if 

 𝑉˙ (𝑥)  =  𝑔𝑟𝑎𝑑 𝑉 (𝑥) 𝑇 𝑓(𝑥)  ≤  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝑋. 

 

With this definition the following proposition was formulated and proven. 

If there exists a Lyapunov function 𝑉 ∈  𝐶1(𝑋)  with respect to 𝑓 which is positive definite 

with respect to some rest point  𝑥̅ ∈  X, which satisfies the condition  

𝑉(𝑥̅) =  0 and V (x) >  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝑋, x ≠ 𝑥̅ ,     

then 𝑥 is stable. 

If in addition 

 𝑉̇ (𝑥̅) = 0 and 𝑉̇ (x) <  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝑋, x ≠ 𝑥̅,   

then x is asymptotically stable. 
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1.5.5. Theorem 

Let  

 
𝑑𝑎𝑓(𝑡)

𝑑𝑡𝑎
= 𝑓(𝑥),   𝑥(0) = 𝑥0 , 

be an autonomous nonlinear fractional-order system with  

0 < 𝑎 < 1 𝑎𝑛𝑑 𝑥 ∈ ℝ𝑛,  

and the equilibrium points of the above system are solutions to the equation   

𝑓(𝑥) = 0. 

An equilibrium is locally asymptotically stable if all Eigen values 𝜆𝚤𝑗 of the Jacobian matrix  

𝐽 =
𝜕𝑓

𝜕𝑥
 evaluated at the equilibrium satisfy |arg 𝜆𝚤𝑗| > 𝛼

𝜋

2
. 

 

1.6. Routh- Hurwitz Stability Criterion  

 

The Routh-Hurwitz criterion provides the necessary and sufficient condition for stability of a 

linear system. It used to ascertain if the roots of a polynomial will be negative without directly 

solving for them. 

 

Routh- Hurwitz stability Criterion for second order polynomials: 

P(s) = 𝑠2 + 𝑎1𝑠 + 𝑎0 ,    P(s) = 0  is stable if and only if  𝑎1, 𝑎0  > 0. 

Routh- Hurwitz stability Criterion for third order polynomials: 

P(s) = 𝑠3 + 𝑎2𝑠
2 + 𝑎1 ,    P(s) = 0 , 

is stable if and only if  

 𝑎2, 𝑎0  > 0 𝑎𝑛𝑑 𝑎2 𝑎1 > 0, 

Routh-Hurwitz stability Criterion for higher order polynomials: 

Let D(s) = 𝑎𝑛𝑠
𝑛 + 𝑎𝑛−1𝑠

𝑛−1 +⋯+ 𝑎1𝑠 + 𝑎0 . 
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We construct the Routh array as follows: 

(

 
 

𝑎𝑛 𝑎𝑛−2 𝑎𝑛−4   …
𝑎𝑛−1 𝑎𝑛−3 𝑎𝑛−5   …
𝑏1 𝑏2 𝑏3   …
𝑐1 𝑐2 𝑐3   …
⋮ ⋮ ⋮ ⋮ ⋯)

 
 

 

 

𝑏𝚤 =
𝑎𝑛−1 ×  𝑎𝑛−2𝚤 − 𝑎𝑛  ×  𝑎𝑛−(2𝚤+1)

𝑎𝑛−1
 ,   

𝑐𝚤 =
𝑏𝚤 ×  𝑎𝑛−(2𝚤+1) − 𝑎𝑛−1  ×  𝑏𝚤+1

𝑏1
 ,   

⋮ 

The polynomial D(s) has all negative roots if and only if all first-column elements of the 

Routh array have the same sign.  

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2 

A TWO-STRAIN EPIDEMIC MODEL WITH TWO VACCINATIONS 
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2.1. Description of the Integer Model 

Many authors like (Yukihiko Nakata et al, 2014) and (Rahman A, Zou X, 2011) have proposed 

several epidemic models and carried out stability research. One of such is the two-strain 

epidemic model with two vaccinations proposed by (Bilgen Kaymakamzade et al, 2017) as 

follows: 

 

 

 

 

 

Fig1.1 illustrates the flow and transfer of the disease dynamics of influenza with two strain 

and two vaccinations. Arrows pointing to a compartment represent an addition of population 

while an arrow pointing away from compartment signifies removal of population from the 

compartment.  

 

The model is derived as follows: 

𝑑𝑆 

𝑑𝑡
  =  ⋀ − ( 𝛽1𝐼1 + 𝛽2𝐼2 +  𝜆)𝑆, 

𝑑𝑉 1
𝑑𝑡

=  𝑟1 𝑆 − (𝑘2 𝐼2 +  𝜇)𝑉 1 , 

Figure 1.1: Transmission diagram 
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𝑑𝑉 2

𝑑𝑡
= 𝑟2 𝑆 − (𝑘2 𝐼1 +  𝜇) 𝑉 2 ,     (2.1) 

𝑑𝐼1
𝑑𝑡
  =  ( 𝑘2𝑉 2  +  𝛽1𝑆 )𝐼1  − 𝛼 1𝐼1 , 

𝑑𝐼2

𝑑𝑡
  =  ( 𝑘1𝑉 1  +  𝛽2𝑆 ) 𝐼2  − 𝛼 2𝐼2 , 

𝑑𝑅

𝑑𝑡
  =  𝛾1 𝐼1  + 𝛾2𝐼2 – 𝜇𝑅  

Where,   

𝜆 =  𝑟1  +  𝑟2  +  𝜇 ,  𝛼 1 =  μ + 𝑉 1  +  𝛾1 , 𝛼 2  =  𝜇 + 𝑉 2  +  𝛾2.  

