
1

CNN BASED HEAD-MOUSE CONTROL SYSTEM FOR
PEOPLE WITH DISABILITIES

A THESIS SUBMITTED TO THE
INSTITUTE OF GRADUATE STUDIES

OF
NEAR EAST UNIVERSITY

By
MURAT ARSLAN

In Partial Fulfillment of the Requirements for
the Degree of Doctor of Philosophy

in
Computer Engineering

NICOSIA, 2021

M
U

R
A

T A
R

SLA
N

C
N

N
 BA

SED
 H

EA
D

-M
O

U
SE C

O
N

TR
O

L
SY

STEM
FO

R
 PEO

PLE W
ITH

 D
ISA

BILITIES



2

CNN BASED HEAD-MOUSE CONTROL SYSTEM
FOR PEOPLE WITH DISABILITIES

A THESIS SUBMITTED TO THE
GRADUATE SCHOOL OF APPLIED SCIENCES

OF
NEAR EAST UNIVERSITY

By
MURAT ARSLAN

In Partial Fulfillment of the Requirements for
the Degree of Doctor of Philosophy

in
Biomedical Engineering

NICOSIA, 2021



3

Murat Arslan: CNN BASED HEAD-MOUSE CONTROL SYSTEM FOR
PEOPLE WITH DISABILITIES

Approval of Director of Institute of
Graduate Studies

Prof. Dr.Hüsnü Can Beşer

We certify this thesis is satisfactory for the award of the degree of Doctor of
Philosophy in Computer Engineering

Examining Committee in Charge:

Prof Dr.RashadAliyev Department of Mathematics, Eastern
Mediterranean University, TRNC

Assoc.ProfDr.MusbahAqel School of Applied Sciences,
Cyprus International University, TRNC

Assist.Prof Dr.Mustafa Tunay Department of Computer Engineering,
Gelisim University, TURKEY

Assoc.ProfDr.KamilDimililerDepartment of Automotive Engineering,
Near East University, TRNC

Prof Dr.RahibAbiyev Supervisor, Department of Computer
Engineering, Near East University,
TRNC

3

Murat Arslan: CNN BASED HEAD-MOUSE CONTROL SYSTEM FOR
PEOPLE WITH DISABILITIES

Approval of Director of Institute of
Graduate Studies

Prof. Dr.Hüsnü Can Beşer

We certify this thesis is satisfactory for the award of the degree of Doctor of
Philosophy in Computer Engineering

Examining Committee in Charge:

Prof Dr.RashadAliyev Department of Mathematics, Eastern
Mediterranean University, TRNC

Assoc.ProfDr.MusbahAqel School of Applied Sciences,
Cyprus International University, TRNC

Assist.Prof Dr.Mustafa Tunay Department of Computer Engineering,
Gelisim University, TURKEY

Assoc.ProfDr.KamilDimililerDepartment of Automotive Engineering,
Near East University, TRNC

Prof Dr.RahibAbiyev Supervisor, Department of Computer
Engineering, Near East University,
TRNC

3

Murat Arslan: CNN BASED HEAD-MOUSE CONTROL SYSTEM FOR
PEOPLE WITH DISABILITIES

Approval of Director of Institute of
Graduate Studies

Prof. Dr.Hüsnü Can Beşer

We certify this thesis is satisfactory for the award of the degree of Doctor of
Philosophy in Computer Engineering

Examining Committee in Charge:

Prof Dr.RashadAliyev Department of Mathematics, Eastern
Mediterranean University, TRNC

Assoc.ProfDr.MusbahAqel School of Applied Sciences,
Cyprus International University, TRNC

Assist.Prof Dr.Mustafa Tunay Department of Computer Engineering,
Gelisim University, TURKEY

Assoc.ProfDr.KamilDimililerDepartment of Automotive Engineering,
Near East University, TRNC

Prof Dr.RahibAbiyev Supervisor, Department of Computer
Engineering, Near East University,
TRNC



4

I hereby declare that all information contained in this document has been collected and

presented in compliance with academic legislation and ethical standards. I also declare

that, as provided by these Rules and Conduct, all materials and findings that are not

original to this work have been thoroughly cited and referenced.

Name, Surname: Murat ARSLAN

Signature:

Date: 14/04/20



5

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my supervisor, Prof. Dr. RahibAbiyev, who

has supported and guided me with his vast knowledge, and also for his patience in ensuring

the completion of this thesis.

I dedicate my success to the pure spirit of my father who always supported me in my

studies. I would like to thank Near East University for giving me the opportunity to write

my thesis.

I would also like to thank all the lecturers at Near East University who taught me during

my Phd's period at the university.

Finally, I thank my friends who supported me in every possible way



ABSTRACT

The head-mouse control system for disabled people is proposed in this thesis. The designed

system is a human-machine interface that is designated for disabled people injured with the

spinal cord. The system controls the mouse using head movements and eye states

detection. The user moves the mouse cursor to the required coordinates using head motions

and transmits a command with eye blinks in the suggested system. Eye blinks are used for

confirming the selected action on the user window. The developed interface is based on

image processing that includes face recognition, especially eye, mouth and nose

recognition.The existing methods have several limitations. Some of them require special

hardware, such as certain cameras or sensor-based devices,some- have additional

components and the user has to wear these components. These systems use special

methods to solve feature extraction and classification problems. In the thesis, deep learning

using Convolutional Neural Networks (CNN) is proposed for solving the indicated

problem. The proposed system integrates images’ feature extraction and classification

stages in the unified body of CNN, which allows simplifying the system structure used for

image recognition. The convolutional layers, a pooling layer, and a fully connected

network are basic blocks of CNN. The CNN converts the mouse's actual coordinates into

head movements. The suggested recognition method allows low-quality images acquired

by a computer's camera to be processed and recognized. A built-in computer camera

captures the image of the individual in this system. The camera's image is divided in the

object recognition block, and the user's head-shoulder profile is detected.Segmentation of

the head-shoulder image, as well as recognition of a person's head profile and eyes, are

conducted in the next stage. The CNNs perform the extraction of the features of the head

profile and eyes as input and their classification. Two CNN1 and CNN2 are designed for

the classification of head and eye images. The first CNN1 is utilized to detect the up,

down, left, right and no-action directions of the head profile. The second CNN2 is used to

detect eye states, which can be open (No-action) or closed (Ok).CNN1 and CNN2 network

outputs are translated to mouse control signals and forwarded to the appropriate

action.Experiment results have shown that the developed system is reliable and accurate.



2

The system allows the persons having disabilities to control the cursor and buttons of

mouse by moving head and blinking eyes.

KEYWORDS: Disabled people, convolutional neural network, deep learning,computer

vision



3

ÖZET

Bu tezde, omuriliktenyaralananengellileriçinbirinsan-

makinearayüzüönerilmiştir.Tasarlananinsan-makinearayüzü, fare

kontrolüiçinkafahareketivegözkırpmayıkullananyardımcıbirsistemdir.Önerilensistemde,

kullanıcı fare

imleciniistenenkoordinatlarahareketettirirvegözkırpmagöndermekomutunukullanır.Dikkate

alınankafa-fare kontrolü, özelliklegözlerin,

ağzınveburnuntanınmasıgibiyüztanımadahilolmaküzeregörüntüişlemeyedayanmaktadır.

Bununlabirlikte, mevcutyöntemlerinbazısınırlamalarıvardır.Bazıları,

belirlikameralarveyasensörtabanlıgibiözeldonanımaraçlarıgerektirir.Bazılarınınekstrabileşe

nlerivardırvekullanıcılarınbubileşenleritakmasıgerekir.Diğerklasikyaklaşım,

özelliklerinçıkarılmasıvesınıflandırmaproblemlerininçözümüiçinözelmetodolojilerkullanır.

Önerilentanımasistemi,

birbilgisayarınkamerasındanyakalanandüşükkaliteligörüntülerikullananevrişimlisinirağların

a (CNN) dayanmaktadır.EvrişimliSinirAğı (CNN), evrişimlikatmanları,

birhavuzkatmanınıvetamamenbağlıbirağıiçerir. CNN,

kafahareketinifareningerçekkoordinatlarınadönüştürür.Tasarlanansistem, engellikişilerin

fare imlecinikafahareketleriylevegözkırparak fare

düğmeleriylekontroletmelerineolanaktanır.

Bu

sistemdeyerleşikbilgisayarkamerasıkişiningörüntüalımınıgerçekleştirir.Kameratarafındanalı

nangörüntünesnealgılamabloğundabölümlereayrılırvekullanıcınınbaşomuzprofilialgılanır.S

onrakiaşamadabaşomuzgörüntüsününsegmentasyonuvebirkişininbaşprofilivegözlerinintesp

itigerçekleştirilir.Başprofilivegözlerinalgılanangörüntüleri,

sınıflandırmayıuygulayanCNN'leriçingirdidir.Bu görüntüleriki CNN1 ve CNN2

ağınıngirişlerinegiriyor.İlk CNN1, sol, sağ, yukarı,

aşağıveHareketsizolabilenkafaprofilininyönlerinintanınmasıiçinkullanılır.İkinci CNN2,

kapalı (Ok) veAçık (Eylemsiz) olabilengözlerindurumlarınıntanınmasıiçinkullanılır. CNN1

ve CNN2 ağlarınınçıktıları fare kontrolsinyallerinedönüştürülürveilgilieylemiçingönderilir.



4

Deneylerinsonuçları, busisteminsağlamvedoğruolduğunugöstermektedir.Bu buluş,

herhangibirbileşentakmadanengellikişilerin fare imlecive fare

düğmeleriniözgürcekontroletmelerineolanaktanır.

AnahtarKelimeler: Disabled people, convolutional neural network, computer vision, deep

learning.



5

TABLE OF CONTENTS

ABSTRACT
ÖZET
ACKNOWLEDGMENTS
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES
1. INTRODUCTION

1. Definition of Problem

2. Thesis overview

2. STATE OF ART OF DEEP LEARNING FOR THE DESIGN OF HEAD-

MOUSE CONTROL SYSTEM
2.1. Overview
2.2. Review of Existing Research Works Used for Head-Mouse Control

2.3. Deep Learning Based on CNN Architectures

2.4. State of Deep Learning Architectures for the Design of Head-Mouse Control

3. HEAD MOUSE CONTROL SYSTEM
3.1. Overview

3.2. Structure of the System

3.3. Object Detection

3.4. Feature Extraction

3.5. Classification

4. DEEP LEARNING BASED ON CONVOLUTIONAL NEURAL NETWORK
FOR HEAD MOUSE CONTROL
4.1. Overview

4.2.Machine Learning Systems

4.3.Artificial Neural Networks

4.3.1. Basic Concepts

4.3.2. Multilayer NNs

4.4.ANN Learning



6

4.4.1. Gradient Descent Method

4.4.2. Backpropagation

4.4.3. Regularization

4.5. Convolutional Neural Networksfor Head-Mouse Control

4.5.1. Basic architecture

4.5.2. Convolutional layer

4.5.3. Pooling

4.5.4. Batch normalization

4.5.5. Properties  of CNN

5. MODELLING OF CNN BASED HEAD MOUSE CONTROL
5.1.Design of CNN based head mouse control system

5.2.Modelling

5.3. Simulation Results and Discussion

6. CONCLUSIONS

REFERENCES

APPENDICES



7

LIST OF FIGURES

Figure 2.1. The structure of the head mouse control system

Figure 3.2. Cascade classifier approach

Figure 3.3.A simple multi-layer neural network structure

Figure 4.1: A biological neuron (a) compared to an artificial neuron (b).

Figure 4.2.Popular activation functions

Figure 4.3.A feedforward network.

Figure 4.4.Single-layer Perceptrons

Figure 4.5.A multilayer perceptron with a single hidden layer.

Figure 4.6.Backpropagation: forward (a), backward (b) pass

Figure 4.7. Convolutional Neural Networks

Figure 4.8. Adam optimizer (Kingma& Jimmy, 2015)

Figure 4.9. Pooling

Figure 4.10. CNN structure

Figure 4.11. Local receptive fields

Figure 4.12. Deep indirect interactions

Figure 5.1. Fragment of Head Pose Dataset

Figure 5.2. Detection of eyes

Figure  5.3. Training and validation results obtained for loss and accuracy of head

classification

Figure  5.4. Training and validation results obtained for loss and accuracy of eyes

classification



8

LIST OF TABLES

Table 5.1. The structure of the CNN1 model

Table 5.2. The structure of the CNN2 model

Table 5.3. Performances of the CNN models

Table 5.4. The simulation results of the selected studies obtained for the head-mouse

control

Table 5.5.Comparative Results



9

CHAPTER 1
INTRODUCTION

Computer technologies now play a significant part in human life. People with impairments

find it difficult, if not impossible, to make efficient use of modern tools. Designing an

effective human-computer interface for impaired persons is extremely beneficial, and it can

even lead to career prospects. For this reason, computer-aided design research is gaining

traction and becoming increasingly relevant. Specific computer aids have recently been

proposed for various groups of impaired individuals (Chen et al., 1999; Lin et al., 2002;

Park & Lee, 1996).These methods are based on image processing or sensor-based tracking

systems, which detect head motions for mouse control using image processing or

physiological inputs. The optical sensors in sensor-based solutions may have limited

resolution, be expensive, and be cumbersome to use over time. Furthermore, these sensors

only supply a limited amount of data for subsequent calculations. Video camera solutions,

on the other hand, are far less expensive and can save all visual information for future

solutions. Some related applications have already made use of visual data.These include

face recognition (Viola & Jones, 2001; Rowley et al., 1998; Osuna et al., 1997), face

recognition (Ahonen et al., 2006; Senaratne et al., 2009; Zhang et al., 2013; Zho et al.,

2003), emotion recognition (Fragopanagos& Taylor, 2005; Adolphs et al., 2000; Cohen et

al., 2003), etc. Some recent studies have combined the aforementioned two groups; camera

and different sensors for head-mouse control. The video camera-based real-time head

tracking and eye state recognition technology has some difficulties. Lighting conditions

may change while controlling the mouse, people may have varied face forms, and eyes

may have varying forms and sizes depending on where they came from. To increase the

performance of the intended head mouse control system, many approaches have been

used.It is important to recognize the movement of the head and the states of the eye click

and make an accurate decision. In this paper, to solve these problems, deep learning based

on convolutional neural networks is presented to improve system performance. Here, the

basic problems are extracting important features of the head and eyes and identifying their

states to make an accurate decision. Traditional approaches to solving such problems are

based on using feature extraction methods and feature classification methods to classify the

extracted features. One of the fundamental advantages of Deep Learning structures is the

ability to perform both feature extraction and classification and combine their results into



10

one image. Deep learning is an efficient technology for learning large amounts of data with

high accuracy. This enables the construction of a compact system with high accuracy. The

goal of this project is to create a head-mouse control system that uses image processing

techniques and Convolutional Neural Networks (CNN) to improve head position and eye

state recognition capabilities.

