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ABSTRACT 

Reference evapotranspiration (ET0) plays a major role in the fields of irrigation scheduling, 

climatological studies, agricultural water management, hydrological studies, etc. Lysimeters 

is used to measure ET0 directly, but high installation and maintenance cost makes it difficult 

to use. Pan evaporation method is found to be of practical value for ET0 estimation. However, 

artificial intelligence (AI) techniques and empirical equations are also used for ET0 

modeling. This study investigates the capability of ensemble learning approaches to improve 

modeling and multi-step ahead modeling of ET0. To achieve this aim, 12 meteorological 

variables from 14 different climatic data stations across Turkey, Cyprus, Iraq, Iran and Libya 

were used as inputs. To ensure the quality standard and acceptability of the obtained data, 

quality control test was applied for all variables. Initially, empirical models including Ritchie 

(RT), Makkink (MK), Hargreaves and Samani (HS) and Modified HS (MHS) were applied 

for the ET0 estimation. Thereafter, AI based sensitivity analysis was employed to determine 

the most appropriate input variables for Artificial Neural Network (ANN), Adaptive Neuro-

fuzzy Inference System (ANFIS), Support Vector Regression (SVR) and Multiple Linear 

Regression (MLR) models which were applied for single ET0 modeling. K-fold cross 

validation was applied for models validation. Simple Average (SA), Weighted Average 

(WA) and Nonlinear Ensemble (NE) were the 3 ensemble approaches applied in 2 phases of 

the ET0 modeling. Phase 1 involved ensemble ET0 modeling using the outputs of AI and 

empirical models. Phase 2 involved single and multi-step ahead ET0 modeling using outputs 

of AI based models. The results showed that valuable performance could be achieved by the 

applied single models, but AI based models produced more reliable performance than MLR 

and empirical models. The results also demonstrated that ensemble models could be 

employed successfully for performance improvement of the single models in phase 1 up to 

55% for ET0 modeling and in phase 2 up to 60% for multi-step ahead ET0 modeling in the 

validation step.  

Keywords: Ensemble learning; reference evapotranspiration; station, Turkey; artificial 

neural network; adaptive neuro-fuzzy inference system 
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ÖZET 

Referans Evapotransporasyon (ET0); sulama planlaması, iklimsel çalışmalar, tarımsal su 

yönetimi, hidrolojik çalışmalar vb. alanlarda önemli bir rol oynamaktadır. ET0’ı doğrudan 

ölçmek için Lisimetreler kullanılır, ancak yüksek kurulum ve bakım maliyeti kullanımı 

zorlaştırmaktadır. Alet  buharlaşma yönteminin ET0 tahmini için pratik bir değer olduğu 

bilinmektedir. Ancak Yapay Zeka (AI) teknikleri ve Ampirik Denklemler de ET0 

modellemesi için kullanılmaktadır. Bu çalışma ET0 modellemesini ve çok adımlı ileri 

modellemeyi geliştirmek için topluluk öğrenme yaklaşımlarının kapasitesini araştırmaktadır. 

Bu amaca ulaşmak için Türkiye, Kuzey Kıbrıs, Irak, İran ve Libya'daki 14 farklı iklimsel 

veri istasyonundan 12 meteorolojik değişken girdi olarak kullanılmıştır. Elde edilen verilerin 

kalite standardını ve kabul edilebilirliğini sağlamak adına tüm değişkenler için kalite kontrol 

testi uygulanmıştır. İlk olarak, ET0 tahmini için Ritchie (RT), Makkink (MK), Hargreaves 

ve Samani (HS) ve Modifiye edilmiş HS (MHS) gibi ampirik modeller kullanılmıştır. Daha 

sonra uygulanan Yapay Sinir Ağı (ANN), Uyarlanabilir Nöro-Bulanık Çıkarım Sistemi 

(ANFIS), Destek Vektör Regresyonu (SVR) ve Çoklu Doğrusal Regresyon (MLR) 

modellerinde en uygun girdi değişkenlerini belirlemek için AI tabanlı duyarlılık analizi tekil 

ET0 modellemesi için kullanılmıştır. Model validasyonu için K-fold çapraz validasyonu 

kullanılmıştır. Basit Ortalama (SA), Ağırlıklı Ortalama (WA) ve Doğrusal Olmayan 

Topluluk (NE), ET0 modellemesinin 2 fazında kullanılan 3 topluluk yaklaşımıdır. Faz 1, AI 

ve ampirik modellerin çıktılarını kullanarak birleştirilmiş ET0 modellemesini, faz 2 ise AI 

tabanlı modellerin çıktılarını kullanarak tek ve çok adımlı ileri ET0 modellemesini 

içermektedir. Sonuçlar, uygulanan tekil modeller ile iyi performans elde edilebilmiş, ancak 

AI tabanlı modeller, MLR ve ampirik modellerden daha güvenilir sonuçlar vermiştir. 

Sonuçlar ayrıca, topluluk modellerinin, faz 1'de ET0 modellemesi için % 55'e kadar ve faz 

2'de validasyon aşamasında çok adımlı ileri ET0 modellemesi için % 60'a kadar tekil 

modellerin performans iyileştirmesinde başarılı bir şekilde kullanılabileceğini göstermiştir 

Anahtar kelimeler : Topluluk Öğrenimi; Referans Evapotransporasyon; İstasyon, Türkiye; 

Yapay Sinir Ağı; Uyarlanabilir Nöro-Bulanık Çıkarım Sistemi 
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CHAPTER 1  

INTRODUCTION 

1.1 Reference Evapotranspiration 

Evapotranspiration (ET) refers to the transfer of water from the earth's surface to the 

atmosphere by evaporating from wet plant, water, and soil surfaces and by transpiration via 

plant stomata (Odhiambo et al., 2001). The reference surface of the reference crop 

evapotranspiration or evapotranspiration is a hypothetical grazing reference crop with an 

approximate field depth of 0.12m, a fixed surface resistant of 70 sm-1 and an albedo of 0.23 

(Allen et al., 1998). 

Water scarcity particularly in arid and semi-arid climatic regions is becoming a major 

problem. It has a detrimental impact on the irrigation system, resulting in very low to no 

crop yields for seasonal and multiannual crops (Papadavid and Diafantos, 2010). However, 

according to Oladipo, (1993), one of the key factors restricting agricultural development 

after soil fertility is deficiencies in water supply. Therefore, it is important to estimate 

Reference Evapotranspiration (ET0) with reasonable accuracy in order to have efficient soil 

water balance for crop productions and water resources management in these regions.  

The history of ET with meteorological variables can be traced back to the beginning of the 

19th century (see, Brutsaert, 1982; Chen et al., 2005). Since then, several methods have been 

developed (classified into 6 groups) (Chen et al., 2005): (1) radiation-based methods (e.g. 

Makkink, 1957; Jones and Ritchie, 1990); (2) temperature-based methods (Blaney, 1952; 

Hargreaves and Samani, 1985); (3) combination methods (e.g. Penman, 1948, Monteith, 

1965); (4) Pan evaporation methods (e.g. Allen et al., 1998); (5) water-budget methods (e.g. 

Guitjens, 1982) and (6) mass transfer methods (e.g. Harbeck, 1962). The practical 

importance of pan evaporation (Ep) has been demonstrated, and therefore its use with 

empirical coefficients (which relate Ep to ET0) have been generally applicable for period of 

10 or longer days (Allen et al., 1998). Ep measurements account for cumulative impacts of 

humidity, wind speed, solar radiation and temperature on the ET0. Such measurements for 

the ET0 estimation could successfully achieve a good accuracy (Irmak et al., 2002). As 



2 
 

shown by various studies, higher correlations between, Ep and ET0 are expected if Ep is 

properly maintained (Khoob, 2008). 

While physical and conceptual models are accurate tools to investigate a phenomenon's 

actual physics, they contain practical constraints, and when detailed predictions are more of 

concern than physical understanding, it may be more useful to use black box models. 

Multilinear Regression (MLR) is a traditional modeling approach for linear relations 

between dependent and one or more independent variables (Tabari et al., 2012). Such 

categories of models that are literally linear lose their value in modeling processes in many 

fields that are integrated in both spatial and temporal scales of high complexity, dynamism 

and nonlinearity. The use of Artificial Intelligence (AI) for instance, Adaptive Neuro-Fuzzy 

Inference System (ANFIS), Artificial Neural Network (ANN) and Support Vector 

Regression (SVR) has been widely adopted in recent years, through which many research 

papers have been published.  

Although these black box models (e.g., ANN, ANFIS, SVR, and MLR) could lead to a very 

accurate results, it is well-known fact that different models can provide different outcomes 

for a specific problem. Furthermore, it is apparent that performance of one intelligent 

technique may exceed another for a given set of data, and when different data sets are used, 

the results may be quite the opposite. In order to exploit the advantages of all the intelligent 

methods and also not to sacrifice generality, a recently introduced modeling technique called 

ensemble model produces better predictive efficiency by using the single output of each 

intelligent method with some kind of priority level, which is assigned to the output of each 

intelligent method and the combined output is then provided with the aid of an arbitrator 

(Kiran and Ravi, 2008). In the ensemble model, the individual components received as 

outputs from each implemented method are used as inputs to the model, which are processed 

to provide overall output based on the arbitrator's design (Kiran and Ravi, 2008). 

Consequently, Bates and Granger (1969) seminal work indicated that a collection of different 

approaches would result in minimal variance in error compared to individual techniques or 

approaches in solitary mode. Furthermore, Makridakis et al., (1982) reported that combining 

multiple single models to improve predictive accuracy has become a standard practice. Some 

techniques of ensemble nature for predicting problems with continuous variable dependence 

consist of Nonlinear ensemble for example neural network-based ensemble (Yu et al., 2005) 
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and linear ensemble, such as Weighted average (Perrone and Cooper, 1993), Simple average 

(Benediktsson et al., 1997), and Stack regression (Breiman, 1996). The idea behind ensemble 

learning is to create unique characteristics for the constituent models to generate various 

patterns presented in the dataset (Kiran and Ravi, 2008; Sharghi et al., 2018). 

1.2 Problem statement 

In the recent decades, increase in the world population, expansion of industrial activities, as 

well as the destruction of the environment resulted in the escalation and rise of greenhouse 

gases which are detrimental to global climate. Evapotranspiration is among the primary and 

most significant components of hydrologic cycle being the biggest source of water loss. The 

water loss due to evapotranspiration increases with increase in global warming which leads 

to major drawbacks in water resources occurrence and distribution especially in the arid and 

semiarid regions of the globe. Therefore, estimation of evapotranspiration with reliable 

efficiency is of paramount important for proper use of the available water resources, design 

of hydraulic structures, irrigation practices and water resources management. 

1.3 Objectives of the Study 

In the context of hydro-climatic processes in general and ET0 modeling in particular, based 

on the present literature, so far, no research has been performed using empirical models and 

AI-based techniques to perform ensemble modeling. Therefore, this study was performed in 

two phases as; (1) ensemble modeling of ET0 and (2) ensemble modeling for multi-step 

ahead ET0. Hence, the main objectives of this study were to; 

i. Perform sensitivity analysis of 12 meteorological parameters from 14 meteorological 

stations across Turkey, Cyprus, Iraq, Iran and Libya in order to determine the 

appropriate input combinations. 

ii. Apply AI (particularly ANN, ANFIS and SVR) and MLR techniques to model ET0 

in the study stations. 

iii. Perform multi-step ahead prediction of ET0 using same AI and MLR techniques. 

iv. Compare the performances of the AI and MLR models with classical (empirical) 

models including Hargreaves and Samani (HS), Modified Hargreaves and Samani 

(MHS), Makkink (MK) and Ritchie (RT) for the ET0 modeling. 



4 
 

v. Improve the accuracy and reliability of the single models through the application of 

Simple Average (SA), Weighted Average (WA) and Neural Ensemble (NE) 

techniques. 

1.4 Hypothesis 

Following are the hypothesis in this study; 

 Due to vulnerability to hot climate condition, temperature would be most dominant 

parameter especially in arid and semi-arid stations of this study. 

 AI models would have superior performance in comparison to MLR and empirical 

models because of their ability to deal with nonlinear aspect of ET0. 

 By increasing the prediction horizon the performance of the models will decrease 

owing to inability of inputs at previous time step to predict for future ET0 for multi-

step ahead modeling of ET0. 

 Ensemble modeling will improve performance of single models. 

1.5 Significance of the Study 

Being the first study that utilized the application of ensemble techniques for ET0 modeling 

using several AI models, after completion, this study will serve as the basis upon which 

numerous studies could be conducted in hydro-climatic fields in general and ET0 in 

particular due to its rich content. The current study will add value to the existing tools for 

ET0 modeling and will significantly enhance the prediction of the complex ET0 process. 

1.6 Limitation of the Study 

This study employed the application of a novel approaches to enhance prediction and multi-

step ahead prediction of ET0. The study is limited to data obtained from 14 meteorological 

stations from Turkey, North Cyprus, Iraq, Iran and Libya. The data period ranges from the 

minimum of 16 years to a maximum of 31 years. The oldest data used was 2010 and the 

latest was 2018. Two radiations and two temperature based models were used for empirical 

modeling, multiple linear regression was used to cover for linear conventional models, while 

ANN, ANFIS, SVR were employed as artificial intelligences models. Finally, two linear and 

one nonlinear ensemble models were used for performance improvement. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Reference Evapotranspiration Modeling over the Study Regions 

Several studies that involved the application ANN, ANFIS, SVR, MLR, HS, MHS, MK and 

RT models for ET0 modeling in the regions of this study could be found in literature. These 

include; 

2.1.1 Reference evapotranspiration studies in Turkey 

Pour-Ali Baba et al. (2012) modeled daily ET0 using sunshine hours, relative humidity, air 

temperature and wind speed from 1985 – 1992 (for 8 years) from two meteorological stations 

in South Korea. ANN and ANFIS were the two models employed for the daily ET0 modeling. 

Different combinations of input variables tallying with FA0-56-PM, PT and HS equations 

were trained, validated and tested in the first part of the equations. For the second part of the 

study, instead of recording sunshine hours, solar radiated was estimated and used with same 

input combinations as the first part. The results showed that using the available climate data, 

the ET0 process could be efficiently simulated with the applications of ANN and ANFIS. In 

addition, the models accuracy decreased with the estimation of solar radiation data as 

replacement to recorded sunshine hours data.  

Kisi (2013a) employed Sugeno and Mamdani fuzzy genetic techniques (SFG and MFG) to 

model ET0 in Antalya and Adana stations using solar radiation, wind speed, air temperature 

and relative humidity as inputs to the fuzzy models. FAO-56-PM was used as reference ET0. 

HS, Priestley-Taylor (PT) and Valiantzas were the three empirical equations employed for 

the study. The results demonstrated that SFG had a better performance and was faster than 

MFG and the two AI models performed better all the three empirical models utilized. For 

Antalya and Adana stations, in modeling daily ET0 process, SFG1 model was found to be 

superior to other models. 

Kisi (2013b) investigated the applicability of a newly developed Valiantzas equation for the 

estimation of ET0 in Mersin, Antalya, Isparta and Adana stations in the Mediterranean region 
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of Turkey. Copais, Turk, HS, Irmak, RT and Hargreaves were also employed for comparison 

and the models performance were determined by FAO-56-PM. The results showed that in 

Antalya, Isparta and Adana stations, with full weather data, Valiantzas’s equation had 

superior performance than other empirical models. Copais equation had a better performance 

in Mersin station and the Turc method performed the worst among the empirical models. 

Todorovic et al. (2013) assessed the possibility of applying PM temperature (PMT) and HS 

mothods to estimate ET0 from 577 weather stations obtained from CLIMWAT data base 

across several Mediterranean climatic regions. The results revealed that PMT and HS 

performances were similar in hyper-arid and arid zones. PMT outperformed HS method in 

semi-arid to humid zones. In the estimation of dew point temperature, the PMT method 

performance could be improved when aridity/humidity corrections are adopted from 

minimum temperature data. High variability of ET0 could be seen from spatial elaboration 

results by different methods. Hence, sufficient quality dataset is needed for a site specific 

analysis for calibration and validation of temperature methods for ET0 modeling. 

Kisi and Cengiz (2013) used air temperature, wind speed, relative humidity and solar 

radiation from Isparta and Antalya stations of Turkey Mediterranean region to ascertain the 

applicability of fuzzy genetic (FG) in modeling ET0 using FAO-56-PM as reference. 

Comparison were made between FG models and ANN models. The results implied the 

superiority of FG model in ET0 modeling in Turkey Mediterranean region in comparison to 

ANN model. 

Kisi and Zounemat-Kermani (2014) compared the performance of subtractive clustering 

(SC) and grid partitioning (GP) methods of adaptive neuro-fuzzy inference system (ANFIS) 

for daily ET0 modeling. Daily weather data from Adana station of Turkey Mediterranean 

region consisting of including wind speed, relative humidity solar radiation  and air 

temperature were used as inputs to the two fuzzy models. Fuzzy models were used to 

investigate the effect of each meteorological parameter on FAO-56-Pm ET0 in the first part 

of the study. The most effective variable was found to be wind speed. The missing data effect 

on fuzzy models on training, validation and testing were also examined in the second part of 

the study. ANFIS-GP model was found to be unaffected by the missing data while ANFIS-

SC model’s accuracy decreases with more percentage of missing data. The duration or data 
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length for training, validation and testing in the third part of the study were investigated. The 

results showed that the training data length has no significant effect on fuzzy models for the 

ET0 modeling. The last part of the study compared the fuzzy models with calibrated 

Hargreaves, Turc, RT and Valiantzas’ equations. The results showed that calibrated RT and 

Valiantzas’ equations with two-parameters outperformed two-input ANFIS models while 

four and three-input ANFIS models performed better than the applied empirical equations. 

Citakoglu et al. (2014) applied ANN, ANFIS, HS and RT models to estimate ET0 using 

several combinations of long-term average monthly climate data of wind speed, air 

temperature, relative humidity, and solar radiation, recorded at stations in Turkey. FAO-56 

PM was used as the basis of comparison of the models performances. The results showed 

that the ANFIS and ANN schemes can be employed successfully in modeling the monthly 

mean ET0, because both approaches yield better estimates than the classical methods, and 

yet ANFIS being slightly more successful than ANN. 

Cobaner et al. (2016) proposed the modification of HS model for ET0 modeling from 275 

climate stations in Turkey. The study was organized first with application of HS model for 

ET0 modeling, then FAO-56-PM was used to calibrate the coefficient of HS model, the 

finally, as an extra explanatory variable, wind speed was added to modify the HS model. 

The results revealed that for better accuracy in ET0 modeling, the modified HS model can 

be used in regions with scare meteorological measurements. 

Kisi (2016) applied three heuristic regression approaches including M5 model tree (M5tree), 

multivariate adaptive regression splines (MARS), and least square support vector regression 

(LSSVR) for ET0 modeling in ISparta and Antalya stations in Turkey Mediterranean region. 

Cross-validation was also applied. In the first part of the study, the accuracy of the applied 

models were investigated using local input and output data. The results showed better 

performance of LSSVR than MARS and M5tree models. In the second part, the input data 

from nearby stations were used instead of local inputs. The result depicted higher accuracy 

of MARS in comparison to LSSR and M5tree models. The last part involved the use of both 

inputs and output data from nearby station. The results demonstrated the superiority of 

M5tree against LSSR and MARS models. The results also revealed that when all the local 

inputs and output data are available, LSSVR could model ET0 sufficiently, in case of missing 
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local inputs, MARS model showed greater efficiency and when local inputs and output data 

are not available, M5tree would be a better choice between the three applied models.  

2.1.2 Reference evapotranspiration studies in Cyprus 

Papadavid et al. (2011) applied FAO-56-PM to estimate ET0 using maximum and minimum 

temperature, wind speed and relative humidity as inputs. The FAO-56-PM ET0 was 

compared with low-resolution satellite data (MODIS-TERRA). Moreover, geographic 

information system (GIS) was used to map the automatic meteorological stations in Cyprus. 

Thiessen polygons methodology was applied to categorize the agricultural area of the island, 

which is considered as area representative. The results depicted that with utilization of 

appropriate meteorological data, then the ET0 correct deviation might be obtained leading to 

crop water stress and water losses. 

Papadavid et al. (2013) ET0 of groundnut was estimated by integrating remote sensing and 

modeling techniques in Paphos district of Cyprus. For the first time in Cyprus, the surface 

energy balance algorithm for land (SEBAL) was employed. The needed spectral data was 

capture using 7 ETM+ and Landsat-5 TM images. Empirical equations were used to enhance 

SEBAL model in order to increase its accuracy regarding crop canopy factors. For the 

interest area, SEBAL modified model (CYSEBAL) used to create ET0 map. Measurements 

from pan evaporation were also compared with the results of SEBAL and CYSEBAL. The 

results revealed that the results of pan evaporation were comparable to the results yield by 

CYSEBAL. The results from T-test application also showed a quite crucial and significant 

statistical difference between CYSEBAL and SEBAL models especially in underground 

water resources and limited surface place. 

Abdullahi and Elkiran (2017) applied feed forward back propagation data driven algorithm 

to perform an investigative study to examine the effect global climate might have on ET0 

using Larnaca and Girne meteorological variables of Cyprus. The first approach of the study 

the number of hidden neurons was altered while the input parameters remained the same. In 

the second approach, the hidden neurons double the number of inputs while the inputs ranged 

from 2 to 6 parameters. The results revealed that ANN in both approaches could successfully 

accomplish the prediction of ET0 in Larnaca and Girne stations of Cyprus, but the models 

performance increases with more inputs. 
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Abdullahi et al. (2017) examined the accuracy of ANN model in predicting monthly ET0 in 

Famagusta station of Cyprus. The results of the ANN models were compared with MLR 

model. Different input combinations were adopted in training the models. FAO-56-PM was 

employed for evaluating the performance of the developed models. The obtained results 

showed that wind speed was the most dominant parameter. Moreover, the results 

demonstrated that ANN model outperformed MLR in the estimation of ET0 in Famagusta 

station.  

2.1.3 Reference evapotranspiration studies in Iraq 

Awchi (2008) investigated redial basis function neural network (RBFNN) potential in the 

prediction of daily ET0. Data from Mosul meteorological station in the north of Iraq were 

collected for 5 years including wind speed, relative humidity, sunshine hours, rainfall and 

temperature. Varied input combinations were used to developed thirteen RBFNN models 

and their performances were compared with FAO-56-PM ET0. FFNN model was also 

developed to compare with the RBFNN models. The results depicted that RBFNN could be 

used effectively for the prediction of ET0 and could be compared to FFNN and RBFNN is 

faster and easier to train.  

Abdullah et al. (2014) proposed the application of ANN-genetic algorithm (ANN-GA) 

hybrid model in comparison with FFNN and FAO-56-PM for daily ET0 estimation in arid 

and semi-arid regions of Iraq using radiation hours, maximum and minimum air 

temperatures, wind speed and relative humidity as inputs to the models. Correlation 

coefficient (R2) and mean square error (MSE) were the evaluation functions used. The results 

showed promising performance by all the applied models. However, the proposed hybrid 

model showed greater efficiency and therefore, was recommended for ET0 estimation in arid 

and semiarid regions. 

Aljumaili et al. (2014) analyzed five ET0 estimation models FAO-24-PM model, FAO-56-

PM model, Jensen-Haise (JH) model, Hargreaves model and Penman-Kimberly (PK) model 

for irrigation projects in Karbala, Iraq. Pearson correlation coefficient, root mean square 

error and bias were used for performance evaluation of the models. The results showed a 

close performance for models developed by more climatic inputs including PK, PF and PM. 

The wind function used in each model result in differences between the models. With slope 
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of 1.254, the minimum climate data used for linear regression model development, R2 of 

0.988 and an interception point of -1.801 very closely matched with PK model values. 

Abdulllah et al. (2015a) examined the capabilities of ANN and hybrid ANN and genetic 

algorithm (ANN-GA) to model ET0 in Baghdad meteorological station, Iraq. Sunshine 

hours, wind speed, relative humidity, and minimum and maximum air temperature were used 

as inputs. The performance of the models were evaluated using Determination coefficient 

(R2), mean absolute error (MAE) and root mean square error (RMSE). The results obtained 

from each models were promising though, the hybrid model demonstrated better 

performance capability and was recommended for ET0 modeling in arid and semiarid climate 

regions. 

Abdullah et al. (2015b) study investigated the accuracy of extreme learning machine (ELM) 

algorithm in prediction of FA0-56-PM ET0 in Basrah, Baghdad, and Mosul meteorological 

stations in the southern, middle and northern parts of Iraq. The input meteorological 

variables used from 2000 – 2013 include, relative humidity, sunshine hours, wind speed and 

maximum and minimum air temperatures. Four different combinations of inputs were used 

with complete and incomplete data sets. The ELM model performance was compared to 

FAO-56-PM and FFNN models. Determination coefficient (R2), mean absolute error (MAE) 

and root mean square error (RMSE) were used as evaluation criteria. The results showed an 

encouraging performance of both models especially ELM model produced with incomplete 

data sets. The ELM model proved to be of high speed, simple application, efficient of good 

generalization performance and was therefore, recommended for climatic and geographical 

locations similar to arid and semiarid regions of Iraq. 

Jassas et al. (2015) study employed the application of water balance and surface energy 

balance algorithm for land (SEBAL) to conduct spatial and temporal ET0 estimation in Al-

Khazir Gomal basin, northern Iraq. In the winter season, one of the most important activities 

is the rainfed farming of barley and wheat, while agricultural activities are limited to narrow 

strips of vegetable cultivation and small rice fields in the summer, along the Al-Khazir River. 

Land use land cover (LULC) map results were compared to the SEBAL results. The results 

showed the potential of SEBAL model in the estimation of ET0 in the study area and could 

be employed in future water budget studies of the basin.  
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Jaber et al. (2016) applied SEBAL model to predict ET0 in Al-babil city of Iraq. Two 

reference data sets from the Al-babil meteorological station were used to evaluate the 

performance of the SEBAL model. The first and second data sets on March and September 

overall accuracies were achieved as R2 = 0.86 and R2 = 0.85, respectively. The results 

revealed that SEBAL model could be employed for ET0 prediction in the study area. 

Najmaddin et al. (2017) assessed the accuracy of ET0 estimated using remote sensing data 

(ET0-RS) in comparison to ET0 developed with the use of four ground-based stations (ET0-G) 

over the period 2010 – 2014 in Iraq’s Kurdistan region. Wind speed, cloud cover fraction, 

relative humidity and air temperature were used as inputs variables. Four empirical models 

were developed for the study purpose including Jensen-Haise (JH), (HS), FAO-56-PM and 

McGuiness-Bordne (MB) models. FAO-56-PM was used as the benchmark (ET0-G). JH and 

MB overestimated ET0 by 8% to 40%, while HS underestimated ET0 by 2 to 3%. The annual 

average values of ET0 reflected low bias in daily estimate indicating that ground-based data 

and RS data were similar to one another. The results revealed that ET0-RS could be 

successfully employed in the management of water resources as it can yield unbiased and 

accurate ET0 estimate.  

2.1.4 Reference evapotranspiration studies in Iran 

Odhiambo et al. (2001) examine the suitability of estimating daily ET0 using fuzzy logic 

with fewer and simpler parameters in arid and humid climate regions. Two or three 

parameters from two fuzzy evapotranspiration models were developed for the ET0 

estimation. The results obtained by fuzzy model was compared to FAO-56 PM, HS equations 

and measurements from grass cover weighing Lysimeters. The results demonstrated that 

accurate estimation of ET0 could be achieved by fuzzy logic with fewer and simpler 

parameters.  

Sudheer et al. (2003) examined ANN potentials in estimating ET0 by limited climate data. 

Various input combinations were used and the models were developed, trained, and tested 

and compared to the measured lysimeter ET0. The results revealed that ANN could be 

applied successfully in predicting ET0 with air temperature as input. 
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Chen et al. (2005) performed an investigative study that compared the Penman-Monteith 

method as a reference, and its temporal and spatial variations with the pan measurement and 

Thornthwaite method. The revealed results in terms of spatial variation display a consistent 

regional pattern by pan measurements, while the Thornthwaite estimates show different 

regional patterns. In addition, pan measurements show much better representation of ET0 in 

the temporal variability than the Thornthwaite estimates. Overall, to appropriately determine 

pan coefficients, pan measurements are more useful than the Thornthwaite estimates. 

Dinpashoh (2006) used 30-year meteorological data from 81 weather stations based on 

spatial and temporal procedures to estimate the ET0. Results indicated that the long-term 

mean annual ET0 varies across the country from 830 mm to over 3627 mm. The annual least 

and monthly ET0 belonged to the coasts of the Caspian Sea while the highest ET0 belonged 

to the southeastern and central parts of Iran. The mean annual ET0 in the southeastern part 

of Iran was around 33 times that of its annual mean precipitation. 

In order to estimate daily ET0 from weather data, Kisi (2006) applied two separate feed-

forward neural network algorithms, conjugate gradient (CG) and Levenberg – Marquardt 

(LM). The performance of the LM and CG algorithms in estimating ET0 was evaluated and 

discussed, and the analysis explores different combinations of soil and air temperature, solar 

radiation, wind speed and relative humidity as data inputs to the ANN models to determine 

the degree of impact of each of these variables on ET0. The findings of the ANN models 

were contrasted to those of the Penman and Hargreaves empirical models and multi-linear 

regression (MLR) model. Based on the comparisons, the neural computing technique from 

the available weather data was found to be effective in modeling the evapotranspiration 

process. 

Kisi and Ozturk (2007) evaluated the ability of ANFIS for estimation of ET0 using daily 

climate data of relative humidity, air temperature, wind speed, and solar radiation from Santa 

Monica and Ponoma stations in Lose Angeles as inputs the empirical and neurofuzzy 

models. the results obtained by neurofuzzy model were compared with that of ANN and 

empirical models including HS, RT, Penman and California Irrigation management system. 

The obtained results implied that in modeling the ET0 process, the neurofuzzy models could 

be of successful application.  
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Khoob (2008) estimated ET0 using ANN from pan evaporation measurements. The ANN 

was assessed under semi-arid climate environments in Iran southwest’s Safiabad 

Agricultural Research Center (SARC), comparing daily estimates by the standard FAO-56 

Penman – Monteith equation (PM) with those from ANN and traditional empirical method. 

The comparison depicts that, the ET0 obtained by the PM method was underestimated by 

conventional method. The ANN method provided better estimates than the traditional 

method, which needs data on humidity and wind speed. 

Rahimikhoob (2010) based on air temperature data examined the potential of ANNs in the 

estimation of ET0 in eight stations of humid subtropical regions located in the southern coast 

of Caspian Sea, Iran. Extraterrestrial radiation, minimum and maximum temperature were 

the input variables used. There was also a comparison of the estimates given by the ANNs 

and by the equation of HG. The Penman – Monteith FAO-56 model was utilized as the 

standard model to test the efficiency of both the methods. The obtained results by the study 

demonstrated that using air temperature data, the daily ET0 was successfully estimated by 

ANNs and that using the ANNs, simulation of ET0 was better with RMSE of 0.41 mm day−1 

and R2 of 0.95 compared to Hargreaves equation, which had RMSE of 0.51 mm day−1 and 

R2 of 0.91. 

Karimaldini et al. (2011) estimated daily ET0 under arid conditions using ANFIS from 

limited climate data in Iran. For the calibration of the model, to determine the number of 

sufficient data points and to find the best input combination, gamma test technique was used. 

K-fold cross-validation method was chosen to obtain the optimal classifier for training and 

testing data sets. Calibrated FAO-56 reduced-set PM ET0 approach and some calibrated 

empirical ET0 equations such as Makkink, Hargreaves, Blaney-Criddle and Priestley-Tailor 

equations were compared with the estimates of the ANFIS models. The FAO-56 full-set PM 

was adopted as the ET0 equation of reference, and it was used to calibrate other ET0 

equations and ANFIS models. The results of the analysis suggested that the ANFIS models 

performed better than all the methods used when identical meteorological inputs are used. 

