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ABSTRACT 

Autism Spectrum Disorder (ASD) is a neuropsychiatric disorder associated with significant social, 

communication, and behavioral challenges. Neither the cause nor the cure of ASD is clearly 

understood. The insufficient number of trained clinicians with the lack of accurate and accessible 

diagnostic tools resulted in overlooking symptoms of ASD in children around the world. Several 

studies suggested machine learning (ML) systems for quick and accurate assessment of ASD. 

However, despite the promising metrics achieved by the ML algorithms, numerous challenges limit 

the real-life implementation of the ML-based systems. The challenges are related to misalignments of 

the data pre-processing techniques and the ML algorithms with the concepts upon which professionals 

assess ASD. Specifically, compromising the validity of the assessment tools by the common 

dimensionality reduction techniques is among the key challenges identified. The aim of this study is 

to propose a clinically valid ML-based ASD screening approach. The present study conducted a data 

collection using a novel tool titled Child Development for Household Survey to Estimate Burden of 

ASD (CDHSEBA). The collected data contains 171 ASD and 209 control cases gathered based on 

purposive sampling approach. The collected data was utilized in developing multiple machine learning 

models using various combination of the CDHSEBA questionnaire items. A comparative analysis of 

the performances of the machine learning models and an empirical CDHSEBA-based scoring 

algorithm was conducted. The best performing ML model based on Naïve Bayes classification 

algorithms achieved the highest classification accuracy of 88% while the empirical scoring algorithm 

achieved the classification accuracy of 56%. Overall, the study findings revealed that the empirical 

scoring approach preserves the clinical validity of the screening instruments based on the high true 

positives rate of 97% obtained. On the other hand, most of the machine-learning models outperformed 

the empirical scoring method in the correct classification of non-ASD cases because of its low true 

negatives rate of 23%. The study provides a roadmap for developing effective ML-based ASD 

screening and diagnostic systems that comprises few behavioral features and preserve clinical 

relevance. The study will also guide researchers, neuropsychiatrists, and relevant stakeholders on the 

advances in ASD assessment with ML. 

Keywords: Autism spectrum disorder; screening; diagnosis; artificial intelligence; machine learning  
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ÖZET 

Otizm Spektrum Bozukluğu (OSB), önemli sosyal, iletişim ve davranışsal zorluklarla ilişkili bir beyin 

bozukluğudur. Otizmin nedeni ve tedavisi net olarak anlaşılmamıştır. Yeterli sayıda eğitimli klinisyen, 

doğru ve erişilebilir teşhis araçlarının eksikliği ile birleştiğinde, dünya çapında çocuklarda otizmin 

erken semptomlarının gözden kaçmasına neden oldu. Birçok çalışma, OSB’nin hızlı ve doğru bir 

şekilde değerlendirilmesi için makine öğrenimi (MÖ) sistemlerini önermektedir. Bununla birlikte, 

OSB’nin davranışsal değerlendirmesinde makine öğrenimi algoritmaları tarafından elde edilen umut 

verici ölçütlere rağmen, çok sayıda zorluk makine öğrenimi tabanlı sistemlerin gerçek hayattaki 

uygulamasını sınırlamaktadır. Zorluklar, temel olarak veri ön işleme tekniklerinin ve MÖ 

algoritmalarının, profesyonellerin OSB değerlendirme araçlarını oluşturduğu ve kullandığı kavramsal 

temele sahip yanlış hizalamalarıyla ilgilidir. Özellikle, ortak boyut indirgeme teknikleri ile 

değerlendirme araçlarının geçerliliğinden ödün vermek, belirlenen temel zorluklar arasındadır. Bu 

çalışmada, OSB Yükünü Tahmin Etmek için Hanehalkı için Çocuk Gelişimi Anketi (CDHSEBA) adlı 

yeni bir değerlendirme aracı kullanarak veri toplama gerçekleştirilmiştir. Amaçlı örnekleme 

yaklaşımına dayalı olarak 171 OSB ve 209 kontrol vakasını içeren veri toplanmıştır. Toplanan veriler, 

CDHSEBA anket maddelerinin çeşitli kombinasyonlarını kullanarak birden çok makine öğrenimi 

modelinin geliştirilmesinde kullanıldı. Çalışma, makine öğrenimi modellerinin performanslarının 

karşılaştırmalı analizi ve deneysel bir CDHSEBA tabanlı puanlama algoritması ile yürütüldü. Naïve 

Bayes sınıflandırma algoritmalarına dayanan en iyi performans gösteren MÖ modeli, % 88 ile en 

yüksek sınıflandırma doğruluğunu elde ederken, ampirik puanlama algoritması % 56 sınıflandırma 

doğruluğuna ulaştı. Sonuç olarak, çalışma bulguları ampirik puanlama yaklaşımının, elde edilen % 

97’lik yüksek gerçek pozitif oranına dayalı olarak tarama araçlarının klinik geçerliliğini koruduğunu 

ortaya koymuştur. Ayrıca, makine öğrenme modellerinin çoğu, % 23’lük düşük gerçek negatif oranı 

nedeniyle OSB olmayan vakaların doğru sınıflandırılmasında ampirik puanlama yönteminden daha iyi 

performans göstermiştir. Çalışma, birkaç davranışsal özelliği içeren ve klinik alaka düzeyini koruyan 

etkili MÖ tabanlı OSB tarama ve teşhis sistemleri geliştirmek için bir yol haritası sağlayacaktır. Ayrıca 

çalışmanın araştırmacılara, nöropsikiyatristlere ve ilgili paydaşlara makine öğrenimi ile OSB 

değerlendirmesindeki ilerlemeler konusunda rehberlik edeceği de ümit edilmektedir. 

Anahtar Kelimeler: Otizm spektrum bozukluğu; tarama; teşhis; yapay zeka; makine öğrenme 
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CHAPTER 1 

INTRODUCTION 

This chapter provides theoretical background on the research topic including statements on the 

limitation of the previous relevant studies, the key motivation for the present study as well as the 

research aim and objectives. Specifically, this introductory chapter contains seven subsections 

including background, problem statement, aim and objectives, significance of the study, limitations of 

the study, and overview of the thesis. 

 

1.1 Background 

Autism Spectrum Disorder (ASD) is a lifelong neurodevelopmental disorder characterized by 

communication impairment, restrictive and compulsive behavior. Diagnostic and Statistical Manual of 

Mental Disorders, 5th edition (DSM-5) termed ASD as a constellation of four disorders that shared 

similar deficits in communication, social interaction, and behavior. These disorders were autistic 

disorder, Asperger’s syndrome, childhood disintegrative disorder, and Pervasive Developmental 

Disorder Not Otherwise Specified (PDD-NOS) (American Psychiatric Association, 2013). The 

primary symptoms for diagnosing ASD are deficits in social communication and the presence of 

restricted, repetitive patterns of behavior, interests, or activities. These symptoms must be present in 

early childhood and impair the child’s everyday functioning (American Psychiatric Association, 2013; 

Bakare & Munir, 2011). The rising prevalence of ASD necessitates the need for early and cost-

effective ASD diagnosis to set the path for appropriate, and efficient treatment (Baio et al., 2018; 

Chauhan et al., 2019). Early diagnosis of ASD also leads to improved outcomes in communication and 

social interaction and guides parents to the right interventions in school, home, and clinic (Case-Smith, 

Weaver, & Fristad, 2015; Durkin et al., 2015; Matson & Konst, 2014). Thus, the need for cost-effective 

assessments coupled with the global rise in ASD cases necessitates extensive research. This is because 

the current clinical assessment of ASD is not cost-effective; studies have shown that the cost of 

identifying one child with ASD in universal screening settings is about 700,000 USD (Yuen, Carter, 

Szatmari, & Ungar, 2018). Additionally, the assessment instruments perform poorly (Guthrie et al., 

2019; Øien et al., 2018; Surén et al., 2019); there is a high number of false negatives and false positives. 

The tradeoff was to create a tool that reduced false positives (such as the M-CHAT R) and implement 

robust scoring methods. However, the tradeoff leads to more false-negative cases. Addressing these 

challenges lead to several suggestions including the so-called quick and accurate Machine Learning 
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(ML)-enabled ASD assessment systems (Campbell et al., 2017; Shahamiri & Thabtah, 2020; Thabtah, 

2019; Wingfield et al., 2020). The promising results realized with ML algorithms across various 

research fields motivated these suggestions and made it a vital step toward cost-effective assessment 

of ASD. 

In other words, the research aim of this study will explore the advances in the application of machine 

learning in the behavioral assessment of ASD and propose a novel ML-based approach that preserves 

the clinical validity of the screening and diagnostic instrument by adhering to the conceptual basis 

upon which professionals diagnose ASD. In line with the research aim, the present study systematically 

reviewed recent articles on the application of machine learning algorithms toward quick and accurate 

assessment of ASD. Thus, challenges were identified and future directions toward real-life ML-based 

assessment systems were proposed. Nonetheless, the existing literature have shown that the 

fundamental aim of the previous studies was on increasing diagnostic speed by reducing the input 

parameters and improving classification performance by achieving high evaluation metrics of 

accuracy, sensitivity and specificity among others. However, their little scientific evidence on the 

validity of the findings against the conceptual basis upon which professionals built and utilized ASD 

assessment tools. 

 

1.2 Problem Statement 

The key challenges in the research area are the inherent discrepancies within the research data used in 

the previous studies as well as the lack of conceptual understanding on the relevance of the data-centric 

approaches utilized with the basis upon which professionals diagnose the disorder. Filling the research 

gap entails providing a definitive explanation on the relevance of the data-centric approach used 

especially in the data pre-processing stages as well as the machine learning modeling with the 

conceptual basis used by professionals in building and utilizing the standard ASD diagnostic 

instruments. Accordingly, a definitive explanation of the clinical validity and sufficiency of the 

reported findings would lead to a viable pathway toward real-life implementation of the ML-based 

assessment systems.  

Recently, there is an increasing application of ML in assessing ASD based on either genetic (Ghafouri-

Fard et al., 2019; Sekaran & Sudha, 2021), brain imaging (Fu & Costafreda, 2013; Jack, 2018; Moon, 

Hwang, Kana, Torous, & Kim, 2019), physical biomarkers (Raya et al., 2020; Dahiya et al., 2020; 

Hashemi et al., 2018; Liu et al., 2016; Sarabadani et al., 2020), or behavioral data. Worthy of note, 

despite the excellent evaluation metrics reported in the ML-based behavioral studies, it is evident that 
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the research methods and the resulting ML models are liable to fail professionals’ assessments. For 

instance, apart from improving the diagnostic accuracy, most of the studies focused on reducing or 

transforming the items of the assessment instruments using various data-centric approaches. However, 

most of the studies fail to probe the relevance of the data-centric approaches, the sufficiency of the 

input parameters as well as the resulting ML models against the basic assumptions for the clinical 

assessment of ASD symptoms.  

In other words, the data-centric approaches utilized in the studies, and the resulting ML models, missed 

the human knowledge upon which ASD is assessed; a combination of the optimized parameters, most 

often, violates the fundamental assumptions upon which clinicians diagnose ASD (Thabtah, 2018). 

Secondly, studies have revealed that discrepancies within the data repositories are among the key 

challenges that limit the reliability of the results reported in the machine learning studies (Abdelhamid 

et al., 2020; Alahmari, 2020). For instance, Torres et al. (2020) studied the statistical properties of 

ADOS scores from 1324 records and identified various factors that could undermine the scientific 

viability of the scores. Particularly, the empirical distributions in the generated scores violate the 

theoretical requirements of normality and homogeneous variance, which are essential for 

independence between bias and sensitivity. Thus, they suggested readjusting the scientific use of 

ADOS due to the variation in the distribution and dispersion of the scores, the lack of proper metrics 

to define similarity measures to characterize change, and the impact that these elements have on 

sensitivity-bias codependencies and longitudinal tracking of ASD. Thirdly, misalignment of the ML 

algorithms, and the resulting models with the scientific basis of the assessment tools is another factor 

that limits the reliability of the reported evaluation metrics (Thabtah, 2018). Specifically, most of the 

studies employed various data optimization techniques for parameter reduction. However, the 

sufficiency of the reduced parameters in identifying ASD symptoms is questionable and liable to fail 

professionals’ assessment. Additionally, most of the studies overlooked the inherent limitations 

associated with the assessment instruments especially the reported high number of false negatives and 

false positives (Guthrie et al., 2019; Øien et al., 2018; Surén et al., 2019). Thus, the need for 

ascertaining and improving the reliability of the assessment instruments remains. 

 

 

1.3 Aim and Objectives 

The main aim of the present study is to propose a quick, accurate and clinically valid ASD screening 

method based on machine-learning models. Accordingly, three sub-aims are derived to address the key 

aim of the study. The sub-aims are itemized as follows: 
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1. What is the classification performance of the empirical scoring algorithm? 

2. What is the classification performance of the various  

 machine-learning models for the experimental Scenario 1 

 machine-learning models for the experimental Scenario 2 

 machine-learning models for the experimental Scenario 3 

 machine-learning models for the experimental Scenario 4 

based on the complete as well as the reduce set of input parameters? 

3. What is the comparative performance of the machine-learning models and the empirical 

scoring algorithm based on the evaluation metrics of  

 True positives? 

 False positives? 

 True negatives? 

 False negatives? 

 Sensitivity? 

 Specificity?  

 Classification accuracy? 

 

The objectives of the study are identified as follows: 

 To analyse the performance of the empirical scoring approach. 

 To experiment with multiple machine-learning models based on various input scenarios that 

align/misalign with the empirical/clinical approach. 

 To make comparative analyses on the performance of the experimental approaches. 

 

1.4 Significance of the Study 

Despite several studies on the application of machine learning algorithms in quick and accurate 

screening and diagnosis of autism spectrum disorder, there is no evidence on the real-life 

implementation of the machine-learning models for clinical use. This might be related to the 

misalignments between the conceptual understanding upon which professionals diagnose ASD and the 

data-centric approaches employed in developing the machine-learning models. The present study will 

purposely address the misalignments by demonstrating how machine-learning models for quick and 

accurate behavioral screening and diagnosis of ASD could be implemented by upholding the clinical 

procedures used by professionals in administering diagnostic instruments. Accordingly, the novel 
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approach will utilize the advantages in machine-learning techniques while preserving the clinical 

validity of the assessment instrument. 

 

1.5 Limitations of the Study 

Common to other scientific studies, the present study is limited in its various stages especially during 

the literature review, and data collection. Firstly, the findings of the literature were constrained by the 

systematic approach followed, which considered only journal articles from the popular scientific 

databases and published in the English language. A detailed explanation on the limitations within the 

literature review process is provided in the third chapter. Secondly, the data collection process was 

initially planned to include both quantitative and qualitative data collection. Specifically, the 

qualitative data collection was planned to involve expert interviews with professionals in the clinical 

assessment of ASD from the eight Federal Neuropsychiatric Hospitals in Nigeria. Unfortunately, the 

sudden advent of the Corona Virus (COVID-19) and the resulting containment measures made it 

impossible to conduct qualitative data collection. Thirdly, the planned data analysis has not captured 

the history of the previous diagnostic tools used in the clinical diagnosis of the ASD patients as well 

as the class of participants with other non-ASD neuropsychiatric disorders. Capturing the stated 

diagnostic history could help in understanding the relevance of the previous diagnostic instruments 

with the novel instrument utilized in the present study. 

 

1.6 Overview of the Thesis 

The present thesis writeoff contains six distinct chapters described as follows:  

The first chapter is the introductory part of the thesis report that explains the main study aim and 

statement of the problems that motivated embarking on the study, it also highlighted the significance 

of carrying out the study, as well as some of the limitations faced.  

The second chapter entitled “related research” is the backbone of the research that updates readers on 

what was done on the research topic, what is the research gap, and what we could foresee from the 

future. Accordingly, the second chapter portrays the systematic approach followed in searching, 

analyzing, and discussing related works thematically, methodologically, and chronologically.  

The third chapter “theoretical framework” provides the theoretical basis and understanding of the key 

concepts based on which the study was carried out including the conceptual understanding of the ASD 

screening and diagnostic instruments, the machine learning algorithm as well as the evaluation metrics.  
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Nonetheless, the fourth chapter entitled “methodology” describes the proposed research procedure 

utilized during the research data collection, data analysis, as well as report writing.  

Consequent to the methodology, the fifth chapter provided a detailed explanation with the help of 

tables and figures on the results obtained and further discussed the findings.  

The sixth, which is the final chapter, concludes the research work with summarized findings, and 

recommendations for future studies.  
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CHAPTER 2 

RELATED RESEARCH 

This chapter as the backbone of the research updates readers on what was done on the research topic, 

what is the research gap, and what we could foresee from the future. Accordingly, the third chapter 

portrays the systematic approach followed in searching, analyzing, and discussing related works 

thematically, methodologically, and chronologically. Specifically, this chapter explains the systematic 

review process adopted in the present study based on the PRISMA framework and the chapter contains 

numerous subheadings that explained trend of studies that utilizes ML in ASD screening and diagnosis, 

the commonly employed data processing and modeling techniques, as well as details of studies that 

utilized the common dimensionality reduction techniques. The chapter ended up with brief explanation 

on the novelty of the present research. 

   

2.1 Background of the Literature 

This section aims to explore the advances in the application of machine learning in the behavioral 

assessment of ASD. In this section, a systematic review was conducted on recent publications on the 

application of machine learning algorithms toward quick and accurate assessment of ASD. Thus, 

challenges were identified and future directions toward real-life ML-based assessment systems were 

explored. Certain literature reviews highlighted the accuracy and efficiency of ML algorithms in ASD 

assessment based on the reported evaluation metrics (Song, Kim, Bong, Kim, & Yoo, 2019; Thabtah, 

2018). However, none of the existing literature reviews systematically analyzed the subject area and 

validates its findings against the scientific basis upon which professionals built and utilized ASD 

assessment tools. For instance, Thabtah (2018) identified some limitations within the research 

methodologies and proposed intuitive stages toward appending the ML models into ASD screening 

tools. Similarly, Song et al. (2019) reviewed 13 relevant studies on varying data types and discussed 

the possibility of achieving effective classification of ASD based on the study findings. 

2.2 Literature Review Process 

For this systematic search, conducted in October 2020, careful planning and scheduling of tasks were 

conducted at each stage to identify the most relevant studies. The search strategy was tailored to four 

electronic databases: IEEEXplore, PubMed, Scopus, Web of Science, and the search terms used are 

“Autism Spectrum Disorder” OR “Autistic Disorder” OR “Autism” AND “Screening” OR 

“Assessment” OR “Identification” OR “Test” OR “Detection” AND “Machine Learning” OR 
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“Artificial Intelligence”. All the searches spanned a decade (i.e. from 2011 to date) and included papers 

published with English titles. Beyond the database search, relevant publications on the advances in 

ASD assessment were accessed from other online sources. 

PRISMA statement (Moher et al., 2009) was followed in the selection process. Relevant studies 

utilized PRISMA in critical appraisal and summary of literature to inform researchers on the advances 

in the assessment of autism and other neuropsychiatric disorders (Dahiya et al., 2020; Low, Bentley, 

& Ghosh, 2020; Moon et al., 2019; Song et al., 2019). The phenomena of interest in the criteria of 

inclusion included any published paper on the use of ML in ASD assessment. At the initial screening 

stage, apart from duplicates removal, the records were probed against the inclusion criteria to decide 

on whether or not to include the study in the literature review. The decisions for inclusion vs. exclusion 

on the records were coded under a designated column in the excel sheet imported from the databases.  

Records that met the initial inclusion criteria were retrieved for the next screening stage. Thus, for 

records whose titles and corresponding abstracts aligned with the preset inclusion criteria, full-text 

articles of the studies were retrieved for the subsequent screening stage. In the next PRISMA screening 

stage, the researcher with the help of colleagues reviewed the downloaded papers, independently, to 

ascertain their relevance with the search query used as well as the set research question. Specifically, 

three hundred and sixty-seven records were carefully assessed for eligibility. One hundred and eighty 

studies out of the 367 records were discarded due to the following reasons: book chapters (n = 17), 

conference papers (n=138), editorial materials (n = 11), literature reviews (n = 15), not written in 

English (n = 9). The remaining one hundred and seventy-seven studies were further assessed; one 

hundred and forty-four records were eliminated because they are either based on brain imaging data 

(n = 57), genetic data (n = 35), or physical/metabolic biomarkers (n = 32) while others are intervention 

studies (n = 20). Consequently, thirty-three full-text articles were retrieved, read, and qualitatively 

assessed. Nonetheless, additional articles were excluded because ML is not the main method employed 

(n = 7) and ASD is not the main neuropsychiatric disorder assessed (n = 4). Finally, 22 studies met the 

inclusion criteria. The PRISMA flow diagram (Figure 2.1) summarized the abovementioned 

systematic literature review process and  

 

 

 

Table 2.1 itemized the key items of the inclusion and exclusion criteria of the study. 
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Table 2.1: Inclusion and exclusion criteria of the study 

Inclusion criteria 

 Journal articles published in the English language 

 Documents published within the last ten years from 2011 to date 

 Full-text papers that are accessible and downloadable 

 Studies that utilized behavioral data 

 Studies that employed machine learning as the main technique 

 Studies that considered autism as the main disorder assessed 

Exclusion criteria 

 Papers that are written in other languages 

 Duplicated papers 

 Full-text of the document is not accessible on the internet 

 The study aim is not clearly defined 

 Studies that are not relevant to the stated research question 

 Relevant studies but machine learning are not the main methods 

 Relevant studies but autism is not the main disorder assessed 

 Conferences papers, editorial materials, and literature reviews 

 Studies that utilized data from either brain imaging, genetic, or 

physical/metabolic biomarkers. 