CNN is a class of deep learning models which is an excellent method for image

recognition.  CNN can automatically detect the important features of the image without

any human supervision. CNN can efficiently extract distinctive features from the image

sets which is very important in recognition. CNN model combines feature extraction and

classification in the unified body of CNN, which allows simplifying the structure of the

used image recognition system. These properties allow the designingof CNN model with

the highest accuracy. CNN uses convolution and pooling operations for sharing parameters

which enables CNN models to execute on any computer and this capability make it

computationally efficient. In this thesis, CNN architecture is considered for the head

positions detection as well as recognition of eye states.

1.1.Definition of Problem
In this thesis, we propose head-mouse control system for disabled people with spinal cord

injuries. The developed mouse control is based on head movements and eye blinks. The

user moves the mouse cursor to the required coordinates using head motions and transmits

a command with eye blinks in the suggested system. The proposed head-mouse control is

based on image processing, which includes facial identification, particularly of the eyes,

lips, and nose.

However, the existing methods have several limitations. Some of them require special

hardware, such as certain cameras or sensor-based devices. Some have additional

components and the user has to wear these components. The other classical approach uses

special methods to solve feature extraction and classification problems.The proposed

framework based on Convolutional Neural Networks (CNN) utilizing inferior quality

pictures caught by a PC's camera. The CNN comprises of fully connected layers, pooling

layers and convolutional layers in the network structure. The CNN changes the head

motion and eye states into the mouse movements and mouse button commands.



11

In this thesis, an implicit PC camera is utilized to capture the image of the individual. The

captured image is segmented in order to perceive the head-shoulder profile of the person.

In the following stage, the segmentation of the head-shoulder and the recognitionof the

head profile and eyes of an individual are performed. The identified pictures of the head

profile and eyes are contributions to the CNNs. These images are inputs for CNN1 and

CNN2. The main CNN1 is utilized for identifying the bearings of the head profile which

can be up, down,left, right and no activity.The second CNN2 is utilized for recognizing the

eyes’ states, which can be shut (alright) and open (No-activity). The CNN1 and CNN2

networks’ outputs are transformed to the mouse control signals.

1.2. Thesis Overview

The thesis includes an Introduction, five chapters and Conclusions.

Chapter 2 presents a state of the art of deep learning for the design of head-mouse control

systems. A review on head mouse control is given. The state of the problem is presented.

Chapter 3 the structure of the proposed head mouse control based on CNN is presented.

The basic elements of the designed model are explained. The object detection, feature

extraction and classification stages are presented.

Chapter 4 presents the Convolutional Neural Networks used for designing head mouse

control. The CNNs used for the identification of head movement and eye state detection

are explained. The learning algorithm of the proposed structure has been described.

Chapter 5 gives a simulation of the head mouse control system. The modelling of the

CNN based system for identification of head movement and eye state detection are

presented. The stages of the algorithms are described. The performance of the designed

system is compared with the performances of other models.

Finally, Chapter 6gives a conclusion of the thesis. The important simulation results were

presented. Future recommendations of this research study have been given.



12

CHAPTER 2

STATE OF ART OF DEEP LEARNING FOR THE DESIGN OF HEAD-
MOUSE CONTROL SYSTEM

1.1. Overview
A review and analysis of existing research studies used for head mouse control

were described. The basic approaches used in mouse control for disabled people were

considered. The state of the art of deep learning used in head motion identification and eye

state detection is presented. The advantage of using convolutional neural networks in head

movement identification and also eye click state recognition is described. The status of the

research problem is given.

1.2. Review of Existing Research Works Used for Head-Mouse Control
Recently, some research studies that are based on head-controlled mouse systems have

been published in different literature. Chen et al. (2003) proposed developing a head

motion-controlled computer mouse system for spinal cord damage patients using image

processing and microprocessor technologies (SCI). This system was created to control the

movement and direction of the mouse pointer by using a marker mounted on the user's

headset to capture head motion images. In comparison to the infrared operated mouse

technology, they improved input speed, but users must wear the headset. Pereira et al.

(2009) created a computer mouse control system for people with impairments.A video

camera, computer software, and a target mounted to the front part of a cap worn by the user

make up this system. The proposed system is simple to use and emulates the motion

features of a computer cursor. Chen (2001) created a head-controlled computer mouse to

help persons with disabilities live more independently. To determine head position, this

device uses two tilt sensors in the headgear. The left-right movement is controlled by one

tilt sensor, while the up-and-down movement is controlled by the second tilt sensor.A

touch-switch gadget was intended to delicately contact the user's cheek to perform mouse

clicks. Fouché (2017) considers the plan of head-controlled cursor control and decides if

the outcomes accomplished by clients with handicaps are practically identical to those

accomplished by clients without incapacities. The paper considers the ideal affectability



13

setting, the measure of neck weariness, learnability and the degree of client fulfilment are

explored. The framework is tried on a PC round of the shooter class. For clients without

incapacities, a decrease in neck weakness and a huge improvement over the long haul for

specific things were found.Mishra et al (2017) introduced a human-machine interface for

handicapped individuals who can't utilize their hands to control PCs. The mouse is

constrained by head developments and an air sway sensor. The double-pivot

accelerometer-based slant sensor is utilized to identify the development of the head. Two

air bubble sensors set close to the mouth are utilized to initiate the left and right-snap of the

mouse. The framework is expected to be utilized freely by incapacitated people. A gyro-

mouse carrying out a human-PC interface has been created to control the mouse for

crippled individuals (Eom et al., 2007).The exhibition of the framework executing the

development and snap activities was assessed by click identification rate, cursor position

control blunder, and snap rate each moment. A wearable head GPS beacon that can go

about as a head mouse, in light of electronic parts and inertial sensors, was planned by Sim

et al. (2013). The elective PC mouse was created by Gerdtman et al. (2012) for engine

hindered individuals. The mouse has a whirligig as a movement sensor which is

excessively touchy. The planned mouse is utilized by crippled individuals to control their

PC. Ruler et al. (2005) and Nguyen et al. (2006) utilized two-hub accelerometers and

Neural Organizations planned a head movement grouping framework. A two-hub

accelerometer was utilized to gather head movement information, Neural Organizations

was utilized for grouping.Kim et al (2010) planned a sans hands mouse utilizing the sign

from gyro sensors that action the precise speed of head pivots. Opto-sensors were utilized

to recognize eye squints for mouse click control. All sensor-based frameworks show great

outcomes and help individuals with inabilities, however we don't uphold individuals with

handicaps to discover answers for issues with the extra gadgets. Arai and Mardiyanto

(2010) introduced a camera-mouse framework for individuals with inabilities. In the

introduced framework, the clock is utilized as a left-click occasion and the squinting is

utilized as a right-click occasion. In the analyses, composing activity, left-click occasions,

right-click occasions, intuitive occasions, and troubleshooting were shown with the

camera-mouse framework.Su et al. (2005) introduced a visual-based PC interface for

individuals with incapacities. Head developments are utilized to move the mouse to the

new position. The creators recommended stay time and the spring up menu for tapping the



14

mouse. A head movement identification strategy is proposed by Tolle and Arai (2016). The

introduced framework can decide to head present developments and is reasonable for

ongoing human-PC connection. Alhamzawi (2018) introduced mouse pointer control by

moving the top of a client situated before the PC. The reference point on the head, which is

the focal point of the client's head, is caught by the camera. The pictures addressing the

situation of the head are changed over to the directions of the mouse pointer in the wake of

handling.The mouse click is changed over into seconds by standing firm on the pointer at

the ideal situation. Naizhong (2015) introduced a human-PC interface that executes sans

hands mouse control dependent on mouth following. The researchers utilized mouth

following for mouse development and head shaking for mouse click activity. Palleja et al.

(2008) introduced an overall virtual mouse dependent on head development understanding

utilizing the camera for individuals with portability disabilities. Lin et al. (2007) planned

an eye-GPS beacon with a head signal. Here, the client wears a gadget with a light source.

The CCD camera catches the picture of the client and afterwards, the situation of the light

source is controlled by an advanced picture preparing method.The user can manipulate the

mouse by moving the head. Eye-following is additionally utilized in the work for mouse

control. Ismail et al (2011) introduced a model framework for controlling the mouse by

head development and furthermore by voice order. The voice order is utilized for a mouse

click. In (Sawicki and Kowalczyk, 2018), head development is utilized to plan a touchless

PC control framework. The camera on the head is utilized to dissect the situation of the

screen cursor. Thus, the creators viably move the mouse cursor to the ideal position

recognized by the client's facial direction. The investigation of the eye picture is performed

and by squinting the framework orders were executed. The head-mounted inertial interface

is produced for individuals with cerebral paralysis (Velasco et al., 2017).An empirical

model of human motor performance for directed movements is presented using Fitts' law.

Varona et al. (2008) introduced a vision-based user interface for those with motor

disabilities to make computers more accessible. The system tracks the user's face in real-

time to recognize motions. Manresa-Yee et al. identify and evaluate the important aspects

of camera-based head-controlled interfaces (2014). Users features to track, initial user

detection, position mapping, error recovery, profiles, and system ergonomics are all

examples of these elements. The paper looks at what other systems have to offer in terms

of solutions.



15

The appropriate recognition of a human's head is critical in human-computer interaction

because it influences the accuracy of the entire system. A variety of studies have been

carried out for this purpose. Jian-Zheng and Zheng (2011) described a strategy for tracking

head movement using image processing techniques. To determine the feature point and

tracking pattern of head motion, the Lucas-Kanade (LK) algorithm is employed, and the

GentleBoost algorithm is used to detect the head direction based on the eye. For head

motion detection, Zhao et al (2012) employ image processing and the LK method.

Mehrubeoglu (2011) detects and tracks an eye using an image processing algorithm and a

smart camera.The continuous head following and eye status framework utilizing a

camcorder has a few difficulties. During the control, lighting conditions may change,

individuals may have diverse face shapes, and eyes may likewise have distinctive shape

and size contingent upon their starting point. In this paper, we intend to improve the

presentation of a head position and eye status recognition by utilizing picture handling

procedures and Convolutional Neural Organizations. In this paper, we proposed a head-

mouse control framework that executes head position assessment, eye recognition and

grouping. At that point, we applied the three-layer Convolutional Neural Networks (CNN)

to select the stateof the eyes that may be open or close.CNN is a profound learning

structure roused by the regular discernment components of living creatures. As of late,

various exploration papers have been distributed on the improvement of profound neural

designs. One of them is CNN, which has at least one convolutional layers and max-pooling

layers. The CNN engineering was proposed by LeCun et al. in 1998, it was a seven-layer

convolutional network called "LeNet-5" that arranges written by hand numbers in 32x32

pixel pictures. The organization was prepared by utilizing the backpropagation calculation.

The framework can perceive the pictures straightforwardly from the picture pixels (Lecun

et al., 1998; Hecht-Nielsen, 1992). Reference (Russakovsky et al., 2015) presents a CNN

engineering that showed upgrades in picture acknowledgement.Russakovsky et al. (2015)

planned a profound design called AlexNet, which is like LeNet with a more profound

construction. Many exploration works have been done to improve the exhibition of the

frameworks and beat the challenges identified with preparing the CNN, like ZFNet (Zeiler

and Fergus, 2014), VGGNet (Simonyan and Zisserman, 2015), GoogleNet (Szegedy et al.,

2015), and ResNet (He et al., 2016). This work is reached out in more profundity to more

readily inexact complex nonlinear capacities by applying nonlinear enactment capacities



16

and to get better component portrayals. To this end, a few strategies are created to manage

these issues.

Different CNN structures were designed to solve different problems related to image

recognition, classification and so on.Lawrence et al., 1997 presented CNN used for face

recognition, Ciresan et al., 2001 developed a system for the classification of

handwrittencharacters.Simard et al., 2003 presented a system for visual document analysis,

Jiao et al., 2018 presented facial sketch analyses, Chudzik et al, 2018 designed a system for

detection of microaneurysm, Li et al., 2018 presented fingerprint enhancement, Hussain et

al., 2018 presented brain glioma tumoursegmentation,Baldominos et al., 2018 presented

recognition of handwritten text, Ferreira and Giraldi, 2017 developed rock tile

characterization, Wachinger et al, 2018 presentedneuroanatomy segmentation, Liu et al.,

2018 presented change identification with heterogeneous optical and radar pictures, Liu et

al., 2018 presented prediction of eye states, Salvati et al, 2018 designed acoustic source

limitation improvement in boisterous and reverberant conditions, Abiyev and Ma'aitah,

2018 presented a system for detection of breast diseases. Kalchbrenner et al, 2014

presented natural language processing,Khodayar et al, 2017presented a short-term

prediction system for wind speed, Karpathy et al, 2014 presented a system for image and

video recognition.

2.2. Deep Learning Based on CNN Architectures
The most popular CNN architectures were presented for solving different problems. LeNet

[31] wasthe first successful applications of CNNs and used to read postal codes, digits, etc.

AlexNet [30]. The first wellknown CNNs used in computer vision was the AlexNet.

AlexNet was appeared at the ImageNet ILSVRC 1 challenge in 2012 and took first place

with a top 5, error of 16% compared to second place with 26% error. The network had

multiple convolutional layers stacked on top of each other without the interruption of

pooling layers.