With the condition that: 

𝑆  + 𝑉 1 + 𝑉 2 + 𝐼1 + 𝐼2 + 𝑅 =  𝑁.  

  

The population 𝑁(𝑡) is separated into six partitions: 𝑆, 𝑉 1, 𝑉 2, 𝐼1, 𝐼2 and 𝑅 which represent 

the dimension of susceptible, inoculated  with the vaccination for strain 1, inoculated with the 

vaccination for strain 2, infected with strain 1, infected with strain 2 and recovered cubicle 

respectively. Equal birth and death in the population without dual infection were assumed 

with respect to all variables and constraint.  

 

 

 

 

 

 

 

Table 2.1: Variables and Parameter. 

Parameter Description 

𝑁 total population 

⋀ recruitment rate of individuals 
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The authors carried out an integer order stability analysis on the model employing Lyapunov 

functions, with influenza as the epidemic disease. Numerical analysis was carried out to 

further buttress the analytic outcomes. Without conflict of interest they concluded that the 

system was globally stable if the reproduction coefficients were less than one. They further 

discovered that the strain with higher reproduction ratio dominates the other with less and the 

recruitment parameter as the most significant factor influencing the reproduction ratio and 

hence the global stability of each boundary equilibrium. 

 

 

 

 

 

CHAPTER 3 

1

𝜇
   

average time of life expectancy 

𝑟1   rate of vaccination with strain 1 

𝑟2   rate of vaccination with strain 2 

 

𝑘1 

𝑘2   

𝛽1   

𝛽2   

1

𝛾1
  

1

𝛾2
  

𝑉 1 

𝑉 2 

 

transmission coefficient of vaccinated individuals 𝑉 1  to strain 2 

transmission coefficient of vaccinated individuals 𝑉 2  to strain 1 

transmission coefficient of susceptible individuals to strain 2  

transmission coefficient of susceptible individuals to strain 1 

average infection period of strain 1  

 

average infection period of strain 2 

infection induced death rate of strain 1 

infection induced death rate of strain 2 
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THE FRACTIONAL TWO-STRAIN EPIDEMIC MODEL WITH TWO 

VACCINATIONS 

 

3.1. The Fractional Model 

Integrating fractional order on model (2.1) with same parameters, and 𝜎 as the order of the 

differential equation we arrive at the following: 

 

𝑑𝜎𝑆(𝑡) 

𝑑𝑡𝜎
  =  ⋀ − ( 𝛽1𝐼1 + 𝛽2𝐼2 +  𝜆) 𝑆 , 

𝑑𝜎𝑉 1(𝑡)

𝑑𝑡𝜎
= 𝑟1 𝑆 − (𝑘1 𝐼2 +  𝜇)𝑉 1 , 

𝑑𝜎𝑉 2(𝑡)

𝑑𝑡𝜎
= 𝑟2 𝑆 − (𝑘2 𝐼1 +  𝜇)𝑉 2 , 

𝑑𝜎𝐼1(𝑡)

𝑑𝑡𝜎
  =  ( 𝑘2𝑉 2  +  𝛽1𝑆 )𝐼1  − 𝛼 1𝐼1,  

𝑑𝜎𝐼2(𝑡)

𝑑𝑡𝜎
 =  ( 𝑘1𝑉 1  + 𝛽2𝑆 )𝐼2  − 𝛼 2𝐼2, 

𝑑𝜎𝑅(𝑡)

𝑑𝑡𝜎
   = 𝛾1 𝐼1  + 𝛾2𝐼2 – 𝜇𝑅,                                                                      

                                     

Where 𝜎 ∈ (0,1] is the order of the fractional derivative. 

The fractional derivative of model (2.1) is in the sense of Caputo as Caputo technique is often 

used in real life application as it allows initial values for the fractional differential equations 

with Caputo derivatives similar to the integer order differential equations.  

 

Theorem 3.1: The biological feasible region of model (3.1) is 

𝜑 = {( 𝑆 , 𝑉 1 , 𝑉 2 , 𝐼1 , 𝐼2, 𝑅 ∈ ℝ+
6 ∶  0 ≤ 𝑁 ≤

⋀

𝜇
} 

and positively invariant. 

Proof:  

(3.1)                  
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 0 ≤
𝑑𝜎𝑆(𝑡) 

𝑑𝑡𝜎
  + 

𝑑𝜎𝑉 1(𝑡)

𝑑𝑡𝜎
   + 

𝑑𝜎𝑉 2(𝑡)

𝑑𝑡𝜎
+  

𝑑𝜎𝐼1(𝑡)

𝑑𝑡𝜎
  + 

𝑑𝜎𝐼2(𝑡)

𝑑𝑡𝜎
 +  

𝑑𝜎𝑅(𝑡)

𝑑𝑡𝜎
    

    = ⋀ − 𝜇(𝑆  + 𝑉 1 + 𝑉 2 + 𝐼1 + 𝐼2 + 𝑅) − 𝑉 1𝐼1 − 𝑉 2 𝐼2 

    < ⋀ − 𝜇(𝑁) 

                        ⇒   0 ≤ ⋀ − 𝜇𝑁 

                          ⇒  𝑁 ≤
⋀

𝜇
 

Observe that all parameters used are nonnegative. So, since the system is bounded given any 

initial condition the solution is defined for any time 𝑡 ≥ 0 and remains in the region. 