This fact strongly suggests that ANFIS is an accurate ET0 estimation technique, even in the 

absence of complete meteorological data. Under arid conditions, the minimum data needed 

to construct a good ANFIS model are wind speed, maximum and minimum air temperatures.  
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Due to the constraint of FA0-56-PM to large amount of climate data, which are difficult to 

have especially in the developing countries, Tabari and Talaee (2011) study employed the 

use of PT and Hargreaves (HG) models that require limited amount of data from 12 

meteorological stations in the cold and arid climates of Iran. The results implied that the PT 

coefficient for the climatic regions, which was originally 1.26 was very small, with the latest 

PT coefficients of 2.14 and 1.82 being the best match in cold and arid climates compared to 

the FAO-56-PM process. Overall, calibration of the equations of HG and PT led to 

improvement of the equations by reducing the errors of the estimates of ET0.  

Dinpashoh et al. (2011) used several regions that covered for over 16 weather stations in 

Iran to estimate ET0. After eliminating the important lag-1 serial correlation effect from all 

of the ET0 time series by pre-whitening, trend of ET0 was evaluated using Mann-Kendall. 

The magnitude of the trend was found to be at it strongest positive (or negative) in April 

(July) with slope equal to 14 mm/year per decade for Theil–Sen. Considering the entire study 

domain, there was no homogeneity between months and stations for the ET0 trends as 

indicated by the results of homogeneity test. The most influential variable to ET0 in Iran was 

found to be wind speed in all months with exception of winter months. 

 Zanetti et al. (2007) used minimum climatological data which comprised of maximum and 

minimum air temperatures, daylight hours, and extraterrestrial radiation to test the potential 

of ANN model for the estimation of ET0 in the Campos dos Goytacazes county, State of Rio 

de Janeiro. The results revealed that it is possible to have reliable estimation of ET0 with the 

application of ANN model from maximum and minimum air temperatures only in Campos 

dos Goytacazes. 

Tabari et al. (2012) performed investigation about the potential of SVM, ANFIS, MLR and 

multiple non-linear regression (MNLR) to estimate ET0 in Iran’s semi-arid highland 

environment using six climatic data input variables. Additionally, the PMF-56 model has 

been tested against eight radiation-based and four temperature-based ET0 equations. The 

results obtained for the ET0 estimated by the SVM and ANFIS models were better than those 

obtained using the climate and regression-based models and demonstrated the capability of 

these techniques to provide effective tools for ET0 modeling in semi-arid environments. 

Based on the overall performance comparison, it was found that the models SVM6 and 
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ANFIS6, which used wind speed, relative humidity solar radiation and mean air temperature 

as input variables, had the highest efficiency.  

Valipour (2012) performed an investigative study to determine the ability of Box-Jenkins 

models for the estimation of ET0 for Mehrabad synoptic station in Tehran, Iran. The results 

were compared with FAO-56-PM, FAO radiation macking (FRM), Turc, corrected Jensen 

Haise (CJH), FAO blaney criddle (FBC), thornthwaite (TW) and HS models. Also ANN, 

genetic programming and remote sensing were also employed for the ET0 modeling. To 

increase accuracy, the models were developed with increasing number of frequency up to 5. 

The results revealed the capability of Box-Jenkins models in modeling ET0.  

Rahimikhoob et al. (2013) applied conventional method and M5 model tree for the 

estimation of ET0 from pan evaporation data in semi-arid climate of Khuzestan plain, 

southwest Iran. Results suggested that the M5 model tree was the best model to be applied 

for ET0 estimation over test sites, which provided RMSE of 0.5 mm/day and R2 of 0.98. 

Conversely, the two Kp equations worked poorly.  

Shiri et al. (2013) applied GEP and ANFIS based on solar radiation and temperature 

modeling procedures and compared with radiation/temperatures-based estimation equations 

for ET0 modeling in Shahrood, Semnan, Esfahan, Kerman and Bam stations via two 

management scenarios. In the first scenario, the GEP and ANFIS models were found to be 

superior in terms of performance compared to the equations by Makkink, Turc ET0 and 

Hargreaves–Samani. Comparison of ANFIS and GEP models for each station with pooled 

data trained and tested depicted that the GEP models performed less than ANFIS models 

generally. However, the comparison of pooled data trained and tested GEP and ANFIS 

models indicated that the ANFIS models were outperformed by the GEP models in the 

second scenario. 

Rahimikhoob (2014) Estimated ET0 in four meteorological stations using M5 model tree and 

ANN in arid climate of Iran. Results from the analysis showed that better estimation of ET0 

were achieved by ANN than the M5 model tree but within the confinement of the study area, 

both models developed promising performance and produced results similar to the FAO56-

PM process. The overall findings are of significant practical benefit since the moisture and 
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temperature-based model can be used when data on wind speed and radiation are not 

available. 

Shiri et al. (2014a) compared different heuristic and empirical models for the prediction of 

ET0 in a several climatic regions in Iran. The data driven models (DDM) include ANN, 

ANFIS, SVM and genetic expression programming (GEP) compared with HS, MK, 

Priestley-Taylor (PT) and Turk (T). The results demonstrated the superiority of GEP based 

models. Among the applied empirical models, calibrated HS model produced the best 

performance in both pooled and local scenarios. The DDM provided superior performance 

over the rest of the empirical models. The poorest result was obtained from arid region while 

the best result was obtained from humid regions. High advective and higher ET0 values could 

be attributed to such results. 

Shiri et al. (2014b) applied genetic expression programming (GEP) model for estimating 

ET0 according to spatial and temporal criteria in coastal environment in Iran.  

Snyder et al. (2005) evaluated equations for ET0 estimation from pan evaporation 

measurements and provided a simpler to make conversion from pan evaporation to ET0 in 

arid climate conditions such as California. The results show that the proposed method is 

conceptually easier and simple to use such as in coding for computer applications, the 

method gave better results within California than methods based on wind speed and relative 

humidity.  

Valipour (2015a) used data from 31 provinces in 181 synoptic stations of Iran and compared 

the performance of 11 temperature-based and FAO-56-PM models to determine the best 

approach for estimating ET0 under the influence of several climatic conditions. The results 

showed that in most Iranian provinces the updated Hargreaves–Samani 1 predicted the 

evapotranspiration process with more accuracy than other models. Nevertheless, the R2 

values for 20 Iranian provinces were < 0.9930. The most accurate approach for Alborz 

province (AL) was the updated Hargreaves – Samani 4. Finally, a list of each model's best 

results was provided for implementation in different regions based on minimum, maximum 

and mean temperature elevation, precipitation, wind speed, mean and minimum relative 

humidity and sunshine. The study results are also particularly useful in identifying the 
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appropriate model when researchers have to apply temperature-dependent models based on 

available data. 

Valipour (2015b) compared Turk, PT and 5 different Valiantzas models for ET0 modeling 

from 181 synoptic stations under different weather conditions in Iran. Findings showed that 

the optimal climatic conditions to be used in the methods of Valiantzas are 1.50–2.50 m s−1, 

16–18 ° C, > 24.2 MJ m−2 day−1 and 40–50 percent for wind speed, temperature, solar 

radiation and relative humidity. Results are also valuable in choosing the best model if 

researchers are expected to apply such models based on the available data. 

Wen et al (2015) used limited climatological data to test the use of a support vector machine 

(SVM) to model the daily ET0. For the SVM, in the extremely arid area of Ejina basin, China, 

four combinations of minimum air temperature (Tmin), maximum air temperature (Tmax), 

daily solar radiation (RS) and wind speed (U2) were used as inputs with Tmin and Tmax as the 

baseline data. The results of the SVM models were assessed by comparing the performance 

with the ET0 determined using the equation of Penman – Monteith FAO 56 (PMF-56). The 

results showed that the approximate ET0 using SVM with limited climatological data was in 

strong agreement to those achieved using the traditional equation by PMF-56 using the 

maximum meteorological data complement. Notably, three climatic parameters- Rs, Tmin 

and Tmax were sufficient to satisfactorily predict the daily ET0. In addition, SVM system 

performance was also compared with that of ANN and three empirical models including 

Ritchie, Hargreaves and Priestley-Taylor. The results suggested that the SVM system 

performance was the better among these models. This provides important potential for a 

more precise estimate of the ET0 in severe arid regions with insufficient data.  

Feng et al. (2016) compared the performances of backpropagation neural networks 

optimized by genetic algorithm (GANN), extreme learning machine (ELM), wavelet neural 

network, HS, MHS, MK, Priestley-Taylor and RT models for reference evapotranspiration 

estimation in humid region southwestern China. Results suggested that ELM and GANN 

models were much superior than WNN models among the proposed models, and that the 

ELM and GANN temperature-based models performed better than modified Hargreaves and 

Hargreaves models, radiation-based, the performance demonstrated by ELM and GANN 

were more accurate than Ritchie, Priestley-Taylor and Makkink models. Both radiation-



18 
 

based ELM could be employed to estimate ET0 at reasonable level of accuracy, and without 

adequate climatic data, they are highly recommended for ET0 estimation.   

Djaman et al. (2016) study focused on determination of ET0 using FAO-56-PM and two 

Valiantzas ET0 models in eight meteorological stations across Burkina Faso. The climate 

parameters used include solar radiation, maximum and minimum relative humidity, wind 

speed and maximum and minimum air temperature. The results demonstrated that with 

missing solar radiation, ET0 can be accurately estimated using maximum and minimum air 

temperatures for solar radiation estimation. The Valiantzas 1 model that utilizes only relative 

humidity and air temperature is not recommended and not suitable in the climate condition 

of Burkina Faso. Efficient estimations of ET0 with regards to FAO-56-PM with full climate 

data was achieved using Valiantzaz 2 model. It was finally concluded that due to limitation 

of Valiantzas equation with limited data, FAO-56-PM was recommended. 

Kisi and Kilic (2016) assessed the generalization capability of ANN and M5 model tree for 

ET0 modeling in two different regions of the USA. Climatic data of daily measurements 

including wind speed, average temperature, relative humidity and solar radiation from six 

different stations located in San Joaquin region and Southern region. Empirical equations 

were also developed for comparing to the ANN and M5 model tree. The AI models 

performed better than the empirical models. However, better performance were achieved by 

ANN models in comparison to RT, HS, Turc and CIMIS Penman models, while generally 

M5 model tree performed better than empirical models in both regions. Also in the third part 

of the research, M5 tree and ANN models with four inputs were superior to CIMIS Penman 

models in one station only but with only 2 inputs, ANN model performance surpasses Turc, 

RT, and HS models in two stations. 

Adamala et al. (2019) applied generalized wavelet neural network (GWNN), HS, and Turc 

models for daily ET0 modeling in humid, subhumid and semiarid regions of India. The 

developed models were also compared with generalized artificial neural network (GANN), 

generalized wavelet regression (GWR), generalized linear regression (GLR) and other 

conventional methods. FAO-56-PM was used as the reference ET0 to determine the 

performance of the applied models. The results indicated that GWNN followed by GANN 
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models provided better prediction than GWR and GLR and are therefore recommended foe 

ET0 modeling in the three regions of study.  

Manikumari et al. (2017) employed boosted neural network (BNN) and bagged neural 

network (BGNN) ensemble learning to improve the forecasting accuracy of daily ET0 for 

the period 2004 – 2014 consisting of 4018 number of observations in India. The results 

revealed that the efficiency of BNN and BGNN in prediction of ET0 was higher than 

individual neural network models. Among the applied ensemble models, BNN was found to 

have better performance than BGNN. 

Gao et al. (2017) applied FAO-56-PM, FAO-24 radiation, Blaney Criddle (BC), HS, PT, 

Turc and MK models for daily, monthly average and total annual ET0 estimation in AKsu, 

an arid region of China, Tongchuan, a semiarid region of China and Mississipi, a humid 

region of United States. Comparison of models performances were based on modeling 

efficiency root mean square error and index of agreement. The results revealed that for arid 

and semiarid regions, HS and PT have the best performance while in humid region, 

performed better.  

Mehdizadeh et al. (2017) investigated the performances of SVM-radial basis function 

(SVM-RBF), SVM-polynomial (SVM-Poly), MARS, GEP and 16 empirical equations 

including mass transfer based, temperature based, meteorological parameters based and 

radiation based for the estimation of monthly ET0 in Iran. The MARS and SVM-RBF 

methods were found to typically achieve better results than the SVM-Poly and GEP methods. 

The accuracy of empirical equations and AI methods were compared at the end part of the 

analysis. In general, MARS and SVM-RBF worked better than empirical equations used. 

Shiri (2017) assessed the performance of several estimation techniques including GEP, HG, 

PT, Turk (Tr), Kimberly Penman (KP) for ET0 modeling ET0 in the hyper arid regions of 

Iran. The findings obtained revealed that the GEP models in all three studied categories 

(radiation, humidity /temperature, and combination-based methods) outperformed the 

corresponding semi-empirical and empirical models. The research further revealed that the 

calibrated models of Tr (with estimated relative humidity) and PT (original) provided the 

most reliable performance among the similar groups. 
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Karbasi (2018) performed multi-step ahead daily ET0 forecasting from 1 to 30 days ahead 

using the Gaussian Process Regression (GPR) and Wavelet-GPR models at the Zanjan 

synoptic station, Iran. The study considered 10 years statistical period between 2000 and 

2009. For this reason, 2000–2006 datasets (7 years) were utilized for training and 2007–

2009 the (final 3 years) datasets were used for validation of several models. The revealed 

results indicated that the accuracy of the models is increasing by decreasing the forecasting 

time span from 30 days to 1 day with RMSE = 0.816 mm/day for 30 days ahead and RMSE 

= 0.068 mm/day for one day ahead. Summer season application of the proposed model 

showed that the model's performance during the summer season is more reliable than its 

performance year-round. 

Duo and Yang (2018) applied extreme learning machine (ELM), ANFIS, ANN, and SVM 

to predict daily ET with observations of flux towers in four major ecosystem categories. The 

findings suggested that all of the models applied had good performance for daily ET 

modeling. Among the ELM models implemented, in most cases the three hybrid ELM 

methods outperformed the original ELM method at the four locations, and the computational 

time needed to learn these ELM models was substantially reduced. Generally, the fuzzy c-

means clustering and subtractive clustering algorithms for ANFIS were stronger than the 

grid-partitioning algorithm. It was concluded that owing to their robustness and versatility, 

the advanced ANFIS and ELM models can be recommended as essential complements to 

conventional methods. In addition, there was a substantial difference between the four major 

types of ecosystems regarding the modeling results. The models usually performed best in 

the forest environment, while offering the worst in the cropland environment. 

Farzanpour et al. (2018) compared the performances of twenty prediction models for ET0 

estimation using daily meteorological parameters from 10 stations for the period of 12 years 

in semiarid climate of Iran. Cross-station and local calibration scenarios were compared 

against FAO-56-PM. The results showed that cross-validation could serve as a good 

substitutes to local calibration of ET0 models when similar stations are used for the training 

matrix.  

Mohammadrezapour et al. (2018) compared the performances of GEP, ANFIS and SVM for 

ET0 modeling in baluchestan and and sistan province, an arid region of Iran. The study 
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involves the combination of five different inputs. Determination coefficient, mean absolute 

error and root mean square error were the employed criteria for performance evaluation. The 

obtained results showed that SVM with wind speed, sunshine hours current and one month 

lag, air temperature and relative humidity as inputs performed better than other models for 

Zabol, Chabahar, Zahedan and Iranshahr stations. Comparison of the heuristic models 

revealed that for estimation of ET0, the first, second and third performances models were 

SVM, GP and ANFIS across all stations. 

Mehdizadeh (2018) applied gene expression programming (GEP) and multivariate adaptive 

regression splines (MARS) based on external and local performance to estimate daily ET0 

by providing a new strategy to lagged data-based modeling of ET0. Daily historic data was 

used during 2000–2014 from six stations with various climates in Iran, including Yazd and 

Zahedan (hyperarid), Isfahan and Shiraz (arid), Urmia and Tabriz (semi-arid). The applied 

models local performance exhibited the capability of the GEP and MARS methods to 

estimate daily ET0 using the lagged data and the climate variables as inputs to the ET0. 

Nevertheless, the MARS performed best in the weather-based data scenarios. In addition to 

that, the accuracy of the models for the lagged ET0 data-based scenarios was not observed 

with significant differences. In the innovation of this research, through the conjunction of 

GEP and MARS models with time series model of autoregressive conditional 

heteroscedasticity (ARCH), novel hybrid models were proposed in the lagged data-based 

scenarios of ET0. It was concluded that the GEP-ARCH and MARS-ARCH novel models 

proposed, enhanced ET0 modeling efficiency compared to single GEP and MARS models. 

Furthermore, the external performance review of models at locations with identical weather 

conditions suggested the applicability of nearby station data to estimate the daily ET0 at the 

target station. 

In Brazil, Ferreira et al. (2019a) proposed a new method for estimating the ET0 using SVM 

and ANN with minimal climatological data. The results revealed that even though they were 

calibrated, the ANN and SVM models displayed higher efficiency than the equations which 

were studied. The methods analyzed (clustering and preceding days) received substantial 

efficiency gains. The ANN developed the best performance for the temperature-based 

models with the clustering strategy and the use of data from two previous days as input; 

although, owing to the identical reliability and greater generalization efficiency, the ANN 
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produced from four previous days with the use of data and without clustering is 

recommended. The ANN established with data from four days before was the best choice 

for the relative humidity and temperature-based models. 

Huang et al. (2019) implemented a new learning algorithm using gradient boosting for ET0 

estimation on decision trees with support for categorical features (i.e., CatBoost), SVM and 

Random Forests (RF). The results depicted that all three algorithms in subtropical China 

could achieve adequate accuracy for the estimation of ET0 by using inputs of Tmin, Tmax and 

RS or Hr, Tmin Tmax and U in the absence of complete climatological variables. The rise in 

RMSE and MAPE testing over RMSE and MAPE training showed positive relationships 

with the number of input variables for the AI models. For the local models, SVM provided 

the best prediction accuracy and consistency among the three algorithms, with insufficient 

combinations of climatological variables as inputs, whereas CatBoost performed best with 

the full combination of variables. Generalized model trends were almost the same as local 

models, however the former models showed a decrease of less than 10% in RMSE or MAPE 

relative to the latter. Additionally, CatBoost's running time and memory use for data 

processing was much less than SVM and RF. Overall, as a tree-based algorithm, as opposed 

to RF, CatBoost has made major improvements in precision, reliability and computational 

costs. The CatBoost algorithm therefore has a very high potential for estimating ET0 in 

humid regions of China, and probably even in other parts of the world with similar humid 

climates. 

Granata (2019) performed a comparative study based on machine learning algorithms to 

model ET. SVM, M5P regression tree, random forest and bagging were the machine learning 

algorithms applied using data from experimental site of humid subtropical climate of central 

Florida. Three different input combinations based on different parameters were developed. 

The results revealed that, model 1 provided the best outcome with soil moisture, mean 

temperature, sensible heat flux, mean relative humidity, wind speed and net solar radiation. 

A satisfactory result was also obtained from model 3 which comprised of mean relative 

humidity, mean temperature and net solar radiation. Model 2 which has addition of wind 

speed to same inputs of M3, led the results comparable to those of M3 itself. 
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Zhu et al. (2019) used 838 stations daily meteorological data of 12 consecutive years to 

calibrate HS model through comparison between produced ET0 values by PM model and 

those calculated by original HS model. Values of statistical indices and distribution were 

used to evaluate HS model. The ET0 estimation provided by the calibrated HS model was 

found to be greatest in the southwestern and subtropical monsoon climate zone. Despite the 

improvement achieved by HS model due to applied calibration in the monsoon, mountain 

and plateau climate zones, high enough accuracy was achieved by the original HS model. 

For regions of tropical climate, reliable results were failed to be achieved by HS model even 

in calibrated form. The overall results demonstrated that higher accuracy was achieved by 

the calibrated HS model for most climate zones.  

Dinpashoh et al. (2019) study was aimed at determining the trend analysis of annual and 

monthly ET0 time series in the NW and west of Iran. 36 stations were selected for the ET0 

estimation using FA-56-PM method, the ET0 trend was determined by nonparametric Mann-

Kendall method while Sen’s estimator approach was applied for the slopes of trend lines. 

The results showed an upward trend of about 86% of the ET0 time series. In contrast, a 

significant downward trend of less 0.7% was observed for the whole monthly ET0 time 

series. August was detected to be the month with strongest positive upward trend at 

Kermanshah station. Khodabandeh station has the strongest negative upward trend. Monthly 

ET0 slopes with steepest upward and downward trend were observed at Khodabandeh and 

Maragheh stations. Upward trend slopes of above 94% were observed on an annual time 

scale. It was concluded that for most of the stations in NW and west of Iran, ET0 has an 

increasing trend. 

Raoof and Mobaser (2019) applied generalized reduced gradient  in determining Angstrom 

radiation models coefficient as and bs for the estimation of ET0 for Ardabil plain cold arid 

region. The results revealed that compared to the original models, the errors were reduced 

and the performance of the calibrated models were improved. Moreover, it is necessary to 

calibrate bot FAO-56-PM and Angstrom radiation model for ET0 prediction. 

Ferreira et al. (2019b) applied multivariate adaptive regression splines (MARS) and 

calibrated alternative equations to model ET0 with limited climate data. The data from 2002 

– 2016 were used for the study purpose from eight weather stations in Brazil. Different 
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scenarios of input combinations were used to developed the models including wind speed 

and temperature, solar radiation and temperature, relative humidity and temperature, and 

temperature only. The results revealed that MARS models have superior performances 

across all scenarios. The models created using wind speed showed less accuracy, followed 

by relative humidity, and finally models with solar radiation provided the best performance. 

Keshtegar et al. (2019) investigated the feasibility of response surface method (RSM) and 

polynomial chaos expansion (PCE) models for ET0 modeling in Antalya and Isparta stations 

of Mediterranean Turkish region. Multilayer perceptron neural network (MLPNN) and M5 

model tree were also employed for comparison. Daily meteorological data including air 

temperature, relative humidity, wind speed and solar radiation were used in different input 

combinations. PCE with four inputs were found to be the most accurate models in the 

estimation of ET0 in Antalya and Isparta, respectively.  

Sanikhani et al. (2019) utilized six AI techniques including radial basis neural networks 

(RBNN), generalized regression neural networks (GRNN), multilayer perceptron (MLP), 

GEP, ANFIS with subtractive clustering (ANFIS-SC) and ANFIS with grid partitioning 

(ANFIS-GP) for ET0 modeling in Isparta and Antalya stations of Turkey. The HS as well as 

calibrated HS (CHS) models were also applied for comparison. The results revealed a 

reliable and highly practical ET0 modeling for the stations under study. The GEP and GRNN 

models performance was better at Antalya station, while at Isparta station, RBNN and 

ANFIS-SC performed better than other models. When cross-station scenario was applied, 

all the models under investigation with the exception of MLP performed better than HS and 

CHS models. Comparing the performance of original HS and CHS models, it was found that 

CHS performed better across both stations. 

Shiri et al. (2019) used climatic data from 29 meteorological stations to evaluate calibrated 

version and PT and original PT models for ET0 estimation with k-fold validation for external 

and local data scrutinizing procedures. Additionally, using net radiation (Rn) and vapor 

pressure deficit (VPD) records, external calibrated models were reevaluated. GEP models 

were developed using solar radiation and air temperature data. The results depicted that for 

estimating ET0, the accuracy of original PT model was generally improved by both external 

and internal calibration of PT model especially in arid and humid regions. Non-calibrated 
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and locally calibrated PT models were comparable to VPD and Rn data external calibration. 

Non-calibrated and locally calibrated PT models were found to be inferior to GEP models. 

In comparison to non-calibrated PT models, GEP models were found to be of higher 

accuracy. 

2.1.5 Reference evapotranspiration studies in Libya 

Ali (1997) compared the performance of FAO-56-PM and Budyko-Zubenok methods for the 

estimation of ET0 in an arid climate. The findings show that the evapotranspiration would 

rise from north to south owing to temperature increase resulting from an increase in CO2 

content, as well as other greenhouse gasses in the atmosphere of the Earth.  

Ekhmaj (2012) applied ANN with back propagation algorithm and empirical methods using 

sunshine hours, relative humidity and air temperature as inputs to the models for the 

prediction ET0 in coastal area, western Libya. The results showed that ANN forecasts were 

superior to the ones obtained by Blaney and Criddle and Radiation methods. Due to its little 

input data, ANN is considered to be more efficient as compared with the modified Penman 

method. However, this application of ANN as a fitting tool should be useful in 

evapotranspiration modeling. 

Todorovic et al. (2013) used HS and PM-temperature (PMT) methods from CLIMWAT data 

base which contains 577 weather stations data for ET0 modeling across 16 Mediterranean 

countries (including Libya) categorized in to dry sub-humid, moist sub-humid humid, semi-

arid, arid, and hyper-arid regions. Results of spatial elaboration showed high variability of 

estimates of ET0 using various methods. Thus, a location-specific study is required to 

validate and calibrate temperature methods for estimating ET0 using regular data sets of 

adequate quality. Maps showing suggestive effects on under/over estimate of ET0 by both 

methods of temperature may be useful for their more precise application across different 

Mediterranean climates. 

Benzaghta and Lawgali (2014) estimated ET0 in Sirte Libya using three climate models 

including FAO-56-PM, HS and Penman. The meteorological data used include wind speed, 

air temperature and relative humidity. The results based on the performance statistics 

indicated that Penman ET0 model, showed better performance than HS method. 
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El-Wahed and El-Mageed (2014) modified Blaney-Criddle equation for the estimation of 

ET0 in Ghadames, Ghat and Obary stations located in arid region of Libya. The results 

showed that the ETo values calculated based on the modified Blaney-Criddle which applied 

calibrated coefficient values were better than the results of ETo values calculated based on 

Blaney-Criddle when compared with the ETo estimation from the PM. 

2.2 Global Reference Evapotranspiration Studies 

Kumar et al. (2002) investigated the performance of ANN model for the prediction of daily 

ET0 for two different data sets at Davis California. The meteorological data used as inputs 

were maximum and minimum temperatures, wind speed, maximum and minimum relative 

humidity, and solar radiation. Three different learning methods were considered in the study 

including backpropagation with momentum, backpropagation with 0.2 learning rate and 

backpropagation with 0.8 learning rates. Based on the obtained results, it was concluded that 

ANN could perform better than conventional method for ET0 estimation in Davis.  

Kisi (2011) put forward a basic Wavelet Regression (WR) method for ET0 modeling. The 

WR model has been improved by integrating two methods: a model of linear regression (LR) 

and a discrete wavelet transform (DWT). The WR models' accuracy has been compared with 

that of the LR models. Based on the results review, the WR models in daily ET0 modeling 

were found to perform better than the empirical models. 

Shiri et al. (2012) applied gene expression programming (GEP), ANFIS, HS, and Priestley-

Taylor (PT) models  using 5 years meteorological data including relative humidity, solar 

radiation, air temperature and wind speed to estimate daily ET0 from four weather stations 

in northern Spain. Comparison of the results obtained from each model showed that, GEP 

performed better than ANFIS, HS and PT models.  

Shiri et al. (2012) proposed a five-year (1999–2003) Gene Expression Programming (GEP) 

method to estimate daily ET0 at four meteorological stations in Basque Country located in 

Northern Spain. The findings of the GEP were compared to the models Adaptive Neuro-

Fuzzy Inference System (ANFIS), Hargreaves – Samani and Priestley – Taylor. The GEP 

was found to work better on the basis of the comparisons than the ANFIS, Hargreaves – 

Samani and Priestley – Taylor versions. The ANFIS model is rated second best model. 
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Manikumari et al. (2017) applied the neural network Boosted and Bagged (Boosted-NN, 

Bagged-NN) for ET0 estimation in India. It has been demonstrated that the Boosted-NN and 

Bagged-NN ensemble models are better in terms of accuracy than individual NN models. 

Boosted-NN reduces the prediction errors among the ensemble models compared to the 

individual NNs and Bagged-NN. 

Djaman et al. (2016) examined the application of two new Valiantzas ET0 equations and 

FAO-56 Penman-Monteith equation for estimating ET0 with minimal weather data in 

Burkina Faso. Climatic variables from eight weather stations used, including minimum and 

maximum relative humidity, wind speed, minimum and maximum air temperatures and solar 

radiation. The results showed that solar radiation estimates from minimum and maximum 

daily air temperatures provided accurate estimates of ET0 when solar radiation data were 

missing. The equation of Valiantzas 1, which uses only data from relative humidity and air 

temperature, was found to be inappropriate and thereby not advised for use in climatic 

conditions of Burkina Faso. With full climate data, the Valiantzas 2 equation relative to the 

FAO-PM ET0 model resulted in good ET0 estimates under the climatic conditions of Burkina 

Faso; however, limited data conditions the FAO-PM ET0 equation is recommended due to 

limitations of the Valiantzas 2 equation. 

Kisi and Kilic (2016) assessed the potential and ability of ANNs and model tree M5 

(M5Tree) in six different climate data stations in the USA to model ET0 using California 

Irrigation Management Information System (CIMIS). They considered the ANN and 

M5Tree models better than the empirical models. The results showed the superiority in terms 

of performance by ANN models over the Ritchie, CIMIS Penman, Turc and Hargreaves 

models in two stations, whereas the general accuracy was demonstrated by M5Tree models 

than the corresponding empirical models in all stations.  

Dou and Yang (2018) carried out investigation in to the feasibility and effectiveness of both 

extreme learning machine (ELM) and ANFIS for daily ET estimation with flux tower 

observations in the ecosystem’s four main categories. The potential of the models were 

determine through a comparative study that was undertaken between the conventional ANN 

and SVM models. Conclusion drawn based on the obtained results recommended the 

advanced ELM and ANFIS models owing to their role as traditional methods’ important 
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complements and due to their flexibility and robustness. In addition, there was a substantial 

difference between the four main types of ecosystems regarding the modeling results. The 

models usually performed best in the forest ecosystem, while delivering the least 

performance in the cropland ecosystem. 

Yang et al. (2019) proposed a model using public weather forecasts and the reduced-set 

Penman-Monteith for short-term forecasting of daily ET0. For the purpose of the study, 

different types of wind speed data were used including the default wind speed, annual 

average wind speed, daily average long-term wind speed, and forecasted wind speed to 

forecast daily ET0 up to 7 steps ahead in eight weather stations of China. The results while 

compared to HS model performance showed that reduced-set Penman-Monteith proposed 

approaches were better than the results obtained by HS model for sub-arid and arid regions 

whereas in sub-tropical areas the results were found to be opposite, which implies that wind 

speed parameter inclusion has a profound effect on ET0 modeling for semi-arid and arid 

climate regions. 

Zhang et al. (2019) performed a study to assess the variability of ET0 based on daily weather 

data from 598 stations to statistically determine spatial clusters significance of low and high 

ET0 in China using hot spot geospatial analysis over the period of 1970 – 2014. The obtained 

results implied that hot and cold spots statistically significant clusters exhibited between 

months a migration trend. The results of ordinary least square regression revealed that the 

meteorological variables controlling the estimation of ET0 over China were wind speed, 

relative humidity and maximum temperature. The results of local geographic weighted 

regression showed that over China, the most influential parameters affecting ET0 were 

minimum and maximum temperatures. For modeling ET0 in China, the ordinary least square 

regression method was found to be less powerful than geographic weighted regression 

method. 

Wang et al. (2019) investigated the generalization capability of random forest (RF) and gene-

expression programming (GEP) algorithms to model ET0 in 24 meteorological stations in 

the southwest karst region of China using different input combinations. The GEP-based and 

RF-based models performances were assessed by ET0 derived from FAO-56 PM model. The 

obtained results depicted that the RF-based model was successful in modeling ET0 at the 
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study station with incomplete and complete meteorological variables. Promising results were 

also obtained by GEP-based model. Despite the slight performance increment of RF-based 

model ET0 models over GEP-based ET0 models, explicit expression could be achieved by 

GEP approach between independent and dependent variables, which for irrigators with less 

computer skills would be more convenient. 