GoogLeNet [49].GoogLeNetwasthe winner of ILSVRC 2014. Its main contribution was

the development of an Inception Module. The inception module uses convolutional filters

of different sizes and concatenates their outputs so that the model can decide which filter



17

size is best to capture features. It also uses Average Pooling instead of Fully Connected

layers in the final network layers, eliminating a large number of parameters that arise in

Fully Connected layers.

VGGNet [43]. The VGGNet was a very depth network that appeared at the ILSVRC 2014.

It showed the importance of network depth. The network contains 16 layers (without

pooling) and performs only 3x3 convolutions and 2x2 pooling. However, VGGNet is quite

expensive to evaluate and consumes a lot of memory for its 140 million parameters.

ResNet [20]. Residual Network was the winner of ILSVRC 2015, featuring special residual

blocks that improve the optimization of the cost function, and strong use of stack

normalization. The structure also discarded the pattern of using fully connected layers at

the end of the network.

Squeeze-and- Excitation Network [22] was the winner of ImageNet 2017, introducing the

mechanism of the adaptive weighting of intermediate feature map channels in the hidden

layers of the network, increasing the network's ability to learn the best representations of

the input.

As can be seen from this list, the field of CNNs is changing rapidly. The best

improvements to the CNN architecture are often based on simple ideas but are very

effective.

2.3.State of Deep Learning Methods Used for the Design of Head-Mouse
Control

A comparison of feature extraction and picture recognition methods reveals that deep

learning-based CNN is an effective method for detecting head motions and recognizing eye

states. The CNN-based approach for estimating head posture and detecting eye state in

visual mouse control will be aimed at people with disabilities. In comparison to other

image classification algorithms, CNN can intelligently restrict the architecture and requires

fewer preprocessing steps.Based on the estimation of head positions, detection of eye states



18

and convolutional neural networks, the design of a system enabling mouse control with

head motions using low-quality images acquired by a monocular camera mounted on a

computer is considered (CNN). A video camera and a high-speed computer are required for

the system to work. The goal of this module is to track the position of the face and the state

of the eyes. The direction of movement of the mouse cursor is implemented by tracking the

facial position.The eye state module will be utilized to examine the video pictures utilizing

picture preparing strategies and afterwards, identifies the eyes and characterizes them as

"open" or "shut" state in video pictures. The exhibitions of these modules are vital for the

acknowledgement of head position, eyes and their states. These tasks ought to be acted in a

brief time frame to control the mouse with head developments and eye states. The head-

mouse framework ought to be utilized for individuals with inabilities to serenely utilize

PCs and control objects.

Taking the above mentioned into account, in order to achieve the research goals, the design

of a CNN-based head mouse control system necessitates the execution of the following

procedures.

- The structure of the head mouse control system using CNN will be designed. The

basic stated problems will be specified.

- The mathematical background of Convolutional Neural Networks (CNN) will be

presented.The basic constituents of CNN, which are convolutional layers, a pooling

layer and a fully connected network will be presented.

- The structure of CNN models will be designed for the considered problems,

particular for the detection of head movement and recognition of eye states.

- The simulation of the head-mouse control system will be implemented using

constructed image data sets. For this purpose, the data sets will be organized for

each considered problems, i.e. head movements and eye states.

- Analysis of obtained results will be carried out. Discussion and performance

analysis of the results will be performed.

Design of system using CNN will improve the performance of the head mouse control

system



19

CHAPTER 3
HEAD MOUSE CONTROL SYSTEM

3.1. Overview
For physically challenged patients with motor neuron disease or severe cerebral palsy, the

head-mouse control system was created. The technology calculates the head's position and

converts it to mouse positions. In this section, the structure of the system is designed. The

functions of its main elements are explained. The object recognition problem and its

solution methods are presented in detail. The steps and details of feature extraction are

explained, the use of CNN to solve this problem is described. The classification unit is

described in detail. In the paper, CNN is proposed for solving the above problems.

3.2. Structure of the System
The considered head-mouse control system is designated for physically disabled

peoplehaving motor neuron disease or severe cerebral palsy. The technology calculates the

head's location and transforms it into mouse movements. The presented system also detects

and analyzes eye conditions, which it then uses to operate mouse buttons. The architecture

of the designed system is given in Figure 3.1. The system includes a set of modules for the

acquisition of images, recognition of objects, extraction and segmentation of features,

classification, conversion of the output signal to the control signal for moving the mouse to

the indicated position and finally converting eye blink signal to the mouse on/off signal.As

shown in the figure, the person's image is acquired by the computer camerais transformed

and integrated into the system. The camera's image is divided in the object recognition

block, and the user's head-shoulder profile is detected. The segmentation of the head-

shoulder image, as well as the recognition of a person's head profile and eye states, are

conducted in the next stage. The CNNs that perform classification use separately the

images of head profile and eyes as inputs. These input images are fed into the first and

second CNN blocks depicted as CNN1 and CNN2. The first CNN1 is utilized to detect the

directions such as up, down, left, right and no-action of the head-profile. The second

CNN2 is utilized to detect the closed and open states of the eyes. Here closed state means



20

clicking Ok button, open state continuation of the action, that is no-action of Ok button.

CNN1 and CNN2 network outputs are translated to the control signals of mouse and the

forwarded for determination of appropriate actions.

Figure 3.1. The architecture of the head mouse control system

3.3. Object Detection
Object recognition, which is utilized to recognize the head profile and eyes, is one of the

essential building modules of the head-mouse control system. In this thesis,we use the hair



21

cascade classifier approach for object recognition described by Viola and Jones (2001) for

this purpose. Simple features are used to achieve object categorization in this technique.

The features can encode ad hoc knowledge domains and operate considerably more quickly

than a pixel-based system. The features are similar to those found in the Haar basis

feature.The total of pixels in the rectangles is the features that are being looked for (Figure

3.2). The set of rectangle characteristics provide a rich visual representation of images and

allows the system to be learned effectively. As shown in Figure 2, the value of any input

feature is the sum of the pixels taken from the pointed (black) rectangles and the pixels in

the clear (white) rectangles. The cascade function is trained using negative and positive

images before being used to detect the other objects on images. Those featuring a face are

considered positive, whereas images without a face are considered negative.The

classification function is trained using the feature and training sets of negative and positive

images.

All human faces have comparable traits, which can be used to create hairstyles. The

eyelids, for instance, are darker than the top cheekbones. Using the equation, we can

determine the gradient value based on the histogram:

Value = Σ (pixels of black region) - Σ (pixels of white region) (1).

We utilized a variation of Adaboost to extract useful features from photos. The algorithm

determines the proper threshold for each feature in order to classify the faces. At first, the

weights of each image are equal. New weights and errors are computed and they are

updated in each step until the error rate anddetection accuracy are satisfactory.

The input space of CNNs is the detected pictures of the head and eyes. These images are

used by CNNs to create classes, which are then utilized to determine mouse control

signals.



22

Figure 3.2. Cascade classifier approach

3.4. Feature Extraction
Each image object is characterized by a set of features. The detection and obtaining of

these features are important steps in image recognition. In the thesis, the convolutional

layers of CNN are employed for the detection of these features.  The output signal of the

object detection module is the input for CNN. The convolution is mathematically based on

integral transform operation on functions that includes input signals using a particular

operator. It uses the original function and transforms or reshapes it in order to get new

representations. In image processing, convolution is started widely used to detect and

extract features without removing the spatial relationships between image pixels.  Using an

appropriate operator searches for a particular feature in a much large set of pixels. A

convolution operation is mathematically constructed by first inverting the operator, called

the convolution kernel, both row-wise and column-wise. The convolution kernel filter is

shifted by a fixed step over the entire original image. Here the kernel size should be less

than the image area. For each operation, the result of convolution will be the integration of

original elements weighted by the corresponding inverted kernel. The convolution is used

as an effective technique for extraction of the features that cleverly reduces data

dimensions and produces a less redundant dataset. The extracted set of features are called a

feature map. Each kernel filters out or determines the position of the features in the original

image. Ultimately, a map is generated whose height reveals the distribution of these

features. Since the direct analysis of the original data requires a lot of preprocessing

operations, and can deconstruct the symbolic information of the images hardly, the use of



23

general feature description methods is necessary. This feature extraction is a convolution.

Convolution aims automatically extract important features and make them “visible” to the

system.  The use of convolution not only fully describes the features of the objects, but also

reduces the need for manual intervention. The kernels have lower-order and smaller in size

than the original images. They extract local features of the input objects. However, higher-

order convolutions allow for extensions throughout the receptive field, gradually

transforming local features into global features, which is also the case of how humans look

at and recognize an object. In addition, the parameters of kernels are constant during the

recognition. This leads to the weight-sharing property of the individual receptor neurons,

which results in large computation time savings. Moreover, pooling further samples the

features and reduces the computational operations for the computer

3.5. Classification
A set of methods have been designed for the classification of various objects. Neural

Networks that are composed of large numbers of dense neurons is one of the adaptive

classification techniques with the learning ability. Neural Networks learn its parameters

using examples. NN main goal is to replicate the performance of biological neural systems,

learn from the way humans recognize the world and thus use the network structure to solve

complex problems such as image recognition orobject classification. NN includes a set of

connected neurons characterized set of weight coefficients. These weight coefficients

modify coming input signals. These signals are modified by the nonlinear activation

function of neurons. The basic problem in NN classification is finding proper values of

these parameters. Different learning algorithms are employed for this purpose. By updating

these layer parameters, NN tries to classify input images into the output signal. By

selecting appropriate values of weigh coefficients of the NN classification model is

designed. The learning ability, generalization  and parallel processing property allows to

develop a high performance classification model.

Figure 3.3 depicts a neural network structure consisting of a set of neurons. As shown the

network includes three layers, that are input, hidden and output layers. Each layer includes

a set of connected neurons. There are connections between neurons of input, hidden and

output layers. The strengthens of each connection are presented by weight coefficients.

Neurons of the input layer receive signals and distribute them between neurons of the



24

hidden layer. In hidden neurons, these signals are processed, modified by the weight

parameters and activated. After activation, they are transmitted to the neurons of output

layers. The same processing and activation operations are used for the output signal of

hidden neurons.

Figure 3.3.A simple multi-layer neural network structure

Finally, on the output of neurons of the output layer, the output signals are determined. The

considered NN is a feedforward structure. CNN is also a feedforward structure that

includes multiple layers and the CNN structureswere designed for solving image

processing problems. It is applied for processing one-, two and three- dimensional data. A

basic neuron of a CNN collects the activations of kernel filters and generates a feature map.

CNNs provide satisfactory recognition results for practical use, but the accumulation of

layers also creates a black box of the feature extraction process.



25

CHAPTER 4
DEEP LEARNING BASED CONVOLUTIONAL NEURAL NETWORK

FOR HEAD MOUSE CONTROL

4.1.Overview
This chapter introduces the design of the classification system based onDeep Learning

which is a branch of Machine Learning (ML). The basic problem of Machine Learning is

the development of algorithms that use statistical methods and data to learn computer

systems [25]. It covers topics essential for understanding complex learning systems such as

neural networks. Deep learning based on learning and statistics allows the design ofa more

efficient decision-making system. In this section, deep learning based on CNN structure

will be described. Structure and constituent elements of CNN, its operation principles will

be presented.

4.2.Machine Learning Systems
In ML, the goal is to create a system that can perform a particular task without being

explicitly programmed [41]. Instead, it should suffice to provide such a system with

empirical data of the process whose behaviour is to be studied. Formally, this can be

formulated as follows [50]:

"A computer program is said to learn by experience E with respect to a class of tasks

T and a performance measure P if its performance on tasks in T, as measured by P,

improves with experience E."

This definition summarizes all the important aspects of an ML problem.

T, the task - the problem that an ML system is supposed to solve. The most common

tasks are regression and classification. Regression models are trained to estimate unknown

continuous variables based on given inputs. In classification, an ML model learns to

determine to which of k categories an object belongs.

P, the performance measure is a quantitative measure of how well the model performs.

Optimizing the performance measure is one of the main goals of machine learning.

Usually, the choice of metric depends on the type of task the machine learning system is



26

dealing with. A common practice is to use multiple metrics that give different perspectives

on the model performance.

E, the experience. In most ML algorithms, experience is represented by a dataset - a

collection of data points represented by real-valued vectors x ∈ R m. In general, ML

problems require the collection of experience data and its transformation into values that

can be accepted by the learning algorithm. This process is commonly referred to as feature

engineering. Although some branches of machine learning, such as Deep Learning, deviate

from this approach and use as much information as possible. For example, a grayscale

image might be represented by a feature equal to the sum of the pixel values of the left

part, subtracted from the sum of the pixel values of the right part. Deep Learning systems

would use the entire image as input. When possible, it is convenient to represent the data

set by a matrix. A dataset consisting of n m-dimensional samples forms a matrix X ∈ R

n×m. The ith row of X then denotes a data point xi.

A learning algorithm is an algorithm that is able to generate models from the

statisticaldataset. The used learning algorithms are conditionally divided into supervised

and unsupervised algorithms [25], although this distinction is sometimes too imprecise.

There is also reinforcement learning, where learning algorithms interact "in real-time" with

dynamic systems and receive feedback to evaluate the success of their actions [48].

In supervised learning, each data point is associated with a target value that provides

information for learning and that the model tries to estimate when it receives a new unseen

input. In unsupervised learning problems, there are no target values. The presence of the

target value strongly affects the learning methodology. This paper focuses on algorithms

for supervised learning.

4.2.Artificial Neural Networks
ANN is a parallel distributed connectionist system made up of simple processing units

(commonly referred to as neurons) [19]. ANN is a model consisting of multiple

computational layers stacked on top of each other. Successive layers are thought to learn

features of increasing abstraction, looking "deep" into the data. At the origins of deep

learning, biological neural networks have been a great source of inspiration for artificial

neural network research. ANNs are an important area of deep learning research and have



27

been successfully applied in many fields, such as image recognition [11], speech

recognition [17], natural language processing [14], and bioinformatics [55]. Two types of

models can be distinguished based on their topology: Feedforward and recurrent neural

networks. In feedforward networks, information flows from input to output through

computational layers consisting of processing units, and there are no feedback connections.