Therefore, the region 𝜑 is positively invariant. 

 

3.2. Model Analysis  

Instead of analyzing system (3.1), owing to non-existence of the recovered compartment, we 

investigate the behavior of the following system: 

𝑑𝜎𝑆(𝑡) 

𝑑𝑡𝜎
  =  ⋀ − ( 𝛽1𝐼1 + 𝛽2𝐼2 +  𝜆) 𝑆 , 

𝑑𝜎𝑉 1(𝑡)

𝑑𝑡𝜎
= 𝑟1 𝑆 − (𝑘1 𝐼2 +  𝜇)𝑉 1,           

𝑑𝜎𝑉 2(𝑡)

𝑑𝑡𝜎
= 𝑟2 𝑆 − (𝑘2 𝐼1 +  𝜇) 𝑉 2 , 

𝑑𝜎𝐼1(𝑡)

𝑑𝑡𝜎
  =  ( 𝑘2𝑉 2  +  𝛽1𝑆 )𝐼1  − 𝛼 1𝐼1 , 

𝑑𝜎𝐼2(𝑡)

𝑑𝑡𝜎
 =  ( 𝑘1𝑉 1  + 𝛽2𝑆 )𝐼2  − 𝛼 2𝐼2 .                                                            

 

3.2.1. Equilibria 

The equilibrium points are computed by equating system (3.2) to zero and solving 

concurrently. The following equilibria are therefore gotten: 

I. Disease free equilibrium point 𝐸0 to the coordinates 

( 𝑆 0(𝑡) , 𝑉0 1(𝑡), 𝑉
0
2(𝑡), 𝐼

0
1(𝑡), 𝐼

0
2(𝑡) ) is given by 𝐸0 = (

⋀

𝜆
,
⋀𝑟1

𝜇𝜆
,
⋀𝑟2

𝜇𝜆
, 0,0). 

(3.2) 
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II. Strain1 disease free equilibrium 𝐸1 to the coordinates 

( 𝑆̅(𝑡) , 𝑉̅ 1(𝑡), 𝑉̅ 2(𝑡), 𝐼1̅(𝑡), 𝐼2̅(𝑡) ) is given by  

 𝑆̅(𝑡) =
⋀

𝛽2𝐼2+ 𝜆
 , 

𝑉̅ 1(𝑡) =
⋀𝑟1

(𝑘1 𝐼2 + 𝜇)(𝛽2𝐼2  + 𝜆)
,     𝑉̅ 2(𝑡) =

⋀𝑟2
𝜇(𝛽2𝐼2 +  𝜆)

,    𝐼1̅(𝑡) = 0 .  

 

and  𝐼2̅(𝑡) is the root of the quadratic 

𝐴 𝐼2̅
2
+ 𝐵 𝐼2̅ + 𝐶 = 0,                                                                                         (3.3)  

where, 

𝐴 =  𝛼 2𝑘1𝛽2,  𝐵 =  𝛼 2𝑘1 𝜆 + 𝛼 2𝜇𝛽2 − ⋀𝑘1𝛽2,   

𝐶 = 𝛼 2𝜇𝜆 − ⋀𝑟1𝑘1 − ⋀𝜇𝛽2. 

 

𝐸1 will only be biologically meaningful and hence exist if  𝐼2̅(𝑡) is positive. 

 We can see this by employing the Routh-Hurwitz criterion and so the polynomial 

(3.3) which can also be expressed in this form: 

 𝐼2̅
2
+
𝐵

𝐴
 𝐼2̅ +

𝐶

𝐴
= 0    

will have positive roots if  
𝐵

𝐴
< 0 𝑎𝑛𝑑 

𝐶

𝐴
> 0  𝑜𝑟   

𝐵

𝐴
> 0 𝑎𝑛𝑑 

𝐶

𝐴
< 0. Since A is clearly 

positive it suffices to consider if 𝐵 < 0 𝑎𝑛𝑑 𝐶 > 0  𝑜𝑟  𝐵 > 0 𝑎𝑛𝑑 𝐶 < 0.  

 

Suppose for contradiction that 𝐵 < 0 𝑎𝑛𝑑 𝐶 > 0 . 

