IHNONINVH-TTV
W3TVS AVINNVHOIW AVINHY

SNOILVYNO3 HAVYH9D3T3L-011dIT713
d04 INFT90dd NOILVYOI4ILN3IdIl 30dN0S IHL

020¢
N3aN

THE SOURCE IDENTIFICATION PROBLEM FOR
ELLIPTIC-TELEGRAPH EQUATIONS

A THESIS SUBMITTED TO THE GRADUATE
SCHOOL OF APPLIED SCIENCES
OF
NEAR EAST UNIVERSITY

By
AHMAD MOHAMMAD SALEM
AL-HAMMOURI

In Partial Fulfillment of the Requirements for
the Degree of Doctor of Philosophy
in
Mathematics

NICOSIA, 2020



THE SOURCE IDENTIFICATION PROBLEM FOR
ELLIPTIC-TELEGRAPH EQUATIONS

A THESIS SUBMITTED TO THE GRADUATE
SCHOOL OF APPLIED SCIENCES
OF
NEAR EAST UNIVERSITY

By
AHMAD MOHAMMAD SALEM
AL-HAMMOURI

In Partial Fulfillment of the Requirements for
the Degree of Doctor of Philosophy
in
Mathematics

NICOSIA, 2020



Ahmad Mohammad Salem Al-Hammouri: THE SOURCE IDENTIFICATION PROBLEM
FOR ELLIPTIC-TELEGRAPH EQUATIONS

Approval of Director of Graduate School of

Applied Sciences

Prof. Dr. Nadire CAVUS

We certify this thesis is satisfactory for the award of the degree of Doctor of Philosophy of
Science in Mathematics

Examining Committee in Charge:

Prof. Dr. Evren Hingal Committee  Chairman, Department  of
Mathematics, NEU

Prof. Dr. Allaberen Ashyralyev Supervisor, Department of Mathematics, NEU
W
S
Prof. Dr. Deniz Agirseven Department of Mathematics, Trakya University
Assoc. Prof. Dr. Okan Gergek Department of Computer Engineering, Girne

American University

.

Assist. Prof. Dr. Bilgen Kaymakamzade Department of Mathematics, NEU



I hereby declare that all information in this document has been obtained and presented in
accordance with academic rules and ethical conduct. | also declare that, as required by these

rules and conduct, | have fully cited and referenced all material and results that are not

original to this work.

Name, Last name: Ahmad Al-Hammouri

Signature: @

Date: 12/01/2021



ACKNOWLEDGEMENT

This thesis would not have be satisfactorily completed without the support, backing, advice
and help of some significant individuals. All words and expressions are not enough how

grateful 1 am to these individuals.

Foremost, | would like to express my sincere gratitude to my advisor Prof. Dr. Allaberen
Ashyralyev for the continuous support of my Ph.D study and research, for his patience,
motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time
of research and writing of this thesis. It did not cross my mind having a superior

supervisor and counselor for my Ph.D journey like him.

In addition, | would like to thank some of the great Mathematicians of our time in persons
of Prof. Dr. Charyyar Ashyralyyev for his helpful discussions and his guidance in Matlab
Implementation, Prof. Dr. Evren Hincal for their guidance, encouragement, and insightful
comments. | also would thank, and highly appreciate all the staffs of Mathematics
Department of Near East University. | would thank all of my friends. Last but not the least,
| would like to thank my family: my parents and to my brothers and sisters for supporting

me spiritually throughout writing this thesis and my life in general.



To my parents...



ABSTRACT

In the present study, the source identification problem for the elliptic-telegraph differential
equation in a Hilbert space with the self-adjoint positive definite operator is investigated.
The main theorem on the stability of the space identification problem for the elliptic-
telegraph differential equation is proved. In applications, theorems on the stability of three
source identification problems for one dimensional differential equations with nonlocal
conditions and for multidimensional elliptic-telegraph differential equations with local
conditions are established. Furthermore, the main theorem on the stability of the difference
scheme is established. In applications, theorems on the stability of difference schemes for
three types of the space identification problems are proved. Numerical analysis is provided.

Keywords: Source identification problem; elliptic-telegraph differential equations;

difference schemes; stability; accuracy



OZET

Bu ¢alismada, kendine eslenik pozitif tanimli operatdrlii bir Hilbert uzayimnda eliptik-telgraf
diferansiyel denklemi igin kaynak tanimlama problemi arastirilmistir. Eliptik-telgraf
diferansiyel denklemi i¢in alan tanimlama probleminin kararliligina iliskin ana teorem
kanitlanmistir. Uygulamalarda, yerel olmayan kosullara sahip tek boyutlu diferansiyel
denklemler i¢in ve yerel kosullu ¢ok boyutlu eliptik-telgraf diferansiyel denklemler igin tg¢
kaynak tanimlama probleminin kararliligina iliskin teoremler olusturulmustur. Ayrica, fark
semasiin kararliligi iizerine ana teorem ispatlanmistir. Uygulamalarda, li¢ tip alan
tanimlama problemi i¢in fark semalarmim kararliligma iliskin teoremler kanitlanmistir.

Sayisal analiz saglanmaistir.

Anahtar Kelimeler: Kaynak Tanimlama Sorunu; Eliptik Telgraf Diferansiyel Denklemleri,

Fark Semalar1, Kararlilik, Dogruluk
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CHAPTER 1
INTRODUCTION

1.1 History

Source identification problems (SIPs) for partial differential equations (PDEs) are used to
model biological, physical, system engineering and sociological processes and have been
studied by many authors (Adavani and Biros, 2010; Ashyralyev and Ashyralyyev, 2014;
Ashyralyev and Cekic, 2016; Ashyralyev and Emharab, 2017; Ashyralyev, et al., 2016;
Ashyralyyev and Cay, 2018; Ashyralyyev, 2017; Avdonin and Nicaise, 2015; El Badia, et
al., 2019; Katzourakis, 2019; Sabitov and Martem’yanova, 2012; Siskova and Slodicka,
2018).

The fast algorithms for the solution of the SIP with linear elliptic PDEs constraints was
studied. The numerical techniques and the numerical experiments for the SIP with elliptic
PDEs were constructed by (Adavani and Biros, 2010).

The authors investigated the boundary value problem (BVP) of determining the parameter of
an elliptic equation in Banach space. Theorems of coercive stability estimates for the solution
of BVP for multi-dimensional elliptic equations were proved (Ashyralyev and Ashyralyyev,
2014).

In particular, (Ashyralyev and Cekic, 2016) investigated the SIP for a telegraph equation
with unknown parameter in a Hilbert space with the self-adjoint positive definite operator
(SAPDO). Theorems of stability estimates for the solution of the telegraph equation were
proved. In applications, three SIPs for telegraph equations were obtained. The
well-posedness of Neumann-type elliptic overdetermined problem with integral condition
has been well established.

The authors proved the various estimates for the solution of the identification problem of
inverse problem for the elliptic type equation. The stability, almost coercive stability, and
coercive stability inequalities for its solution have been obtained (Ashyralyyev and Cay,
2018; Ashyralyyev, 2017). The new methods of calculus of variations in L™ to study the

ill-posed inverse problem of identifying the source of a non-homogeneous linear elliptic



equation for Dirichlet conditions was investigated (Katzourakis, 2019) .

The authors studied the inverse problem for an equation of elliptic-hyperbolic type with
a nonlocal boundary condition. Theorems of the uniqueness criterion and the stability of
solutions with respect to the BVP were proved (Sabitov and Martem’yanova, 2012).

The SIPs for the wave equation on graphs and the resolution of linear integral Volterra
equations of the second kind for an interval was studied. Theorems of the uniqueness and
existence of solutions were proved (Avdonin and Nicaise, 2015). The inverse source
problem in time-fractional wave differential equation with dynamical boundary condition
for Neumann boundary conditions was studied. Theorems of the uniqueness and existence
of this solution were proved. The results of the numerical experiments were obtained
(Siskova and Slodicka, 2018).

Various local and nonlocal BVPs for elliptic, hyperbolic, telegraph, hyperbolic- telegraph
and elliptic- hyperbolic differential and difference equations and their applications have
been investigated by many scientists (Ashyralyev and Modanli, 2015; Ashyralyev and
Ozger, 2014; Ashyralyev and Sobolevskii, 2004; Ashyraliyev, 2012; Ashyraliyev, 2008;
Biazar, et al., 2009; Dehghan and Shokri, 2008; Direk and Ashyraliyev, 2018; Gao and Chi,
2007; Gushchina, 2016; Ivanauskas, et al., 2013; Jator, 2015; De la Sen, 2013; Mansour,
2006; Saadatmandi and Dehghan, 2010; Sapagovas, et al., 2017; Sapagovas and Stikoniene,
2011; Stikoniene, et al., 2014; Novickij and Stikonas, 2014; Twizell, 1979; Tuan, et al.,
2018; Kirane, et al., 2019; Sobolevskii, 1975; Ashyralyev and Al-Hammouri, 2019).

The nonlocal BVPs for hyperbolic-elliptic equation in a Hilbert space were studied, theorems
on stability of this problem and the first and the second order of accuracy difference schemes
(DSs) for approximate solutions of this problem were proved (Ashyralyev and Ozger, 2014).
The initial-value problem (IVP) for the integral-differential equation of the hyperbolic type in
a Hilbert space was studied. Theorems of the uniqueness of solvability of this problem were
proved. The convergence estimates for the solutions of difference schemes were obtained
(Direk and Ashyraliyev, 2018). The equation of mixed elliptic-hyperbolic type in rectangular
area with the conditions of periodicity and the nonlocal problem of A. A. Desin was studied.

Theorems of convergence of the constructed series in the class of regular solutions and the



stability of the solution were proved by (Gushchina, 2016).

The authors studied the stability of an explicit DS for linear hyperbolic equations with
nonlocal integral boundary conditions. Theorem of the stability for linear hyperbolic
equations with nonlocal integral boundary conditions was proved (Ivanauskas, et al., 2013).
In particular, (Mansour, 2006) studied the existence of traveling wave solutions for a
hyperbolic-elliptic system of PDEs and applied the geometric theory of singular
perturbations. Theorem of the existence of the wave solution was proved.

The authors applied the standard method of finite DSs for nonlinear elliptic equations with
integral condition. Theorems of the convergence of all methods for this solution were proved.
In application, the results of convergence between iterative methods were applied for the first
time to nonlinear system (Sapagovas, et al., 2017). The generalization of the alternating-
direction implicit method for the two-dimensional nonlinear elliptic equation with integral
boundary condition in one coordinate direction was analyzed. Theorem of the convergence
of the iterative method was proved. Furthermore, the computational experiments of results
were obtained (Sapagovas and Stikoniene, 2011). The iterative methods for the solution
of the system of the difference equations derived from the elliptic equation with nonlocal
conditions were applied. Theorems on the convergence of faster iterative methods were
proven (Stikoniene, et al., 2014). The stability of a weighted finite DS for wave equation with
nonlocal boundary conditions was studied . The linear hyperbolic equation with nonlocal
integral boundary condition was investigated. The stability conditions in a special matrix
norm were obtained (Novickij and Stikonas, 2014).

In this thesis, several identification problems for elliptic-telegraph equations can be reduced

to the space SIP for the elliptic-telegraph equation

d;::;z) +a®D 4 Au(t) = p + f(1),0 <t <1,
_dun + Au(t) = -1 .
ar =p+g8@),-1<r<0, .

u(0) = ¢, u,(07) = u(07), u(=1) = ¢, u(1) = &

in a Hilbert space H with the SAPDO A > 61,6 > 0. Here p is the unknown parameter.



1.2 Methods of Solution of Source Identification Problem

It is known that SIPs for partial elliptic-telegraph differential equations can be solved
analytically by Fourier series, Laplace transform and Fourier transform methods. Now, let
us illustrate these three different analytical methods by examples.

We consider Fourier series method for solution of SIPs for partial elliptic-telegraph
differential equations.

First, we consider the Fourier series solution of the following SIP

8%u(t,x)
or?

Au(tx) _ 0*u(t.x)
ot Ox?

+ + u(t,x) = p(x) + sin x,

0<t<1,0<x<m,

——62;2’)‘) - —azgi’gx) +u(t,x) = p(x) +sinx,
(1.2)
-1<t<0,0<x<m,
u(0,x) =sinx,u(xl,x) =sinx,0 < x < m,
u(t,0)=ut,7=0,-1<r<1
for a one dimensional elliptic-telegraph equation.
In order to solve the problem, we consider the Sturm-Liouville problem
U xX)-wx)=0,0<x<mu@) =u(r)=0 (1.3)

generated by the space operator of problem (1.2). It is easy to see that the solution of this

Sturm-Liouville problem is
u(x) =sinkx,k=1,2,....

Then, we will obtain the Fourier series solution of problem (1.2) by formulas

u(t,x) = Z A, (£) sin kx, (1.4)
k=1



p() =) pisinks, (1.5)
k=1

where A, (1), k = 1,2, ... are unknown functions and py, k = 1,2, ... are unknown parameters.
Putting u (¢, x) and p(x) functions into above equations and using given initial and boundary

conditions, we obtain

Z AY (1) sin kx + Z Al (1) sinkx + Z + 1 Ak () sin kx

8

Zpksmkx+s1nx O<r<l,
k=1

8

Z A (t)sinkx + Z + 1 Ak (H) sinkx

k=1 k=1

8

= prsinkx +sinx,—1 <t <0,
k=1

u(0,x) = Z A, (0)sin kx = sin x,

k=1

u(+l,x) = ZAk (+1) sinkx = sin x,
k=1
Equating coefficients of sin(kx), k = 1, 2,... to zero, we get

AL O+ AL O+ (R +1) A0 = pr.0<t<1,

—A7 () = (K + 1) Ac (1) = pr.—1 <1 <0, (1.6)

Ak(O) = Ak(il) =0,k#1
and

AV @)+ A (D) +2A, (D =1+ p,0<1<1,

AT (O +2A,(1) =1+ p;, -1 <1<0, (1.7)

Al(0)=A; (1) =1.



We obtain A,(#) and p; for k # 1. Let O < ¢ < 1.Then, the auxilary equation is
F+qg+ikF+1=0.
We have two roots

| 3 | 3
C[1:—§+l k2+Z,QQ:—§—l k2+Z.

Therefore,

¢ / 3 / 3
Ap()=¢? [cl CoS 1/ k* + é_ll + ¢ sin A [k? + Zt

is the solution of auxilary equation. Since A} (1) =

Pk

7.7 1s the solution of nonhomegeonus

equation
AL () + A1) + (K + 1) Ac () = py,

we have that

A = e [cl cos /2 + §z+ cysin A[ 12 + %t + o
Let —1 <t < 0.Then, the auxilary equation is

- +kK+1=0.
We have two roots

g=Ve+l,go=-Vi2+1.
Therefore,

Ac() = e cosh V2 + T + ¢y sinh V2 + 11 + 57—

Applying boundary conditions A; (0) = A, (+1) = 0,A, (0+) = A} (0-), we get

Pk
Ar(0)=c3+———=0
(0)=c; 211 >

Pk
Ak(O):cl+—k2+1:0,



1 3
V2 + 1y = —5a AR+ =ca,

4
_1 3 ) 3
Ar(1)=e"2|c; cos k2+Z+c251n k2+4_1

+

Ac(=1) = ey cosh VIZ +1 = ey sinh VO + T+ 52—

Therefore,

Cl—C3:0,

Since

1 0

0

K+ 2 0

4

1 .
=|e2 sm,/k2+% 0

0 cosh VK2 +1 -1

1
2

~(-D'"* x| ¢73 cos AR+ % -1 e
0

3

1 _ 2
5 k> +
1 1 .
e2cos [k? + % —1 e z2sin w/kz +%
0

1.
2 81n

Vk? + ley + %Cl — w/kz + %02 =0,

1 .
e 2 [clcos K2+ 2+ cosin (K2 + %] —¢; =0,

czcosh Vk2+ 1 —c4sinh VK2 + 1 —c¢3 = 0.

-1
0
0

3
= V2 + le 7 sin 4[K2 + : (—1 + cosh V&2 + 1)

1 3
+§e-% sin k2 + 7 sinh Vi2 + 1

K +1

Pk =0,

=0.

0
V2 +1
0

cosh VK2 +1 -1 —sinh VK2 +1

VEk2 +1
0
—sinh VK2 + 1
K+ 3 V2 + 1
[ 3
k2+4_1 0
0 —sinh VK2 + 1

/ 3 | [ 3
- k2+Z(—1+e_2cos k2+Z]sinh V2 +1 #0,

7




we have that ¢; = ¢; = ¢3 = ¢4 = 0.Then p; = 0, and A, (r) = 0.

Now, we obtain A;(¢) and p;. Let 0 < ¢ < 1.Then, the auxilary equation is

¢ +q+2=0.

We have two roots

~ 1+'JE 17
q1 = 2 4 45 q> = 2 4 4
Therefore,
o Vi Wi
Af(t)=e 2 |cjcos 71+cz sin Tt

p1+l

is the solution of auxilary equation. Since A} (1) = 25—

equation
AT O +AT O +24, () =p1+ 1,

we have that

V7

7 .
€1 COS —1 + ¢p Sin —t¢| +
2 2

p1+1

A () =e? >

Let —1 <t < 0.Then, the auxilary equation is
- +2=0.
We have two roots

q1 = \/E,C]z:—\/i.

Therefore,

+1
Ay (t) = c3cosh \/§t+c4sinh V2r + P12 .

is the solution of nonhomegeonus

Applying boundary conditions A; (0) = A; (£1) = 1,A] (0+) = A} (0—), we get

Pi1+1

A0 =c3+ =

=1,



+1
A1(0)261+p12 -1,

1 V7

V2¢, = —5¢1 + — C2
Al(l):e‘% clcosg+c2sing +P12+1 =1,
Aq(=1) = c3 cosh \/§—c4sinh V2 + Pl =1.
Therefore,
c1—c3 =0,
V2e4 + %cl - gcz =0,

1 .
e 2 [cl cos %7 + ¢, sin g] —c; =0,

c3 cosh V2 = ¢4 sinh V2 — c; =0.

Since
1 0 -1 0
3 -3 0 V2
€77 cos g —1 e2sin g 0 0
0 0 cosh V2—1 —sinh V2
-~ 0 V2
=| ¢ 2sin g 0 0
0 cosh V2—-1 —sinh V2
—(-D" x| ¢z cos g —1 e zsin g 0
0 0 —sinh V2

7 1 7
= \/ie_% sin g (—1 + cosh \/E) + Ee_% sin g sinh V2

7 7
_g (—1 + €7 cos g) sinh V2 # 0,

we have thatc; = ¢, = ¢c3 = ¢4 = 0.

Then p; = 1, and A, (#) = 1. From that it follows p(x) = sinx and A; (#) = 1 for all

-1<t<1.



Therefore,
u(t,x)=A; (¢t)sinx = sin x.

So, the exact solution of the problem (1.2) is
(u(t,x),p(x)) = (sinx,sinx).

Note that using similar procedure one can obtain the solution of the following identification

problem

8u(t, ou(t, - Fult,
T At = Xt = p )+ £ ),

r=

X =(X1y.00r Xp) eﬁ, 0<t<T,

du, & dult,
e z B 52 = p(x) + g(t, x),
r= "

(1.8)

x=(x1, .0y Xp) Gﬁ,—T <t<0,

(0, %) = 9(x), (=T, ) = ¢ (1), u(T, x) = p (x), x € Q,

u(t,x) =0,xeS,-T<t<T

for the multidimensional elliptic-telegraph differential equations.
Assume that @, > @ > 0 and £ (t,x)(r € (0.7),x € Q),g(t.x).( € (-T.0) . x € Q) (),
W (x), u(x), (x € ﬁ) are given smooth functions. Here and in future Q is the unit open cube

in the n—dimensional Euclidean space R" (0 < x; < 1,1 < k < n) with the boundary
5,Q=QuUS.

However Fourier series method described in solving (1.8) can be used only in the case when

(1.8) has constant coefficients.