If these are present and intermediate outputs are fed back to previous layers or stored for

later use, the network is said to be recurrent. Thus, a feedforward neural network can be

represented by directed acyclic graphs, while recurrent networks are represented by

directed cyclic graphs. In this text, only feedforward networks are discussed. This chapter

covers concepts that form the foundation of ANNs, followed by multilayer perceptrons -

the cornerstone of Deep Learning. The rest of the chapter describes the process of learning

with neural networks.

4.3.1 Basic Concept
ANNs originated as systems inspired by biological neural networks. They were designed to

simulate the brain of an animal. So, by analogy, they consist of neurons and connections

between them.

Artificial neurons were designed as a mathematical model of the biological neuron. It is a

function that converts n real input "stimuli" into a single "response value". The most

common definition of the neuron is= ( ) = ( + ),
where ∈ , ∈ are the neuron’s weights and biases respectively, and is the

activation function described below. Weights and bias are the parameters of the neuron,

and their values are determined in the learning process. Bias makes this transformation

affine, which allows us to learn a wider variety of functions.



28

Figure 4.1: A biological neuron (a) compared to an artificial neuron (b). The analogy is

clear: both neurons receive multiple signals and aggregate them to a single output that is

transferred further on [18].

The activation function transforms the output of a neuron. It is applied element-wise on the

output vector. The purpose of an activation function is to introduce non-linearity to the

model in order to learn complex nonlinear functions. Without activation functions,

hypothesis space of a neural network would be constituted only from linear functions.

Popular examples of activation function include ReLU (Rectified Linear

Unit)f(x)=x+=max(0,x) and sigmoid ( ) = 1
1

Figure 4.2.Popular activation functions

The layer is a collection of neurons that are grouped to process multidimensional inputs to

multi-dimensional outputs. ANNs are usually described in terms of layers since it is more

convenient due to the bigger scale and abstraction compared to artificial neurons. A notable

example of a layer is a fullyconnected layer. In fullyconnected layer neurons receive input

from each neuron of the previous layer. This allows for convenient simultaneous

computation of all neuron outputs of the layer via matrix multiplication:

( ) = ( + )
where W and b are individual neuron’s weights and biases collected into a matrix and a

vector respectively. Network topology is a configuration of multiple chained connected

layers. Two special layers are always present in the network: input and output ones. An

28

Figure 4.1: A biological neuron (a) compared to an artificial neuron (b). The analogy is

clear: both neurons receive multiple signals and aggregate them to a single output that is

transferred further on [18].

The activation function transforms the output of a neuron. It is applied element-wise on the

output vector. The purpose of an activation function is to introduce non-linearity to the

model in order to learn complex nonlinear functions. Without activation functions,

hypothesis space of a neural network would be constituted only from linear functions.

Popular examples of activation function include ReLU (Rectified Linear

Unit)f(x)=x+=max(0,x) and sigmoid ( ) = 1
1

Figure 4.2.Popular activation functions

The layer is a collection of neurons that are grouped to process multidimensional inputs to

multi-dimensional outputs. ANNs are usually described in terms of layers since it is more

convenient due to the bigger scale and abstraction compared to artificial neurons. A notable

example of a layer is a fullyconnected layer. In fullyconnected layer neurons receive input

from each neuron of the previous layer. This allows for convenient simultaneous

computation of all neuron outputs of the layer via matrix multiplication:

( ) = ( + )
where W and b are individual neuron’s weights and biases collected into a matrix and a

vector respectively. Network topology is a configuration of multiple chained connected

layers. Two special layers are always present in the network: input and output ones. An

28

Figure 4.1: A biological neuron (a) compared to an artificial neuron (b). The analogy is

clear: both neurons receive multiple signals and aggregate them to a single output that is

transferred further on [18].

The activation function transforms the output of a neuron. It is applied element-wise on the

output vector. The purpose of an activation function is to introduce non-linearity to the

model in order to learn complex nonlinear functions. Without activation functions,

hypothesis space of a neural network would be constituted only from linear functions.

Popular examples of activation function include ReLU (Rectified Linear

Unit)f(x)=x+=max(0,x) and sigmoid ( ) = 1
1

Figure 4.2.Popular activation functions

The layer is a collection of neurons that are grouped to process multidimensional inputs to

multi-dimensional outputs. ANNs are usually described in terms of layers since it is more

convenient due to the bigger scale and abstraction compared to artificial neurons. A notable

example of a layer is a fullyconnected layer. In fullyconnected layer neurons receive input

from each neuron of the previous layer. This allows for convenient simultaneous

computation of all neuron outputs of the layer via matrix multiplication:

( ) = ( + )
where W and b are individual neuron’s weights and biases collected into a matrix and a

vector respectively. Network topology is a configuration of multiple chained connected

layers. Two special layers are always present in the network: input and output ones. An



29

input layer holds values of the input vector and is connected to the next layer only to pass it

forward. An output layer is the last layer in the chain and its outputs are the final result of

the input processing done by the network. Layers between them are called hidden because

their outputs are only intermediate and are not used outside of the model. The number of

hidden layers is called the network’s depth. The number of neurons in the layer is referred

to as its width.

Signal directions in NN can be feedforward and feedback. In a feedforward neural network

(Figure 4.3)the connections between the nodes do not form a cycle. These NNs have

feedforward connections only. The information moves from input nodes to output nodes.

Figure 4.3.A feedforward network.

Feedforward NNs may be single-layer and multi-layer architectures. Single-layer consists

of one artificial neuron. It can be extended with additional units for each output element to

produce multi-valued outputs, but it would still have no hidden layers. This type of neural

network has very limited learning potential. Due to the lack of hidden layers, the outputs

are only a linear combination of the inputs, so the single-layer perceptron is only able to

approximate linear relationships [35].

wherew denotes the vector of weights, x is the vector of inputs, b is the bias and φ is the

non-linear activation function.
29

input layer holds values of the input vector and is connected to the next layer only to pass it

forward. An output layer is the last layer in the chain and its outputs are the final result of

the input processing done by the network. Layers between them are called hidden because

their outputs are only intermediate and are not used outside of the model. The number of

hidden layers is called the network’s depth. The number of neurons in the layer is referred

to as its width.

Signal directions in NN can be feedforward and feedback. In a feedforward neural network

(Figure 4.3)the connections between the nodes do not form a cycle. These NNs have

feedforward connections only. The information moves from input nodes to output nodes.

Figure 4.3.A feedforward network.

Feedforward NNs may be single-layer and multi-layer architectures. Single-layer consists

of one artificial neuron. It can be extended with additional units for each output element to

produce multi-valued outputs, but it would still have no hidden layers. This type of neural

network has very limited learning potential. Due to the lack of hidden layers, the outputs

are only a linear combination of the inputs, so the single-layer perceptron is only able to

approximate linear relationships [35].

wherew denotes the vector of weights, x is the vector of inputs, b is the bias and φ is the

non-linear activation function.
29

input layer holds values of the input vector and is connected to the next layer only to pass it

forward. An output layer is the last layer in the chain and its outputs are the final result of

the input processing done by the network. Layers between them are called hidden because

their outputs are only intermediate and are not used outside of the model. The number of

hidden layers is called the network’s depth. The number of neurons in the layer is referred

to as its width.

Signal directions in NN can be feedforward and feedback. In a feedforward neural network

(Figure 4.3)the connections between the nodes do not form a cycle. These NNs have

feedforward connections only. The information moves from input nodes to output nodes.

Figure 4.3.A feedforward network.

Feedforward NNs may be single-layer and multi-layer architectures. Single-layer consists

of one artificial neuron. It can be extended with additional units for each output element to

produce multi-valued outputs, but it would still have no hidden layers. This type of neural

network has very limited learning potential. Due to the lack of hidden layers, the outputs

are only a linear combination of the inputs, so the single-layer perceptron is only able to

approximate linear relationships [35].

wherew denotes the vector of weights, x is the vector of inputs, b is the bias and φ is the

non-linear activation function.



30

Figure 4.4.Single-layer Perceptrons can learn only linearly separable patterns. For

classification, we use the Activation function as a threshold to predict class. And for

Regression, we need not need the Activation function (Thresholding) or we can use a linear

function to predict continuous value.

4.3.2 Multilayer NNs
The multilayer NNs sometimes are called multilayer perceptron (MLP). It has at least one

hidden layer and all layers are fully connected. MLP is the fundamental tool and the basis

of many advanced techniques in DL. It is a cornerstone of Deep Learning.

Figure 4.5.A multilayer perceptron with a single hidden layer.

30

Figure 4.4.Single-layer Perceptrons can learn only linearly separable patterns. For

classification, we use the Activation function as a threshold to predict class. And for

Regression, we need not need the Activation function (Thresholding) or we can use a linear

function to predict continuous value.

4.3.2 Multilayer NNs
The multilayer NNs sometimes are called multilayer perceptron (MLP). It has at least one

hidden layer and all layers are fully connected. MLP is the fundamental tool and the basis

of many advanced techniques in DL. It is a cornerstone of Deep Learning.

Figure 4.5.A multilayer perceptron with a single hidden layer.

30

Figure 4.4.Single-layer Perceptrons can learn only linearly separable patterns. For

classification, we use the Activation function as a threshold to predict class. And for

Regression, we need not need the Activation function (Thresholding) or we can use a linear

function to predict continuous value.

4.3.2 Multilayer NNs
The multilayer NNs sometimes are called multilayer perceptron (MLP). It has at least one

hidden layer and all layers are fully connected. MLP is the fundamental tool and the basis

of many advanced techniques in DL. It is a cornerstone of Deep Learning.

Figure 4.5.A multilayer perceptron with a single hidden layer.



31

Mathematically, MLP is a composite function that performs alternating affine and non-

linear transformations to reflect the graphical structure of the network []. Figure 3.3 depicts

a multilayer perceptron with a single hidden layer.

MLPs can be used in a wide range of tasks - according to the universal approximation

theorem [21], an MLP with at least one hidden layer and nonlinearity, containing a finite

number of units, can approximate any continuous function with an arbitrary nonzero error,

given suitable parameters. However, the theorem is not constructive and does not provide a

way to find such a network configuration and its parameters. In practice, optimization

algorithms are not able to find parameters that correspond to the desired function. This

means that designing and training a network may not result in the desired approximation

quality. Nevertheless, this is an important result that shows the great potential of ANN.

Multiple Hidden layers are used to find the nonlinearity of the data. This instruction is also

called a feed-forward network.

Multilayer perceptrons can be trained using input-output training pairs. Training operation

includes adjusting the weights and biases of the network in order to minimize error. In

practice, the backpropagation algorithm is widely used for this purpose.

In practice, MLP has a few problems that outweigh its appeal as a universal approximator.

One of the major drawbacks of this model is the high number of trainable parameters due

to the fact that all layers are fully connected. The number of parameters may become

impractical to train for high dimensional data or wide hidden layers. It also limits the depth

of the model. Deep and wide perceptrons are not only computationally difficult to train, but

due to their high capacity, they also tend to overfit if the dataset is not large enough.

3.2.ANN Learning
The weights of NN are adjusted during the learning process.  The weights of NN are

trained using statistical data existed about considered problems. These data are called

training input-output pairs. Training of networks is implemented using input-output

training pairs.

NN has a set of parameters that affect the learning process. Sometimes these parameters

are called hyperparameters. Learning rate, number of hidden layers, number of parameters,

stack size are included hyperparameters [46]. Learning rate is used to define the size of

correction of weights. The large value increases learning time or speed but leads to



32

oscillation of learning process, small value lead to decrease learning time. The optimal

value of the learning rate speed up the learning of NN [47]. The momentum rate is also

used to speed up and stabilize the learning process of the network.

The cost function is formulated using errors in order to organize the learning process of the

NN model and to measure its performance. In the learning process, the measured error on

the output of NN is propagated back and used for the correction of weight coefficients.

This process is called Backpropagation. The values of error are used to correct weight

coefficients [48-52].

Learning can be organised as supervised, unsupervised and reinforcement learning.It's

called supervised learning the training dataset as a teacher supervising the learning process.

Here input-output training pairs are used for training. If learning is carried out using input

data only this learning process is called unsupervised.Only input data (X) is used for

weight corrections.In reinforcement learning, the goal is to weigh (strategize) the network

to perform actions that minimize the long-term (expected cumulative) cost. During

learning, if the error is minimized then +1 sent to the system in another case 0 sent to the

system.

A number of learning algorithms have been designed. More used are the gradient descent

algorithm and backpropagation.

4.4.1 Gradient Descent Method

The optimization problem of training a neural network can be stated formally:

MinimizeL(,x,y),,(x,y) D(3.4)

where D denotes the set of training samples, θ denotes all parameters of the model in the

parameter space Θ, and L is the real loss function. The evaluation of L naturally involves

the computation of the model performance for each training sample x  D. In the case of

ANNs, this makes the power function nonlinear, leading to complex and often non-convex

optimization problems. Such problems can be solved with iterative gradient-based

algorithms.

The gradient of a real continuous function f : Rn → R is the column vector of its partial

derivatives:



33

=-L(, x(i),y(i)) (3.5)

The pseudocodes of stochastic gradient decent method is preseted as

for i in range (epochs ):
np.random.shuffle (data )
for example in data :
params_grad = evaluate_gradient (loss_function , example , params)
params = params - learning_rate * params_grad

4.4.2  Back - propagation Algorithm

Any type of gradient descent algorithm requires multiple computations of the gradient.

Evaluating the gradient of composite functions can be computationally intensive, and a loss

function can potentially be quite complex since it involves evaluating the entire neural

network on many data samples. The back-propagation algorithm (BP) provides an efficient

way to evaluate the gradient [33].

BP uses the chain rule to compute the loss function. The algorithm can be considered

as a specialized version of automatic differentiation by reverse accumulation [13]. Reverse

accumulation traverses the expression of the chain rule from the outside in, computing all

Neural networks can be represented as a computational graph of back propagation. This is

designed to visit each node of the network once, avoiding repetitive computations that arise

when evaluating the gradient of a composite function. The computational effort required

for BP scales linearly with the size of the computational graph of the network.