 Intervention studies 
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Figure 2.1: PRISMA flow diagram of the search results 
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In the present study, to ensure the quality of the systematic approach, the researcher carefully adhered 

to the planned systematic literature review process to maintain the quality of the study. Particularly, at 

every phase of the systematic literature review, the researcher ensured careful planning and allocation 

of tasks. The researcher created an online Mendeley repository for referencing and the researcher 

monitored the progress of the review based on preset milestones to ensure that all tasks complied with 

the scheduled deadlines. The Mendeley repository was also used in keeping track of the data extraction 

stages, noting essential observations and sharing vital contents related to the study. The researcher 

further upheld peer-reviewing with friends and rereading the text at each phase of the study to enhance 

the systematic literature review. Nevertheless, unbiased and constructive assessments on the 

systematic approach used in this study were sought from my supervisor and academic colleagues. 

As the final stage of the study’s PRISMA, the data extraction stage, 22 articles were appraised critically 

and the following information was extracted from the studies: 

 Author(s) (year) 

 Number of citations 

 Source(s) of the research data 

 Data collection/assessment instrument 

 ML model(s)developed 

 Best performing model(s) 

 The key finding(s) 

2.3 Descriptive Analysis on Trends and Status of the Study on ML in ASD Assessment 

Based on the exported data, the trend of studies on the use of ML in the behavioral assessment of ASD 

showed the most cited references, the most cited journals, as well as citation and publication 

frequencies across the years. 
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Figure 2.2: Articles distribution over the years 

With the increasing application of ML in healthcare studies, as shown in 

 

Figure 2.2, there are more publications on ML and ASD assessment. From 2012 to 2018, not so many 

studies cared about the application of ML in ASD assessment. However, with the recently increased 

patronage of ML techniques across various fields, there is an increasing demand for intelligent tools 

for accurate assessment of ASD. From Figure 2.3, most of the articles contributing to the area were 
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published in Translational Psychiatry (n = 5), followed by the Health Informatics Journal (n = 3). The 

remaining fifteen journals depicted published one article, each. 

 

Figure 2.3: Number of articles published by journals 

Based on the citation data exported, as shown in Table 2.2, we can see that the most cited references 

are Wall et al. (2012) (n = 160), Wall et al. (2012) (n = 106), Duda et al. (2016) (n = 89), Kosmicki et 

al. (2015) (n = 84), and Bone et al. (2016) (n = 77). Most of the significant references; with the highest 

number of citations, were published in Translational Psychiatry (Duda et al., 2016; Kosmicki et al., 

2015; Wall, Kosmicki, et al., 2012) (Figure 2.42.4, n = 408) in the years 2012 (Figure 2.52.5, n = 266), 

2015 (Figure 2.52.5, n = 84), and 2016 (Figure 2.52.5, n = 166). Figure 2.42.4 highlighted the citation 

data of the eight most cited journals involved in the study; Translational Psychiatry (n = 408), PLoS 

One (n = 106), Journal of Children Psychological Psychiatry (n = 77), and so on. 
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Figure 2.4: Sum of citations per journal 

 

 

 

Figure 2.5: Number of citations across years 
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2.4 Trends in the Data Pre-Processing and ML Modeling Techniques 

Dimensionality reduction is among the common data pre-processing technique employed in the 

previous studies. Most of the studies primarily aimed at streamlining the data collection instruments 

followed by evaluating the performance of various ML algorithms on the streamlined datasets 

(Bellesheim et al., 2018; Duda, Kosmicki & Wall, 2015; Kosmicki et al., 2015; Küpper et al., 2020; 

Wall, Dally, et al., 2012). While various feature selection methods were applied in streamlining the 

most influential features of the data collection instruments from the datasets, other studies utilized 

various feature transformation techniques in reducing the input parameters. For instance, in the work 

of Puerto et al. (2019), the inputs were fuzzified into membership values before applying the 

classification algorithms. Similarly, before implementing the classification models, Baadel et al. 

(2020) and Akter et al. (2019) transformed the inputs using clustering and feature transformation 

functions, respectively. Nonetheless, other studies employed a trial-error approach in selecting the 

most influential features. The trial-error approach involves repetitive evaluation of the ML models 

using a varying combination of the features; the most influential combination achieves superior results 

with fewer input parameters. Specifically, the studies utilized various feature selection techniques 

including trial-error (Duda et al., 2015; Thabtah, 2019; Usta et al., 2019; Wall, Dally, et al., 2012; 

Wall, Kosmicki, et al., 2012), Variable Analysis (Va) (Pratama et al., 2019; Thabtah et al., 2018), 

information gain (IG) and chi-square testing (CHI) (Thabtah et al., 2019), sequential feature selection 

(SFS) (Suresh & Renugadevi, 2019), correlation-based feature selection (CFS) and minimum 

redundancy maximum relevance (mRMR) (Wingfield et al., 2020). Additionally, ML-based feature 

selection techniques employed include recursive feature selection (Küpper et al., 2020), 

sparsity/parsimony enforcing regularization techniques (Levy et al., 2017), stepwise backward feature 

selection (Kosmicki et al., 2015), and forward feature selection (Duda et al., 2016). 

The data-centric approaches reviewed in this section have employed at least one machine-learning 

algorithm in the model implementation and evaluation. As shown in Table 2.22.2, the commonly 

implemented ML algorithms are Random Forest (RF) (Baadel et al., 2020; Goel et al., 2020; Pratama 

et al., 2019; Wingfield et al., 2020), Support Vector Machines (SVM) (Bone et al., 2016; Kosmicki et 

al., 2015; Küpper et al., 2020; Levy et al., 2017; Suresh & Renugadevi, 2019), Alternative Decision 

Tree (ADTree) (Duda et al., 2015; Usta et al., 2019; Wall, Dally, et al., 2012; Wall, Kosmicki, et al., 

2012), and Logistic Regression (LR) (Kosmicki et al., 2015; Thabtah, 2019; Thabtah et al., 2019). To 

achieve comparative results, most of the studies employed several algorithms such as Adaboost, 

Artificial Neural Network (ANN), Linear Discriminant Analysis (LDA), Naïve Bayes, and K-Nearest 

Neighbor (KNN). 



16 
 

Data collection or assessment instruments are the bedrock in the behavioral studies in ASD assessment. 

The most utilized data collection instruments are AQ-10 (Akter et al., 2019; Baadel et al., 2020; Goel 

et al., 2020; Pratama et al., 2019; Shahamiri & Thabtah, 2020; Suresh & Renugadevi, 2019; Thabtah, 

2019; Thabtah et al., 2019, 2018; Thabtah & Peebles, 2020), Q-CHAT-10 (Akter et al., 2019; 

Shahamiri & Thabtah, 2020; Thabtah et al., 2018; Thabtah & Peebles, 2020), ADOS (Duda et al., 

2015; Kosmicki et al., 2015; Küpper et al., 2020; Levy et al., 2017; Puerto et al., 2019; Wall, Kosmicki, 

et al., 2012), ADI-R (Bone et al., 2016; Puerto et al., 2019; Wall, Dally, et al., 2012) and Social 

Responsiveness Scale (SRS) (Bone et al., 2016; Duda et al., 2017; Duda et al., 2016). Others include 

Autism Behavior Checklist, Aberrant Behavior Checklist, Clinical Global Impression (Usta et al., 

2019), and MCHAT-based Pictorial Autism Assessment Schedule (PASS) (Wingfield et al., 2020). 

Thus, the need for improving the reliability of these assessment instruments and ascertaining their 

relevance in ML modeling remains. 

Most of the studies utilized retrospective data that were publicly accessible. The most prominent 

sources of data utilized in the studies include Boston Autism Consortium (AC), Autism Genetic 

Resource Exchange (AGRE), Simons Simplex Collection (SSC) (Duda et al., 2017, 2015, 2016; 

Kosmicki et al., 2015; Levy et al., 2017; Wall, Dally, et al., 2012; Wall, Kosmicki, et al., 2012), 

National Database for Autism Research (NDAR) (Duda et al., 2015; Kosmicki et al., 2015) and Simons 

Variation In Individuals Project (SVIP) (Duda et al., 2015; Kosmicki et al., 2015; Levy et al., 2017). 

Other studies utilized data sets from ASDTest: Kaggle and UCI ML repository (Akter et al., 2019; 

Baadel et al., 2020; Goel et al., 2020; Pratama et al., 2019; Shahamiri & Thabtah, 2020; Suresh & 

Renugadevi, 2019; Thabtah, 2019; Thabtah et al., 2019, 2018; Thabtah & Peebles, 2020), Association 

of Parents and Friends for the Support and Defense of the rights of people with Autism (APADA) 

(Puerto et al., 2019), PASS app (Wingfield et al., 2020), Ondokuz Mayis University Samsun (Usta et 

al., 2019) and ASD outpatient clinics in Germany (Küpper et al., 2020). To achieve standardized 

comparative results, there is a need for standardized ASD data repositories for machine learning studies 

(Thabtah, 2018). 

 

2.5 The Commonly Employed Experimental Procedures 

Apart from the common aim of streamlining the various data collection instruments followed by model 

evaluation, other studies focused on either optimizing the machine-learning algorithms (Goel et al., 

2020; Suresh Kumar & Renugadevi, 2019), proposing input optimization techniques (Akter et al., 

2019; Baadel et al., 2020; Pratama et al., 2019; Thabtah et al., 2018), or implementing ML-based 



17 
 

screening apps (Shahamiri & Thabtah, 2020; Wingfield et al., 2020). For instance, Goel et al. (2020) 

proposed Modified Grasshopper Optimization Algorithm (MGOA) for improved performance over 

common ML algorithms. The proposed MGOA (GOA with Random Forest classifier) outperformed 

other basic models and predicted ASD with approximate accuracy, specificity, and sensitivity of 100%. 

Similarly, Suresh Kumar and Renugadevi (2019) proposed Differential Evaluation (DE) Algorithm to 

find the optimal solution of SVM parameters. The proposed DE tuned SVM achieved better 

performance over SVM, ANN and DE optimized ANN in classifying ASD. As stated earlier, apart 

from trial-error, studies employed either feature selection or transformation techniques for 

dimensionality reduction. For instance, Thabtah et al. (2018) demonstrated the superiority of variable 

analysis (Va) over information gain (IG), Correlation, and chi-square (CHI) in reducing AQ-10 items. 

Variable analysis (Va) derived fewer features while maintaining competitive predictive accuracy, 

sensitivity, and specificity rates. A replicated study by Pratama et al. (2019) produced a higher 

sensitivity of 87.89% in Adults AQ with RF and an increased specificity level of 86.33% in 

Adolescents AQ with SVM. Despite the good performance of the above-mentioned techniques in 

automating feature selection processes across various applications (Alhaj et al., 2016; Roobaert et al., 

2006), none of the previous studies justified the conformity of the feature selection methods with the 

conceptual basis upon which professionals built and utilize ASD diagnostic instruments. 

Furthermore, unlike other medical diagnoses, the absence of definitive measures and medical tests for 

diagnosing ASD makes it difficult to numerical quantify the disorder based on few parameters. 

Notably, accurate assessment of ASD relied on precise application of the commonly used behavioral 

scales built based on knowledge and expertise of the professionals. Thus, application of the human 

knowledge is imperative to reliable ASD diagnosis. Based on that, there is need for quantifying the 

trade-offs of dimensionality reduction (ensuring fewer items for quick assessment) and validity 

(preservation of the human knowledge for correct diagnosis). Specifically, a machine-learning model 

built based on fewer behavioral features that does not sufficiently capture the human knowledge of the 

assessment instrument, will not be valid for clinical use. Thus, there is need for applying 

dimensionality reduction techniques that professionals could track its ability in preserving the validity 

of the assessment instruments. Figure 2.62.6 described the experimental stages toward clinical 

implementation of the ML models for ASD assessment. 
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Figure 2.6: Commonly employed experimental stages 

Nonetheless, various feature transformation techniques were equally utilized in the dimensionality 

reduction processes. For instance, Akter et al. (2019) utilized three feature transformation techniques; 

Log, Z-score, and Sine functions, and evaluated the performance of nine different ML models on the 

transformed datasets. Log, Z-score, and Sine functions normalize data by converting excessively 

skewed entities into a normal distribution, converting features into -1 to 1 value range, and 

transforming instances to the sine 0-2π value intervals, respectively. In addition, they recorded varying 

superior performances of the ML models and the feature transformation approaches across the datasets. 

The feature transformations resulting in the best classifications were Z-score and Sine function on 

children, adolescents, and toddlers’ datasets, respectively. 

However, despite the reported improved performances of the ML models on the transformed datasets 

and the theoretical understanding of the capabilities of the transformation functions, studies have 

demonstrated how these transformations compromise the relevance of the original data to the 

transformed data (Curtis et al., 2016; Feng et al., 2014; Lapteacru, 2016; Wiesen, 2006). Researchers 

ought to be mindful of the limitations in using these transformations in terms of the relevance of the 

original to the transformed data during results interpretation. For instance, Feng et al. (2014) 

demonstrated such irrelevancies between the statistical findings of standard tests performed on original 

and log-transformed data. Similarly, several studies have highlighted some of the pitfalls and 

inconsistencies in the application of Z-scores and its concepts that overlooked the meaning of the 
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original data, its standard deviations, and confusing applications (Curtis et al., 2016; Lapteacru, 2016; 

Wiesen, 2006). 

Recent studies further demonstrated how ML-enable ASD screening and diagnostic models could be 

developed, evaluated, and implemented. Recently, Baadel et al. (2020) proposed Clustering-based 

Autistic Trait Classification (CATC) which identifies ASD-based traits’ similarity, unlike the 

commonly used scoring functions. CATC showed significant improvement in the ASD classification 

based on clustered inputs. Comparative evaluation of various classification algorithms showed better 

improvement with the Random Forest classifier. On the implementation of mobile apps for ASD 

screening, Wingfield et al. (2020) and Shahamiri & Thabtah (2020) embedded RF and CNN-based 

scoring models, respectively, while Thabtah (2019) employed ML to validate Autism Spectrum 

Disorder Test (ASDTest); a mobile screening app embedded with non-ML functions. In all the 

foregoing studies, the commonly used evaluation metrics are classification accuracy, sensitivity, and 

specificity. Specificity is the ratio of non-ASD cases that are correctly classified (i.e. true negatives 

rate) and sensitivity is the ratio of true ASD cases that are correctly classified (i.e. true positives rate) 

while classification accuracy is derived from sensitivity and specificity; as the measure of precisely 

classified cases from the total number of the cases. 

2.6 ML-based Studies and the Dimensionality Reduction Approaches  

2.6.1 Trial-error approaches 

Goel et al. (2020) appraised how the time-consuming clinical diagnostic process is aggravating the 

severity of ASD among patients and highlighted how early and precise identification could remediate 

the disorder. Accordingly, the authors proposed a nature-inspired optimization algorithm entitled 

Modified Grasshopper Optimization Algorithm (MGOA); which is a combination of GOA and random 

forest classifier to detect the symptoms of ASD across various age groups. The algorithm was 

employed in modeling three distinct ASD screening datasets sampled using Autism Quotient (AQ); 

AQ-children, AQ-adolescents, and AQ-adults. The comparative study results indicated that the 

proposed MGOA outperformed other common machine learning algorithms by achieving approximate 

specificity, accuracy, and sensitivity of 100% in detecting ASD across all age groups. 

Shahamiri and Thabtah (2020) cited the significant time-ineffectiveness, subjectivity, and fiscal costs 

of the conventional processes used in the early identification of ASD. Based on the identified 

challenges, the authors suggested an intelligent ASD screening method for accurate pre-diagnostic 

classifications, accessibility, and improved efficiency. Specifically, the study proposed the 

implementation of an online application named Autism AI, which prompts a reduced version of the 
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Quantitative Checklist for Autism Toddlers (Q-CHAT) and AQ-10 questionnaires aimed at ASD 

diagnosticians and busy medical clinics. The machine-learning model embedded in the application was 

trained with Convolutional Neural Network (CNN) on historical ASD screening datasets available at 

the UCI ML repository. In the experimental runs, the comparative evaluation of CNN against C4.5, 

Bayes Net, and RIDOR models revealed the superior performance of the CNN-based classification of 

ASD.  

Thabtah and Peebles (2020) identified the resulting consequences in the current lengthy and cost-

ineffective ASD diagnostic approaches that solely relied on the subjective judgment of the limited 

number of licensed specialists. The authors proposed novel machine learning techniques entitled 

Rules-Machine Learning (RML) in an attempt to address the identified challenges bedeviling the 

conventional diagnostic methods and the misalignment that exists between the conceptual basis of 

ASD diagnosis and the data-driven techniques employed in the existing machine learning studies. 

Experimental evaluation of multiple machine learning models such as decision trees, Bagging, and 

Boosting against the RML based on the ASDTest datasets of children, adolescents, and adults revealed 

the superior performance of RML. Particularly, RML achieved higher predictive specificity, harmonic 

mean, sensitivity, and accuracy and it provides knowledge bases (rules) that can be utilized by experts 

in tracking the reason behind case classification.  

Wall, Dally, et al. (2012) studied the responses on the 93 Autism Diagnostic Interview–Revised (ADI-

R) parameters archived in the Autism Genetic Resource Exchange (AGRE) retrospective dataset to 

streamline the responses and implement machine learning models from the reduced data. From the 891 

ASD and 75 non-ASD responses contained in the dataset, the study analysis extracted 7 out of the 93 

items of ADI-R to be sufficient in the ML classification of ASD with substantial predictive accuracy. 

The study further tested the performance of the developed 7-items classification models on two 

independent datasets containing 1654 and 322 ASD cases sourced from the Simons Foundation and 

Boston Autism Consortium, respectively. In both cases, Alternative Decision Tree (ADTree) achieved 

higher predictive performance over other variants of decision tree classifiers. 

Duda et al. (2015) evaluated the correlation between the ASD scores of the ADOS algorithm and 

machine learning model termed as an observation-based classifier (OBC). The best performing 

classifier with more than 97% statistical accuracy was derived using fewer than 30% of the standard 

ADOS-G items. The accuracy of the OBC was tested on an independent sample of 2333 children with 

ASD and 283 non-ASD cases gathered from five data repositories; namely AC, AGRE, SSC, NDAR, 

and SVIP. The comparative analysis of the results provided by the OBC and the original ADOS 
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algorithms revealed the existence of statistically significant indirect correlation with above 75% 

magnitude. The predictive accuracy of the classifier and its significant correlation with the outcome of 

the gold-standard ADOS-G scores demonstrated the capability of OBC in measuring the severity of 

ASD phenotype.  

Wall, Kosmicki, et al. (2012) identified the dichotomy in the four ADOS modules, each of which takes 

at least 30 minutes to administer, that are tailored across a various group of participants based on their 

language and developmental levels. The authors experimented on multiple machine-learning 

algorithms on the reduced set of ADOS Module 1 responses retrieved from AGRE and AC 

repositories; which contained 612 ASD cases and 15 controls. The study results analysis indicated that 

8 of the 29 behavioral features contained in Module 1 of the ADOS were sufficient for the best 

performing ADTree classifier in detecting ASD cases with a predictive accuracy of 100%. 

Furthermore, the eight-item classifier was validated against the complete set features in 110 and 336 

ASD cases retrieved independently from AC and Simons Foundation, respectively. The validation 

result yielded a sensitivity of 100% and specificity of 94%. 

Thabtah (2019) implemented an ASD screening and data collection app named ASDTest with the key 

aim of enhancing accessibility and alleviate the healthcare costs and delays in the current diagnostic 

practices. The app was used in collecting the retrospective AQ-10 and Q-CHAT-10 data utilized in 

numerous ML studies. The author also utilized 1400 instances from the data in training and evaluating 

the predictive performance of two different machine-learning models of Logistic Regression and Naïve 

Bayes algorithms. Using the trail-error technique the author was able to implement the ML models 

with reduced AQ-10 and Q-CHAT-10 parameters. The predictive performance of the classifiers in 

terms of the classification accuracy, true negative, and true positive rates was found to approach 100%. 