10



Second, we consider the Fourier series solution of the following SIP

62 u(t,x)
o2

Ou(t.x) _ Fult,x) _ =
) — =5 4+ u(t, x) = p(x) + 2e cos x — Cos X,

=+

O<x<m0O<t<l,

_ultx)  0Pu(tx)

pre o5~ +u(t,x) = p(x) + e cosx —cos x,

(1.9)
O<x<m-1<t<0,

u(0,x) =cosx,u(xl,x) =e*'cosx,0 < x <,

uy (1,0) =u, (t,m)=0,-1<r<1

for a one dimensional elliptic-telegraph equation.

In order to solve the problem, we consider the Sturm-Liouville problem
U xX)—Awux)=0,0<x<mu,(0)=u,(r)=0

generated by the space operator of problem (1.9). It is easy to see that the solution of this

Sturm-Liouville problem is
up(x) =coskx,k=0,1,2,....
Then, we will obtain the Fourier series solution of problem (1.9) by formula

u(t,x) = ZAk () cos kx, (1.10)
k=0

p(x) = Z Pk COS kx,
k=0

where A, (t),k = 0,1,2,... are unknown functions and p;,k = 0,1,2,... are unknown
numbers. Putting u (¢, x) and p (x) into main problem and using given initial and boundary

conditions, we obtain

i Aj(H)coskx + i A, (H)coskx + i (k2 + 1) Ay () cos kx
=0 k=0 =

11



M s

prcoskx+2e"cosx—cosx,0<t<1,

[Se]

A{ (tcoskx = >~ (K + 1) Ay (1) cos kx

k=0

>~
1l
(=]

Me

prcoskx+e'cosx—cosx,—1 <t<0,

T
=

u (0, x) = ZAk (0) cos kx = cos x,

k=0

u(il,x):ZAk(O)coskx:eﬂcosx,OSxSﬂ. (1.11)
k=0

Equating the coefficients of cos (kx),k =0, 1,2, ... to zero, we get

AL+ AL () + (K +1) A0 = pr.0 <t <1,

—A (O + (R + 1) A () = prok £0,1,-1 <1 <0, (1.12)
A (0) = A (1) = 0,k # 1,

AV +A (D) +24, () =p +2e7 - 1,0<1< 1,

—AT M) +2A, () =pr+e’=1,-1<1<0, (1.13)

A (0) = 1,A; (1) = 7.

We will obtain A,(¢) for k # 1.

Let O <t < 1.Then, the auxilary equation is
FH+qg+ikF+1=0.
We have two roots

1 3 1 3
= ——+i\[K+ - g = —= —i[k*+—.
D=y TINE T p =Ty T 4

12



Therefore,

is the solution of auxilary equation. Since A} (1) =

7 is the solution of nonhomegeonus

equation
AL () + AL + (K + 1) Ac(0) = py
Therefore,

t 3 3
Ap(t)=e2 [cl cos [k + e sin /K2 + 21+

Let —1 <t < 0.Then, the auxilary equation is

Pk
K +1

-+ +1=0.
We have two roots

= V2 +1,qp = = VK2 + 1.

Therefore,

Pk

Ay (1) = c3 cosh Vk? + 11 + ¢4 sinh k2+1t+k2+1.

Applying boundary conditions A; (0) = A; (£1) = 0, we get

Pk
Ak(O):c1+k2+1:0,
AcO) = 3+ o =
k2 +
Ak(l):e_;[clcos w/k2+ + ¢, sin w/k2+— +k2 =0,
Ar (=1) = c3cosh VK2 + 1 — ¢4 sinh V% + k +1 =0.

Therefore,

C1—C3:0

VK2 + leg + 3 3C1 — 1/k2+ 20, =0,

62[C10081/k2+ + ¢y sin (k2 + —]—01: ,

c3cosh VK2 + 1 —c¢ysinh Vk2+ 1 —¢3 =

13



Since
1 0 -1 0
1 V7
2 7 0 V2
e7? cos g —1 e 2sin g 0 0
0 0 cosh V2 -1 —sinh V2
- 0 V2
=| ¢ 2sin g 0 0
0 cosh V2 -1 —sinh V2
\/7
: £
—(=D)" x| 72 cos g —1 e ?sin g 0
—sinh V2

| 7 1 7
= V2e Zsin i (—1 + cosh \5) + Ee_f sin - sinh V2

2
we have that ¢; = ¢; = ¢3 = ¢4 = 0.Then p; =0, and A; () = 0.

Now, we obtain A;(7) and p;. Let 0 < ¢t < 1.Then, the auxilary equation is

7 7
V7 (—1 + e cos g} sinh V2 # 0,

¢ +qg+2=0.

We have two roots
~ 1+,\f 17
q1 = > l 4,(]2— 5 1 1

Therefore,
A? (r) = e_% [Cl cos Tt + ¢ sin TI]

is the solution of auxilary equation. Since Af (1) = 5

nonhomegeonus equation

AV (1) + AL (1) + 24, (D) = py +2¢7 — 1,
14

)41 —1+2e7!

is the solution of



we have that

‘ 7 7 +2e" -1
A1 (t) = e 2 |ccos 7t+czsin TV_t + %.

Let —1 <t < 0.Then, the auxilary equation is

-¢*+2=0.

We have two roots

qir = \/5, qr = — \/5
Therefore,
+2e¢" -1
A1 () = c3cosh V21 + ¢4 sinh V2r + %.

Applying boundary conditions A; (0) = 1,A; (x1) = e’_“l,A’1 (0+) = A7 (0-), we get

+1
AI(O):c3+p12 -1,

+1
A1(0)201+p12 =1,

1 V7
\/504 = —Ecl + 76‘2,

7 +2e7 -1
Al(l):e_% Cy 0057+czsin§ +% =e!,

pi+2e' -1 3

Aj(=1) = ¢z cosh V2 - ¢4 sinh V2 + e.

Therefore,
Cp —C3 = O,
1 7
\/§C4 + 5C1 — T\FCZ =0,
1 .
e 2 [cl cos %7 + ¢, sin g] —c; =0,

c3 cosh V2 = ¢4 sinh V2 — c; =0.

Since

15



1 0 -1 0
: - 0 V2
€77 cos g —1 e zsin ? 0 0
0 0 cosh V2 -1 —sinh V2
-~ 0 V2
=| e%sin Y 0 0
0 cosh V2 -1 —sinh V2
¥ V2

1
2 2

V7
¥ 0
—sinh V2

1 7
e_% sin g sinh V2

—(=D"¥ x| e72 cos g 1 e 7sin
0 0

7
= \/Ee_% sin g (—1 + cosh \/5) +

V7

2

we have thatc; = co = ¢35 = ¢4 = 0.
From that it follows that p; = 1 and A; (t) = e™". Therefore,

(—1 +e7cos g} sinh V2 # 0,

p(x) = cos x,

u(t,x) =Ag () + Z Ay () coskx = e cos x.
k=1

So, the exact solution of the problem (1.9) is

(u(t,x),p(x)) =(e"cosx,cosx).

16



Note that using similar procedure one can obtain the solution of the following identification

problem

Putx) | duty) < Pulty) _
%+a%—r§1ar,§7f—p(x)+f(t,xx

x=(x1,..., Xp) Eﬁ, 0<t<T,

Qu, & o Pult,
~THL0 _ 3 B D = p(x) + (1, x),
r=1 "

(1.14)

X =(x1,..,X,) € 5,—T <t<0,

M(O’ X) = QD(.X), M(—T, X) = W (.X) ’ M(T9 X) =M (X) , X € 5’

M = 0,xeS,-T<t<T
for the multidimensional elliptic-telegraph differential equations.

Assume that @, > @ > 0 and f (t,x)(r € (0.7),x € Q),g(t,x),(t € (-T.,0), x € Q) , (),
U (x), u(x), (x € ﬁ) are given smooth functions. Here and in future m is the normal vector to
boundary S.

However Fourier series method described in solving (1.14) can be used only in the case when

(1.14) has constant coefficients.

17



Third, we consider the Fourier series solution of the following SIP

0%u(t,x) + Ju(t,x) 8%u(t,x)
or? ot Ox?

+ut,x)=px)+e’ -1,

O<x<mO<it<l,

Jut, Qult,
—pt = S u ) = p() - 1,

(1.15)
O<x<m-1<1t<0,

u,x)=Lu(xl,x) =e*,0< x <,

u(t,0)=ult,m),u,t,0)=u,(t,m),-1<t<1

for a one dimensional elliptic-telegraph equation.

In order to solve the problem, we consider the Sturm-Liouville problem
U (xX)—Awux)=0,0<x<mu0)=u(@r),u,0)=u,(n

generated by the space operator of problem (1.15). It is easy to see that the solution of this

Sturm-Liouville problem is
up(x) = cos2kx,k =0,1,2,...,u (x) = sin2kx, k=1,2,....

Then, we will obtain the Fourier series solution of problem (1.15) by formula

u(t,x) = Z A, (£) cos 2kx + Z By (¢) sin 2kx, (1.16)
k=0 k=1

px) = Z pr cos 2kx + Z qx sin 2kx,

k=0 k=1
where A, (t),k = 0,1,2,..., and B,(®),k = 1,2,... are unknown functions and

P,k = 0,1,2..., and g,k = 1,2,... are unknown numbers. Putting u (¢, x) and p (x) into

main problem and using given initial and boundary conditions, we obtain
DALty cos 2kx + ) B (r)sin2kx + Y A} (1) cos 2kx
=0 k=1 k=0

18



+ i B} (f) sin 2kx + g (4% + 1) A¢ (1) cos 2kx + i (4% + 1) By (1) sin 2kx

k=1

k=1
= > pecos2kx+ Y gpsin2kx+e - 1,0<t<1,0<x<r,
k=0 k=1

= > AY()cos2kx = > By (t)sin2kx + ) (4k* + 1) A (1) cos 2kx
= k=1 k=0

>~
(=]

+ (4/<2 + 1) By (£) sin 2kx

NgERINgE

kaOSka+qusin2kx— I,-1<t<0,0<x<n,

k k=1

Il
(=)

u(0,x) = Z A, (0) cos 2kx + Z B, (0)sin 2kx = 1,
k=0 k=1

u(xl,x) = ZAk (+1) cos 2kx + ZBk (+1)sin2kx = e*,0 < x < 7.
k=0 k=1

Equating the coefficients of coskx,k = 0, 1, ...and sinkx, k = 1,2, ... to zero, we get

AL (@) + AL (1) + (42 + 1) A () = prok #0,0 <t < 1,
—A7 () + (42 + 1) A () = pr.k # 0,-1 <1 <0, (1.17)

A (0) = A (1) =0,k #0,

AL+ A (D) +Ag(D =po+e' —=1,0<1 <1,

—Ay (D) +Ag(D)=po—1,-1<1t<0, (1.18)

A (0) = 0,40 (1) = €™,
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Bl (t)+B,()+ (4> +1) By () = qu. 0< <1,

=By () + (4> + 1) By (1) = g -1 < 1 < 0, (1.19)

By (0) =B, (1) =0.

We obtain A, (t), k # 0. It is clear that for k # 0, Ai(¢) the solution of the IVP (1.17). Let

—1 <t < 0. Then, the auxilary equation is
~¢* +4k* +1=0.
We have two roots
g = VAT g0 = — VAR A 1.
Therefore,

A (t) = ¢y cosh V4k? + 1t + ¢, sinh V4k? + 1t

Pk
4k2+1

is the solution of auxilary equation. Since A} (¢) = is the solution of nonhomegeonus

equation
AL () + AL (0 + (42 + 1) A () = i

Therefore,

Ai (1) = ¢; cosh V4k2 + 1t + ¢, sinh V4k2 + 1t + 4kfljr 1

Let O <t < 1. Then, the auxilary equation is
F+qg+4k*+1=0.
We have two roots

1 3 1 3
= —— +i\[4K> + —, qp = —= — i4[4K> + —.
t=Ty Ty A A 4

20



Therefore,

Ac(t) = e 2 [c3 cos w/4k2 —t + ¢4 8in w/4k2 —t

Applying boundary conditions A; (0) = A, (+1) = 0,A; (0+) = A} (0-), we get

4k2+1

Ac0) = ¢, + 2 —,

42+ 1

A (0) = ¢35 + 4kp" -

Ar(1) = 72 [c3cos ,/4k2+ + ¢y sin ,/4k2+—}+ =0

Ar(=1) = ¢y cosh V4k% + 1 — ¢, sinh V4k2 + 1 + 4k2 7= 0.
Therefore,

C] —C3 = 0
V4k? + 1C2 + C1 1,4](2 + C4 =
[c3 cos L[4k? + + ¢y sin (/4K + —] —c3 =
cycosh V4k? + 1 —cysinh V4k2+1 —c¢; =
Since
1 0 -1 0
4k% + 0 4k + 1

e~? cos 1/4k2 ——1 ezsm,/4k2 2 0 0

0 cosh V4k2 +1 -1 —sinh V4k? + 1

— Ak + 0 4k + 1
=| e 7 sin 1/4k2 0 0

cosh V4k2 +1 -1 —sinh V4k2 +1

—A[4K* + 4k2 + 1
—(=D" x| e73 cos 1/4k2 + 3_1 e tsin 1/4k2 0
—sinh V4k%2 + 1

3
= VA2 + Lo~ sin +/4K2 + 7 (—1 + cosh V42 + 1)
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1 3
+§e-% sin 4k + 7 sinh Va2 + 1

3 | 3
— 1[4k + Z(_l +e72cos 4[4k + Z) sinh V4kZ +1 # 0,

we have that ¢; = ¢, = ¢3 = ¢4 = 0. Then p;, =0, and A, (r) = 0 for k # 0.

Now, we obtain Ay(#) and py. Let 0 < ¢ < 1. Then, the auxilary equation is

¢ +q+1=0.

We have two roots

Therefore,
o Vi \3
Aj(t) =e 2 |cjcos —t + ¢ 8In —t
2 2
is the solution of auxilary equation. Since Ag () = po + e

nonhomegeonus equation
—AT (D) + Ag (O + Ao () = pot+e - 1,

we have that

DI~

Ag(t) =e
Let —1 <t < 0. Then, the auxilary equation is
-¢*+1=0.
We have two roots
q1=1,¢,=-1.
Therefore,
Ao (t) = czcosht + cysinht+ pg+e — 1.

22

Cc1 COS 7t+C2 SiI’lTl +p0+€_t— 1.

t

— 1 is the solution of



Applying boundary conditions Ay (0) = 1,A¢ (£1) = eT’l,Ag) (0+) = A{ (0-), we get
Ag(0)=c3+po =1,

Ay O)=ci+po=1,
1 V3

C4 = —=C1 +—=0C,

2 2

=

. V3 _ _
€1C0S— + Cr8in— |+ po+e !l —1=¢7,

Ag(l) =€
o(l)y=e ) 3

Ag(—=1) =c3cosh 1 —c4sinh 1+ pg +el —1=¢.
Therefore,
c1—c3=0,
Cq + %Cl - \/T§C2 = O,

1 .
e 2 [cl cos %ﬁ + ¢, sin %5] —c; =0,

c3coshl —cysinh1 —c3 =0.

Since
1 0 -1 0
1 V3
2 -3 0 1
e7% cos g —1 e ?sin ‘/75 0 0
0 0 coshl -1 -sinhl
\/g
-5 0 1
=|etsine 0 0
0 coshl -1 -—sinhl
1 V3
2 - 1
—(=D"¥ x| e~ cos g 1 e 7sin %5 0
0 0 —sinh 1

3 1
= ¢ 2 sin % (=1 +coshl)+ Ee_% sin > sinh 1
_§ (—1 + e cos ?) sinh1 # 0,
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we have that ¢; = ¢; = ¢3 = ¢4 = 0. Then py = 1 and Ay(#) = e¢”". From that it follows that

p(x) =1.

Finally, we obtain By(¢). It is clear that, By(¢) is the solution of the IVP (1.19).

Let —1 <t < 0. Then, the auxilary equation is
—m* +4k* + 1 = 0.
We have two roots
= VA2 + 1,my = — V&2 + 1.
Therefore,

Bj (1) = ¢y cosh V4k? + 1t + ¢, sinh V4k? + 11.

is the solution of auxilary equation. Since By (r) =

equation
B/ (t) + B (0) + (K + 1) By (1) = qu
Therefore,

By (1) = ¢ cosh V4k2 + 1t + ¢, sinh V4K + 1t + %2‘1%
Let O <t < 1. Then, the auxilary equation is
m+m+4k>+1=0.
We have two roots

1 [ 3 1 [ 3
m1:—§+i 4k2+Z,m2=—§—i 4k2+Z.

Therefore,

; / 3 /
Bi(t)=¢2 [cz, cos 4 /4k% + é_lt + ¢4 8in +[4k% +

24
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Applying boundary conditions By (0) = B, (+1) = 0, B, (0+) = B, (0-), we get

Gk

B, (0) = =0,
O =t gy
qk
B, (0) = =0,
KO =ct gy =
Bk(l):e‘% [qcos w/4k2 —+c4sm w/4k2+—}+4k2+1 0,
Bi(=1) = ¢ cosh VA + 1 = ¢y sinh VAR + 1+ 5"~ = 0.
Therefore,
C] —C3 = O,
V4k2 + 1C2 + %Cl - 1,4](2 + %C4 = 0,
e? [(:3 cos L[4k? + % + ¢y 8in (/4K + %] -c3=0
cycosh V4k? +1 —cpsinh V4k2+1-¢; =0
Since
1 0 -1 0

1/4k2+- 0 492 + 1
ezcos,/4k2 ‘——1 ezsln,/4k2 = 0 0

0 cosh V4k2 +1 -1 —sinh V4k2 + 1

—,/4k2+§ 0 4k2 + 1
= | et sin \J4k2 + 3 0 0
0

cosh V4k2 +1 -1 —sinh V4k?2 + 1

— JAk2 + 42 + 1
(=D x| e 2cos1/4k2+——1 e zsm1/4k2 0
—sinh V4k%2 + 1

1 3 1 3
= VA2 & Lo sin 4/ 4K2 + : (—1 + cosh V4k2 + 1)+ 5¢ *sin \J4K2 + 7 sinh Vak2 +1
3 1 3] .
- 4k2+4_1 —1+e2cos 4k2+4_1 sinh V4k? + 1 # 0,
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we have that ¢; = ¢; = ¢3 = ¢4 = 0. Then g, = 0 and By (¢) = 0, for all .
Therefore,
u(t,x) = Ao () + Z Ay () cos 2kx + Z By (1) sin 2kx = e™".
k=1 k=1

So, the exact solution of the problem (1.15) is
(u(t,x), p(x) = (e, 1).

Note that using similar procedure one can obtain the solution of the following identification

problem

%u(t,x) dul, 2 8%ulr,
—%i+a%fL-%ar§ﬁ—Jﬂﬂ+fU@

r=

x=(X1, ..., Xp) Eﬁ, 0<t<T,

52 %u(t,
— S Zﬁr%”:puhgmm,

xr

(1.20)

X =(x1,..,X,) € 5,—T <t<0,

M(O’ .X) = QD(.X), I/t(—T, X) = W (X) ) Ll(T, X) =Hu (X) , X € 5,

Au(t, x)l _ Ou(t,x)
S, om

I/l(t, -x)|Sl = I/l(t, x)'Sz ’ S, -Ir'<t<T

for the multidimensional elliptic-telegraph differential equations.

Assume that @, > @ > 0 and f(t,x)(t €(0,7),x€ 5),g(r,x),(t e(-T,0),x€ 5),90(x),
U (x), u(x), (x € ﬁ) are given smooth functions.

Here and in future S = §; U S,,51 NS, = @. However Fourier series method described in

solving (1.20) can be used only in the case when (1.20) has constant coefficients.
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Now, we consider Laplace transform solution of SIPs for partial elliptic-telegraph differential
equations.