Back-propagation always starts with a forward pass that computes the error for a

training sample. It must keep all intermediate computation results as they are used to

compute the gradient.As soon as the error is evaluated, the backward pass begins. It is so-

called because it traverses from the output of the network to the inputs. From the point of

view of symbolic computations, the expression of the chain rule is traversed from the

outermost subexpression to the inner ones.

Learning happens in two ways, Forward propagation and backward propagation



34

1. Forward Propagation: In the forward pass, the direction of signals from

input nodes to output nodes through the hidden neurons. The value of output

error will be calculated against ground truth and true label.

2. Back Propagation: Below are the steps mentioning how the back prop works.

(a)

Figure 4.6.Backpropagation: forward (a), backward (b) pass

4.4.3  Regularization

Besides L1 and L2 losses, the two most popular regularization techniques in ANN are

dropout and early stopping.

Dropout [46] is a regularization technique specifically for neural networks. During

training, network units are randomly removed along with all incoming and outgoing

connections. Dropout is controlled by the hyper-parameter p ∈ [0, 1], which indicates the

probability that a neuron is kept in the network. After training, all nodes are reinserted into

the network. Dropout reduces overfitting since the dropped nodes have learned from only a

portion of the data.



35

Early stopping [4] is a regularization method that can be used in any iterative

optimization algorithm. Usually, the stochastic gradient descent runs for a certain

predefined number of epochs. As soon as a stopping criterion is true, the training process is

stopped immediately. The stop criterion monitors the training error and indicates if its

value does not change on successive iterations, which means that the algorithm is stuck in

a local minimum and further parameter adjustments are unnecessary and lead to

overfitting.

4.4. Convolutional Neural Networks for Head-Mouse Control
4.4.1 Basic architecture

The CNN is adeep learning structure with one or more convolutional, pooling, and

feedforward layers (Figure 4.7). In MLPs, each neuron has its own weight vector; however,

in CNNs, neurons share weight vectors, limiting the number of weights that may be taught.

Using the weight sharing technique, neurons use convolution filters to perform

convolutions on the input data. The pooling layer receives the output features from the

convolutional layers.The generated feature map is activated using the activation function

f(x)=max(0,x) in a ReLUlayer that sits between the convolution and pooling layers. The

image size is lowered after numerous convolutional and pooling layers, and more complex

characteristics are extracted. The contents are then shifted into a one-dimensional vector

with a tiny enough feature map, which is then supplied into the fully linked layer. The

CNN's output is computed by the fully linked layer.

Figure4.7. Convolutional Neural Networks

35

Early stopping [4] is a regularization method that can be used in any iterative

optimization algorithm. Usually, the stochastic gradient descent runs for a certain

predefined number of epochs. As soon as a stopping criterion is true, the training process is

stopped immediately. The stop criterion monitors the training error and indicates if its

value does not change on successive iterations, which means that the algorithm is stuck in

a local minimum and further parameter adjustments are unnecessary and lead to

overfitting.

4.4. Convolutional Neural Networks for Head-Mouse Control
4.4.1 Basic architecture

The CNN is adeep learning structure with one or more convolutional, pooling, and

feedforward layers (Figure 4.7). In MLPs, each neuron has its own weight vector; however,

in CNNs, neurons share weight vectors, limiting the number of weights that may be taught.

Using the weight sharing technique, neurons use convolution filters to perform

convolutions on the input data. The pooling layer receives the output features from the

convolutional layers.The generated feature map is activated using the activation function

f(x)=max(0,x) in a ReLUlayer that sits between the convolution and pooling layers. The

image size is lowered after numerous convolutional and pooling layers, and more complex

characteristics are extracted. The contents are then shifted into a one-dimensional vector

with a tiny enough feature map, which is then supplied into the fully linked layer. The

CNN's output is computed by the fully linked layer.

Figure4.7. Convolutional Neural Networks

35

Early stopping [4] is a regularization method that can be used in any iterative

optimization algorithm. Usually, the stochastic gradient descent runs for a certain

predefined number of epochs. As soon as a stopping criterion is true, the training process is

stopped immediately. The stop criterion monitors the training error and indicates if its

value does not change on successive iterations, which means that the algorithm is stuck in

a local minimum and further parameter adjustments are unnecessary and lead to

overfitting.

4.4. Convolutional Neural Networks for Head-Mouse Control
4.4.1 Basic architecture

The CNN is adeep learning structure with one or more convolutional, pooling, and

feedforward layers (Figure 4.7). In MLPs, each neuron has its own weight vector; however,

in CNNs, neurons share weight vectors, limiting the number of weights that may be taught.

Using the weight sharing technique, neurons use convolution filters to perform

convolutions on the input data. The pooling layer receives the output features from the

convolutional layers.The generated feature map is activated using the activation function

f(x)=max(0,x) in a ReLUlayer that sits between the convolution and pooling layers. The

image size is lowered after numerous convolutional and pooling layers, and more complex

characteristics are extracted. The contents are then shifted into a one-dimensional vector

with a tiny enough feature map, which is then supplied into the fully linked layer. The

CNN's output is computed by the fully linked layer.

Figure4.7. Convolutional Neural Networks



36

Convolutional layers are found in CNNs and are defined by an input map I, a bank of

filters K, and biases b. Here ∈ , ∈ for input image with height H, width

W, and channels (red, blue, and green) C = 3 and for a bank of D filters and biases bRD

one for each filter.

The convolutional output is:

( ∗ ) = ∑ ∑ ∑ , , . , , + (2)

Assume that the first layer is l = 1 and the last layer is l = L, and that x is the input with aH

x W dimension with iterators i and j. The iterators in the kernel with the k1xk2 dimension

are m by n. , is the weight matrix l connects the neurons of the l layer with the neurons

of the l-1 layer. At layer l, the bias unit,the convolved input vector , plus bias is

represented at layer l as:

, = ∑ ∑ , , + (3)

Ifl=1, then , becomes the CNN input vector.  Atllayer, , is the output vector while the

activation function (⋅)is given by:

, = ( , ) (4)

The fully connected layer's nonlinearity is incorporated into its neurons, rather than in

distinct layers like the convolutional and pooling layers. The convolutional and pooling

layers' output is calculated as:

, = ( (∑ ∑ , , + ))                                                     (5)

Following pooling, the flatten operation was used to concatenate the acquired features

using = flatten( , ). A fully-connected layer y = F( ) is used to turn the

given feature vector into model outputs.



37

Thelearning of wight coefficients which are unknown parameters of CNN begins after the

output signals have been obtained. Let's call the CNN unknown parameters as . In order

to determine the precise values of parameters, an appropriate loss function is created. This

is accomplished by using input-output training pairs {(x(i), y(i)); i ϵ[1,...,N]} to minimize the

loss function. The i-th input data is x(i), and the matching output goal data is y(i). If we

represent the current output of CNN as o(i), we can calculate CNN's loss as follows:

= ∑ ; ( ), ( ) (6)

The loss function is minimized when the CNN is being trained. The exact values of the

parameters are obtained as a result of the training. The learning algorithm Adam optimizer

(adaptive moment estimation) is utilized for adjusting the unknown parameters and finding

their appropriate values (Kingma& Jimmy, 2015). In this learning algorithm the first-order

gradient of Loss function is used for updating the parameter values. The approach is a

stochastic optimization that computes individual adaptive learning rates for different

parameters using the first and second moments of the gradients (Kingma& Jimmy,

2015).Adam optimizer algorithm used in this thesis is presented in Figure 4.8.

Figure 4.8.Adam optimizer (Kingma& Jimmy, 2015).



38

Deep CNN requires a large amount of training data to be trained effectively. Data

augmentation is used to resolve this issue and offset the relative paucity of data compared

to the amount of parameters in CNNs. Existing data is turned into new data without

changing its character in data augmentation. For data augmentation, geometric

transformations such as rotation, translation, shearing, zooming, and flipping are used.

4.5.2 Convolutional Layer

In CNN, convolution is used to generate a feature map from the input, which can be

the original image or another feature map. The main goal of using convolution in ANNs is

to exploit the special structure of the input and learn how to transform it into the most

informative form.

In practice, the behaviour of the convolutional layer is controlled with a set of

hyperparameters, which brings flexibility to the design of neural networks and allows them

to be adapted to different problems:

The kernel size defines the dimensions of the convolutional kernel. It controls the

range of input to which the neurons are sensitive. The choice of the appropriate value for

this parameter almost always depends on the data set. One possibility is to set the kernel

shape of the first layer according to the scale of the images to capture important details,

such as edges. However, for deeper layers, there is no rule of thumb and the optimal kernel

size is determined experimentally. In the case where the input contains multi-channel

images or arbitrary three-dimensional data, the kernel itself is often three-dimensional.

The number of kernels controls the number of dimensions of the layered output

since each kernel would generate its own feature map. Increasing the number of kernels

can help reduce information loss in architectures where the feature map size decreases with

each layer. It also controls the capacity of the model - as the number of kernels increases,

so does the total number of parameters that can be trained.

Padding: the convolution is undefined at the input boundaries since part of the

kernel cannot match any input values. To overcome this problem and apply convolution in

corner cases, the input can be framed with zeros. The number of input values for which



39

convolution is defined directly affects the size of the output, so padding can be used to

control it.

Stride controls the "step" of the convolution filter. A Stride value of two would

mean that after applying convolution to some pixels, two pixels are skipped in all

dimensions. By manipulating Stride, we can regulate the overlap of different receptive

fields and the reduction of the output size. Let nin, nout, k, p, s be the total number of inputs

and outputs, the total kernel size, the padding size, and the stride, respectively. Then the

following relation holds [15]:

3.5.3 Pooling

A typical convolutional layer consists of three stages:

1) Applying convolutions to produce intermediate results.

2) Passing intermediate results through a non-linear activation function, like in the

standard multilayer perceptron. It is sometimes called the detection stage.

3) Applying a pooling function.

The pooling function replaces rectangular areas of the input with their summary. It can be

viewed as a non-linear downsampling method.

Let [ai,j] = A ∈Rn×mbe a real matrix that represents a feature map region that is being

passed to a pooling function. Most commonly used pooling methods include:

- Max pooling, which replaces the input region with its maximum value:( ) = ( ) = ({ , | ∈ 1, . . . , , ∈ 1, . . . , }). (4.5)

- Average pooling and weighted average pooling aggregate the input region by

taking its average or a weighted sum, which can be based on the distance from the

region’s center:

39

convolution is defined directly affects the size of the output, so padding can be used to

control it.

Stride controls the "step" of the convolution filter. A Stride value of two would

mean that after applying convolution to some pixels, two pixels are skipped in all

dimensions. By manipulating Stride, we can regulate the overlap of different receptive

fields and the reduction of the output size. Let nin, nout, k, p, s be the total number of inputs

and outputs, the total kernel size, the padding size, and the stride, respectively. Then the

following relation holds [15]:

3.5.3 Pooling

A typical convolutional layer consists of three stages:

1) Applying convolutions to produce intermediate results.

2) Passing intermediate results through a non-linear activation function, like in the

standard multilayer perceptron. It is sometimes called the detection stage.

3) Applying a pooling function.

The pooling function replaces rectangular areas of the input with their summary. It can be

viewed as a non-linear downsampling method.

Let [ai,j] = A ∈Rn×mbe a real matrix that represents a feature map region that is being

passed to a pooling function. Most commonly used pooling methods include:

- Max pooling, which replaces the input region with its maximum value:( ) = ( ) = ({ , | ∈ 1, . . . , , ∈ 1, . . . , }). (4.5)

- Average pooling and weighted average pooling aggregate the input region by

taking its average or a weighted sum, which can be based on the distance from the

region’s center:

39

convolution is defined directly affects the size of the output, so padding can be used to

control it.

Stride controls the "step" of the convolution filter. A Stride value of two would

mean that after applying convolution to some pixels, two pixels are skipped in all

dimensions. By manipulating Stride, we can regulate the overlap of different receptive

fields and the reduction of the output size. Let nin, nout, k, p, s be the total number of inputs

and outputs, the total kernel size, the padding size, and the stride, respectively. Then the

following relation holds [15]:

3.5.3 Pooling

A typical convolutional layer consists of three stages:

1) Applying convolutions to produce intermediate results.

2) Passing intermediate results through a non-linear activation function, like in the

standard multilayer perceptron. It is sometimes called the detection stage.

3) Applying a pooling function.

The pooling function replaces rectangular areas of the input with their summary. It can be

viewed as a non-linear downsampling method.

Let [ai,j] = A ∈Rn×mbe a real matrix that represents a feature map region that is being

passed to a pooling function. Most commonly used pooling methods include:

- Max pooling, which replaces the input region with its maximum value:( ) = ( ) = ({ , | ∈ 1, . . . , , ∈ 1, . . . , }). (4.5)

- Average pooling and weighted average pooling aggregate the input region by

taking its average or a weighted sum, which can be based on the distance from the

region’s center:



40

- L2 pooling computes the L2 norm of the vector constructed by “unfolding” the

input region.

Figure 4.9.Pooling

Pooling is sometimes considered a separate layer, but in most popular architectures

it always follows the convolution and can be considered part of it. However, it can be

situation-dependent and there are successful architectures that use pooling following

several stacked convolution operations or that do not use pooling at all [45]. It can be set

with padding and stride hyperparameters, analogous to convolution.

Pooling is used to reduce the number of variables in the model to prevent

overfitting and improve computational efficiency. However, heavy use of pooling can lead

to aggressive information loss and underfitting, so it should be treated with caution.

Another purpose of using a pooling function is to introduce translation invariance into the

model [15]. By considering entire regions instead of separate input values, pooling helps to

emphasize the value of the feature more, regardless of its position. As a result, the network

becomes resistant to small perturbations in the input.

3.5.4 Batch Normalization

40

- L2 pooling computes the L2 norm of the vector constructed by “unfolding” the

input region.

Figure 4.9.Pooling

Pooling is sometimes considered a separate layer, but in most popular architectures

it always follows the convolution and can be considered part of it. However, it can be

situation-dependent and there are successful architectures that use pooling following

several stacked convolution operations or that do not use pooling at all [45]. It can be set

with padding and stride hyperparameters, analogous to convolution.