  𝐵 < 0 ⇒    𝛼 2𝑘1 𝜆 + 𝛼 2𝜇𝛽2 − ⋀𝑘1𝛽2 < 0     

              ⇒    𝛼 2 <
⋀𝑘1𝛽2

𝑘1 𝜆+ 𝜇𝛽2
                                                                       

 𝐶 > 0  ⇒    𝛼 2𝜇𝜆 − ⋀𝑟1𝑘1 − ⋀𝜇𝛽2 > 0                    

              ⇒   𝛼 2 >
⋀𝑟1𝑘1+⋀𝜇𝛽2

𝜇𝜆
                                                                               

 

Simplifying (3.4) and (3.5) we get that, 

 

 
  ⋀𝑟1𝑘1+⋀𝜇𝛽2

𝜇𝜆
< 𝛼 2 <

⋀𝑘1𝛽2

𝑘1 𝜆+ 𝜇𝛽2
  

(3.4) 

(3.5) 
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and therefore 

 
 ⋀𝑟1𝑘1+⋀𝜇𝛽2

𝜇𝜆
  − 

⋀𝑘1𝛽2

𝑘1 𝜆+ 𝜇𝛽2
< 0, 

   

it follows that   

 
 ⋀𝑟1𝑘1

2+⋀𝜇𝛽2𝑟1𝑘1+⋀𝜇
2𝛽2

2

𝜇𝜆(𝑘1 𝜆+ 𝜇𝛽2)
 < 0, 

contradiction since all parameters are non-negative. Hence, 𝐵 > 0 𝑎𝑛𝑑 𝐶 < 0. 

           And so 𝐸1 exist if  

 

⋀𝑟1𝑘1+⋀𝜇𝛽2

𝛼 2𝜇𝜆
 > 1.                                                                 (3.6) 

 

III. Strain2 disease free equilibrium 𝐸2 to the coordinates 

( 𝑆̂(𝑡) , 𝑉̂ 1(𝑡), 𝑉̂ 2(𝑡), 𝐼1(𝑡), 𝐼2(𝑡)) is given by  

 𝑆̂(𝑡) =
⋀

𝛽1𝐼1+ 𝜆
 ,   𝑉̂ 1(𝑡) =

⋀𝑟1

𝜇(𝛽1𝐼1 +𝜆)
 

𝑉̂ 2(𝑡) =
⋀𝑟2

(𝑘2 𝐼1 + 𝜇)(𝛽1𝐼1 +  𝜆)
,   𝐼2(𝑡) = 0.   

 

and 𝐼1(𝑡) is the root of the quadratic 

𝐴 𝐼1
2
+ 𝐵𝐼1 + 𝐶 = 0 ,  

 

where, 

𝐴 =  𝛼 2𝑘1𝛽2,  𝐵 =  𝛼 1𝑘2 𝜆 + 𝛼 1𝜇𝛽1 − ⋀𝑘1𝛽2, 

𝐶 = 𝛼 1𝜇𝜆 − ⋀𝑟2𝑘2 − ⋀𝜇𝛽1 .   

Similarly 𝐸2 will only be biologically meaningful and hence exist if  𝐼2(𝑡) is positive. 

And therefore 𝐶 < 0 so  

 

⋀𝑟2𝑘2+⋀𝜇𝛽1

𝛼 1𝜇𝜆
 > 1                                                                   (3.7) 
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IV. Double strain infection equilibrium 𝐸3 to the coordinates 

( 𝑆̆(𝑡) , 𝑉̆ 1(𝑡), 𝑉̆ 2(𝑡), 𝐼1(𝑡), 𝐼2(𝑡) ) is given by  

 𝑆̆(𝑡) =
⋀

𝛽1𝐼1 + 𝛽2𝐼2 + 𝜆
 ,      𝑉̆ 1(𝑡) =

⋀𝑟1
(𝑘1 𝐼2 +  𝜇)(𝛽1𝐼1 + 𝛽2𝐼2 + 𝜆)

  , 

 𝑉̆ 2(𝑡) =
⋀𝑟2

(𝑘2 𝐼1 + 𝜇)(𝛽1𝐼1 + 𝛽2𝐼2 + 𝜆)
  .  

 

             𝐼1(𝑡) is the root of the equation  

𝐴1 𝐼1
2 + 𝐵1 𝐼1𝐼2 + 𝐶1𝐼1 + 𝐷1𝐼2  + 𝐸1 = 0 , 

 where, 

𝐴1 = −𝛼 1𝑘2𝛽1,  𝐵1 = −𝛼 1𝛽2𝑘2     𝐶1 = ⋀𝑘2𝛽1 − 𝛼 1𝜆𝑘2 − 𝛼 1𝜇𝛽1 ,  

𝐷1 = −𝛼 1𝜇𝛽2     𝐸1 = ⋀𝑘2𝑟2 − 𝛼 1 𝜇 𝜆 + ⋀𝜇𝛽1. 

And 

            𝐼2(𝑡) is the root of the equation  

𝐴2 𝐼2
2 + 𝐵2 𝐼1𝐼2 + 𝐶2𝐼1 + 𝐷2𝐼2  + 𝐸2 = 0 , 

 where, 

𝐴2 = −𝛼 2𝑘1𝛽2,  𝐵2 = −𝛼 2𝛽1𝑘1  𝐶2 = −𝛼 2𝜇𝛽1 , 

𝐷2 = ⋀𝑘1𝛽2 − 𝛼 2𝜆𝑘1 − 𝛼 2𝜇𝛽2  𝐸1 = ⋀𝑘1𝑟1 − 𝛼 2 𝜇 𝜆 + ⋀𝜇𝛽2, 

 

The equilibrium 𝐸3 exist and would be biologically meaningful if  𝐼1(𝑡) and 𝐼2(𝑡) are 

positive. 