Fourth, we consider the Laplace transform solution of the following SIP

8%u(t,x)
or?

ou(t,x) Oultx) _ _f— _
il =px)—e"™F -,

+

O<x<oo,0<t<l,

X

=px)—2e"F—e,

_62u(t,x) _ 0%u(t,x)

or? 0x2
(1.21)
O<x<oo,-1<1<0,
u(0,x) =e X u(xl,x)=e"17,0< x < oo,
u(,0)=e’,u(t,0)=-"',-1<t<1
for a one dimensional elliptic-telegraph equation.
Here and in future, we will denote
LAu(t, x)} = u(t, s).
Using formula
Ll = — (1.22)
el = .
s+ 1

and taking the Laplace transform of both sides of the differential equation and using

conditions
u(t,0)=e"', u,(t,0)=—-e",
we can write
Liuy (t, 0} + Liu, (8,0} = L (1, X))

=L{px}-e'Lie"}-L{e},0<1<1,
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L{uy (2, x)) — L (2, x)}
=L{px)}-2e"'L{e} - L{e*},-1<t<0,
L{u(0,0} = L{e™}, L{u(x],x)} = L{eﬂ—X}

or
u, (t,8) +u, (t,s) — su(t,s) + su(t,0) + u, (t,0)
= p(s)—e"sl1 - E’O <t<l,

—u, (t,8) — sPu(t, s) + su(t,0) + u,(¢,0)

=p(s)—2e"L - L _1<r<0,

s+1 s+17?

u,s)=—,u(xl s)——

l+s 1+s°

Therefore, we get the following problem

U, (t,8) +u, (t,s) — s2u(t,s) + se’ —e™

=p(s)—e’'H - 0<r<1,

—uy (t,s) — SPu(t,s) + se’ —e (1.23)
_ 1

=p(s)—2e ’m—m,—l <t<0,

u(0,s) = % ,u(xl,s) =

1+s

Now we will obtain the solution of problem (1.23). Let —1 < ¢ < 0. Then, we have the

following BVP

Uy (2, 8) + s2u(t, s) = Ste ' — p(s) + L —,-1<1<0,

s+1

(1.24)
u@©,s) = — ,u(-1,s) = =.

l+s ’ 1+s°
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Applying the D’ Alembert’s formula, we obtain

1
u(t, s) = u(0, s) cos st + —u,(0, s) sin st
s

s s+ 1 s+ 1
Applying the formula
t
f sin s(t — y)e”dy = (—scos st + se”" + sin st)
0 s2+1
and condition u(0, 5) = -5, we get

1 1 (se™" + sin st
u(t, s) = Eu,(O, s) sin st + E(ses+—sllns)

I 1
+— f sin s(f —y) [— - p(s)] dy.
s Jo s+ 1
Now, we will apply the condition u (-1, s) = = and (1.25), we get

1+s

1 1 — sin
u(-1,s) = —Eu,(O, s)sin s + E(se“_—ls)

lf_lin(1+) ! (s)|dy = =<
s Jo SIS YN TP E T

Applying the formula

coss—1

-1
f sins(1+y)dy =
0

We get
1 1 —si
U(=1.5) = —Lu (0, s)sin s + L 5= 59
K} s s+1
lcoss—1 1 s)
— —p(s)] = )
s s s+ 1 p 1+s
Therefore
1 coss — 1 1
u,(O,s)——S+1—( ssin s )(s+1 —p(s))

29

1 241 [ 1
4 f Sin s(t — y) e dy + ~ f sin s(t — ) [— - p(s)] dy.
0 s Jo

(1.25)
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Applying the formula

t
f sins(t—y)dy =
0

Therefore, from (1.25) it follows that

1 —cos st

u(t,s) =

e’ sinst [coss — 1 N 1 — cos st
s+1

1
( - P(S)) (1.27)

ssin § s 52 s+ 1

Now, let 0 < ¢ < 1. Applying (1.23), then we have the following BVP

uy (t,8) + u, (t, x) — s2u(t, s)—p(s)—m—e‘t%,0<t<l

u(0, s) = u(l,s) = &= (1.28)

+1’

u (0, 5) = A+1 - (%)(3+1 p(S))

We denote
u(t, s) = v(t, s)e z. (1.29)
Then

1 1 t
u,(t,s) = —Ee‘ZV(t, s)+e 2y (t,s),

1 L t t
uy (t,5) = Ze_fv (t,s) —e 2v,(t,5) + e 2v,(t,5).
Using these formulas and (1.23), we get the following problem

v, (t,8) — (4+s2)v(t s)—eZ(p(s)——)—e‘é s O0<tr<1,

s+1 s+1°

v(0, 5) = v(l,s) = »:

+l’ 1+s

vi(0, 5) = ( 2(s+1) (C;):ifq_sl)(wl p(s)))

Now, applying the D’ Alembert’s formula, we obtain

cosh w/—+s2t+ smh \/—+s2t

v(t, s) =
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x(— 1 _(coss—l) 1 ~
6+ \Tssns \se1 P

1 L 1 y 1 s
+ sinh y[= +s2(t—y)|ez|p(s) — - e 2|dy.
/l+sz 0 4 s+ 1 s+ 1
4

Applying (1.26) and applying the formulas
t 1 v
f sinh /= + s2(t — y) e2dy
0 4
\i+s? (cosh TR eé) + 1sinh (/1 + 5%
2
! 1 V
f sinh 4/= + s%(t — y) e”2dy
0 4
ﬂ/i + 52 (cosh % + 5%t — e‘ﬁ) - % sinh % + 52t

9

52 ’
we get
1 1 1 1 1
t,s) = h /= + st — inh /= + 521
v(t, §) S+lcos 1 s (2(s+1)) 1 2sm ) s
Z+S

1 1 -1 1
+ sinh 4/~ + s2¢ COSTV - p(s)

1, 2 4 ssins J\s+1

Z+S

1 ,/%+s2(cosh ‘1—l+s2t—e‘%)—%sinh }T+s2t
B 1 s+ 1

Z+S2

1 1/}‘+sz(cosh }r+s2t—eé)+%sinh i+s2t
+ - :
p(s) S+1) N
S Z+S
Therefore
sinh zlt"'szt coss — 1 1 ez
v(t, s) = ; - p(s)|+
Ly ssins J\s+1 s+1
4
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1 ﬂ/}‘+52(cosh }f+s2t—e§)+%sinh i+s2t
+ (p (s) — ) ) (1.32)
4
1
Applying the condition v (1, 5) = =, and applying (1.32), we get
et sinh —+s2 coss—1 )+ et
= - p(s
1+s 1 ssin § s+1 p s+1
Z+S
( | ,/‘—11+s2(cosh,/—+s2—e2) L1sinh (/1 + s
+{p(s) - ) .
s+ 1 2 /4+S2
We have that
sinh + 57 | (coss— 1 1
(S
1,2 ssins J\s+1
4
1 2 1 2 1 1 o: 1 2
1 ﬂ/‘—‘+s(cosh Z+s—ez)+§smhﬂ/Z+s
+(p(S)— 1) =0
s+ 52 ‘—1‘+s2
Since
sinh \/ (coss— 1)
ssin s
‘—"i's2
,/i+s2(cosh1/}L+s2—e%)+%sinh 1+s2
+ # 0,
52 %+s2
it follows that
= 1.33
p(s) 1 (1.33)

and from the formula (1.26), we get

1
M,(O, S) = —m.
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Therefore, since we are taking the inverse of laplace transform, we have
px)=e " u(0,5) = -, -1 <t < 1. (1.34)

Now, to obtain u(t, s), let =1 <t < 0. Using (1.26) and (1.27), and since p(s) = —, we have

s+1°

-t

e
l’ = 2 _1 t 0’ 1-35
u(t, s) 1 <t< (1.35)
Let 0 <t < 1. Using (1.32) and since p(s) = ﬁ, we have
 o<r<
t,s) = , t .
v(t, s) ] <t<

Therefore, from formula (1.29), it follows that

t e_t
u(t,s) =v(t, s)e 2 =
(t,s) = v(t,s) 1

,0<tr< 1. (1.36)

Therefore, from formulas (1.35) and (1.36), we have

-t

u(t,s) = ,—1 <<l (1.37)

s+ 1
Using formula (1.37) and taking the inverse Laplace transform with respect to x, we get
ut,x) =e ", -1<tr<1.

Thus, the exact solution of problem (1.21) is

(u@,x),p(x)=(""e").
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Note that using similar procedure one can obtain the solution of the following identification

problem for a one dimensional elliptic-telegraph equation.

82ul(t, ult, n 82ult,
Tuln) | gD z a, 289 = p(x) + f(t, x),

Ox?
r=
—+
x=(x1,.,x,)€Q ,0<t<T,
au(t, & dul,
S = L i = p) + 84, ),
r=
—t
x=(x,.,x)€Q , -T<t<O0, (1.38)

(0, x) = 9(x), u(~T, x) = ¥ (x), u(T, x) = pu(x), x € Q,

u(t,x) =a(t,x), u.(t,x)=p6(x),

1<r<n-T<t<T,xeS"

for the multidimensional elliptic-telegraph equations. Assume that @, > a > 0 and

fe0(te0.7),xeQ),g(t.x),(t € (-T.0),x € Q) (x), ¢ (x), u(x), (x € Q) are given
smooth functions. Here and in future Q* is the open cube in the n-dimensional Euclidean

space R" (0 < x; < 00, 1 < k < n) with the boundary §* and
Q =Q'us”.

However Laplace transform method described in solving (1.38) can be used only in the case

when (1.38) has a,(x) polynomials coefficients.
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Fifth, we consider the Laplace transform solution of the following SIP

Pultx) | dutx)  OPultx) _ 9 -x
or? + ot Ox2 - p (X) 26 ’

O<x<oo,0<t<,

2 2
_Outy) _ gux) _ p(x) —2e™,

or? 0x?

(1.39)

O<x<oo,-1<1<0,

uO,x)=e*,u,(0,x) =0, u(xl,x) =e*,0 < x < 00,

u(,0)=1u(t,oc0)=0,-1<tr<1

for a one dimensional elliptic-telegraph equation.
Using formula (1.22) and conditions u (¢,0) = 1, and taking the Laplace transform of both

sides of the differential equation and initial conditions, we can write
Luy (6, )} + L (8, %)) = L{ug, (6,0} = p(s) =2L{e"},0 <1 < 1,

—L{uy (1, X)) — L{ug, (t,x)} = p(s) —2L{e™}, -1 <t <0,
L{u0,x)} = L{u(xl,x)}=L{e™}, L{u,(0,x)} =0.
or

Uy (t,8) +u, (t,8) — sSu(t,s) + s+ u, (1,00 = p(s) —2--,0<r< 1,

1+s°

—uty (t,5) — SPu(t,s) + s+ u, (£,0) = p(s) -2, -1 <1 <0, (1.40)

1+s?

u(0,5) = <, u,(0,5) = 0,u(xl,s) = L

1+s° 1+s°

We denote that

u, (1,0) = B (1.41)
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Then, taking the Laplace transform with respect to ¢, we get

—u, (0+, ) + wu(w, §) — == — s*u(w, s)

wu(w, s) - —

s+1
=(p(9) - “22) L - Bw).0<r <1,

—w*u(w, s)+w -+ u; (0—, s) — s2u(w, §)

= (p(s) = =2) L~ B(w), -1 <1 <0,

u(l,s) = .

We denote that
Uu; (O+’ S) = U (O_a S) = (I(S)

Then

wu(w, s) — wsﬁ —a(s) + wu(w, s) — = — s*u(w, s)

=(p(s) - =22) L —Bw),0<r <1,

—wu(w, §) + wog + a(s) — s'u(w, ) (1.42)

= (p(s)— 222} L — B(w),~1 <1 <0,

u(xl,s) = m
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From that it follows
(a)2 +w— sz) u(w, s)
= 1 (p(s) = 1) + als) - flw) - et g < <,

(—w2 - sz) u(w, )

= L(p(9) - ) - als) — plw) - L2 1 <1 <0,

u(xl,s) = .

or
_ 1 1 —W —w+s +s+1
uw, 5) = o (L (P (9) = 25) + als) - Blw) - =28t} 0 <r < 1,
= 1 1 wi+s +s+1
Uw,s) = ——— (5 (p (s) — s+1) a(s) — f(w) — W) -1<1t<0,
u(xl,s) = m
We have that
_ 1 1
M(w’ S) T 2Veltw (s+ Vol+w s— \/u)2+w)

x(5(p(9) = ) + a9 - fw)

- L (—f=-——).0<r<1,

+
(s+Dw 20V +w \ s+ Vol +w s— Vol +w

(1.43)
ww, 5) = == (L (p(9) - &) — als) - Bw))

1 1
+ (s+Dw + w(w2+s2) ’

-1<t<0,

u(xl,s) = 1—H
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Taking inverse of Laplace transform with respect to x in (1.43), we get

u(w, x) = 25% sinh Vw? + wx

——7=—J, sinh Vo? + 0 (x = y) (p(y) — e ™) dy

+2m fox sinh Vw? + w (x — y) a(y)dy

1 x Lo
+2wmf0 sinh Vo? + w(x —y)dy + e, 0 <t <1,
u(w, x) = 52(—2’)) sinwx — 55 fox sinw (x — y) (p(y) — ™) dy

+i fox sinw (x —y) a(y)dy

+50 [Usinw (x —y)dy + L, -1 <1 <0,

u(xl,s) = -

Passing limit when x — oo and applying the condition

u(w, o0) = 0,
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we obtain

LD ginh Vw? + wx —

T sinh Vw? + w (x — y) (p(y) — e™)dy

1 fx
2w Vw?+w JO

+2\/(j27+w fox sinh Vw? + w (x — y) a(y)dy

+2w\/i)2—mf0xsinh Vo? + w(x—y)dy =0,0 <t <1,

(1.44)

/32(_:)) sin wx — 217 fox sinw (x —y)(p(y) —e™)dy

+oL [Tsinw (x —y) a()dy + 55 [sinw (x—y)dy =0,-1 <t <0,

2w?

1

I/t(il,S) =15

and

u(w, x) = ie‘x,O <t<l,

u(w, x) = ie"‘, -1<t<0.
Taking inverse of Laplace transform with respect to 7, we get
ut,x) =e*,-1<r<1.

Now, from (1.44) taking the dirivative with respect to y, we obtain

1
~5 sinw (x —y) (p(x) —e™)

1 1
+—sinw(x—y)a(x) + — sinw(x—y) =0,
w 2w?
From that follows a(x) =0,8(f) = —1 and B(w) = —i and using (1.43), we get
p(x)=e"0< x<oo.
Therefore, the exact solution of problem (1.42) is
(u(t,x),p(x) =(e"e™).
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Note that using similar procedure one can obtain the solution of the following identification

problem for a one dimensional elliptic-telegraph equation.

n

2
" a/c’)u(t,x) _ Z arw = p(x) + f(t, x),
1

ot x?

8%u(r,x)
o

r=

X =(x1, .00y Xp) e§+, O0<t<T,

2 n 2
_Fun s g, TUED — (3 + g(t, ),

2 rT a2
ot = ox;

(1.45)

x=(X1,...,X,) € ﬁ+, -T <t<0,

w0, x) = @(x), u(~T, x) = ¥ (x),u(T, x) = p (x) , x € Q. ,

ult,x) =a(t,x),u(t,0)=0,-T<t<T,xeS*

for the multidimensional elliptic-telegraph equations. Assume that @, > a > 0 and
[t x) (t €0, T),xe 5) ,8(t, x), (t e (-T,0),x€e 5) ,0(x), ¥ (x) , u(x), (x € ﬁ) are given
smooth functions. Here and in future Q* is the open cube in the n-dimensional Euclidean

space R" (0 < x; < 00, 1 < k < n) with the boundary S * and
Q =Qtus™.

However Laplace transform method described in solving (1.45) can be used only in the case

when (1.45) has a,(x) polynomials coefficients.
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Now, we consider Fourier transform solution of identification problems for elliptic-telegraph
differential equations.
Sixth, we consider the Fourier trasform solution of the following problem

0%u(t,x)

2
u i dutx) _ Putx) _ p(x) _ e—x2 + (_4x2 + 2) e—t—xz’

ot 0x?

0<t<l,xeR!,

SPun) ) - p () — o 4 (<42 4 1) e (1.46)

or? 0x?

-1<t<0,xeR!,

u(0,x) = e, u(+l,x) = ¥, x e R!

for a one dimensional elliptic-telegraph differential equation.

We denote
Flu(t,x)} =u,s).

Taking the Fourier transform of both sides of the differential equation (1.46) and boundary

conditions, we can obtain

y (1, 5) + t, (&, 5) + s2u (t, 5) = p(s) = F {e™}
—e_tf{% (e"‘z)},o <t<1,
—ty (1) + S (t,5) = p(9) = F {7} (1.47)

+e"7’{% (—e‘xz)} - e"ﬁ’:{e‘xz} ,—1 <t<0,

u(0,5) = F {e} u(xl, s) = F {717},
Applying the formula

¢{j_ (e—xz)} - P e,
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we get

u, (t,8) +u, (t,s) + s*u(t,s)
=p(s) - T{e_"z} + s’e7'F {e"‘z},o <t<l,
—u, (t,5) + s*u(t,s) (1.48)

= p(s)—T{e‘xz} +e"(s2 - I)T{e_xz},—l <t<0,

u(0,5) = F (e} u(zl,s) = e*'F {e}.
Let —1 <t < 0. We consider the identification problem

—u, (1, 8) + s*u(t, s)

=p(s) - 7'{6_)“2} + e (s2 — I)T{e‘xz},—l <t<0,

(0, s) = T{e"‘z},u(—l, 5) = eT{e‘xz}.

Applying Dalambert’s formula, we get

u(t,s) =cosh(st)u(0,s) + % sinh (st) u, (0, s)

1 f sinh (s (t = ) (p () = F {e} + e (2 = 1) F fe ) dy
0

S

= cosh (st) F {e_xz} + % sinh (st) u, (0, s)

s (-7 e

s
—% fo t sinh (s (1 - y)) (7 (s = 1)) dyF {e ™).
Applying formulas
F (e} = Ve ¥, (1.49)
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t
f sinhs(t—y)edy = (s cosh st — se™ + sinh st),
0

sz2 -1

coshst—1

f sinh(s(t —y)dy = ———,
0 S

we get

2 1
u(t, s) = cosh (st) Vme * + — sinh (st) u, (0, s)
s

1coshst—1

Leoshar= 1 )

S

! (2-1)

S

SZ
- (scosh st — se™" + sinh st) Vme 7.
S —

Therefore

sinh st

u(t,s) = 1 (0, 5) — Ve T
l )

2

_ (cosh st — 1)(1? (s) — ﬁe‘%) + e e T (1.50)

S2
Therefore, using condition u (—1, s) = e {e‘xz}, we get

sinh s

2
ene T =

(ut 0, s) — \/;e_%)

coshs—1

—— (p (s) — \/Ee_%) +evme s,

From that it follows

2
Uz (09 S) = \/7_1.6_7

_( s )(coshs—l)(p(s)_\/;e_sj). (1.51)

sinh § 52

Applying formulas (1.50) and (1.51), we get

sinh s

sinh st\ {coshs — 1
u(t,s)=—

3 )(p(S) - \/Ee‘%)
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_ (coshsszt — 1)(1) (s) \/7_1'6_%) +o! \/J_re_% (1.52)

Now, let 0 < ¢ < 1. Applying (1.48), we have get following identification problem

u, (t,8) +u, (t,s) + s*u(t,s)

= p(s)— VT T + 2T T,0 <1< 1, (1.53)

M(O, S) = ﬁe_%,u(l, S) = e_l \/7_'[6_%_

We denote
u(t, s) = v(t, s)e =. (1.54)
Then

1 t t
Uy (t’ S) = —§€_§V(l, S) + e_ivl (ta S) )

1
uy (t,s) = Ze_%v (t,5) — e_%vt (t,5) + e_%v,, (t,5).

Using these formulas and (1.48), we get the following problem

t $2
teTr st me T, 0 <1 <1,

v(0, s) = \/Ee‘%,v(l, 5)=e? \/Ee‘%,
v,(0, 5) = u, (0, s) + % \/Ee‘%.

It is easy to see that

sinh s

v(0, 5) = —% Vet - (= )(COSth - 1)(p(s) - VReE), (1.55)
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Then, applying the D’ Alembert’s formula, we obtain

52 1 1 1
W(t,5) = Vme ¥ cosh y[— + st + sinh 4/ = + s21v,(0, s)
w,z-l's
1 ! 1
+ fsinh\/—+s2(t—y)
,/}‘+s2 0 4

2

X [ei (p (s)— \/Ee_f) —_ \/Ee_i*e_g] dy.