Pooling is used to reduce the number of variables in the model to prevent

overfitting and improve computational efficiency. However, heavy use of pooling can lead

to aggressive information loss and underfitting, so it should be treated with caution.

Another purpose of using a pooling function is to introduce translation invariance into the

model [15]. By considering entire regions instead of separate input values, pooling helps to

emphasize the value of the feature more, regardless of its position. As a result, the network

becomes resistant to small perturbations in the input.

3.5.4 Batch Normalization

40

- L2 pooling computes the L2 norm of the vector constructed by “unfolding” the

input region.

Figure 4.9.Pooling

Pooling is sometimes considered a separate layer, but in most popular architectures

it always follows the convolution and can be considered part of it. However, it can be

situation-dependent and there are successful architectures that use pooling following

several stacked convolution operations or that do not use pooling at all [45]. It can be set

with padding and stride hyperparameters, analogous to convolution.

Pooling is used to reduce the number of variables in the model to prevent

overfitting and improve computational efficiency. However, heavy use of pooling can lead

to aggressive information loss and underfitting, so it should be treated with caution.

Another purpose of using a pooling function is to introduce translation invariance into the

model [15]. By considering entire regions instead of separate input values, pooling helps to

emphasize the value of the feature more, regardless of its position. As a result, the network

becomes resistant to small perturbations in the input.

3.5.4 Batch Normalization



41

The batch normalization layer [24] normalizes the output of the layer before it. Let X ⊆

D be a batch of inputs, then:

By centring and scaling the feature maps batch normalization makes the gradient

computation more robust because. The main goal of the layer is to discard the change in

the distribution of hidden layer outputs, which can happen in the process of training. This

simplifies learning and provides faster convergence toward the minimum. The values of γ

∈ R and β ∈ R are determined in the process of learning.

Figure 4.10. CNN structure

4.5.5.Properties of CNN

In traditional fully connected layers, every output is connected to every input. In CNN,

neuron connections are restricted to only the subset of adjacent inputs through the kernel.

This subset of neurons is sometimes referred to as the neuron's local receptive field.

This approach aims to detect local patterns and small details in the input.

41

The batch normalization layer [24] normalizes the output of the layer before it. Let X ⊆

D be a batch of inputs, then:

By centring and scaling the feature maps batch normalization makes the gradient

computation more robust because. The main goal of the layer is to discard the change in

the distribution of hidden layer outputs, which can happen in the process of training. This

simplifies learning and provides faster convergence toward the minimum. The values of γ

∈ R and β ∈ R are determined in the process of learning.

Figure 4.10. CNN structure

4.5.5.Properties of CNN

In traditional fully connected layers, every output is connected to every input. In CNN,

neuron connections are restricted to only the subset of adjacent inputs through the kernel.

This subset of neurons is sometimes referred to as the neuron's local receptive field.

This approach aims to detect local patterns and small details in the input.

41

The batch normalization layer [24] normalizes the output of the layer before it. Let X ⊆

D be a batch of inputs, then:

By centring and scaling the feature maps batch normalization makes the gradient

computation more robust because. The main goal of the layer is to discard the change in

the distribution of hidden layer outputs, which can happen in the process of training. This

simplifies learning and provides faster convergence toward the minimum. The values of γ

∈ R and β ∈ R are determined in the process of learning.

Figure 4.10. CNN structure

4.5.5.Properties of CNN

In traditional fully connected layers, every output is connected to every input. In CNN,

neuron connections are restricted to only the subset of adjacent inputs through the kernel.

This subset of neurons is sometimes referred to as the neuron's local receptive field.

This approach aims to detect local patterns and small details in the input.



42

Figure 4.11. Local receptive fields

Despite the typically small size of the receptive field, neurons located in the deeper layers

interact indirectly with the larger area of input. It is in the nature of convolution that when

the output of the layer is defined to be smaller than the input, its feature map consists of

aggregated input regions. Following this principle, feature maps in the deepest layers of the

network will assemble "dense" information describing interactions between different

regions of the input.

Figure 4.12. Deep indirect interactions

One of the major drawbacks of the multilayer perceptron is the large increase in the

number of trainable parameters with each new layer added to the model, making the

models impractical to train and limiting the breadth and depth of the network. Meanwhile,

convolutional layers have far fewer parameters distributed throughout the layer.

Let m, n be the number of neurons in two consecutive layers, respectively, then a

traditional fully connected layer would have n(m + 1) trainable parameters (with the

addition of biases). But convolutional layers with kernel size w × h end up having the sum

of wh + n weights and biases. This number can be sufficiently smaller than that of the fully

linked layer.

Thus, parameter sharing leads to a smaller number of model parameters and positively

affects the computational and storage costs during training and prevents overfitting.



43

However, it is worth noting that for some problems it is useful to have non-shared

parameters. For example, in the face recognition problem, where the dataset contains

centred and normalized images, different filters would capture different information, but at

a higher computational cost.



44

CHAPTER 4
MODELLING OF CNN BASED HEAD MOUSE CONTROL

5.1. Design of CNN based head mouse control system
Haar Cascade classifiers and CNN are used to construct a mouse control system with head

movements and eye blinking for persons with disabilities. The system receives images

from the camera in front of the user as input. Haar Cascade Classifier uses input image to

segment and extract the head profile and eyes of user. Two CNN models are employed for

extracted images.The first CNN1 model is used for user’s head profile, the second CNN2

model for ueyes of user. The CNN takes the user's head profile as input and identifies the

user's face direction (left, right, forward, down, and up). The mouse pointer is moved in the

correct direction using this information.The second CNN structure takes the eyes retrieved

from the head-shoulder profile as input. The cropped eye image is fed into the second CNN

structure, which detects whether the eye is open or closed. This data is utilized to make a

mouse click. The left mouse button is triggered by the left eye, whereas the right mouse

button is triggered by the right eye.

The four parameters of height,width, depth, and number of classes are used to define

CNN models in this thesis. The input photos' width and height are specified. The number

of channels in the incoming images determines the depth. The user's head-shoulder profile

input is 64x64x3, with width 64, height 64, and depth 3 in standard RGB. 24x24x3 is the

size of the retrieved eye input.

As the layers are added one by one, the CNN models are defined sequentially. (See

Figure 3.) The structure of the developed CNN1 used for head direction detection is shown

in Table 1. The first convolutional layer employs 64 convolutional filters with 5x5 inputs

each. When the input is less than 0, the Rectified Linear Unit (ReLU) activation function

outputs 0; otherwise, it outputs 1. Following these steps, 2x2 max pooling is applied in

both the x and y directions. The second and third convolutional layers used 128 and 256

convolutional filters, respectively, to execute the same tasks.

The initial CNN structure employs 64 filters in the first convolutional layer, 128 filters

in the second convolutional layer, and 256 filters in the third convolutional layer, as

previously mentioned. The ReLU activation layers are employed between the

convolutional layers to prevent over-matching. A flattening layer is performed after the



45

convolutional layers to retrieve the output of the last convolutional layer, and the output

space is smoothed into a single vector. 1000 input nodes and 5 dense output nodes (since

we have 5 classes - left, right, up, down, and no action) are utilized in the dense fully

linked layer for classification in the first CNN model after flattening.The same processes

are applied and employed in fully linked networks with two outputs for classification

purposes in the second CNN structure (because the classification is binary whether "open"

or "closed"). The structure of CNN2, which is utilized to detect eye states, is shown in

Table 2.

Table5.1. The structure of the CNN1 model Table5.2. The structure of the CNN2 model

Layer Type Output Shape Param

Input Layer Input 64 x 64 x 3 0

Conv 1

Conv1 64 x 64 x 64 4864

ReLU 64 x 64 x 64 0

Pool1 32 x 32 x 64 0

Conv 2

Conv2 32 x 32 x 128 204928

ReLU 32 x 32 x 128 0

Pool2 16 x 16 x 128 0

Conv 3

Conv3 16 x 16 x 256 295168

ReLU 16 x 16 x 256 0

Pool3 8 x 8 x 256 0

Classification

layer

Flatten 16384 0

Dense1 1000 16385000

ReLU 1000 0

Dense2 5 5005

Softmax 5 0

Layer

Type

Output

Shape

Param

Input Layer Input 24 x 24 x3 0

Conv 1

Conv1 24 x 24 x 64 4864

ReLU 24 x 24 x 64 0

Pool1 12 x 12 x 64 0

Conv 2

Conv2 12 x 12 x

128

204928

ReLU 12 x 12 x

128

0

Pool2 6 x 6 x 128 0

Conv 3

Conv3 6 x 6 x 256 295168

ReLU 6 x 6 x 256 0

Pool3 3 x 3 x 256 0

Classification

layer

Flatten 2304 0

Dense1 1000 2305000

ReLU 1000 0

Dense2 2 2002

Softmax 2 0



46

5.2. Modelling
A "head-mouse control system" for people with disabilities is being designed using the

CNN-based classifier system. With the parameters provided in Figure 5.1, the Tensorflow

framework is employed. Our hand-crafted dataset was utilized to predict head posture. The

dataset contains 853 photos of 7 persons from our university who are of various nations,

genders, and ages. A hair cascade classifier is used in the first stage to recognize the head

profile and eyes. The process of head and eye recognition is depicted in Figure 5.2. Image

categorization is done when CNN is used to recognize the head profile. 90% of the photos

are used for training, while 10% are used for testing in the system design.This also aids in

the reduction of overfitting and the enhancement of performance. To acquire more accurate

findings from tiny datasets, several generating techniques such as cropping, shifting,

random rotations, and so on were used in the data augmentation phase. The system's design

includes 50 training epochs, a 1e-3 learning rate, and 64 batch sizes. The loss function

values and accuracy obtained for training and validation are shown in Figure 6. The system

is tested after it has been trained. For the test data, an RMSE of 0.0076 and an accuracy of

99.76 percent were attained.

Figure5.1. Fragment of Head Pose Dataset
46

5.2. Modelling
A "head-mouse control system" for people with disabilities is being designed using the

CNN-based classifier system. With the parameters provided in Figure 5.1, the Tensorflow

framework is employed. Our hand-crafted dataset was utilized to predict head posture. The

dataset contains 853 photos of 7 persons from our university who are of various nations,

genders, and ages. A hair cascade classifier is used in the first stage to recognize the head

profile and eyes. The process of head and eye recognition is depicted in Figure 5.2. Image

categorization is done when CNN is used to recognize the head profile. 90% of the photos

are used for training, while 10% are used for testing in the system design.This also aids in

the reduction of overfitting and the enhancement of performance. To acquire more accurate

findings from tiny datasets, several generating techniques such as cropping, shifting,

random rotations, and so on were used in the data augmentation phase. The system's design

includes 50 training epochs, a 1e-3 learning rate, and 64 batch sizes. The loss function

values and accuracy obtained for training and validation are shown in Figure 6. The system

is tested after it has been trained. For the test data, an RMSE of 0.0076 and an accuracy of

99.76 percent were attained.

Figure5.1. Fragment of Head Pose Dataset
46

5.2. Modelling
A "head-mouse control system" for people with disabilities is being designed using the

CNN-based classifier system. With the parameters provided in Figure 5.1, the Tensorflow

framework is employed. Our hand-crafted dataset was utilized to predict head posture. The

dataset contains 853 photos of 7 persons from our university who are of various nations,

genders, and ages. A hair cascade classifier is used in the first stage to recognize the head

profile and eyes. The process of head and eye recognition is depicted in Figure 5.2. Image

categorization is done when CNN is used to recognize the head profile. 90% of the photos

are used for training, while 10% are used for testing in the system design.This also aids in

the reduction of overfitting and the enhancement of performance. To acquire more accurate

findings from tiny datasets, several generating techniques such as cropping, shifting,

random rotations, and so on were used in the data augmentation phase. The system's design

includes 50 training epochs, a 1e-3 learning rate, and 64 batch sizes. The loss function

values and accuracy obtained for training and validation are shown in Figure 6. The system

is tested after it has been trained. For the test data, an RMSE of 0.0076 and an accuracy of

99.76 percent were attained.

Figure5.1. Fragment of Head Pose Dataset



47

Figure 5.2. Detection of eyes

5.3.Simulation Results and Discussion
The CEW dataset (Song et al., 2014) is utilized for eye classification, and it contains

2385 closed and 2463 open 24x24 pixel eye pictures. Eye classification is conducted after

recognizing the eyeballs with the Haar cascade classifier. Figure 5.3 depicts the plots of

loss functions and accuracies for training and validation data sets for head classification,

correspondingly.CNN2 uses 90% of the photos in its design, just as CNN1. 70 percent of

this 90 percent is used for training, and 30 percent is used for CNN2 validation. The

remaining 10% of the information is used for testing. With 50 epochs, the CNN2 model is

trained.Figure 5.4 shows the training and validation results for eye classification obtained

for loss and accuracy. The system is tested after it has been trained. For the test data, an

RMSE of 0.0575 and an accuracy of 97.42 percent were found.

47

Figure 5.2. Detection of eyes

5.3.Simulation Results and Discussion
The CEW dataset (Song et al., 2014) is utilized for eye classification, and it contains

2385 closed and 2463 open 24x24 pixel eye pictures. Eye classification is conducted after

recognizing the eyeballs with the Haar cascade classifier. Figure 5.3 depicts the plots of

loss functions and accuracies for training and validation data sets for head classification,

correspondingly.CNN2 uses 90% of the photos in its design, just as CNN1. 70 percent of

this 90 percent is used for training, and 30 percent is used for CNN2 validation. The

remaining 10% of the information is used for testing. With 50 epochs, the CNN2 model is

trained.Figure 5.4 shows the training and validation results for eye classification obtained

for loss and accuracy. The system is tested after it has been trained. For the test data, an

RMSE of 0.0575 and an accuracy of 97.42 percent were found.