Čadro et al. (2019) considered the impact of elevation, spatial distribution of ET0 was studied 

by applying reliable methods. Using kriging with external drift method, spatial interpolation 

of ET0 was analyzed for the period 1961 – 2016 from 108 weather stations. A 20 m spatial 

resolution map was developed for national spatial resolutions, regional, municipality annual 

temporal resolution, vegetation period and monthly mean ET0 values. Each grid node 

elevation of ET0 estimation required was extracted from Bosnia and Herzegovina digital 

elevation model. FAO-56-PM and HS models were also developed. Based on the obtained 

results, a gradual increase of mean ET0 values is observed from central to northern and from 

central to southern part of the country. Moreover, the southern region has greater ET0 than 

the central-east, west and north for the annual, vegetation, and monthly seasons. 

Ferreira et al. (2019a) made evaluation of the accuracy of alternative equations, ANN and 

SVM, for estimating daily ET0 in Brazil using temperature data only or relative humidity 

and measured temperature. The results showed that, even when tuned, ANN and SVM 

models had best accuracy than the equations that were tested. The methods analyzed 

(clustering and preceding days) received major efficiency gains. The ANN developed the 

best performance for the temperature-based models using data from two previous days as 

input with the clustering strategy; however, due to the similar output and greater 

generalization efficiency, the ANN developed with the use of data from four previous days 

and without clustering is recommended. The ANN established with data from four days 

before was the best choice for the relative humidity and temperature- based models. 

Huang et al. (2019) using limited data in the humid meteorological regions of China, 

assessed the ability of a new machine learning algorithm using gradient boosting on decision 

trees with support for categorical features (i.e., CatBoost) to accurately estimate daily ET0. 

Support Vector Machine (SVM) and Random Forests (RF) were the two other widely used 

machine learning algorithms tested for comparison. Generalized trends of the models were 
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almost similar to that of local models, but the former models with respect to RMSE or MAPE 

in relation to the latter showed less than 10% decrease. Additionally, CatBoost's running 

time and memory use for data processing were much less than RF and SVM's. Overall, as a 

tree-based algorithm, as opposed to RF, CatBoost has made major improvements in 

precision, reliability and computational costs. In humid regions of China, the CatBoost 

algorithm therefore has a significant potential for estimating ET0, and probably also in other 

areas of the world having similar climatic conditions. 

Saggi and Jain (2019) provided the H2O model system for Punjab's districts of Patiala and 

Hoshiarpur for assessing daily ET0. The results of four supervised learning algorithms, 

including Generalized Linear Model (GLM), Deep Learning-Multilayer Perceptrons (DL), 

Gradient Boosting Machine (GBM), and Random Forest (RF) and also to determine the 

overall ability to predict potential ET0. Study of the four models was performed in H2O 

context. This approach provides a new criteria for preparing, validating, evaluating and 

enhancing the efficiency of classification using machine-learning algorithms. The DL 

model's efficiency is contrasted with other state of the art models like RF, GLM, and GBM. 

In this regard, their research showed that the models provided greater efficiency for daily 

modeling of ET0. 

Carter and Liang (2019) used ground-measured ET data, high-level Moderate-Resolution 

Imaging Spectroradiometer (MODIS) data and Global LAnd Surface Satellite (GLASS) 

radiation data to provide an overview of ten machine learning methods from 184 flux tower 

sites for estimating daily ET. The strongest results for evergreen, grassland sites and shrub 

and the worst results for wetland sites were shown by comparison of findings from sites with 

various types of habitats. In general, efficiency has not been enhanced by training with data 

only of the same type of ecosystem. 

Granata (2019) applied four machine learning algorithms including Random Forest, M5P 

Regression Tree, Support Vector Regression and Bagging and compared the variants of each 

model for ET0 modeling in central Florida’s subtropical humid climate. Model 1, whose 

input variables were soil moisture content, net solar radiation, wind speed, sensible heat flux, 

mean temperature and mean relative humidity produced the best results. For the results of 

the models developed by using data only of mean relative humidity, mean temperature, and 
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net solar radiation, Model 3 has still achieved satisfactory results. Model 2, which includes 

addition of wind speed to the Model 3 input variables, has provided results that are totally 

comparable with those of Model 3 itself. 

Zhang et al. (2019) performed geospatial hot spot analysis to assess statistical significance 

of high and low ET0 spatial clusters in China from 1970–2014, based on the daily data 

obtained from 598 weather stations. General ordinary least square regression (OLS) model 

was used cross continental China to investigate the global controlling factors that affect ET0. 

Cold and hot spots statistically relevant clusters showed a trend in migration between 

months. OLS analytical findings indicated that the relative humidity, maximum temperature 

and wind speed were the governing meteorological variables affecting ET0 over China. 

Based on GWR tests, the most controlling climatic variables affecting ET0 over China were 

minimum and maximum temperature. GWR has been found to be a more effective tool for 

modeling ET0 in China than OLS. The findings of this study can be used to help policy 

makers, planners, end users and predict their decision-making, which in effect would boost 

China's regional water management. 

Wang et al. (2019) used 24 weather stations data from southwest’s karst area of China to 

investigate the random forest (RF) algorithm generalization ability in modeling ET0 with 

different input combinations (see specific instances in missing data). The results of the RF 

algorithm were compared with the gene expression programming (GEP) approach. The 

results showed that the derived RF-based generalized ET0 models were successfully 

implemented to model ET0 with incomplete and complete climate variables. In addition, due 

to the climate change effect on the ET0 the performance of the models decreased with 

periods. Finally, both methods have the potential to determine the value of predictors, in 

Guangxi the order of the effect of meteorological variables on ET0 : air temperature, wind 

speed, sunshine period and relative humidity. 

Čadro et al. (2019) research explored accurate methods to measure and spatially distribute 

ET0, while effect of the elevation in Bosnia and Herzegovina was also considered. The 

results showed that for all seasons including monthly and annual vegetation periods, the 

north, central and west east regions have less ET0 compared to the southern region. The 
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Bosnia and Herzegovina’s long-term annual average ET0 is 716 mm, of which around 78 per 

cent (559 mm) occur during the vegetation season. 

Zhu et al. (2019) used 12-year daily weather data from 838 stations across China and 

calibrated the HS model by comparing the ET0 values determined from PM model with those 

from the ordinary HS. The calibrated results by HS model indicated the largest estimate of 

ET0 in both the temperate monsoon and subtropical monsoon climate zones situated in the 

south-western region of China. The HS model struggled to produce consistent results, even 

in optimized form, for tropical climate regions. In general, the study showed that the 

calibrated HS model is more reliable for most climatic zones. 

Aschonitis et al. (2019) introduced a new framework for the success of ranking models with 

respect to ET0. The method is based on the hierarchical Ranking Performance Index (sRPI), 

which incorporates outcomes from various simulation scenarios of any number and type of 

parameters. The sRPI varies from 0 to 1 (from worst to best performance of model) 

depending on the relative distance of the accuracy of the models. The sRPI methodology 

could greatly decrease the complexity of evaluating the outcomes of models based on 

numerous scenarios and could identify the most concise criteria which minimize their 

overuse in modeling studies. 

Adamala et al. (2019) for daily ET0 estimation used generalized neural wavelet network 

(GWNN) models and compared to Hargreaves (HG), Turc and FAO-56-PM empirical 

methods. The inputs to GWNN models were from 15 different locations daily pooled climate 

data from 4 different agro-ecological regions in India. For evaluating the superiority of one 

model over another, the developed GWNN models were compared with the classical 

generalized wavelet regression (GWR), generalized linear regression (GLR), generalized 

neural artificial network (GANN), and corresponding conventional methods. The results 

showed that for four AERs, the GWNN models had the best performance over GANN, GWR 

and GLR models but GANN was found to be the second best. The test results showed that 

for almost all, locations the GWNN and GANN models produced outstanding performance 

than the GWR and GLR. 

Yang et al. (2019) used wind speed and temperature data derived from public weather 

forecasts to predict near-future and short-term daily ET0 using empirical temperature-based 
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and Reduced-set Penman-Monteith (RPM) models forecasting. By comparing the 

performance of RPM approaches with one of the temperature-based models that is most 

widely used, the Hargreaves-Samani (HS), it was deduced that for sub-arid and arid regions, 

RPM was found to be better than the HS model, while for subtropical regions, the results 

happened to be opposite. This implies that wind speed parameter inclusion would positively 

affect ET0 prediction for semi-arid and arid regions. 

Djaman et al. (2019) under limited climatic data examined 34 simple ET0 equations and 

Penman-Monteith ETo equation for modeling ET0 in New Mexico. Data from five 

meteorological stations were used between 2009 – 2017 under dry and semiarid climates. 

The results implied that engineers, university researchers, producers and irrigation managers 

could use the alternative equations to improve management of water resources across the 

New Mexico particularly in arid dry and semiarid zone, as well as other semiarid areas where 

water scarcity is the most alarming factor to fiber and food production. 

Raoof and Mobaser (2019) examined the capacity of the Angstrom's Radiation Model 

Locally Adjusted Coefficient in an Arid-Cold Area for estimating ET0. Locally calibrated 

models yielded better reliability in the estimation of Rs and ET0 values beyond the original 

ones and it is necessary to calibrate both the PM FAO equation and Angstrom radiation 

model for every region. 

In their original and optimized versions, Ferreira et al. (2019b) made comparative analysis 

of alternative equations and the multivariate adaptive regression splines (MARS) to estimate 

daily ET0 with limited amount of meteorological data. Eight Brazilian weather stations daily 

data were used for the period 2002 to 2016. The best results were achieved by models 

developed with solar radiation as input, followed by those using relative humidity and, 

eventually, wind velocity. The models based on air temperature as the sole input variable 

performed the worst. 

Keshtegar et al. (2019) performed a study to assess the feasibility of response surface method 

(RSM) and polynomial chaos expansion (PCE) models for the simulation of ET0. The 

simulation results of the proposed models were verified against the methods of multilayer 

perceptron neural network (MLPNN) and M5 model tree. The accuracy of the modeling was 

improved by increasing the number of inputs. Wind speed inclusion in to the modelling 
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inputs greatly improved their ET0 modeling accuracy. The PCE was found to be the most 

reliable model for estimating the ET0 per day. 

Sanikhani et al. (2019) study investigated the applicability of radial-based neural networks 

(RBNN), generalized neural regression networks (GRNN), multilayer perceptron (MLP), 

gene expression programming (GEP) and subtractive clustering and grid partitioning 

integrated adaptive neuro-fuzzy inference systems (ANFIS-SC and ANFIS-GP), for ET0 

estimation in Antalya and Isparta stations, Turkey. The calibrated and ordinary Hargreaves 

– Samani version (CHS and HS) of equation, verified the established AI models. Except for 

the MLP model, when implemented in a cross-station situation, all the other investigated 

models offered a better output accuracy compared to the empirical HS and CHS models. A 

cross-station scenario test implies the estimation of any station's ET0 using nearby station 

input data. In all cases, the performance of the CHS models in the ET0 modeling was higher 

than that of the original HS. 

Wu et al. (2019) study applied five-fold cross-validation approach to examine the 

performance of extreme learning machine (ELM) models optimized by four bio-inspired 

algorithm including flower pollination algorithm (ELM-FPA), ant colony optimization 

(ELM-ACO), cuckoo search algorithm (ELM-CSA) and genetic algorithm (ELM-GA) for 

daily ET0 prediction across China. The results recommended the application of bio-inspired 

optimization algorithms, more specifically the CSA and FPA algorithms, for boosting the 

accuracy and reliability of the conventional ELM model in the contrasting climates of China 

for daily estimation of ET0. 
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CHAPTER 3  

MATERIALS AND METHODS 

3.1 Study Location and Data 

Fourteen stations were considered in this study, which involves prediction and multi-step 

ahead ET0 modeling in several climatological regions across 5 countries including Turkey, 

NC, Iraq, Iran and Libya. The details of the locations of the study are thus provided based 

on the countries where the stations are located. 

3.1.1 Turkey stations 

Turkey is a transcontinental country located predominantly in Asia (see Figure 3.1), certain 

area of its land enters some portion on the Balkan Peninsula which is located in the southeast 

Europe. Sea of Marmara separated Anatolia with Europe’s East Thrace. Turkey is bordered 

by Georgia to its northeast, Bulgaria and Greece to its northwest, Iran, Azerbaijan exclave 

of Nakhchivan and Armenia to the east, Syria and Iraq to the south. Turkish geographical 

area is covered between latitudes 360 and 420 N and longitudes 260 and 450 E. Due to large 

inland plateau surrounded by rough topographical terrain of Anatolia Peninsula, variation of 

temperature in the region is high. The maximum temperature recorded at Sanliurfa station is 

+46.8 0C in the southeast, while minimum temperature at Agri station recorded as -42.8 0C 

in the northeast. Pan evaporation varies annually between 435 and 2,800 mm/year. Turkish 

annual average precipitation is 643 mm/year (Citakoglu et al., 2014). Using seasonality 

index and total seasonal rainfall percentage ratio to the annual amount, seven climatic 

regions in Turkey were formed including Continental Eastern Anatolia (CEAN), Continental 

Central Anatolia (CCAN), Mediterranean to Central Anatolia Transition (MEDT), 

Continental Mediterranean (CMED), Mediterranean (MED), Marmara (Mediterranean to 

Black Sea) Transition (MRT) and Black sea (BLS) (Turkes, 1996). MED region is the 

geographical location of Adana station; it tends to have cool and heavy rainy winter and a 

hot dry summer due to its semi-humid and humid subtropical nature. Ankara station is a 

semi-arid steppe climate located in Continental Central Anatolia (CCAN); it possesses cool 

rainy spring, cold rainy winter and warm and light rainy summer. Izmir and Adana stations 
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share semi-humid and humid subtropical owing to their location in MED region. Samsun 

station is a temperate climate from the Black Sea region (BLS); it attains its peak of 

uniformly rainy climate in autumn. The Turkey stations’ coordinate locations and data 

statistics are given in Appendix 1a. 

As demonstrated in Appendix 1a, the maximum daily average values for monthly PR are 

around twice in Izmir and Adana than Samsun and Ankara. This is due to the presence of 

MED region, which has partly semi-humid and humid climates for Adana and Izmir stations, 

Ankara is located in semi-arid climate in the CCAN region, while Samsun climate is 

temperate located in the BLS region. However, a bit higher precipitation can be seen in 

Samsun than in Ankara, because increase in aridity index decreases precipitation of a region. 

Meanwhile, Table 3.1 also depicts that owing to the moderate nature of BLS climate, the 

values of Tmin and Tmax for Samsun station are found to be within the ranges of other stations 

under investigation. Table 3.2 gives independent and dependent correlation matrix between 

the study variables. 

3.1.2 North Cyprus (NC) stations 

Cyprus is the third largest island in the East Mediterranean and its climate is generally 

Mediterranean, with hot dry summers and mild wet winters, the occurrence of rainfall mostly 

happens from November to March. As a whole, the Island annual average precipitation is 

500 mm. The highest point of the Trodos Mountain has an average of 1200mm rainfall, while 

at the central plain it is around 300-400mm (Elkiran and Ergil, 2006). Average temperature 

in NC rises higher in July and falls between 5 to 150C in January. However, according to 

class A pan reading, annual evaporation reaches up to 2200mm/year. As reported by Elkiran 

and Ongul (2009), latest studies revealed that water returns to the atmosphere of about 80% 

of rainfall through evapotranspiration. This study utilized data from four stations including 

Kyrenia, Nicosia, Famagusta and Morphou. The Famagusta climate is classified as 

temperate and warm. The average temperature in Famagusta is 19.3 0C, with an average 

annual rainfall of 407 mm. Kyrenia has an average July temperature of 29 0C (hottest month), 

and January temperature of 10 0C (coldest month). In hilly areas, average rainfall varies from 

500 mm to 750 mm, rarely falling in the summer and specifically in winter. Kyrenia 

Mountains is experiencing the highest rainfall rate due to the altitude, as it ranges from 750 
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mm to 1110 mm. Morphou's climate is known as being a local steppe climate. Morphou 

receives little rainfall year-round with annual precipitation drops of around 363 mm and an 

average annual temperature of 18.5 0C. Nicosia is an inland city as such the Mediterranean 

Sea's influence compared to the other coastal cities is less in Nicosia. Colder winters and 

hotter summers are therefore felt in Nicosia than in the other coastal regions, and the 

difference between minimum night and maximum daytime temperatures is therefore greater. 

The difference in daytime temperature between Nicosia and other cities along the coastline 

is around 4 0C to 7 0C for July and August (the hottest months). In January and February (the 

coldest months), the difference in daytime temperature in Nicosia is 2 0C to 3 0C lower than 

on the coast. Figure 3.1 shows northern Cyprus research stations, whereas Appendix 1b 

shows coordinates, locations and data statistics of the study stations in North Cyprus. 

Low, medium and high temperatures can be seen as shown by Appendix 1b, with relatively 

dry hot summer and mild or cool winter being a Mediterranean climate. The pan evaporation 

minimum values are 1.1 mm/day, 0.9 mm/day, 1.11 mm/day and 1.10 mm/day for 

Famagusta, Kyrenia, Morphou and Nicosia stations, respectively, while for Nicosia its 

maximum value is as high as 12.6 mm/day. Relative values for humidity differ broadly 

across all stations. Temperature at dew points fluctuates from peak 22.48 0C to lowest 2.86 

0C to.  

3.1.3 Iraq stations 

Iraq is historically called Mesopotamia, located in western Asia (Figure 3.1). Iraq population 

is about 37.2 million in 2016 and it has an area of land that covers 437,072 km2. Iraq is 

bordered by 6 countries including Jordan, Saudi Arabia, Turkey, Kuwait, Syria and Iran. The 

longitudes and latitudes of Iraq are between 38°45̍ and 48°45̍ E and 29°5̍ and 37°22̍ N 

(Tahsin, 2018). Erbil is the capital city of Kurdistan province, in northern Iraq. Erbil falls 

within a continental and semi-arid climate. It is experiencing cold, rainy winters and dry, 

warm summers (Rasul et al., 2015). Salahaddin is situated in the Kurdistan region, in the far 

north of Iraq. Salahaddin's climate is semi-arid, according to a report by Sarlak and Agha, 

(2018). Appendix 1c reveals details of the study stations in Iraq, their location and their 

coordinates. 



38 
 

With their susceptibility to semi-arid climate conditions, the stations Erbil and Salahaddin 

have nearly identical statistics as shown in Appendix 1c. Salahaddin is more humid than 

Erbil, which results in higher relative humidity. The Tmax at station in Salahaddin is also 

lower which has a value up to around 0 0C as can be seen and as high as 39.9 0C. 

3.1.4 Iran stations 

Tabriz City is located between latitudes 38008`N and 46015`E in northwestern Iran. It is 

situated at an altitude of 1350 m, at the junction of Aji and Quri Rivers. Tabriz has an annual 

rainfall of about 380 mm, and enjoys good and moderate spring, semi-hot and dry summer 

climate. The average annual temperature is around 13 0C, with possible rate of 

evapotranspiration estimated at around 1733 mm/year. Urmia is a city situated at latitude 

37034`N and longitude 44058`E in northwestern Iran. Maximum freezing days in Urmia are 

about 120 days, with very low summer precipitation and a heavy rise in downfall for late 

autumn and winter. The station has annual rainfall of about 300 mm/year (Nourani and Fard, 

2016). Figure 3.1 shows the locations of Tabriz and Urmia stations in Iran and Appendix 1d 

shows the descriptive statistics of the data from Tabriz and Urmia stations. 

Higher altitude means quicker transmission of solar irradiance to the earth's surface, causing 

the temperature to rise and therefore the evapotranspiration increases. For Urmia station, 

therefore, both the maximum pan evaporation and the maximum temperature are lower 

(10,96 mm/day and 33.90 0C) than Tabriz (15.33 mm/day and 35.15 0C). However, Urmia 

Lake's presence increases the station's evaporation bodies and thus has provided more 

precipitation in the maximum and average amount (3.74 mm / day and 0.67 mm / day) than 

Tabriz (2.91 mm / day and 0.59 mm / day).  

3.1.5 Libya stations 

Sabha is an inland station situated at 14043`E longitude and 27004`N latitude in the southern 

part of Libya. It contains dry arid climate with 52 percent of an annual average relative 

humidity, an annual average temperature of 26.5 0C and precipitation of an annual average 

not exceeding 100 mm/year. Tripoli is the capital of Libya, a coastal city located in the 

Mediterranean region. It is a semi-arid climate with hot dry summers and rainy winters. The 

annual rainfall ranges from 140 to 550 mm/year, an average air temperature of around 14.2 
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to 21.6 0C and an average relative humidity of about 70% (Ageena, 2013). The two study 

stations for Libya are given in Figure 3.1 while the descriptive statistics of the used data 

from the stations are shown in Appendix 1e. 

Specific characteristics of the meteorological variables are observed as seen by the data 

descriptive statistics displayed by Appendix 1e, being a distinct climate stations. Sabha 

station has higher evaporation, less precipitation and higher temperature (24.70 mm/day, 

1.42 mm/day and 41.95 0C) in comparison to Tripoli station, which has evaporation 14.10 

mm/day, precipitation 4.79 mm/day, and temperature 36.21 0C because of the severe weather 

conditions. Figure 3.1 shows the regions and stations used in this study. 

 

Figure 3.1: Location of study regions and stations 

The study data were collected from meteorological organizations of the respective study 

countries including Kurdistan Meteorological Organization, North Cyprus Meteorological 

Organization, Turkish Meteorological Organization (TMO), Libya National Meteorological 

Centre and Iran Meteorological Organization for Iraq, Cyprus, Turkey, Libya and Iran 

stations, respectively. A stratified k-fold cross-validation approach was employed for model 

validation. In the k-fold cross-validation method, k number of subsamples of equal size are 

formed by randomly dividing the original sample of the dataset. k-1 subsamples are used as 
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training data of the k-subsamples that are formed initially, while the single subsample left 

behind is used as validation data to test the model. The process of the cross-validation is then 

repeated in k number of times, with each of the model been validated once by the k-

subsample not used in training. The result of single estimation is then provided by combining 

or otherwise taken an averaging of the k-fold results. The k-fold cross-validation approach 

has the advantage that all observations are used both for training and validation and each 

observation is used only once for validation (Sharma et al., 2018). 

In this study, as shown in Figure 3.2, the 14 stations data samples were partitioned into k = 

4 random subsamples. By randomly dividing total sample size by k (4) folds as seen in Table 

11, each subsample was obtained. The k – 1 (4 – 1) random subsamples were used to train 

the model while the remaining single subsample was drafted for testing the model. The 

process was repeated 4 times to equal the number of k-fold subsamples for different k – 1 

training subsamples and for different single test subsamples. The 4-fold cross-validation 

approach adopted in this study is schematically illustrated in Figure 3.2 while datasets 

duration and number of observations are shown in Table 3.11.  

 

Figure 3.2: Schematic illustration of the k-fold cross-validation applied 
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Table 3. 1: Data duration and validation method applied across the study stations 

Country Station 
Data 

Duration 

No. of 

Years 

No. of 

Observations 

k-folds 

Partitioning 

No. of 

Observations 

for each 

Subsample 

Turkey 

Adana 1988 - 2018 31 371 4 93 

Ankara 1988 - 2016 29 348 4 87 

Izmir 1987 - 2017 31 372 4 93 

Samsun 1988 - 2017 31 372 4 93 

Cyprus 

Famagusta 1995 - 2017 23 276 4 69 

Kyrenia 1995 - 2017 23 276 4 69 

Morphou 1995 - 2017 23 276 4 69 

Nicosia 1995 - 2017 23 276 4 69 

Iraq 
Erbil 1992 - 2011 20 240 4 60 

Salahaddin 1993 - 2011 20 240 4 60 

Iran 
Tabriz 1992 - 2018 27 317 4 79 

Urmia 1992 - 2015 24 282 4 70 

Libya 
Sabha 1995 - 2010 16 192 4 48 

Tripoli 1995 - 2010 16 192 4 48 

 

Usually, data are normalized in AI-based modeling to eliminate dimensions of variables and 

to ensure that equal attention is received by all variables during model training (Nourani et 

al., 2012). Two primary benefits of data normalization are gained in the application of the 

AI-based predictions. The first is to prevent overshadowing of smaller numerical ranges by 

the attributes of larger numeric ranges. The second benefit is that computational problems 

are minimized while calculation. The data were scaled within 0 and 1 in this study. 

𝐸𝑇0𝑛 =
𝐸𝑇0𝑖−𝐸𝑇0𝑚𝑖𝑛

𝐸𝑇0𝑚𝑎𝑥−𝐸𝑇0𝑚𝑖𝑛
       (3.1)  

Where 𝐸𝑇0𝑛 is the observed normalized 𝐸𝑇0 value, 𝐸𝑇0𝑖 is the ith observed 𝐸𝑇0 value, 𝐸𝑇0𝑚𝑖𝑛 

and 𝐸𝑇0𝑚𝑎𝑥 are the maximum and minimum observed 𝐸𝑇0 values, respectively. 

For efficiency and performance analysis of the models, several globally accepted statistical 

indicators can be used including Mean Absolute Error (MAE) (Yaseen et al., 2018), 

Correlation Coefficient (R) (Fotovatikhah et al., 2018), Root Mean Square Error (RMSE) 

(Moazenzadeh et al., 2018), Nash-Sutcliffe efficiency criterion or Determination Coefficient 

(DC) (Ghorbani et al., 2018). Nevertheless, according to Legates and McCabe (1999), 
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RMSE and DC are sufficient for any hydro-climatic modeling and are therefore employed 

in this study as the models performance evaluation criteria. The Equations are given as: 

𝐷𝐶 = 1 −  
∑ (𝑅𝑖− 𝑁

𝑖=1 �̂�𝑖)2

∑ (𝑅𝑖− �̅�)2𝑁
𝑖=1

            (3.2)    

𝑅𝑀𝑆𝐸 =  √∑ ( 𝑅𝑖− �̂�𝑖 )2𝑁
𝑖=1

𝑁
                              (3.3) 

Where, �̂�𝑖  �̅�,  𝑅𝑖 and 𝑁 are respectively the predicted values, observed values average, 

observed data and number of observations. 

RMSE tests the precision of the forecasted values, which gives positive value by squaring 

the error. As difference between observations and forecasts becomes increasingly high, the 

RMSE increases from zero to large positive values for perfect forecasts. Understandably, 

DC (-∞<DC≤1) with high value up to 1 and RMSE (0RMSE<∞) value close to 0 imply 

high model efficiency.  

3.2 Proposed Methodology for Phase 1 Study 

Sensitivity analysis was applied during the first phase of the study to determine the most 

suitable input parameters for the models. Black box models including FFNN, ANFIS, SVR, 

and MLR were then separately developed, trained, and validated for modeling the ET0. To 

estimate the ET0, two radiation-based models including MK and RT and two temperature-

based models including HS and MHS  were also used. The proposed ensemble approaches 

were implemented for AI based and empirical models using the outputs of the single models 

through strategies 1 and 2. 

(i) Strategy 1 

In the first ensemble strategy, the outputs of the black box models including 

𝐸𝑇𝐹𝐹𝑁𝑁 , 𝐸𝑇𝐴𝑁𝐹𝐼𝑆, 𝐸𝑇𝑆𝑉𝑅 and 𝐸𝑇𝑀𝐿𝑅 are used as independent variables, which ET0 depends 

on, given as: 

𝐸𝑇0 = 𝑓(𝐸𝑇𝐹𝐹𝑁𝑁 , 𝐸𝑇𝐴𝑁𝐹𝐼𝑆, 𝐸𝑇𝑆𝑉𝑅 , 𝐸𝑇𝑀𝐿𝑅)    (3.4) 
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(ii) Strategy 2 

In the second ensemble strategy, the ET0 is used as a function of the outputs of the four 

empirical models which are 𝐸𝑇𝐻𝑆, 𝐸𝑇𝑀𝐻𝑆 , 𝐸𝑇𝑀𝐾 and 𝐸𝑇𝑅𝑇: 

𝐸𝑇0 = 𝑓(𝐸𝑇𝐻𝑆, 𝐸𝑇𝑀𝐻𝑆, 𝐸𝑇𝑀𝐾 , 𝐸𝑇𝑅𝑇)    (3.5) 

The fundamental notion behind ensemble simulation is attributed to the following 

circumstances (Sharghi et al., 2018): (i) In practice, it is often difficult to decide whether one 

particular model or method is better than others or whether the underlying process under 

analysis for a time series is created by a linear or non-linear phenomenon. Hence, choosing 

the right approach or methodology for a particular problem is a challenging task before 

predictors. Applying the ensemble strategy will thus deal with the question of selecting 

correct model. (ii) Time series can include both non-linear and linear characteristics in a real 

world process. In such a case, for the prediction of the time series, neither AI nor MLR could 

be adequate as errors of a linear trend might be exacerbated by AI models and non-linear 

relationship could not be handled by MLR model. Thus, the dynamic underlying nature of 

the data could be described more accurately by integrating the AI and MLR models. (iii) 

There is no unique or specific approach that can thoroughly examine processes as previous 

studies have shown (such as Zhang, 2003 and Sharghi et al., 2018). Complex nature of the 

real world problem could be largely the cause, whereby a distinct process could not be 

detected by a specific model. The proposed methodology of the first phase of the study is 

shown in Figure 3.3. It is valuable to mention that for sufficient comparing of ET0 computed 

over several regions (from five countries including Iraq, Libya Turkey, Iran and NC), the 

proposed methodology is applied to all the 14 data stations. In Figure 3.3, Umin, Tmax, RH, 

Tmean, TD, Umean, SP, PR, Tmin, Umax, RS and EP are defined in Tables 3.1, 3.3, 3.5, 3.7 and 3.9; 

ETANFIS, ETFFNN, ETSVR, ETMLR, ETMK, ETHS, ETRT and ETMHS given in Equations 3.3 and 

3.4 represent computed ET0 by ANFIS, FFNN, SVR, MLR, MK, HS, RT, and MHS models, 

respectively; whereas the ensemble ET0 including ETNE, ETSA and ETWA are obtained from 

NE, SA and WA techniques. 
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Figure 3.3: Schematic diagram of the phase 1 proposed methodology applied for all stations 
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3.3 Proposed Methodology for Phase 2 Study 

The second phase of this study assessed the feasibility of applying the concept of ensemble 

learning for AI based and MLR models’ performance improvement for single and multi-step 

ahead predictions of ET0. Initially, one, two and three-step ahead models were developed by 

three AI based and MLR techniques. Finally, the proposed ensemble modeling was carried 

out using the outputs produced by the single models. 

The fundamental notion behind model ensemble is owing to the following: (i) Most of the 

times, in practice, it is difficult to determine for a time series under study if the underlying 

process is induced by a nonlinear or linear circumstance or whether the application of one 

model or a particular method yields better results than others. Consequently, selection of the 

best technique or choosing the best befitting method is a difficult task before the predictors 

for a unique issue. Therefore, the problem arises while selecting the appropriate model could 

be handled by the application of ensemble learning (Sharghi et al., 2018). (ii) Both linear 

and non-linear characteristics may be involved in time series predictions for a real world 

process. Neither MLR nor AI could be satisfactory in such situation for the time series 

prediction as non-linear relationship cannot be handled by MLR model, whereas AI models 

could magnify errors of a linear pattern. Thus, the data complex stochastic nature could be 

grabbed more appropriately by combination of MLR and AI models. (iii) As revealed by 

previous studies (such as Sharghi et al., 2018; Nourani et al., 2019a), there is no specific 

method or a unique model that can completely examine a process. The complex and 

uncertain nature of real world problem could be largely the cause whereby distinct patterns 

of the process might not be detected accurately by a unique model. The proposed study 

methodology is shown in Figure 3.4. To have a proper comparison of the computed ET0 over 

the study regions, same methodology (given in Figure 3.4) was used for all stations (10 

stations from Turkey, north Cyprus and Iraq). The next sub-sections present details of the 

used tools and components of the models.
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Figure 3.4: Proposed phase 2 study methodology applied for all stations  
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3.4 Artificial Neural Network (ANN) 

ANN provides a compelling approach for handling enormous amounts of noisy, nonlinear, 

and dynamic data, specifically when the underlying physical relationships are not fully 

understood. This makes ANN an ideal approach for data-driven modeling of a time series 

(Nourani et al., 2015). 