Duda et al. (2017) conducted a validation study on the ML classification of the ASD comorbid 

disorders especially ADHD by incorporating the SRS responses used in Duda et al. (2016) with the 

crowdsourced dataset to improve the model’s capability on ‘real-world’ data. The crowdsourced data 

involved responses to 15 most influential SRS items on 248 children with ASD and 174 ADHD. The 

combined dataset with 3417 cases was subjected to subsampling and repeated cross-validations in the 

modeling of SVM, LR, and LDA algorithms. LDA as the best performing algorithm achieved an AUC 

of 89% with the 15 SRS items. 

2.6.2 Feature selection approaches 

Küpper et al. (2020) highlighted the various complications concerning the current ASD diagnosis and 

particularly in older individuals. The authors suggested a machine learning approach for the detection 
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of ASD among adolescents and adults using fewer items from the ADOS Module 4. The data modeling 

approach employed SVM in examining possible improvement in ASD diagnostic accuracy and 

improving diagnostic speed by identifying the most relevant behavioral features from the diagnostic 

instrument using recursive feature selection. The study utilized a retrospective dataset sourced from 

ASD outpatient clinics in Germany comprising 673 adolescents with high-functioning ASD, 385 adults 

with ASD, and 288 controls. The study findings revealed that for the adolescents and adult groups as 

well as the combined groups, 5 behavioral features were identified as sufficient in classifying ASD 

with good predictive accuracy with no significant difference from the performance of the complete 

ADOS items and its conventional screening algorithm.  

Levy et al. (2017) highlighted how shorter, mobile-based ASD diagnostic instruments could alleviate 

the bottlenecks of delay and inaccessibility to accurate diagnostic practices. The authors claimed the 

clinical sufficiency of the subsets of ADOS behavioral features in the previous studies based on the 

reported classification accuracies. The study expanded the claim toward achieving generalizable ML 

models for the clinical population. Accordingly, the study involved ADOS module 2 and 3 responses 

sampled from 1319 ASD cases, 70 controls and 2870 ASD cases, 273 controls, respectively, gathered 

from AC, AGRE, SSC, and SVIP repositories. Furthermore, stable subsets of the ADOS predictive 

features were extracted by utilizing sparsity/parsimony enforcing regularization techniques. The study 

augmented demographic features of age and gender unto the ADOS shorter items. The study findings 

of the 17 unique classification models explored yielded 5 to 10 relevant features. The best performing 

models achieved AUC of 0.95 and 0.93 with the reduced features from ADOS’s Module 3 and Module 

2, respectively. The authors claimed the clinical stability of the reduced items as well as the potential 

generalizability of the models based on their sparsity, and interpretability with the augmented 

parameters. 

Kosmicki et al. (2015) emphasized the value of implementing quick and accurate ASD diagnostic 

measures by looking at the persistent prevalent raise. The authors ran eight different machine-learning 

algorithms in the data modeling of ADOS modules 2 and 3 behavioral data containing retrospective 

data of 4540 cases. During the experimental runs, stepwise backward feature selection captured 9 and 

12 relevant items out of the 28 behavioral features in module 2, and module 3, respectively. The 

reduced features were utilized in evaluating the predictive performance of seven distinct machine-

learning models, namely; ADTree, SVM, Logistic Model Tree, LR, NB, NBTree, RF. The best 

performing models, SVM and LR, achieved a classification accuracy of almost 100%. In essence, at 

least a 55% reduction in the behavioral features was recorded while maintaining the predicted 

performance of the models. The authors recommended utilizing similar models in the real-life 
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implementation of objective, self, and/or parent-administered mobile apps for preliminary evaluation 

of ASD risk factors. 

Thabtah et al. (2018) highlighted the demand for identifying fewer parameters that could sufficiently 

classify ASD in the same way as the complete set of features in the commonly used screening 

instruments. Thus, the authors proposed the application of intelligent feature selection techniques 

called variable analysis (Va) on the AQ (AQ-10 Adult, AQ-10 Adolescent, and AQ-10 Child) and Q-

CHAT-10 datasets. The authors demonstrated the superiority of Va over other commonly used feature 

selection methods such as information gain, and correlation based on the performance of the resulting 

ML models on the streamlined datasets. The resulting classifiers based on Repeated Incremental 

Pruning to Produce Error Reduction (RIPPER), and C4.5 verified the efficacy of Va in terms of the 

achieved performances concerning classification accuracy, positive predictive values, sensitivity, and 

specificity. 

Thabtah et al. (2019) presented a novel framework for time-efficient ASD screening for adults and 

adolescents based on logistic regression analysis. Vital and most influential features from the screening 

instrument were extracted using various feature selection approaches. Comparative analysis on the 

performance of the feature selection methods on the two datasets of adults and adolescents showed the 

efficacy of dimensionality reduction approaches in improving the classification efficiency of the 

logistic regression model. The comparative analysis between the dimensionality reduction techniques 

of information gain (IG) and Chi-square testing (CHI) yielded fewer influential features that are 

capable of assessing the symptoms of ASD sufficiently and maintaining the classification performance 

of the classifiers in terms of accuracy, specificity, and sensitivity among others. 

Suresh and Renugadevi (2019) proposed an algorithm optimization technique called Differential 

Evolutionary (DE) to improve the predictive performance of the commonly used machine learning 

algorithms. The authors evaluated the performance of four distinct machine-learning models, namely 

SVM, ANN, DE optimized SVM, and DE optimized ANN on the AQ-child, AQ-adolescent, and AQ-

adult responses retrieved from the UCL ML repository. The responses to the screening instruments 

were reduced using Sequential Feature Selection and the resulting DE optimized SVM models 

outperformed ANN and DE optimized ANN in classifying the ASD symptoms quantified using the 

data collection instruments. 

Pratama et al. (2019) utilized the AQ-10 (children, adolescents, and adults) datasets in ML modeling 

with support vector machine (SVM), artificial neural network (ANN), and random forest (RF) to 

reduce the misclassifications of the commonly used AQ scoring algorithms. The study employed Va 
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in streamlining the AQ-10 items and 10-fold cross-validation was equally applied in the experimental 

runs. The study findings revealed the performance of RF and SVM with higher adult AQ sensitivity 

of 87.89% and adolescents AQ specificity level of 86.33%, respectively. 

Usta et al. (2019) evaluated the performance of multiple machine learning algorithms in the modeling 

of behavioral data of 433 children with ASD containing numerous demographic predictors as an 

addendum to the items of Autism Behavior Checklist, Aberrant Behavior Checklist, and Clinical 

Global Impression from the better predictive outcome. The historical ASD diagnostic data was sourced 

from Ondokuz Mayis University Samsun. The comparative assessment on the performance of the 

modeling algorithms, namely Naive Bayes, Generalized Linear Model, Logistic Regression, and 

Decision Tree showed a significant effect of the demographic factors on the models’ performance. 

Demographic factors of paternal and maternal age, birth weight, and severity level significantly 

influence the better prediction of the disorder. Thus, the classification approach revealed several other 

influential factors that affect the predictive performance of the models.  

Wingfield et al. (2020) proposed a culturally sensitive picture-based screening app called Pictorial 

Autism Assessment Schedule (vPASS) to alleviate cultural variations in the interpretation of the 

behavioral symptoms of ASD as noted in the sensitivity of MCHAT among Sri Lankan children. The 

authors demonstrated the possibility of removing feature redundancy and overcoming the cultural 

variation in the interpretation of ASD symptoms. vPASS was based on the items of the PASS checklist 

reduced using correlation-based feature selection (CFS) and minimum redundancy maximum 

relevance (mRMR). PAAS checklist was derived by modifying the cultural considerations in DSM-V 

and M-CHAT. The vPASS app embeds a machine-learning model based on the Random Forest 

classifier, which achieved superior performance in the experimental run over NB, Adaboost, 

Multilayer Perceptron, J48, PART, and SMO with a receiver operating characteristic of 98%.  

Duda et al. (2016) proposed an ML-based ASD screening for quick and accurate assessment of ASD 

and ADHD symptoms to mitigate the negative consequences of the subjective, cumbersome, and time-

intensive conventional approaches. The study employed forward feature selection and undersampling 

on the retrospective datasets on Social Responsiveness Scale (SRS) responses, archived in AC, AGRE, 

and SSC repositories. The study analyzed 2775 ASD and 150 ADHD cases that were modeled using 

six different machine-learning algorithms. 10-fold cross-validation was employed in each 

experimental run on five of the 65 SRS items, which were found to be sufficient in the classification 

task. The experimental run was tailored on ADTree, RF, SVM, LR, Categorical lasso, and LDA, and 
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all the models were able to classify ASD from ADHD by utilizing 5 of the 65 items of SRS with high 

average accuracy and AUC of 96.5%. 

2.6.3 Feature transformation approaches 

Bone et al. (2016) targeted best classification of ASD cases and non-ASD cases by combining the 

items of ADI-R and SRS scores from Balanced Independent Dataset. Accordingly, a robust SVM 

classifier was modeled using 1264 ASD cases and 462 non-ASD cases with parameter tuning across 

multiple levels of cross-validation. The experimental findings revealed how the SVM model utilized 

5 of the fused ADI-R and SRS items in sufficiently classifying ASD with approximate sensitivity of 

90%, and specificity above 50%. The authors highlighted that, despite the good performance of the 

machine-learning model, the study findings pinpointed the limitations in the current parent-report 

instruments. 

Puerto et al. (2019) proposed a novel machine learning approach to the behavioral assessment of ASD 

entitled Multilayer Fuzzy Cognitive Map (MFCM-ASD). The authors utilized ADOS and ADI-R 

responses from the retrospective dataset of the Association of Parents and Friends for the Support and 

Defense of the rights of people with Autism. MFCM-ASD model was based on fuzzified inputs and it 

achieved better predictive performance over other comparative models of SVM, Random forest, and 

NB. The authors stated that the superior performance of MFCM-ASD characterized by its robustness 

makes it an effective ASD diagnostic technique and medical decision support system for children with 

different cognitive characteristics. 

Akter et al. (2019) gathered early-detected ASD risk factors relating to different age groups quantified 

using AQ-10 Adult, AQ-10 Adolescent, and AQ-10 Child as well as Q-CHAT-10 screening questions. 

The authors transformed the datasets using Z-score, logarithmic, and sine functions. The transformed 

features were passed as inputs to nine distinct classification algorithms including Adaboost, FDA, 

C5.0, LDA, MDA, PDA, SVM, and CART. The comparative results showed varying superior 

performance of the ML models and FT approaches across the datasets. The ML models resulting in 

the best classifications were SVM (toddlers dataset), Adaboost (children dataset), Glmboost 

(adolescents dataset), Adaboost (adults dataset). The FTs resulting in the best classifications were sine 

function (toddlers dataset), and Z-score (children and adolescent datasets). 

Baadel et al. (2020) conducted an experimental study to improve diagnostic speed through 

dimensionality reduction and redundancy elimination using a novel semi-supervised machine-learning 

framework entitled Clustering-based Autistic Trait Classification (CATC).  The proposed clustering 

approach was validated using classification techniques in which the influential input parameters were 



26 
 

identified as clusters as opposed to the commonly used scoring functions. The AQ-10 Adult, AQ-10 

Adolescent, and AQ-10 Child were equally utilized in the comparative evaluation of the resulting 

models. The study findings revealed the efficacy of the clustering technique in producing classifiers 

with higher predictive accuracy, true negative, and true positive rates over other machine learning 

algorithms including Random Trees, Rule Induction, Random Forest, and Artificial Neural Network 

(ANN). The detailed literature is summarized with the help of Table 2.2. 

2.7 Advances toward Quick and Accurate Assessment of ASD Symptoms 

The search for cost-effective ASD assessment coupled with the global rise in ASD cases attracted the 

implementation of quick and accurate assessment measures based on data intelligence techniques 

including machine-learning algorithms. Despite the various attempts in ML-based ASD assessment 

using functional magnetic resonance imaging (MRI), eye tracking, and genetic data among others, the 

promising results based on behavioral data call for further research. For instance,  Plitt, Barnes, and 

Martin (2015) found that ASD classification via behavioral measures consistently surpassed rs-fMRI 

classifiers. Accordingly, in line with the common research aim of the behavioral studies, various 

dimensionality reduction techniques were employed to improve the diagnostic speed of the resulting 

ML models. However, unlike the reduced dimensions, there is enough evidence on the good reliability, 

high internal consistency, and convergent validity between the common assessment instruments within 

large samples (Becker et al., 2012; Chan et al., 2017; Chojnicka & Pisula, 2017; Falkmer et al., 2013; 

Medda et al., 2019). 

Furthermore, studies have ascertained the robustness of the common assessment instruments in the 

quantitative measurement of the various dimensions of communication, interpersonal behavior, and 

stereotypic/repetitive behavior associated with ASD. Therefore, it will be difficult to sufficiently 

measure the key dimensions of the instruments using the fewer items generated by the common 

dimensionality reduction techniques. For instance, while professionals interpret SRS scores based on 

the sum of its 65 items, Bone et al. (2016), Duda et al. (2016), and Duda et al. (2017) implemented 

SRS-enabled machine-learning models with at most 5, 5, and 15 items, respectively. Specifically, 

Duda et al. (2016) and Duda et al. (2017) focused on classifying ASD from ADHD using the SRS data 

from AC, AGRE, SSC. Duda et al. (2016) implemented ADTree, RF, SVM, LR, Categorical lasso, 

and LDA models and achieved the highest area under the curve (AUC) of 0.965 in classifying ASD 

from ADHD by utilizing five of the 65 items of SRS identified using forward feature selection. Duda 

et al. (2017) validated the findings of Duda et al. (2016) with crowdsourced data to improve the 

model’s capability on ‘real-world’ data and the findings revealed that LDA outperformed LR and SVM 

by achieving an AUC of 0.89 with 15 items. Despite the high metrics reported by the studies, based 
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on the standard clinical procedures for ASD diagnosis, the ML models are neither clinically sufficient 

nor readily implementable for real-life use. 

Similarly, Wall, Dally, et al. (2012) compared the performance of 15 different ML algorithms on 

AGRE, SSC, and AC datasets and found ADTree to outperformed other models by utilizing 7 of the 

93 items contained in the ADI-R in classifying ASD with 99.9% accuracy. In a similar study by Wall, 

Kosmicki, et al. (2012), ADTree outperformed 17 comparative models by achieving 100% accuracy 

with 8 of the 29 items in Module 1 of ADOS. Moreover, Duda et al. (2015) demonstrated the superior 

performance of ADTree in achieving 97% classification accuracy with a 72% reduction in ADOS-G 

items. Nonetheless, Levy et al. (2017) and Kosmicki et al. (2015) reduced the items of ADOS using 

sparsity/parsimony enforcing regularization and stepwise backward feature selection techniques, 

respectively and reported the superior performance of LR and SVM over other ML algorithms. 

Specifically, in the study by Levy et al. (2017), with at most 10 features from ADOS’s Module 3 and 

Module 2, AUC of 0.95 and 0.93 was achieved, respectively. While Kosmicki et al. (2015) recorded 

an accuracy of 98.27% and 97.66% with 9 of the 28 items from module 2, and 12 of the 28 items from 

module 3, respectively. Recently, Küpper et al. (2020) utilized ADOS data from a clinical sample of 

adolescents and adults with ASD and reported good performance of SVM on fewer items reduced 

using the recursive feature selection technique. The foregoing studies have demonstrated how ML-

enabled ASD screening and diagnostic models could be developed and evaluated. However, numerous 

challenges associated with the behavioral assessment instruments, data repositories, and applied data 

intelligence algorithms need to be understood and addressed. 

Although ML-based approaches are data-centric and are expected to improve objectivity and 

automation (Achenie et al., 2019), with the global rise in ASD cases, the capacity to quickly and 

accurately assess ASD requires a careful understanding of the conceptual basis of the assessment 

instruments, as well as their relevance to the logical concepts of the ML algorithms. Nonetheless, 

discrepancies within the data repositories such as data imbalance limit the clinical relevance of the 

high evaluation metrics reported in the studies (Abdelhamid et al., 2020; Alahmari, 2020). For 

instance, Torres et al. (2020) studied the statistical properties of ADOS scores from 1324 records and 

identified various factors that could undermine the scientific viability of the scores. Particularly, the 

empirical distributions in the generated scores break the theoretical conditions of normality and 

homogeneous variance, which are critical for independence between bias and sensitivity. Thus, Torres 

et al. (2020) suggested readjusting the scientific use of ADOS due to the variation in the distribution 

of the scores, lack of appropriate metrics for characterizing changes, and the impact of both on 

sensitivity-bias codependencies and longitudinal tracking of ASD. 
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In essence, the applied data intelligence algorithms, and the resulting models, missed the human 

knowledge upon which the assessment instruments were built and applied by the professionals 

(Thabtah, 2018). Additionally, most of the studies overlooked the inherent limitations associated with 

the dimensionality reduction techniques, and the assessment instruments (Guthrie et al., 2019; Øien et 

al., 2018; Surén et al., 2019). Thus, the need for ascertaining the clinical relevance of the data-centric 

approaches and readjusting the scientific use of the assessment instruments remains. Obviously, in the 

future, it can be said that the trend in the application of ML in the behavioral assessment of ASD will 

go on. On the other hand, the pressing demands for cost-effective assessment of ASD remain. Thus, 

future studies need to revisit the relevance of the data collection instruments to ML algorithms. 

Conclusively, machine learning has been broadly applied in the behavioral assessment of ASD based 

on a variety of data types as input to data-intelligence algorithms. Commonly utilized inputs include 

the items of screening tools such as ADI-R and ADOS-G. Popular ML algorithms used are SVMs, 

variants of the decision trees, random forests, and neural networks. However, the multitudes of 

challenges in accurate ASD assessments are yet to be addressed by the suggested machine learning 

approaches. Specifically, the high metrics achieved with the data-intelligence techniques have not 

guaranteed the clinical relevance of the ML models. Additionally, the commonly used evaluation 

measures of classification accuracy, specificity, and sensitivity among others cannot sufficiently reflect 

the human knowledge applied by professionals in assessing behavioral symptoms of ASD. 

Consequently, understanding the clinical basis of the assessment tools and the logical concepts of the 

data-intelligence techniques will lead to promising studies on the real-life implementation of cost-

effective ASD assessment systems. 

The novelty in the present study is that while previous literature reviews focused on the performance 

of various data intelligent techniques on different data sets, this study systematically reviewed the 

literature and provide a definitive explanation on the relevance of the reported findings toward the 

real-life implementation of the ML-based assessment systems. The findings of this systematic 

literature review serve as my guide in identifying the research gap and novelty of my novel approach 

and will hopefully guide researchers, caregivers, and relevant stakeholders on the advances in ASD 

assessment with ML. Nonetheless, a few of the limitations associated with the present systematic 

literature review include overlooking other non-English documents. Thus, possible excellent studies 

reported in other languages might have been missed. Secondly, the search filters spanned ten years and 

were limited to the four scientific databases mentioned. Furthermore, the records retrieved relied on 

the few search terms utilized in the search query. Therefore, relaxing the search filters across additional 

databases could yield additional relevant studies. Lastly, the present study considered only full-text 
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online journal articles. Consequently, the findings are limited to the studies included. Future research 

agenda could relax the search criteria to incorporate other scholastic databases for further comparative 

results. Besides, future studies could relax the search filters to include books, conference papers, and 

so on. 

2.8 Research Novelty 

None of the previous studies aimed at preserving the clinical validity of the assessment instruments 

while benefitting from the precision of the machine learning algorithms. Specifically, unlike the 

common feature selection approaches, in the present study, none of the items is discarded, instead, 

each item serves as an integral part in generating the input dimensions. Noteworthy, to build on or 

replicate the reviewed studies, the present study explored novel data-intelligence techniques that will 

achieve not only excellent evaluation metrics but also adhere to the conceptual basis upon which 

professionals diagnose ASD. 
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Table 2.2: Information Extracted from the Articles 

Article/ 

Citations 
Aim Tool Data Source FS/FT FS/FT Method Modeling Algorithms Key Findings 

Goel et al. 

(2020) 

C = 10 

Proposed 

Optimization 

Algorithm for 

improved 

performance over 

common ML 

AQ-10 

(child, 

adolescent, 

adult) 

ASDTest - - GOA, BACO, LR, NB, 

KNN, RF-CART + ID3, 

*MGOA 

The proposed MGOA (GOA with Random 

Forest classifier) predicted ASD cases with 

approximate accuracy, specificity, and 

sensitivity of 100%. 

Shahamiri 

& Thabtah 

(2020) 

C = 0 

Implementation and 

evaluation of CNN-

based ASD scoring 

system 

Q-CHAT-

10, AQ-10 

ASDTest - - C4.5, Bayes Net, 

RIDOR, *CNN 

The performance evaluation showed the 

superior performance of CNN over other 

algorithms; indicating the robustness of the 

implemented system. 