Applying (1.55) and formulas

!
1
fsinh —+s2(t—y)erdy
0 4

/1 2 1 2 _ o3 1 1 2
4+s(cosh 1 T8t e2)+231nh 1 T8t

b

52

!
1 y
fsinh —+s52(t—y)e 2dy
0 4

1 2 1 24 _ 51 _ 1 1 2
ﬂ/4+s(cosh 7+ s 62) 2smh 7t

= > s

S

we get

52 1
v(t, s) = Vme™ T cosh 4/ i s2t

; 1 2
sinh 4+st( 1

2 s coshs—1 2
+ —> Vme ¥ —( . )( . )(p(S)— \/Ee“‘))
I 5 2 sinh s s
i + S
2 i .
(p(s)— \/Ee‘?t) ,/}‘+s2(cosh J—l+s2t—ei)+%smh J—l+s2t
+ 2
1 s
i + 52
rz t .
(s2 \/Ee‘T) i+ s (cosh %+s2t—e‘§)—%smh T
_ - . .
i + 52
Then
sinh /1 + 521
1 coshs—1 2
w(t,s) = — ( - )(p(s) - \/7_T€_7)
Ly s sinh s

4
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/1 2 1 2 _ o5 1 1 2
2 4+s(cosh ;s ez)+251nh 3t st
7

1

2
i+

2

2
x (p(s) - \/7_16_7). (1.57)
Applying the condition v (1, s) = e \/Ee‘% and formula (1.57), we get

5 sinh

e_% \/Eg_% = —

+ 52 (coshs -1

1
4
1 2
1/4+s
14 s2(cosh /L + 52 —e? )+ Lsinh /L + s2
4 3 2 4

+ s2

)(p(s) - Vre ¥

s sinh s

(P9 - vre7)

§2
_1 _s
+e 2 \me 7.

From that it follows

i 1 2
sinh 1T coss — 1 B
- : p(s) — Vme
%+S2 ssin s
1 2 1 24 _ L% 1 1 2
1/4+s(cosh 3+ st 62)+2s1nh,/4+s
+
2 (1, 2
s74[7ts
s2
X (p (s) — \/7_re_7) =0.
Since

; 1 2
sinh 1+ st (coss—l)

1 ssin s
1 + S2
i+ s2(cosh A e%) + 1sinh (/1 + 52
+ %0,
s2 }L + 52
it follows that
S2 2
p(s)= Vme s =F {e}. (1.58)
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Therefore, taking the inverse Fourier transform with respect to x, we get
p)=e™. (1.59)
Now, we will obtain u(t, s). Applying formulas (1.52), (1.54), (1.57) and (1.58), we get
u(t,s) = e Ve T, -1 <1< 1. (1.60)
Therefore, taking the inverse Fourier transform with respect to x, we get
ut,x) = e,
Thus, the exact solution of problem (1.46) is
(w(t,x),p(x) = (e_t_xz, e_xz) i
Note that using the same manner one obtain the solution of the following BVP

8%u(t,x)
o2

Il
" aau(t,x) _ Z a O u(tx) p(x) + f(t, X),

o rihm Tox!..ox"
O<t<T,x,reR" |rl=r+..+r,

2 Il
_6 u(t,x) _ Z a 0" u(t,x) — p(x) +g(t, x),

2 F a7l m
ot rj=2m Ox,' .0,

(1.61)

-T <t<0,x,reR",

M(O, .X) = QD(.X), M(—T, X) = W (X) ) M(T, X) =H (X) )

xeR"-T<t<T

for a second order in ¢t and 2m — th order in space variables multidimensional
elliptic-telegraph differential equation.
Assume that @, > @ > 0 and f (t,x)(t € (0.7),x € Q), g(t,x) (¢ € (-T.0),x € Q), (),

U (x), u(x), (x € 5) are given smooth functions.
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However Fourier transform method described in solving (1.61) can be used only in the case
when (1.61) has constant coefficients.

So, all analytical methods described above, namely the Fourier series method, Laplace
transform method and the Fourier transform method can be used only in the case when the
differential equation has constant coefficients or polynomial coefficients.

1.3 The Guide of the Thesis

In this section, let us briefly describe the contents of the various chapters of the thesis. It
consists of five chapters.

First chpter is the introduction.

Second chpter is the theorem on stability of differential equations of SIP for the elliptic-
telegraph equation is established. In applications, theorems on the stability of three SIPs
for one dimensional differential equations with nonlocal conditions and multidimensional
elliptic-telegraph differential equations with local conditions are established.

Third chpter is the theorem on stability of accuracy DSs for the numerical solution of SIP for
the elliptic-telegraph equationis are established. In applications, theorems on the stability
of DSs for three type of the space identification problems for elliptic-telegraph PDEs are
proved.

Fourth chapter the first order of accuracy DSs for the numerical solution of SIP for a
one-dimensional and two-dimensional elliptic-telegraph equation with dirichlet and
neumann conditions are presented. Numerical results are provided.

Fifth chapter contains conclusion.
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CHAPTER 2
STABILITY OF SOURCE IDENTIFICATION PROBLEM FOR
ELLIPTIC-TELEGRAPH DIFFERENTIAL EQUATION

In this chapter, we consider the SIPs for elliptic-telegraph equations can be reduced to the

space SIPs for the identification for elliptic-telegraph equation

Cu) 1 @20 4 Au(r) = p + f(1),0 <1 < 1,
~ LD 4 Au(r) = p + g(0),—1 <1 <0, 2.1

u(0) = ¢, u,(07) = u,(07), u(=1) = ¢, u(l) = &

in a Hilbert space H with the SAPDO A > 61,6 > 0. Here p is the unknown parameter. The
rest of this chapter is organized as follows: In section 2.1, the main theorem on stability of
problem (2.1) is established. In section 2.2, theorems on stability of three SIPs for elliptic-
telegraph equations are proved.

Therefore, the main aim of this chapter is to investigate the space identification problem for

the elliptic-telegraph equation with parameter p.

2.1 Stability of the Differential Problem

Denote that

u(t) = u(t; f(0), 8(0), p, ¥, &), p = p(f(0), &), , ¥, ).

By a solution of inverse problem (2.1) we mean a pair (u(¢), p) satisfying the following

conditions:

1. The element u(¢) belongs to D for all r € [-1, 1], and the function Au(¢) is continuous

on[—1,1], p € H. Here, D = D(A) is the domain of an operator A.

2. u(t) is twice continuously differentiable on the interval [—1, 1]. The derivative at the

endpoints of the interval are understood as the appropriate unilateral derivatives.

3. (u(1), p) satisfies the evolution equation and local boundary conditions (2.1).
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A solution of problem (2.1) defined in this manner will from now on be referred to as a
solution of problem (2.1) in the space C(H) x H. Here C(H) = C([—1, 1], H) is the space of

continuous H-valued functions u(¢) defined on [—1, 1], equipped with the norm

el = max (ol 2.2)

In the present section, we will prove the main theorem on the stability of problem (2.1) in
the space C(H) x H.

To formulate our results we introduce the operator G = A — %I . It is easy to see that for
0> “72, G is the positive definite self-adjoint operator in the space H. Throughout, {c(¢), t > 0}
is a strongly continuous cosine operator-function defined by the formula

iG> p=itG'?

2

c(t) = <
Then from the definition of the sine operator-function s(#)

t

s(Hu = f c(y)udy
0
it follows that
G112 _itG'?
sty = g~
2i

Now, let us give four lemmas that will be needed in the sequel.

Lemma 2.1.1. Assume that

2
5> %,a/>0. (2.3)

Then for any ¢ > 0, the estimates

IG25(1)||,_,, < 1. (2.4)

ey < 1, o <

|B® exp (=B}, , < 1.0<B < 1| —exp{-2B)7"'|,,_, < M(©)

are satisfied. Here B = A'/2.
Proofs of these estimates are based on the spectral representation of the SAPDO in a Hilbert

space.
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Lemma 2.1.2. Assume that
52(%Y+La>o.

Then, the operator
(1-— s (c(l) +-g§s(1)))

has an inverse
E:(I—e—‘z’(c(l)+%s(l)))_l

and the following estimate holds

NElg—n < o (2.5)
1- (1 + %) e 2
Proof. The proof of the estimate (2.5) is based on the estimate
e+ 2s(h)l| <1+ (2.6)
2 H—-H 2

Using the definitions of c¢(#) and s(¢) and positivity and self-adjointness property of A, we

obtain
a a 1
c(l) + ES(I) . <1+ —6Sllp W
- <p<eo _a
P =3
1% 1 a
<1+ Ew <1+ E
(6-%)

The proof of estimate (2.6) is completed. Lemma 2.1.2 is proved.

Lemma 2.1.3. Assume that
a 2 a\?
—+1) 262(—)+1, > 4. 2.7
Q 2 ¢ @.7)
Then, the operator
1-B(1+e™®) " (1-e®)Ees(D)

has an inverse

1

Q:P-BU+5%”Q-(§E(%aﬁ_
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and the following estimate holds

19l < M(a, 6), (2.8)

where M(a,6) > 0.
Proof. We have that

0= (1 _ed (c(l) + %s(l)))

X {1 e (c(l) ; %s(l)) ~B(I+e?) (1-¢) e—%’s(l)}_1 .

First, we will prove the estimate

() + %s(l) +B(1-e)(1+e®) " s(D)

<1+ % + 612, (2.9)

H—H
Using the definition of s(#) and positivity and self-adjointness property of A and the triangle

inequality, we obtain

a?

1/2
] <62 (2.10)
pP—

1176 7, 2 |

6<p<oo

and

- P e
|B(1+e?) s < sup( p ) ( m)sa”z.

> _
H-H  5<pcco p—% 1+e®r

2
From that and from the estimate (2.6), it follows estimate (2.9). Using 6 < (% + 1) , we get

IR

a a (04
1+¢ 1/2) -<2(1 —) -5
(+2+6 e 2 < +2e

The proof of the estimate (2.8) is based on the estimate

2 sup (1 + g)e’g < 1.

4<a<o0 2

Denote

gla) = (1 + %)e_%.

It is clear to see that

g@=-—e2<0

&R
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for @ > 0. Therefore,

2 sup (1 +%)e‘% < 2(1 +

4<a<oc0

Lemma 2.1.3 is proved.

Lemma 2.1.4. For the solution of problem (2.1) we have the following formula

where

and

u(t) =v(t) + A p,

p = A¢ — An(D),

v(f) = (I _ e—zB)—l [(etB _ e—(2+z)3) Vo + (e—(1+t)B _ e—(l—t)B) Vo1

_ (e—(1+t)B _ e—(l—t)B) 2B)™! f(e—(lﬂf)B _ e—(1‘>’)5) gy)dy

0
+(2B)"! f (e-'—”y'B - e<’+y>B) gO)dy,-1<t<0
-1

-1

0

v(t) = e 2! (c(t) + %s(t)) Vo + e 2 s(t)v,

t

+ f e 2 st —y) f()dy,0 <1< 1,

0

V*l:VO_QD-i_w’

vo=E {egs(l)v{) +

‘ffﬁ“%ﬂ—wﬂw@+¢—§

0

1
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2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)



1

== [B (1=e) (1= e+ Ssm))

1
X {fe‘f“”s(l - NfOdy + ¢ — f}

0

0

_2Be B (—p + ) + f(e—(2+y)8 _ eyB) e(y)dy

-1

. (2.17)

Proof. We seek the solution of problem (2.1) by formula (2.11), where v(¢) is the solution of
the following nonlocal BVP

d*v(t)
dr?

+ a0+ Av(t) = f(),0 <t <1,

d>v() —
~ 0 4 Av() = g(1),—1 < 1 <0, (2.18)

v(0) = v(=1) = o =, v(0) —v(1) = ¢ = & v(07) = v,(07)
for the differential equation in a Hilbert space H with SAPDO A. Now, we will obtain the
formula for the solution of nonlocal BVP (2.18). It is known (Ashyralyev and Sobolevskii,

2004) that for smooth data of the initial and boundary value problems

V@) +av' () + Av(t) = f(1),0 <t < 1,

(2.19)
v(0) = v, V'(0) = vy,
=" (t) + Av(t) = g(¢),—1 <t <0,

(2.20)
v(0) =vy, v(=1)=v,

there are unique solutions of the IVP (2.19) and BVP (2.20) and formulas (2.13) and (2.14)
hold. From nonlocal bondary condition vop— v_; = ¢ — ¢ it follows (2.15). Now, we obtain

vo. Applying (2.14) and condition vy — v(1) = ¢ — &, we can write

1

el (C(l) + %S(l))vo +e T s()v) + fe_g(l_y)s(l = NfMdy =vo - +§&.

0
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By Lemma 2.1.2, there exists the operator E = (I —e2 (c(l) + %s(l)))_1 and the formula
( 2.16) holds. Now, we will obtain v;. Applying (2.13 ) and taking derivative at r = 0 and

using the condition v,(0*) = v,(07), we get

vy = (I - e‘zB)_l [B (I + e_ZB) vo — 2Be Bv_,

0

+ f (7% — %) g(v)dy

-1

From that and formulas (2.15), (2.16) and (2.21), it follows that

_ (2.21)

o= (1= ) B (14 e~ 2 (1= o7 ety + 2ot

1
X {e‘z’smva + f e 1V s(1 =) f)dy + ¢ — é}
0

0

—2B€_B (_QO + l//) + f(e—(2+)’)3 _ e)’B) g(y)dy

-1

By Lemma 2.1.3, there exists the inverse operator

-1

0= (1 -B(I+ e_B)_l (1- e-B) Ee—‘z’s(l))

and the formula (2.17) holds. Therefore, for the formal solution of the problem (2.18) we
have the formulas (2.13), (2.14), (2.15 ), (2.16) and (2.17). Formula for p follows from
(2.11) and condition u(1) = ¢. Lemma 2.1.4 is proved.

2 2
Theorem 2.1.1. Suppose that ¢, ,& € D(A), and @ > 4,(52’ + 1) >0 > (%) + 1. Let
f(t) and g(7) be continuously differentiable functions on [0, 1] and [—1, O] respectively. Then

there is a unique solution of the problem (2.1) and the stability inequalities

max [u()lly + |47 p,, < M(@.8) gl + Wy + Il (2.22)

+ max 4720, + max|]a s | .
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d*u(t)
dr?

—l=<e<1

+ max [[Au()lly + |pll,
H —-1<<1

< M(,0) [IIA@lly + IAY1l + [1AE]l + lIg(O)lly (2.23)

+ ’ + + ’
max [lg' (Ol + Ol + max | O,

hold, where M(«, §) does not depend on f(¢),t € [0, 1], g(¢),1 € [-1,0] and ¢, ¥, &.

Proof. Applying formula (2.12), we can obtain estimates

A7 p|l,, < €l + IVl 1Pl < IAEl, + IAV(DI, - (2.24)

Therefore, by (2.11) we need to establish estimates for rlnax1 vl » rlnax1 [|Av(?)||y and
—1<t< —1<t<

d*v(t)

max ||~

—-1<<1

inequality and estimates (2.3), (2.4), (2.5) and (2.8), we get (Ashyralyev and Sobolevskii,
2004)

First, we obtain the estimate |[v(?)||y for —1 < ¢t < 1 and the triangle

max [Vl < My, 8)|Ivolls + Iv-1lls + max, 420, | (2.25)
—1<1<0 —-1<t<0

Similarly, by (2.14) and the triangle inequality and estimates (2.3 ), (2.4), (2.5) and (2.8), we
get (Ashyralyev and Sobolevskii, 2004)

max [v()lly < Ma(e, 6) [nvonH +[lamv]], + max ||A‘”2f(t)||H] . (2.26)

<t<1

To end it we need estimates for ||voll; , [[v_1ll; and ||A‘1/2v(')

and estimates (2.5), (2.8), ( 2.25) and (2.26), we get

- Using the triangle inequality

ARG, 6 s, il

_a
Volly < Ny e -

H—H

1

" f ARG NG s =, AT 0 dy
0

+lielly + €N} < Ma(e, 0) [llelly + Wl + 1€l

+ max 471200, + max a2 £, |

-1<1<0
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v-ille < 1volle + llellz + 1l
< Mu(a, ) [liglly + W11y + 11l

+ max A 200, + max a2, |

—-1<t<0
and
A 2w ], < 1@l | (7 - e—ZB)‘IHH [H(z _ e—B)2'|M IENon
1
| [emra ol ol o
0
+ gl + 1€ll} + 2 ||e ]|, Ul + 11l
0
o [ e+ ) 47 20
-1
< Ms(a,8) [lllly + Il + Il
+ max, 4720, + max[la2r)] .
Therefore

max [vOlly < Ms(@, 6) [llglly + 1l + 111l

+ max [|A72g(0)],, + max 472 f(t)||] (2.27)

-1<t<0 H .

Applying formula (2.11) and estimates (2.24) and (2.27) and the triangle inequality, we

obtain estimate (2.22).

Second, we obtain the estimate ||Av(¢)||y, for —1 < ¢ < 1. Using formulas (2.13) and (2.14)

and integrating by parts, we can get formulas

Av(t) = (I - e_ZB)_l [(e’B - e_(z”)B) Avg

e—(1+t)B _ e—(l—t)B

2

+ (e—(1+z)3 _ e—(l—t)B) Av_; —
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0
x {—ZeBg(O) +(I+eP)g(-1)+ f (78 4+ 7 198) ) dy}

-1

+(I + eZtB)g(t) _ %(e—(lH)B _ e_(l_’)B)g(—l) (2.28)

0
—e'’g(0) - f (e + M) ()dy, -1 < 120,
-1
and

Av(t) = ¥ (c(t) ; %s(t))Avo + e HSOAY) + AG™ f(1) = e e £(0)

n f e e(t - ) (%f@) + f’(y)) dy} 0<r<l, (2.29)

0

Then, using (2.28) and estimates (2.3), (2.4), (2.5) and (2.8), we obtain (Ashyralyev and
Sobolevskii, 2004)

max [[AvDlly < M(a,6) [[lAvolly + lAv-1llx (2.30)

+ max g Ol + 18O |

Similarly, using (2.29) and estimates (2.3), (2.4), (2.5 ) and (2.8), we obtain (Ashyralyev and
Sobolevskii, 2004)

(2.31)

/2.7
max [[Av(0)lly < Ms(@. ) [[IAvolly + [[4"2v],

+ £ Ol + puax 1 Ol

To end it we need estimates for ||Avo||y , [[Av_1||y and ||A1/ 2vé” 5 - Using formulas (2.16) and

(2.17) and integrating by parts, we can write the formulas
Avy = E{e73 s(DAV) + Ap — A¢ + AG™

1
X[c(l)f(l)—c(l)f(o)— f 501 — y) [%f(y)+f’<y>] dy]}

0
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and

Then,

and

APy = 01— ) [AG—1 (1-e*)E

1
x [c(l)f(l) — e()F(0) - f e 30e(1 - y) [%f@) ¥ f’(y)] dy]
0
+AQ — A&} — 2Be™® (—Ag + Ay)

0
X {ZeBg(O) +(1+e™) g1+ f (ee? — &) g’(y)dy}

-1

using the estimate (2.5), (2.8), (2.30) and (2.31 ), we obtain

1AVolly < IAE |l {€7?

ARG |[AGY s Ayl

H—-H H—H ||

{1l + 1Oy + (17Dl + max 170l )}
+1Aglly + 1A} < Mo(@,6) 1Al + 1AWl + 1A,
+ max 18/l + 18Oy + max 7Ol + £ Ol .

lAV_illa < [|Avolly + [|A@lly + 1AVl
< Mio(@, 6) |IIAlly + AWl + 1IAEN + max llg" (Dl

+ 18O + max 17Ol + F Ol

e

o <10l ||(1 - )|

H—H

[l

X {||f(t)||H + £ Ol + (||c<1>f(r>||H +lle(Dl; max ||f'(r)||H)
+11Aglly + A&l + 2 [le”(|,, , WAl + IAl,)
e 4 (=) Nt D+ max g )|

< M11(@,0) Il + 1AWl + A€, + max, 118 Ol

59




+ 8Ol + max [lf @l + ”f(O)HH] :

From these estimates and formulas (2.30) and (2.31), it follows

max [|Av(Dlly < Mia(@, 6) [||A90||H + 1Ayl + IAgl, + max (18Dl
—1<<1 -1<t<0

+ 18Oy + max I Olly + 1FOly | (2.32)

Using estimates (2.24), (2.32), we obtain

1PNl < A&y + 1Avi]]5

< Mi3(@,0) |lIA@lly + AWl + 1IAENl; + max llg" (Dl (2.33)

+ 18Oy + max I Olly + 1F Ol

Finally, applying the triangle inequality and equations (2.19) and (2.20) and estimate (2.32),

we get
POl o110 [1Agl, + 14v, + 1Ag] 12 @l
L el 14(a,)[ Gl + Al + 1lAZ]y + max [l (Dlly
+ 18OVl + max 7@l + 1Ol | (234)

Estimate (2.23) follows from estimates (2.32), (2.33) and ( 2.34). Theorem 2.1.1 is proved.
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2.2 Applications
In this section, we consider the applications of the Theorem 2.1.1.