ANN constitutes a number of simple interconnected processing elements known as nodes or 

neurons with fascinating peculiarity of information processing characteristics, such as noise 

tolerance, nonlinearity, generalization capability, parallelism, and learning. A FFNN with 

Back Propagation (BP) training algorithm are the most common methods used by neural 

networks to solve several engineering issues (Hornik et al., 1989). The FFNN technique is 

composed of parallel processing element layers known as neuron, and every layer is being 

connected fully by weights to the proceeding layer. Generally, those ANNs learning are 

accomplished by BP algorithm (Hornik et al., 1989). 

The Levenberg-Marquardt (LM) training algorithm among the various training methods, 

was selected in this research, taking into account its ability to converge quickly as described 

by Sahoo et al. (2005). In addition, the transfer function of Tangent Sigmoid (Tansig) was 

implemented for both the hidden and the output layers. Similarly, the hidden layer nodes and 

epoch number for model calibration were calculated by trial and error method. Figure 3.5 

shows the three layered FFNN structure. 
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Figure 3.5: A three layered FFNN (Nourani and Fard, 2012) 

3.5 Adaptive Neuro-fuzzy Inference System (ANFIS)  

Neuro-fuzzy simulation refers to methods of applying various learning algorithms in the 

neural network literature or the fuzzy inference (FIS) method to fuzzy modeling (Akrami et 

al., 2014). A distinctive approach to neurofuzzy development is ANFIS, first proposed by 

Jang (1993) and using NN's learning algorithm. 

Every fuzzy system consists of three main components; fuzzy database, fuzzifier, and 

defuzzifier (Nourani et al., 2015; Nourani and Komasi, 2013). The two principal parts of the 

fuzzy database are the fuzzy rule base and the inference engine. Fuzzy rule base contains 

rules related to fuzzy prepositions, as demonstrated by Jang et al., (1997). Subsequently, 

operation analysis was implemented by Fuzzy inference. Many fuzzy inference engines can 

be used to achieve this purpose, of which Mamdani and Sugeno are the two most popular. 

As a universal approximator, ANFIS will compact the set of precision for any particular 

continuous function to any degree. ANFIS is functionally identical to FIS according to Jang 

et al., (1997). Precisely, the ANFIS system's value here is fundamentally identical to the 

Sugeno fuzzy model of the first order (Jang et al. 1997). The general structure of the ANFIS 

is given in Figure 3.6.As shown in Figure 3.6, ANFIS is known to have inputs of x and y 
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and ƒ outputs . According to Aqil et al. (2007), the first-order Sugeno fuzzy model has an 

ideal set of rules that are two fuzzy if-then rules: 

Rule (1): If µ(𝑥) is 𝐴1 and µ(y) is 𝐵1; the ƒ1 =  𝑝1𝑥 + 𝑞1𝑦 +  𝑟1                      (3.6) 

Rule (2): If µ(𝑥) is 𝐴2 and µ(y) is 𝐵2; the ƒ2 =  𝑝2𝑥 + 𝑞2𝑦 +  𝑟2                      (3.7) 

In which, 𝐴1 and 𝐴2 are 𝑥 inputs MFs, 𝐵1 and 𝐵2 are 𝑦 inputs MFs, respectively. While the 

function parameters the of the output are 𝑝1, 𝑞1, 𝑟1, and 𝑝2, 𝑞2, 𝑟2. The functions of each 

ANFIS layer are as follows: 

Layer 1: Each node in this layer produced membership grades of an input variable. The 

output of the 𝑖th node in k layer is represented as 𝑄𝑖
𝑘. Assuming as the membership function 

(MF) of a generalized bell function (gbellmf), the output (𝑄𝑖
1) can be obtain from Jang and 

Sun (1995) as: 

𝑄𝑖
1 =  µ𝐴𝑖

(𝑥) =  
1

1+((𝑥−𝑐𝑖)/𝑎𝑖))
2𝑏𝑖

                                                                              (3.8) 

Where 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 are adaptable variables called premise parameters. 

Layer 2: In this layer, the incoming signals are multiplied by each node: 

𝑄𝑖
2 =  𝑤𝑖 =  µ𝐴𝑖

(𝑥). µ𝐵𝑖
(𝑦) 𝑖 = 1, 2, …                                                               (3.9) 

Layer 3: In this layer, the 𝑖th node calculated the normalized firing strength: 

𝑄𝑖
3 =  �̅�𝑖 =  

𝑤𝑖

𝑤1+ 𝑤2
                                 𝑖 = 1, 2                                                    (3.10) 

Layer 4: In this layer, node 𝑖 calculated the contribution given by the 𝑖th rule to the model 

output: 

𝑄𝑖
4 = �̅�𝑖(𝑝𝑖𝑥 +  𝑝𝑖𝑦 +  𝑟𝑖) =  �̅�𝑖ƒ𝑖                                                                       (3.11) 

Where, 𝑝1, 𝑞1, 𝑟1 is the perimeter set, �̅�𝑖 is the output of layer 3. 

Layer 5: In this layer, single node calculated the overall output of the ANFIS (Jang and Sun, 

1995). 

𝑄𝑖
5 =  ∑ �̅�𝑖ƒ𝑖 =  

∑ 𝑤𝑖ƒ𝑖 𝑖

∑ 𝑤𝑖𝑖
𝑖                                                                                               (3.12) 
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The learning algorithm for ANFIS is a hybrid algorithm that combines the least squares with 

the methods of gradient descent (Aqil et al., 2007). The parameters of optimization are 𝑎𝑖, 𝑏𝑖, 

𝑐𝑖 which are the parameters of the proposition, while, 𝑝𝑖, 𝑞𝑖, 𝑟𝑖 are the corresponding 

parameters. Through the hybrid learning approach to forward pass, the node output goes 

forward until layer (4), and the resulting parameter has been defined by the least-square 

technique. The error signals propagate backwards, and the premise parameters are updated 

by the gradient descent in the backward pass (Nourani and Komasi, 2013).  

 

Figure 3.6: General structure of ANFIS (Nourani et al., 2017)  

3.6 Support Vector Regression (SVR) 

SVR is built based on the principle of SVM and is used in non-linear regression problems. 

Unlike many other black box prediction techniques, SVM-based techniques such as SVR 

find operational risk to be minimized as the objective function instead of reducing the error 

between the observed and the calculated values. In SVR, the data is equipped first with a 

linear regression, and then the outputs go through a non-linear kernel to capture the data's 

non-linear pattern. For a given training dataset   ii dx ,  
N

i  (di is the actual value, N is the 
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data patterns’ total number and xi is the input vector), the SVR function is generally given 

as (Wang et al., 2013): 

bxwxfy i  )()( 
                                                                  (3.13) 

where φ(xi) denotes function spaces, mapped non-linearly from x input vector (Vapnik, 

1998). By assigning positive values for the minimization of the objective function and for 

the slack parameters of ξ and ξ*, regression parameters of b and w could possibly be 

determined (Wang et al., 2013). 

Minimize: 
1

2
∥ 𝑤 ∥2+ 𝐶[∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑁
𝑖 ]                                                                   

Subject to: {

𝑤𝑖𝜑(𝑥𝑖) + 𝑏𝑖 − 𝑑𝑖 ≤ 𝜀 + 𝜉𝑖
∗

𝑑𝑖 − 𝑤𝑖𝜑(𝑥𝑖) + 𝑏𝑖 ≤ 𝜀 + 𝜉𝑖
∗

𝜉𝑖, 𝜉𝑖
∗                                          

      i=1,2,…,N                                                               

where 
1

2
∥ 𝑤 ∥2 is the norm weights vector and C is denotes to constant of regularization 

which determines the tradeoff between the regularized term and the empirical error . ε is 

called the tube size and is equal to the precision of approximation imposed inside the training 

data points. With the concept of Lagrange multipliers αi and αi*, the stated optimization 

problem can be modified to the dual quadratic optimization problem.  After finding solution 

to the quadratic optimization problem, the vector w can be computed as (Wang et al., 2013): 

 


N

i iii xw
1

** )()( 
                              (3.14) 

So, the SVR in its final form can be described as (Wang et al., 2013): 

 


N

i iiiii bxxKxf
1

** ),()(),,( 
               (3.15) 

k(xi, xj) performed the feature space non-linear mapping and is called the kernel function 

whereas b is bias term. One commonly used kernel function is the Gaussian Radial Basis 

Function (RBF) kernel as (Haghiabi et al., 2016): 
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)exp(),(
2

2121 xxxxk  
                                (3.16) 

where, γ denotes the kernel parameter. The SVM general structure is represented in Figure 

3.7.  

 

Figure 3.7: The structure of SVM model (Ghorbani et al., 2018) 

3.7  Pearson Correlation  

A Pearson correlation is a number between -1 and +1 that indicates to which extent 2 

variables are linearly related. Assume that the data are an n x m matrix where n is the number 

of instances and m is the number of attributes of an instance. Let X and Y be instances that 

contains m attributes. Mathematically, the Pearson correlation coefficient, 𝑟𝑋,𝑌 between two 

instances X and Y is defined as: 

𝑟𝑋,𝑌 =
∑ (𝑋𝑖−�̅�𝑚

𝑖=1 )(𝑌𝑖−�̅�)

√∑ (𝑋𝑖−�̅�)2𝑚
𝑖=1  √∑ (𝑌𝑖−�̅�)2𝑚

𝑖=1

     (3.17)  

where �̅� and �̅� are defined as: 

�̅� =
1

𝑚
∑ 𝑋𝑖

𝑚
𝑖=1         (3.18) 
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�̅� =
1

𝑚
∑ 𝑌𝑖

𝑚
𝑖=1         (3.19) 

The Pearson correlation coefficient is a measure of how two instances are linearly related. 

The value of 𝑟𝑋,𝑌 ranges from -1 to 1. It is closed to zero if two instances are uncorrelated. 

When it is positive, X and Y are correlated. The higher the value, the stronger the correlation. 

If the value of rx,y is negative, then X and Y are negatively correlated. 

3.8 Multi-Linear Regression 

Multi-linear regression (MLR) is a popular mathematical modeling technique that relates 

dependent variable to one or many independent variables linearly. Generally, the n regressor 

variables and dependent variable y can usually be correlated by (Elkiran et al., 2018): 

𝑦 =  𝑏0 +  𝑏1𝑥1 +  𝑏2𝑥2 + 𝑏3𝑥3 + ⋯ +  𝑏𝑖𝑥𝑖 + 𝜉    (3.20) 

Where 𝑥𝑖 is the 𝑖𝑡ℎ predictor value, 𝑏0 is the constant of regression, and 𝑏𝑖 is the 𝑖𝑡ℎ predictor 

coefficient and 𝜉 is refers to error term. 

3.9 Empirical Equations 

3.9.1 Pan evaporation 

The evaporation rate from pans filled with water is easily obtained. In the absence of rain, 

the amount of water evaporated during a period (mm/day) corresponds with the decrease in 

water depth in that period. Pans provide a measurement of the integrated effect of radiation, 

wind, temperature and humidity on the evaporation from an open water surface. Although 

the pan responds in a similar fashion to the same climatic factors affecting crop transpiration, 

several factors produce significant differences in loss of water from a water surface and from 

a cropped surface. Reflection of solar radiation from water in the shallow pan might be 

different from the assumed 23% for the grass reference surface. Storage of heat within the 

pan can be appreciable and may cause significant evaporation during the night while most 

crops transpire only during the daytime. There are also differences in turbulence, 

temperature and humidity of the air immediately above the respective surfaces. Heat transfer 

through the sides of the pan occurs 

and affects the energy balance. 
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Notwithstanding the difference between pan-evaporation and the evapotranspiration of 

cropped surfaces, the use of pans to predict ET0 for periods of 10 days or longer may be 

warranted. The pan evaporation is related to the reference evapotranspiration by an 

empirically derived pan coefficient: 

𝐸𝑇0 = 𝐾𝑝 ∗  𝐸𝑝       (3.21)  

Where 𝐾𝑝 is a pan coefficient which ranges between 0.3 and 1.1 and it is inversely 

proportional to wind speed and directly proportional to relative humidity (Aschonitis et al., 

2012; Heydari and Heydari, 2014). Cuenca approach (Cuenca, 1989) was applied in this 

study owing to its performance and application in many studies (including Sabziparvar et 

al., 2010; Snyder et al., 2005; Heydari and Heydari, 2014). The equation is given by (Snyder 

et al., 2005): 

𝐾𝑝 = 0.475 − 2.4 𝑋 10−4𝑈2 + 5.16 𝑋 10−3𝑅𝐻 + 1.18 𝑋 10−3𝐹 −

1.6 𝑋 10−5𝑅𝐻
2 − 1.01 𝑋 10−6𝐹2 − 8 𝑋 10−9𝑅𝐻𝑈2 − 1.0 𝑋 10−8𝑅𝐻

2𝐹 (3.22) 

Where 𝑈2 and 𝑅𝐻 were previously defined and F is fetch distance (green crop windward side 

distance). 

3.9.2 Hargreaves model (Hargreaves and Samani, 1985) (HS) 

Hargreaves and modified Hargreaves (Hargreaves and Samani, 1985 and Hu et al., 2011) 

are the two temperature based models selected. The models require minimum, maximum 

and mean air temperature as input (Feng et al., 2016) 

𝐸𝑇0 = 0.000939𝑅𝑎(𝑇𝑚𝑒𝑎𝑛 + 17.8)(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)0.5  (3.23)  

Where 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑒𝑎𝑛, and 𝑇𝑚𝑎𝑥 were define previously in equation.. , 𝑅𝑎 is extraterrestrial 

radiation (MJ/m2/day) 

3.9.3 Modified Hargreaves model (Hu et al., 2011) (MHS) 

Hu et al. (2011) applied modification to previous Hargreaves model, given by; 

𝐸𝑇0 = 0.000571𝑅𝑎(𝑇𝑚𝑒𝑎𝑛 + 13.1)(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)0.7  (3.24) 

Where 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑒𝑎𝑛, and 𝑇𝑚𝑎𝑥 and 𝑅𝑎 were defined previously in equation… 
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3.9.4 Makkink model (MK) 

Makkink and Ritchie models are the radiation based models applied in this study. Solar 

radiation and temperature might explain about 80% of ET0 (Samani, 2000; Feng et al., 2016), 

and accurate estimation of ET0 could be achieved by many radiation based ET0 models.  

𝐸𝑇0 = 0.61 (
∆

∆+𝛾
)

𝑅𝑠

2.45
− 0.12      (3.25) 

Where ∆ is the vapor pressure curve slope (kPa oC − 1), 𝛾 is the psychometric constant 

(kPa oC-1) and 𝑅𝑠 is solar radiation (MJ/m2/day), respectively. 

3.9.5 Ritchie model (Jones and Ritchie, 1990) (RT) 

The Ritchie model is given by the following equation; 

𝐸𝑇0 = 𝛼1 ∗ [0.00387𝑅𝑠(0.6𝑇𝑚𝑎𝑥 + 0.4𝑇𝑚𝑖𝑛 + 29)]   (3.26) 

Where 𝛼1 has the following conditions: 

5 < 𝑇𝑚𝑎𝑥 ≤ 35℃, 𝛼1 = 1.1;      (3.27) 

𝑇𝑚𝑎𝑥 > 35℃, 𝛼1 = 1.1 + 0.05(𝑇𝑚𝑎𝑥 − 35)    (3.28) 

𝑇𝑚𝑎𝑥 < 5℃, 𝛼1 = 0.01 exp [0.18(𝑇𝑚𝑎𝑥 + 20)]   (3.29) 

3.10 Multi-Step Ahead Predictions 

Multi-step ahead predictions are the predictions of parameters for some future time steps i.e. 

𝜑𝑁+ℎ, with ℎ = 1,2,3, … 𝐻, while 𝐻 is the integer having value greater than one, in view of 

the current and previous observations i.e. 𝜑𝑡, 𝑡 = 1,2,3 … 𝑁. Multi-step ahead modeling is 

good for decision making and could be used to provide warning and counter measures for 

the persistent climate change impact on hydro-climatic processes such as ET0. Iterated and 

direct algorithms are the two most commonly applied methods for the multi-step ahead 

modeling (Bao et al., 2014). For iterated algorithm, a prediction model is constructed by 

minimizing the squares of one step ahead residual, thereafter, the predicted values are used 

as inputs to predict the next values. In direct algorithm, prediction models are constructed 

for each horizon by applying only its past observations (Bao et al., 2014). In this study, direct 
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algorithm was employed since the next step is independent of the previous step and there is 

susceptibility of error accumulation problem for iterated algorithm as it uses past predicted 

values to generate next step ahead prediction. 

3.11 Ensemble Modeling 

It is evident for a given collection of data that the output of one intelligent technique may 

exceed another, and when distinct data sets are used, the findings might be quite the opposite. 

To gain from the advantages of all techniques and not to lose generality, an ensemble model 

is developed using the single output of each technique with a certain priority level assigned 

to each technique with the aid of an arbitrator to produce the output (Kiran and Ravi, 2008). 

For prediction issues, some ensemble techniques include linear ensemble, such as Simple 

average (Benediktsson et al., 1997), Stack regression (Breiman, 1996), Weighted average 

(Perrone and Cooper, 1993); and Nonlinear ensemble, such as ensemble modeling using 

neural network (Yu et al., 2005). As reported by Kiran and Ravi (2008), there exist two 

ensemble methods: (i) linear ensemble method; which includes simple average linear 

ensemble, weighted average linear ensemble and weighted median linear ensemble. (ii) 

Nonlinear ensemble method; such as training an ANN model to produce ensemble output.  

Non-linear FFNN, simple and weighted average ensemble methods are the types of ensemble 

modeling techniques employed in this study.  

Simple average (SA) ensemble modeling is performed using: 

𝐸𝑇̅̅̅̅  =
1

𝑁
∑ 𝐸𝑇𝑖

𝑁
𝑖=1         (3.30) 

Where 𝐸𝑇̅̅ ̅̅  is the simple ensemble output produce by SA model, 𝐸𝑇𝑖  is the ith single model 

output (FFNN, SVR, ANFIS and MLR with respect to this study) and N is the number of 

single models (here, N is 4).  

The weighted averaging (WA) ensemble is given by: 

𝐸𝑇̅̅̅̅  = ∑ 𝑤𝑖𝐸𝑇𝑖
𝑁
𝑖=1        (3.31) 

Where 
iw  is the weight applied on ith model and can be obtained in accordance with the 
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performance of single models:  

 


N

i i

i
i

DC

DC
w

1

                             (3.32)  

DCi is called determination coefficient. It indicates efficiency of the ith single model. Figure 

3.8 gives the general methodology developed for ensemble modeling. 

In the non-linear ensemble (NE), the ANFIS, FFNN, MLR and SVR individual outputs are 

used as inputs to generate a new FFNN non-linear model (for strategy 1 in the first phase of 

modeling) and finally by training and validating the model, the overall ensemble output is 

obtained. Data were partitioned into 4-folds subsamples, to validate the ensemble model in 

similar process to the case of single modeling. The training subsamples used were k – 1 (4-

1) while the validation was carried out using the remaining subsample. The process of 

training and validating the model was repeated until each subsample was once used as 

dataset for training and validation. Figure 3.8 depicts the ensemble modeling general 

procedure. 

 

Figure 3.8: General procedure of the developed method for ensemble modeling 
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3.12 Validating the Meteorological Parameters 

Quality assurance measures were applied to assess the incorrect and suspicious data from 

observations. Firstly, it is important to check that the right and full record structure is 

obtained and that all possible data are collected. Gaps found in the data files should be 

flagged as erroneous, and should not be included in the ET0 estimation as input variable. The 

methods used for meteorological parameters quality control include: fixed or dynamic range 

test, step test, internal consistency test, and persistence test (Estévez et al., 2011, 2016). 

Range (fixed) testing technique was applied in this study because of its ability to detect 

erroneous data (i.e. data outside appropriate fixed target). Table 3.13 displays the test 

procedures implemented for testing the data quality of the variables used. 

Table 3. 2: Data validation procedures for meteorological variables before their use as 

input data for ET0 estimations. 

Variable Unit Applied Data Validation Procedure 

Relative humidity (𝑅𝐻) % 0.8 < 𝑅𝐻 < 103 (Estévez et al., 2011) 

Surface Pressure (𝑆𝑃) Kpa 80 < 𝑆𝑃 < 105 (Shafer et al., 2000)  

Precipitation (𝑃𝑅) mm 0 ≤ 𝑃𝑅 < 508 (Estévez et al., 2011) 

Maximum air temperature 

(𝑇𝑚𝑎𝑥) 

Minimum air temperature 

(𝑇𝑚𝑖𝑛) 

Mean air temperature (𝑇𝑚𝑒𝑎𝑛) 

 

(oC) 

 

−20 < 𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑒𝑎𝑛 < 50 (Estévez et al., 

2016) 

Mean wind speed (𝑈𝑚𝑒𝑎𝑛) 

Maximum wind speed (𝑈𝑚𝑎𝑥) 

Minimum wind speed (𝑈𝑚𝑖𝑛) 

 

m/s 

 

0 < 𝑈𝑚𝑎𝑥 < 100  

0 < 𝑈𝑚𝑒𝑎𝑛 (Estévez et al., 2011) 

Solar Radiation (𝑅𝑆) MJ/m2/day 0 < 𝑅𝑆 < 121  

0.03𝑅𝑎 ≤ 𝑅𝑆 ≤ 𝑅𝑎 (Estévez et al., 2016) 

Pan Evaporation (𝐸𝑃) mm 0 ≤ 𝐸𝑃 < 500 (Feng et al., 2004) 
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CHAPTER 4  

RESULTS AND DISCUSSION 

4.1 Results for Phase 1 

In this phase of the study, four steps are contained in the proposed methodology, (i) 

application of conventional methods, (ii) selection of dominant input variables on ET0 using 

neural network-based analysis (iii) application of linear MLR and non-linear AI based 

techniques for single modeling, and finally, (iv) Two strategies were used for results 

presentation via a non-linear and two linear approaches to ascertain the performance 

improvement by ensemble modeling over the single models. Accordingly, the results are 

provided with respect to the aforementioned steps in different sub-sections. 

To validate and assure the quality standard of the input variables for the simulation of ET0, 

quality control measures were utilized to determine faulty values from the input variables. 

The conducted fixed range test results implied there are no erroneous or flagged data 

pinpointed. Signifying that within the range of acceptable variables in Table 3.13, the tested 

variables showed compliance. The data descriptive statistics given in Tables 3.1, 3.3, 3.5, 

3.7 and 3.9 can also be affirmed to this. 

4.1.1 Results of the applied Pearson correlation 

The Pearson correlation results for all stations across all regions from Turkey, North Cyprus, 

Iraq, Iran and Libya are given in Appendices 2a, 2b, 2c, 2d and 2e, respectively. For Turkey 

stations, it can be seen that PR has higher correlation with ET0 in Adana and Izmir than in 

Ankara and Samsun stations. This could be because the former stations are situated in the 

MED region which possesses cool and heavy rainy winter and hot and dry summer due to 

its semi humid and humid subtropical nature whereas, the latter stations are representing 

semiarid climate of CCAN region and temperate climate of BLS region. This is implying 

that the higher the aridity index of a climate, the lower the linear correlation and thus, the 

higher the nonlinear correlation between PR and ET0. For RH, the correlation effect is also 

higher in Adana and Izmir station. This is because the ratio of the partial pressure of water 



60 
 

vapor to the equilibrium vapor pressure of water is higher in humid climate than semiarid or 

temperate climate, as the temperature increases, the vapor pressure present in air decreases 

and thus results in decrease in effect of RH. Overall, EP and RS show better correlation with 

ET0 in comparison to the other 10 variables used in this study. This followed by Tmean and 

Tmin due the climate of the stations. For North Cyprus stations, the Pearson correlation results 

is shown in Appendix 2b. RS demonstrated the highest correlation with ET0 and Umax, Umin 

and Umean are the least correlated variables. For Iraq stations, contrary to Turkey and Iraq 

stations, Umax, Umin and Umean are more correlated with ET0 than SP, TD and Tmax. This shows 

how dynamic and unpredictable variables could be despite having similar climate (semiarid). 

For Iran stations, PR is very significant variable next to EP and RS.  For Libya stations, EP 

has the highest correlation followed by RS, PR, RH, Tmean, Tmin, and the least correlated 

variable is SP for both Sabha and Tripoli stations. 

4.1.1 Results of the empirical models 

To evaluate the performance of the climate based models and for the basis of comparison, 

ET0 computed by the empirical models were referenced by ET0 values computed by Ep 

method. The radiation and temperature based empirical models results for the entire stations 

are presented in Table 4.1. It is worthy to acknowledge that comparison was made between 

the results of the empirical models with that of AI based models, therefore, for efficient 

comparison, the former results were calibrated on the basis of 4-folds cross-validation, as 

the latter. 

Table 4.1: Results of the empirical models 

   Training Validation 

Country Station Model DC RMSEa DC RMSEa 

Turkey 

Adana 

HS 0.8425 0.1032 0.7910 0.1052 

MHS 0.8697 0.0828 0.8698 0.0924 

MK 0.6581 0.1496 0.4462 0.1701 

RT 0.6753 0.1468 0.5263 0.1611 

Ankara 

HS 0.7721 0.1188 0.6863 0.1284 

MHS 0.7997 0.1152 0.7145 0.1239 

MK 0.6475 0.1512 0.5692 0.1487 

RT 0.8299 0.1048 0.6324 0.1395 

Izmir HS 0.8029 0.1301 0.7817 0.1388 
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MHS 0.8464 0.1136 0.8411 0.1161 

MK 0.8225 0.1208 0.8127 0.1253 

RT 0.8166 0.1292 0.8113 0.1241 

Samsun 

HS 0.6324 0.1511 0.4097 0.1641 

MHS 0.6824 0.1403 0.4552 0.1579 

MK 0.6581 0.1493 0.5616 0.1429 

RT 0.6778 0.1431 0.5683 0.1398 

Cyprus 

Famagusta 

HS 0.8012 0.1316 0.7727 0.2083 

MHS 0.8245 0.1274 0.7941 0.1232 

MK 0.7042 0.1494 0.6512 0.2473 

RT 0.7374 0.1410 0.6882 0.2341 

Kyrenia 

HS 0.8684 0.1511 0.7567 0.1275 

MHS 0.8824 0.1449 0.7469 0.1359 

MK 0.7752 0.1993 0.7841 0.1216 

RT 0.8035 0.1879 0.8092 0.1172 

Morphou 

HS 0.8897 0.1801 0.7184 0.1614 

MHS 0.8723 0.1878 0.6945 0.1671 

MK 0.8819 0.1847 0.7381 0.1572 

RT 0.8933 0.1742 0.7391 0.1546 

Nicosia 

HS 0.9268 0.1417 0.7769 0.1183 

MHS 0.9311 0.1406 0.8035 0.1152 

MK 0.8946 0.1624 0.7701 0.1201 

RT 0.9047 0.1566 0.7881 0.1161 

Iraq 

Erbil 

HS 0.8641 0.1021 0.8331 0.1134 

MHS 0.8689 0.1002 0.8004 0.1298 

MK 0.7745 0.1312 0.7964 0.1322 

RT 0.8176 0.1245 0.7477 0.1453 

Salahaddin 

HS 0.4932 0.1721 0.3624 0.1843 

MHS 0.6043 0.1519 0.4587 0.1738 

MK 0.5861 0.1505 0.3747 0.1806 

RT 0.6689 0.1378 0.4598 0.1714 

Iran 

Tabriz 

HS 0.8267 0.1189 0.7646 0.1425 

MHS 0.8735 0.1016 0.8149 0.1264 

MK 0.6665 0.1696 0.5989 0.1810 

RT 0.8547 0.1089 0.7757 0.1391 

Urmia 

HS 0.8596 0.1074 0.7627 0.1395 

MHS 0.8705 0.1032 0.7797 0.1344 

MK 0.8012 0.1277 0.7646 0.1391 

RT 0.7949 0.1297 0.7524 0.1427 

Libya Sabha 

HS 0.8362 0.1187 0.6663 0.1494 

MHS 0.8273 0.1219 0.6740 0.1477 

MK 0.8474 0.1146 0.5900 0.1656 
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RT 0.8475 0.1146 0.6306 0.1572 

Tripoli 

HS 0.6241 0.1338 0.4252 0.1587 

MHS 0.6514 0.1288 0.4278 0.1583 

MK 0.6228 0.1340 0.4087 0.1610 

RT 0.4553 0.1611 0.3276 0.1716 

RMSEa : Since the data were normalized, RMSE has no unit 

As shown in Table 4.1, the performance of all models is appreciable in most stations; 

meaning that empirical models in most of the study locations could achieve accurate 

estimates of ET0. Since the results of the models are comparable for similar weather 

conditions, it is nevertheless clear that one model output may be better than another due 

mainly to the environment (climate) from which the models were originally produced. This 

results in the least and highest performing models. 

For Turkey stations, the empirical models performance at Adana and Izmir stations is a little 

better than at stations in Ankara and Samsun in relation to lower RMSE and higher DC. This 

may be because the MED climate receives higher precipitation, and condensation and 

precipitation occurs due to regular evapotranspiration according to the definition of water 

cycle. This suggests that evapotranspiration is easier to be estimated using empirical models 

with higher precipitation levels.  The results obtained by empirical models in Ankara station 

have exceeded those obtained from Samsun station since Ankara station is located in CCAN, 

a semi-arid climate region, while Samsun is in BLS temperate climate and most empirical 

models are built on the basis of extreme climate predictions (including arid and semi-arid 

climate conditions) in order to properly handle and manage processes. Therefore, for stations 

that are not subjected to these climatic conditions, reliable predictions may not be provided 

by the empirical models. Comparing the performance of the models, it can be seen that 

models based on temperature usually have greater predictability than models based on 

radiation and MHS models performed better than models based on HS. Prediction of 

radiation-based models were increased by the temperature-based models in the validation 

phase up to 3% at the Izmir station, 14% at the Ankara station and 42% at the Adana station, 

while temperature-based models were increased by 16% in the Samsun region by radiation 

based models.   

For Cyprus stations, the performance in Famagusta station by MHS model was found to be 

better, with training phase RMSE = 0.1274, DC = 0.8245 and validation phase RMSE = 
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0.1232, DC = 0.7941. During the validation process, HS model followed closely with RMSE 

= 0.2083 and DC = 0.7727. Radiation related models have been found to have better 

efficiency in Kyrenia station. RT model was found in the validation process to overestimate 

ET0 with RMSE = 0.1172 and DC = 0.8092. Better output of the models based on radiation 

may be due to the rocks surrounding the site, which can lead to easier evaporation and 

transpiration. In this area (Kyrenia), atmospheric conditions such as slope of the saturation 

vapor pressure and extraterrestrial radiation may also be more effective as they can easily 

penetrate the earth's surface unlike in a flat setting like Nicosia. However, in Morphou, the 

correlation between ET0 values calculated by Ep method and those calculated by methods 

based on radiation is significantly higher than when compared with ET0 values calculated 

by methods based on temperature. In the validation, RT provided the highest simulated 

values with RMSE = 0.1546 and DC = 0.7391. MHS has the highest results in validation 

process for Nicosia station with RMSE = 0.1152 and DC = 0.8035. Based on the findings in 

Table 4.1, temperature-based models are superior in efficiency for all stations during the 

training phase, possibly due to the appropriateness of this study’s used indicators. In the 

validation processes, however, the temperature-based models achieved better correlation for 

Famagusta and Nicosia while the radiation-based models provided better results for Kyrenia 

and Morphou areas. Therefore, both radiation-based and temperature-based models can 

predict ET0 with some level of precision. Nonetheless, as shown in Table 4.1, the models' 

output across the four stations is identical, which may be because the stations share similar 

hot dry summer and mild cold winter of semi-arid Mediterranean climate. The principal 

discrepancy between their climates is the station they are located. That is, the temperature 

would be marginally moderate for a coastal region than for the inland. Hilly and valley areas 

may also affect the environment, and ultimately the ET0 prediction. This may be the reason 

why the performance of radiation-based models in Kyrenia is higher than any other station.  