Thabtah & 

Peebles 

(2020) 

C = 28 

Demonstrate the 

superiority of Rules-

based ML over other 

models 

Q-CHAT-

10, AQ-10 

(child, 

Adolescent, 

adult) 

ASDTest - - RIPPER, RIDOR, Nnge, 

Bagging, CART, C4.5, 

and PRISM, *RML 

Empirically evaluated rule induction, 

Bagging, Boosting, and decision trees 

algorithms on different ASD datasets. The 

superiority of the RML model was reported 

in not only classifying ASD but also offer 

rules that can be utilized in understanding 

the reasons behind the classification. 
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Wall, Dally, 

et al. (2012) 

C = 106 

Streamlining ADR-I 

and evaluate ML 

performance 

ADI-R AGRE, SSC, 

AC 

FS Trial-error *ADTree, BFTree, 

ConjunctiveRule, 

DecisionStump, 

FilteredClassifier, J48, 

J48graft, JRip, 

LADTree, NNge, OneR, 

OrdinalClassClassifier, 

PART, Ridor, and 

SimpleCart 

The best model utilized 7 of the 93 items 

contained in the ADI-R in classifying ASD 

with 99.9% accuracy. 

Duda et al. 

(2015) 

C = 50 

Streamlining ADOS 

and demonstrate the 

superior performance 

of ADTree over 

common hand-crafted 

methods 

ADOS AC, AGRE, 

SSC, NDAR, 

SVIP 

FS Trial-error ADTree 72% reduction in the items from ADOS-G 

with >97% accuracy. 

Küpper et 

al. (2020) 

C = 2 

Streamlining ADOS 

and demonstrate the 

performance of SVM 

ADOS ASD 

outpatient 

clinics in 

Germany 

FS Recursive Feature 

Selection 

SVM SVM achieved good sensitivity and 

specificity with fewer ADOS items 

pointing to 5 behavioral features. 
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Wall, 

Kosmicki, 

et al. (2012) 

C = 160 

Streamlining ADOS 

and evaluate ML 

performance 

ADOS AC, AGRE, 

SSC 

FS Trial-error *ADTree, BFTree, 

Decision Stump, 

Functional Tree, J48, 

J48graft, Jrip, LADTree, 

LMT, Nnge, OneR, 

PART, Random Tree, 

REPTree, Ridor, Simple 

Cart 

The ADTree model utilized 8 of the 29 

items in Module 1 of the ADOS and 

classified ASD with 100% accuracy. 

Levy et al. 

(2017) 

C = 21 

Streamlining ADOS 

and evaluate ML 

performance 

ADOS AC, AGRE, 

SSC, SVIP 

FS Sparsity/parsimony 

enforcing 

regularization 

techniques 

LR, Lasso, Ridge, 

Elastic net, Relaxed 

Lasso, Nearest shrunken 

centroids, LDA, *LR, 

*SVM, ADTree, RF, 

Gradient boosting, 

AdaBoost 

With at most 10 features from ADOS’s 

Module 3 and Module 2 AUC of 0.95 and 

0.93 was achieved, respectively. 

Kosmicki et 

al. (2015) 

C = 84 

Streamlining ADOS 

and evaluate ML 

performance 

ADOS AC, AGRE, 

SSC, NDAR, 

SVIP 

FS Stepwise 

Backward Feature 

Selection 

ADTree, *SVM, 

Logistic Model Tree, 

*LR, NB, NBTree, RF 

The best performing models have utilized 9 

of the 28 items from module 2, and 12 of 

the 28 items from module 3 in classifying 

ASD with 98.27% and 97.66% accuracy, 

respectively. 
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Thabtah 

(2019) 

C = 31 

Propose ASDTest; 

AQ-based mobile 

screening app, 

streamline AQ-10 

items and evaluate the 

performance of 2 ML 

models 

AQ-10 

(child, 

adolescent, 

adult) 

ASDTest FS Trial-error NB, *LR Feature and predictive analyses 

demonstrate small groups of autistic traits 

improving the efficiency and accuracy of 

screening processes. 

Thabtah et 

al. (2018) 

C = 47 

Demonstrate the 

superiority of Va over 

other FS methods 

based on the 

performance of ML 

models on the 

streamlined datasets 

Q-CHAT-

10, and 

AQ-10 

(child, 

adolescent, 

adult) 

ASDTest FS Va, IG, 

Correlation, CFS, 

and CHI 

Repeated Incremental 

Pruning to Produce 

Error Reduction 

(RIPPER), C4.5 

(Decision Tree) 

Va derived fewer features from adults, 

adolescents, and children datasets with 

optimal model performance. Demonstrate 

the efficacy of Va over IG, Correlation, 

CFS, and CHI in reducing AQ-10 items 

Thabtah et 

al. (2019) 

C = 13 

Streamlining AQ-10 

and demonstrate the 

superior performance 

of LR over common 

hand-crafted methods 

AQ-10 

(adolescent, 

adult) 

ASDTest FS IG, CHI LR LR showed acceptable performance in 

terms of sensitivity, specificity, and 

accuracy among others. 
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Suresh 

Kumar & 

Renugadevi

(2019) 

C = 0 

Algorithm 

Optimization 

(improvement in 

accuracy compared to 

common ML) 

AQ-10 

(child, 

adolescent, 

adult) 

ASDTest FS SFS SVM, ANN, *DE SVM, 

DE ANN 

DE optimized SVM outperformed ANN 

and DE optimized ANN in classifying 

ASD. DE is effective. 

Pratama et 

al. (2019) 

C = 0 

Input Optimization 

using Va 

AQ-10 

(child, 

adolescent, 

adult) 

ASDTest FS Va SVM, *RF, ANN RF succeeded in producing higher adult AQ 

sensitivity (87.89%) and a rise in the 

specificity level of AQ-Adolescents was 

better produced using SVM (86.33%). 

Usta et al. 

(2019) 

C = 9 

ML Performance 

Evaluation 

Autism 

Behavior 

Checklist, 

Aberrant 

Behavior 

Checklist, 

Clinical 

Global 

Impression 

Ondokuz 

Mayis 

University 

Samsun 

FS Trial-error NB, LR, *ADTree The ML modeling revealed the significant 

influence of other demographic parameters 

in ASD classification. 
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Wingfield et 

al. (2020) 

C = 3 

Propose PASS; a 

culturally sensitive 

app embedded with 

ML model 

PASS VPASS app FS CFS, mRMR *RF, NB, Adaboost, 

Multilayer Perceptron, 

J48, PART, SMO 

PASS app overcomes the cultural variation 

in interpreting ASD symptoms and the 

study demonstrated the possibility of 

removing feature redundancy. 

Duda et al. 

(2016) 

C = 89 

ML Performance 

Evaluation in 

classifying ASD from 

ADHD 

SRS AC, AGRE, 

SSC 

FS Forward Feature 

Selection 

ADTree, RF, SVM, LR, 

Categorical lasso, LDA 

All the models could classify ASD from 

ADHD by utilizing 5 of the 65 items of 

SRS with high average accuracy (AUC = 

0.965). 

Duda et al. 

(2017) 

C = 25 

Improve models’ 

reliability using 

expanded datasets for 

classifying ASD from  

ADHD 

SRS AC, AGRE, 

SSC, & 

crowdsourced 

data 

FS - SVM, LR, *LDA LDA model achieved an AUC of 0.89 with 

15 items. 

Bone et al. 

(2016) 

C = 77 

Demonstrate the 

improved accuracy of 

SVM over common 

hand-crafted rules 

ADI-R, 

SRS 

Balanced 

Independent 

Dataset 

FT Tuned parameters 

across multiple 

levels of cross-

validation 

SVM The SVM model utilized 5 of the fused 

ADI-R & SRS items and classified ASD 

sufficiently with below (above) 89.2% 

(86.7%) sensitivity and 59.0% (53.4%) 

specificity. 
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Puerto et al. 

(2019) 

C = 17 

Propose MFCM-ASD 

and evaluate its 

performance against 

other ML models 

ADOS, 

ADI-R 

APADA FT Inputs 

fuzzification 

*MFCM-ASD, SVM, 

Random forest, NB 

The superior performance of MFCM 

characterized by its robustness makes it an 

effective ASD diagnostic technique. 

Akter et al. 

(2019) 

C = 6 

Compare FT methods 

and evaluate the 

performance of ML 

models on the 

transformed datasets 

Q-CHAT-

10, and 

AQ-10 

(child, 

adolescent, 

adult) 

ASDTest FT Log, Z-score, and 

Sine FT 

Adaboost, FDA, C5.0, 

LDA, MDA, PDA, 

SVM, and CART 

Varying superior performances of the ML 

models and FT approaches were achieved 

across the datasets. 

Baadel et al. 

(2020) 

C = 2 

Input Optimization 

using a clustering 

approach 

AQ-10 

(child, 

adolescent, 

adult) 

ASDTest FT CATC OMCOKE, RIPPER, 

PART, *RF, RT, ANN 

CATC showed significant improvement in 

screening ASD based on traits’ similarity as 

opposed to scoring functions. The 

improvement was more pronounced with 

RF classifier. 

ASD: Autism Spectrum Disorder. FS: Feature Selection. FT: Feature Transformation. ML: Machine Learning. ANN: Artificial Neural Network. SVM: Support Vector Machine. 

CNN: Convolutional Neural Network. RF: Random Forest. LR: Logistic Regression. ADTree: Alternative Decision Tree. LDA: Linear Discriminant Analysis. MGOA: 

Modified Grasshopper Optimization Algorithm. BACO: Binary Ant Colony Optimization. NB: Naïve Bayes. KNN: K-Nearest Neighbor. RIPPER: Repeated Incremental 

Pruning to Produce Error Reduction. ADOS: Autism Diagnostic Observation Schedule. ADI-R: Autism Diagnostic Interview-Revised. Q-CHAT: Quantitative Checklist for 

Autism Toddlers. AQ: Autism Quotient. SRS: Social Responsiveness Scale. PASS: Pictorial Autism Assessment Schedule. AC: Boston Autism Consortium. AGRE: Autism 

Genetic Resource Exchange. SSC: Simons Simplex Collection. NDAR: National Database for Autism Research. SVIP: Simons Variation In Individuals Project. APADA: 

Association of Parents and Friends for the Support and Defense of the rights of people with Autism. MFCM: Multilayer Fuzzy Cognitive Maps. CATC: Clustering-based 

Autistic Trait Classification. * Best performing models. 
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CHAPTER 3 

THEORETICAL FRAMEWORK 

This chapter provides explanations on the theoretical basis of the key elements that aid the 

promising approach of diagnosing ASD using machine-learning models. This research endeavor 

comprises expertise in computer science, data science and neurodevelopmental psychiatry. 

Specifically, the present chapter will aid understanding of the key concepts upon which this study 

was carried out including the conceptual understanding of the ASD screening and diagnostic 

instruments, the machine-learning algorithms as well as the evaluation metrics. 

 

3.1 ICT-based ASD Screening 

Reliable diagnosis qualifies patients to access public services available for ASD. However, current 

diagnostic practices are prone to numerous challenges that warrant extensive research. Information 

and communication technologies (ICTs) play a significant role in ASD research and intervention 

including different means of curving the inherent drawbacks associated with ASD screening and 

diagnosis. Figure 3.13.1 highlighted the various roles of ICTs in ASD research and intervention. 

However, the proliferation of simple platforms for end-user app development coupled with the 

pressing need for quick ASD assessment tools makes it easy to find numerous apps for ASD tests, 

though not necessarily reliable. Thus, there is an urgent need for reliable ASD screening apps 

embedded with genuine instruments and effective scoring algorithms. This study reviewed the 

functional and non-functional features of the existing ASD screening apps and demonstrates a 

concise procedure for implementing reliable apps. 
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Figure 3.1: Role of ICTs in ASD research and intervention summarized base on the literature 

 

Mobile platforms are the commonly used ICTs in the health sector, education, entertainment, and 

so on. Consequently, in this study, we reviewed the functional and non-functional features of the 

existing mobile apps for ASD screening. Table 3.1 highlighted the existing mobile apps meant for 

ASD screening and their features. However, a reliable mobile app for ASD screening must embed 

reliable instruments, implement an effective scoring algorithm, and maintain usability. 

Furthermore, even with the right instrument embedded, an effective and reliable ASD screening 

app must be robust in predicting concisely whether the basic conditions for “at-risk” of ASD are 

meet (i.e. a deficit in social communication and the presence of restrictive and repetitive patterns 

of behavior).  
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Table 3.1: Analysis of common mobile apps for ASD screening 

 

The apps depicted in  

Author & 

Year 
App Name Media Research 

Platform Target Group 

Items 

Android iOS Children Adults 

Thabtah 

(2019) 
ASDTests Questionnaire √ √ × √ √ 10 

Cambodia 

(2019) 
Autism Test Questionnaire × √ × √ √ 13 

Consurgo 

(2015) 
Autism Test Questionnaire × √ × × × 20 

Patra and 

Arun (2011) 
ISAA Questionnaire × √ √ × × 40 

Tollet 

(2019) 
AQ-10 Test Questionnaire × √ × × × 10 

Xie (2019) CHAT-23 Scale Questionnaire × × √ √ × 23 

La Trobe 

(2017) 
ASDetect Video × √  √ × NA 

Nazneen et 

al. (2015) 
NODA Video √ √ √ √ × NA 

Egger et al. 

(2018) 
AaB Video √ × √ √ √ NA 

This study  Questionnaire √ - - √ - <30 
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Table 3.13.1 utilized various handcrafted rules in quantifying the symptoms of ASD. However, 

designing the handcrafted rules to compute the scores of the screening instrument requires 

extensive human experience and knowledge. Replacing the handcrafted rules with a data-driven 

machine learning approach seems advantageous. Unlike the handcrafted rules, machine-learning 

approaches are objective and bound to improve classification efficiency, predictive accuracy, 

specificity, as well as sensitivity. Thus, embedding ML-based classifiers into the mobile screening 

apps can offer an automatic classification of ASD at homes, schools, and clinics where clinicians 

could verify the screening results against their experience and knowledge. 

Author & 

Year 
App Name Media Research 

Platform Target Group 

Items 

Android iOS Children Adults 

Thabtah 

(2019) 
ASDTests Questionnaire √ √ × √ √ 10 

Cambodia 

(2019) 
Autism Test Questionnaire × √ × √ √ 13 

Consurgo 

(2015) 
Autism Test Questionnaire × √ × × × 20 

Patra and 

Arun (2011) 
ISAA Questionnaire × √ √ × × 40 

Tollet 

(2019) 
AQ-10 Test Questionnaire × √ × × × 10 

Xie (2019) CHAT-23 Scale Questionnaire × × √ √ × 23 

La Trobe 

(2017) 
ASDetect Video × √  √ × NA 

Nazneen et 

al. (2015) 
NODA Video √ √ √ √ × NA 

Egger et al. 

(2018) 
AaB Video √ × √ √ √ NA 

This study  Questionnaire √ - - √ - <30 
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Although there is no reported evidence on the clinical application of the machine-learning models, 

recent studies have investigated the applicability of ML in improving the classification time of an 

ASD diagnosis as well as detecting the most influential items from the commonly used diagnostic 

instruments. Machine learning is a promising research endeavor that brought researchers from 

computer science, statistics, biology, and other arts and applied sciences intending to mimic the 

human brain in the discovery of hidden knowledge from unseen datasets. ML techniques, such as 

SVM, decision trees, neural network, and their ensembles, do not solely depend on users in the 

classification processes or model training. Detail on the application of machine learning in ASD 

studies will be revisited in the subsequent sections. 

 

3.2 Current ASD Screening Practices 

Instances of ASD are rapidly increasing. For instance, in the United State, the prevalence of the 

disorder reached 1 in every 68 children with developmental delays in terms of communication, 

socialization and repetitive behavioral patterns. While globally the prevalence of ASD is estimated 

at 1.5% of the entire world population. Furthermore, the current clinical diagnostic process is 

tedious, time-inefficient, for instance the average delay for clinical diagnosis is 3 years in UK and 

the commonly used diagnostic instruments such as ADI and ADOS contain numerous items. 

Consequent to that, many ASD cases remain undetected around the world. To alleviate these 

challenges, neuropsychiatrists, behavioral scientists and relevant researchers proposed several 

home-administered screening tools for preliminary assessment of people at risk of ASD. 

Exemplary ASD screening instruments included the ADI-R, AQ and SRS among others as 

explained with the help of Table 3.23.2. In essence, ASD screening questionnaires provide a quick 

and vital threshold to diagnostic procedures. Unfortunately, universal guidelines have identified 

that no questionnaire-based tool can accurately diagnose ASD (Penner et al., 2018). Therefore, the 

current screening practices involve asking caregivers to complete a paper-based questionnaire 

about a child’s behavior and if the caregiver indicates a certain number of symptoms, the trained 

professional refers the child for a clinical assessment. In other words, the responses determine if 

the child is “at-risk” of ASD and needs to be referred for clinical assessments or semi-standardized 

behavioral tasks that will diagnose ASD symptoms and their severity. However, current screening 

practices share similar drawbacks with diagnostic practices such as limited awareness and 
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inaccessibility to reliable screening tools, inconsistent application as well as subjective 

interpretations across professionals (Bartolotta & Rizzolo, 2019; Murphy et al., 2016; Ruparelia 

et al., 2016). 

Table 3.2: Common ASD screening instruments 

Instrument Description 

Checklist for Autism in Toddlers (CHAT) Established in the 1990s and proposed for screening 

toddlers at 18 months  

Modified-CHAT It is an enhanced CHAT to provide a comprehensive parent-

report questionnaire 

M-CHAT-Revised/Follow-up It is the most updated version of CHAT established in 2014 

to reduce the number of false positives 

Social Communication Questionnaire (SCQ) SCQ is a 40-item, true/false questionnaire. It parallels the 

ADI-R in content and is used for brief screening to 

determine the need to conduct a full ADI-R interview 

Autism Quotient (AQ) – Children It is a parent-report questionnaire for quantifying ASD 

symptoms in children of 4-11 years 

Autism Quotient (AQ) – Adolescents Adapted version to situate adolescents (age 9.8–15.4 years) 

on the ASD continuum from autism to normality 

Autism Quotient (AQ) – Adults Developed to quantify symptoms of ASD in Adults 

Infant Toddler Checklist (ITC) 24-item parent questionnaire rated on a 3 point Likert scale 

aimed for toddlers within 6-24 months 

Systematic Observation of Red Flags It provides an observational screening measure for toddlers 

within 16-24-months 

Test of Nonverbal Intelligence Multiple versions of a multi-dimensional questionnaire for 

estimating the intelligence of neurologically impaired 

individuals. Studies adapted it in ASD screening. 
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3.3 Common Problems with Current ASD Screening and Diagnostic Practices 

The absence of medical tests for ASD and limited professionals made questionnaires and 

structured interviews the common standards for ASD screening and diagnosis. Furthermore, 

existing screening and diagnostics procedures are not cost-effective; they are subjective and bound 

to inconsistent interpretations across professionals. In the rigorous diagnostics procedures, 

individuals need to be observed under a variety of activities. However, the limited time and 

constrained clinical environment will not favor an actual assessment of challenging ASD 

symptoms and lead to insufficient elicitation of information. Several studies suggested ICT-based 

ASD screenings to address the persisting problems associated with the long period of diagnosis 

and waiting, inconsistent measurement, as well as inadequate practitioners (Campbell et al., 2017; 

Duda et al., 2016; Levy et al., 2017; Rudra et al., 2014; Ruparelia et al., 2016; Thabtah & Peebles, 

2019; Ward et al., 2018). 

There exist another stem of challenges, despite the overreliance on the current assessment 

instruments for early diagnosis of ASD which leads to improved outcomes in communication and 

social interaction and guides parents to the right interventions in school, home, and clinic (Case-

Smith et al., 2015; Durkin et al., 2015; Matson & Konst, 2014). Thus, the need for cost-effective 

assessments coupled with the global rise in ASD cases necessitates extensive research. This is 

because the current clinical assessment of ASD is not cost-effective; studies have shown that the 

cost of identifying one child with ASD in universal screening settings is about 700,000 USD (Yuen 

et al., 2018). Additionally, the assessment instruments perform poorly (Guthrie et al., 2019; Øien 

et al., 2018; Surén et al., 2019); there is a high number of false negatives and false positives. The 

tradeoff was to create a tool that reduced false positives (such as the M-CHAT R) and implement 

robust scoring methods. However, the tradeoff leads to more false-negative cases. 