 

3.2.2. Reproduction Number 

We proceed by computing the reproduction number by employing the new generation matrix 

method discussed in chapter 2. Considering the infected compartment (𝐼1(𝑡), 𝐼2(𝑡)), the 

jacobian matrices 𝐹 and 𝑉 representing the new infectivity and the transfer of persons 

connecting the compartments respectively, evaluated at 𝐸0 are given by 

 

𝜕𝐹 = (
𝑘2𝑉 2  +  𝛽1𝑆 
𝑘1𝑉 1  +  𝛽2𝑆 

)  , 𝜕𝑉 = (
𝛼 1 𝐼1 
𝛼 2 𝐼2  

) 
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𝐹 = (
𝑘2𝑉

0 2  + 𝛽1𝑆 
0 0

0 𝑘1𝑉
0 1   +  𝛽2𝑆 

0 
), 

 

𝑉 = (
𝛼 1 0
0 𝛼 2

), 

 

𝐺 = 𝐹𝑉−1 = (

𝑘2𝑉
0 2 + 𝛽1𝑆 

0

𝛼 1
0

0
𝑘1𝑉

0 1 + 𝛽2𝑆 
0

𝛼 2

). 

 

The Jacobian matrix of 𝐺 will be: 

 

|𝐺 − 𝐼𝑝| = (

𝑘2𝑉
0 2 + 𝛽1𝑆 

0

𝛼 1
− 𝑝 0

0
𝑘1𝑉

0 1 + 𝛽2𝑆 
0

𝛼 2
 − 𝑝

), 

                     ⇒  (
𝑘2𝑉

0 2 + 𝛽1𝑆 
0

𝛼 1
− 𝑝) (

𝑘1𝑉
0 1 + 𝛽2𝑆 

0

𝛼 2
 − 𝑝) = 0 

                     ⇒  𝑝1 =
𝑘2𝑉

0 2 + 𝛽1𝑆 
0

𝛼 1
, 𝑝2 =

𝑘1𝑉
0 1 + 𝛽2𝑆 

0

𝛼 2
 

                     ⇒  𝑝1 =
𝑘2𝑟 2⋀ 

𝛼 1𝜇𝜆
+ 

𝛽1⋀ 

𝛼 1𝜆
, 𝑝2 =

𝑘1𝑟 1⋀ 

𝛼 2𝜇𝜆
+ 

𝛽2⋀ 

𝛼 2𝜆
 . 

 

Since the basic reproduction number is the dominant eigen value, then 

𝑅0 = max{𝑅1, 𝑅2}, 

where  

𝑅1 =
𝑘2𝑟 2⋀ 

𝛼 1𝜇𝜆
+ 

𝛽1⋀ 

𝛼 1𝜆
 , 
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and    

𝑅2 =
𝑘1𝑟 1⋀ 

𝛼 2𝜇𝜆
+ 

𝛽2⋀ 

𝛼 2𝜆
 . 

 

3.2.3. Stability Analysis 

The Jacobian matrix of model (3.2) is given by 

 

(

 
 
 

−( 𝛽1𝐼1 + 𝛽2𝐼2 +  𝜆) 0 0 − 𝛽1𝑆 − 𝛽2 𝑆

𝑟1 −(𝑘1 𝐼2 +  𝜇) 0 0 −𝑘1 𝑉 1
𝑟2 0 −(𝑘2 𝐼1 +  𝜇) −𝑘2𝑉 2 0

𝛽1𝐼1 0 𝑘2 𝐼1 𝑘2𝑉 2  + 𝛽1𝑆  − 𝛼 1 0

𝛽2𝐼2 𝑘1 𝐼2 0 0 𝑘1 𝑉 1+𝛽2 𝑆 − 𝛼 2)

 
 
 
(3.8)                                                                                                                                                                               

 

    

Theorem 3.2: The disease-free equilibrium 𝐸0 is locally asymptotically stable if 

   𝑅1 < 1 and  𝑅2 < 1.   

 

Proof: 

Evaluating the Jacobian matrix (3.6) of model (3.2) at 𝐸0  we get, 

 

              

(

 
 
 
 
 
 
 
 
 
− 𝜆 0 0

− 𝛽1 ∧

𝜆

− 𝛽2 𝑆

𝜆

𝑟1 −𝜇 0 0
−𝑘1 𝑟1 ∧

𝜇𝜆

𝑟2 0 − 𝜇
−𝑘2 𝑟2 ∧

𝜇𝜆
0

0 0 0
𝑘2 𝑟2 ∧

𝜇𝜆
 + 
𝛽1 ∧

𝜆
  − 𝛼 1 0

0 0 0 0
𝑘1𝑟1 ∧

𝜇𝜆
 + 
𝛽2 ∧

𝜆
  − 𝛼 2)

 
 
 
 
 
 
 
 
 

 

 

Solving for the Eigen values we arrive at 
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(− 𝜆 − 𝑝)(−𝜇 − 𝑝)(−𝜇 − 𝑝) [(
𝑘2 𝑟2∧

𝜇𝜆
 +  

𝛽1∧

𝜆
  − 𝛼 1) − 𝑝] [(

𝑘1𝑟1∧

𝜇𝜆
 +  

𝛽2∧

𝜆
  − 𝛼 2) −

𝑝]=0. 

 

Further solving and simplifying, we get that  

𝑝1 = − 𝜆, 𝑝2 = 𝑝3 = −𝜇  

and the quadratic  

𝑝2 + 𝑎1𝑝 + 𝑎2 = 0 , 

where 

𝑎1 = (𝛼 1(−𝑅1 + 1) + 𝛼 2(−𝑅2 + 1)) , 

 

𝑎2 = (𝛼 1(𝑅1 − 1)𝛼 2(𝑅2 − 1)).  