For stations in Iraq, the models used at Erbil station provided better estimates of the ET0 

values but the empirical models at Salahaddin station achieved lower estimates. While 

Salahaddin has been identified as a semi-arid climate station, a Sarlak and Agha (2018) study 

reveals that the aridity of the station varies with the time and aridity index (defined by 

Ranjbar et al., 2018 as the mean annual potential evaporation to precipitation ratio) used for 

its analysis. For example, the station was found to be semi-arid between 1998-2011, sub-
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humid between 1980-1997 and sub-humid between 1980-2011 using the UNEP (1992) 

aridity index. The station's climate incoherence makes it hard for empirical models to predict 

the ET0. Since the long record of data includes elements from various climatic areas, the 

empirical models struggle to provide reliable estimates. This is why the models used 

produced the least performance for the station in Salahaddin compared to the other stations.  

Table 4.1 also demonstrates the efficiency of the empirical models for Iran's stations 

of Tabriz and Urmia. The findings suggest that empirical models based on temperature and 

radiation could be used successfully in the stations for estimating ET0. This is because the 

used input parameters to the models including temperatures (Tmax, Tmean and Tmin) and RS 

have little variance from the mean, which implies less diversification of data and thus 

formed a close bond with the output target. In both stations, over all other empirical models, 

promising performance is shown by MHS model, which in the validation phase has 

performance increase that amount to about 3%, 2% and 2% for Urmia station and 3%, 2% 

and 5% for Tabriz station over RT MK and HS models. This justifies its upgrade from the 

HS original model. 

For stations in Libya, distinct outcomes from two stations of Sabha and Tripoli can be seen 

in Table 4.1. In spite the arid nature of Sabha weather, both temperature and radiation 

dependent models performed better for station in Sabha than station in Tripoli.  It may be 

because Tripoli is a heavily populated city, comprising of around one million of the 

six million population in Libya. High population can contribute to an increase in human 

activities and industrialization, which can cause deterioration of the environment and release 

of harmful gasses into the air. This can have a profound impact on ET and hence make it 

difficult to estimate ET0 using physical methods. The scatter plots in the validation phase for 

the best RT model (Izmir station), MK model (Izmir station), MHS model (Adana station) 

and HS model (Erbil station) are shown in Figure 4.1. 
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Figure 4.1: Best performance in the validation phase across all stations  

In general, the empirical models based on temperature provided better predictions than 

models based on radiation. Any of the models may be used to achieve useful outcomes in 

regions similar to that of this research, and where only temperature data are available, 

temperature-based models could be successfully applied.  
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4.1.2 Sensitivity analysis results 

A non-dimensional sensitivity analysis has already been used to assess the impact of 

meteorological variables on ET0 increases or decreases including study by Beven (1979) and 

Estévez et al. (2009). Some earlier studies also show that single-input single-output 

sensitivity analysis by AI-based techniques can also be used to determine the impact of each 

meteorological variables on ET0, for modeling ET0 successful using AI techniques. For 

instance, Jain et al. (2008) used ANN to perform sensitivity analysis for the ET0 estimation. 

Doğan (2009) determined each meteorological variable’s impact on the benchmark ET0 

using ANFIS technique. Wang et al. (2011) conducted sensitivity analysis of meteorological 

variables to determine the dominant inputs for ET0 modeling in arid regions of Africa using 

ANN. Eslamian et al. (2012) employed the services of ANN to find out the most appropriate 

parameters to be used as inputs for the ET0 modeling. The most important weather 

parameters on ET0 were calculated by Petković et al. (2015) using ANFIS. Consequently, a 

neural network-based single-input sensitivity analysis was used to define the key input 

parameters in this study for the modeling of the ET0 over the selected stations. The models 

were then trained and tested with ET0 value as a function to each parameter. 

Results for all of the 12 parameters in this analysis are provided in Table 4.2. Table 4.2 

highlights the significance of possible input parameters on the output ET0 in the validation 

phase. RMSE was used to assess the efficacy of the parameters, while the lowest error 

signifies the most influential parameter.
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Table 4.2: Sensitivity analysis results 

RMSEa : Since the data were normalized, RMSE has no unit

      RH SP PR TD Tmax Tmin Tmean Umin Umax Umean RS EP 

Country Station 
Error 

term 
% Kpa mm/day 0C 0C 0C 0C m/s m/s m/s MJ/m2/day mm/day 

Turkey 

Adana RMSEa 0.2081 0.0891 0.1722 0.1118 0.0989 0.1099 0.1010 0.1586 0.2067 0.3084 0.0828 0.0121 

Ankara RMSEa 0.1633 0.1917 0.2275 0.1190 0.1141 0.1150 0.1101 0.2312 0.2278 0.2283 0.1029 0.0198 

Izmir RMSEa 0.1534 0.1496 0.2183 0.1358 0.1179 0.1239 0.1129 0.2768 0.2938 0.2875 0.3193 0.0182 

Samsun RMSEa 0.2195 0.1817 0.2150 0.2084 0.1186 0.1204 0.1140 0.2390 0.2306 0.2317 0.1335 0.0074 

Cyprus 

Famagusta RMSEa 0.1194 0.0281 0.0792 0.0886 0.0493 0.0818 0.0411 0.1492 0.1771 0.1786 0.0227 0.0355 

Kyrenia RMSEa 0.0763 0.0285 0.0695 0.0892 0.0786 0.0586 0.0381 0.2440 0.2109 0.2717 0.0203 0.0723 

Morphou RMSEa 0.0734 0.0324 0.0690 0.0911 0.0496 0.2374 0.0382 0.2440 0.2396 0.2477 0.0225 0.0172 

Nicosia RMSEa 0.0637 0.0297 0.0702 0.0913 0.0548 0.0545 0.0537 0.2225 0.2195 0.2722 0.0209 0.0108 

Iraq 
Erbil RMSEa 0.1524 0.1212 0.2298 0.2215 0.1038 0.1130 0.1034 0.1927 0.2949 0.2228 0.1022 0.0269 

Salahaddin RMSEa 0.1278 0.1284 0.1889 0.1935 0.1252 0.1193 0.1271 0.1576 0.2378 0.2343 0.1161 0.0124 

Iran 
Tabriz RMSEa 0.1089 0.2771 0.2446 0.1199 0.0515 0.0641 0.1096 0.2987 0.2731 0.1144 0.0758 0.0107 

Urmia RMSEa 0.1766 0.2387 0.2785 0.1507 0.1435 0.1489 0.1265 0.2778 0.2631 0.2678 0.1104 0.0182 

Libya 
Sabha RMSEa 0.1190 0.1647 0.2552 0.1922 0.1178 0.1151 0.1172 0.2435 0.2230 0.2043 0.1389 0.0263 

Tripoli RMSEa 0.1313 0.1538 0.1775 0.1852 0.1479 0.1722 0.1702 0.2028 0.2386 0.1989 0.1620 0.0110 



 

68 
 

For Turkey stations EP, Tmean and Tmax, EP, RS and Tmean, EP, Tmean and RS, EP, RS and Tmax 

are the three most important parameters for ET0 modeling at Samsun, Izmir, Ankara and 

Adana stations, respectively, according to the findings in Table 4.2. For NC stations, on the 

other hand, SP, EP and RS are in descending order the 3rd, 2nd and 1st, most important 

parameters for both the training and validation phases at Famagusta station. The 6th, 5th, and 

4th most significant parameters at Famagusta Station are Tmin, Tmax and Tmean, for the ET0 

process. Due to the station's hot climate and less precipitation, the water vapor presence in 

the air is low, which may be the reason why TD and PR in Famagusta station are 7th and 8th. 

Due to higher air moisture levels in the air, RH will be more efficient in humid regions, hence 

rising aridity index, restricted air moisture levels thereby leading to reduced effects of RH; 

this may be an explanation to why RH is in 9th spot. The least efficient parameters are Umin, 

Umean and Umax at Famagusta Station for estimating the ET0. With Kyrenia as a coastal 

region, the parameters effects are identical to those of the Famagusta station, but the 

mountains presence surrounding the area for the region of Kyrenia results in easier 

evaporation and transpiration and hence higher precipitation. The effect of parameters on the 

estimate of the ET0 at Morphou station is in the ascending order of Umean, Umin, Umax, Tmin, 

TD, RH, PR, Tmax, Tmean, SP, EP and RS. The impact of the parameters on ET0 are identical for 

Nicosia station, with location close to Morphou station. For the stations in the northern Iraq 

province of Kurdistan, the best 3 parameters that are most appropriate for Erbil's ET0 

modeling are EP, Tmean and RS, while the dominant parameters for Salahaddin station are EP, 

Tmin and RS. For Iran's Tabriz and Urmia stations, Ep, Tmax and Tmin are the 3 most influential 

parameters for Tabriz station with RMSE of 0.0107, 0.0515 and 0.0641 and for Urmia station 

Ep, RS and Tmean with RMSE of 0.0181, 0.1104 and 1.265. Therefore, for Sabha station, the 

4 most important parameters are Tmean, Tmax, Tmin and Ep due to its arid climate as ET0 rises 

with rise in temperature. As a coastal station receiving more precipitation at a lower elevation 

above mean sea level, for Tripoli station, the ET0 4 most important parameters include RH 

and SP. 

4.1.3 Results of the black box models (ANN, ANFIS, SVR and MLR) 

This section presents the results of 14 different stations obtained from three AI-based 

techniques FFNN, ANFIS and SVR and conventional MLR technique for ET0 estimation in 
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Iran, NC, Libya, Turkey and Iraq using different input combinations based on input selection 

results.  

The FFNN simulation of ET0 was done using Levenberg Marquardt algorithm to train the 

network with varying hidden neurons number and a single hidden layer. The optimum 

number of hidden layer nodes for each region was established using method of trial and 

error. Accordingly, for Samsun, Izmir, Ankara, Adana, Nicosia, Morphou, Kyrenia, 

Famagusta, Salahaddin, Erbil, Urmia, Tabriz, Tripoli and Sabha, the hidden layer nodes that 

received the best results were 11, 6, 9, 7, 11, 12, 9, 10, 10, 8, 7, 9, 12 and 14.  

In this study, an ANFIS model using Sugeno type fuzzy inference algorithm was 

implemented, where calibration of the membership function parameters was performed 

using a collection of given input-output data through hybrid optimization algorithm. In order 

to develop ANFIS with the best construction, trial and error method was applied for the 

structure formulation of the ANFIS models. Across all stations, 3 categories of membership 

functions (MFs) were found to be suitable including Gaussian-shaped, Trapezoidal and 

Triangular MFs for the simulation of ET0 while training epoch modification was examined 

to ascertain the number of MFs that will provide the most optimal output. 

RBF kernel was used for the SVR models’ development for all stations. The RBF kernel's 

tuning parameters are less than polynomial, and two sigmoid kernels. The RBF kernel also 

demonstrates improved performance in SVR modeling in the light of smoothness 

in assumptions (Sharghi et al., 2018). The parameters of the RBF kernel in SVR were tuned 

to achieve the best accuracy, reliability, and consistency for ET0 estimates at each station. 

Finally, this study also employed MLR model to linearly simulate the dependent and 

independent parameters relationship for ET0 process. 

Each model was subjected to the combination of 3, 4 and 5 different inputs to ensure efficient 

performance from the best 5 most productive parameters determined through the applied 

sensitivity analysis of input parameters for the ET0 estimation. Varied input combinations 

produced varied outcomes, 3 input models led to higher reliability for the simulation in some 

stations than 4 input models while in some the 4 input models were superior, but usually, 

models with 5 and 3 inputs provided the highest number of best performing models. 
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Therefore, in accordance with the number of input parameters, which provided the best 

output, the models were developed. The input combinations for the ET0 simulation with 

respect to the study stations are thereby given as: 

𝐸𝑇0
𝐴𝑑 = 𝑓(𝐸𝑝

𝐴𝑑, 𝑅𝑠
𝐴𝑑, 𝑇𝑚𝑎𝑥

𝐴𝑑 )       (4.1) 

𝐸𝑇0
𝐴𝑛 = 𝑓(𝐸𝑝

𝐴𝑛, 𝑇𝑚𝑒𝑎𝑛
𝐴𝑛 , 𝑅𝑠

𝐴𝑛, 𝑇𝑚𝑎𝑥
𝐴𝑛 )      (4.2) 

𝐸𝑇0
𝐼𝑧 = 𝑓(𝐸𝑝

𝐼𝑧, 𝑅𝑠
𝐼𝑧 , 𝑇𝑚𝑒𝑎𝑛

𝐼𝑧 )       (4.3) 

𝐸𝑇0
𝑆𝑎 = 𝑓(𝐸𝑝

𝑆𝑎 , 𝑇𝑚𝑒𝑎𝑛
𝑆𝑎 , 𝑇𝑚𝑎𝑥

𝑆𝑎 , 𝑇𝑚𝑖𝑛
𝑆𝑎 , 𝑅𝑠

𝑆𝑎)     (4.4) 

𝐸𝑇0
𝐹𝑎 = 𝑓(𝑅𝑠

𝐹𝑎, 𝐸𝑝
𝐹𝑎 , 𝑇𝑚𝑒𝑎𝑛

𝐹𝑎 , 𝑇𝑚𝑎𝑥
𝐹𝑎 , 𝑆𝑝

𝐹𝑎)     (4.5) 

𝐸𝑇0
𝐾𝑦

= 𝑓(𝑅𝑠
𝐾𝑦

, 𝐸𝑝
𝐾𝑦

, 𝑇𝑚𝑒𝑎𝑛
𝐾𝑦

, 𝑃𝑅
𝐾𝑦

, 𝑆𝑝
𝐾𝑦

)     (4.6) 

𝐸𝑇0
𝑀𝑜 = 𝑓(𝑅𝑠

𝑀𝑜 , 𝐸𝑝
𝑀𝑜 , 𝑇𝑚𝑒𝑎𝑛

𝑀𝑜 , 𝑇𝑚𝑎𝑥
𝑀𝑜 , 𝑆𝑝

𝑀𝑜)        (4.7) 

𝐸𝑇0
𝑁𝑖 = 𝑓(𝑅𝑠

𝑁𝑖 , 𝐸𝑝
𝑁𝑖, 𝑇𝑚𝑒𝑎𝑛

𝑁𝑖 , 𝑇𝑚𝑖𝑛
𝑁𝑖 , 𝑆𝑝

𝑁𝑖)    (4.8) 

𝐸𝑇0
𝐸𝑟 = 𝑓(𝐸𝑝

𝐸𝑟 , 𝑇𝑚𝑒𝑎𝑛
𝐸𝑟 , 𝑅𝑠

𝐸𝑟)      (4.9) 

𝐸𝑇0
𝑆𝑙 = 𝑓(𝐸𝑝

𝑆𝑙, 𝑇𝑚𝑖𝑛
𝑆𝑙 , 𝑅𝑠

𝑆𝑙 , 𝑇𝑚𝑎𝑥
𝑆𝑙 , 𝑇𝑚𝑒𝑎𝑛

𝑆𝑙 )               (4.10) 

𝐸𝑇0
𝑇𝑎 = 𝑓(𝐸𝑝

𝑇𝑎, 𝑇𝑚𝑎𝑥
𝑇𝑎 , 𝑇𝑚𝑖𝑛

𝑇𝑎 )                  (4.11) 

𝐸𝑇0
𝑈𝑟 = 𝑓(𝐸𝑝

𝑈𝑟 , 𝑇𝑚𝑒𝑎𝑛
𝑈𝑟 , 𝑅𝑠

𝑈𝑟)                  (4.12) 

𝐸𝑇0
𝑆ℎ = 𝑓(𝐸𝑝

𝑆ℎ, 𝑇𝑚𝑖𝑛
𝑆ℎ , 𝑇𝑚𝑒𝑎𝑛

𝑆ℎ )                         (4.13) 

𝐸𝑇0
𝑇𝑟 = 𝑓(𝐸𝑝

𝑇𝑟 , 𝑅𝐻
𝑇𝑟, 𝑆𝑝

𝑇𝑟 , 𝑇𝑚𝑎𝑥
𝑇𝑟 )                (4.14) 

where 𝐸𝑇0
𝐴𝑑, 𝐸𝑇0

𝐴𝑛, 𝐸𝑇0
𝐼𝑧, 𝐸𝑇0

𝑆𝑎, 𝐸𝑇0
𝐹𝑎, 𝐸𝑇0

𝐾𝑦
, 𝐸𝑇0

𝑀𝑜, 𝐸𝑇0
𝑁𝑖, 𝐸𝑇0

𝐸𝑟, 𝐸𝑇0
𝑆𝑙 𝐸𝑇0

𝑇𝑎, 𝐸𝑇0
𝑈𝑟, 𝐸𝑇0

𝑆ℎ 

and 𝐸𝑇0
𝑇𝑟 are ET0 at Adana, Ankara, Izmir, Samsun, Famagusta, Kyrenia, Morphou, Nicosia, 

Erbil, Salahaddin, Tabriz, Urmia, Sabha and Tripoli stations respectively and 

𝑅𝑠, 𝐸𝑝, 𝑇𝑚𝑒𝑎𝑛, 𝑇𝑚𝑎𝑥, 𝑆𝑝, 𝑃𝑅 , 𝑅𝐻 and 𝑇𝑚𝑖𝑛 defined as in Table 3.1. 



 

71 
 

Table 4.3 shows for all the stations, the results of the SVR, ANFIS, FFNN, and MLR models. 

It is worthy to state that the results presented are only for the best output models. The x-y-z 

numbering of the FFNN structure mean input number of parameters, hidden layer neurons 

number and output number. For structure of ANFIS, MF-x describes MF type and number 

of MFs. For SVR, RBF denotes Radial Basis function utilized in the construction of SVR. 

The MLR form x-y corresponds respectively to number of inputs and outputs. 

Table 4.3: Results of the black box models 

 
   Training Validation 

Country Station Model Structure DC RMSE DC RMSEa 

Turkey 

Adana 

FFNN 3-7-1 0.9010 0.0733 0.8895 0.0864 

ANFIS Gaussian-3 0.8980 0.0742 0.8835 0.0887 

SVR RBF 0.9330 0.0608 0.9184 0.0732 

MLR  3-1 0.7588 0.1294 0.7602 0.1238 

Ankara 

FFNN 4-9-1 0.9045 0.0783 0.8416 0.0909 

ANFIS Triangular-4 0.9043 0.0787 0.8412 0.0910 

SVR RBF 0.8875 0.0863 0.7964 0.1038 

MLR  4-1 0.6197 0.1401 0.5743 0.1637 

Izmir 

FFNN 3-6-1 0.8874 0.0942 0.8691 0.1067 

ANFIS Triangular-3 0.8882 0.0937 0.8696 0.1053 

SVR RBF 0.8687 0.1031 0.8379 0.1174 

MLR  3-1 0.7365 0.1508 0.6577 0.1684 

Samsun 

FFNN 5-11-1 0.8873 0.0864 0.8388 0.0861 

ANFIS 
Trapezoidal-

5 
0.8839 0.0843 0.8393 0.0856 

SVR RBF 0.7956 0.0978 0.7844 0.1123 

MLR  5-1 0.5549 0.1628 0.5168 0.1507 

Cyprus 

Famagusta 

FFNN 5-10-1 0.9178 0.1241 0.8172 0.1201 

ANFIS Triangular-5 0.9273 0.1164 0.8285 0.1146 

SVR RBF 0.9084 0.1267 0.7903 0.1237 

MLR  5-1 0.8177 0.1789 0.6638 0.1618 

Kyrenia 

FFNN 5-9-1 0.9584 0.0959 0.8879 0.0891 

ANFIS Triangular-5 0.9687 0.0769 0.8694 0.0926 

SVR RBF 0.9795 0.0743 0.8281 0.1118 

MLR  5-1 0.8610 0.1579 0.7085 0.1419 

Morphou 

FFNN 5-12-1 0.9365 0.1431 0.7842 0.1415 

ANFIS Triangular-5 0.9346 0.1391 0.8692 0.1126 

SVR RBF 0.9354 0.1408 0.7388 0.1548 

MLR  5-1 0.8734 0.1943 0.6593 0.1772 

Nicosia FFNN 5-11-1 0.9387 0.1256 0.8890 0.0863 
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ANFIS Triangular-5 0.9576 0.1091 0.8967 0.0818 

SVR RBF 0.9448 0.1217 0.8771 0.0900 

MLR  5-1 0.8469 0.1982 0.6667 0.1462 

Iraq 

Erbil 

FFNN 3-8-1 0.9193 0.0781 0.8832 0.0958 

ANFIS 
Trapezoidal-

3 
0.9187 0.0783 0.8784 0.1032 

SVR RBF 0.9165 0.0813 0.8647 0.1082 

MLR  3-1 0.7975 0.1308 0.7535 0.1348 

Salahaddin 

FFNN 5-10-1 0.8632 0.0895 0.7867 0.1102 

ANFIS Gaussian-5 0.8741 0.0853 0.8064 0.1040 

SVR RBF 0.8649 0.0886 0.7693 0.1132 

MLR  5-1 0.6050 0.1517 0.5669 0.1543 

Iran 

Tabriz 

FFNN 3-9-1 0.9201 0.0808 0.8798 0.0932 

ANFIS 
Trapezoidal-

3 
0.9261 0.0777 0.8925 0.0875 

SVR RBF 0.8997 0.0905 0.8318 0.1205 

MLR  3-1 0.8906 0.0945 0.7581 0.1300 

Urmia 

FFNN 3-7-1 0.8628 0.1062 0.8271 0.1191 

ANFIS Gausian-3 0.8824 0.0983 0.8552 0.1090 

SVR RBF 0.9049 0.0884 0.8342 0.1166 

MLR  3-1 0.8161 0.1230 0.7492 0.1327 

Libya 

Sabha 

FFNN 3-14-1 0.8948 0.0952 0.7131 0.1385 

ANFIS Triangular-3 0.9113 0.0874 0.8108 0.1125 

SVR RBF 0.9049 0.0905 0.7095 0.1394 

MLR  3-1 0.8586 0.1103 0.6087 0.1618 

Tripoli 

FFNN 4-12-1 0.7532 0.1084 0.7342 0.1079 

ANFIS Triangular-4 0.8317 0.0895 0.7822 0.0977 

SVR RBF 0.7575 0.1075 0.6855 0.1174 

MLR  4-1 0.7220 0.1151 0.5940 0.1334 

RMSEa : Since the data were normalized, RMSE has no unit 

Table 4.3 shows different performances of the models. AI-based models were found to be 

higher in efficiency and accuracy than linear models of all the models implemented. Both 

AI and MLR models received a good estimate of ET0 for stations located in Turkey, except 

for Samsun station where the MLR model with RMSE = 0.1507 and DC = 0.5168 obtained 

fair output. This implies that the Samsun station's temperate BLS climate negatively affects 

the efficiency of both MLR and empirical models, but AI-based models can resolve the 

region's climate threat as they have provided reliable results because of their robustness and 

ability to cope with unpredictable climate behavior. Given their ability to deliver good results 

in the BLS climate zone, however, the performance of the AI-based models at Samsun 
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station is lower than their performance at other stations, indicating that the AI-based models 

can produce reliable results but not at the peak in that zone of climate. It is evident from the 

result displayed in Table 4.3 that all the applied models performance at stations of Adana 

and Izmir (situated in the MED region, with semi-humid and humid climates) was better 

than those at station of Ankara (located in CCAN region of semi-arid climate). By comparing 

Tables 4.1 and 4.3, it is certain that AI-based models in all modeling training and validation 

phases are superior in performance than the other models. The black box models' improved 

performance may be attributed to (i) the pan evaporation inclusion as their input data, which 

was also used with other coefficients to produce the benchmark ET0 and (ii) their potential 

to manage nonlinear phenomenon of a process. The performance of empirical and MLR 

models differs across stations with certain empirical models getting an upper hand over MLR 

models. This is because the input requirements for empirical models are RS, Tmin, Tmax and 

Tmean and in those stations, these variables were found to be influential and forefront 

parameters for the estimation of ET0, which allowed empirical models to provide reliable 

and efficient estimation of ET0 than MLR model in most stations. For Turkey stations, the 

overall results imply that modeling of ET0 in the regions is affected by the climate of the 

regions, with the least performance in BLS region, followed by CCAN region and the best 

performance in MED region. 

For NC stations, the MLR models for estimating ET0 during the training phases led to 

appropriate values based on the applied statistical indicators. But in the validation process, 

MLR models did not offer much reliable performance with the exception of Kyrenia which 

got RMSE = 0.1419 and DC = 0.7085. The effectiveness of the used input combination may 

be the reason for better performance for Kyrenia, which has an inclusion of precipitation due 

to its dominance in the region for the ET0 estimation. MLR models' inability to generate 

effective simulation beyond training steps may be due to their struggle to deal with nonlinear, 

dynamic processes. All models based on AI techniques provided promising performance in 

the study stations due to their ability to handle complex phenomenon like the ET0 process. 

In the Famagusta station for validation process, ANFIS obtained higher predictions with 

RMSE = 0.1146 and DC = 0.8285. SVR performed better in Kyrenia's training phase but 

was 6 percent lower in the testing phase than FFNN. Morphou and Nicosia have also 

observed greater efficacy of ANFIS predictions over FFNN and SVR. The ANFIS’s efficient 
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performance could be due to ANN's shortcomings in dealing with unclear or less reliable 

data notwithstanding its robustness in dealing with various real-world issues; as such ANFIS 

could be a better choice due to the fuzzy logic capability to manage process ambiguity 

(Moghaddamnia et al., 2009).  

In the case of stations in Iraq, the model results shown in Table 4.3 reveal that in Erbil, the 

efficiency of the ET0 simulation is higher than in Salahaddin, which is due to the distinct 

aspect of the climate environment between the two stations. Salahaddin station's aridity 

varies over time and the aridity index applied while Erbil station's remains constant 

regardless of the time and the applied indices (Sarlak and Agha, 2018). The station's irregular 

climate activity decreases the precision of the model predictions.  

For Iran stations, with similarity to the empirical models’ results (but in an enhanced form), 

a comparable performance of the AI models could be seen for the study stations due to their 

climate similarity. As with most stations, for both stations of Tabriz and Urmia, ANFIS has 

an outstanding performance in the validation phase among other AI models. FFNN has lower 

performance over SVR in Urmia station and higher performance over SVR at Tabriz station. 

Notwithstanding being produced on the basis of dominant inputs which have higher 

correlation to the benchmark output, the MLR model did not yield superior estimates over 

the empirical models (Table 4.3). This is could be because despite been fixed inputs for 

empirical simulations; there is strong agreement between the inputs and ET0 output. The 

effective convergence of the meteorological parameters towards the mean led to better 

performance of the applied models in Tabriz station as demonstrated by standard deviation 

of the input parameters in the descriptive statistics of the study data shown in Table 3.7. 

For Sabha and Tripoli stations of Libya, all the models performances are convincing, and 

with uncertainties and problems solving nature of AI models, the deficiencies of the 

underperformance empirical models at Tripoli station have been significantly dealt with. 

Performance improvements up to 26%, 26%, 28% and 33% were achieved in the validation 

phase by SVR (the least AI performing model) over HS, MHS, MK and RT models, 

respectively. 
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The scatter plots for the best FFNN model (Adana station), ANFIS model (Nicosia station), 

SVR model (Adana station), and MLR model (Adana station) across all the study stations in 

the validation phase are shown in Figure 4.2. 

 

Figure 4.2: Best performance in the validation phase across all stations  

Comparisons were made between the empirical, AI based and MLR models to ascertain the 

performance of one model over another for all stations. The results are presented in Figure 

4.3 based on the DCs and RMSEs of the validation phase. 
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Figure 4.3: Models performances with respect to DCs and RMSEs  
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As depicted by Figure 4.3, across all stations, AI based models in terms of higher DC and 

lower RMSE outperformed all other applied models in this study. The reasons for the 

promising performance of AI models could be owing to one or all of the following reasons; 

(a) AI models are capable of dealing with complex and nonlinear process, (b) the input 

combinations of the AI models were used based on merit, implying that the input selection 

of the AI based models were due to their effectiveness in ET0 estimation as derived from 

input selection step while the inputs for all other models (with exception of MLR models) 

were fixed regardless of their performances toward ET0 modeling. 

Figure 4.4a shows a time series in the validation phase of Adana station for the black box 

models (FFNN, ANFIS, SVR and MLR). In order to have proper visualization of the 

estimated ET0 values by each model, Figure 4.4b is also plotted that contains only the 12 

months period of the year 2014 (January, 2013 – December, 2013).  



 

78 
 

 

Figure 4.4: Observed versus predicted ET0 values in the verification phase of Adana 

station in the year  

As revealed in Figure 4.4b, four different points are randomly selected and numbered 1, 2, 

3 and 4 which correspond to the months of February, June, August and October, respectively. 
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Considering point 1, observed = 1.4 mm, FFNN = 1.5 mm, ANFIS = 1.6 mm, SVR = 1.6 

mm and MLR = 2.4 mm, this shows that FFNN is more close to the target than the rest 

models. At point 2, observed = 5.0 mm, FFNN = 5.3 mm, ANFIS = 5.0 mm, SVR = 5.1 mm 

and MLR = 5.6 mm, this indicates that the agreement between observed and predicted values 

is higher using ANFIS model, FFNN model which was the best in the month of February is 

at 3rd rank in June. At point 3, observed = 4.8 mm, FFNN = 5.5 mm, ANFIS = 5.5 mm, SVR 

= 5.4 mm and MLR = 4.4 mm, this shows that MLR is less deviated from the observed value 

than the other models and SVR is 2nd performing model at point 3. At point 4, almost all 

models performances converged together. Observed = 2.6 mm, FFNN = 2.6 mm, ANFIS = 

2.7 mm, SVR = 2.6 mm and MLR = 2.6 mm. From the models’ outputs at these four points, 

it can be deduced that different data aspects can be captured by different models in different 

ways at different time points. Hence, amalgamation of models via ensemble approaches 

could enhance the capability of the model in more precisely capturing the target. To this end, 

two linear (SA, WA) and one nonlinear (NE) ensemble techniques are applied in strategy 1 

(for black box models) and strategy 2 (for empirical models) in the next section.  

It should be noted that the ensemble modeling was performed in strategies 1 and 2 instead 

of combining all the models (FFNN, ANFIS, SVR, MLR, HS, MHS, MK and RT) for the 

following reasons; (i) we tried to assess the responses of both AI and empirical models to 

ensemble modeling, if we combine the models all together, we cannot know the influence of 

each technique towards ensemble performance, (ii) to see if it’s possible to use empirical 

models for performance improvement in case of data lack for AI based modeling and (iii) to 

see the difference in performance improvement between ensemble models derived from low 

performance single models and the improvement achieved from higher performance single 

models. 

4.1.4 Results of the ensemble techniques 

4.1.4.1 Results of strategy 1 

In strategy 1, the outputs of 3 AI based (FFNN, ANFIS, SVR) and MLR models were used 

as inputs to the ensemble models. To ensure that the higher performance is achieved, three 

methods were applied in obtaining the weights for WA ensembles; (i) using only DC of the 

training phase, (ii) using only DC of the validation phase, (iii) using both DCs of training 
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and validation phases of the single models. The weights generated by the 3rd method 

provided better simulation and hence, applied in both strategies 1 and 2. Figure 4.5 shows 

the overall methodology of the SA, WA and NE models. 