 

3.4 Commonly used Datasets for AI-Based Behavioral Assessment of ASD 

Studies on the application of machine learning in the behavioral assessment of autism spectrum 

disorder have utilized numerous datasets in evaluating the models’ performances as well as 

optimizing the items used in the data collection. Specifically, some of the popular datasets 

employed include Boston Autism Consortium (AC), Autism Genetic Resource Exchange (AGRE), 

Simons Simplex Collection (SSC) (Duda et al., 2017, 2015, 2016; Kosmicki et al., 2015; Levy et 
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al., 2017; Wall, Dally, et al., 2012; Wall, Kosmicki, et al., 2012), National Database for Autism 

Research (NDAR) (Duda et al., 2015; Kosmicki et al., 2015) and Simons Variation In Individuals 

Project (SVIP) (Duda et al., 2015; Kosmicki et al., 2015; Levy et al., 2017). Other studies utilized 

data sets from ASDTest: Kaggle and UCI ML repository (Akter et al., 2019; Baadel et al., 2020; 

Goel et al., 2020; Pratama et al., 2019; Shahamiri & Thabtah, 2020; Suresh Kumar & Renugadevi, 

2019; Thabtah, 2019; Thabtah et al., 2019, 2018; Thabtah & Peebles, 2020), Association of Parents 

and Friends for the Support and Defense of the rights of people with Autism (APADA) (Puerto et 

al., 2019), PASS app (Wingfield et al., 2020), Ondokuz Mayis University Samsun (Usta et al., 

2019) and ASD outpatient clinics in Germany (Küpper et al., 2020). To achieve standardized 

comparative results, there is a need for standardized ASD data repositories for machine learning 

studies (Thabtah, 2018). However, discrepancies within the data repositories such as data 

imbalance limit the reliability of the high evaluation metrics reported in the studies (Abdelhamid 

et al., 2020; Alahmari, 2020). For instance, Torres et al. (2020) studied the statistical properties of 

ADOS scores from 1324 records and identified various factors that could undermine the scientific 

viability of the scores. Particularly, the empirical distributions in the generated scores violate the 

theoretical requirements of normality and homogeneous variance, which are essential for 

independence between bias and sensitivity. Thus, they suggested readjusting the scientific use of 

ADOS due to the variation in the distribution and dispersion of the scores, the lack of proper 

metrics to define similarity measures to characterize change, and the impact that these elements 

have on sensitivity-bias codependencies and longitudinal tracking of ASD. 

 

3.5 Dimensionality Reduction 

Dimensionality reduction techniques are processes applied in reducing the number of input 

features, columns, or variables from a given dataset. Most often, the complexity of the data 

modeling task depends on the number of input parameters in the various cases. Studies employ 

various dimensionality reduction techniques to mitigate the difficulty of data visualization and 

predictions for the training dataset. Specifically, previous ML studies on ASD classification 

problems have utilized various dimensionality reduction techniques for obtaining the most relevant 

features and better predictive models. 
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The key to reducing ASD diagnostic delays entails optimizing items of the screening instrument 

as well as improving their accessibility across clinicians and carers. Furthermore, accessible 

screening instruments will provide better understanding to parents on the status of their children 

and the needed services and appropriate early treatments that could mitigate the challenges 

associated with the disorder. However, as stated earlier, the bulk of items in most of the current 

screening instruments are tedious to administer especially for parents and other unprofessional 

administrators. Accordingly, researchers have been criticizing the existing screening instruments 

as time-inefficient. Consequently, recent studies employed various dimensionality reduction 

techniques to summarize the items of the screening instruments. However, studies have cautioned 

the applicability of the commonly used dimensionality reduction techniques without a careful 

understanding of the veracity of the selected or transformed features. 

Researchers ought to understand the applicability, pros, and cons of the commonly used feature 

selection and transformation techniques. Feature selection techniques automate the manual process 

of extracting the most influential parameters in static datasets across various applications (Alhaj 

et al., 2016; Roobaert et al., 2006). However, there is little or no evidence that could justify the 

conformity of the feature selection methods with the conceptual basis upon which professionals 

built and utilize ASD diagnostic instruments. 

Furthermore, unlike other medical diagnoses, the absence of definitive measures and medical tests 

for diagnosing ASD makes it difficult to numerically quantify the disorder based on few 

parameters. Notably, accurate assessment of ASD relied on the precise application of the 

commonly used behavioral scales built based on the knowledge and expertise of the professionals. 

Thus, application of the human knowledge is imperative to reliable ASD diagnosis. Based on that, 

there is a need for quantifying the trade-offs of dimensionality reduction (ensuring fewer items for 

quick assessment) and validity (preservation of the human knowledge for correct diagnosis). 

Specifically, a machine-learning model built based on fewer behavioral features that do not 

sufficiently capture the human knowledge of the assessment instrument, will not be valid for 

clinical use. Thus, there is a need for applying dimensionality reduction techniques that 

professionals could be tracked on its ability to preserve the validity of the assessment instruments. 

Similarly, the commonly used feature transformation techniques are reported to support the 

learning process of the common machine learning algorithms utilized in previous ASD studies. 
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Feature transformation techniques such as Log, Zscore, and Sine functions normalize data by 

converting excessively skewed entities into a normal distribution, converting features into -1 to 1 

value range, and transforming instances to the sine 0-2π value intervals, respectively. However, 

studies have demonstrated how these transformation techniques could significantly compromise 

the relevance of the original data to the transformed data (Curtis et al., 2016; Feng et al., 2014; 

Lapteacru, 2016; Wiesen, 2006). Thus, researchers must be mindful of how these transformations 

could undermine the clinical validity of the resulting ML-based ASD screening and diagnostic 

models. For instance, Feng et al. (2014) demonstrated such irrelevancies between the statistical 

findings of standard tests performed on original and log-transformed data. Similarly, several 

studies have highlighted some of the pitfalls and inconsistencies in the application of Z-scores and 

how its concepts overlooked the meaning of the original data, as well as its vital statistics (Curtis 

et al., 2016; Lapteacru, 2016; Wiesen, 2006). In essence, the applicability of dimensionality 

reduction techniques must align with the conceptual basis of ASD screening and diagnosis. 

 

3.6 Classification Algorithms 

The common practice of identifying people at-risk of ASD was based on observable behavioural 

traits quantified in terms of questionnaire items (Cavus et al., 2021; Thabtah, 2018). The 

quantification of the ASD traits rely on handcrafted arithmetic rules that lead to either of the two 

screening outcomes; ASD and non-ASD. Thus, the reliability of these screening outcomes depend 

on the items used, expertise of the administrator as well as the scoring rules. Both designing and 

administering tasks involves application of experience and extensive human-knowledge. In 

response to the dependencies on human-knowledge, studies demonstrated the value of deriving 

automatic models based on retrospective ASD data and controls (Achenie et al., 2019; Cavus et 

al., 2021; Moon et al., 2019). Such automated models are data-centric and are believed to improve 

the objectivity in scoring ASD symptoms. Accordingly, the commonly used data-modelling 

techniques include machine learning (ML). However, neither clinicians nor parents can easily 

verify the usefulness of the data-centric models. Recently, researchers on the application of ML in 

ASD assessment have demonstrated the improved accuracy of the data-centric models and their 

efficacy toward achieving time-efficient and cost-effective screening of ASD cases (Moon et al., 

2019; Thabtah, 2019; Thabtah & Peebles, 2020; Zhang et al., 2020). The field of machine learning 
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encompasses knowledge of computer science, statistics and data science among others. 

Furthermore, the human-independent machine-learning techniques includes SVM, decision trees, 

neural network, and their hybrids. 

Behavioral assessment of ASD is primarily a classification problem. This is because; the learning 

objective of the machine learning models is to provide accurate classification between ASD and 

non-ASD cases. Worthy of noting, classification is the process of training and testing a machine-

learning model to automate two-directional (binary classification problem) or more directional 

(multi-class classification problem) discrete decision processes based on certain input parameters. 

For instance, the binary classification model can differentiate between ASD and no-ASD cases, 

while a multi-class classification model can be trained to differentiate between the multiple ASD 

constellations based on certain behavioral input parameters. Commonly used classification 

algorithms employed in the behavioral assessment of ASD include Random Forest (RF) (Baadel 

et al., 2020; Goel et al., 2020; Pratama et al., 2019; Wingfield et al., 2020), Support Vector 

Machines (SVM) (Bone et al., 2016; Kosmicki et al., 2015; Küpper et al., 2020; Levy et al., 2017; 

Suresh Kumar & Renugadevi, 2019), Alternative Decision Tree (ADTree) (Duda et al., 2015; Usta 

et al., 2019; Wall, Dally, et al., 2012; Wall, Kosmicki, et al., 2012), and Logistic Regression (LR) 

(Kosmicki et al., 2015; Thabtah, 2019; Thabtah et al., 2019). To achieve comparative results, most 

of the studies employed several algorithms such as Adaboost, Multilayer Perceptron, Artificial 

Neural Network (ANN), Linear Discriminant Analysis (LDA), Naïve Bayes, and K-Nearest 

Neighbor (KNN). 

 

3.7 Model Selection 

One of the most difficult decisions is on choosing the best models for a particular dataset. This is 

because with numerous supervised and unsupervised classification algorithms one must have 

enough understanding of the data at hand as well as the conceptual understanding of the 

classification algorithms to deliver a generalizable model (Jadhav & Channe, 2016; Navada et al., 

2011; Wang et al., 2010). Furthermore, classification algorithms are data-centric and have different 

data processing style; as such, no single algorithm is best for every dataset (Brunner & Kim, 2016; 

Wang, Qin, Jin, & Zhang, 2010). However, in both classification and regression problems, by 

following simple data visualization techniques and some theoretical understandings of the data 
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processing style of the algorithms, it will be possible to recognize the most suitable algorithm for 

a particular dataset (Brunner & Kim, 2016). Visualization can be achieved with a pair plot, which 

reveal the patterns that will lead to a reduced error rate and best case in the algorithm’s complexity. 

Identifying the probable best-case complexity of an algorithm requires understanding the logical 

concept of how it works. In general, by visualizing the data and understanding the working style 

of the algorithms, it will be easy to select the most appropriate machine-learning algorithm for a 

specific problem. In essence, with clearly defined input and target parameters, the choice will be 

from the pool of supervised machine-learning algorithm. Otherwise, unsupervised learning 

algorithms are preferred when the target parameters are not defined and the aim is on grouping the 

data points. Classification or regression approach can be considered when the target parameter is 

discrete or continuous, respectively. 

The problem at hand, ASD and no-ASD assessment is a binary classification problem. As stated 

earlier, for the data-centric approach, selecting the best machine-learning algorithm that will suit 

the dataset requires a conceptual understanding of how the algorithms work and analyzing the data 

using data-visualization techniques (Thabtah, 2019; Thabtah et al., 2018; Wingfield et al., 2020). 

This is because each of the algorithms has its advantages and disadvantages (Achenie et al., 2019; 

Baadel et al., 2020; Poyarkov et al., 2016; Thabtah et al., 2019). The present study included 

multiple algorithms to have more comparative results. Specifically, in each of the four data 

modeling scenarios adopted in this study at least 23 different classifiers were trained and evaluated. 

Exemplary classification algorithms included in this experimental study are multiple variants of 

decision trees, SVM, and K-Nearest Neighbor. This is more closely related to the model selection 

approach of some of the previous studies that applied trial-error, which involves repetitive data 

modeling with different machine-learning algorithms, and the model with the highest accuracy is 

considered the best. The following subsections provide a conceptual understanding of the learning 

styles of the different machine learning algorithms.  

3.7.1 Decision trees 

The decision tree is among the most popular supervised learning algorithms employed in solving 

data classification problems. It is a logical, flowchart-like structure, as shown in Figure 3.3.2 and 

Figure , which represent test on attributes using internal nodes and test outcomes or class labels 

using leaf or terminal nodes, while the uppermost node is termed as the root node. Decision trees 
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have been employed in the explicit visualization of decisions as well as decision-making processes. 

The phrase “decision tree” implies the tree-like model of decisions and its simplicity in 

understanding, visualizing and interpreting classification decisions as well as the implicit feature 

selection or variable screening that decision trees perform (Su & Zhang, 2006; Wang et al., 2010). 

Another important capability of decision trees is their ability handling both categorical and 

numerical inputs as well as multi-output problems.  

However, decision trees relatively depend on some human effort during data preparation and 

adjusting possible nonlinear relationships between parameters (Liu et al., 2020; Su & Zhang, 

2006). Additionally, decision tree algorithms create complex trees that do not provide sufficient 

generalization for the training data (Jadhav & Channe, 2016; Navada et al., 2011). This is also 

known as overfitting. Nonetheless, the high variance in decision trees is another key disadvantage 

that is usually alleviated or lowered by methods of bagging and boosting (Poyarkov et al., 2016). 

Variance lead to unstable decision trees in which small variations in the data might result in a 

completely different tree being generated. As part of the dependence on human effort required by 

decision trees in mitigating bias from dominant classes, prior to fitting with the decision tree, 

manual balancing of datasets is recommended (Jadhav & Channe, 2016).  

Furthermore, fitting decision trees with greedy algorithms cannot guarantee optimal decision tree. 

Thus, to mitigated that multiple trees are trained with random selection and replacement of features 

and samples. Another scenario that lead to the creation of bias trees is when there is dominance 

between the classes and multiple algorithms were used in deciding how a node should be split into 

two or more sub-nodes. Thus, the creation of the sub-nodes increases the homogeneity of results. 

In contrast, in line with the data, cases with similar traits are grouped into regions, nodes on all 

available variables are split in the decision tree and the split that results in the most homogeneous 

sub-nodes is selected. In the present study, multiple variants of the decision tree learner were 

utilized in the data modeling as can be seen in the experimental settings. 
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Figure 3.2: Decision tree terminologies (Poyarkov et al., 2016; Su & Zhang, 2006; Wang et al., 

2010) 

 

 

 

Figure 3.3: Decision tree vs random forest (Jadhav & Channe, 2016; Poyarkov et al., 2016) 
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3.7.2 K-Nearest Neighbor 

K-Nearest Neighbor (KNN) is also among the simplest supervised ML algorithms for solving both 

regression and classification problems. KNN categorizes unseen cases based on their similarity to 

the available categories (Peterson, 2009). Similar to NB, KNN is a lazy learner algorithm. 

However, KNN is a non-parametric algorithm; meaning that it does not assume the underlying 

data. KNN is a lazy learner because it does not immediately learn during training rather the training 

dataset is just stored and when unseen data arrived new instances are classified based on their 

similarities with the stored cases (Batista & Silva, 2009; Jadhav & Channe, 2016). For instance, to 

put a new case into the required category, we start by specifying the number of neighbors, followed 

by calculating the Euclidean distance between the neighboring cases. Based on the calculated 

Euclidean distance the nearest neighbors could be categorized into their respective similar 

instances (Jiang et al., 2007; Peterson, 2009). This is further explained with the help of Figure 

3.413.4. 

 

Figure 3.41: K-nearest neighbour (Batista & Silva, 2009; Jadhav & Channe, 2016; Jiang et al., 

2007; Peterson, 2009) 

KNN Algorithm is easy to implement, effective on the large training dataset, and robust to the 

noisy training data (Batista & Silva, 2009; Jadhav & Channe, 2016; Jiang et al., 2007; Peterson, 

2009). The main limitation of KNN is the complexity in determining the best value of k as well as 
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the computation cost in calculating Euclidean distance (Batista & Silva, 2009; Ertuğrul & Tağluk, 

2017; Jiang et al., 2007; Lubis et al., 2020). 

3.7.3 Naïve Bayes 

Naïve Bayes is among the most effective as well as simplest supervised learning algorithms for 

both binary and multi-class classification problems (Rish, 2001; Webb, 2016). NB is probabilistic 

and is commonly used in text classification of multi-dimensional training datasets on Sentimental 

analysis, and spam filtration among others (Singh et al., 2019; Xu, 2018). As its name implies, 

Naïve Bayes assumes independence between the features occurrences and it is based on the Bayes 

Theorem. Thus, Naïve implies that the classification features contribute independently to the 

predictive processes. While Bayes Theorem implies the probabilistic future feature occurrence 

based on prior knowledge (Jadhav & Channe, 2016; Webb, 2016). In essence, NB classifiers are 

the family of simple “probabilistic classifiers” based on applying Bayes’ Theorem, as shown in 

the following equation, with strong (naive) independence assumptions between the futures. 

P(ASD|nASD) =
P(nASD|ASD) P(ASD)

P(nASD)
 …………………………(3.1) 

Where,  

P (ASD|nASD) is the probability of ASD occurring given evidence nASD has already occurred.  

P (nASD|ASD) is the probability of nASD occurring given evidence ASD has already occurred.  

P (ASD) is the probability of ASD occurring.  

P (nASD) is the probability of nASD occurring.  

In machine learning terminology, we can rewrite the equations as follows: 

𝑃(𝑐𝑙𝑎𝑠𝑠|𝑑𝑎𝑡𝑎) =
𝑃(𝑑𝑎𝑡𝑎|𝑐𝑙𝑎𝑠𝑠) 𝑃(𝑐𝑙𝑎𝑠𝑠)

𝑃(𝑑𝑎𝑡𝑎)
 ……………..……….(3.2) 

Or using Bayesian probability terminology as: 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝑃𝑟𝑖𝑜𝑟 ×𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 

𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒
 ……………………………………(3.3) 

However, one of the key limitations of the NB classifiers is the assumption that all features are 

unrelated or independent (Jadhav & Channe, 2016; Rish, 2001). Thus, NB classifiers cannot learn 

the possible relationships that exist between features. The three types of NB classifiers are 
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Gaussian, Multinomial and Bernoulli (Singh et al., 2019). Gaussian models assume that the 

sampled cases contain features that are normally distributed. This assumption implies that the input 

parameters are non-discrete or continuous values; which might not always be the case. 

Nevertheless, both Multinomial and Bernoulli NB classifiers assumed that the sampled cases are 

based on a multinomial distribution and both are popularly applied in document classification 

problems. In contrast, while Multinomial NB classifiers work based on the frequency of input case 

against predictor variable, Bernoulli NB classifiers treat predictor variables as independent 

Booleans variables. Both could classify to which categories such as sports, politics, education, and 

so on a document belongs. 

3.7.4 Logistic Regression 

Logistic Regression is among the commonly used supervised learning models for predicting 

categorical or discrete target variable when given a set of input variables. Despites its similarity 

with Linear Regression, Logistic Regression is mainly used in solving classification problems by 

fitting an “S” shaped logistic function (Sigmoid Function) and providing probabilistic values 

within the range of 0 and 1 (Schein & Ungar, 2007; Thabtah et al., 2019). Logistic Regression 

could be either Binomial, Multinomial or Ordinal when the targets are only two, 3 or more 

unordered or 3 or more ordered possibilities, respectively. 

3.7.5 Support Vector Machine 

SVM is among the most widely used supervised learning algorithms for both classification and 

regression problems. The learning objective of classification SVM is to create the most optimum 

decision boundary or line called a hyperplane, which segregates n-dimensional dataset into classes 

for accurate categorization of unseen cases. SVM creates a hyperplane by choosing the extreme 

data points/vectors called support vectors (Pradhan, 2012; Suthaharan, 2016; Zhou, Zhang, & 

Wang, 2016). The two major types of SVM algorithms; linear and non-linear SVMs are popularly 

applied in facial recognition, text categorization, and image classification among others. Linear 

SVM applies to data cases that can be linearly separated using a single straight line. While non-

Linear SVMs apply to cases that cannot be separated using a straight line. In non-linear SVMs, 

multiple hyperplanes are needed in separating n-dimensional space and the best decision boundary 

also known as optimal hyperplane provides the best classification of the data points (Pradhan, 

2012; Wang et al., 2010). As a data-centric technique, the dimension of the dataset determines the 
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dimension of the hyperplane. For instance, as shown in Figure 3.523.5 and Figure 3.633.6, if the 

dataset has 2 features, the best decision boundary will be a straight line, while a 2-dimensional 

hyperplane will be needed for a dataset with 3 features. SVM algorithms create hyperplanes that 

optimize the gap between the support vectors. In essence, support vectors are the cases that affect 

the position of the hyperplane and are closest to it from both dataset classes. 

 

Figure 3.52: Support Vector Machine (SVM) (Suthaharan, 2016; Zhou et al., 2016) 

 

 

 

Figure 3.63: SVM terminologies (Pradhan, 2012; Suthaharan, 2016; Zhou et al., 2016) 

The question of which algorithm is the best is usually approached with a trial-error approach by 

evaluating the performance based on different input combinations (Duda et al., 2015; Thabtah, 
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2019; Usta et al., 2019; Wall, Dally, et al., 2012; Wall, Kosmicki, et al., 2012). Trial-Error 

Approach is becoming very difficult because there are so many supervised and unsupervised 

algorithms in both classification and regression problems. Fortunately, with the help of simple data 

visualization techniques and some theoretical understanding of the algorithms, it will be easier to 

select the most appropriate machine-learning algorithm for a specific problem (Brunner & Kim, 

2016). Noteworthy, by selecting a supervised machine-learning algorithm, it means the data set 

has clearly defined input and target parameters. Otherwise, unsupervised learning algorithms are 

preferred when the target parameters are not defined and the aim is on grouping the data points. 