47

Figure 5.2. Detection of eyes

5.3.Simulation Results and Discussion
The CEW dataset (Song et al., 2014) is utilized for eye classification, and it contains

2385 closed and 2463 open 24x24 pixel eye pictures. Eye classification is conducted after

recognizing the eyeballs with the Haar cascade classifier. Figure 5.3 depicts the plots of

loss functions and accuracies for training and validation data sets for head classification,

correspondingly.CNN2 uses 90% of the photos in its design, just as CNN1. 70 percent of

this 90 percent is used for training, and 30 percent is used for CNN2 validation. The

remaining 10% of the information is used for testing. With 50 epochs, the CNN2 model is

trained.Figure 5.4 shows the training and validation results for eye classification obtained

for loss and accuracy. The system is tested after it has been trained. For the test data, an

RMSE of 0.0575 and an accuracy of 97.42 percent were found.



48

Figure5.3. Training and validation results obtained for loss and accuracy of head

classification

The performance of the head mouse control system is illustrated for the train, assessment,

and testing stages using CNN1 and CNN2 models. RMS, ACC, and AUC values are

determined during the simulation. Table 5.3 shows the training, evaluation, and testing

stages of each model's outcomes.

Figure5.4. Training and validation results obtained for loss and accuracy of eyes

classification

48

Figure5.3. Training and validation results obtained for loss and accuracy of head

classification

The performance of the head mouse control system is illustrated for the train, assessment,

and testing stages using CNN1 and CNN2 models. RMS, ACC, and AUC values are

determined during the simulation. Table 5.3 shows the training, evaluation, and testing

stages of each model's outcomes.

Figure5.4. Training and validation results obtained for loss and accuracy of eyes

classification

48

Figure5.3. Training and validation results obtained for loss and accuracy of head

classification

The performance of the head mouse control system is illustrated for the train, assessment,

and testing stages using CNN1 and CNN2 models. RMS, ACC, and AUC values are

determined during the simulation. Table 5.3 shows the training, evaluation, and testing

stages of each model's outcomes.

Figure5.4. Training and validation results obtained for loss and accuracy of eyes

classification



49

Table 5.4 shows the results of the performance of the most competitive models tested for

head-mouse control. The papers that offered the accuracy results were taken into

consideration. The simulations were run using the authors' personal databases. As

indicated, some studies use a sensor-based strategy for head-mouse control, while others

utilize a vision-based approach. The introduction section contains analyses of several of

these works. When authors reported various findings using the same approach, only the

best was used in the table.The performance of the CNN models described in this paper is

shown in Table 5.5. The findings of CNN models are clearly superior to those of the

approaches based on vision-based techniques shown in Table 5.4.

Table5.3. Performances of the CNN models

Model
Training Validation Testing

RMSE AUC ACC RMSE AUC ACC RMSE AUC ACC

Eye 0.0585 0.9925 96.09% 0.0593 0.9891 95.21% 0.0575 0.9883 97.42%

Head 0.0196 0.9996 99.72% 0.0094 1.0000 98.84% 0.0076 0.9999 99.76%

Table5.4. The simulation results of the selected studies obtained for the head-mouse

control

Author (Year) Technique Performance

Arai and Mardiyanto

(2010)

Vision-based 90%

Alhamzawi H.A. (2018). Vision-based 95%  (Detection)

84.86% (Clicking)

Su et al. (2005) Vision-based (Eye tracking) 99%

Eom et al. (2007). Gyro-sensor based 93%

Tolle and Arai (2016) Sensor based 80 % (average)

Sawicki and Kowalczyk

(2018).

Sensor and vision based 95.14% (Total error rate

4.86%)



50

Chen (2001) Sensor based 97.8% (nondisabled)

95.1% (disabled)

King et al. (2005) Gyro-sensor based 99.85%

Ngyen et al. (2006) Gyro-sensor based 93.75%

Naizhong et al. (2015) Vision-based (Mouth tracking) 97.09% (average)

Varona et al. (2008) Vision based 97.3%

Jian-Zheng and

Zheng(2011)

Vision-based and LK algorithm,

Gentleboost algorithm (Eye

detection)

97.7%

Zhao et al.(2012) Vision-based and LK algorithm

(Eye detection) 92.6% (average)

Zhao and Yan (2011) Vision-based (Eye detection) 90%

Mehrubeoglu et al. (2011) Vision-based (Eye detection) 95.44% (ideal eye)

90.13%(moving eye)

Li et al. (2016) Vision-based (Eye detection) 85.3%

Wu et al. (2008) Vision-based (Head pose

estimation, KDA with Gaussian

kernel)

94.0%

The performance of the CNN models employed for head-mouse control is compared to the

performance of the MLP and HOG -SVM models for comparison (Table 5). A series of

experiments were carried out with MLP in the first phase in order to determine its ideal

structure. The structure of MLP1 used for head classification has been determined as a

consequence of the tests (2352, 500, 5). The number of input nodes is 2352, the number of

hidden nodes is 500, and the number of output nodes is 5. (clusters). The structure of

MLP2, which is used to classify eyeblinks, is as follows: (1728, 500, 2).The number of

input, hidden, and output nodes is 1728, 500, and 2, respectively. The loss function and

head classification accuracy are calculated to be 0.2340 and 92.15 percent, respectively.

For eyeblink classification, the loss function and accuracy were determined to be 0.2353

and 91.29 percent, respectively. SVM is used to replicate head and eye blink classifications

in the next stage. The histogram gradient technique (HOG) was utilized to extract features



51

during the simulation. SVM is fed the features that represent the images for

classification.The loss function values (RMSE value) for head and eyeblink classification

were found to be 0.2019 and 0.0652, respectively, as a consequence of the simulation. For

head and eye lens categorization, the accuracy scores were 98.12 percent and 93.48

percent, respectively. The CNN models perform better than the MLP and HOG-SVM

models, as seen in the table. The comparative result indicates the effectiveness of CNN in

head-mouse control.

Table 5.5.Comparative Results

Model

Head Eye-blink

RMSE ACC RMSE ACC

MLP 0.1108 92.15% 0.5353 91.29%

HOG+SVM 0.2019 98.12% 0.0652 93.48%

CNN 0.0076 99.76% 0.0575 97.42%



52

CHAPTER 6
CONCLUSIONS

- It is difficult, if not impossible, for disabled people with spinal cord injuries to make

efficient use of computer technologies. Designing an effective human-computer

interface for impaired persons is extremely beneficial, and it can even lead to career

prospects.The analysis of existing head-mouse systems that used a human-computer

interface has shown they have several limitations. Some of them require special

hardware, such as certain cameras or sensor-based devices, some- have additional

components and the user has to wear these components. These systems use special

methods to solve feature extraction and classification problemsand they are expensive,

inconvenient, and provide limited data for future computers.Therefore, in the thesis,

deep learning using Convolutional Neural Networks (CNN) is proposed for solving

this problem. The proposed system does not use special hardware for wearing and

integrates images’ feature extraction and classification stages in the unified body of

CNN, which allows simplifying the system architecture used for image recognition.

- The structure of the head-mouse control system is proposed using CNN. The proposed

system includes two subsystems that are head movements recognition and eye states

detection and each one includes image capturing, processing and classification stages.

The performance of the proposed system was improveddue to its designed architecture

and learning property of CNN.

- The learning algorithm of CNN based head mouse control system has been designed

using adaptive moment estimation (Adam optimizer).

- The design of the head-mouse control system is carried out by implementing the

design CNN based system for recognition of head movements and the design of CNN

based system for detection of eye states.

- For experimental evaluation of the proposed system, the CEW data sets that include

4848 eye images and 853 head images designed in the AppliedArtificial Intelligence

Research Centre of NEU were taken.The results obtained from experiments have

shown CNN based head-mouse control system requires few preprocessing steps and

provides high accuracyboth for head movement recognitionand eye states detection.



53

The accuracy of head movement recognition was obtained as99.76%, accuracy of eye

states detection- 97.42%.

- Without any additional hardware, the designed system can identify the head direction

and eye states from the camera image and utilize them to operate the mouse pointer.

The system is quite robust and effective, according to the findings of the experiments.

The described idea can be used to manipulate a computer mouse by disabled people.



54

REFERENCES

1. Chen Y.L., Chang W.H., Tang F.T., Wong M.K., Kuo T.S. (1999). The new design of

an infrared-controlled human-computer interface for the disabled. IEEE Transactions

on Neural Systems and Rehabilitation Engineering, 7, 474-481.

2. Lin C.S., Chang K.C., Jain Y.J. (2002). A new data processing and calibration method

for an eye-tracking device pronunciation system, Optics and Laser Technology, 34 (5),

405–413.

3. Park K.S., Lee K.T. (1996). Eye-controlled human-computer interface using the line-

of-sight and the intentional blink, Computer Engineering, 30(3), 463–473.

4. Viola P. & Jones M.J. (2001). Rapid object detection using a boosted cascade of

simple features. In Proceed. of the 2001 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition. CVPR , 1, 511-518.

5. Rowley H., Baluja S., &Kanade T. (1998). Neural network-based face detection.

IEEE Transactions On Pattern Analysis And Machine Intelligence, 20(1), 23-38. doi:

10.1109/34.655647

6. Osuna E., Freund R., Girosit F. (1997). Training support vector machines: an

application to face detection. In Proceeding of IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, 1997.

https://doi.org/10.1109/CVPR.1997.609310

7. Ahonen T., Hadid A., &Pietikainen M. (2006). Face Description with Local Binary

Patterns: Application to Face Recognition. IEEE Transactions On Pattern Analysis

And Machine Intelligence, 28(12), 2037-2041. doi: 10.1109/tpami.2006.244

8. Senaratne, R., Halgamuge, S., & Hsu, A. (2009). Face Recognition by Extending

Elastic Bunch Graph Matching with Particle Swarm Optimization. Journal Of

Multimedia, 4(4). doi: 10.4304/jmm.4.4.204-214

9. Zhang, H., Zhang, Y., & Huang, T. (2013). Pose-robust face recognition via sparse

representation. Pattern Recognition, 46(5), 1511-1521. doi:

10.1016/j.patcog.2012.10.025

10. Zhao, W., Chellappa, R., Phillips, P., & Rosenfeld, A. (2003). Face recognition. ACM

Computing Surveys, 35(4), 399-458. doi: 10.1145/954339.954342



55

11. Fragopanagos, N., & Taylor, J. (2005). Emotion recognition in human-computer

interaction. Neural Networks, 18(4), 389-405. doi: 10.1016/j.neunet.2005.03.006

12. Adolphs, R., Damasio, H., Tranel, D., Cooper, G., &Damasio, A. (2000). A Role for

Somatosensory Cortices in the Visual Recognition of Emotion as Revealed by Three-

Dimensional Lesion Mapping. The Journal Of Neuroscience, 20(7), 2683-2690. doi:

10.1523/jneurosci.20-07-02683.2000

13. Cohen, I., Sebe, N., Garg, A., Chen, L., & Huang, T. (2003). Facial expression

recognition from video sequences: temporal and static modelling. Computer Vision

And Image Understanding, 91(1-2), 160-187. doi: 10.1016/s1077-3142(03)00081-x

14. Chen, Y., Chen, W., Kuo, T., & Lai, J. (2003). A head movement image (HMI)

controlled computer mouse for people with disabilities Analysis of a time-out protocol

and its applications in a single server environment. Disability And Rehabilitation,

25(3), 163-167. doi: 10.1080/0963828021000024960

15. Pereira C., BolligerNeto R., Reynaldo A., Luzo M., & Oliveira R. (2009).

Development and evaluation of a head-controlled human-computer interface with

mouse-like functions for physically disabled users. Clinics, 64(10). doi:

10.1590/s1807-5932200900100000

16. Al-Rahayfeh A., Faezipour M. (2013). Eye tracking and head movement detection: a

state-of-art survey. IEEE Journal of Translational Engineering in Health and Medicine,

1, doi:http://dx.doi.org/10. 1109/JTEHM.2013.2289879.

17. Chen Y-L. (2001). Application of tilt sensors in human-computer mouse interface for

people with disabilities. IEEE Transactions On Neural Systems And Rehabilitation

Engineering, 9(3), 289-294. doi: 10.1109/7333.948457

18. Fouché R.C. (2017). Head mouse: generalisability of research focused on the disabled

to able bodied users. In Proceed. of the South African Institute of Computer Scientists

and Information Technologists, SAICSIT '17, 1-10, 10.1145/3129416.3129442.

19. Mishra M., Bhalla A., Kharad S., Yadav D. (2017). HMOS: Head Control Mouse

Person with Disability. International Journal on Recent and Innovation Trends in

Computing and Communication ISSN: 2321-8169, 5(5).

20. Eom G.-M., Kim K.-S., Kim C.-S., Lee J., Chung S.-C. (2007). Gyro-Mouse for the

Disabled: ‘Click’ and ‘Position’ Control of the Mouse Cursor. International Journal of

Control, Automation, and Systems, 5(2), 147-154.



56

21. Sim N., Gavriel C., Abbott W.W., Faisal A.A. (2013). The Head Mouse – Head Gaze

Estimation "In-the-Wild” with Low-Cost Inertial Sensors for BMI Use. In proc. of 6th

Annual International IEEE EMBS Conference on Neural Engineering, 735-738

22. Gerdtman C., Backlund Y., Linden M. (2012). A gyro sensor based computer mouse

with a USB interface: A technical aid for motor-disabled people. Technology and

Disability 24, 117–127  DOI 10.3233/TAD-2011-0340

23. King L. M., Nguyen H. T., and Taylor P. B.(2005). Hands-free head-movement

gesture recognition using artificial neural networks and the magnified gradient

function,' in Proc. 27th Annu. Conf. Eng. Med. Biol., 2063-2066.

24. Nguyen S. T., Nguyen H. T., Taylor P. B., and Middleton J.(2006). Improved head

direction command classification using an optimised Bayesian neural network, in

Proc. 28th Annu. Int. Conf. EMBS,  5679-5682.

25. Kim S, Park M., Anumas S., Yoo J. (2010). Head mouse system based on gyro- and

opto-sensors. Proc. 3rd International Conference on Biomedical Engineering and

Informatics (BMEI), 4, 1503–1506,

doi:http://dx.doi.org/10.1109/BMEI.2010.5639399.

26. Arai K., Mardiyanto R.(2010). Camera as Mouse and Keyboard for Handicap Person

with Troubleshooting Ability, Recovery, and Complete Mouse Events. International

Journal of Human Computer Interaction (IJHCI), 1(3), 46-56.