 

Figure 4.5: Flowchart showing the methodology of the proposed ensemble modeling 

Similar to the single FFNN models, the NE models were developed using LM training 

algorithm with tangent sigmoid as activation functions for both hidden and output layers. 

The schematic diagram of the developed procedure for NE modeling is given in Figure 4.6. 
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Figure 4.6: Schematic diagram of the NE method 

 Trial and error procedure was applied to determine the best epoch number and structure 

(number of hidden neurons) of the ensemble network. The choice of ANN in this study as 

the nonlinear ensemble technique over other AI models was made due to its popularity, 

compatibility, and above all high reported performance by many ensemble modeling studies, 

including Yu et al. (2005); Kiran and Ravi (2008); Sharghi et al. (2018), while other AI 

models may also be employed as the kernel of ensembling.  

The obtained results for the ensemble models in strategy 1 are presented in Table 4.4. For 

model structure, a-b represent number of inputs and output for SA, w, x, y, z imply the 

generated weights by FFNN, ANFIS, SVR, and MLR that were applied for WA and finally, 

FFNN ensemble structure is same as explained previously for single FFNN models.  
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Table 4.4: The results of the ensemble models via strategy 1 

 
   Training Validation 

Country 
Station Model 

Model 

Structure 
DC RMSEa DC RMSEa 

Turkey 

Adana 

SA 4-1 0.9321 0.0632 0.9078 0.0793 

WA 
0.2630, 0.2614, 

0.2517, 0.2247 
0.9332 0.0624 0.9085 0.0788 

NE 4-8-1 0.9567 0.0501 0.9331 0.0687 

Ankara 

SA 4-1 0.8825 0.0879 0.8643 0.0821 

WA 
0.2741, 0.2742, 

0.2643, 0.1876 
0.8876 0.0848 0.8657 0.0833 

NE 4-12-1 0.9264 0.0707 0.8996 0.0729 

Izmir 

SA 4-1 0.9328 0.0769 0.9346 0.0757 

WA 
0.2648, 0.2658, 

0.2581, 0.2103 
0.9287 0.0773 0.9287 0.0781 

NE 4-7-1 0.9565 0.0614 0.9586 0.0610 

Samsun 

SA 4-1 0.8491 0.0973 0.8251 0.0891 

WA 
0.2839, 0.2863, 

0.2592, 0.1711 
0.8598 0.0935 0.8376 0.0857 

NE 4-10-1 0.8943 0.0816 0.8587 0.0811 

Cyprus 

Famagusta 

SA 4-1 0.9086 0.1263 0.8261 0.1172 

WA 
0.2578, 0.2622, 

0.2572,0.2234 
0.9477 0.1164 0.9138 0.1243 

NE  4-10-1 0.9495 0.1129 0.9197 0.1189 

Kyrenia 

SA 4-1 0.9643 0.0824 0.8121 0.1135 

WA 
0.2620, 0.2616, 

0.2544,0.2228 
0.9678 0.0818 0.8158 0.1127 

NE  4-9-1 0.9692 0.0802 0.9015 0.0826 

Morphou 

SA 4-1 0.9264 0.1451 0.8132 0.1313 

WA 
0.2553, 0.2672, 

0.2473,0.2281 
0.9274 0.1442 0.8156 0.1306 

NE  4-8-1 0.9373 0.1354 0.8765 0.1086 

Nicosia 

SA 4-1 0.9381 0.1266 0.8812 0.0876 

WA 
0.2617, 0.2626, 

0.2598,0.2154 
0.9397 0.1246 0.8856 0.0863 

NE  4-12-1 0.9547 0.1118 0.8993 0.0805 

Iraq 

Erbil 

SA 4-1 0.9325 0.0724 0.9139 0.0848 

WA 
0.2616, 0.2582, 

0.2549, 0.2243 
0.9323 0.0726 0.9124 0.0857 

NE 4-11-1 0.9496 0.0623 0.9472 0.0681 

Salahaddin 

SA 4-1 0.8524 0.0926 0.7868 0.1104 

WA 
0.2693, 0.2741, 

0.2668, 0.1913 
0.8592 0.0902 0.7887 0.1090 
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NE 4-10-1 0.8976 0.0779 0.8340 0.0971 

Iran 

Tabriz 

SA  4-1 0.9278 0.0768 0.8835 0.1002 

WA 
0.2529, 0.2546, 

0.2473, 0.2448 
0.9279 0.0767 0.8842 0.0999 

NE  4-12-1 0.9317 0.0747 0.9271 0.0793 

Urmia 

SA 4-1 0.8936 0.0935 0.8492 0.1112 

WA 
0.2505, 0.259, 

0.2526, 0.2379 
0.8942 0.0933 0.8498 0.1110 

NE 4-8-1  0.9265 0.0778 0.8957 0.0925 

Libya 

Sabha 

SA 4-1 0.9116 0.0872 0.7384 0.1323 

WA 
0.2509, 0.2853, 

0.2496, 0.2142 
0.9134 0.0864 0.7449 0.1306 

NE  4-14-1 0.9401 0.0718 0.9290 0.0689 

Tripoli 

SA 4-1 0.7942 0.0990 0.7343 0.1079 

WA 
0.2626, 0.2798, 

0.2451, 0.2125 
0.7980 0.0981 0.7379 0.1072 

NE  4-9-1 0.8576 0.0824 0.8446 0.0825 

RMSEa : Since the data were normalized, RMSE has no unit 

The results in Table 4.4 indicate that ensemble modeling certainly improved accuracy of 

performance over single models. The performances of the models improved up to 20%, 31%, 

22%, 34%, 13%, 11%, 7%, 10%, 15%, 29%, 4%, 11%, 8% and 14% over MLR models in 

the training phases, and 4%, 13%, 12%, 8%, 13%, 7%, 14%, 2%, 9%, 6%, 10%, 7%, 22% 

and 15% over SVR models in the validation phases for Adana, Ankara, Izmir, Samsun, 

Famagusta, Kyrenia, Morphou Nicosia, Erbil, Salahaddin, Tabriz, Urmia, Sabha and Tripoli 

stations, respectively. It is observed that not much improvement in DCs was attained in the 

training phase over AI models, but remarkably higher performances were achieved over all 

models in the validation phase which was the primary focused area in this study. As 

explained earlier, at different points in time, different behaviors of the data could be captured 

with underestimation and overestimation of ET0 by different models and with unique 

capability of each model, the underlying process could be simulated better than in case of 

single models. The deduced ensemble results (Table 4.4) in this study show that the 

performances of the SA and WA are almost equal in most cases across the study stations. 

This could be because of the linear (direct) relationship they shared with the single models. 

The performances of the nonlinear FFNN ensemble (NE) models are far better than SA and 

WA ensemble models, this could be because: (i) FFNN uses nonlinear kernel to simulate the 

behavior of a system, hence simulation by FFNN would yield better results than the other 
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linear (SA and WA) methods. (ii) The performances of single models may influence overall 

results of SA and WA models, implying that poor performing models may result in lesser 

ensemble performances because of the direct relationship that the methods (SA and WA) 

share with the single models. (iii) The errors generated by single models might be propagated 

and incorporated by SA and WA ensemble techniques due to the direct amalgamation of the 

single models. 

It is observed from Table 4.4 that for Turkey stations, the results for Adana and Izmir stations 

are better than those for Ankara and Samsun stations. Also, ensemble results for Ankara are 

superior to the results obtained for Samsun station. Similarly, for Iraq stations, ensemble 

model result for Erbil station surpassed that obtained for Salahaddin station. This clarifies 

that the climate conditions at these stations not only affect the performance of the single 

models, but also accuracy and efficiency of the ensemble models that are generated from the 

single models. To compare the performances of the ensemble models for the 4 study stations 

in NC, the DC values of the best performance single models were subtracted from the DC 

values of the strategy 1 ensemble models (Tables 4.3 and 4.4). The differences are 0.0912, 

0.0136, 0.0073 and 0.0026 for Famagusta, Kyrenia, Morphou and Nicosia, respectively. This 

shows that the differences (which indicate the best performing ensemble models) are higher 

in the first 2 stations than in the last 2 stations. This could be because the heat capacity of 

soil for inland stations is lower than that of water (ocean) for coastal stations, implying that 

the ocean cools down and heats up relatively slowly and in contrast, the land heats faster and 

cools faster. The sudden cooling and heating of inland areas make ET0 phenomenon difficult 

to predict, thus ensemble modeling predicts ET0 better in coastal stations (Famagusta and 

Kyrenia) than inland stations (Morphou and Nicosia). Considering the improvement in 

performance achieved by ensemble model in the validation phase of Tabriz and Urmia (10% 

and 7%) stations, by examining the difference in performance between the best performed 

single models (ANFIS) of two stations, it could be seen that ANFIS model for Tabriz station 

is a bit superior to ANFIS model for Urmia station. This signifies that ensemble models 

increase prediction of single models (according to single model performance) by same 

amount for station under same climatological condition (such as Tabriz and Urmia of Iran’s 

semi-arid region). For Libya stations, the 22% increment in performance for arid (Sabha) 
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station compared to 15% increment for semi-arid Mediterranean (Tripoli) station means 

ensemble techniques are capable of delivering superb performance in an extreme climate. 

4.1.4.2 Results of strategy 2 

The strategy 2 of ensemble simulation was applied to the four empirical models (HS, MHS, 

MK, RT) in this study to see how ensemble approaches could cope with less performing 

models (when compared to AI models). The modeling was performed via three ensemble 

approaches (SA, WA and NE) same as those used in strategy 1. Table 4.5 shows the results 

of strategy 2 of ensemble models. 

Table 4.5: The results of strategy 2 ensemble modeling 

    Training Validation 

Country Station Model 
Model 

Structure 
DC RMSEa DC RMSEa 

Turkey 

Adana 

SA2 4-1 0.8135 0.1123 0.7024 0.1276 

WA2 
0.2873, 0.3064, 

0.1910, 0.2151 
0.8278 0.0934 0.7385 0.1205 

NE2 4-13-1 0.9184 0.0748 0.9469 0.0541 

Ankara 

SA2 4-1 0.7967 0.1138 0.6810 0.1284 

WA2 
0.2573, 0.2659,  

0.2169, 0.2576 
0.7992 0.1123 0.6854 0.1276 

NE2 4-11-1 0.8901 0.0843 0.8857 0.0789 

Izmir 

SA2  4-1 0.8677 0.1053 0.8567 0.1110 

WA2 
0.2392, 0.2574, 

0.2527, 0.2507 
0.8690 0.1041 0.8579 0.1107 

NE2  4-9-1 0.9505 0.0649 0.9490 0.0649 

Samsun 

SA2 4-1 0.6843 0.1409 0.5078 0.1510 

WA2 
0.2297, 0.2425, 

0.2618, 0.2663 
0.6857 0.1402 0.5132 0.1491 

NE2 4-9-1 0.8595 0.0940 0.8267 0.0895 

Cyprus 

Famagusta 

SA2 4-1 0.7760 0.1314 0.7421 0.2128 

WA2 
0.2591, 0.2673, 

0.2312, 0.2403 
0.7776 0.1312 0.7447 0.2112 

NE2 4-8-1  0.8908 0.1382 0.7985 0.1247 

Kyrenia 

SA2 4-1 0.8456 0.1663 0.7879 0.1190 

WA2 
0.2519, 0.2535, 

0.2423, 0.2516 
0.8462 0.1660 0.7876 0.1193 

NE2 4-7-1  0.9577 0.0883 0.8652 0.0949 

Morphou SA2 4-1 0.8937 0.1765 0.7368 0.1550 
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WA2 
0.2489, 0.2442, 

0.2524, 0.2534 
0.8951 0.1752 0.7374 0.1547 

NE2 4-10-1  0.9293 0.1447 0.7648 0.1473 

Nicosia 

SA2 4-1 0.9183 0.1449 0.8067 0.1119 

WA2 
0.2496, 0.2543, 

0.2462, 0.2491 
0.9185 0.1448 0.8070 0.1118 

NE2 4-8-1  0.9359 0.1280 0.8731 0.0910 

Iraq 

Erbil 

SA2 4-1 0.9272 0.0748 0.8950 0.0946 

WA2 
0.2644, 0.2562, 

0.2381, 0.2403 
0.9285 0.0744 0.8970 0.0931 

NE2 4-7-1 0.9543 0.0598 0.9399 0.0756 

Salahaddin 

SA2 4-1 0.6133 0.1500 0.4223 0.1816 

WA2 
0.2072, 0.2685, 

0.2396, 0.2852 
0.6198 0.1488 0.4277 0.1802 

NE2 4-8-1 0.8858 0.0819 0.7699 0.1144 

Iran 

Tabriz 

SA2 4-1  0.8715 0.1024 0.8248 0.1229 

WA2 

0.2621, 0.277, 

0.1899,

 0.271 

0.8823 0.0981 0.8304 0.1210 

NE2  4-12-1 0.9871 0.0325 0.9840 0.0372 

Urmia 

SA2 4-1 0.8914 0.0945 0.8815 0.0986 

WA2 
0.243, 0.2484, 

0.2553, 0.2533 
0.8904 0.0949 0.8817 0.0985 

NE2 4-15-1  0.9813 0.0393 0.9696 0.0499 

Libya 

Sabha 

SA2 4-1 0.8451 0.1155 0.6495 0.1531 

WA2 
0.2602, 0.2632, 

0.2304, 0.2462 
0.8446 0.1157 0.6511 0.1528 

NE2  4-9-1 0.9134 0.0864 0.7950 0.1171 

Tripoli 

SA2 4-1 0.6119 0.1360 0.4239 0.1589 

WA2 
0.2675, 0.2692, 

0.2572, 0.2061 
0.6189 0.1347 0.4275 0.1584 

NE2  4-8-1 0.9897 0.0222 0.9846 0.0260 

RMSEa : Since the data were normalized, RMSE has no unit 

Table 4.5 demonstrates the capability of ensemble approaches to improve the performances 

of all models irrespective of their applied simulation method. The performances of the 

models were improved up to 5%, 9%, 10%, 18%, 7%, 8%, 6%, 1%, 8%, 29%, 12%, 11%, 

8% and 33% over MHS models in the training phases, and 8%, 15%, 11%, 37%, 1%, 12%, 

7%, 7%, 14%, 31%,17%, 19%, 13% and 55% over same MHS models of validation phases 

for Adana, Ankara, Izmir, Samsun, Famagusta, Kyrenia, Morphou Nicosia, Erbil, 

Salahaddin, Tabriz, Urmia, Sabha and Tripoli stations, respectively.  It is observed that 
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almost all the features of strategy 2 resemble those of strategy 1 ensemble techniques 

including the closeness of the results obtained by SA and WA models, higher performance 

of NE over SA and WA ensembles, etc. which their reasons are discussed in strategy 1. This 

shows that these features are peculiar to ensemble models irrespective of the single models 

used because of the processes and methodologies followed in carrying out the three ensemble 

simulations. It is observed that there is huge gap in performance between the two linear 

ensemble models (SA and WA) and NE model in the second ensemble strategy than in the 

first ensemble strategy. This is because empirical models provided lower estimates of ET0 

in the single modeling, NE model in the second ensemble modeling overcomes the obstacle 

posed by the lower estimations, whereas the other ensemble models due to their linear 

behavior could only adapt the nature of the single models. The result shows that the 

improvement in ET0 modeling is higher in strategy 2 ensemble modeling (up to 55%) than 

in the strategy 1 (maximum 22%) in the verification phase. But owing to the capability of 

AI based models to handle uncertainty of system, strategy 1 ensemble remains superior to 

the strategy 2. This means that with low performance single models, more room for 

improvement will be left to be filled by ensemble models, but with high performance single 

models, higher predictions would be achieved by ensemble models. 

It is worth mentioning that by comparing the two ensemble strategies (Tables 4.4 and 4.5), 

strategy 1 outperformed strategy 2 (in terms of higher DC and lower RMSE) in the similar 

manner AI models outperformed empirical models (see Tables 4.1 and 4.3). This implies 

that the ensemble model performance follows the trend and direction of the performance of 

single models, that is to say with high performance of single models, ensemble modeling 

yields better simulations, while in contrast, less accurate but improved performance 

ensemble modeling could be achieved from poor performance single models. Therefore, for 

more efficient and accurate estimation of ET0, AI based models are preferable over empirical 

models. However, obviously the ensemble of empirical models may be used in the case of 

data lack for AI based modeling. Figure 4.7 compares the performances of strategies 1 and 

2 ensemble techniques in form of computed versus observed ET0 time series for stations in 

Turkey, NC, Iraq, Iran and Libya. 
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Figure 4.7: Observed vs computed time series for ensemble models at strategy 1 and 

strategy 2  
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According to Figure 4.7, it is apparent that AI based ensemble models are more accurate 

than empirical based ensemble models. The SA, WA and NE follow closely the fluctuations 

of the observed data, whereas SA2, WA2 and NE2 are unable to have close correlation with 

the observed data. 

However, to further assess the performance of the individual models for both scenarios, 

Taylor diagrams were plotted. A Taylor diagram summarizes the overall performance of the 

models by taking in to account the variability, pattern correlations, as well as the RMSE 

between observed data and predictions by the models (Mehr et al., 2019). In the diagram, 

the similarity between observed records and predictive models is determined in terms of 

standard deviation (SD) and correlation coefficient (CC), while RMSE is centered as a 

measure of distance from observed point (reference point) (Yaseen et al., 2019). In general, 

if the SD of the observed values surpasses the SD of the predicted values, then 

underestimation occurs. On the other hand, if the SD of the observed values is lower than 

the SD of the predicted values, then overestimation occurs (Elkiran et al., 2019). Figures 4.8-

4.12 compare the performances of all the applied single models with respect to NE model in 

terms of the Taylor diagrams for all the 14 stations. The Figures are presented in accordance 

with the station’s country. It is worthy to mention that for each station, the best performance 

model for each category (e.g. conventional models or AI models) was selected for the 

comparison. 
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Figure 4.8: Performance comparison between NE and single models for Turkey stations 
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Figure 4.9: Performance comparison between NE and single models for Cyprus stations 

 

Figure 4.10: Performance comparison between NE and single models for Iraq stations 
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Figure 4.11: Performance comparison between NE and single models for Iran stations 

 

Figure 4.12: Performance comparison between NE and single models for Libya stations 

As demonstrated by Figures 4.8-4.12, for all stations across all regions and countries, the NE 

model provided the best efficiency and reliability based on the three performance indicators 

(SD, CC and RMSE) despite selecting the best performing single models. In the above 

plotted Taylor diagrams, for Turkey stations, it can be seen that NE (blue round dot) has SD 

values more close to the observed value (green square dot), higher CC values and least 

RMSE values. The AI models demonstrated their capabilities of dealing with complicity of 

the process by following closely the performance of NE models and lastly the empirical 

models though with appreciable performance but performed the least in comparison to AI 

and NE models.  

For Cyrus stations, the NE models and AI models are very close in performance but a wide 

difference can be seen with respect to the applied empirical models, this justifies and confirm 
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the suitability of AI models in dealing with complex ET0 process. The NE and FFNN models 

for Kyrenia station have the highest CC of about 0.99 and 0.97 and the lowest RMSE of 0.57 

and 0.68, respectively. The better performances of the models in Kyrenia station could be 

due to its uniqueness, the nature of the terrain, the coast surrounded by high rocks, the hills 

and valley area, the commercial activities in the area and the climatological characteristics 

of the area, which result in frequent and heavy rainfall in comparison to other Cyprus 

stations.  

For Iraq stations, the results displayed by the Taylor diagrams show that, the NE, FFNN and 

HS models provided more reliable performances in Erbil station than Salahaddin station. 

This indicates that due to unstable nature of the climate for Salahaddin station (as described 

by Sarlak and Agha, 2018), despite promising performance of NE model, the ET0 modeling 

in the station cannot be as efficient as in the case of Erbil station. These results are in 

conformity with the results shown in Table 4.1 and Tables 4.3-4.5 where the models 

performed better for Erbil than Salahaddin station for both single and ensemble models. This 

implies that different statistical or performance indicators may yield different results but the 

general revelation by the indicators will lead to same outcome. 

For Iran stations, the NE, ANFIS and HS models were found to have better performances in 

Tabriz station with CCs of 0.99, 0.97 and 0.96 and RMSEs of 0.71, 0.88 and 1.21, 

respectively. Whereas for Urmia station, their CCs are 0.97, 0.96 and 0.94 and RMSEs are 

0.88, 0.94 and 1.26, respectively. 

For the performances of the applied models for Libya stations as shown by the plotted Taylor 

diagrams, the performances of the models are superior in Sabha station than Tripoli station. 

This could be because Tripoli is the capital city of Libya and has much higher number of 

inhabitants than Sabha. The human activities couple with environmental degradation due to 

industrialization and the release of toxic waste cause harm to climatological variables and 

thereby affects the precise estimation of ET0 in the area.  
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4.2 Results for Phase 2 Study 

This study was conducted in two steps. The first step involves the application of FFNN, 

ANFIS, SVR, and MLR models for one- three-step ahead predictions of ET0. In the second 

step, linear and nonlinear ensemble modeling was carried out for the assessment of 

performance improvement of the single models. Hence, the results obtained are presented 

accordingly. 

4.2.1 Results of one and multi-step ahead predictions via single models 

For single and multi-step ahead predictions, the three AI based and MLR approaches were 

applied for the ET0 prediction.  For better forecasting precision, the 12 input parameters were 

subjected to several time lags (up to 12 months) to check for Markovian strength of the 

parameters and to ensure that the seasonality of the process is covered. The results showed 

that Ep and RS have strong Markov chain while Tmean, Tmin, Tmax, TD, RH, PR, Umin, Umax, Umean 

and SP are weak in Markovian process, implying that for Ep and RS, the next step ahead ET0 

values are dependent on sequence of previous events whereas for Tmean, Tmin, Tmax, TD, RH, 

PR, Umin, Umax, Umean and SP, ET0 values for the next step are dependent only on its current 

values. This could be because of the strong correlation that exists between Ep and RS for 

determination of ET0, which keeps their bonding together despite lagging in time. Owing to 

this development, several input combinations were formed for the single and multi-step 

ahead predictions containing only the time lags for Ep and RS as: 

𝐸𝑇0 (𝑡+ℎ) = 𝑓(𝑅𝑠, 𝐸𝑝, 𝐸𝑝 (𝑡−1), … , 𝐸𝑝 (𝑡−12),   𝑅𝑠 (𝑡−1), … , 𝑅𝑠 (𝑡−12))                               (4.15) 

Where 𝐸𝑇0 (𝑡+ℎ), is the predicted values for single and multi-step ahead ET0 (h = 1, 2, 3),    

t-1,…, t-12 are monthly time lags, 𝑅𝑠 , 𝐸𝑝 have been previously defined. 

The FFNN was trained using Levenberg Marquardt algorithm with sole hidden layer and 

varied hidden neurons number for the simulation of ET0. To ascertain the suitable hidden 

layer nodes optimal number for each region, trial and error approach was adopted. For the 

ANFIS model in this study, Sugeno type fuzzy inference algorithm was used, which via 

hybrid optimization algorithm, a given input-output dataset calibrated the membership 

function parameters. For the development of ANFIS model structure and to determine the 
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best ANFIS construction, trial and error procedure was also applied. Gaussian-shaped, 

Triangular, and Trapezoidal membership functions (MFs) were used across all stations due 

to their suitability in the simulation of ET0. For most optimum performance, the training 

epochs were modified. RBF was used as the kernel for the creation of SVR models for the 

entire study stations. The two sigmoid and polynomial kernels tuning parameters are more 

than that of the RBF kernel. The RBF kernel considering smoothness assumptions also 

shows better SVR modeling performance (Sharghi et al., 2018). For efficient, reliable and 

best ET0 modeling performance in the study stations, the SVR parameters were tuned using 

RBF kernel. Finally, this study also employs the application of MLR model, which linearly 

expresses the relationship between independent and dependent variables. 

Tables 4.6, 4.7 and 4.8 present the obtained results for the best performing FFNN, ANFIS, 

SVR, and MLR models across the study stations. It is worth mentioning that only the best 

output results of the applied models are given. x-y-z for FFNN model structure mean the 

number of inputs used for the model development, hidden neurons number and the ET0 

output. MF-x imply type and number of MFs used for ANFIS structure. For SVR model, 

RBF represents the kernel function applied for SVR construction. For MLR model, the 

structure x-y describe the input and output number of parameters used. 

4.2.1.1 Results for Turkey stations 

With different climate conditions, the results for Turkey stations differ with location and 

time step prediction. Table 4.6 shows the results of the single and multi-step ahead modeling 

of ET0 for Turkey stations. 
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Table 4.6: Single and multi-step ahead modeling results for Turkey stations 

          Training   Verification   

Step 

ahead 
Station Model Inputs Structure DC RMSEa DC RMSEa 

One step 

ahead  

(ET0 t+1) 

Adana 

FFNN 

EP, RS, EP 

(t-1) 

3-6-1 0.7099 0.1409 0.6729 0.1346 

ANFIS Triangular-5 0.7334 0.1351 0.7186 0.1248 

SVR RBF 0.7162 0.1394 0.7069 0.1274 

MLR 3-1 0.708 0.1412 0.6268 0.1438 

Ankara 

FFNN 

EP, RS, EP 

(t-1), RS (t-1) 

4-9-1  0.7826 0.1177 0.7136 0.1219 

ANFIS Triangular-5 0.7792 0.1186 0.7272 0.119 

SVR RBF 0.7258 0.1322 0.6504 0.1347 

MLR 4-1  0.559 0.1513 0.549 0.1696 

Izmir 

FFNN 

EP, RS, EP 

(t-1) 

3-7-1 0.7534 0.1449 0.6153 0.1785 

ANFIS Gausian-5 0.7382 0.1496 0.6176 0.178 

SVR RBF 0.7107 0.1572 0.5972 0.1827 

MLR 3-1 0.6829 0.1646 0.5742 0.1878 

Samsun 

FFNN 

EP, RS, EP 

(t-1), RS (t-1), 

EP (t-2) 

 5-12-1 0.6651 0.1453 0.5179 0.1495 

ANFIS Triangular-5 0.7123 0.1347 0.6535 0.1268 

SVR RBF 0.5079 0.1761 0.4064 0.1659 

MLR 5-1  0.5127 0.1752 0.3355 0.1756 

Two step 

ahead  

(ET0 t+2) 

Adana 

FFNN 

EP, RS, EP 

(t-6) 

 3-9-1 0.7484 0.1313 0.7094 0.1269 

ANFIS 
Trapezoidal-

5 
0.7129 0.1402 0.6945 0.1301 

SVR RBF 0.6756 0.149 0.5843 0.1517 

MLR 3-1 0.663 0.1519 0.6156 0.1459 

Ankara 

FFNN 

EP, RS, EP 

(t-4), RS (t-3) 

  4-11-1 0.6825 0.1423 0.5018 0.1608 

ANFIS Triangular-5 0.7361 0.1297 0.4861 0.1633 

SVR RBF 0.7014 0.138 0.4702 0.1658 

MLR 4-1  0.573 0.1489 0.5577 0.168 

Izmir 

FFNN 

EP, RS, EP 

(t-5) 

 3-5-1 0.6395 0.1728 0.4272 0.2212 

ANFIS 
Trapezoidal-

5 
0.6252 0.1762 0.4422 0.2183 

SVR RBF 0.5425 0.1947 0.3354 0.2383 

MLR 3-1 0.4444 0.2146 0.3673 0.2325 

Samsun 

FFNN 

EP, RS, EP 

(t-2), RS (t-2), 

EP (t-6) 

  5-11-1 0.5773 0.14 0.4397 0.1879 

ANFIS Guasian-5 0.6641 0.1248 0.4932 0.1787 

SVR RBF 0.422 0.1637 0.3145 0.2079 

MLR  5-1 0.407 0.1658 0.2838 0.2125 

Three step 

ahead  

(ET0 t+3) 

Adana 

FFNN 

EP, RS, EP 

(t-12) 

 3-6-1 0.6228 0.1445 0.5955 0.1664 

ANFIS Gausian-5 0.6228 0.1607 0.6205 0.145 

SVR RBF 0.7206 0.1383 0.5875 0.1512 

MLR 3-1 0.582 0.1692 0.5488 0.1581 

Ankara FFNN   4-9-1 0.7312 0.1309 0.4736 0.1653 
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ANFIS 
EP, RS, EP 

(t-6), RS (t-

12) 

Gausian-5 0.738 0.1293 0.482 0.164 

SVR RBF 0.6914 0.1402 0.4314 0.1798 

MLR  4-1 0.2531 0.1969 0.1765 0.2291 

Izmir 

FFNN 

EP, RS, EP 

(t-12) 

 3-8-1 0.7575 0.1418 0.5666 0.1924 

ANFIS 
Trapezoidal-

5 
0.7384 0.1472 0.6139 0.1816 

SVR RBF 0.6696 0.1655 0.4239 0.2219 

MLR 3-1 0.572 0.1883 0.4341 0.2199 

Samsun 

FFNN 

EP, RS, EP 

(t-2), RS (t-2), 

EP (t-12) 

 5-13-1  0.5743 0.1405 0.4239 0.1905 

ANFIS Triangular-5 0.6641 0.1248 0.4932 0.1787 

SVR RBF 0.4219 0.1637 0.2932 0.2243 

MLR 5-1  0.401 0.1721 0.2618 0.2196 

aRMSE : RMSE has no unit due to normalized data  

The results in Table 4.6 show that the efficiency of the models to predict ET0 decreases with 

increased step ahead, implying that the correlation between the inputs and output decreases 

as precedence horizon goes on, which weakens the Markovian characteristic of the inputs on 

output thereby lessening the models performances. The results also demonstrated the 

superiority in performance of AI models over MLR model whereby the AI models produced 

better performances across all of the modeling steps, which could be due to the inability of 

MLR model to deal with nonlinear behavior of the system. Drastic reduction in the 

performance and increase in error of MLR model could also be noticed which make it 

difficult to cope with future forecast of ET0. For example, considering Ankara station, the 

DC and RMSE in the validation phase for single step ahead are 0.5490 and 0.1696 while the 

DC and RMSE in the validation phase for three step ahead are 0.1765 and 0.2291. 

The results in Table 4.6 also show that the performances of the AI and MLR models in term 

of lower RMSE and higher DC in Adana station are better than in Samsun station across all 

steps of the modeling. This could be attributed to higher amount of precipitation receives by 

the MED climate, and based on water cycle concept, frequent evapotranspiration lead to 

condensation and eventual precipitation. This demonstrates that AI models estimate 

evapotranspiration easier when there is higher frequency of precipitation. The obtained 

results also show superior performance of Ankara station over Samsun station for the applied 

models. This is because Ankara station has semi-arid climate being located in CCAN 

environment, whereas Samsun station constitutes temperate climate of BLS region and AI 

models were developed to provide efficient predictions where empirical models fail to have 
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accurate predictions due to severe climate condition (more specifically arid and semi-arid 

climates), hence AI models may not produce peak performance in predicting ET0 for stations 

with less extremity of climate. 

In view of the results in Table 4.6 it can be seen that, both AI and MLR models provided 

lesser performances for Samsun station in comparison to other stations in all three steps of 

ET0 predictions. The least performance among AI models is for SVR model, in Samsun 

station for three-step ahead ET0 prediction, which has DC = 0.2932 and RMSE = 0.2243. 

This reveals that AI and MLR models performances are affected negatively by the BLS 

temperate climate of Samsun station, but the threat caused by the region climate can be 

resisted by AI based models, which across all modeling steps, provided efficient 

performance owing to their nonlinear nature and capability to overcome the uncertainty of 

the climate behavior. Moreover, despite the robustness of the AI based models and their 

ability to provide efficient and dependable results for BLS climate region, other stations have 

superior performances than Samsun station. This implies that even with the application of 

AI based models in such region, reliable results could be produced but not at the peak. The 

overall results of the stations located in Turkey show that ET0 modeling is affected by the 

climate of the regions, with the least models performance from BLS region, followed by 

CCAN region, and best performance was achieved in MED region. 