Furthermore, the classification or regression approach can be considered when the target parameter 

is discrete or continuous, respectively (Brunner & Kim, 2016; Jadhav & Channe, 2016). For 

instance, differentiating ASD from no-ASD cases is a binary classification problem. However, in 

selecting the best machine-learning algorithm that will suit a particular data set, conceptual 

understanding of how the algorithms work and application of data-visualization techniques are of 

paramount importance because each of the algorithms has its advantages and disadvantages. 

Although previous studies usually apply a trial-error approach (Duda et al., 2015; Usta et al., 2019; 

Wall, Dally, et al., 2012; Wall, Kosmicki, et al., 2012); which involves repetitive data modeling 

with different machine-learning algorithms and the model with the highest accuracy is considered 

the best, data visualization can be achieved with a pair plot. Pair plots will reveal the patterns that 

will lead to a reduced error rate and best case in the algorithm’s complexity. Thus, identifying the 

probable best-case complexity of an algorithm requires understanding the pair plots concerning 

the logical concept of how the algorithm works. 

 

3.8 Confusion Matrix 

The confusion matrix is a cross-tabulation employed in depicting the basic parameters based on 

which predictive performance of the classification model can be obtained (Luque et al., 2019; 

Susmaga, 2004; Tharwat, 2020). The performance of every classification model could be inferred 

based on how much it categorize cases correctly or conduct misplacements. As shown in  

Table 3.3, case categorization could fall under any of the following basic classification 

performance metrics; True Negative, True Positive, False Negative, or False Positive. 
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Table 3.3: Confusion matrix 

 Predicted class POSITIVE 

(“at-risk” of ASD) 

Predicted class NEGATIVE 

(control group) 

Actual class POSITIVE 

(“at-risk” of ASD) 

TRUE POSITIVES (TP) FALSE NEGATIVES (FN) 

Actual class NEGATIVE 

(control group) 

FALSE POSITIVES (FP) TRUE NEGATIVES (TN) 

 

Where, 

TP is the number of patients already diagnosed with ASD and the screening instrument 

classified them as ASD positive. 

FP is the number of patients that are truly non-autistic (i.e. belonging to the control group) 

but the screening instrument classified them as ASD positive. FP is also called a Type-I error. 

TN is the number of patients that are truly non-autistic (i.e. belonging to the control group) 

and the screening instrument classified them as ASD negative.  

FN is the number of patients already diagnosed with ASD but the screening instrument 

classified them as ASD negative. FN is also called a Type-II error. 

With the help of the confusion matrix, we can calculate the different parameters for the model, 

such as accuracy, sensitivity, specificity, and precision among others. 

3.8.1 Sensitivity and specificity 

Sensitivity and specificity are statistical measures that indicate the predictive value of an 

instrument in classifying positive and negative cases in a test (Lalkhen & McCluskey, 2008). In 

this study, the data is presented using the confusion matrix depicted in the results section while 

Equations (3.4, 3.5 and 3.6) were followed in providing the scoring metrics of the predictive 
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performance of the screening instrument based on the algorithm shown in Error! Reference 

source not found.4.2. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  ………………………………………………….. (3.4) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
 ……………………………………………………(3.5) 

Classification accuracy is among the most important parameters in determining the predictive 

performance of the model in a classification problem. The frequency of how often correct outputs 

are predicted by the model is expressed in terms of the classification accuracy. Computation of the 

classification accuracy is achieved in terms of the ratio of the number of correct classifications 

yielded by the model to the sum of cases correctly classified by the model as shown in Equation 

3.6.  

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 ………………………………….....(1.6) 
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CHAPTER 4 

METHODOLOGY 

This chapter described the proposed research methodology utilized during formulation of the 

screening instrument, data collection, data analysis as well as the machine-learning 

experimentation and data modeling. Categorically, this chapter provides explanation on the 

research participants, history and usability of the data collection instrument as well as the ML 

experimental settings. The chapter contains the following sections: participants, data collection 

instrument, data analysis, experiment setting as well as duration and resources. The chapter 

contains two subsections under the data analysis that described how the evaluation metrics of the 

manual scoring algorithm of the data collection instrument and the machine learning models could 

be calculated. 

 

4.1 Proposed Research Methodology 

The key aim of this thesis is to demonstrate the predictive performance of various ML models on 

a novel screening instrument and its promising approach that ensure quick and accurate screening 

of ASD cases as well as preserving the clinical validity of the screening instrument. Consequently, 

careful implementation of a scientific procedure was upheld toward achieving the research aim 

and objectives. The proposed research methodology was described with the help of Error! 

Reference source not found.. 
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Figure 4.14: Flowchart of the proposed research methodology 
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4.1 Participants 

The study data was collected from caregivers, parents, and other relatives of children with a 

diagnosis of neurodevelopmental disorders, including ASD based on purposive sampling 

approach. However, some of the control cases were drawn from participants with neither 

symptoms of ASD or comorbid neurodevelopmental disorders. Nonetheless, some of the responses 

on ASD cases were collected from teachers and clinicians. This is due in part to the lack of direct 

access to enough ASD cases through parents and caregivers. Initially, the data collection was 

planned to be conducted through psychiatrists and other clinicians from the eight federal 

neuropsychiatric hospitals in Nigeria. Nevertheless, due to the sudden advent of COVID-19 and 

the resulting restrictions on travels and hospital visits among other containment measures the 

researcher could not execute the initial data collection plan. This limited the number of responses 

realized. Thus, the data were partly collected through KoboToolbox (an internet-based data 

collection system) and paper-based questionnaires. Through both data collection means, 411 

responses were gathered. Cases with missing values were eliminated and that reduced the 

responses to 380 valid cases containing 171 ASD cases and 209 controls.  

 

4.2 Data Collection Instrument 

The proposed data collection instrument named Child Development for Household Survey to 

Estimate Burden of ASD (CDHSEBA) is a questionnaire with its empirical scoring algorithm for 

assessing children “at-risk” of ASD. CDHSEBA is meant to be used by parents, caregivers, 

clinicians, and researchers in screening ASD symptoms in children at the developmental age of at 

least three years. The questionnaire was developed by researchers at the Childhood 

Neuropsychiatric Disorders Initiative (https://cndinitiatives.org/) under the leadership of Dr. 

Muideen Bakare (https://scholar.google.com/citations?user=TenqIhAAAAAJ&hl=en&oi=ao); 

who is a Chief Consultant Psychiatrist and Head, Training and Research at Child and Adolescent 

Unit, Federal Neuro-Psychiatric Hospital, Enugu State, Nigeria. CDHSEBA was developed based 

on the diagnostic criteria described in DSM-5 and it has been in use by clinicians at the Federal 

Neuro-Psychiatric Hospital, Enugu State, Nigeria (https://fnhe.gov.ng/). The scoring algorithm 

was also derived from DSM-5 to provide logical and numerical measures on the symptoms of 

ASD. Similar to other diagnostic instruments, manual procedures have been used in computing 

https://cndinitiatives.org/
https://scholar.google.com/citations?user=TenqIhAAAAAJ&hl=en&oi=ao
https://fnhe.gov.ng/
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the ratings on “at-risk” of ASD and providing decisions based on the responses given on the items 

of the CDHSEBA questionnaire. Moreover, sensitivity, specificity and the commonly used 

evaluation metric of classification accuracy are the key statistics that have been used in 

ascertaining the scientific rigor of a diagnostic instrument in health-related researches (Trevethan, 

2017). In the present study, the data collection instrument achieved a staggering sensitivity of 97% 

with classification accuracy and specificity of 56% and 23%, respectively. Figure 5 depicts the 

procedure based on which the ratings of ASD symptoms are computed. The rating scale is based 

on 0s and 1s; if the response is NO (i.e. behavior asked is not present), it is coded as 0 while YES 

(i.e. behavior asked is present), is coded as 1. The total score for the symptoms is then calculated 

and YES or NO decision is provided on each section of the questionnaire. Consequently, the 

overall decision is computed following the criteria given for the diagnosis of ASD in DSM-5 as 

depicted in Figure 5; which summarizes how the empirical scoring validates if the questionnaire 

responses meet the two conditions for “at-risk” of ASD. 

Furthermore, the proposed questionnaire contains less than 30 items upon which symptoms of 

ASD are scored and the scoring algorithm follows section-by-section computations to meet the 

DSM-5 diagnostic criteria. Part 1 of the questionnaire captures demographic information (i.e. items 

1, 2, and 3) while part 2 is categorized into sections A and B, whose description follows. 

A) Deficits in social communication  

This section of the questionnaire contains items 4, 5, 8, 9, 10, 11, 12, 13, 14, and 15, which covers 

deficits in social communication and can further be grouped into three major categories following 

the DSM-5 criteria: 

A1: Deficits in socio-emotional reciprocity (items 4, 5, 8, 9)  

A2: Deficits in non-verbal communication (items 10, 11, 12)  

A3: Deficits in developing, maintaining, and understanding relationships (items 13, 14, 15)  

Condition A: The patient can be said to be presenting with social communication deficits if they 

get a score of YES in 3/10 of these symptoms and the symptoms must be from at least two different 

categories i.e. must have a YES in at least A1 and A2, A1 and A3, or A2 and A3.  
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B) Restricted behavior  

This section of the questionnaire captures information on the presence of restricted and repetitive 

patterns of behavior, activities, or interests. Items in the questionnaire capturing these are 6, 7, 16, 

17, 18, 19, 20, 21, 22, 23, 24, 25 and can further be grouped into four major subcategories in 

accordance with DSM-5: 

B1: Stereotyped movements, language, or use of speech (items 6, 7, 16, 17, and 18)  

B2: Insistence on sameness and inflexibility thought (item 19)  

B3: Highly restricted, fixated interests and abnormal intensity in focus (items 20, 21, 22, and 23)  

B4: Sensitivity to sensory input (items 24, 25)  

Condition B: The patient would be said to be presenting with repetitive and stereotyped behavior 

if they present with 3 of the listed symptoms with the symptoms being elicited from two different 

sub-categories; that’s a combination of the positive screen in B1 and B2, B1 and B3, B1 and B4, 

B2 and B3, B2 and B4 or B3 and B4. 

CDHSEBA was chosen in the present study due to so many reasons that align with the research 

aim and settings. Firstly, CDHSEBA has fewer items and that is in line with the need for a quick 

screening instrument that has fewer items than the common gold standards. Secondly, the clinical 

empirical scoring method of the data collection instrument involves some form of dimensionality 

reduction; specifically, hand-crafted rules for feature transformation, in which the complete set of 

items is transformed into fewer dimensions (i.e. A1, A2, A3, B1, B2, B3, and B4), which in turn 

lead to the main conditions upon which cases at-risk of ASD are identified. Last but not the least, 

the data collection instrument has been in use in an environment similar to the data collection units. 

Thus, there will be little or no environmental effect on the interpretability of the study findings.  
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Figure 5: Flowchart of the empirical scoring algorithm of the study 
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4.3 Data Analysis 

In the data analyses stage SPSS 25, Microsoft Excel 2016, and MATLAB R2019b were used. 

Before the machine learning modeling of the collected data, additional variables were computed 

using the data transformation feature of SPSS. The SPSS syntax employed in the computation is 

shown in Table 4.1. 

Table 4.1: SPSS syntax for the computation of the variables 

GET 

  FILE=‘C:\Users\hp\Google Drive\Researches\PHD CIS\Thesis report\Data\Data.sav’. 

DATASET NAME DataSet1 WINDOW=FRONT. 

COMPUTE Q18=Q18A | Q18B | Q18C | Q18D | Q18E. 

EXECUTE.  

COMPUTE Q24=Q24A | Q24B. 

EXECUTE.  

 

COMPUTE A1=Q4 | Q5 | Q8 | Q9. 

EXECUTE.  

COMPUTE A2=Q10 | Q11 | Q12. 

EXECUTE.  

COMPUTE A3=Q13 | Q14 | Q15. 

EXECUTE.  

COMPUTE B1=Q6 | Q7 | Q16 | Q17 | Q18. 

EXECUTE.  

COMPUTE B2=Q19. 

EXECUTE.  

COMPUTE B3=Q20 | Q21 | Q22 | Q23. 

EXECUTE.  

COMPUTE B4=Q24 | Q25. 

EXECUTE.  

COMPUTE conditionAA=(Q4 + Q5 + Q8 + Q9 + Q10 +  Q11 + Q12 + Q13 + Q14 + Q15) >= 3. 

EXECUTE.  
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COMPUTE conditionAB=(A1 & A2) | (A1 & A3) | (A2 & A3). 

EXECUTE.  

COMPUTE conditionBA=SUM(Q6,Q7,Q16,Q17,Q18,Q19,Q20,Q21,Q22,Q23,Q24,Q25) >= 3. 

EXECUTE.  

COMPUTE conditionBB=(B1 & B2) | (B1 & B3) | (B1 & B4) | (B2 & B3) | (B2 & B4) | (B3 & 

B4). 

EXECUTE.  

COMPUTE conditionA=conditionAA & conditionAB. 

EXECUTE.  

COMPUTE conditionB=conditionBA & conditionBB. 

EXECUTE.  

COMPUTE computedASDstatus=conditionA & conditionB. 

EXECUTE. 

 

 

COMPUTE TP=(clinicalStatus = 1) & (computedASDstatus = 1). 

EXECUTE. 

COMPUTE TN=(clinicalStatus = 0) & (computedASDstatus = 0). 

EXECUTE. 

COMPUTE FP=(clinicalStatus = 0) & (computedASDstatus = 1). 

EXECUTE. 

COMPUTE FN=(clinicalStatus = 1) & (computedASDstatus = 0). 

EXECUTE. 

 

Where,  

Q18 is the summarized value derived from the sub-items Q18A, Q18B, Q18C, Q18D, and Q18E 

using the OR (i.e. |) Boolean operator. Similarly, Q24 was also computed based on Q24A and 

Q24B. A shown in the code listing, the seven sub-dimensions of the data collection instrument 

(i.e. A1, A2, A3, B1, B2, B3, and B4) were equally derived based on their corresponding items. 

Nonetheless, the sub-conditions for assessing the disorder were equally computed as conditionAA, 
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conditionAB, conditionBA, and conditionBB. Where, conditionAA tests whether at least three 

responses were YES on the items under section A of the data collection instrument and 

conditionAB ascertain if the YES responses were from either of the combinations of items under 

A1 and A2, A1 and A3, or A2 and A3 as clearly explained while describing the manual scoring 

algorithm. Equally, conditionBA tests if at least three responses from the items in section B of the 

data collection instrument are YES while conditionBB=ascertained if the YES items are from 

either of the combinations B1 and B2, B1 and B3, B1 and B4, B2 and B3, B2 and B4, or B3 and 

B4 as described in the manual scoring algorithm. 

Furthermore, the code listing showed the computation of the main conditions for diagnosing the 

disorder (i.e. conditionA and conditionB), where conditionA is computed as TRUE if both 

conditionAA and conditionAB are TRUE and conditionB was equally computed in similar passion 

based on conditionBA and conditionBB. Finally, the code listing captured the key variable used 

in identifying the screening status of the participants (i.e. computedASDstatus). Accordingly, the 

computedASDstatus is TRUE if both conditions conditionA and conditionB are TRUE. 

Additionally, the basic evaluation metrics were equally shown in the code listing. Specifically, 

true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) were 

identified based on the computed status (i.e. computedASDstatus) and the previous status (i.e. 

clinicalStatus) as indicated in the questionnaire response. Evaluation metrics of the manual scoring 

algorithm were computed based on the computed TP, TN, FP, and FN values.  

4.3.1 Sensitivity and specificity analysis of the manual scoring algorithm 

Sensitivity and specificity are statistical measures that indicate the predictive value of an 

instrument in classifying positive and negative cases in a test (Lalkhen & McCluskey, 2008). In 

this study, the data on the predictive performance of the manual scoring algorithm is presented 

using the confusion matrix depicted in  

Table 3.3 while Equations (3.4, 3.5 and 3.6) were followed in providing the commonly used 

evaluation metrics. However, the predictive performance of the scoring algorithm depicted in 

Figure 5  is empirical; based on linear Equations. Machine learning models were usually built to 

validate the empirical findings provided by manual scoring algorithms. Notably, studies have 

shown the improved accuracy of machine learning algorithms over manual scoring algorithms 

(Baadel et al., 2020; Bone et al., 2016; Thabtah et al., 2019). However, some of the previous studies 
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that employed varying data pre-processing techniques do not preserve the clinical validity of the 

data collection instrument. Accordingly, in the present study, an alternative approach to manual 

scoring was employed based on the machine learning algorithms. Specifically, to provide 

comparative findings, the present study employed both linear and non-linear machine learning 

classification algorithms to capture possible non-linear patterns in the data and to evaluate the 

performance of the models in classifying cases “at-risk” of ASD without compromising the 

conceptual validity of the data collection instrument. The technique proposed in the present study 

grouped items of the collection instrument into distinctive dimensions that align with the human 

knowledge use in the clinical assessment of ASD. Thus, the derived dimensions are utilized in 

training the machine-learning models. However, various data scenarios, with a reduced and 

extended list of items, were experimented on to provide more comparative results.  

4.3.2 Sensitivity and specificity analysis of the machine learning models 

Model development in machine learning is a data-centric process that involves training the model 

with one part of the data and testing with the other part. Figure 4.36 depicts the workflow diagram 

based on which the multiple machine learning models were built and evaluated. Similar metrics 

computed by Equations (3.4, 3.5 and 3.6) were employed in scoring the predictive performance of 

the classification models. The higher predictive performance of the ML classifiers validates the 

scientific value of the empirical scoring algorithm. 

 

Figure 4.36: Machine Learning-based classification of cases “at-risk” of autism for the study  

 

4.4 Experiment Setting 

This section presents the experimental settings for the comparative analysis of the machine 

learning algorithms and the empirical scoring algorithm. While the empirical scoring algorithm 
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utilized the items described under the data collection tool (i.e. Q4-Q25), multiple machine learning 

algorithms were implemented using a different combination of the CDHSEBA raw and processed 

parameters. Specifically, twenty-five different machine-learning algorithms were implemented 

based on four different data scenarios. The data Scenarios 1 and 3 involved the raw items of the 

CDHSEBA, while Scenarios 2 and 4 contain the transformed CDHSEBA dimensions, as described 

in Table . These scenarios were meant to provide comparative results on the impact of the clinical 

data transformation on the performance of the machine learning algorithms based on the 

commonly used evaluation metrics and weigh the results against the tradeoff of preserving the 

clinical validity of the data collection tool as well as the developed ML models. The study 

experimented on multiple machine learning algorithms because each of the algorithms has 

different learning styles in processing the dataset, as explained in the third chapter “theoretical 

framework”. Specifically, simple variants of decision trees, variants of KNN and SVM machine 

learning algorithms were considered in the present study. Although, these variants are not the most 

sophisticated for real-world classification problems but have indicated their efficacy in terms of 

efficiency and predictive performance. Various distinct evaluation metrics were utilized in 

revealing the comparative performance of the empirical and ML algorithms in identifying autistic 

traits from the datasets of the present study. Specifically, classification accuracy, specificity, as 

well as sensitivity were used. 

The proposed empirical scoring algorithm was implemented on SPSS version 25 as shown in the 

Table 4.1. The variable computation function of SPSS was utilized in implementing the empirical 

scoring algorithm. While the multiple machine learning classifiers were implemented on 

MATLAB version R2019b. The classification learning module of the MATLAB package was 

utilized in training the machine learning models. In testing the models generated by the multiple 

learning algorithms under consideration, in each of the four experimental data scenarios a 10-fold 

cross-validation was adopted. Therefore, in each of the 10 cross-validations, the training dataset is 

partitioned into 10 subsets. Then the remaining nine data subsets are randomly utilized by the 

classification algorithm in the process of testing the classifier. This validation processes is iterated 

ten times before averaging the classification error rates. Moreover, no hard coding was carried out 

as the algorithms module as well as the cross-validation procedures are embedded in the MATLAB 

R2019b platform and were selected from the graphical user interface before the learning phase. 

Finally, all the experimental runs were conducted on a HP-branded personal computer (Elite Book) 
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that has x64-based Intel® processor Core™ i5-2410M dual CPU with 2.30GHz speed, and an 

installed RAM of 4.0GB capacity running on 64-bit Microsoft Operating System. The different 

parameter combination employed in each experimental scenario is described with the help of Table  

and the experimental stages employed in the machine learning modelling using MATLAB 

workspace is depicted with the help of Figure 4.44.4 – Figure 4.9. 

Table 4.1: Highlights of the different data scenarios for the models’ development 

Data scenario Input variables 
Target 

variable 
Description 

Scenario 1 Q4, Q5, Q6, Q7, Q8, Q9, Q10, 

Q11, Q12, Q13, Q14, Q15, Q16, 

Q17, Q18, Q19, Q20, Q21, Q22, 

Q23, Q24, Q25 

clinicalStatus The inputs utilized were similarly 

used in the manual scoring method. 