First, we consider the equation

uy(t, x) + au(t, x) — (a(x)u,(t, x)), + ou(t, x)

=px)+ f(t,x), 0<r<1,0<x <1,
(2.35)

—uty (1, x) = (a(X)u(t, X)), + ou(t, x)

=px)+g(t,x), —1<t<0,0<x<1.
LetD:(_l’ I)X(O’ l)aDl :Dm(t>0),D2 :Dﬂ(t<0),s = {(t,X) :t:0,0SxS 1}

Problem. Find a pair of functions (u(¢, x), p(x)) with the following properties:
D u(t,x) € C(D)NC' (D1 UD, UI)NC2(D1UDy),
2) u(t, x) satisfies the equation (2.35) and the boundary conditions
u(t,0) =u(t, 1), u(t,0) =u(t,1),-1 <tr<1,
u(0, x) = p(x), u,(0%, x) = u, (07, x), (2.36)
u(—1,x) = y(x),u(l,x) = &(x),0 < x < 1.
Problem (2.35) and (2.36) has a unique solution (u(¢, x), p(x)) for the smooth functions a(x) >
a>0,a(l) =a(0),t e (-1,1),0,a > 0, p(x), ¥(x),&(x), x € [0,1]. This allows us to reduce
the BVP (2.35) and (2.36) to the identification problem (2.1) in a Hilbert space H = L,[0, 1]
with a SAPDO A* defined by formula

A'u(x) = —(a(xX)uy), + ou(x) (2.37)
with domain
D(AY) = {u(x) : u(x), u(x), (@(x)u,)x € Lo[0, 1], u(1) = u(0), u (1) = u,(0)}.

Applying the symmetry property of the space operator A* with the domain D(A*) c W; [0, 1]
and estimates (2.22) and (2.23) in H = [,[0, 1], we can obtain the following theorem on
stability of problem (2.35) and (2.36).
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Theorem 2.2.1. Suppose that ¢,¢,& € W3[0,1], and @ > 4’(% + 1)2 55> (g)z o1

- 2
Let f(¢, x) be continuously differentiable function in ¢ on [0, 1] and g(¢, x) be continuously

differentiable function in ¢ on [—1, 0]. Then the solutions of the identification problem (2.35)

and (2.36) satisfy the stability estimates
leell 1,117,000, + ||(Ax)_lp||L2[0,1] < Mi(a,9) [”‘p”Lz[O,l] + ||l/’||L2[o,1] (2.38)

+éN 0.7+ I S Nleqonzaoan + 11 8 ||C([—1,0],L2[0,1])] )

||u||C(2)([—1,1],L2[0’1]) + ”u”C([—],]],sz[O,l]) + ”p”Lz[O,l]

< My(«, 6) [”‘P”WZZ[OJ] + ||W||W22[o,1] + ||§||W22[o,1] (2.39)

+ 1 f lleoqon.Loro.ny + ||g||c<l>([_1,o],L2[o,1])] .
Here M, (a, 6) and M,(a, 6) do not depend on ¢(x), ¥(x), £(x), f(t, x) and g(¢, x).
The Sobolev space sz [0, 1] is defined as the set of all functions u(x) defined on [0, 1] such
that u(x) and the second order derivative function u”’(x) are both locally integrable in L,[0, 1],

equipped with the norm

1 2 | 3
o :[ | u(x>|2dx] +[ | |uxx<x>|2dx] .
0 0

Proof. Problem (2.35) and (2.36) can be written as abstract problem (2.1) in a Hilbert space
H = L,[0, 1] with SAPDO A = A* defined by the formula (2.37). Here f(¢) = f(t, x), g(t) =
g(t,x) and u(t) = u(t, x) are known and unknown abstract functions with values in H and
p = p(x) is the unknown element of L,[0, 1]. Therefore, estimates (2.38) and (2.39 ) follow

from estimates of Theorem 2.1.1. Theorem 2.2.1 is proved.
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Second, let @ C R" be a bounded open domain with smooth boundary S, Q = QU S. In

[-1,1] X Q, we consider the identification problem for elliptic-telegraph equations

ity %) + a1, X) — 3, (a(x)uy (1, %)),
r=1

=px)+ f(t,x), 0 <t < 1,x=(x1,..., x,) € Q,

n

—u, (2, X) — Zl (a(x)uy, (1, X)),

r=

= p(x) + g(t, -X), —-1<t< O,_x = (xb ”_,_xn) € Q, (240)

u(0, x) = ¢(x), u,(0+, x) = u,(0—, x),

u(—1,x) = ¥(x), u(l, x) = &x), x € Q,

u(t,x) =0,xeS,-1<t<1.

Here a,(x) > a > 0, (x € Q), ¢(x), Y(x),£x)(x € Q) and f(1,x), (t € (0,1)),8(t,x),(t €
(—1,0))(x € Q) and (6 > 0) are given smooth functions.
We consider the Hilbert space L, (ﬁ) of the all square integrable functions u(x) defined on Q,

equipped with the norm

||u<x)||L2<Q):( f f Iu(x)lzdxl---dxn) |
xeQ

Problem (2.40) has a unique solution (u(t, x), p(x)) for the smooth functions ¢(x), ¥(x), £(x)
and a,(x). This allows us to reduce the problem (2.40) to the BVP ( 2.1) in the Hilbert space
H = L,(Q) with a SAPDO A* defined by formula

A'u(x) = = ) (a (), 2.41)
r=1
with domain

D(A") = {u(x) : u(x), u,, (x), (@ (X)uy,)x, € Lo(Q), 1 < 7 < nu(x) =0,x€ S},
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_ 2 2
Theorem 2.2.2. Suppose that ¢, . £ € Ly(Q), and @ > 4,($ +1) 26 > (%) + 1. Let f(.%)
be continuously differentiable function in 7 on [0, 1] and g(¢, x) be continuously differentiable
function in 7 on [—1,0]. Then the solutions of the identification problem (2.40) satisfy the

stability estimates
llle(ryi) + A" Pl < M@ 0) [llelly,@ + W) + 1l (2.42)

L lleqona@y + 118 ||C([—1,01,Lz(ﬁ))]’

x\—1
lallcori1iyzaoap + Ml nmzony + APl g

< M4(a’a 6) [”()Dlle(ﬁ) + ”‘p”l&(ﬁ) + ||§||L2(§) (243)

+ ” f ”C(')([O,l],Lz(ﬁ)) + ||gllc<1)([,1,o],L2(ﬁ)) + ”f(())”Lz(ﬁ) + ||g(0)||L2(§)] s

where M3(a, d) and My(«, 6) do not depend on ¢(x), ¥(x), &(x), f(¢, x)and g(t, x).
Here and in the future, the Sobolev space sz(ﬁ) is defined as the set of all functions u defined
on Q such that « and all second order partial differential derivative functions u,,,.,r = 1,,....,n

are both integrable in L,(Q) , equipped with the norm

n
||u||W22(Q):||u||L2(Q)+( f f )
xXeQ T

Proof. Problem (2.40) can be written as abstract problem (2.1) in a Hilbert space H = Ly(Q)
with SAPDO A = A" defined by the formula (2.41). Here f(r) = f(t,x),g(t) = g(t, x)

1

2
2
dx,---dx,| .

Uy, x,

and u(r) = u(z, x) are known and unknown abstract functions defined on Q with values in
H = Lz(ﬁ) and p = p(x) is the unknown element of Lz(ﬁ). Therefore, estimates (2.42) and
(2.43) follow from estimates of Theorem 2.1.1 and the coercivity of the elliptic differential
problem. Theorem 2.2.2 is proved.

Theorem 2.2.3. (Sobolevskii, 1975) For the solution of the elliptic differential problem

A'u(x) = u(x), x € Qu(x) =0,x € S,

the following coercivity inequality holds

n
[

r=1
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Here M5 does not depend on p(x).

Third, in [—1, 1] X Q, the identification problem for the elliptic-telegraph equation

u,(t, x) + au,(t, x) — En] (a(xuy,(t, x,)), + ou

r=1

=px)+ f(t,x), 0 <t <1,
(1, ) = 3 (a(x)ug (1, %)), + Ou
r=1

:p(x)+g(t’x)7 -1l<i< Oa
(2.44)
X =(x1, ..., X,) € Q,

M(O, .X') = QO(.X), ut(0+’ X) = ut(0_7 .X'),

u(—1,x) = ¥(x), u(l, x) = &x), x € Q,

ou(t,x) _ _
> =0,xe§,-1<r<1.

is considered. Here, 71 is the normal vector to S, a,(x) >a>0,(xeQ),px),P(x),Ex)(x €
5) and f(t, x), (t € (0, 1)), g(t, x), (t € (—1,0))(x € Q) and (6 > 0) are given smooth functions.
Problem (2.44) has a unique solution (u(t, x), p(x)) for the smooth functions ¢(x), ¥(x), £(x)
and a,(x). This allows us to reduce the problem (2.40) to the BVP (2.1) in the Hilbert space
H = Lz(ﬁ) with a SAPDO A* defined by formula

Au(x) = = ) (@, (D), + ou (2.45)
r=1
with domain
D(AY) = {u(x) D u(x), uy (x), (@ (X)uy, )y, € Lz(ﬁ), 1<r<n, % =0,x€ S} .
m

Theorem 2.2.4. For the solutions of problem (2.40), we have following stability estimates

letll (@) + ”(Ax)_lp”Lz(ﬁ)
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< M6(C¥, 5) [”SDHLZ(Q) + ”lp”Lz(ﬁ) + ”glle(ﬁ) (246)

I lleqona@y + 118 ||C([—1,0],L2@)]’

x\—1
lallcerq-1iyzatoap + Mlleqrnwzony + APl g

< My(@, &) |llgll @ + Wl + Il (2.47)

+ ” f ”C(‘)([O,l],Lz(ﬁ)) + ||g||c<1>([_1’0],L2(§)) + ”f(o)”Lz(ﬁ) + ”g(o)lle(ﬁ)] .

where Mq(a, d) and M7(a, 6) do not depend on ¢(x), ¥(x), (x), f(¢, x)and g(t, x).

Proof. Problem (2.44) can be written in abstract form (2.1) in a Hilbert space Lz(ﬁ) with
SAPDO A = A" defined by the formula (2.45). Here f(t) = f(t,x),g(t) = g(t,x) and
u(t) = u(t,x) are known and unknown abstract function defined on Q with values of
H = Lz(ﬁ) and p = p(x) is the element of Lz(ﬁ). Therefore, estimates (2.46) and (2.47)
follow from estimates of Theorem 2.1.1 and the coercivity of the elliptic differential
problem. Furthermore, Theorem 2.2.4 is proved.

Theorem 2.2.5. (Sobolevskii, 1975) For the solution of the elliptic differential problem
A*u(x) = u(x), x € Q,
ou(x) _
T 0,xeS,

the following coercivity inequality holds

n
)
r=1

Here Mg does not depend on p(x).

L©Q) < MS”/J”LZ(ﬁ)-
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CHAPTER 3
STABILITY OF SOURCE IDENTIFICATION PROBLEM FOR
ELLIPTIC-TELEGRAPH DIFFERENCE EQUATION

Note that absolute stable DSs for SIPs for elliptic-telegraph equations have not been well-
investigated. Our goal in this chapter is to study the absolute stable DS for the approximate
solution of the SIP (2.1). For the approximate solution of (2.1), applying the set of grid

points
[—1,1]T:{tk:tk:k7', _NSkSN’ Nt = 1}7
we propose the first order of accuracy DS

T2 Uy = 2w + 1) + T (g — ) + Attgyy = p + fio

fi=ft),1 <k<N-1,

~772 (U1 — Ut + Up_1) + Aty = p + g (3.1
g =gt),-N+1<k<-1,

Uy — U =g — U_1,Up =& U_N = @, Uy = Y.

The rest of this chapter is organized as follows: In section 3.1, the main theorem on the
stability of the DS (3.1) is established. In section 3.2, theorems on stability of DSs for three

SIPs for elliptic-telegraph equations are proved.

3.1 Stability of the Difference scheme
First of all, let us first give auxiliary statements from (Ashyralyev and Sobolevskii, 2004)
and some lemmas which will be useful in the sequel.

Lemma 3.1.1. Assume that ¢ > %, a > 0.Then the following estimates are satisfied

1 1 1/2
{ IRillirr < s WRalliors < s [[FGV2R, L, < 1, o)

”TGl/sz” <1, ||R1R£1|| < 1,||R2R[1|| <1.

H—-H — H—-H — H—-H —

Here, we denote
2

-1 -1
Ri=((1+5)1-ir6") R =((14 5 )1+i6'?) .G=a-2
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The proof of Lemma 3.1.1 is based on the spectral representation of the SAPDO in a Hilbert
space.

Lemma 3.1.2. Assume that

2
a
0> —
4

a > 0. (3.3)
Then, the operator
(1- Ry =R)™' [RY Ry =D+ RY (I - Ry)|)

has an inverse

E,

(1 ~(R,-R)™! [Riv (Ry = D)+ RS (I - Rl)])il

and the following estimate holds:

T\

IE o < (1 ; %)(1 ; 7) " (3.4)

Proof. We have that

I-R, =R, (% + iTGl/Z),I—Rl =R, (0_27 _ iTGl/Z),
Ry — Ry = RyR, (—2i‘rG1/2),

Therefore, applying the spectral representation of SAPDO and estimate (3.2), we obtain
R — RO [RY R - D+ RY =R

< H%RZRI (Ro—R)(RY R+ % IRY + R

H—-H

<N — ! :(1 g)(1 f)
2 (1+§)N+(1+%)N_1 AN

Lemma 3.1.2 is proved.

Lemma 3.1.3. The following estimates hold (Ashyralyev and Sobolevskii, 2004):

IR,y < 1 AR, < 1 (=) < M) (35)
where
TA+ AV NTA + 4

R=U+71B),B=

2
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Lemma 3.1.4. Assume that

(%+ 1)2 252(%)Z+ La>d4 (3.6)
Then, the operator

(1 —(1+RY) " *BR(1 - R*")E, (R - R)™ (RY - Rf’))
has an inverse

0. = (1 —(1+RY) " <BR(1 - R"')E, (R, - R)™ (RY - Rflv))_1
and the following estimate holds:

10l < M(, 9). (3.7)
Proof. We have that

0. = E! (E;1 —(1+RY) BR(I- R (Ry - R (RY - R’IV))_I .
Then

Q= (I~ R =R [RY (R =D + Ry (I - Ry)))

x{I=(Ry =R |RY Ry = )+ RY (I - Ry)|

—(1+ RN)_l tBR(I-RV") (R, - R)™" (RY - R’IV)}_1 :

First, we will proof the estimate

H(I +RY) tBR(I - R*") (R, — R)™ (RY - R?)H

H—-H

< \/5(1 + %T)_M. 3.8)

Using the positivity and self-adjointness property of A and the triangle inequality, we obtain

I+RY) tBR(I-=R¥") R, - R,)"' RY —RY
H—-H
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<+ RV (1- R IBRG

“761/2 (R~ R)™ (RY - R’l")”H_)H
It is clear to see that

7+ RY) " (1 - R <t (3.9)
and

1/2 1(pN _ pN at\ N2

|62 Ry~ RO (RY - RY)| < (1 + 7) . (3.10)
Now, since B?RA™! = I, then

BR = AB™".
Therefore

BRG], < A28, a6,

2 VP Vo
. A1
< s<p<eo | T2 + /T2p2+4 62})120 \/p_é <‘\/6£ < \/5 (3.11)
4 4
Using estimates (3.9), (3.10) and (3.11), we obtain
_ ~N+2

“(I +RY) " <BR(1 - R™) (R, - R)™ (RY - RIIV)”H—>H <6 (1 + %) -
From that and estimate (3.4) it follows estimate (3.8). Lemma 3.1.4 is proved.
Lemma 3.1.5. The solution of problem (3.1) exists and the following formulas hold:

we=vi+A'p,-N <k <N,p=Ay - Avy, (3.12)

where

Vi = (I _RZN)—I {(R—k _ R2N+k)V() + (RN+k _ RN—k)v_N

-1
+(RN—k _ RN+k) Z B—I(RN—}’ _ RN+r)R—1(2 + TB)—ITgr}
r=—N+1
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-1
+ Z B'YR ™) —RMRTY2 4+ tB) g, -N + 1 <k < —1, (3.13)

r=—N+1

vi = (Ry = R)™M{[( = RORE = (I = Ry) RY| vy

k-1

+(R5 — RY) (vi —vo) + Z RiRy(RE™ — R’f‘s)rzfs} ,2<k<N, (3.14)
s=1

V1 :VO+CL),V_N:V()_§+¢/, (315)

vo = E-(Ry — R ((RY - RY)w

N-1

+ Y RIR(RY = RS |+ -, (3.16)

s=1

w= QAU - RV [R - RV (o - &)

-1
" (RN+1 _RN—I) Z B—I(RN—r _RN+r)R—1(2 n TB)_ng,]
r=—N+1
-1
- Z B 'R — R*HR2 + 1B) '1g,
r=—N+1

N-1
— EARy =R\ ) RiRa(RY™ = R\ )7, + & - w} : (3.17)

s=1

Proof. It is clear that v; is the solution of the following nonlocal BVP

T2 (Va1 = 2V + Vi) + @77 (Vg — W) + Avgy g
= fl<k<N-1,
—772 (Vk+1 - 2Vk + vk—l) + Av, = 8ks — N+1<k<-1, (318)

Vi—Vo=wW=Vy—V_q,

Vo—Vvyn=E—@pvg— Vv =&Y
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for the DS in a Hilbert space H with SAPDO A. Therefore, we obtain the formula for the

solution of nonlocal BVP (3.18). There are a unique solutions of the initial value problem

T2 Vet = 20+ Vi) + @7 (Vs = V) + AV (3.19)
= fis 1 <k <N -1,vyand v, are given,

and the BVP
T2t = 20t v F A =g, ~N+1<k< -1, (3.20)
vo and v_y given

and formulas (3.13) and (3.14) hold (Ashyralyev and Sobolevskii, 2004). From conditions
vo—Vv_y =& —¢@and v — vy = w it follows (3.15).

Now, we obtain vy. Applying (3.14) and conditions vy — vy = € =¥, w = v| — vy, We can write

vo—E+y =Ry = R){[RY Ry = 1)+ RY (1= R)| wo

N-1
+HRY = RY)w + > RiR(RY™ = RY ™) f} :

s=1

By Lemma 3.1.2, there exists the operator
-1
E.=(I-(Ry—Ry)" [RIIV (R,—I)+RY (I - Rl)]) :

Therefore, from that it follows formula (3.16). Finally, we obtain w. Applying the condition

v_1 = vp — w and formula (3.13), we get

Vo —w = (I_RZN)—I {(R _R2N—1)V0 + (RN—I —RN“)V_N

-1
+(RN+1 _RN—I) Z B—I(RN—r _RN+r)R—1(2 + TB)_ngr}
r=—N+1
-1
+ Z B 'R — R™IHR(2 + tB) '1g,.
r=—N+1
From that and formulas (3.15) and (3.16) it follows that

w = (I_ (I—R2N)_] [R_RZN—l +RN—1 —RN-H:I)
XE-(Ry — R))"'(RY — RY)w
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+ {(I _ RZN)—I [(RN—I _RN+1)(S0 _ (f)

-1
_ (RN+1 _RN—I) Z B—I(RN—r _RN+r)R—1(2 n TB)_ITg,]
r=—N+1
-1
- Z B 'R — R™HR(2 + 1B) '1g,

r=—N+1

- E,

k-1
(R = R)™ Y RIR(RE™ = R{)72f, + & - tﬁ]} :
s=1

By Lemma 3.1.4, there exists the inverse operator
-1 -1
0. = (1 —(1+R") tBR(I-R"")E. (R, - R))™ (RIZV - RIIV))

and the formula (3.17) holds. Therefore, for the formal solution of the problem (3.18) we
have the formulas (3.13), (3.14), (3.15), (3.16) and (3.17). Formula for p follows from (3.12)
and condition uy = . Lemma 3.1.5 is proved.