 

Observe that 𝑎1 and 𝑎2 will only be positive when   𝑅1 < 1 and  𝑅2 < 1. 

So, by Routh-Hurwitz criterion all eigenvalues are negative (|arg 𝜆𝑗| = 𝜋 >
𝜎𝜋

2
, 𝑗 =

1,2, … ,5) if  

𝑅1 < 1 and  𝑅2 < 1. 

Therefore, the disease-free equilibrium 𝐸0 is locally asymptotically stable for 𝜎 ∈ (0,1]  

if  𝑅1 < 1 and  𝑅2 < 1. 

Theorem 3.2: The Strain1 disease equilibrium 𝐸1 is locally asymptotically stable if   𝑅1 < 1.  

 

Proof: 

Evaluating the Jacobian matrix (3.8) of model (3.2) at 𝐸1  we get, 

 

(

 
 
 
 
 
 
 
 
 
−( 𝛽2𝐼2 +  𝜆) 0 0

− 𝛽1 ∧

𝛽2𝐼2 +  𝜆

− 𝛽2 ∧

𝛽2𝐼2 +  𝜆

𝑟1 −(𝑘1 𝐼2 +  𝜇) 0 0
− 𝑘1𝑟1 ∧

(𝛽2𝐼2 +  𝜆)(𝑘1 𝐼2 +  𝜇)

𝑟2 0 − 𝜇
− 𝑘2𝑟2 ∧

(𝛽2𝐼2 +  𝜆) 𝜇
0

0 0 0
𝑘2𝑟2 ∧

(𝛽2𝐼2 +  𝜆) 𝜇
+

𝛽1 ∧

𝛽2𝐼2 +  𝜆
− 𝛼 1 0

𝛽2𝐼2 𝑘1 𝐼2 0 0
𝑘1𝑟1 ∧

(𝛽2𝐼2 +  𝜆) (𝑘1 𝐼2 +  𝜇)
+

𝛽2 ∧

𝛽2𝐼2 +  𝜆
− 𝛼 2)
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Solving the matrix for the Eigen values we arrive at: 

 

[−( 𝛽1𝐼1 +  𝜆) − 𝑝][−(𝑘1 𝐼2 +  𝜇) − 𝑝][−𝜇 − 𝑝] [(
𝑘2𝑟2∧

(𝛽2𝐼2+ 𝜆) 𝜇
+

𝛽1∧

𝛽2𝐼2+ 𝜆
− 𝛼 1) −

𝑝] [(
𝑘1𝑟1∧

(𝛽2𝐼2+ 𝜆) (𝑘1 𝐼2+ 𝜇)
+

𝛽2∧

𝛽2𝐼2+ 𝜆
− 𝛼 2) − 𝑝] = 0. 

 

Further solving and simplifying previous equation, we get that  

 

𝑝1 = −( 𝛽1𝐼1 +  𝜆), 𝑝2 = −(𝑘1 𝐼2 +  𝜇),        𝑝3 = − 𝜇, 

 

and the quadratic: 

 

𝑝2 + 𝑎1𝑝 + 𝑎2 = 0, 

 where 

 

𝑎1 = (
−𝛼 2𝜆

𝛽2𝐼2+ 𝜆
(

𝑘1𝑟1∧

𝛼 2𝜆(𝑘1 𝐼2+ 𝜇)
+

𝛽2∧

𝛼 2𝜆
− 1 −

𝛽2𝐼2

𝜆
)) + (

−𝛼 1𝜆

𝛽2𝐼2+ 𝜆
(𝑅1 − 1 −

𝛽2𝐼2

𝜆
)) , 

𝑎2 = (
𝛼 2𝜆

𝛽2𝐼2+ 𝜆
(

𝑘1𝑟1∧

𝛼 2𝜆(𝑘1 𝐼2+ 𝜇)
+
𝛽2∧

𝛼 2𝜆
− 1 −

𝛽2𝐼2

𝜆
)) (

𝛼 1𝜆

𝛽2𝐼2+ 𝜆
(𝑅1 − 1 −

𝛽2𝐼2

𝜆
)) . 

 

Applying equation (3.6), 𝑎1 and 𝑎2 will only be positive when  𝑅1 < 1. So, by Routh-Hurwitz 

criterion, all eigenvalues are negative (|arg 𝜆𝑗| = 𝜋 >
𝜎𝜋

2
, 𝑗 = 1,2, … ,5) if 𝑅1 < 1. Therefore, 

the strain 1 disease equilibrium 𝐸1 is locally asymptotically stable for 𝜎 ∈ (0,1]   if 𝑅1 < 1.  

 

Theorem 3.3: The Strain2 disease equilibrium 𝐸2 is locally asymptotically stable if   𝑅2 < 1.  