Scenario 2 A1, A2, A3, B1, B2, B3 and B4 clinicalStatus The inputs used are the dimensions 

derived by categorizing the items in 

scenario 1 and averaging the 

responses. 

Scenario 3 Q4, Q5, Q6, Q7, Q8, Q9, Q10, 

Q11, Q12, Q13, Q14, Q15, Q16, 

Q17, Q18A, Q18B, Q18C, Q18D, 

Q18E, Q19, Q20, Q21, Q22, Q23, 

Q24A, Q24B, Q25, and Q26 

(severity level) 

clinicalStatus In this scenario, the complete set of 

items were passed to the machine 

learning algorithms without any 

processing or categorization. Unlike 

scenario 1, Q26 (severity level) was 

included and the sub-items in Q18 

and Q24 items were not averaged. 

Scenario 4 A1, A2, A3, B1, B2, B3, B4 and 

Q26 (i.e. severity level) 

clinicalStatus This is similar to scenario 2 with the 

addition of demographic variable of 

severity level (i.e. Q26) 
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Figure 4.4: Loading the modelling data into the MATLAB workspace 

 

 

Figure 4.57: Selecting the classification module 
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Figure 4.6: Setting the model training session 

 

 

Figure 4.7: Selecting the ML classification algorithms 
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Figure 4.8: Start model training 

 

 

Figure 4.98: Running state 
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Figure 4.10: Results display 

 

4.5 Duration and Resources 

This study started with a literature search around mid 2018 after deciding on the research area and 

the first draft of the thesis document was completed in the month of March of 2021. All the 

research tasks were carried within this timeframe. Some of the key tasks and their corresponding 

weekly durations are depicted with the help of Table 4.. Supplementary tasks, readings as well as 

familiarization training that are paramount to the successful completion of the work were equally 

carried out within the same timeframe. All the financial expenses incurred during the research and 

related tasks were completely shouldered by the researcher. 
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Table 4.2: Schedule of the Thesis 

Work done Duration 

 Literature Search and Readings 48 weeks 

 Formulation of the Research Proposal 15 weeks 

 Preparation of Data Collection Instrument 5 weeks 

 Research Data Collection/Entry and Quality Inspections 6 weeks 

 Data Analysis, Results Interpretation, and Discussion 16 weeks 

 Thesis Report Writing and Compilation 20 weeks 

 Revision of the thesis report based on the Supervisor’s feedback 8 weeks 
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CHAPTER 5 

RESULTS AND DISCUSSION 

This chapter provided a detailed explanation with the help of tables and figures on the results 

obtained based on the research methodology adopted in the present study. Accordingly, the chapter 

was opened with the depiction of the confusion matrix for the empirical scoring algorithm followed 

by computation of the evaluation metrics achieved by the empirical approach. The results for the 

comparative evaluation of the empirical scoring algorithm and the multiple machine-learning 

models was depicted based on the four experimental data scenarios. 

 

5.1 Confusion Matrix of the Empirical Scoring Algorithm 

The ASD screening process is a binary classification problem since individuals are classified as 

either having ASD traits or No ASD traits using quantifiable behavioral variables. Therefore, 

performance evaluation methods that align with the binary classification problem in ML have been 

used. The basic parameters of true positives, false positives, true negatives, and false negatives, as 

explained in the confusion matrix ( 

Table 3.33.3), are used in deriving different evaluation metrics including classification accuracy, 

specificity, and sensitivity to evaluate the performance of both empirical and machine learning 

algorithms. 

As stated earlier, using the confusion matrix, a test case will be assigned a predicted class in the 

classification step of the screening. Accordingly, Table 5.1 depicted the true positives, false 

positives, true negatives, and false negatives rates achieved by the empirical scoring algorithm. 

Consequently, the manual computations of the commonly used evaluation metrics were executed 

based on the Equations (3.4, 3.5 and 3.6). 
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Table 5.1: Confusion matrix of the empirical scoring algorithm 

 Predicted class POSITIVE 

(“at-risk” of ASD) 

Predicted class NEGATIVE 

(control group) 

Actual class POSITIVE 

(“at-risk” of ASD) 
166 5 

Actual class NEGATIVE 

(control group) 
162 47 

    

Data: TP = 166, FN = 5, FP = 162, TN = 47 

(TP: true positives, FN: false negatives, FP: false positives, and TN: true negatives) 

Thus, 

   𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
   

=  
166

166+5
   

=  
166

171
   

= 0.971 

 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
  

=  
47

47+162
   

=  
47

209
  

= 0.225 
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𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  

=  
166+47

166+47+162+5
   

=  
213

380
  

= 0.561 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

=  
166

166+162
   

=  
166

328
  

= 0.506 

 

 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

=  2 ×
0.506 × 0.971

0.506 + 0.971
   

=  2 ×
0.491

1.477
  

=  2 × 0.333  

= 0.666 
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Therefore, the evaluation metrics of the empirical scoring algorithm can be expressed as 

percentages as follows:  

 Sensitivity = 97.1%,  

 Specificity = 22.5%,  

 Accuracy = 56.1%,  

 Precision = 50.6%,  

 F-measure = 66.6%. 

 

5.2 Evaluation Criteria of the Machine-Learning Models of the Experimental Scenarios 

Similarly, Table5.2,  

 

 

 

Table 5.31, Table 5.42, and Table 5.53 summarized the true positives, false positives, true 

negatives, and false negatives rates achieved by the multiple machine learning models 

implemented under data Scenarios 1, 2, 3, and 4, respectively. Consequent to that, classification 

specificity, sensitivity, and accuracy metrics were calculated for each of the machine-learning 

algorithms based on Equations (3.4, 3.5 and 3.6) respectively. Recall that classification accuracy, 

as opposed to error rate, shows the percentage of the test cases that were correctly classified from 

the dataset considered in each of the scenarios. On the other hand, sensitivity indicated the number 

of test cases that are truly autistic based on the recorded clinical diagnoses (cases with ASD), while 

specificity shows the number of the test cases that are truly non-autistics based on the recorded 

clinical diagnoses (cases with no ASD). To be exact, various parameter combinations were made 

and the paramount evaluation metrics such as TP, FP, TN, FN, sensitivity, specificity, and 

accuracy were recorded based on the performance of the individual models. Table-Table 5.5 

depicted the recorded metrics with an addendum of the comparative results computed based on the 

empirical scoring algorithm. This is further explained in the following subsections and the different 

data scenarios as summarized with the help of Table 4.2.  
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5.2.1 Results of machine-learning models for Scenario 1 

The parameters utilized in this scenario were equally used in the empirical scoring algorithm. The 

input parameters passed to the multiple machine learning algorithms are Q4, Q5, Q6, Q7, Q8, Q9, 

Q10, Q11, Q12, Q13, Q14, Q15, Q16, Q17, Q18, Q19, Q20, Q21, Q22, Q23, Q24, Q25 while the 

output parameter considered is clinicalStatus. Table depicted the metrics achieved by each of the 

machine learning algorithms in this scenario. It worth noting that the training sessions of Quadratic 

Discriminant and Gaussian Naïve Bayes algorithms failed in this scenario. Thus, zero values were 

recorded for these algorithms. As shown in Table, the empirical scoring algorithm recorded the 

highest sensitivity of 97% while Fine Gaussian SVM has the highest specificity of 99% with the 

lowest classification accuracy of 57% (just 1% ahead of the empirical scoring algorithm). Overall, 

Coarse Gaussian SVM and Ensemble Bagged Trees achieved the highest accuracy of 78% in this 

scenario. In this scenario, Coarse Gaussian SVM is the best performing model with a 10% increase 

in specificity and sensitivity over Ensemble Bagged Trees.   

Table 5.2: Scenario 1 modelling results 

ID Model Name TN FP FN TP Sensitivity Specificity Accuracy 

1 Fine Tree 142 67 59 112 0.65 0.68 0.67 

2 Medium Tree 144 65 53 118 0.69 0.69 0.69 

3 Coarse Tree 139 70 71 100 0.58 0.67 0.63 

4 Linear Discriminant 161 48 42 129 0.75 0.77 0.76 

5 Quadratic Discriminant 0 0 0 0 0 0 0 

6 Logistic Regression 163 46 46 125 0.73 0.78 0.76 

7 Gaussian Naïve Bayes 0 0 0 0 0 0 0 

8 Kernel Naïve Bayes 177 32 57 114 0.67 0.85 0.77 

9 Linear SVM 171 38 50 121 0.71 0.82 0.77 

10 Quadratic SVM 165 44 51 120 0.7 0.79 0.75 

11 Cubic SVM 156 53 58 113 0.66 0.75 0.71 

12 Fine Gaussian SVM 207 2 160 11 0.06 0.99 0.57 

13 Medium Gaussian 

SVM 

174 35 52 119 0.7 0.83 0.77 

14 Coarse Gaussian SVM 172 37 45 126 0.74 0.82 0.78 

15 Fine KNN 148 61 51 120 0.7 0.71 0.71 
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16 Medium KNN 161 48 43 128 0.75 0.77 0.76 

17 Coarse KNN 121 88 20 151 0.88 0.58 0.72 

18 Cosine KNN 169 40 59 112 0.65 0.81 0.74 

19 Cubic KNN 161 48 44 127 0.74 0.77 0.76 

20 Weighted KNN 152 57 32 139 0.81 0.73 0.77 

21 Ensemble Boosted 

Trees 

152 57 44 127 0.74 0.73 0.73 

22 Ensemble Bagged 

Trees 

170 39 46 125 0.73 0.81 0.78 

23 Ensemble Subspace 

Discriminant 

167 42 45 126 0.74 0.8 0.77 

24 Ensemble Subspace 

KNN 

169 40 64 107 0.63 0.81 0.73 

25 Ensemble RUSBoosted 

Trees 

143 66 46 125 0.73 0.68 0.71 

26 EMPIRICAL 

SCORING 

ALGORITHM 

47 162 5 166 0.97 0.23 0.56 

 

5.2.2 Results of machine-learning models for Scenario 2 

This scenario utilized the transformed sub-dimensions of the data collection instrument as input 

parameters. Specifically, the modeling results were recorded for each of the machine learning 

algorithms based on the sub-dimensions A1, A2, A3, B1, B2, B3, and B4 as input parameters, 

while clinicalStatus was the output parameter predicted. Similar to the findings in Scenario 1, the 

training session failed for Quadratic Discriminant and Gaussian Naïve Bayes algorithms. Fine 

KNN achieved the highest sensitivity of 85%. Other variants of KNN (i.e. Medium, Cosine, and 

Cubic KNN) achieved classification accuracy equal to the empirical scoring algorithm (i.e. 56%) 

and the highest specificity of 87% with a very low sensitivity of 17%, each. The Medium Gaussian 

SVM algorithm achieved the highest classification accuracy of 70%. Noteworthy, in the Weighted 

KNN model the lowest classification accuracy of 54%, lower than that of the empirical scoring 

algorithm (i.e. 56%), was recorded. The results in Scenario 2 are further explained with the help 

of  



 

81 
 

 

 

 

Table 5.315.3. 

 

 

 

 

Table 5.31: Scenario 2 modelling results 

ID Model Name TN FP FN TP Sensitivity Specificity Accuracy 

1 Fine Tree 149 60 58 113 0.66 0.71 0.69 

2 Medium Tree 149 60 58 113 0.66 0.71 0.69 

3 Coarse Tree 140 69 58 113 0.66 0.67 0.67 

4 Linear Discriminant 153 56 64 107 0.63 0.73 0.68 

5 Quadratic Discriminant 0 0 0 0 0 0 0 

6 Logistic Regression 160 49 71 100 0.58 0.77 0.68 

7 Gaussian Naïve Bayes 0 0 0 0 0 0 0 

8 Kernel Naïve Bayes 163 46 73 98 0.57 0.78 0.69 

9 Linear SVM 141 68 63 108 0.63 0.67 0.66 

10 Quadratic SVM 150 59 58 113 0.66 0.72 0.69 

11 Cubic SVM 150 59 58 113 0.66 0.72 0.69 

12 Fine Gaussian SVM 150 59 59 112 0.65 0.72 0.69 

13 Medium Gaussian SVM 155 54 59 112 0.65 0.74 0.70 

14 Coarse Gaussian SVM 140 69 57 114 0.67 0.67 0.67 

15 Fine KNN 87 122 26 145 0.85 0.42 0.61 

16 Medium KNN 182 27 142 29 0.17 0.87 0.56 

17 Coarse KNN 138 71 54 117 0.68 0.66 0.67 

18 Cosine KNN 182 27 142 29 0.17 0.87 0.56 

19 Cubic KNN 182 27 142 29 0.17 0.87 0.56 

20 Weighted KNN 176 33 142 29 0.17 0.84 0.54 

21 Ensemble Boosted Trees 148 61 59 112 0.65 0.71 0.68 

22 Ensemble Bagged Trees 147 62 62 109 0.64 0.7 0.67 
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23 

Ensemble Subspace 

Discriminant 158 51 65 106 0.62 0.76 0.69 

24 

Ensemble Subspace 

KNN 90 119 29 142 0.83 0.43 0.61 

25 

Ensemble RUSBoosted 

Trees 149 60 58 113 0.66 0.71 0.69 

26 EMPIRICAL 

SCORING 

ALGORITHM 47 162 5 166 0.97 0.23 0.56 

5.2.3 Results of machine-learning models for Scenario 3 

This data modeling scenario contains the highest number of input parameters compared to other 

scenarios experimented on. In this scenario, apart from the uncategorized sub-items in Q18 (i.e. 

Q18A, Q18B, Q18C, Q18D, Q18E) and Q24 (i.e. Q24A, Q24B), the demographic parameter of 

severity level was also incorporated into the input parameters. Thus, the input parameters utilized 

in this scenario were Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15, Q16, Q17, Q18A, 

Q18B, Q18C, Q18D, Q18E, Q19, Q20, Q21, Q22, Q23, Q24A, Q24B, Q25, and Q26 (severity 

level). Equally, clinicalStatus was the only output parameter considered. As shown in Table 

5.425.4, besides the empirical scoring algorithm, Coarse KNN achieved the highest sensitivity of 

92%. Fine Gaussian SVM achieved the highest specificity of 100% with the lowest sensitivity of 

1% and classification accuracy equal to that of the empirical scoring algorithms (i.e. 56%). Overall, 

Kernel Naïve Bayes appeared to be the best performing algorithm with the highest accuracy of 

88%, specificity of 95%, and sensitivity of 81%. 

Table 5.42: Scenario 3 modelling results 

ID Model Name TN FP FN TP Sensitivity Specificity Accuracy 

1 Fine Tree 141 68 56 115 0.67 0.67 0.67 

2 Medium Tree 141 68 49 122 0.71 0.67 0.69 

3 Coarse Tree 138 71 60 111 0.65 0.66 0.66 

4 Linear Discriminant 167 42 33 138 0.81 0.8 0.80 

5 Quadratic Discriminant 166 43 69 102 0.6 0.79 0.71 

6 Logistic Regression 175 34 31 140 0.82 0.84 0.83 

7 Gaussian Naïve Bayes 180 29 24 147 0.86 0.86 0.86 

8 Kernel Naïve Bayes 198 11 33 138 0.81 0.95 0.88 
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9 Linear SVM 185 24 34 137 0.8 0.89 0.85 

10 Quadratic SVM 178 31 32 139 0.81 0.85 0.83 

11 Cubic SVM 175 34 33 138 0.81 0.84 0.82 

12 Fine Gaussian SVM 209 0 169 2 0.01 1.00 0.56 

13 Medium Gaussian SVM 188 21 31 140 0.82 0.90 0.86 

14 Coarse Gaussian SVM 185 24 30 141 0.82 0.89 0.86 

15 Fine KNN 153 56 38 133 0.78 0.73 0.75 

16 Medium KNN 159 50 27 144 0.84 0.76 0.80 

17 Coarse KNN 150 59 14 157 0.92 0.72 0.81 

18 Cosine KNN 177 32 41 130 0.76 0.85 0.81 

19 Cubic KNN 159 50 26 145 0.85 0.76 0.80 

20 Weighted KNN 154 55 25 146 0.85 0.74 0.79 

21 Ensemble Boosted Trees 172 37 43 128 0.75 0.82 0.79 

22 Ensemble Bagged Trees 166 43 45 126 0.74 0.79 0.77 

23 

Ensemble Subspace 

Discriminant 173 36 30 141 0.82 0.83 0.83 

24 

Ensemble Subspace 

KNN 177 32 32 139 0.81 0.85 0.83 

25 

Ensemble RUSBoosted 

Trees 154 55 50 121 0.71 0.74 0.72 

26 EMPIRICAL 

SCORING 

ALGORITHM 47 162 5 166 0.97 0.23 0.56 

 

5.2.4 Results of machine-learning models for Scenario 4 

This is closely related to the data modeling approach employed in Scenario 2 in terms of the input 

parameters utilized. This scenario maintained the transformed sub-dimensions as inputs to the 

multiple machine learning models with an addition of the demographic parameter of severity level. 

Thus, the inputs passed to the algorithms are A1, A2, A3, B1, B2, B3, B4, and Q26 (i.e. severity 

level) while clinicalStatus serves as the only output. The models’ performance is lower than 

Scenario 3 with Coarse KNN achieving the highest sensitivity of 82% while Medium and Cosine 

KNNs achieved the highest specificity of 78% each. Table 5.535.5 described the experimental 

findings of this data modeling scenario. 
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Table 5.53: Scenario 4 modelling results 

ID Model Name TN FP FN TP Sensitivity Specificity Accuracy 

1 Fine Tree 138 71 53 118 0.69 0.66 0.67 

2 Medium Tree 147 62 47 124 0.73 0.7 0.71 

3 Coarse Tree 135 74 60 111 0.65 0.65 0.65 

4 Linear Discriminant 147 62 53 118 0.69 0.7 0.7 

5 Quadratic Discriminant 0 0 0 0 0 0 0 

6 Logistic Regression 150 59 53 118 0.69 0.72 0.71 

7 Gaussian Naïve Bayes 0 0 0 0 0 0 0 

8 Kernel Naïve Bayes 153 56 61 110 0.64 0.73 0.69 

9 Linear SVM 147 62 62 109 0.64 0.7 0.67 

10 Quadratic SVM 144 65 54 117 0.68 0.69 0.69 

11 Cubic SVM 139 70 56 115 0.67 0.67 0.67 

12 Fine Gaussian SVM 153 56 72 99 0.58 0.73 0.66 

13 Medium Gaussian SVM 152 57 64 107 0.63 0.73 0.68 

14 Coarse Gaussian SVM 146 63 57 114 0.67 0.7 0.68 

15 Fine KNN 146 63 90 81 0.47 0.7 0.6 

16 Medium KNN 163 46 76 95 0.56 0.78 0.68 

17 Coarse KNN 110 99 31 140 0.82 0.53 0.66 

18 Cosine KNN 164 45 81 90 0.53 0.78 0.67 

19 Cubic KNN 161 48 80 91 0.53 0.77 0.66 

20 Weighted KNN 150 59 63 108 0.63 0.72 0.68 

21 Ensemble Boosted Trees 144 65 45 126 0.74 0.69 0.71 

22 Ensemble Bagged Trees 156 53 64 107 0.63 0.75 0.69 

23 

Ensemble Subspace 

Discriminant 151 58 59 112 0.65 0.72 0.69 

24 

Ensemble Subspace 

KNN 137 72 83 88 0.51 0.66 0.59 

25 

Ensemble RUSBoosted 

Trees 139 70 47 124 0.73 0.67 0.69 

26 EMPIRICAL 

SCORING 

ALGORITHM 47 162 5 166 0.97 0.23 0.56 
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Overall, variants of KNN and SVM are the best performing models in all the scenarios while the 

empirical model has achieved better metrics than some of the machine learning models especially 

in Scenarios 2 and 4. The machine learning models achieved higher performances in Scenarios 1 

and 3, both of which have the highest number of none-categorized input parameters. 

5.3 Comparative Performance of the Machine-Learning Models and the Empirical Scoring 

Algorithm 

The machine learning algorithms considered in the present study are not the most sophisticated 

employed in other classification applications but have proved their merits in terms of predictive 

performance and efficiency. Thus, Figure 5.1-5.7 were provided to visualize the comparative 

performance of the multiple machine learning models and the empirical scoring algorithm based 

on the different evaluation metrics adopted. 