Theorem 3.1.1. Assume that ($ +1)° = 6 > (¢) + L@ > 4 and ¢, &y € D(A). Then, for
the solution of DS (3.1), the stability inequalities hold:

max (gl +[|A7 pll, < M@ 8) el + Wl + 1€l (3.:21)

+max a7+ max a2
~N+1<ks-1 H  y<k<nN-1 H

-2
max ||T Ugs1 — 2Ug + Uy || + max ||Aully +
_N+1sE<N-1 (g1 k k-1) H —NsksN” il + 1Pl

< Ma(@,6) [lIA¢lly + 1AWl + AEN, + Nlg-1lly (3.22)

-2 N-1
> lgk = geilly + filly + kz; Ufic = firlly

k=—N+1
hold, where M(«, 6), M>(a,5) doesnotdependon f;, | <k<N-1, g, —N+1<k< -1,

@, Yand &,

Proof. Applying formula (3.12), we can obtain estimates

47 pll,, < Wl + ol s 1Pl < IAWI, + 1AVl - (3.23)
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Therefore, by (3.13) we need to establish estimates for max ||v]|y, max |JAv|| and
~N<k<N ~N<k<N
max ||7"2 (Vis1 — 2vi + vk_l)”H.
~-N<k<N
First, we obtain the estimate ||v||y, for =N < k < N and the triangle inequality and estimates

(3.2), (3.3), (3.4), (3.5) and (3.7), we obtain (Ashyralyev and Sobolevskii, 2004)

< 172 ]
max [Ivilly < Ms(a, 6) [nvonH oyl + max [JA™ 2], |- (3.24)

Similarly, by (3.14) and the triangle inequality and estimates (3.2), (3.3), (3.4), (3.5) and
(3.7), we obtain (Ashyralyev and Sobolevskii, 2004)

max [[villy < Ma(e, 6) [qunH +[|a™ 0|, + max ||A‘”2fk||H] : (3.25)

Now we need estimates for ||vo|lz,|[v_nllz and ||A‘1/2w||H. Using estimates (3.4), (3.7),

(3.24),(3.25) and the triangle inequality, we get

ol < Ms(a,6) [llglly + Il + NIl

-1/2 -1/2
o max (a7, + max A4
~N+lI<k<-1 Skl ™ ) oL Fillu]

v-nllea < [lvollar + €]l + ¥l

-1/2 -1/2
o max [, + max A4
—N+1<ks-1 Ekllu 1<k<N-1 fi H|’

4720, < Ms(e,8) [l + Wl + 1€l

+ max (4], max AR
~N+l<k<-1 H  <k<N-1 H

Therefore,
max ||velly < Ma(a, 6) [llelly + Il + €]l
—N<k<N (326)
A120 |l + A-12 ]
Cmax a2, + max A4

Applying formula (3.12) and estimates (3.23) and (3.26) and the triangle inequality, we

obtain estimate (3.21).
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Second, we obtain the estimate ||Avi||y for —N < k < N. Using formulas (3.13) and (3.14)

and Abel’s formula, we can get formulas
Avy = (I = RV H®R™ = RV Avg + RV = RV )Av_y
+(RV* — RN*MAB'2 +tB) ' (I - R)™! [(RN -~ RV ?)g_,

)
—-(R*N =R Hg.y— > RV (g1 -8

r=—N+1
-2
+ Y RVlr(g - gr)]}
r=—N+1 (327)
+AB'Q+ 1By (I - R [(RF - R Mg
+(RENTT — RNy oy + R (ghet — 81)
-2 k—1
- Z R_k_r_lT(ng _gr) + Z Rr_k_lT(ng - gr)
r=—N+1 r=—N+1
-2
+ Y R (g1 — gr)] ,—N<k<0
r=k
and
Avi = (Ry = R) ™ {RIRy(RE! = RED)Avg + (RS — R)Avg
+ARRy [(Ry = RO = R\ (I = Ry) ™' iy
+(( - R)RE - (1 - R)'RY) 2 £y _ (3.28)
k-2
+ 3 (1= R)™RE™ — (I = R)T'RES | 2 (fwr - f»]} :
0<k<N.
It is clear that
)
< j—
max lgellyr < llg-1lly + k:_ZN 1 gk — g1l » (3.29)

N-1
max || flly < [1Aillg + 2 e = fiatlly -
0<k<N k=2

Then, using (3.27) and (3.29) and estimates (3.2), (3.3), (3.4), (3.5) and (3.7), we obtain

(Ashyralyev and Sobolevskii, 2004)

max ||Avilly < Mg(a, ) [llAvolly + lAv_ylly
-N<k<0

-2

gl + D lgk = getll |- (3.30)
k=—N+1
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Similarly, using (3.28) and (3.29) and estimates (3.2), (3.3), (3.4), (3.5) and (3.7), we obtain
(Ashyralyev and Sobolevskii, 2004)

max [[Avilly < Mo(e 8)[llAvolly + [|A" ],

N-1
W filly + ) M= ficrll |- (3.31)
k=2

To end it we need estimates for ||Avy||y , ||Av_y||z and ||A”2w||H. Using formulas (3.16) and

(3.17) and Abel’s formula, we can write the formulas
Avo = E-(Ry = R)™ {(RY - R)Aw

+ARR, |(Ry = R = Ry (I = Ro)™'7 fic

+(-R)'RE - (I - R)'R) 7,
k=2

+ ) [~ RRE — (1 = RYTRY 7 (foa - ﬁ)}} +AE - Ay,
1

s=

A0 = 0 (- RV [RY - RV (Ag - Ag)

+R" =RV NABT 2+ 7B I - R [(RY - RV g,

-2

~RN =R gn— > RV (g - g)
r=—N+1

-2
+ Z RN+r_1T(gr+l_gr)]}

r=—N+1

+AB' 2+ 7B (I =R [(R- R gy + RV = RV)g_ya

-2 -2
R (@o—g )= D, R'T(gmi—g)+ ), RT(ga—g)

r=—N+1 r=—N+1
-2

+ Z R't(g+1—8/)

r=—1

x [(Ry = RO = R)™' (I = Ry) ™' 2 ficy

— AR, - R)'RiR,

~(U=R)'Rf - (I - R)'RE) Ty
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k=2

- D TR TRE - (= ROTRT 2 (i - ﬁ)}} +AE - Ay
=1

S

Then, using estimates (3.4), (3.7), (3.30) and (3.31), we get

1Avolly < Mio(a, 6) [IA@lly + AW + AE] + Nlg-1lln
-2

N-1
+ ) g = getlly + Al + NS — fk_1||H] ,
k=—N+1 k=2

IAv_wlls < IAvolly + IIAZ]L, + 1Ayl

< Mii(@, 0) [llA¢lly + IAYll, + IAEN, + llg-1lly

-2 N-1
+ > lgk = geilly + filly + ; I - fk_1||4 ,

k=—N+1

1420, ,, < Miste, ) [IAG, + AW + 1AEL + 1811

) N-1
+ > g = geailly + Ul + kz; Ific - fk_lnH] :

k=—N+1
From these estimates and formulas (3.30) and (3.31) it follows

max [|Avlly < Mis(a, 6 [IIA@lly + AWl + I1AE], + 11g-1lly
—N<k<N

) N-1 (3.32)
+ 2 gk = gerlly + Al + 2 i — fk—l”H] :
k=—N+1 k=2
Using estimates (3.23) and (3.32), we obtain
Iplly < AW + IAVNIE
< Miu(@, 0) [lIA¢lly + 1AWl + IAE], + llg-1lly (3.33)
2 N-1
+ 2 gk = &lly +flly + X i — fk—l”H] :
k=—N+1 k=2
Finally, applying the triangle inequality, we can obtain
max |72 (et = 20+ vic), < Mis(e, 6) [IAgll,
)
+1IAYly + [1AGly + 11g-1lly + . ZN 1 gk — 8k-1lly (3.34)
=—N+

N-1
+filly + kgz I1fic = fk—l”[{] :

Estimate (3.22) follows from estimates (3.32), (3.33) and (3.34). Theorem 3.1.1 is proved.
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3.2 Applications

In this section, we study the first order of accuracy difference scheme in ¢ for the approximate
solution of identification problems.

First, we consider the identification problem (2.35). The discretization of SIP (2.35) is

carried out in two stages. In the fist stage, we define the grid space
[0,]],={x=x,:x,=nh, 0<n<M, Mh=1}.

Let us introduce the Hilbert space Ly, = L,([0,1];) of the grid functions ¢"(x) = {<,0,,}’0w

defined on [0, [],, equipped with the norm

1/2
le" e, :( > Igo(x)lzh] .

x€[0,0]n

To the differential operator A* defined by the formula (2.37) with its domain, we assign the

difference operator A; by the formula

AZp(x) = {~(a(x)p)cn + 60, )) (3.35)

acting in the space of grid functions ¢"(x) = {¢,}; satisfying the following conditions ¢, =
Gurs P1 — do = ¢y — duy—1- It is well-known that A} is a self-adjoint positive definite operator

in Ly,. With the help of AF, we reach the identification problem

ul(t, x) + aul(t, x) + Au(t, x) = p"(x) + f(t,x), x€[0,1],, 0 <t <1,
—uli(, x) + Alu(t, x) = p"(x) + §"(t,x), x€[0,1],, —1<1<0,

u(0, x) = ¢"(x), uﬁ'(O*, X) = uf’(O‘, X),

W'(=1,%) = ¢"(x),u"(1, %) = €"(x), x €[0,1],.

(3.36)

In the second stage, we replace identification problem (3.36) with a first order of accuracy

difference scheme

uZH (X)—ZMZ ()c)+uLl (x)

i QMO gt () = ph) + £, £ = Fi(, ),
xe[0,0],, 1<k<N-1,
OO | prh () = phix) + g, g1(0) = glt, %),
xel0,1],, —-N+1<k<-1,
() — () = Ul () — (), ul(x) = €M),

qu(x) = ¢'(x), uf{,(x) =y"(x), x€[0,1],.

(3.37)
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Theorem 3.2.1. Suppose that @ > 4,(g + 1)2 >0 2 (2)2 + 1. Then, for the solution

= 2
{{ (x)} , ph(x)} of problem (3.37) the following stability estimates

g
max iz, +[|(A)7 P,

< M@0 ||¢"],, + 1., + €.,

h
+  max || || + max || ||
v I8kl T 2R Ji Loy,

1
”k+1 Zuk T Uy
2

+ max ||Ltk

—N+1<k<N
Ly

max

2
—N+1<k<N-1 W3,

T

< Mo(@0) ¢

h h h
0 e, + 1€ + [l
W%h l// W%h é: W22h §-1 Lo
+ max

1 1
—N+1<ks-2 ; (gz - gZ—l) Loy, ; (fkh - f}(h_l) L2h:|

hold, where M,(«a, ¢) and M,(«, d) do not depend on 7, A, fkh, 1<k<N-1, gi‘, -N+1<
k< -1, ¢"(x),y" (x) and &" (x).

Proof. DS (3.37) can be written in the following abstract form

h
+ || || + max
h Law — 2<k<N-1

W
) =20+ Ui Uy h _ h l
: 72 ta +‘r' +Ahuk+1_p +f2’
1<k<N-1,

i, =2+ ul h h

— el el Ayl = pl o+ gl
-N+1<k< -1,

h h h h
”1_“0—”0_”1’”0 &

h — . 1h

u_N—go,uN—zp.

in a Hilbert space Ly, with operator A, = A} by formula (3.35). Here, f' = f(x), g} =
g! (x) are given abstract functions, u! = u]' (x) is unknown function and p" = p"(x) is the
element of L,,. Therefore, the proof of Theorem 3.1.1 is based on the self- adjointness and
positive definiteness of the space operator A;, in Ly,.

Second, we consider the SIP (2.40). The discretization of problem (2.40) is carried out in
two stages.

In the first stage, we define the grid space

Q= {x=x=hijiseerhojns j = G oo ju) 0 < jyr < Ny,
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Nh =1r=1,..0,%=0nQ8,=0,nS

and introduce the Hilbert space Ly, = L, (Q_h) of the grid functions ¢"(x) = {¢(hy ji, ..., hyjn)}
defined on Q, equipped with the norm

1/2
W%%=b]WuﬁmmJ.

xeQy,

To the differential operator A* defined by the formula
Atu(x) = - Zn:(ar(X)ux,)x, (3.38)
r=1
with domain
D(AY) = {u(x) : u(x), u,, (x), (@, (X)), € Ly(Q), 1 < 7 < n,u(x) = 0,x € S

we assign the difference operator A} by the formula
Al = = (e (ol ), (3.39)
r=1

where A7 is known as SAPDO in Ly, acting in the space of grid functions u" (x) satisfying
the conditions " (x) = 0 for all x € §,. With the help of the difference operator A¥, we arrive

at the following SIP

uf’,(l, Xx) + auﬁ’(t, X) + AZuh(t, X)

=p'(x)+ fi(t,x), x€eQ,, 0<t<1,

—uf’t(t, X) + A;uh(t, X) (3.40)
=p'(x)+g"(t, x), xeQ,, —1<1t<0,

u"(0, x) = ¢"(x), ul (0%, x) = u(0~, x),

(=1, x) = ¢"(x),u"(1, x) = £"(x), Q.

In the second stage, we replace (3.40) with DS (3.1)

T2 (uZ+1(x) - 2ul(x) + uZ_l(x)) +at”! (uZH(x) — uZ(x)) + Aful | (x)
= pl(x) + fk”(x),fkh(x) = ft,x),1 <k <N-1,x€Q,

-2 (uZH(x) - ZMZ(x) + uz_l(x)) + A;uZ(x) = pl'(x) + gZ, (3.41)
ghx) = glti, x),~N+ 1 <k < -1,xeQ,,

w}(x) — ug(x) = ug(x) — u (x), up(x) = €"(x),

(%) = @"(x), ul (x) = Y'(x), x € Q.
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2 2
Theorem 3.2.2. Suppose that @ > 4,(% + 1) >0 2 (%) + 1. Then, for the solution

{{uZ(x)}Z_VN , ph(x)} of problem (3.41) the following stabilty estimates hold:

g
“max el + (|43 P,

< Ms(@.8) [[|le"[l,., + 1", +11€"].., (3.42)
o max [l + mas 170,

h o Aok
kel 2y

2

u

max
—N+1<k<N-1

h
T

T —N+1<k<N
Ly

< Mu(@.0) ¢

1

T (gi’ - 82—1)

W, * ”‘/’h”v@h * ||fh||wgh + ||871||L2h (3.43)
+ max

=l |
hold, where M3(a, 6), M4(a, 6) does not depend on fkh 1<k<N-1, gZ, -N+1<k<-1,
¢"(x), Y"(x) and £ (x).
Proof. DS (3.41) can be written in the form (3.1) in a Hilbert space Ly, = L, (Q_h) with
SAPDO A, = A; by formula (3.38).

h
+ |||, +  max
" fl Loy,

Ly 2<k<N-1

Here, f{ = f(x), g} = g!(x) are given abstract mesh functions and ] = u} (x) is unknown
abstract mesh function defined on Q, and p” = p/(x) is the element of L,,. Therefore,
estimates (3.42) and (3.43) follow from SEs of Theorem 3.1.1 and the following theorem on
the coercivity stabilty estimate for the solution of the elliptic difference problem generated
by (3.39) in Ly,.

Theorem 3.2.3. (Sobolevskii, 1975) For the solution of the elliptic differential problem

Al() = (). x €
W'(x)=0,xe S,
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the following coercivity inequality holds

n
E h
||uerr
r=1

Here Ms does not depend on & and y".

h
1 S Ml

Third, we consider the SIP (2.44). The discretization of problem (2.44) is carried out in two

stages. To the differential operator A* defined by formula
Au(x) = = Y (@ (D)), +6u (3.44)
r=1

with domain

— 0
D(AY) = {u(x) D u(x), uy (x), (@ (X)uy,)x, € La(Q2),1 <r <n, Z_(ic) =0,x¢ S}
m
we assign the difference operator A; by the formula
Al = = (e (ol ), + o0l (3.45)
r=1

where A7 is known as SAPDO in Ly, acting in the space of grid functions u" (x) satisfying
the conditions D"u" (x) = O for all x € S,. Here D"u" (x) is the first order of approximation

of %. With the help of the difference operator A7, we arrive at the following BVP

ui’,(t, Xx) + a/uf(t, X) + Azuh(t, X) = ph(x) + fh(t, X),
O<t<1l,xeQy,
—ul(t, x) + A%ul(t, x) = p"(x) + g"(t, x),
w6 X) + Ayu' (1, x) = p*(x) + g'(t, x) (3.46)
-1<t<0,x€8y,
u"(0, x) = ¢"(x), (0%, x) = ul(0~, x),

u'(~1, x) = Y"(x), u"(1, x) = &(x), x € Q.

82



In the second stage, we replace (3.46) with DS (3.1)

T2 (uZ+l(x) - 2ul(x) + uZ_l(x)) +at! (uZH(x) — uZ(x)) + Aful | (x)
= p"(x0) + fl (), fl () = (1, x),

l<k<N-lxeQ,

—772 (ul, (%) = 2ul(x) + ul_, (x)) + Aful(x) 347
= p'(0) + g, g1 (x) = g, x),

-N+1<k<-1,xe€Q,

ul(x) — up(x) = up(x) — u (x), up(x) = £"(x),

u' (%) = @"(x), up(x) = Y'(x), x € Q.

2 2
Theorem 3.2.4 Assume that (% + 1) >0 > (%) + 1, @ > 4. Then, for the solution

{{uﬁ(x)}l_VN , ph(x)} of problem (3.47) the following stabilty estimates hold:

o vl

< Mo(@.8) [[l¢"].,, + "], +[l¢"].., (3.48)

h h
e max [l + max ], ] .

—N+1<k<-1 1<k<N-1
”Z+1 - 2“2 + ”Z—l h

max v max [l

—N+1<k<N-1 T2 L —N+1<k<N W3,
2h
h h h h
< Ms(a. ) [Ilw e + 1"y + (1"l + 18], (3.49)
2h 2h 2h 2h

+ max l(gh—gh ) +||fh|| + max 1(fh—fh)

~Neiske-2 || \OK SRV WL T ageent || VRV

hold, where M¢(a, 6), M7(a, 6) does not depend on fkh, 1<k<N-1, gZ, -N+1<k<-1,
¢"(x), ¢"(x) and £"(x).

Proof. DS (3.47) can be written in abstract form (3.1) in a Hilbert space L,, with SAPDO
A, = A} by formula (3.45). Here, f;' = f (x), gi(x) are known mesh functions, u] = u/ (x)

is unknown mesh function defined on Q_h and p" = p’(x) is the element of L,,. Therefore,
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estimates (3.48) and (3.49) follow from estimates of Theorem 3.1.1 and the following
theorem on the coercivity stabilty estimates for the solution of the elliptic difference
problem generated by (3.45) in L.

Theorem 3.2.5. (Sobolevskii, 1975) For the solution of the elliptic differential problem

Apu(x) = p'(x), x € Qy,

D' (x)=0,x€ S,

the following coercivity inequality holds

n
> s,

r=1

Here Mg does not depend on 4 and p”.
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CHAPTER 4
NUMERICAL RESULTS

In this chapter, we propose the numerical solution of the first order of accuracy DS (3.1).
The rest of this chapter is organized as follows: In section 4.1, the numerical analysis for one
dimensional elliptic-telegraph equations is provided. In section 4.2, numerical analysis for
two dimensional elliptic-telegraph equations is provided.