 

Proof: 

Evaluating the Jacobian matrix (3.8) of model (3.2) at 𝐸2  we get 
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(

 
 
 
 
 
 

−( 𝛽1𝐼1 +  𝜆) 0 0
− 𝛽1∧

𝛽1𝐼1+ 𝜆

− 𝛽2∧

𝛽1𝐼1+ 𝜆

𝑟1 − 𝜇 0 0
− 𝑘1𝑟1∧

(𝛽1𝐼1+ 𝜆) 𝜇

𝑟2 0 −(𝑘2 𝐼1 +  𝜇)
 𝑘2𝑟2∧

(𝛽1𝐼1+ 𝜆) (𝑘2 𝐼1+ 𝜇)
0

𝛽1𝐼1 0 𝑘2 𝐼1
𝑘2𝑟2∧

(𝛽1𝐼1+ 𝜆)(𝑘2 𝐼1+ 𝜇)
+

𝛽1∧

𝛽1𝐼1+ 𝜆
− 𝛼 1 0

0 0 0 0
𝑘1𝑟1∧

(𝛽1𝐼1+ 𝜆) 𝜇
+

𝛽2∧

𝛽1𝐼1+ 𝜆
− 𝛼 2)

 
 
 
 
 
 

, 

 

solving the matrix for the Eigen values we arrive at: 

 

[−( 𝛽1𝐼1 +  𝜆) − 𝑝][−𝜇 − 𝑝][−(𝑘2 𝐼1 +  𝜇) − 𝑝] [(
𝑘2𝑟2∧

(𝛽1𝐼1+ 𝜆)(𝑘2 𝐼1+ 𝜇)
+

𝛽1∧

𝛽1𝐼1+ 𝜆
−

𝛼 1) − 𝑝] [(
𝑘1𝑟1∧

(𝛽1𝐼1+ 𝜆) 𝜇
+

𝛽2∧

𝛽1𝐼1+ 𝜆
− 𝛼 2) − 𝑝] = 0. 

 

Further solving and simplifying we get that  

𝑝1 = −( 𝛽1𝐼1 +  𝜆), 𝑝2 = −𝜇,        𝑝3 = −(𝑘2 𝐼1 +  𝜇), 

and the quadratic 

 

𝑝2 + 𝑎1𝑝 + 𝑎2 = 0, 

 

 where 

 

𝑎1 = (
−𝛼 1𝜆

𝛽1𝐼1+ 𝜆
(

𝑘2𝑟2∧

𝛼 1𝜆(𝑘2 𝐼1+ 𝜇)
+

𝛽1∧

𝛼 1𝜆
− 1 −

𝛽1𝐼1

𝜆
)) + (

−𝛼 2𝜆

𝛽1𝐼1+ 𝜆
(𝑅2 − 1 −

𝛽1𝐼1

𝜆
)) , 

𝑎2 = (
𝛼 1𝜆

𝛽1𝐼1+ 𝜆
(

𝑘2𝑟2∧

𝛼 1𝜆(𝑘2 𝐼1+ 𝜇)
+
𝛽1∧

𝛼 1𝜆
− 1 −

𝛽1𝐼1

𝜆
)) (

𝛼 2𝜆

𝛽1𝐼1+ 𝜆
(𝑅2 − 1 −

𝛽1𝐼1

𝜆
)).  

 

Applying equation (3.7), 𝑎1 and 𝑎2 will only be positive when  𝑅2 < 1. 

So, by Routh-Hurwitz criterion, eigenvalues are negative (|arg 𝜆𝑗| = 𝜋 >
𝜎𝜋

2
, 𝑗 = 1,2, … ,5) 

if 𝑅2 < 1. 

Therefore, the strain 2 disease equilibrium 𝐸2 is locally asymptotically stable for 𝜎 ∈ (0,1]  

if  𝑅2 < 1 . 
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CHAPTER 4 

NUMERICAL SIMULATIONS OF THE FRACTIONAL MODEL 

 

In this chapter, numerical simulations were carried out to support the analytic results using the 

Matlab code fde12.m which implements the Predictor-Corrector Method proposed by 

(Diethelm, K., & Freed, A. D. 1998).  

Parameters were calculated and adopted from previous studies (Ye, X., & Xu, C. 2019). The 

assumed initial conditions are ( 𝑆(𝑡), 𝑉 1(𝑡), 𝑉2(𝑡), 𝐼1(𝑡), 𝐼2(𝑡)) = (200,133,133,2,2) with a 

time prospect of 100 days and varying values of the order of the derivative between 0 and 1. 

To further buttress the simulation, real data were collected from the Global Influenza 

Surveillance and Response System (GISRS) of the World Health Organization (WHO)  

(World Health Organization 2020) and analyzed using SPSS. 

r 

 

Figure 4.1: Disease free equilibrium 𝐸0 

Here both strains die out. Parameter values are:  ∧= 200, 𝜆 = 0.01, 𝑟1 = 0.3, 𝑟2 = 0.3  𝜇 =

0.02,  𝛼 1 = 0.0003 , 𝛼 2 = 0.0003, 𝛽1 = 0.00001, 𝛽2 = 0.00001, 𝑘1 = 0.007 𝑘2 =

0.009 and order of the derivative 0.6 and 0.4 simultaneously. 
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Figure 4.2: Strain 1 disease free equilibrium 𝐸1 

Parameter values are: ∧= 20, 𝜆 = 0.5, 𝑟1 = 0.3, 𝑟2 = 0.3  𝜇 = 0.02,  𝛼 1 = 0.0721 , 𝛼 2 =

0.0719, 𝛽1 = 0.0000001, 𝛽2 = 0.0000001, 𝑘1 = 0.0089,  𝑘2 = 0.0099 and order of the 

derivative is 0.5. 