Figure 4.13 shows observed vs predicted scatter plots in the verification phase for the best 

performing ANFIS model for Turkey stations. 
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Figure 4.13: Observed vs computed scatter plots in the validation phase for the best-

predicted ANFIS models, note that ET0 values are daily values averaged over the month 

(i.e., 
∑ 𝑬𝑻𝟎𝒊

𝑫
 which 𝑫 is number of days in that month) 

4.2.1.2 Results for North Cyprus stations 

Table 4.7 shows the models performances for single and multi-step ahead predictions of ET0 

for North Cyprus stations. 

Table 4.7: Single and multi-step ahead modeling results for North Cyprus stations 

          Training Verification 

Step 

ahead 
Station Model Inputs Structure DC RMSEa DC RMSEa 

One step 

ahead  

(ET0 t+1) 

Famagusta 

FFNN 

EP, RS, 

EP (t-1), 

RS (t-1) 

4-10-1 0.7757 0.1227 0.7713 0.1304 

ANFIS Triangular-4 0.7942 0.1225 0.772 0.1249 

SVR RBF 0.773 0.1258 0.7599 0.1312 

MLR 4-1   0.6533 0.1622 0.5421 0.1737 

Kyrenia 

FFNN 

EP, RS, 

EP (t-1), 

RS (t-1) 

 4-9-1 0.8114 0.102 0.7089 0.1409 

ANFIS Triangular-4 0.8056 0.1035 0.7584 0.1283 

SVR RBF 0.8278 0.0974 0.6341 0.1579 

MLR 4-1    0.4458 0.1845 0.3758 0.1989 

Morphou 

FFNN 

EP, RS, 

EP (t-1), 

RS (t-1) 

4-8-1 0.7692 0.1451 0.7133 0.151 

ANFIS Gausian-4 0.7839 0.1404 0.7382 0.1442 

SVR RBF 0.7577 0.1487 0.7169 0.1499 

MLR 4-1   0.6213 0.1859 0.4514 0.2088 

Nicosia 

FFNN 

EP, RS, 

EP (t-1), 

RS (t-1) 

 4-12-1 0.6378 0.1518 0.6075 0.176 

ANFIS Triangular-4 0.6992 0.1383 0.6197 0.1733 

SVR RBF 0.7422 0.1281 0.6802 0.1589 

MLR  4-1   0.4397 0.1927 0.3545 0.2236 

Famagusta FFNN 4-11-1 0.5791 0.166 0.5453 0.1868 
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Two step 

ahead 

(ET0 t+2) 

ANFIS 
EP, RS, 

EP (t-3), 

RS (t-6) 

Trapezoidal-4 0.5808 0.1657 0.5778 0.18 

SVR RBF 0.626 0.1565 0.5779 0.1799 

MLR 4-1   0.3918 0.216 0.2684 0.2189 

Kyrenia 

FFNN 

EP, RS, 

EP (t-3), 

RS (t-6) 

4-10-1  0.7906 0.114 0.764 0.12 

ANFIS Triangular-4 0.8053 0.1035 0.7643 0.1273 

SVR RBF 0.8275 0.0974 0.6433 0.1566 

MLR 4-1    0.4024 0.1851 0.3771 0.2028 

Morphou 

FFNN 

EP, RS, 

EP (t-3), 

RS (t-6) 

4-11-1 0.5916 0.1935 0.5176 0.1951 

ANFIS Trapezoidal-4 0.6345 0.183 0.504 0.1978 

SVR RBF 0.6238 0.1857 0.5597 0.1864 

MLR 4-1   0.6208 0.1864 0.4526 0.2078 

Nicosia 

FFNN 

EP, RS, 

EP (t-3), 

RS (t-6) 

 4-13-1 0.6535 0.1492 0.6099 0.1747 

ANFIS Gaussian-4 0.6836 0.1426 0.6221 0.1719 

SVR RBF 0.7322 0.1312 0.6809 0.158 

MLR 4-1    0.3431 0.2054 0.2454 0.243 

Three step 

ahead  

(ET0 t+3) 

Famagusta 

FFNN 

EP, RS, 

EP (t-6), 

RS (t-12) 

4-9-1 0.5907 0.1665 0.5741 0.1791 

ANFIS Gaussian-4 0.587 0.1656 0.579 0.1799 

SVR RBF 0.6241 0.1564 0.5876 0.1797 

MLR 4-1   0.4123 0.2146 0.2661 0.2186 

Kyrenia 

FFNN 

EP, RS, 

EP (t-6), 

RS (t-12) 

 4-10-1 0.7569 0.1152 0.7508 0.1334 

ANFIS Gaussian-4 0.8013 0.1041 0.7774 0.1261 

SVR RBF 0.8261 0.0974 0.6688 0.1538 

MLR 4-1    0.3793 0.1853 0.3769 0.2057 

Morphou 

FFNN 

EP, RS, 

EP (t-6), 

RS (t-12) 

4-12-1 0.5646 0.1952 0.5112 0.203 

ANFIS Trapezoidal-4 0.6465 0.1829 0.5005 0.1973 

SVR RBF 0.6316 0.1862 0.5551 0.1867 

MLR 4-1   0.5552 0.2051 0.4112 0.2143 

Nicosia 

FFNN 

EP, RS, 

EP (t-6), 

RS (t-12) 

4-13-1  0.6744 0.1469 0.6544 0.1636 

ANFIS Triangular-4 0.677 0.1463 0.6207 0.1714 

SVR RBF 0.7359 0.1323 0.676 0.1584 

MLR  4-1   0.3846 0.1979 0.2368 0.2454 

aRMSE : RMSE has no unit due to normalized data  

More accurate and reliability estimates of ET0 are provided by AI based models in 

comparison to linear models among the applied models. For one-step ahead modeling, the 

MLR models yielded acceptable results based on the performance evaluation criteria applied 

for the ET0 prediction in both training and validation phases. Nevertheless, with further 

predictions ahead, MLR models failed to give reliable performance especially in the 

validation phase. This could be because MLR model generates more error with further 

predictions ahead due to the presence of nonlinear behavior of ET0. It is apparent from the 
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results shown in Table 4.7 that both AI and MLR models produced better results for 

Famagusta station for single step ahead prediction (compared to their performances in other 

stations) but provided better predictions for two and three-step ahead predictions in Kyrenia 

station. The better performance of MLR model in Famagusta station could be due to the 

effect of the input combination applied, so that the data for the station behave more linear 

which led to less error and better efficiency than the other stations but magnified with further 

predictions ahead. Kyrenia on the other hand, has unique characteristics among the stations, 

the hills and valley nature of its terrain, the presence of rocks surrounding the region, higher 

precipitation frequency etc. These could strengthen the bond between previous and future 

ET0.  

Despite the reduction in performance due to increase in error and uncertainty for future ET0 

prediction, the performances of all the AI based models are found to be promising across the 

study stations, which could be attributed to their capability of containing the complex ET0 

process. Considering single step ahead predictions, ANFIS achieved better predictions in 

both training and validation phases for Famagusta and Morphou stations with DC = 0.7942, 

RMSE = 0.1225 and DC = 0.7720, RMSE = 0.1249 for Famagusta, DC = 0.7839, RMSE = 

0.1404 and DC = 0.7382, RMSE = 0.1442 for Morphou in the training and validation phases, 

respectively. In the validation phase of Kyrenia station, SVR was found to have inferior 

performance compared to ANFIS by 2%, but produced better results in the training phase. 

In Nicosia station, also higher prediction accuracy was demonstrated by SVR model over 

ANFIS and FFNN models. The efficient performance of the ANFIS in Famagusta, Morphou 

and Kyrenia in the validation phase despite ANN’s ability of handling various real world 

problems, may likely be associated with the ANN shortcomings in dealing with less accurate 

and uncertain data. Consequently, with incorporation of fuzzy logic ability and neural 

network concept for handing uncertainty of a process, the better option might be ANFIS 

(Moghaddamnia et al., 2009).  

Table 4.7 also shows the multi-step ahead time series predictions for two and three-step 

ahead. With the implementation of machine learning models such as neural networks, more 

robust and more reliable performances were achieved despite increase in time lags and 3 AI 

models (FFNN, ANFIS, and SVR) were found to have promising performances by 

maintaining good generalization capability up to three step ahead. In contrast, MLR model 
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performance was relatively poor for further time step ahead. The underperformance of MLR 

could be because (a) most time series data contain nonlinear property and MLR being a 

linear model could not cope with a nonlinear process (b) it is difficult to achieve multi-step 

ahead prediction successfully with a linear model due to lack of real data to adjust the 

performance of the model for the future (c) Error from the first step ahead prediction could 

be accumulated at the beginning and propagates to the future, which could lead to poor 

prediction. 

It is observed from the single and multi-step ahead prediction results in Table 4.7 that, the 

ability to achieve high correlation by almost all models decreases with further step ahead 

which could be obvious owing to decrease in generalization capabilities and error 

propagation of the models, but certain models for certain stations achieved higher predictions 

with further step ahead (for instance, ANFIS model in the validation phase of Kyrenia station 

which has DCs = 0.7584, 0.7643, 0.7774 and RMSEs = 0.1283, 0.1273, 0.1261 for one-step, 

two-step, and three-step ahead predictions, respectively). This could be because the models 

were developed with increasing time lags for further steps ahead, thus by the first few lags, 

perhaps an important period (value) that has great influence on the ET0 is removed which 

may distort the entire data and subsequently affects the performance of the data driven 

models. On the other hand, as the lagging continuous, a point would be reached where the 

time lags covered the entire season which balanced the missing values and hence, results in 

better performance of the model. 

Figure 4.14 shows observed vs predicted scatter plots in the verification phase for the best 

performing ANFIS model for North Cyprus stations, as example. 
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Figure 4.14: Observed vs computed scatter plots in the validation phase for the best-

predicted ANFIS models  

4.2.1.3 Results for Iraq stations 

The single and multi-step ahead results for Erbil and Salahaddin stations are presented 

in Table 4.8. 

Table 4.8: Single and multi-step ahead modeling results for Iraq stations 

          Training   Verification   

Step ahead Station Model Inputs Structure DC RMSEa DC RMSEa 

One step 

ahead  

(ET0 t+1) 

Erbil 

FFNN 

EP, RS, EP 

(t-1) 

3-7-1 0.8237 0.1166 0.725 0.1526 

ANFIS Triangular-3 0.8245 0.1163 0.7632 0.1416 

SVR RBF 0.8001 0.1242 0.6892 0.1622 

MLR 3-1 0.6776 0.1577 0.5939 0.1854 

Salahaddin 

FFNN 

EP, RS, EP 

(t-1), RS (t-1) 

4-10-1  0.6421 0.1446 0.539 0.1621 

ANFIS Triangular-4 0.7331 0.1248 0.6167 0.1478 

SVR RBF 0.6274 0.1475 0.5655 0.1573 

MLR  4-1 0.3549 0.1941 0.2436 0.2078 

Two step 

ahead  

(ET0 t+2) 

Erbil 

FFNN 

EP, RS, EP 

(t-6) 

3-6-1 0.8355 0.1126 0.7125 0.156 

ANFIS 
Trapezoidal-

3 
0.8011 0.1239 0.7255 0.1524 

SVR RBF 0.7938 0.1261 0.7172 0.1547 

MLR 3-1 0.6306 0.1688 0.5622 0.1925 

Salahaddin 

FFNN 

EP, RS, EP 

(t-2), RS (t-3) 

 4-9-1 0.6393 0.1451 0.5208 0.1652 

ANFIS Triangular-4 0.6633 0.1402 0.5901 0.1528 

SVR RBF 0.6028 0.1523 0.5597 0.1584 

MLR 4-1  0.3184 0.1995 0.2083 0.2124 

Three step 

ahead  

(ET0 t+3) 

Erbil 

FFNN 

EP, RS, EP 

(t-12) 

3-7-1 0.7012 0.1518 0.6779 0.1651 

ANFIS Gausian-3 0.7809 0.1299 0.6849 0.1633 

SVR RBF 0.6919 0.1541 0.5591 0.1932 



 

104 
 

MLR 3-1 0.4989 0.1966 0.4004 0.2253 

Salahaddin 

FFNN 

EP, RS, EP 

(t-2), RS (t-

12) 

 4-10-1 0.4656 0.1767 0.381 0.1878 

ANFIS Gausian-4 0.4655 0.1767 0.374 0.1889 

SVR RBF 0.3657 0.1925 0.2761 0.2031 

MLR 4-1  0.3096 0.2008 0.2044 0.2129 

aRMSE : RMSE has no unit due to normalized data  

Based on the results given in Table 4.8, it can be seen that, the performances of the models 

for single and multi-step ahead ET0 predictions are higher for Erbil station than Salahaddin 

station. This revealed that climate of the region not only affects the ET0 prediction for current 

time but also affects ET0 predictions for further time ahead. Although the climate of 

Salahaddin station has been categorized as semi-arid, Sarlak and Agha (2018) study reveals 

that the station’s aridity changes depending on the applied aridity index and the time of 

investigation. For instance, between 1980 – 2011 the station was identified as sub-humid 

using UNEP (1992) aridity index, semi-arid between 1998 – 2011 and sub-humid between 

1980 – 1997. The fluctuating nature of the climate makes ET0 estimation difficult in the 

Salahaddin station. As elements of different climatic regions are contained in the long time 

data record, the AI and MLR models fail to provide much reliable estimations in comparison 

to Erbil station. This results in least performance of the applied models in Salahaddin 

compared to Erbil stations. The models applied for single and multi-step ahead ET0 

predictions in Erbil station led to higher values of ET0 estimates but AI models provided 

superior performance than MLR model. Figure 4.15 shows observed vs predicted scatter 

plots in the verification phase for the best performing ANFIS model for Iraq stations. 

 

Figure 4.15: Observed vs computed scatter plots in the validation phase for the best-

predicted ANFIS models  
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Comparing the results in Tables 4.6-4.8, it could be seen that for Turkey, Cyprus and Iraq 

stations, the black box models performances are inferior to that of Nourni et al. (2019a) study 

across all the 3 steps of the modeling. This is because current data have a strong bond with 

the correlation of inputs and output which in turns bonded to Markov chain of ET0 process. 

As data lag occurs, the correlation bond between inputs and output weakens, thereby 

resulting in weak Markov chain and thus, reduces the performance of the black box models. 

Whereas in the case of first phase of this study, with no data lag, correlation (between inputs 

and output) and the Markovian process are of strong agreement and consequently, resulting 

in higher performance of the black box models. 

For instance, Figure 4.16 shows a section of three step ahead time series modeling of Kyrenia 

station by FFNN, ANFIS, SVR and MLR. For better visibility of each model estimated 

values of ET0, only 12 months’ period of the time series is shown (January, 2011 – 

December, 2011).  

 

Figure 4.16: Observed versus predicted ET0 values for three-step ahead predictions for 

Kyrenia station  
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As revealed in Figure 4.16, the months of February, April and September are selected 

randomly as points 1, 2, and 3, respectively. With regards to the first point (point 1), MLR 

= 1.7 mm/day, SVR = 1.2 mm/day, ANFIS = 2.2 mm/day, FFNN = 2.2 mm/day and observed 

= 1.6 mm/day. This implies that MLR value is more fitted to the observed than the other 

models which in turn revealed that even the poorest performing model, at certain point of 

the time series could be the best. At point 2, MLR = 4.9 mm/day, SVR = 3.4 mm/day, ANFIS 

= 2.9 mm/day, FFNN = 3.1 mm/day and observed = 3.4 mm/day. This shows that the SVR 

model performed better in terms of predicted vs observed agreement, MLR model has the 

least accuracy at 4th rank in April compared to being the best in the month of February. At 

the final point (point 3), MLR = 2.5 mm/day, SVR = 4.0 mm/day, ANFIS = 4.7 mm/day, 

FFNN = 4.3 mm/day and observed = 5.0 mm/day. This shows less deviation of the ANFIS 

model from the observed value in contrast to the others, and SVR model performed better at 

point 2 and 3rd at point 3. From the results of these three selected points, it is apparent that 

at different time points, different models could exhibit varied performance from different 

data aspects. Therefore, the precise target can be captured better via ensemble approaches, 

which amalgamate the outputs of the single models. In this respect, SA, WA and NE 

ensemble models were developed for single and multi-step ahead modeling. 

4.2.2 Results of the ensemble techniques 

The individual models outputs were used as the ensemble models inputs. For higher 

achievement of performance, the weights for WA ensembles were generated via three 

methods; (i) using only training data set, (ii) using only validation data set, (iii) using both 

data sets of validation and training. The third weights generation method led to superior 

result and hence, applied for the weight generation in all Turkey, North Cyprus and Iraq 

stations. 

Similar to FFNN single models, the LM algorithm was used to train the NE models and for 

both hidden and output layers, tangent sigmoid was utilized as the activation function. To 

determine the number of hidden neurons and best epoch number, trial and error approach 

was employed. ANN was chosen for the NE modeling in this study over ANFIS and SVR 

models due to its compatibility, popularity as well as its accuracy in ensemble modeling as 

demonstrated in many studies, such as Kiran and Ravi (2008); Sharghi et al. (2018); Nourani 
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et al. (2019 a,b). Nevertheless, other AI models (ANFIS and SVR) could also be used as the 

kernel.  

Tables 4.9-4.11 depict the obtained ensemble models results for all modeling steps across 

all stations. The SA structure a-b serve as number of inputs and ET0 as output, w, x, y, z for 

WA express the weights generated by the applied models and lastly, the ensemble structure 

of FFNN is as previously explained for single FFNN model.  

Table 4.9 gives the single and multi-step ahead results of the ensemble predictions for 

Samsun Izmir, Ankara, and Adana stations of Turkey. 

Table 4.9: The results of the ensemble models for Turkey stations 

    Training Validation 

Step ahead Station Model Model structure DC RMSEa DC RMSEa 

One step 

ahead 

  SA 4-1  0.7982 0.1175 0.7887 0.1082 

Adana WA 
0.2473, 0.2596,  

0.2545, 0.2387 
0.7962 0.1181 0.7866 0.1087 

  NE 4-8-1 0.8952 0.0847 0.8775 0.0824 

  SA 4-1   0.7730 0.1203 0.7495 0.1140 

Ankara WA 
0.2727, 0.2745,  

0.2508, 0.2019 
0.7767 0.1193 0.7472 0.1172 

  NE  4-6-1 0.8291 0.1044 0.8083 0.0998 

 SA 4-1  0.7322 0.1513 0.6153 0.1785 

Izmir WA 
0.2589, 0.2562,  

0.2472, 0.2376 
0.7330 0.1510 0.6159 0.1784 

  NE 4-10-1 0.7594 0.1434 0.6352 0.1739 

 SA 4-1   0.6451 0.1496 0.5457 0.1452 

Samsun WA 
0.2744, 0.3168,  

0.2120, 0.1967 
0.6652 0.1459 0.5701 0.1412 

  NE  4-7-1 0.7181 0.1143 0.6905 0.1397 

Two step 

ahead 

  SA 4-1  0.7209 0.1382 0.6791 0.1333 

Adana WA 
0.2486, .2537,  

0.2669, 0.2308 
0.7233 0.1376 0.6826 0.1326 

  NE 4-9-1 0.8024 0.1163 0.7648 0.1141 

  SA 4-1   0.7505 0.1261 0.6275 0.1391 

Ankara WA 
0.2515, 0.2596,  

0.2488, 0.2401 
0.7504 0.1261 0.6239 0.1397 

  NE  4-11-1 0.8294 0.1043 0.7498 0.1139 

 SA 4-1  0.5933 0.1836 0.4236 0.2219 

Izmir WA 
0.2790, 0.2792,  

0.2296, 0.2123 
0.6006 0.1819 0.4285 0.2209 

  NE 4-13-1 0.6564 0.1687 0.5230 0.2019 

 SA  4-1  0.5731 0.1407 0.4275 0.1899 

Samsun WA 
0.2823, 0.3213,  

0.2003, 0.1960 
0.5975 0.1366 0.4463 0.1868 
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  NE  4-6-1 0.7212 0.1137 0.5433 0.1697 

Three step 

ahead 

  SA 4-1  0.6568 0.1533 0.6343 0.1423 

Adana WA 
0.2698, 0.2605,  

0.2366, 0.2332 
0.6597 0.1526 0.6359 0.1420 

  NE 4-11-1 0.7852 0.1213 0.7379 0.1205 

  SA  4-1  0.7284 0.1316 0.6057 0.1431 

Ankara WA 
0.2993, 0.3030,  

0.2910, 0.1067 
0.7435 0.1279 0.5534 0.1523 

  NE  4-10-1 0.8536 0.0966 0.7800 0.1069 

 SA 4-1  0.7243 0.1512 0.5477 0.1966 

Izmir WA 
0.2772, 0.2831,  

0.2290, 0.2107 
0.7322 0.1489 0.5572 0.1945 

  NE 4-12-1 0.7977 0.1295 0.7529 0.1453 

 SA  4-1  0.5759 0.1403 0.4284 0.1898 

Samsun WA 
0.2786, 0.3230,  

0.197, 0.1954 
0.6004 0.1361 0.4467 0.1867 

  NE  4-8-1 0.7154 0.1149 0.5794 0.1628 

aRMSE : RMSE has no unit due to normalized data  

The results in Table 4.9 show the ability of ensemble models for improving the prediction 

accuracy of single and multi-step ahead models. The results indicate that SA, WA and NE 

models could be employed successfully for performance improvement of single and multi-

step ahead models. Nevertheless, NE model performed better than the other methods due to 

nonlinear kernel applied for its development. NE improved accuracy of the highest 

performing model (ANFIS) for single and multi-step ahead predicts for Turkey stations in 

the validation phase by 16%, 8%, 2% and 4% for one-step ahead modeling, 7%, 26%, 8%, 

and 5% for two-step ahead modeling and 12%, 30%, 14%, and 8% for three-step ahead 

modeling for Adana, Ankara, Izmir and Samsun, respectively. The NE approach improved 

the efficiency of the lowest performing model (MLR) for single and multi-step ahead 

predicts of ET0 for Turkey stations in the validation phase by 25%, 26%, 4% and 35% for 

one-step ahead modeling, 15%, 19%, 15%, and 26% for two-step ahead modeling and 19%, 

60%, 32%, and 32% for three-step ahead modeling for Adana, Ankara, Izmir and Samsun, 

respectively. 

Comparing the results from Tables 4.6 and 4.9, it can be deduced that, unlike in the case of 

single models where the modeling accuracy decreases with further time step ahead, the 

capability of ensemble approaches to improve prediction accuracy increases with further 

step ahead. For instance, for performance improvement over ANFIS, the models for Ankara, 

Izmir and Samsun stations were improved by 8%, 2% and 4% for one-step ahead but 
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improved by 30%, 14%, and 8% for three-step ahead modeling. Similarly, for Ankara and 

Izmir, the MLR models were initially improved by 26% and 4% for one-step ahead modeling 

but improved to 60% and 32% for three-step ahead. 

The ensemble results for single and multi-step ahead predictions of ET0 for Nicosia, 

Morphou, Kyrenia and Famagusta (North Cyprus) stations are presented in Table 4.10. 

Table 4.10: The results of the ensemble models for North Cyprus stations 

    Training Validation 

Step ahead Station Model Model structure DC RMSEa DC RMSEa 

One step  

ahead 

  SA  4-1  0.7973 0.1240 0.7621 0.1252 

Famagusta WA 
0.2648, 0.2681,  

0.2624, 0.2046 
0.7974 0.1239 0.7665 0.1240 

  NE 4-10-1  0.8111 0.1177 0.7896 0.1197 

  SA 4-1   0.7558 0.1160 0.6730 0.1493 

Kyrenia WA 
0.2867, 0.2950,  

0.2757, 0.1426 
0.7916 0.1072 0.6989 0.1433 

  NE  4-8-1  0.9483 0.0534 0.9188 0.0744 

 SA 4-1  0.7779 0.1424 0.7062 0.1528 

Morphou WA 
0.2670, 0.2742,  

0.2656, 0.1932 
0.7800 0.1417 0.7147 0.1506 

  NE 4-9-1  0.7498 0.1410 0.7446 0.1527 

 SA 4-1   0.6699 0.1449 0.5808 0.1819 

Nicosia WA 
0.2702, 0.2862,  

0.3087, 0.1349 
0.6976 0.1387 0.6167 0.1739 

  NE  4-10-1  0.8366 0.1019 0.7842 0.1305 

Two step 

ahead 

  SA 4-1  0.5744 0.1686 0.5659 0.1807 

Famagusta WA 
0.2711, 0.2794,  

0.2903, 0.1592 
0.5907 0.1637 0.5884 0.1777 

  NE 4-12-1  0.7492 0.1282 0.7351 0.1425 

 SA 4-1   0.7450 0.1184 0.7184 0.1392 

Kyrenia WA 
0.2893, 0.2920,  

0.2737, 0.1450 
0.7789 0.1103 0.7445 0.1326 

  NE  4-8-1  0.9514 0.0517 0.9339 0.0675 

 SA 4-1  0.6502 0.1791 0.5245 0.1937 

Morphou WA 
0.2462, 0.2527,  

0.2710, 0.2383 
0.6530 0.1783 0.5233 0.1940 

  NE 4-9-1  0.6729 0.1732 0.6341 0.1699 

 SA 4-1   0.6582 0.1482 0.5859 0.1800 

Nicosia WA 
0.2764, 0.2857,  

0.3092, 0.1287 
0.6912 0.1408 0.6225 0.1719 

  NE 4-10-1   0.8077 0.1115 0.8063 0.1227 

Three step 

ahead 

  SA 4-1  0.5918 0.1696 0.5583 0.1788 

Famagusta WA 
0.2760, 0.2762,  

0.2871, 0.1607 
0.6050 0.1649 0.5822 0.1760 

  NE 4-8-1  0.7140 0.1406 0.6963 0.1497 



 

110 
 

 SA 4-1   0.7404 0.1189 0.7172 0.1421 

Kyrenia WA 
0.2887, 0.3023,  

0.2862, 0.1573 
0.7636 0.1146 0.7592 0.1299 

  NE  4-11-1  0.9487 0.0529 0.8745 0.0947 

 SA 4-1  0.6256 0.1882 0.5139 0.1947 

Morphou WA 
0.2458, 0.2621,  

0.2712, 0.2208 
0.7764 0.1412 0.7442 0.1455 

  NE 4-9-1  0.8717 0.1102 0.8265 0.1163 

 SA 4-1   0.6760 0.1466 0.6135 0.1730 

Nicosia WA 
0.2750, 0.2685,  

0.2922, 0.1643 
0.6939 0.1424 0.6340 0.1684 

  NE  4-8-1  0.8065 0.1194 0.7849 0.1224 

aRMSE : RMSE has no unit due to normalized data  

The results in Table 4.10 affirm the ability of ensemble modeling in improving the 

performance of the single and multi-step ahead models. For instance, NE models improved 

performance of ANFIS model in the validation phase up to 2%, 16%, 1% and 16% for one-

step ahead modeling, 15%, 17%, 13%, and 19% for two-step ahead modeling and 12%, 9%, 

33%, and 16% for three-step ahead modeling for Famagusta, Kyrenia, Morphou and Nicosia, 

respectively. It is discovered that not significant improvement in DCs and RMSEs were 

attained by SA and WA ensembles over single and multi-step ahead AI models in both 

phases of training and validation, but remarkably higher performance was achieved by NE 

models. As earlier clarified, different data behavior at different points in time could be 

grabbed with overestimation and underestimation of ET0 by distinct models. Yet, with each 

model particular capability, in comparison to the case of single models, better simulation of 

the underlying process could be achieved. In this study, the referred ensemble results (Table 

4.10) show that the difference in performance between SA and WA ensemble models are 

not wide in most cases but WA models are superior in performance. This is due to linear or 

direct relationship that SA and WA ensemble models shared with the single and multi-step 

ahead models. However, WA model produced better prediction performance due to weights 

applied for its development, which were generated according to the relative importance of 

the models. The performances of SA and WA ensemble models are by far inferior to NE 

models, owing to the following reasons: (i) nonlinear kernel was used in FFNN to simulate 

the system behavior, thus simulation by FFNN led to higher accuracy than the linear system 

of SA and WA methods. (ii) The SA and WA models overall results may be influenced by 

the performances of single models, signifying that lesser ensemble performances may be 
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achieved from poor performing single models due to the linear correlation that exists 

between the single models and SA and WA ensemble methods. 

It is worth mentioning in view of the results that, the performance of ensemble models is not 

based on one, two or three-step ahead predictions, rather based on the ability of the single 

models to produce desired output. For instance, considering Table 4.10, Kyrenia has the 

highest performance among all stations, which is derived from the single and multi-step 

ahead models performance in Table 4.7. This shows that ensemble modeling follows the 

trend of models development. Signifying that input combination influences the 

performances of single and multi-step ahead models, and improvement in prediction by 

ensemble models increases with increased performances of the single and multi-step ahead 

models and vice versa. 

Finally, the obtained results for single and multi-step ensemble models across two Iraq 

stations are presented in Table 4.11. 

Table 4.11: The results of the ensemble models for Iraq stations 

    Training   Validation   

Step ahead Station Model Model structure DC RMSEa DC RMSEa 

One step  

ahead 

  SA 4-1   0.8597 0.1040 0.7895 0.1335 

Erbil WA 
0.2626, 0.2692,  

0.2525, 0.2156 
0.8632 0.1027 0.7954 0.1316 

  NE 4-8-1 0.9262 0.0754 0.9032 0.0905 

  SA 4-1   0.7436 0.1224 0.6465 0.1419 

Salahaddin WA 
0.2779, 0.3003,  

0.2784, 0.1434 
0.7688 0.1162 0.6786 0.1353 

  NE  4-8-1 0.8457 0.0949 0.8118 0.1035 

Two step  

ahead 

  SA 4-1  0.8275 0.1153 0.7229 0.1531 

Erbil WA 
0.2679, 0.2642,  

0.2615, 0.2064 
0.8289 0.1149 0.7251 0.1525 

  NE 4-9-1 0.8963 0.0894 0.8602 0.1088 

  SA 4-1   0.6567 0.1416 0.5632 0.1577 

Salahaddin WA 
0.2779, 0.3176,  

0.2806, 0.1239 
0.6826 0.1362 0.5875 0.1533 

  NE  4-13-1 0.7621 0.1179 0.6720 0.1367 

Three step 

ahead 

  SA 4-1  0.7343 0.1432 0.6395 0.1747 

Erbil WA 
0.2760, 0.2934,  

0.2504, 0.1800 
0.7454 0.1401 0.6528 0.1714 

  NE 4-9-1 0.8118 0.1205 0.7204 0.1538 

  SA 4-1   0.4426 0.1804 0.3506 0.1924 

Salahaddin WA 
0.2979, 0.2954,  

0.2258, 0.1809 
0.4535 0.1786 0.3629 0.1905 

  NE  4-8-1 0.5122 0.1688 0.4625 0.1750 
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aRMSE : RMSE has no unit due to normalized data  

The results in Table 4.11 indicate that SA, WA and NE models could be employed 

successfully for performance improvement of the single and multi-step ahead models. 

However, NE model performed better than the other methods. It improved the accuracy of 

SVR model for Iraq stations in the validation phase by 21% and 24% for one-step ahead 

modeling, 14%, and 11% for two-step ahead modeling and 16% and 18% for three-step 

ahead modeling for Erbil and Salahaddin, respectively.  

For example, Figure 4.17 shows observed vs predicted time series for the best ensemble 

models for one station from each country. 
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Figure 4.17: Time series for the best performance ensemble models vs observed values  
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From the given Figure 4.17, it is apparent that SA and WA models are less accurate than NE 

models. The observed data are more fitted with values of the NE models, whereas 

fluctuations between observed and predicted values are wider in the case of SA and WA 

ensembles. 