The solution of SIP (2.1) can be written as

u(t) = w(t) + q, “4.1)
where element ¢ is the solution of operator equation

Aq = p, (4.2)
and the function w(¢) is the solution of the nonlocal BVP

wu(t) + aw,(t) + Aw(t) = f(1),0 <t < 1,
—wy(t) + Aw(t) = g(1), -1 <t <0, (4.3)
w0) —w(=1D) =¢ -y, w(-1) —w() =¥ - & w07 = w,(07).
Taking into account all of the above, the following numerical algorithm can be used for the
approximate solutions of the identification problem (2.1):
1. Search the approximate solution of the nonlocal BVP (4.3).

2. Find approximate the source p by using formula
p=A¢ - Aw(l) 4.4)

3. Obtain the approximate value of g by formula (4.2).
4. Find the approximate solutions of SIP (2.1) by formula (4.1).
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4.1 One dimensional case

First, the identification problem with the Dirichlet condition

Uy (t’ .X) + 2ut (t’ X) — Uyxx (t’ x)
=p(x)—sinx, x€ (0,m),t€(0,1),

—Ugtt (1, X) — Uy (2, X)

4.5)
=p(x)—sinx, xe€(0,n),re(-1,0),
u(0,x) =sinx,u(=1,x) =esinx,u(l,x) = e 'sinx, x € [0,7],
u,0)=u(,n)=0,te[-1,1]
is studied. The exact solution pair of this problem is
(w,x),p(x)) =(e’'sinx,sinx),0<x<m-1<r< 1.
Here and in future, we denote the set [-1, 1], X [0, 7], of all grid points
[-1,1], X [0, 7], = {(tx, x,) : tx = kt,—-N <k < N,
Nt=1,x,=nh,0<n <M, Mh=n}.
For the numerical solution of SIP (4.5), we present the first order of accuracy DS in ¢
T2 (u,’;“ - 2uﬁ + uﬁ‘l) + 277! (uﬁ“ - uﬁ)
—h7? (u’:lj:i —2uft 4 u’r‘lj) =p,—sinx,, 1 <k<N-1,
—772 (u',‘,” —2uf + u',‘l‘l) —h™? (uflj:} —2uktl uﬁfll)
=p,—sinx,,-N+1<k<-1,1<n<M-1, (4.6)
ul —u® = u® — w7, u® = sin x,,
uN =esinx,, u) =e'sinx,,0<n< M,
ug =uk, =0,-N <k <N.
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N M
In the first step, we will obtain{{w’,‘,}k N} as solution of nonlocal BVP
==V )n=0

=2, k+1 k k—1 -1 k+1 k
T (wn - 2w, + w, )+27’ (wn —wn)

_ 2 k+1 _ k+1 k+1Y) — o3 _
h (a)n+l 2w, +wn_l)— sinx,,] <k<N-1,

2, el k =1\ _ =2 (, e+l _ o kel ket 1
T (a)n 2w, + W, ) h (“)n+1 2w, +wn_1)

=—sinx,,-N+1<k<-1,1<n<M-1, 4.7)

1
w, —w

0

n_

S o

— -1 ,0_ -N_ :
=w, —w, ,w, —w," =(1-e)sinx,

0
w, —w
k

Sz

= (1 —e‘l)sinxn,O <n<M,

=0,-N<k<N.

E?\N

CL)O:(,L)

Here ) denotes the numerical approximation of w(z; x) at (#, x,). For obtaining the solution

of DS (4.7), we can write it in the matrix form as

Awy +Bw, +Cw,_1 =F,, 1 <n<M-1,
4.8)
- -
Wy= 0,y = 0,
where 7 is column matrix with (2N + 1) zero elements,
000 0O 0 O 0O 0 O
000 0O 0 0 b 0O 0 O
000 - 0 0 b
A=C=10 0 0 O 0 0 0 O 0O 0 O
0 b 0 0o - 0O 0 O
000 0O » O 0O 0 O
000 O 0 0 0 o 0 0 -1
J@2N+1)x(2N+1)
4.9)
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[ _1 0 0
0 00
0 00
B=| 0 0 0
g J &
0 00 - 0
0 00

wy=n,n+1,F,are (2N + 1) X 1 column matrices

[ (1-¢!)sinx,

—sin x,

—sin x,

F,=10 , Wy =

—sin x,

—8in x,,

(1-¢)sinx, |

fors=n,n+ 1.

Here

0

1 0
d
0 0
-2
0 0
g O

J@2N+Dx(2N+1)

b

(4.10)

For the solution of the matrix equation (4.8), we use the modified Gauss elimination method.

We seek a solution of the matrix equation (4.8) by the following form

Wyp = Apy 1 Wiyl +ﬁn+1,n =M-1,..,2,1,wy =0,

4.11)

where @, (1 <n <M —1)are 2N + 1) X (2N + 1) square matrices and 8, (1 <n < M - 1)



are (2N + 1) x 1 column vectors, calculated as,

Apy1 = _QnAaﬁn+1 = Qn(DFn - Cﬁn),
(4.12)

0,=B+Ca,)',n=1,2,...M -1,
where a; and $; and zero matrices.

In the second step, using (4.4), we get

N

wn+1

N N
2w, +w,_,
h2
_1SIN X, — 28N X, + SIN X,
e 7

In the third step, using (4.2), we get

Pn =

,1<n<M-1.

gn=—w) +esinx,, 0<n< M. (4.13)
In the fourth step, using (4.1), we obtain

uk (L)/:l + qn,n = 0’ 17 ceey M,k = _N, ...,N. (4_14)

n =
Here and in future, we compute the error between the exact solution and numerical solution

by

|Eollo = max |w (e, x,) — wf],
—N<k<N,0<n<M

IEle = max (e, x,) = uf], (4.15)
—N<k<N,0<n<M

E = max X,) — ,
IEpll = max |p (x,) = pul

k
n

where u (¢, x), p(x) represent the exact solution, u, represent the numerical solutions at
(t, x,) and p, represent the numerical solutions at x,,. The numerical results are given in the

Table 4.1.

Table 4.1.

Errors IEulleo IE, || IEu]leo
N=M=20 0.3123 0.2753 0.0344
N=M=40 0.1306 0.1153 0.0148
N=M =380 0.0600 0.0530 0.0069
N=M =160 0.0288 0.0254 0.0033
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As it is seen in Table (4.1), if N and M are doubled, the value of errors decrease by a factor
of approximately 1/2.

Second, the SIP with the Neumann condition

uy (¢, x) + 2u, (t, x) — %uxx (t,x) + %u (t, x)
=p(x)—cosx,xe(0,m),t€(0,1),

—Uy (1, X) — %uxx (t, x) + %u (1, x) 4.16)
=p(x)—cosx,x € (0,m),te(-1,0),

u(0,x) =cosx,u(—1,x) =ecosx, u(l,x) =e'cosx,xel0,nr],

Uy (t’ O) = 09 Uy (t’ﬂ) = O’I € [_1’ 1]

is considered. The exact solution of the dentification problem (4.16) is
(u(t,x),p(x)) =(e"cosx,cosx),0<x<m-1<r<l.

For the numerical solution of identification problem (4.16) we present the first order of

accuracy DS in ¢

Ukl 2pk k1 1 2uﬁ“—uﬁ _ luﬁﬂ—Zuﬁ*Wuﬁﬂ + luk‘*'l

72 T 2 h? 2%n
=p,—Ccosx,, | <k<N-1,1<n<M-1,
_uﬁ+l—2uf‘;+uf‘l‘1 _ luf‘l+1—2uﬁ+u’;71 + luk

72 2 h? 27n

=pp—cosx,-N+1<k<-1,1<n<M-1, 4.17)
ul —u® =u® —u ', ul = cos x,,
uV =ecos x,,ul =elcosx,,0<n<M,
u’f—u’é :O,u’ju—ull‘u_1 =0,-N<k<N.

M
. . N .
In the first step, we will obtaln{{w’,‘,}k N} as solution of nonlocal BVP
==V n=0
W20 + k! W -k 1 wﬁﬂ—Za)ﬁ*Hw’;ﬂ 1 k+1
72 +2 T 2 h? + Wy
=—cosx, | <k<N-1,1<n<M-1,
k+1 k k—1 k k k
__ Wy —2w,+wy _ lwn+l_2wn+wn—l 1, k
) 2 2 T oW,
=—cosx,,-N+1<k<-1,1<n<M-1, (4.18)
w - =0 -w!' - wN =(1-e)cos x,

wN —w¥=(1-ecosx,,0<n<M,

k k_ kK _ ok _q( _
wy— ) =0,0),-w),  =0,-N<k<N.
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Here ] denotes the numerical approximation of w(t; x) at (#, x,). For obtaining the solution

of DS (4.18), we can write it in the matrix form as

Awp + Bw, + Cw,y = F,, 1 <n<M-1,

Wy = W1, Wy = Wy-1,

where F,,w,, s = n,n+ 1 are (2N + 1) X 1 column matrices

(1 —e')cos x, ]
wS
—COS X, )
wS
—COS X, N
wS
F,=10 , Wy =
wlsv+1
—COS X,
2N
)
—COS X,
2N+1
wS
(1 _ e‘l)cos X, - J(2N+1)x1

J2N+1)x1

(4.19)

and A,B,C are 2N +1)x (2N + 1) square matrices in the form (4.9), (4.10) with the

corresponding nonzero elements

=1, 2, 1,17
a_1'2+r+112+2’b_

__L
2427

c=-

h‘l\)lN
~N N
-
U
Il
Nl’_‘

— 1 ._ 2 1 1
§=—mJ=atety

For the solution of the matrix equation (4.19), we use the modified Gauss elimination

method. We seek a solution of the matrix equation (4.19) by the following form

Wy = Apy1 Wi+ +ﬁn+19 n=M - 17'-" 17 0’

(4.20)

where @, (1 <n < M —1)are 2N + 1) X (2N + 1) square matrices and 8, (1 <n < M - 1)

are (2N + 1) x 1 column vectors, calculated as,

Ap1 = _QnA’ ﬁn+l = Qn(DFn - Cﬂn)a

0, =(B+Ca,)",n=12,...M—-1,
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a; is an identity (2N + 1) X (2N + 1) square matrix and §; is (2N + 1) X 1 column vector with

zero elements,
Wy = wy-1 = A+ B+ Cay-1)" (Fy—CBu-1).

In the second step, using (4.4), we get

N _ A5, N N
A 2w, +w,_, N
pn - h2 wl’l

_, [coS x,41 —2COS X, + COS X,,_;
- 1( z L  —cosx, |, l<n<M-1.

e 7
In the third step, using (4.2), we get

gn=—-w" +e'cosx,,0<n< M. (4.22)

In the fourth step, using (4.1), we obtain (4.14). The numerical results are given in the Table

4.2.

Table 4.2.

Errors o/l IEs |, IE. L
N=M=20 0.1513 0.1870 0.0289
N=M=40 0.0669 0.0839 0.0096
N=M=280 0.0318 0.0414 0.0046
N=M =160 0.01557 0.0208 0.0023

As it is seen in Table (4.2), if N and M are doubled, the value of errors decrease by a factor

of approximately 1/2.
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4.2 Two dimensional case

First, SIP with the Dirichlet condition

Ml‘l (tv x’)’) + 2”1‘ (t9 x’y) - %uxx (t9 x’y) - %uyy (l’ x9y)
= p(x,y) —sinxsiny,x,y € (0,7),1 € (0, 1),
—Uy (1, X,y) = Sy (1, X,y) = Suyy (2, x,y)
=p(x,y)—sinxsiny,x,y € (0,7),t € (-1,0),
pi%y Py (4.23)
u(0,x,y) =sinxsiny,u (-1, x,y) = esin xsiny,

u(l,x,y)=e'sinxsiny, x,y € [0, 7],

u(,0,y)=0, u(t,m,y)=0,0<y<mnm, te[-1,1],

u(t,x,00=0, u(t,x,7) =0, 0<x<nm te[-1,1]

is studied. The exact solution of SIP (4.23) is
(@, x,y),pxy)=(e'sinxsiny,sinxsiny),0 < x,y <m,—-1<r<1.
Here and in future, we denote the set [-1, 1], X [0, 7], X [0, 7], of all grid points
[-1, 1], X [0, 7], X [0, 7], = {(t, X, Yim) : tx = kT,—N < k < N,

Nt =1,x, =nh,y, =mh,0<n,m< M,Mh=n}.

For the numerical solution of SIP (4.23), we construct the first order of accuracy DS in ¢

k+1 k k—1 k+1_ k k1 k+l o k+l
Upnm _Zun471+un.m + zull,ln —Upm _ un+l,m 2uﬂsm +un71,m
72 T 252

k+1 _zuk+l k+1
_ nm+1 n,m nm—1 __ ot .

S = Pun — SIN X, SIN Yy,
1<k<N-1,1<nm<M-1,

k+1 k k-1 k _nk k
_unm_2u7z,m+un,m _ un+l,m 2"t’ls"’l_'—unfl,m

72 252

k _n,k k

_un,m+l 2M”J"_H'tn,mfl

= Pum — SIN X, SIN Yy,
20 P Y (4.24)

-N+1<k<-1,1<nm<M-1,

1 o _ .0 -1 0 _ o :

Up = Upy = Uy = Upy s Uy = SIN X, SINY,, 0 <nom < M,
_N _ . . N _ _] . .

Uy = €SN X, siny,, u,, = e sinx,siny,,0<nm=< M,

K (v ak — (k) ak
U, o =01, 3, =01y, =0,u, =0,

0<nm<M,-N<k<N.
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N M
In the first step, we will obtain{{w" } } as solution of nonlocal BVP

nm |, _
k=—N n,m=0

k+1 k k—1 k+1 k k+l o k+1 k+1
Wy m _zwn,m+wn,m + an,m —Wym _ wn+l,m zw"»m +wn71,m
72 T 2h2

k+1  _»~n, k+1 k+1

_ wn,m+1 zw'lvm +wn,m—] — o1 :
i = —sin x,, sin y,,,

1<k<N-1,1<nm<M-1,

k+1 k k—1 k _7.k k
_wn,m _zwn,m+wn,m _ w}HLm 2w’”"’l_'—(’urkl,m

72 2h?

k _n,k k

_ wn,nHl zw'lvm +wn.mfl

= —8in x, siny,,,
T Y (4.25)
~N+1<k<-1,1<nm<M-1,

1 0 — 0 -1 0 -N _ . .
Wy = Wy = Wy = Wy, W — W5 = (1 =€) sinx;, sin yy,,

0 N _ 1) o .
wn’m—wn’m—(l—e )smxnsmym, 0<nm<M,

ko ko ko ko
W, = 0, Wy oy = 0, Wy = 0, Wy = 0,

0<nm<M,—-N<k<N.

k

where «f,, denotes the numerical approximation of w(z, x, y) at (#, X, y,,). For obtaining the

solution of DS (4.25), we can write it in the matrix form as

Awp1 + Bw, + Cw,.y = F,,1<n<M-1,

- —
wo=0,wy =0,

(4.26)

Wher66 is 2N + 1) (M +1)x 1 column matrix with zero elements, A, B, C are 2N + 1) (M +

)X (2N + 1) (M + 1) square matrices:

(0 0 .- 0 0]
O X - 0 0
A=C=]| i oo o, 4.27)
0 0 X o
0o 0 0 0
I %) 0 0 o
X v X 0 0 o
Bl oo o (4.28)
0o 0 o X v X
0o 0 o ) %)
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ON><N 0N><1 PN><N

PN><N 0N><1 0N><N )

Onv 0 Oy (N+1)XN+1)
-1 00 00 1 0 O 0
0O 00 00 d ¢ a 0
0O 00 00 0 0 O d
0O 00 01 -21 0 0
g J g 00 0 O O 0
0O 00 0 g 0 0 --- 0
0O 00 o1 0 - --- 0

(4.29)
0 0
0 0
C a
0 0 (4.30)
0 0
0 0
0 -1

J@2N+1)X(2N+1)

ws=n,n=+1,F, are 2N + 1) (M + 1) X 1 column matrices such as

Jno

Jna

Jom-1

| S

S(M+1)x1

B f;’l,n’l

(1 — e')sinx, siny,,

— sin x, siny,,
— sin x, siny,,
0

— sin x, siny,,

— sin x, siny,,

| (1 —¢™")sinx,siny,
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1
ws,m
2
a)s,m
ws,O
w
s, 1 a)N
_ _ s,m
Wy = 9ws,m - Nl
.
ws,m
ws,M—l
w
M s W2
s,m
2N+1
| ws,m

“J(2N+1)x1

Pyxn = diag{O, b,...,b},0 = 0(2N+1)><(2N+1)’I = I(2N+1)><(2N+1)

_ 1 2 2 _ 1 _ 2 2 _ 1
b=5+i+pa=—gpc=-5-5d=g5,

1 ._ 2,2
§="mJ= a2t
For the solution of the matrix equation (4.26), we use the modified Gauss elimination

method. We seek a solution of the matrix equation (4.26) by the following form
_)
Wy = App1 Wi+ +ﬁn+l’n =M - 15 "-727 170-)M = 07

where @, (1 <n < M —1)are (2N + 1) X (2N + 1) square matrices and B, (1 <n < M — 1)
are (2N + 1) x 1 column vectors, calculated as,

Apt1 = _QnAan+1 = Qn(DFn - Cﬁn)a

0,=B+Ca,)',n=1,2,...M -1,
where @, is a zero matrix and 8, is a zero matrix.

In the second step, using (4.2), we get

2N+1 _ 2N+1 2N+1 2N+1 _ 2N+1 2N+1
p _ wn+1,m 20‘)" m + wn—l,m wn,m+l anm + O‘)n,m—l
nm —
2h? 2h?
ol sin x,,; — 2 sin x,, + sin x,,_; siny
- m
2h?

1 SIN Y1 — 28Iy, + SNy,
—e
2h?
In the third step, using (4.2), we get

sinx,,l <n.m<M-—1

Gnm = —w,’:/m +e 'sinx,sinx,, 0 <n,m< M. 4.31)
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In the fourth step, using (4.1), we obtain

k k
Uy = Wy + Gpmst,m=0,1,.., M, k=-N,..,N.

n,

We compute the error between the exact solution and numerical solution by

Ell. = max |u fr, X —uk
1Bl = | max (e 0, ) = 1]
IEolo = max ot X, ym) — &k,

—N<k<N,0<n,m<M

”Ep”oo = max |P (xn,ym) — Pnm

b
O<n,m<M

k

n,m

where u (1, x,y), p(x,y) represent the exact solution, u, , represent the numerical solutions
at  (t, Xy, ym) and p,, represent the numerical solutions at (#, X,,y,). The numerical

results are given in the following table.

Table 4.3.

Errors IEu|l IE,., IEd
N=M=10 0.9321 0.8196 0.0974
N=M=20 0.3123 0.2753 0.0344
N=M=40 0.1306 0.1153 0.0148

As it is seen in Table (4.3), if N and M are doubled, the value of errors decrease by a factor
of approximately 1/2.

Second, the SIP with the Neumann condition

Uy (t’ x,)’) + 2ut (t’ x,)’) - iuxx (t’ X,y) - iuyy (ta X,y) + %M(L x,)’)
=p(x,y)—cosxcosy+e'cosxcosy,x,y€ (0,n),t€(0,1),

—ty (1, %,y) = ey (1, %, ) = quyy (8, X,Y) + Ju (1, X, )

= p(x,y) —cosxcosy+e'cosxcosy,x,y € (0,n),te(-1,0), 4.32)
u(0,x,y) =cosxcosy,u(—1,x,y) = ecosxcosy, '

u(l,x,y)=e'cosxcosy,x,y € [0,n],

u,(t,0,y)=u,(t,m,y) =0,te[-1,1],0<y<m,

uy, (1, x,0) = u, (t,x,m1) =0, € [-1,1],0<x <
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is investigated. The exact solution of SIP (4.32) is
(w(t,x,y),p(xy) =(e"cosxcosy,cosxcosy),0 < x,y<m—-1<r<1.