27. Su M-C, Su S-Y, Chen G-D.(2005). A low-cost vision-based human-computer

interface for people with severe disabilities. Biomedical Engineering Applications,

Basis & Communications. 17(6), 284-292.

28. Tolle H. and Arai K. (2016). Design of Head Movement Controller System

(HEMOCS) for Control Mobile Application through Head Pose Movement Detection.

International Journal of Interactive Mobile Technologies (IJIM), 10(3), 24-28

29. Alhamzawi H.A.(2018). Control Mouse Cursor by Head Movement: Development and

Implementation. Applied Medical Informatics Original Research, 40(3-4), 39-44.

30. Naizhong Z, Jing W., Jun W..(2015). Hand-Free Head Mouse Control Based on Mouth

Tracking. In Proceed.  10th International Conference on Computer Science &

Education (ICCSE 2015), 707-713, Fitzwilliam College, Cambridge University, UK

31. Palleja T.,Rubion E., Teixido M., Tresanchez M., del Viso A.F., RebatiC.,

PalacinJ.(2008). Simple and robust implementation of a relative virtual mouse



57

controlled by head movements. InProced. of IEEE Conference on Human System

Interactions , 221-224.

32. Lin C-S, Ho C-W., Chan C-N., Chau C-R., Wu Y.-C., Yeh M-S. (2007). An eye-

tracking and head-control system using movement increment-coordinate method.

Optics & Laser Technology, 39, 1218–1225

33. Ismail A., AL HAJJAR AES. and HAJJAR M. (2011). A prototype system for

controlling a computer by head movements and voice commands.  The International

Journal of Multimedia & Its Applications (IJMA), 3(3), 15-25.

34. Sawicki D., Kowalczyk P. (2018). Head Movement Based Interaction in Mobility,

International Journal of Human–Computer Interaction, 34:7, 653-665, DOI:

10.1080/10447318.2017.1392078

35. Velasco M.A., Clemotte A., Raya R., Ceres R., Rocon E. (2017). Human-Computer

Interaction for Users with Cerebral Palsy Based on Head Orientation. Can Cursor's

Movement Be Modeled by Fitts' Law? Int. Journal of Human-Computer Studies,

106,1-9

36. Varona J., Manresa-Yee C., Perales F.J.(2008). Hands-free vision-based interface for

computer accessibility. Journal of Network and Computer Applications. 31. 357–374

37. Manresa-Yee C., Varona J., Perales F.J., Salinas I. (2014). Design recommendations

for camera-based head-controlled interfaces that replace the mouse for motion-

impaired users. Univ Access InfSoc, 13:471–482

38. King D. E. (2009). Dlib-ml: A machine learning toolkit. JMLR.

39. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.(1998). Gradient-based learning applied

to document recognition. In Proceed. of the IEEE. 86(11), 2278-2324.

40. Hecht-Nielsen, R. (1992). Theory of the backpropagation neural network. Neural

networks for perception, 2, 65-93.

41. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,

Karpathy, A., Khosla, A., Bernstein, M., Berg, A., Fei-Fei, L. (2015). ImageNet Large

Scale Visual Recognition Challenge. International Journal of Computer Vision, 115,

211-252.

42. Zeiler M.D., Fergus R. (2014). Visualizing and Understanding Convolutional

Networks. In: Fleet D., Pajdla T., Schiele B., Tuytelaars T. (eds) Computer Vision –



58

ECCV 2014. Lecture Notes in Computer Science, 8689, 818-833, doi:

https://doi.org/10.1007/978-3-319-10590-1_53

43. Simonyan K, Zisserman A. (2015). Very deep convolutional networks for large-scale

image recognition, In Proceedings of the International Conference on Learning

Representations (ICLR 2015), doi: 10.1.1.740.6937

44. Szegedy C., Liu W., JiaY., Sermanet P., Reed S., Anguelov D., Erhan D., Vanhoucke

V., Rabinovich A. (2015). Going deeper with convolutions, In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015), 1–9.

doi: 10.1109/CVPR.2015.7298594

45. He K, Zhang X, Ren S., Sun J. (2016). Deep residual learning for image recognition,

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

(CVPR 2016), 770–778, doi: 10.1109/CVPR.2016.90

46. Lawrence, S., Giles, C., Ah Chung Tsoi, & Back, A. (1997). Face recognition: a

convolutional neural-network approach. IEEE Transactions on Neural Networks, 8(1),

98-113. doi: 10.1109/72.554195

47. Ciresan, D., Meier, U., Gambardella, L. and Schmidhuber, J. (2011). Convolutional

Neural Network committees for Handwritten Character Classification. In Proceedings

of 2011 International Conference on Document Analysis and Recognition, 3207 -

3220 doi: 10.1109/ICDAR.2011.229

48. Simard P, Steinkraus D and Platt J. (2003). Best practices for convolutional neural

networks applied to visual document analysis. In Proceedings of Seventh International

Conference on Document Analysis and Recognition, 958 - 963 doi:

10.1109/ICDAR.2003.1227801

49. Jiao, L., Zhang, S., Li, L., Liu, F., & Ma, W. (2018). A modified convolutional neural

network for face sketch synthesis. Pattern Recognition, 76, 125-136. doi:

10.1016/j.patcog.2017.10.025

50. Chudzik, P., Majumdar, S., Calivá, F., Al-Diri, B., & Hunter, A. (2018).

Microaneurysm detection using fully convolutional neural networks. Computer

Methods And Programs in Biomedicine, 158, 185-192. doi:

10.1016/j.cmpb.2018.02.016



59

51. Li, J., Feng, J., &Kuo, C. (2018). Deep convolutional neural network for latent

fingerprint enhancement. Signal Processing: Image Communication, 60, 52-63. doi:

10.1016/j.image.2017.08.010

52. Hussain, S., Anwar, S., & Majid, M. (2018). Segmentation of glioma tumours in brain

using deep convolutional neural network. Neurocomputing, 282, 248-261. doi:

10.1016/j.neucom.2017.12.032

53. Baldominos, A., Saez, Y., &Isasi, P. (2018). Evolutionary convolutional neural

networks: An application to handwriting recognition. Neurocomputing, 283, 38-52.

doi: 10.1016/j.neucom.2017.12.049

54. Ferreira, A., &Giraldi, G. (2017). Convolutional Neural Network approach to granite

tiles classification. Expert Systems With Applications, 84, 1-11. doi:

10.1016/j.eswa.2017.04.053

55. Wachinger, C., Reuter, M., & Klein, T. (2018). DeepNAT: Deep convolutional neural

network for segmenting neuroanatomy. Neuroimage, 170, 434-445. doi:

10.1016/j.neuroimage.2017.02.03

56. Liu, J., Gong, M., Qin, K., & Zhang, P. (2018). A Deep Convolutional Coupling

Network for Change Detection Based on Heterogeneous Optical and Radar Images.

IEEE Transactions on Neural Networks And Learning Systems, 29(3), 545-559. doi:

10.1109/tnnls.2016.2636227

57. Liu, N., Han, J., Liu, T., & Li, X. (2018). Learning to Predict Eye Fixations via

Multiresolution Convolutional Neural Networks. IEEE Tran. on Neural Networks And

Learning Systems, 29(2), 392-404.

58. Salvati, D., Drioli, C., &Foresti, G. (2018). Exploiting CNNs for Improving Acoustic

Source Localization in Noisy and Reverberant Conditions. IEEE Transactions on

Emerging Topics In Computational Intelligence, 2(2), 103-116. doi:

10.1109/tetci.2017.2775237

59. Khodayar, M., Kaynak, O., &Khodayar, M. (2017). Rough Deep Neural Architecture

for Short-Term Wind Speed Forecasting. IEEE Transactions on Industrial Informatics,

13(6), 2770-2779.

60. Kalchbrenner N, Grefenstette E, and Blunsom  E. (2014). A Convolutional Neural

Network for Modelling Sentences. In Proceedings of the 52nd Annual Meeting of the

Association for Computational Linguistics, doi: 10.1.1.636.1565



60

61. Abiyev R., Ma’aitah M.K.S. (2018). Deep Convolutional Neural Networks for Chest

Diseases Detection. Journal of Healthcare Engineering, Volume 2018, 1-11.

62. Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R and Fei-Fei L. (2014).

Large-Scale Video Classification with Convolutional Neural Networks. In Proceeding

of 2014 IEEE Conference on Computer Vision and Pattern Recognition, 1725 – 1732,

doi: 10.1109/CVPR.2014.223

63. Abiyev R., Arslan M., Gunsel I. and Cagman A. (2017). Robot Pathfinding Using

Vision-Based Obstacle Detection. 2017 3rd IEEE International Conference on

Cybernetics (CYBCONF 2017), 1 - 6 doi: 10.1109/CYBConf.2017.7985805

64. Kingma D. P., Jimmy B.. A. (2015). A Method for Stochastic Optimization.

International Conference on Learning Representations ( ICLR 2015),

https://arxiv.org/abs/1412.6980

65. Song F., Tan X., Liu X. & Chen S. (2014). Eyes Closeness Detection from Still

Images with Multi-scale Histograms of Principal Oriented Gradients, Pattern

Recognition. 47(9), 2825–2838

66. Jian-Zheng L. and Zheng Z.(2011). Head movement recognition based on LK

algorithm and Gentleboost, in Proc. 7th Int. Conf. Netw. Comput. Adv. Inf. Manag.,

pp. 232-236.

67. Zhao Z., Wang Y., and Fu S.(2012). Head movement recognition based on Lucas-

Kanade algorithm,' in Proc. Int. Conf. CSSS,  2303-2306.

68. Zhao Y. and Yan H. (2011). Head orientation estimation using neural network. inProc.

ICCSNT,  3, 2075-2078.

69. Mehrubeoglu M., Pham L. M., Le H. T., Muddu R., and Ryu D. (2011). Realtime eye

tracking using a smart camera. inProc. AIPR Workshop, 1-7.

70. Li Y., Dou Y., Liu X., Li T. (2016). Localized region context and object feature fusion

for people head detection .2016 IEEE International Conference on Image Processing

(ICIP), 594 – 598

71. Wu J. and Trivedi M. (2008). A Two-Stage Head Pose Estimation Framework and

Evaluation,” Pattern Recognition, 41(3), 1138-1158.

72. Ma B., Zhang W., Shan S., Chen X., and Gao W. (2006). Robust Head Pose

Estimation Using LGBP, Proc. 18th Int’l Conf. Pattern Recognition, 512-515.



61

73. Rahib H. Abiyev. Murat Arslan. Head mouse control system for people with

disabilities. Expert Systems, 37, 2020, https://doi.org/10.1111/exsy.12398

74. Arslan M., Bush I.J., Abiyev R.H. (2019) Head Movement Mouse Control Using

Convolutional Neural Network for People with Disabilities. In: Aliev R., Kacprzyk

J., Pedrycz W., Jamshidi M., Sadikoglu F. (eds) 13th International Conference on

Theory and Application of Fuzzy Systems and Soft Computing — ICAFS-2018.

ICAFS 2018. Advances in Intelligent Systems and Computing, vol 896. Springer,

Cham. https://doi.org/10.1007/978-3-030-04164-9_33

75. RahibAbiyev and Murat Arslan, Vision-Based Drowsiness Detection System Using

Convolutional Neural Networks, ICECCE-2020, June 11-14, 2020, Istanbul.

https://doi.org/10.1109/ICECCE49384.2020.9179207

76. RahibAbiyev, Murat Arslan, Irfan Günsel, Ahmed Çagman. Robot Pathfinding Using

Vision Based Obstacle Detection. 3rd IEEE International Conference on Cybernetics

(CYBCONF), Book Series: IEEE International Conference on Cybernetics-

CYBCONF, 29-34, Exeter, ENGLAND Date: JUN 21-23, 2017

77. RahibAbiyev, John Idoko and Murat Arslan. Application of Reconstructed

Convolutional Neural Network Structure to Sign Language Translation, ICECCE-

2020, June 11-14, 2020, Istanbul.

https://doi.org/10.1109/ICECCE49384.2020.9179356

78. Rahib Abiyev ,Murat Arslan ,John Bush Idoko ,Boran Sekeroglu and Ahmet Ilhan.

Identification of Epileptic EEG Signals Using Convolutional Neural Networks. Appl.

Sci. 10(12), 2020, 4089; https://doi.org/10.3390/app10124089

79. Rahib H. Abiyev, John Bush Idoko, Murat Arslan. Sign Language Translation Using

Deep Convolutional Neural Networks. KSII Transactions on Internet and Information

Systems, Vol.14, No.2, 2020. https://doi.org/10.3837/tiis.2020.02.009.

80. John Bush Idoko, Rahib H. Abiyev, Murat Arslan. Impact of Machine Learning

Techniques on Hand Gesture Recognition. Journal of Intelligent & Fuzzy Systems,

Volume: 37 Issue: 3 Pages: 4241-4252 Published: 2019, https://doi.org/10.3233/JIFS-

190353

81. JB Idoko, M Arslan, R Abiyev. Fuzzy Neural System Application to Differential

Diagnosis of Erythemato-Squamous Diseases.Cyprus Journal of Medical Sciences 3

(2), 2018, 90-97, DOI: 10.5152/cjms.2018.576



62

82. John Bush Idoko, MuratArslan, Rahib H. Abiyev. Intensive Investigation in

Differential Diagnosis of Erythemato-Squamous Diseases.13th International

Conference on Application of Fuzzy Systems and Soft Computing - ICAFS-

2018 Book Series: Advances in Intelligent Systems and

Computing Volume: 896 Pages: 146-153 Published: 2019, Location: Warsaw,

POLAND Date: AUG 27-28, 2018, https://doi.org/10.1007/978-3-030-04164-9_21



63

APPENDICES



64

APPENDIX 1.
Program Listing



65

APPENDIX 2



66

APPENDIX 3
Similarity Report

Supervisor.Prof.Dr.RahibAbiyev

66

APPENDIX 3
Similarity Report

Supervisor.Prof.Dr.RahibAbiyev

66

APPENDIX 3
Similarity Report

Supervisor.Prof.Dr.RahibAbiyev