To ascertain the performance of all models across the study stations for single and ensemble 

modeling, DCs, and RMSEs average values of the models (MLR, SVR, ANFIS, FFNN and 

SA, WA, NE) were taken and presented in Table 4.12. 

Table 4.12: Average performances of single and ensemble models across the study 

stations 

  Single modeling Ensemble modeling 

  Training   Validation   Training   Validation   

Step 

ahead 
Station 

DC RMSEa DC RMSEa 
DC RMSEa DC RMSEa 

One 
step 

ahead  

Adana 0.7169 0.1392 0.6813 0.1327 0.8299 0.1068 0.8176 0.0998 

Ankara 0.7117 0.1300 0.6601 0.1363 0.7929 0.1147 0.7683 0.1103 

Izmir 0.7213 0.1541 0.6011 0.1818 0.7415 0.1486 0.6221 0.1769 

Samsun 0.5995 0.1578 0.4783 0.1545 0.6761 0.1366 0.6021 0.1420 

Famagusta 0.7491 0.1333 0.7113 0.1401 0.8019 0.1219 0.7727 0.1230 

Kyrenia 0.7227 0.1219 0.6193 0.1565 0.8319 0.0922 0.7636 0.1223 

Morphou 0.7330 0.1550 0.6550 0.1635 0.7692 0.1417 0.7218 0.1520 

Nicosia 0.6297 0.1527 0.5655 0.1830 0.7347 0.1285 0.6606 0.1621 

Erbil 0.7815 0.1287 0.6928 0.1605 0.8830 0.0940 0.8294 0.1185 

Salahaddin 0.5894 0.1528 0.4912 0.1688 0.7860 0.1112 0.7123 0.1269 

Two 

step 

ahead  

Adana 0.7000 0.1431 0.6510 0.1387 0.7489 0.1307 0.7088 0.1267 

Ankara 0.6733 0.1397 0.5040 0.1645 0.7768 0.1188 0.6671 0.1309 

Izmir 0.5629 0.1896 0.3930 0.2276 0.6168 0.1781 0.4584 0.2149 

Samsun 0.5176 0.1486 0.3828 0.1968 0.6306 0.1303 0.4724 0.1821 

Famagusta 0.5444 0.1761 0.4924 0.1914 0.6381 0.1535 0.6298 0.1670 

Kyrenia 0.7065 0.1250 0.6372 0.1517 0.8251 0.0935 0.7989 0.1131 

Morphou 0.6177 0.1872 0.5085 0.1968 0.6587 0.1769 0.5606 0.1859 

Nicosia 0.6031 0.1571 0.5396 0.1869 0.7190 0.1335 0.6716 0.1582 

Erbil 0.7653 0.1329 0.6794 0.1639 0.8509 0.1065 0.7694 0.1381 

Salahaddin 0.5560 0.1593 0.4697 0.1722 0.7005 0.1319 0.6076 0.1492 

Three 

step 

ahead  

Adana 0.6371 0.1532 0.5881 0.1552 0.7006 0.1424 0.6694 0.1349 

Ankara 0.6034 0.1493 0.3909 0.1846 0.7752 0.1187 0.6464 0.1341 

Izmir 0.6844 0.1607 0.5096 0.2040 0.7514 0.1432 0.6193 0.1788 

Samsun 0.5153 0.1503 0.3680 0.2033 0.6306 0.1304 0.4848 0.1798 

Famagusta 0.5535 0.1758 0.5017 0.1893 0.6369 0.1584 0.6123 0.1682 
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Kyrenia 0.6909 0.1255 0.6435 0.1548 0.8176 0.0955 0.7836 0.1222 

Morphou 0.5995 0.1924 0.4945 0.2003 0.7579 0.1465 0.6949 0.1522 

Nicosia 0.6180 0.1559 0.5470 0.1847 0.7255 0.1361 0.6775 0.1546 

Erbil 0.6682 0.1581 0.5806 0.1867 0.7638 0.1346 0.6709 0.1666 

Salahaddin 0.4016 0.1867 0.3089 0.1982 0.4694 0.1759 0.3920 0.1860 
aRMSE : RMSE has no unit due to normalized data  

As seen in Table 4.12 in single modeling for one time step ahead predictions in the validation 

phase, the models show identical performances with a narrow difference for Erbil, Morphou, 

Kyrenia, Famagusta, Izmir, Ankara, and Adana stations, which were because, all the 

climates of the stations are semiarid. This shows that despite the distance and locations of 

the stations from different countries, similarity of the climates led to similarity in models 

performances.  Although Nicosia station is a Mediterranean semiarid climate as Famagusta, 

Kyrenia and Morphou, being an inland city reduces the Mediterranean (sea) effect of the 

station, thereby resulting in inferior modeling performance compared to the other stations. 

The average performance of the models in Samsun station is lower than other Turkey 

stations, which was because, Samsun station is BLS climate. The BLS climate has a uniform 

rainfall through the year, but selection of dominant input parameters showed that PR is weak 

in Markovian process which made it to be poor input for single and multi-step ahead 

predictions of ET0. This could be why the models performed better in other stations than 

Samsun station. 

For two-step ahead predictions shown in Table 4.12, the average of models, performances 

are superior in Erbil station than all other stations in the verification phase. This could be 

because apart from being semiarid climate, the station is characterized by Sahara Desert, 

which could lead to increases in U2 which in turn increases the rate of evapotranspiration. 

According to Nourani et al. (2019), U2 could produce poor performance for single-input 

single-output prediction, but inclusion of U2 in combination with other parameters could 

increase the prediction efficiency. 

For three-step ahead predictions, the results in Table 4.12 for validation phase show that, 

Kyrenia station has the highest models performances. This is because RS was found to have 

stronger bond with ET0 among the input parameters, and due to the presence of higher 

mountains surrounding Kyrenia station, the radiant energy could reach the earth surface 

faster and with more effects than for flat surrounding stations. 
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As ensemble modeling improved performance of the single models, the average models 

results in Table 4.12 show that higher ensemble results were achieved by higher single 

models, but with the ability of nonlinear ensemble to deal with complex and uncertain 

problems, lower performance average models could produce highest performance ensemble 

models. 

It can be seen that contrary to single modeling where less accurate results were obtained by 

this study compared to phase 1 study, more improvements were achieved by multi-step 

ahead ensemble modeling of ET0 than the first phase of this study. For instance, in the 

validation phase of this study, the prediction improvements over SVR models were achieved 

up to 17%, 18% and 15% for Adana station, 10%, 13% and 11% for Nicosia station, and 

25%, 11% and 19% for Salahaddin station for one, two and three step ahead ET0 modeling 

against 4%, 2% and 6% improvements for Adana, Nicosia and Salahaddin stations by 

Nourani et al. (2019a) study. The results of this study affirmed the earlier assertion that lower 

performance models could lead to higher performance ensemble results (due to wider space 

for improvement) but more accurate and most efficient ET0 modeling would be achieved 

from single models with higher performance. For examples, phase 1 ensemble study 

(because of the effect of more efficient single modeling) produced higher DCs, 0.9331, 

0.8993, 0.8340 and RMSEs, 0.0687, 0.0805, 0.0971 for Adana, Nicosia, and Salahaddin 

stations, respectively. In comparison, in this study, lower DCs were obtained 0.8775, 0.7842, 

0.8118 for one step ahead modeling, 0.7648, 0.8063, 0.6720 for two step ahead modeling, 

0.7379, 0.7849, 0.4625 for three step ahead modeling and higher RMSEs, 0.0824, 0.1305, 

0.1305 for one step ahead modeling, 0.1141, 0.1227, 0.1367 for two step ahead modeling 

and 0.1205, 0.1224, 0.1750 for three step ahead modeling. 

ET process, just like any other natural process, may show both linear and nonlinear behaviors 

at different time spans. For example, in frozen days of winter, the ET time series gets small 

values having less complexity without significant fluctuations. In this case, a linear model 

may sufficiently lead to reliable results. When time series of the process includes both linear 

and nonlinear patterns, it is expected that the combination of linear and nonlinear models 

could lead to better final outcome. Such superior efficiency is reached via training of a black 

box ensemble method which learns using historical observations to apply appropriate weight 

to the components of the model at different patterns. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusions 

In this study, SA, WA and NE models were applied in phase 1 for ET0 modeling and phase 

2 for single and multi-step ET0 modeling to improve performance of FFNN, ANFIS, SVR, 

MLR, HS, MHS, RT and MK models. Initially, sensitivity analysis was performed to 

determine the dominant inputs among the 12 variables obtained from Turkey (Adana, 

Ankara, Izmir and Samsun stations), Cyprus (Famagusta, Kyrenia, Morphou and Nicosia 

stations), Iraq (Erbil and Salahaddin stations), Iran (Tabriz and Urmia stations) and Libya 

(Sabha and Tripoli stations). In the absence of Lysimeter, a widely accepted method of ET0 

for practical problems is pan evaporation method. Therefore, pan evaporation method of ET0 

was used as the benchmark ET0 for determining the performance of the developed models. 

The results for phase 1 study showed that with location of most of the study stations to harsh 

climate conditions (arid and semi-arid), Tmean, Tmin, Tmax and RS were generally the most 

effective variables for ET0 modeling according to the sensitivity analysis results. Both the 

results of MLR and empirical models could be acceptable for ET0 predictions. Due to the 

combine benefits of both fuzzy logic and neural network learning, the AI based models 

results demonstrated more efficiency of ANFIS over FFNN and SVR models. The results 

also exhibited that promising improvement could be achieved by ensemble models over 

single models. The application of ensemble learning led to increase in performance up to 

22% over AI based models and up to 55% over empirical models. 

The results for phase 2 study showed that AI models could be used to carry out multi-step 

ahead ET0 predictions up to three step ahead successfully. With further step ahead 

predictions, mostly the AI based models performance decreased and MLR could not provide 

sufficient reliability in ET0 modeling beyond one step ahead forecast. The results also 

emphasized that a successful application of ensemble modeling could lead to successful 

forecast of ET0 up to three step ahead. The applied ensemble learning improved predictions 
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of single models averagely up to 23%, 19% and 35% for one step ahead, two step ahead and 

three step ahead ET0 modeling, respectively. 

The general results of this study demonstrated promising impact of combining models for 

ET0 estimation. The obtained results from the ensemble methods more especially, neural 

ensemble method implied that better accuracy in ET0 simulation can be achieved by 

combined outputs than individual models.  

5.2 Recommendation 

In view of the methodology applied and the results obtained, the following recommendations 

can be made: 

 It is suggested to apply other emerging AI based techniques such as M5 model tree, 

random forest, genetic algorithm, multivariate adaptive regression splines, etc. as 

single models for ensemble modeling studies. 

 The ensemble method should be applied for other hydro-climatic parameters such as 

precipitation, temperature, etc. to ascertain the difference in performance of 

ensemble learning for different processes. However, this study only used ANN as a 

kernel for nonlinear ensemble models, other models including ANFIS, SVR, etc. 

should be tested as nonlinear ensemble kernels to see their response to ensemble 

application. 

 As the second phase of this study is limited to three step ahead predictions, further 

steps ahead should be investigated in future studies to see how efficient or otherwise 

could ensemble model performs with further forecast. 

 In both phases of this studies, local calibration was done by training and validating 

models using data of own stations. Further studies should also perform external 

calibration which uses data from one station to train and validate models in another 

station. This might give idea on the applicability of ensemble learning for both local 

and external calibrations. 
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APPENDIX 1 

DESCRIPTIVE STATISTICS OF THE USED DATA 

Appendix 1a: Data Descriptive Statistics for Turkey Stations 

Station 
Location Coordinates Parameters Unit Min Max. Average 

St. 

Deviation 

Adana 

 
 Relative Humidity (RH) % 42.54 78.50 62.02 7.22 

Latitude 36099'N Surface Pressure (SP) Kpa 99.21 101.15 100.14 0.47 

 
 Precipitation (PR) mm/day 0.00 9.13 1.61 1.52 

 
 Dew-point Temperature (TD) 0C 0.70 21.56 11.69 5.35 

 
 Maximum Temperature (Tmax) 0C 10.19 35.51 23.56 7.26 

Longitude 35033'E Minimum Temperature (Tmin) 0C 4.08 27.64 16.69 6.59 

 
 Mean Temperature (Tmean) 0C 6.89 31.17 19.90 6.92 

 
 Minimum Wind Speed (Umin) m/s 0.46 2.42 1.05 0.41 

 
 Maximum Wind Speed (Umax) m/s 2.23 4.64 3.37 0.53 

Altitude 27 m Mean Wind Speed (Umean) m/s 1.79 3.83 2.68 0.40 

 
 Solar Radiation (RS) MJ/m2/day 1.30 30.54 18.19 7.35 

    Pan Evaporation (EP) mm/day 0.81 9.64 4.30 2.30 

Ankara 

 
 Relative Humidity (RH) % 30.10 89.93 61.83 15.40 

Latitude 39093'N Surface Pressure (SP) Kpa 89.04 90.51 89.65 0.24 

 
 Precipitation (PR) mm/day 0.00 4.99 1.08 0.82 

 
 Dew-point Temperature (TD) 0C -8.04 12.60 2.68 4.84 

 
 Maximum Temperature (Tmax) 0C -1.35 34.70 17.21 9.63 

Longitude 32086'E Minimum Temperature (Tmin) 0C -9.01 17.79 4.75 7.09 

 
 Mean Temperature (Tmean) 0C -4.48 26.25 10.70 8.56 

 
 Minimum Wind Speed (Umin) m/s 0.56 1.86 0.92 0.19 

 
 Maximum Wind Speed (Umax) m/s 1.74 3.85 2.76 0.38 

Altitude 938 m Mean Wind Speed (Umean) m/s 1.30 3.24 2.17 0.32 

 
 Solar Radiation (RS) MJ/m2/day 4.45 28.93 16.13 6.99 

    Pan Evaporation (EP) mm/day 0.04 10.74 3.80 2.62 

Izmir 

 
 Relative Humidity (RH) % 33.23 87.56 63.63 14.80 

Latitude 38042'N Surface Pressure (SP) Kpa 98.50 100.26 99.18 0.36 

 
 Precipitation (PR) mm/day 0.00 9.70 1.66 1.79 

 
 Dew-point Temperature (TD) 0C -0.73 16.05 8.96 3.79 

 
 Maximum Temperature (Tmax) 0C 7.79 37.68 22.49 8.51 

Longitude 27014'E Minimum Temperature (Tmin) 0C 0.30 23.34 11.71 6.38 

 
 Mean Temperature (Tmean) 0C 3.74 30.23 16.80 7.53 

 
 Minimum Wind Speed (Umin) m/s 0.80 2.64 1.58 0.37 

 
 Maximum Wind Speed (Umax) m/s 3.03 5.75 4.34 0.52 

Altitude 30 m Mean Wind Speed (Umean) m/s 1.96 4.11 2.90 0.44 

 
 Solar Radiation (RS) MJ/m2/day 2.61 29.89 16.94 7.54 

    Pan Evaporation (EP) mm/day 0.00 10.27 4.36 2.90 

Samsun 

 
 Relative Humidity (RH) % 62.33 86.66 74.25 5.06 

Latitude 41028'N Surface Pressure (SP) Kpa 96.15 97.72 96.71 0.30 

 
 Precipitation (PR) mm/day 0.00 5.50 1.55 0.93 

 
 Dew-point Temperature (TD) 0C -3.16 17.77 7.53 5.98 

 
 Maximum Temperature (Tmax) 0C 2.42 30.85 16.69 7.34 

Longitude 36034'E Minimum Temperature (Tmin) 0C -3.51 20.59 8.86 6.49 

 
 Mean Temperature (Tmean) 0C -0.49 25.20 12.30 6.91 

 
 Minimum Wind Speed (Umin) m/s 0.42 2.39 1.09 0.34 

 
 Maximum Wind Speed (Umax) m/s 2.60 5.93 3.99 0.60 

Altitude 4 m Mean Wind Speed (Umean) m/s 1.45 3.94 2.50 0.49 

 
 Solar Radiation (RS) MJ/m2/day 2.76 28.07 13.94 6.62 

    Pan Evaporation (EP) mm/day 0.00 6.29 2.73 1.42 
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Appendix 1b: Data Descriptive Statistics for North Cyprus Stations 

Station 
Location Coordinates Parameters Unit Min Max. Average 

St. 

Deviation 

Famagusta 

 
 Relative Humidity (RH) % 53.18 75.50 64.22 4.96 

Latitude 35011'N Surface Pressure (SP) Kpa 99.87 101.70 100.74 0.44 

 
 Precipitation (PR) mm/day 0.00 5.33 0.77 0.93 

 
 Dew-point Temperature (TD) 0C 5.17 22.24 14.17 4.61 

 
 Maximum Temperature (Tmax) 0C 14.02 34.11 23.79 6.31 

Longitude 33095'E Minimum Temperature (Tmin) 0C 10.72 28.58 19.32 5.46 

 
 Mean Temperature (Tmean) 0C 12.37 31.23 21.47 5.88 

 
 Minimum Wind Speed (Umin) m/s 0.72 3.07 1.59 0.49 

 
 Maximum Wind Speed (Umax) m/s 3.11 6.75 4.45 0.69 

Altitude 20 m Mean Wind Speed (Umean) m/s 1.92 4.95 3.01 0.58 

 
 Solar Radiation (RS) MJ/m2/day 5.55 31.22 18.50 7.39 

    Pan Evaporation (EP) mm/day 1.10 10.30 4.36 2.45 

Kyrenia 

 
 Relative Humidity (RH) % 52.38 77.85 64.85 6.03 

Latitude 35033'N Surface Pressure (SP) Kpa 98.77 100.50 99.58 0.41 

 
 Precipitation (PR) mm/day 0.00 189.69 27.69 33.13 

 
 Dew-point Temperature (TD) 0C 4.65 21.06 13.36 4.47 

 
 Maximum Temperature (Tmax) 0C 13.20 34.76 23.60 6.67 

Longitude 33031'E Minimum Temperature (Tmin) 0C 9.13 27.65 17.99 5.59 

 
 Mean Temperature (Tmean) 0C 11.16 30.96 20.61 6.11 

 
 Minimum Wind Speed (Umin) m/s 1.03 2.97 1.71 0.38 

 
 Maximum Wind Speed (Umax) m/s 2.98 6.85 4.77 0.58 

Altitude 20 m Mean Wind Speed (Umean) m/s 2.03 5.03 3.27 0.46 

 
 Solar Radiation (RS) MJ/m2/day 5.55 31.22 18.50 7.39 

    Pan Evaporation (EP) mm/day 0.90 11.55 4.84 2.61 

Morphou 

 
 Relative Humidity (RH) % 53.27 80.25 67.83 6.33 

Latitude 35018'N Surface Pressure (SP) Kpa 97.87 101.65 98.42 0.39 

 
 Precipitation (PR) mm/day 0.00 6.12 0.91 1.08 

 
 Dew-point Temperature (TD) 0C 2.86 19.26 12.98 4.97 

 
 Maximum Temperature (Tmax) 0C 14.20 37.34 25.62 6.32 

Longitude 3300'E Minimum Temperature (Tmin) 0C 10.76 29.14 18.53 6.27 

 
 Mean Temperature (Tmean) 0C 12.19 32.71 22.53 6.09 

 
 Minimum Wind Speed (Umin) m/s 0.93 2.78 1.24 0.41 

 
 Maximum Wind Speed (Umax) m/s 2.77 5.96 4.09 0.62 

Altitude 45 m Mean Wind Speed (Umean) m/s 2.63 4.73 3.01 0.49 

 
 Solar Radiation (RS) MJ/m2/day 3.97 32.45 19.65 6.89 

    Pan Evaporation (EP) mm/day 1.11 12.10 5.83 3.28 

Nicosia 

 
 Relative Humidity (RH) % 51.28 75.76 62.83 5.39 

Latitude 35019'N Surface Pressure (SP) Kpa 96.23 99.37 99.23 0.54 

 
 Precipitation (PR) mm/day 0.00 5.83 0.94 1.11 

 
 Dew-point Temperature (TD) 0C 3.76 22.48 14.93 6.32 

 
 Maximum Temperature (Tmax) 0C 10.19 39.26 25.18 5.82 

Longitude 33038'E Minimum Temperature (Tmin) 0C 4.36 22.63 14.36 6.30 

 
 Mean Temperature (Tmean) 0C 10.76 33.26 24.17 6.85 

 
 Minimum Wind Speed (Umin) m/s 1.47 3.11 1.76 0.47 

 
 Maximum Wind Speed (Umax) m/s 3.31 5.37 4.06 0.53 

Altitude 220 m Mean Wind Speed (Umean) m/s 2.56 4.74 2.88 0.44 

 
 Solar Radiation (RS) MJ/m2/day 6.36 34.81 20.09 6.58 

    Pan Evaporation (EP) mm/day 1.10 12.60 5.35 3.17 
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Appendix 1c: Data Descriptive Statistics for Iraq Stations 

Station 
Location Coordinates Parameters Unit Min Max. Average 

St. 

Deviation 

Erbil 

 
 Relative Humidity (RH) % 13.05 74.12 39.94 18.71 

Latitude 35055'N Surface Pressure (SP) Kpa 92.13 93.96 93.18 0.48 

 
 Precipitation (PR) mm/day 0.00 3.15 0.72 0.70 

 
 Dew-point Temperature (TD) 0C -6.78 9.70 1.84 3.11 

 
 Maximum Temperature (Tmax) 0C 6.19 44.03 25.65 11.08 

Longitude 43057'E Minimum Temperature (Tmin) 0C -2.55 26.83 12.15 8.85 

 
 Mean Temperature (Tmean) 0C 1.31 35.25 18.36 10.17 

 
 Minimum Wind Speed (Umin) m/s 0.34 0.92 0.55 0.09 

 
 Maximum Wind Speed (Umax) m/s 1.48 3.38 2.27 0.43 

Altitude 390 m Mean Wind Speed (Umean) m/s 1.16 2.49 1.54 0.22 

 
 Solar Radiation (RS) MJ/m2/day 5.14 30.47 17.86 7.08 

    Pan Evaporation (EP) mm/day 1.00 16.00 6.80 4.41 

Salahaddin 

 
 Relative Humidity (RH) % 24.00 92.00 52.27 16.01 

Latitude 36015'N Surface Pressure (SP) Kpa 91.26 94.23 92.67 0.45 

 
 Precipitation (PR) mm/day 0.00 2.18 0.67 0.73 

 
 Dew-point Temperature (TD) 0C -8.36 8.26 1.20 3.75 

 
 Maximum Temperature (Tmax) 0C 0.00 39.90 22.26 10.29 

Longitude 44007'E Minimum Temperature (Tmin) 0C -1.60 29.20 13.35 8.57 

 
 Mean Temperature (Tmean) 0C 0.00 34.60 18.02 9.27 

 
 Minimum Wind Speed (Umin) m/s 0.28 0.95 0.61 0.08 

 
 Maximum Wind Speed (Umax) m/s 1.35 4.13 2.13 0.49 

Altitude 1084 m Mean Wind Speed (Umean) m/s 1.00 4.00 2.36 0.64 

 
 Solar Radiation (RS) MJ/m2/day 3.89 28.78 16.25 8.12 

    Pan Evaporation (EP) mm/day 0.00 15.50 5.55 3.86 
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Appendix 1d: Data Descriptive Statistics for Iran Stations 

Station 
Location Coordinates Parameters Unit Min Max. Average 

St. 

Deviation 

Tabriz 

 
 Relative Humidity (RH) % 29.43 82.05 53.28 13.29 

Latitude 3808'N Surface Pressure (SP) Kpa 81.67 82.77 82.21 0.21 

 
 Precipitation (PR) mm/day 0.00 2.91 0.59 0.55 

 

 Dew-point Temperature 

(TD) 
0C -11.93 8.18 -0.19 5.25 

 

 Maximum Temperature 

(Tmax) 
0C -1.43 35.15 17.11 10.69 

Longitude 
46015'E 

Minimum Temperature 

(Tmin) 
0C -11.46 16.82 3.78 7.59 

 
 Mean Temperature (Tmean) 0C -7.13 25.75 9.88 9.26 

 

 Minimum Wind Speed 

(Umin) 
m/s 0.56 2.63 1.37 0.33 

 

 Maximum Wind Speed 

(Umax) 
m/s 3.03 6.43 4.57 0.59 

Altitude 1350 m Mean Wind Speed (Umean) m/s 1.89 4.27 2.88 0.41 

 
 Solar Radiation (RS) MJ/m2/day 5.86 28.75 17.02 6.59 

    Pan Evaporation (EP) mm/day 0.13 15.33 6.20 4.54 

Urmia 

 
 Relative Humidity (RH) % 28.62 77.01 51.05 13.28 

Latitude 37034'N Surface Pressure (SP) Kpa 83.99 85.05 84.47 0.23 

 
 Precipitation (PR) mm/day 0.00 3.74 0.67 0.67 

 

 Dew-point Temperature 

(TD) 
0C -11.15 10.28 1.29 5.12 

 

 Maximum Temperature 

(Tmax) 
0C -0.50 33.90 18.05 10.26 

Longitude 
44058'E 

Minimum Temperature 

(Tmin) 
0C -9.07 20.17 7.17 8.14 

 
 Mean Temperature (Tmean) 0C -3.63 26.73 12.25 9.40 

 

 Minimum Wind Speed 

(Umin) 
m/s 0.41 1.86 1.02 0.28 

 

 Maximum Wind Speed 

(Umax) 
m/s 1.91 5.63 3.62 0.66 

Altitude 1332 m Mean Wind Speed (Umean) m/s 1.18 3.60 2.23 0.39 

 
 Solar Radiation (RS) MJ/m2/day 6.04 31.48 17.96 6.97 

    Pan Evaporation (EP) mm/day 0.04 10.96 4.15 3.10 
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Appendix 1e: Data Descriptive Statistics for Libya Stations 

Station 
Location Coordinates Parameters Unit Min Max. Average 

St. 

Deviation 

Sabha 

 
 Relative Humidity (RH) % 15.52 61.70 28.73 10.40 

Latitude 27004'N Surface Pressure (SP) Kpa 96.14 97.52 96.61 0.30 

 
 Precipitation (PR) mm/day 0.00 1.42 0.05 0.16 

 

 Dew-point Temperature 

(TD) 
0C -5.59 7.82 1.82 3.29 

 

 Maximum Temperature 

(Tmax) 
0C 15.79 41.95 30.28 7.88 

Longitude 
14043'E 

Minimum Temperature 

(Tmin) 
0C 1.97 25.54 15.29 7.22 

 
 Mean Temperature (Tmean) 0C 8.27 34.00 22.55 7.84 

 

 Minimum Wind Speed 

(Umin) 
m/s 1.13 2.34 1.70 0.26 

 

 Maximum Wind Speed 

(Umax) 
m/s 3.38 5.85 4.71 0.57 

Altitude 420 m Mean Wind Speed (Umean) m/s 2.28 3.98 3.14 0.39 

 
 Solar Radiation (RS) MJ/m2/day 9.41 29.35 20.99 5.64 

    Pan Evaporation (EP) mm/day 4.90 24.70 15.09 5.65 

Tripoli 

 
 Relative Humidity (RH) % 44.95 74.83 59.06 6.20 

Latitude 32089'N Surface Pressure (SP) Kpa 99.96 101.45 100.41 0.29 

 
 Precipitation (PR) mm/day 0.00 4.79 0.67 0.86 

 

 Dew-point Temperature 

(TD) 
0C 3.82 18.80 11.66 4.07 

 

 Maximum Temperature 

(Tmax) 
0C 14.90 36.21 25.27 6.19 

Longitude 
13019'E 

Minimum Temperature 

(Tmin) 
0C 8.47 25.90 17.02 5.24 

 
 Mean Temperature (Tmean) 0C 11.61 30.63 20.73 5.71 

 

 Minimum Wind Speed 

(Umin) 
m/s 0.93 3.31 1.83 0.51 

 

 Maximum Wind Speed 

(Umax) 
m/s 3.97 6.90 5.17 0.57 

Altitude 81 m Mean Wind Speed (Umean) m/s 2.56 5.03 3.59 0.53 

 
 Solar Radiation (RS) MJ/m2/day 7.20 29.71 18.71 7.01 

    Pan Evaporation (EP) mm/day 2.20 14.10 7.52 2.65 
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APPENDIX 2 

PEARSON CORRELATION MATRIX 

Appendix 2a: Pearson Correlation Matrix between ET0 and Input Parameters for Turkey 

Stations 

Parameter Adana Ankara Izmir Samsun 

PR 0.8783 0.8759 0.9086 0.8264 

RH 0.9005 0.8786 0.9227 0.8199 

SP -0.5869 -0.8080 -0.8833 -0.5713

TD -0.8847 -0.3907 -0.7753 -0.5644

Tmax -0.6643 -0.2469 -0.6512 -0.4355

Tmin 0.8631 0.8311 0.8428 0.8319 

Tmean 0.8956 0.8889 0.9262 0.8325 

Umin -0.5680 -0.1483 0.0497 -0.3162

Umax 0.7542 -0.0437 0.2092 -0.3130

Umean -0.1882 0.0670 0.1153 -0.3543

RS 0.9143 0.8897 0.9388 0.8171 

EP 0.9987 0.9967 0.9970 0.9995 

Appendix 2b: Pearson Correlation Matrix between ET0 and Input Parameters for North 

Cyprus Stations 

Parameter Famagusta Kyrenia Morphou Nicosia 

PR 0.7821 0.8140 0.8140 0.8140 

RH 0.8446 0.8697 0.8697 0.8697 

SP -0.7521 -0.8477 -0.8477 -0.8477

TD -0.8784 -0.8787 -0.8787 -0.8787

Tmax -0.6789 -0.6919 -0.6959 -0.6959

Tmin 0.7825 0.7922 0.7922 0.7922

Tmean 0.8218 0.8511 0.8511 0.8511

Umin -0.6501 -0.4015 -0.4015 -0.4015

Umax -0.4594 -0.0805 -0.0805 -0.0805

Umean -0.5584 -0.1855 -0.1855 -0.1855

RS 0.9607 0.9634 0.9625 0.9634

EP 0.9209 0.8818 0.9666 0.9684
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Appendix 2c: Pearson Correlation Matrix between ET0 and Input Parameters for Iraq 

Stations 

Parameter Erbil Salahaddin 

PR 0.9367 0.8961 

RH 0.9463 0.8845 

SP -0.8813 -0.8562 

TD -0.9074 -0.8566 

Tmax -0.5050 -0.5276 

Tmin 0.6023 0.5197 

Tmean 0.9479 0.8794 

Umin 0.7982 0.2055 

Umax 0.1198 0.7656 

Umean 0.6640 0.1550 

RS 0.9270 0.8734 

EP 0.9952 0.9977 

 

Appendix 2d: Pearson Correlation Matrix between ET0 and Input Parameters for Iran 

Stations 

Parameter Tabriz Urmia 

PR 0.9670 0.9000 

RH 0.9767 0.9134 

SP -0.8884 -0.8441 

TD -0.1060 -0.5202 

Tmax -0.2850 -0.2482 

Tmin 0.9257 0.8864 

Tmean 0.9765 0.9148 

Umin -0.1145 -0.2758 

Umax 0.0479 0.3300 

Umean 0.1493 0.1783 

RS 0.9277 0.9345 

EP 0.9983 0.9979 
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Appendix 2e: Pearson Correlation Matrix between ET0 and Input Parameters for Libya 

Stations 

Parameter Sabha Tripoli 

PR 0.8891 -0.5551 

RH 0.9170 -0.8243 

SP -0.8859 -0.6853 

TD -0.8296 0.5962 

Tmax -0.2400 0.7704 

Tmin 0.5292 0.6868 

Tmean 0.9074 0.7377 

Umin 0.4962 -0.4599 

Umax 0.7674 -0.1743 

Umean 0.7814 -0.3563 

RS 0.8707 0.8172 

EP 0.9969 0.9986 
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