 

 

Figure 4.3: Strain 2 disease free equilibrium 𝐸2 

Parameter values are: ∧= 43, 𝜆 = 0.0001, 𝑟1 = 0.03, 𝑟2 = 0.003  𝜇 = 0.02,  𝛼 1 =

0.000001 , 𝛼 2 = 0.01,  𝛽1 = 0.00001, 𝛽2 = 0.001,  𝑘1 = 0.0089,  𝑘2 = 0.0099 and order 

of the derivative is 0.5  
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Figure 4.4: Endemic equilibrium 𝐸3 

Parameter values are:  ∧= 200, 𝜆 = 0.01, 𝑟1 = 0.3, 𝑟2 = 0.3  𝜇 = 0.02,  𝛼 1 = 0.0003 ,

𝛼 2 = 0.0003, 𝛽1 = 0.001, 𝛽2 = 0.001, 𝑘1 = 0.0089,  𝑘2 = 0.009 and order of the 

derivative is 0.5  

 

 

Figure 4.5: Endemic effect of vaccine 

∧= 200, 𝜆 = 0.03, 𝑟1 = 0.3, 𝑟2 = 0.3  𝜇 = 0.02,  𝛼 1 = 0.0009 , 𝛼 2 = 0.0007, 𝛽1 =

0.00003, 𝛽2 = 0.00003, 𝑘1 = 0.003 𝑘2 = 0.003 and order of the derivative 0.6 and 0.4 

simultaneously. 
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Figure 4.6: Endemic effect of low 𝑉 1 

∧= 200, 𝜆 = 0.03, 𝑟1 = 0.3, 𝑟2 = 0.3  𝜇 = 0.02,  𝛼 1 = 0.07 , 𝛼 2 = 0.09, 𝛽1 = 0.00003,

𝛽2 = 0.00003, 𝑘1 = 0.00001 𝑘2 = 0.00001 and order of the derivative is 0.2. 

 

 

Figure 4.7: Endemic effect of low 𝑉 2 

∧= 200, 𝜆 = 0.03, 𝑟1 = 0.3, 𝑟2 = 0.3  𝜇 = 0.02,  𝛼 1 = 0.07 , 𝛼 2 = 0.09, 𝛽1 = 0.00003,

𝛽2 = 0.00003, 𝑘1 = 0.00001 𝑘2 = 0.00001 and order of the derivative is 0.2. 
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Figure 4.8: Curve fitting of the influenza data 
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CHAPTER 5 

RESULTS AND CONCLUSION 

 

 

In this paper, we have investigated a fractional order two strain epidemic model with two 

vaccinations as a generalization of the integer order model proposed by (Baba, I. A., et al 

2018). The reproduction number(𝑅0) has been computed and used to prove the stability at 

various equilibriums of the fractional-order model of the seasonal influenza disease. 

 Analytically and numerically, following mathematical analysis, the disease free equilibrium 

is locally asymptotically stable when   𝑅1 < 1 and  𝑅2 < 1  which implies that the disease will 

die out in the population over a period of time. Also, the strain1 disease free equilibrium 

locally asymptotically stable if   𝑅1 < 1 and  𝑅2 > 1 while the strain2 disease free equilibrium 

locally asymptotically stable if   𝑅1 > 1 and  𝑅2 < 1. This means that one disease strain 

outperforms the other as it becomes endemic and the other dies out. In other words the strain 

with a higher reproduction number thrives and the other with a reproduction less than 1 dies 

out eventually. 

Furthermore, the endemic equilibrium tends to be locally asymptotically stable when   𝑅1 >

1 and  𝑅2 > 1 which means that both strains persist in the population. 

It can be seen that the stability of the various equilibrium depends on the degree of the 

threshold of the reproduction numbers:  

𝑅1 =
𝑘2𝑟 2⋀ 

𝛼 1𝜇𝜆
+ 

𝛽1⋀ 

𝛼 1𝜆
  

and  

𝑅2 =
𝑘1𝑟 1⋀ 

𝛼 2𝜇𝜆
+ 

𝛽2⋀ 

𝛼 2𝜆
 . 

Therefore, to evade a pandemic of the disease, it is sufficient to shrink the threshold value of 

the reproduction number below 1. The fastest way to accomplish this is by dropping the 

occurrence of the recruitment rate. We see this from the numerical simulations that as the 

population increases the magnitude of the infective also increases. Another way would be 

vaccinating the entire population if possible so long as the vaccinations are effective and safe, 

as many flu vaccines cause neurological disorder. 
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More so, from the numerical simulations, the memory effect can clearly be appreciated, 

deduced from incorporating the fractional order on the system as compared to the integer 

order; where the values of the fractional order were varied between 0 and 1. It is easy to see 

from Figure 4.5, Figure 4.6 and Figure 4.7 that when the vaccine for a strain is absent, the 

strain amplifies as compared to when its vaccine is prevailing. In other words, more infective 

will join a certain strain compartment when the vaccine for the other outperforms its vaccine 

but in different magnitude, implying that one strain become stronger than the other. 

Fig 4.8 clearly shows that the model predictive accuracy is good with a regression coefficient 

of 0.988. We see how the predictive line from the curve fitting portends the real data 

signifying mathematical prognosis and memory effect. 
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