For the numerical solution of SIP (4.32), we construct the first order of accuracy DS in ¢

k+1 2M k—1 k+l uk uk+l _Ju k+1+uk+1

n,m u. 2 nm nmo n+l,m '”" n—1,m
72 T 4n?
k+1 _zuk+l k+lI 1 k 1
nm+1 n,m n,m— +
— I 4 U= Pun = COS X,y COS Vi,
1<k<N—1,1§n,m<M—1,
_ A+l 2unm u’;l,_)?} _ ulr(Hrl,m —2u ’1m+u —1,m
72 4h2
ui,m+l 2””’" un,mfl 1 k+1
- T + 35Uy = Pum — COS X, COS Yy,
—N+1Sk£—1,l§n,m§M—l, (4.33)
1 o _ .0 -1 0 _
Up = Uy = Uy = Upy s Uy = COS X, COS Yy, 0 < ,m < M,
-N _
Uy = €COS X, CO8 Yy, 0 < n,m < M,
N _ -1
Uy, =€ COSX,C08Y,,0<nm<M,
k _ .k k — .,k kK _ .k k _ .,k
Uy o= Uno Uy = Wym—1>Yom = Wimo Untm = Ung—1me
0<nm<M,-N<k<N.

M
. . N .
In the first step, we will obtaln{{w’; m}k N} as solution of nonlocal BVP
’ =N ) nm=0
’;l‘t?l zwnm+wl‘ . 2‘”?)’7} _wl};,m wl;r:%m 20’)51‘:7} +o‘)ﬁ+ll,m
72 T - 452
wk+l 2w ﬁt,}+wk+l
n,m+1 4h2 nm—1 + % k+1 = —COoS xn Cosym,
1<k<N-1,1<nm<M-1,
w)kztr]z —2&)” m+w’}fl_n; wﬁ-#l,m_zwl;'.m-'—wl;z— 1,m
- 2 N 2h2
k k k
wn,m+l_2w’1sm+wn,m71 1 k+1 _
i SWyoy = — COS X, COS Y, 434)
-N+1<k<-1,1<nm<M-1,
1 0 _,0 0 N _
Wy = Wy = Wy wn mr Wy — Wy = (1 =€) €os x,, COS Yy,

-1
W), =W, = (1 —e )cosxncosym,() <nm<M,

n,

kKo ok k ok Kook Kook
n0 = Wp 1 Wy = Wy 15 W = Wi Wi = Wiyp_g o

0<nm<M,-N<k<N.

w

where ws ., denotes the numerical approximation of w(t, x,y) at (fx, X, Ym)-
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In the second step, using (4.34), we get

ON+1 _p 2N+ N+ ON+1 _p 2N+, N+
1

_ wn+ 1,m w"s”l n—1,m wn,m+ n,m nm—1 1 IN+1
Pnm = e + e ~ 2%Wnm
- -2 + —
—e 1 COS X4 1 Z(;lszx,, COS X;_1 COS Y
—_1cos —2.COS Yy, +COS Y-
—e 1 Ym+1 Ym ymlcosxn’l Sn,mSM_l

4p2

In the third step, using (4.34), we get
Gnm = —w,’Xm +e ' cos X, COS X, 0 <m,m< M.
In the fourth step, using (4.1), we obtain
= &y + Gumstm = 0,1,.., Mk = =N, ..., N.

For obtaining the solution of DS (4.34), we will write it in the matrix form as

Awpi1 + Bw, + Cw,.y = F,,1<n<M-1,

Wy = Wy, Wy = Wy-1,

where
I -1 O O O O
X Y X o 0 O
B = ;
o o o0 --- X Y X
o o o0 --- 0 -I I

and A, C, X, Y are matrices defined by (4.27), (4.29), (4.30) with

Pnxn = diag{O, b,...,b},0 = 0(2N+1)><(2N+1)’I = I(2N+1)><(2N+1)

The numerical results are given in the next table.

Table 4.4.
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Errors IEull IE||.. IEulleo

N=M-=10 0.3278 0.3765 0.0408
N=M=20 0.1334 0.1760 0.0181
N=M=40 0.0610 0.0841 0.0088

As it is seen in Table (4.4), if N and M are doubled, the value of errors decrease by a factor

of approximately 1/2.
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CHAPTER 5
CONCLUSIONS

This thesis is devoted to study the SIP for elliptic-telegraph differential equations with
unknown parameter p(x). The following results are obtained:

e Fourier series, Laplace transform and Fourier transform methods are applied for the
solution of several identification problems for elliptic-telegraph differential equations.

e The main theorem on the stability estimate for the solution of the SIP for elliptic-telegraph
equation is proved.

e Stability estimates for the solution of three SIPs for elliptic-telegraph equation are
established.

o The first order of accuracy DSs for the approximate solution of the SIP for elliptic-telegraph
equation for one Dimensional and two Dimensional are presented.

e The main theorem on the stability estimates for the solution of DSs for the approximate
solution of identification problem for elliptic-telegraph equation are proved.

o Stability estimates for the solution of DSs for three SIPs for elliptic-telegraph equation are
established.

e The Matlab implementation of these DSs is presented.

e The theoretical statements for the solution of these DSs are supported by the results of

numerical examples.
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APPENDIX 1

MATLAB PROGRAMMING

1. Matlab Implementation for One Dimensional first orders of Difference Schemes
with Dirichlet Condition
function firstorder-de-d(N,M)
if nargin < 1;

end;

close;close;

M=20;

N=M;

tau=1/N;

h =pi/M;

a=-(1/(h?));

d=(1/(tau®));

c= -(2/(tau?)) — (2/tau);
b=(1/(tau?)) + (2/tau) + (2/(h*));
g=-(1/(tau?));

z=(2/(tau?)) + (2/(h*));
A=zeros(2*N+1,2*N+1);
B=zeros(2*N+1,2*N+1);

for 1=2:N;

AG,i+N+1)=a;

A(N+i,i)=a;

B(i,i+N-1)=d;

B(,i+N)=c;

B@,i+N+1)=b;
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B(@+N,i-1)=g;
B(@{+N,1)=z;
B(@+N,i+1)=g;

end;

B(1,1)=-1;
B(1,N+1)=1;
B2*N+1,N+1)=1;
B(2*N+1,2*N+1)=-1;
B(N+1,N)=1;
B(N+1,N+1)=-2;
B(N+1,N+2)=1;

C=A;
D=eye(2*N+1,2*N+1);
for j=1:M+1;
fi(1.j)=(1-exp(1))*sin((j-1)*h);

fi(2*N+1,j)=(1-exp(-1))*sin((G-1)*h);

for k=2:N;
fick,j)=-sin((j-1)*h);
end;

fiN+1,j)=0;

for k=N+2:2*N;
fik,j)=-sin((j-1)*h);
end;

end;
alphal=zeros(2*N+1,2*N+1);
bethal=zeros(2*N+1,1);
for j=2:M;
Q=inv(B+C*alphaj-1);
alphaj=-Q*A;
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bethaj=Q*(D*(fi(:,j))-C*bethaj-1);
end;

w=zeros(2*N+1,M+1);

for j=M:-1:1;
w(:,j)=alphaj*w(:,j+1)+bethaj;

end;

"EXACT SOLUTION OF THIS PROBLEM’;

for j=1:M+1;

for k=1:2*N+1;
esw(k,j)=(exp(-(k-1-N)*tau)-1)*sin((j-1)*h)
end;

end;

for j=1:M+1;

for k=1:2*N+1;
esU(k,j)=(exp(-(k-1-N)*tau))*sin((j-1)*h);
end;

end;

for j=1:M+1;

ep(j)=sin((j-1)*h);

end;

for j=1:M+1;
q()=-W(2*N+1,j)+((exp(-1))*sin((-1)*h));
end;

for j=2:M;
p(=-(((qG+1)-(2*q()+(qG-D)/(B));
end;

p(1)=0;

pM+1)=0;

for k=1:2*N+1;

2
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for j=1:M+1;

Uk, j)=w(k.))+q();

end;

end;

figure;

m(1,1)=min(min(w))-0.01;
m(2,2)=nan,;

surf(m);

hold;

surf(esw) ; rotate3d ;axis tight;
figure;

surf(m);

hold;

surf(w); rotate3d; axis tight;
titleCFIRST ORDER”);
maxes=max(max(esw));
maxerrorw=max(max(abs(esw-w)));
maxerroru=max(max(abs(esU-U)));
maxerrorp=max(max(abs(ep-p)));

cevapl = [maxerrorw,maxerroru,maxerrorp]
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APPENDIX 2

MATLAB PROGRAMMING

2. Matlab Implementation for One Dimensional first orders of Difference Schemes
with Neumann Condition
function firstorder-te-n(N,M)
if nargin <1;

end;

close;close;

M=40;

N=40;

tau=1/N;

h =pi/M;

b=-1/(2*h%);

d=1/(tau?);

c=-2/tau’ — 2/tau;
a=1/(tau?) + 2/tau + 1/h* + 1/2;
g=-1/(tau®);

z=2/(tau?®) + 1/(h?) + 1/2;

A = zeros(2*N+1,2*N+1);
B=zeros(2*N+1,2*N+1);
for i=2:N;

A(@,i+N+1)=b;

A(N+i,i)=b;

B(i,i+N-1)=d;

B(,i+N)=c;

B(,i+N+1)=a;
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B(N+i,i-1)=g;
B(N+i,1)=z;
B(N+i,i+1)=g;

end;

C=A;

B(1,1)=-1;
B(1,N+1)=1;
B(2*N+1,N+1)=1;
B(2*N+1,2*N+1)=-1;
B(N+1,N)=1;
B(N+1,N+1)=-2;
B(N+1,N+2)=1;
D=eye(2*N+1,2*N+1);
fii=zeros(2*N+1,M+1);
for j=2:M;
fii(1.j)=(1-exp(1))*cos((j-1)*h);

fii(2*N+1,j)=(1-exp(-1))*cos((G-1)*h);

for k=2:N;
fii(k,j)=-cos((j-1)*h);
fii(N+k,j)=-cos((j-1)*h);
end;

fii(N+1,))=0;

end;

alphal=D;
bethal=zeros(2*N+1,1);
for j=2:M;
Q=inv(B+C*alphaj-1);
alphaj=-Q*A;

bethaj=Q*(D*(fii(:,j))-C*bethaj-1);
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end;

w=zeros(2*N+1,M+1);
QZ=(A+B+C*alphaM-1);

Q=inv(Q2);

w(:,M+1)=Q*(D*fii(:, M)-C*bethaM-1);
w(M)=w(:,M+1);

for j=M-1:-1:1;
w(:,j)=alphaj*w(:,j+1)+bethaj;

end;

"EXACT SOLUTION OF THIS PROBLEM’;
for j=1:M+1;

for k=1:2*N+1;
esw(k,j)=(exp(-(k-1-N)*tau)-1)*cos((j-1)*h);
esU(k,j)=exp(-(k-1-N)*tau)*cos((j-1)*h);
end;

end;

for j=1:M+1;

ep(j)=cos((j-1)*h);

end;

for j=1:M+1;
q(j)=-w(2*N+1,))+exp(-1)*cos((j-1)*h);
end;

for j=2:M;
p()=-1/2*(q(+1)-2*q()+qG-D)/h* + 1/2 * g(j);
end;

p(D=ep(1);p(M+1)=ep(M+1);

for k=1:2*N+1;

for j=1:M+1;

Uk, j)=w(k.))+q();
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end;

end;

figure;

m(1,1)=min(min(esw))-0.01;
m(2,2)=nan;

surf(m);

hold;

surf(esw); rotate3d ;axis tight; title("’Exact’);
figure;

surf(m);

hold;

surf(w); rotate3d; axis tight;
titleCFIRST ORDER’);
maxes=max(max(esw));
maxerrorw=max(max(abs(esw-w)));
maxerroru=max(max(abs(esU-U)));
maxerrorp=max(max(abs(ep-p)));

cevapl = [maxerrorw,maxerroru,maxerrorp]
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APPENDIX 3

MATLAB PROGRAMMING

3. Matlab Implementation for Two Dimensional first orders of Difference Scheme with
Dirichlet Condition
function firstorder-te-d3(N,M)
if nargin < 1;

end;

close;close;

M=20;

N=M;

tau=1/N;

h =pi/M;

N21=2*N+1;
a=-1/(2*h?);d = 1/tau?;
c= -2/tau® — 2/tau;
b=1/tav’ + 2/tau + 2/h?;
g=-1/tau?;

z=2/tau® + 2/h>;
NK=N21*(M+1);
A=zeros(NK);
B=eye(NK);

for n=2:M;
ii=N21*(n-1);

for i=ii+2:1i+N;
A(,i+N+1)=a;
A(N+i,i)=a;
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B(1,i+N+1)=b;B(1,i+N)=c;B(1,i+N-1)=d; B(1,i+N+1+N21)=a;B(1,i+N+1-N21)=a;
B(i,1)=0;

B(i+N,i-1)=g;B(i+N,i)=z;B(i+N,i+1)=g;
B(i+N,i+N21)=a;B(i+N,i-N21)=a;B(i+N,i+N)=0;
end;

B(ii+1,ii+1)=-1;B@i+L,ii+N+1)=1;
B(ii+2*N+1,ii+N+1)=1;B(ii+2*N+1,ii+2*N+1)=-1;
B(@i+N+1,ii+N)=1;B(ii+N+1,ii+N+1)=-2;B>ii+N+1,ii+N+2)=1;
end;

C=A;

D=eye(NK);

fii=zeros(NK,M+1);

for n=2:M;

x=(n-1)*h;ii=N21%*(n-1);

for j=2:M;

y=(-1*h;

for k=2:N;

fii(ii+k,j)=-sin(x)*sin(y);
fii(ii+N+k,j)=-sin(x)*sin(y);

end;

fii(ii+1,))=(1-exp(1))*sin(x)*sin(y);

fii(ii+N+1,j)=0;
fii(ii+2*N+1,j)=(1-exp(-1))*sin(x)*sin(y);

end;

end;

alphal=zeros(NK);

bethal=zeros(NK,1);

for j=2:M

Q=inv(B+C*alphaj-1);
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alphaj=-Q*A;
bethaj=Q*(D*(fii(:,j))-C*bethaj-1);

end;

w=zeros(NK,M+1);

for j=M:-1:1;

w(:,J)=alphaj*w(:,j+1)+bethaj;

end;

"EXACT SOLUTION OF THIS PROBLEM’;
esw=zeros(NK,M+1);

esU=zeros(NK,M+1);

for n=2:M;

x=(n-1)*h; ii=N21*(n-1);

for j=2:M;

y=(-D*h;

for k=1:2*N+1;
esw(ii+k,j)=(exp(-(k-1-N)*tau)-1)*sin(x)*sin(y);
esU(1i+k,j)=(exp(-(k-1-N)*tau))*sin(x)*sin(y);
end;

end;

end; ep=zerosM+1,M+1);
g=zeros(M+1,M+1);

p=zeros(M+1,M+1);

for n=1:M+1;

x=(n-1)*h;ii=(2*N+1)*n;

for j=1:M+1; y=(-1)*h;
ep(n)=sin(x)*sin(y);
q(n,))=-w(ii,j)+exp(-1)*sin(x)*sin(y);

end;

end;
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for n=2:M;

for j=2:M;
p(n,j)=-(q(n,j+1)-2*q(n,j)+q(nj-1)/(2*h*) - (q(n + 1, j) = 2 * q(n, j) + g(n — 1, )/ (2 * h*);
end;

end;

for n=1:-M+1;

ii=N21*(n-1);

for j=1:M+1;

for k=1:2*N+1;
U(ii+k,j)=w(ii+k.j)+q(n,j);

end;

end;

end;

maxes=max(max(esw));
maxerrorw=max(max(abs(esw-w)));
maxerroru=max(max(abs(esU-U)));
maxerrorp=max(max(abs(ep-p)));

cevapl = [maxerrorw,maxerroru,maxerrorp]
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APPENDIX 4

MATLAB PROGRAMMING

4. Matlab Implementation for Two Dimensional first orders of Difference Schemes
with Neumann Condition
function firstorder-te-n3(N,M)
if nargin <1;

end;

close;close;

M=20;

N=M;

tau=1/N;

h =pi/M;

N21=2*N+1;

a=-1/(4*h?);d = 1/tau?;

c= -2/tau’ — 2/tau;

b=1/tav® + 2/tau + 1/h* + 1/2;
g=-1/tau?;

z=2/tau® + 1/h> + 1/2;
NK=N21*(M+1);
A=zeros(NK);

B=eye(NK);

for n=2:M;

ii=N21*(n-1);

for i=ii+2:1i+N;
A(,i+N+1)=a;

A(N+i,i)=a;
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B(1,i+N+1)=b;B(1,i+N)=c;B(1,i+N-1)=d;
B(1,i+N+1+N21)=a;B(1,i+N+1-N21)=a; B(i,1)=0;
B(i+N,i-1)=g;B(i+N,i)=z;B(i+N,i+1)=g;
B(+N,i+N21)=a;B(i+N,i-N21)=a;B(i+N,i+N)=0;
end;

B(ii+1,ii+1)=-1;B@i+1,ii+N+1)=1;
B(ii+2*N+1,ii+N+1)=1;B(ii+2*N+1,ii+2*N+1)=-1;
B(@i+N+1,ii+N)=1;B(ii+N+1,ii+N+1)=-2;B>ii+N+1,ii+N+2)=1;
end;

fori=1:N21;

B(1,i+N21)=-1;

B(NK+1-1,NK+1-i-N21)=-1;

end;

C=A;

D=eye(NK);

fii=zeros(NK,M+1);

for n=2:M;

x=(n-1)*h;ii=N21%*(n-1);

for j=2:M;

y=(-1)*h;

for k=2:N;

fii(ii+k,j)=-cos(x)*cos(y);
fii(ii+N+k,j)=-cos(x)*cos(y);

end;

fii(ii+1,))=(1-exp(1))*cos(x)*cos(y);
fii(ii+N+1,j)=0;
fil(114+2*N+1,j)=(1-exp(-1))*cos(x)*cos(y);

end;

end;
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alphal=eye(NK);

bethal=zeros(NK,1);

for j=2:M

Q=inv(B+C*alphaj-1);

alphaj=-Q*A;
bethaj=Q*(D*(fii(:,j))-C*bethaj-1);

end;

w=zeros(NK,M+1);

QZ=A+B+C*alphaM-1;

QQ=inv(QZ);
w(:,M+1)=QQ*(D*fii(:,M)-C*bethaM-1);
w(M)=w(:,M+1);

for ]=M-1:-1:1;
w(:,j)=alphaj*w(:,j+1)+bethaj;

end;

"EXACT SOLUTION OF THIS PROBLEM’;
esw=zeros(NK,M+1);errw=zeros(NK,M+1);
esU=zeros(NK,M+1);

for n=2:M;

x=(n-1)*h; ii=N21*(n-1);

for j=2:M;

y=(-D*h;

for k=1:2*N+1;
esw(ii+k,j)=(exp(-(k-1-N)*tau)-1)*cos(x)*cos(y);
errw(ii+k,j)=esw(ii+k,j)-w(ii+k,j);
esU(ii+k,j)=(exp(-(k-1-N)*tau))*cos(x)*cos(y);
end;

end;

end;
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ep=zeros(M+1,M+1);

q=zerostM +1,M +1); p =zerost(M + 1,M + 1); errp = p;
for n=1:M+1;
x=(n-1)*h;ii=(2*N+1)*n;

for j=1:M+1;

y=(-1)*h;

ep(n,j)=cos(x)*cos(y);
q(n,j)=-w(ii,j)+exp(-1)*cos(x)*cos(y);
end;

end;

for n=2:M;

for j=2:M;
p(n,j)=-(q(n,j+1)-2*q(n,j)+q(nj-1)/(4*h?) = (g(n + 1, j) = 2 x q(n, j) + q(n = 1, )/ (4 h?) +
q(n, j)/2;

errp(n,j)=p(n.j)-ep(n,j);

end;

end;

for n=1:M+1;

1i=N21*(n-1);

for j=1:M+1;

for k=1:2*N+1;
U(i+k,j)=w(i+k,j)+q(n,j);

end;

end;

end;

errU=zeros(NK,M+1);

for n=2:M;

ii=N21*(n-1);

for j=2:M;
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for k=1:2*N+1;
errU(ii+k,j)=esU(ii+k,j)-U(i+k.));
end;

end;

end;
maxerrorw=max(max(abs(errw)));
maxerroru=max(max(abs(errU)));
maxerrorp=max(max(abs(errp)));

cevapl = [maxerrorw,maxerroru,maxerrorp|
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