5.3.1 Comparative results based on number of true positives 

True positive is the number of ASD cases that were correctly classified by the algorithms under 

consideration. Figure 5.1 depicted the comparative performance of the machine learning models 

and the empirical scoring algorithm in terms of the true positives achieved. As shown in the figure, 

the empirical scoring algorithm (model_ID = 26) achieved the highest number of true positives 

compared to the machine learning models. This implies that the empirical scoring algorithm has 

achieved higher performance in the correct identification of the true ASD cases and has surpassed 

the machine learning models in the correct classification of the true ASD cases. This might be 

because of the similarity between the tools used in the clinical diagnosis of the cases and 

CDHSEBA. Unfortunately, the present study has not captured the history of the specific tools used 

in the previous clinical diagnosis. 
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Figure 5.1: Comparative results of the true positives based on the various scenarios 

 

5.3.2 Comparative results based on number of false positives 

False positive is one of the values that serve as an indicator of case misclassification. However, 

the cost of misclassifying a non-autistic person as autistic is lower because further diagnostic tests 

could correct the error. In medical diagnosis, false negatives rates bear a higher cost than false 

positives. Thus, the false positives rate is should be given paramount importance while building 

models for the medical diagnosis of ASD (Alahmari, 2020). The comparatives results of the false 

positives for the experimental runs of the present study is presented with the help of Figure 5.2. 
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Figure 5.29: Comparative results of the false positives based on the various scenarios 

 

5.3.3 Comparative results based on number of true negatives 

True negative is the number of non-ASD cases that were correctly classified by the algorithms 

under consideration. Figure 105.3 depicted the comparative performance of the machine learning 

models and the empirical scoring algorithm in terms of the true negatives achieved. As shown in 

the figure, the empirical scoring algorithm (model_ID = 26) recorded the least number of true 

negatives when compared to the various machine learning models. This implies that the empirical 

scoring algorithm has performed poorly in the correct identification of the true non-ASD. On the 

other hand, Fine Gaussian SVM achieved the highest performance in terms of true negatives under 

Scenarios 1 and 3 with 207 and 209 correct classifications of non-ASD cases, respectively. 
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Figure 10: Comparative results of the true negatives based on the various scenarios 

 

5.3.4 Comparative results based on number of false negatives 

False negative is another important measure of misclassification. Noteworthy, the cost of 

misclassifying a person with autism as non-autistic (false negative) is higher than that of false 

positives because it will result in delayed intervention with possible consequences on the patients 

and their families. The comparative performance of machine-learning models and the empirical 

scoring algorithms in terms of the number of false negative cases, as shown in Figure5.4, indicated 

that the empirical scoring algorithm achieved the lowest number of ASD cases that were 

misclassified as non-ASD cases.  
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Figure 5.4: Comparative results of the false negatives based on the various scenarios 

 

5.3.5 Comparative results based on sensitivity 

Sensitivity is also known as true positives rate, it is the measure of the proposition of ASD cases 

that are correctly classified by the techniques under consideration. Figure 5.5115.5 depicted the 

comparative performance of the machine learning models and the empirical scoring algorithm in 

terms of the true positive rates. As shown in the figure, the empirical scoring algorithm (model_ID 

= 26) achieved the highest sensitivity compared to the machine learning models. This implies that 

the empirical scoring algorithm surpassed the machine learning models in the correct classification 

of true ASD cases. This might be because of the similarity between the tools used in the clinical 

diagnosis of the cases and CDHSEBA. 
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Figure 5.511: Comparative results of the models’ sensitivity based on the various scenarios 

 

5.3.6 Comparative results based on specificity 

Specificity is also known as true negatives rate, it is the measure of the proposition of non-ASD 

cases that are correctly classified by the techniques under consideration. Figure 5.6125.6 depicted 

the comparative performance of the machine-learning models and the empirical scoring algorithm 

in terms of the true negatives rates. As shown in the figure, the empirical scoring algorithm 

(model_ID = 26) achieved the lowest specificity compared to the machine-learning models. This 

implies that the empirical scoring algorithm lagged behind the machine-learning models in the 

correct classification of true non-ASD cases. 
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Figure 5.612: Comparative results of the models’ specificity based on the various scenarios 

 

5.3.7 Comparative results based on classification accuracy 

Classification accuracy is the most commonly used and comprehensive criterion for performance 

evaluation. Comparative results of the empirical algorithm of the ASD screening instrument and 

multiple machine learning models based on classification accuracy is visually depicted with the 

help of Figure 5.7135.7. The results indicated that most of the machine-learning models derived 

from the third experimental scenario (i.e. Scenario 3) achieved higher classification accuracies 

with the exeption of Fine Gaussian SVM (model_ID = 12) which achieved classification 

accuracy equal to the empirical scoring algorithm (accuracy = 0.56) as shown in the figure. On the 

other hand, Kernel Naïve Bayes is the best perfroming model with classification accuracy of 88%, 

followed by Gaussian Naïve Bayes (model_ID = 7), Medium Gaussian SVM (model_ID = 13), 

Coarse Gaussian SVM (model_ID = 14) with classification accuracies of 86% each and Linear 

SVM (model_ID = 9) that achieved classification accuracy of 85%. 
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Figure 5.713: Comparative results of the models’ accuracies based on the various scenarios 

 

5.4 Discussion 

The results have indicated so many revelations especially in terms of the impact that 

dimensionality reduction has on model performance and result interpretation. Firstly, the results 

obtained from the two experimental scenarios that utilized the untransformed input parameters (i.e. 

Scenario 1 and 3) have indicated better performance of the machine learning models in the 

predictive process based on the high evaluation metrics recorded. Similar to the approach and 

findings of Levy et al. (2017) and Usta et al. (2019), the inclusion of demographic parameter 

severity level improve the performance of the machine learning models. For instance, in Scenario 

1 Fine Gaussian SVM achieved the highest specificity of 99%, with the inclusion of severity level 

to the inputs the same algorithm yielded a model specificity of 100%. This implies that apart from 

the main questionnaire items, demographic factors have a significant influence on the models’ 

performance. Furthermore, the handcrafted rules in the empirical scoring algorithm do not consider 

demographic factors in the numerical quantification of ASD symptoms as well as the final 

classification. Thus, the machine-learning approach has proved its merit in determining other 

influential factors that affect the predictive performance of the models. Another comparative 
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analysis in terms of classification accuracy has verified the assertion that demographic factors 

influence the models’ performance. Specifically, in Scenario 1, Coarse Gaussian SVM and 

Ensemble Bagged Trees achieved the highest accuracy of 78%. However, with the inclusion of the 

demographic factor of severity level, in Scenario 3, the Kernel Naïve Bayes classifier (with an 

accuracy of 88%, specificity of 95%, and sensitivity of 81%) achieved an increase of 10% in the 

classification accuracy. 

Comparative analysis between the original and transformed data provide an insight into the impact 

of dimensionality reduction on the models’ performance and the interpretation of the result. Even 

though the approach followed in the dimensionality reduction is based on the experts’ knowledge, 

the results differ in respect of the evaluation metrics. Specifically, the models’ performances differ 

between the original and the transformed data. For instance, the highest classification accuracy of 

78% recorded in Scenario 1 declined by 8%, and 7% after the data transformations in Scenario 2 

and 4, respectively. This is in line with the assertion made by Curtis et al. (2016); Feng et al. 

(2014); Lapteacru (2016); and Wiesen (2006) on the statistical irrelevancies that exist between 

original and transformed data. However, unlike data-centric approaches, the present approach 

preserved the clinical validity of the transformed data, despite a reduction in the models’ 

performance. This can be seen in the comparative performance maintained by the empirical 

scoring algorithm across all four experimental scenarios. For instance, in Scenario 2, variants of 

KNN (i.e. Medium, Cosine, and Cubic KNN) achieved classification accuracy equal to that of the 

empirical scoring algorithm (i.e. 56%) while the Weighted KNN model recorded the lowest 

classification accuracy of 54%, lower than that of the empirical scoring algorithm. Similarly, Fine 

Gaussian SVM despite achieving the highest specificity of 100% its classification accuracy is 

equal to that of the empirical scoring algorithm (i.e. 56%). Other instances that could prove the 

worthiness of the transformation approach in preserving the clinical validity of the screening 

instrument can be seen in the individual evaluation metrics highlighted in Figure5.1-5.7, in which 

the empirical scoring algorithm achieved the staggering high of 97% and very low false natives 

(FN=5). Despite high FP of 160 recorded from the empirical scoring algorithm, its clinical value 

is preserved because studies indicated that the false positives rate should be given paramount 

importance while building models for the medical diagnosis of ASD (Alahmari, 2020). This is 

because the cost of misclassifying a non-autistic person (FP) as autistic is lower because further 

diagnostic tests could correct the error. Moreover, in medical diagnosis, false negatives rates bear 
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a higher cost than false positives. However, one of the critical implications in using the empirical 

scoring algorithm is that, with the high false positives and true positives rates, it will lead to 

outrageous figures on the cases at-risk of ASD. Overall, while the empirical scoring algorithms 

achieved outstanding performance in the correct classification of true ASD cases (sensitivity), the 

best performing machine-learning models outperformed the empirical method in the correct 

classification of non-ASD cases but both have achieved considerable classification accuracies. 
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CHAPTER 6 

CONCLUSION AND RECOMMENDATIONS 

This is the last chapter of the thesis and it concludes the research work with summarized findings, 

and recommendations for future studies. 

 

6.1 Conclusion 

Assessment of the behavioral symptoms of autism spectrum disorder in form of screening is a 

common preliminary stage toward identifying people at-risk of ASD and a crucial approach to 

speeding up diagnostic referrals to extensively assess the symptoms under clinical settings. 

Nonetheless, scoring autistic traits in the current screening instruments such as the autism spectrum 

quotient (AQ), and autism diagnostic interview revised (ADI-R) among others rely solely 

handcrafted rules that have been associated with subjective interpretations. Thus, the tradeoff in 

ASD screening, and diagnostics studies is on improving the speed of the assessment processes and 

providing accurate and objective decisions for early assessment to accurate services and 

treatments. Studies have indicated the merit of automated models based on machine-learning 

techniques that build accurate assessments systems from retrospective cases and controls. 

Recently, machine-learning models for behavioral assessment of ASD have been broadly built 

based on a variety of pre-processed input data. Commonly utilized inputs include the items of 

ADOS, ADI-R, and AQ. Notably, the major aim of the previous studies was on quick and accurate 

screening and diagnosis of ASD. However, to achieve quickness, various data selection and 

transformation techniques were utilized despite evidence on the insufficiency of the reduced items 

and the inability of the transformation techniques in preserving the clinical validity of the 

assessment instruments. Specifically, studies have demonstrated inconsistencies in the findings of 

standard tests between original and transformed data. Similarly, none of the previous studies 

probes the sufficiency of the reduced parameters against the basis upon which clinicians diagnose 

ASD. Consequently, clinical validity and real-life applicability of the ML models are at stake 

despite the high evaluation metrics recorded by the previous studies. The performance of the 

models was based on the common evaluation metrics of accuracy, specificity, and sensitivity 

among others. On the other hand, popular machine learning algorithms utilized by the previous 
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studies include the variants of SVM, decision tree, and KNN. In essence, the multitudes of 

challenges toward quick and accurate assessment of ASD are yet to be addressed by the previous 

machine learning approaches. In the present study, machine-learning application in the behavioral 

assessment of autism spectrum disorder was approached using a novel procedure that comprises 

few behavioral features and preserves the clinical validity of the assessment instrument. Therefore, 

the proposed approach maintains one of the core aim of ensuring speed and preserving the clinical 

validity of the machine-learning models. Consequently, comparative results were evaluated 

between the empirical algorithm of the ASD screening instrument and multiple machine learning 

models. The study findings revealed that the ML model based on Kernel Naïve Bayes is the best 

performing model with classification accuracy of 88%. 

 

6.2 Recommendations 

Despite several studies that demonstrated the machine-learning approach to ASD assessment, 

future studies should establish the clinical relevance of the data-centric approaches and readjust 

the scientific use of the assessment instruments. Accordingly, future studies should explore the 

best practices of scale development and feature reduction in line with the professional basis of 

ASD diagnosis in categorizing and evaluating the clinical validity of the robust ML models. 

Moreover, vital recommendations based on the findings of the present study can be approached 

following the different experimental scenarios utilized. Specifically, embedding the best 

performing ML models in any ASD assessment app could be approached based on the parameters 

utilized in the four data scenarios. In the first scenario, the ML-enable ASD assessment app will 

have at most 30 input parameters. Although, this scenario did not streamline the parameters the 

cost of implementation will be cheaper than that of the commonly used instruments such as SRS 

and ADOS that have 65 and 93 items, respectively. Comparative analysis on the performance of 

the superior ML model against the empirical scoring algorithm indicated that among the key 

benefits of implementing the ML model is its outstanding 72% increase in true negatives rate over 

the 23% recorded with the empirical algorithm. Similarly, implementing the superior ML model 

of scenario 3 could translate to the same benefits realizable in scenario 1. However, implementing 

ML models with fewer input parameters translates to a reduction in the cost of the physical gadgets 

required as well as improvement in the speed of administering the assessment tool. Specifically, 

implementing the superior models in scenario 2 or scenario 4 will provide an ML-embedded ASD 
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screening app with at most eight input parameters with an overhead of implementing the empirical 

feature transformation rules. Besides, comparative analysis between the ML models and the 

empirical scoring algorithm indicated that the best performing ML model in Scenario 2 (i.e. 

Medium Gaussian SVM) achieved 14% increase in the classification accuracy over the empirical 

scoring algorithms. Equally, despite having fewer items, the best performing model in scenario 4 

outperformed the empirical scoring algorithm with increased accuracy and sensitivity of 15% and 

47%, respectively. Another vital recommendation is concerning the present dimensions of the data 

collection instrument utilized in the present study. Future studies would look at the possibility of 

redesigning the data collection instrument and improving its scientific robustness as a behavioral 

scale. Recommendable approaches to categorizing and establishing valid dimensions from 

CDHSEBA include principal component analysis. Furthermore, future studies would implement 

the enhanced instruments with more complex and robust algorithms as well as some of the 

optimization techniques demonstrated in the previous studies. Noteworthy, the visibility in the 

clinical validity of the proposed approach will provide clinicians with trust on the worthiness of 

the evaluation metrics recorded. 
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APPENDIX I 

PERMISSION TO USE QUESTIONNAIRE 
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APPENDIX II 

ETHICS APPROVAL 
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APPENDIX III 

CDHSEBA 

CHILD DEVELOPMENT FOR HOUSEHOLD SURVEY TO ESTIMATE BURDEN OF 

AUTISM SPECTRUM DISORDER (CDHSEBA) 

Please, describe the child’s behavior based on the following questions. Your response will remain 

confidential and will only be used for research purpose. 

Thank you. 

Abdulmalik Ahmad Lawan 

aaltofa2000@gmail.com 

 

1. Your relationship with the child 

a. Daughter/Son b. Brother/Sister c. Neighbor d. Cousin e. Others …………………. 

2. About the child 

a. Gender: Male  Female 

b. Is the child between 2 and 18 years old today?  Yes No 

3. Going back to the first 3 years of the child’s life, was there anything that 

seriously worried you or anyone else about his ... 
Yes No 

a) Language and communication development?  Yes No 

b) Relationship with peers? Yes No 

c) Gross Motor Development and use of hands and limbs?  Yes No 

d) Odd or repetitive behaviour?  Yes No 

e) Ability to learn and do new things – things such as puzzles or helping get 

dressed?  

Yes No 

mailto:aaltofa2000@gmail.com
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A1: DEFICITS IN SOCIO-EMOTIONAL RECIPROCITY   

4. The child does not speak at all (he or she can’t make himself or herself 

understood in words; he or she can’t say any recognizable words)?  

Yes No 

5. The child does not speak normally for his/her age? Yes No 

8. The child cannot communicate with you by using gestures? 

E.g. pointing with the index finger, nodding/shaking head for yes/no etc. 

Yes No 

9. The child does not initiate a conversation with you?  Yes No 

A2: DEFICITS IN NON-VERBAL COMMUNICATION   

10. The child does not smile back when you smile at him/her? Yes No 

11. The child does not maintain eye contact when talking to people? Yes No 

12. The child does not show the typical range of facial expressions? 

E.g. he/she doesn’t smile when happy? He/she doesn’t show sadness when 

unhappy? He/she doesn’t express surprise when something unexpected happens?  

Yes No 

A3: DEFICITS IN DEVELOPING, MAINTAINING AND UNDERSTANDING 

RELATIONSHIPS 

13. The child does not participate in imaginative role-playing with other kids 

interactively. Like (cooking play)/dolls/clay/telephone/toy gun/motor car OR 

‘teacher-student’, ‘thief-police’, ‘mother-child’, etc. 

Yes No 

14. Does the child appear to be in his/her own world, no matter what he/she is 

doing (even when with other children)? 

Yes No 

15. Does the child prefer to play alone rather than joining his peers? Yes No 
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B1: STEREOTYPED MOVEMENTS, LANGUAGE OR USE OF SPEECH 

6. Does the child often repeat the same word or phrase repeatedly in the same 

manner? 

Yes No 

7. Does the child repeat what you say? Copy your speech or the speech of others. Yes No 

16. Does the child have interests that are not typical for children his or her age, like 

an interest in objects like fans, light switches, radios, etc.? 

Yes No 

17. Does the child have any repetitive behavior? 

For instance, arranging toys or household objects in a specific manner repeatedly. 

Yes No 

18. Does the child keep on repeating any of the following?   

a) Flapping hands (moving hands up and down)  Yes No 

b) Hand wringing (as if squeezing clothes) Yes No 

c) Toe-walking (walking on tip-toe) Yes No 

d) Swinging or spinning his/her body Yes No 

e) Making unusual finger or hand movements near his/her face.  Yes No 

B2: INSISTENCE ON SAMENESS AND INFLEXIBILITY THOUGHT   

19. Does the child insist on sameness and actively resist any change in his/ her 

routines? 

For example, insisting on the same dress/asking for the same place to sit while 

eating/insisting on no change in the arrangement of the toys or household items. 

Bathing or getting dressed at certain time and when unable to do so for some 

particular reason, does get very upset? 

Yes No 
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B3: HIGHLY RESTRICTED, FIXATED INTERESTS AND ABNORMAL INTENSITY 

IN FOCUS 

20. Has the child memorized unusual facts like schedules, history facts, or other 

sorts of facts that preoccupy him or her daily? 

Yes No 

21. Is the child ‘too obsessed’ with certain activities or interests beyond what you 

would expect for a child of his/her age? 

Yes No 

22. Does the child have excessive interest in odd or unusual things/activities that 

other children do not have? 

E.g. collecting sweet wrappers, nylon bags, piece of rope, pulling thread and rubber 

band etc. 

Yes No 

23. Does the child prefer to play with a particular part of a toy/object rather than 

the whole toy/object? 

For example, when playing with a toy car, only want to play with the tyres and not 

the rest of the car. 

Yes No 

B4: SENSITIVITY TO SENSORY INPUT   

24A. Does the child do anything to hurt or harm him/herself? 

E.g. banging his/hers head on objects, biting him/herself, piercing him/herself with 

sharp objects? 

Yes No 

24B. Is the child hypersensitive or under sensitive to certain sensory inputs? 

i.e. is indifferent to pain? Overly upset by certain sounds or too sensitive to light? 

Yes No 

25. Does the child show an unusual interest in certain sensory aspects of the 

environment? E.g. excessive touching or smelling of objects? 

Yes No 
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26. If the child presents with any difficulties in the areas we have mentioned above please tell us 

the extent to which these difficulties interfere with their day-to-day functioning at home and in 

school 

 a) Not all  

b) Causes minor interferences  

c) Causes major interferences  

d) Symptoms described above makes it impossible for the child to function in the above settings. 

27. Is the child previously diagnosed with ASD? Yes No 
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APPENDIX IV 

SIMILARITY REPORT 

 

  

Abdulmalik Ahmed Lawan 
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APPENDIX V 

CURRICULUM VITAE 

1. PERSONAL DATA 

Name: Abdulmalik Ahmad Lawan 

Date of Birth: 15TH October, 1989 

Place of Birth: Hotoro 

Residence: 449 Salen Zana Link, Hotoro 

State of Origin: Kano State 

Nationality: Nigerian 

Marital Status: Married 

Gender: Male 

Languages Spoken: Hausa, English, Arabic, Russian, Turkish 

Contact Address: Department of Computer Science, KUST Tel: +2347066498622 

Email: aaltofa2000@gmail.com || aalawan@kustwudil.edu.ng 

Next of Kin: Abdulaziz Ahmad Lawan 

 

2. AREA OF SPECIALIZATION 

Human Computer Interaction 

 

3. INSTITUTIONS ATTENDED 

2018-Date- Near East University, Cyprus   

 Qualification:  PhD. Computer Information Systems (In View) 

2015- Near East University, Cyprus   

 Qualification:  MSc. Computer Information Systems (First class honor division) 

2011- Kano University of Science and Technology, Wudil   

 Qualification:  BSc. Computer Science (First class honor division) 

2009- Gateway Computer Training Institute, Kano 

Qualification: Certificate in Information Technology (CIT)    

2007- Science College Dawakin Kudu, Kano    

Qualification: Senior School Certificate Examination (SSCE)    

2004- Government Day Sec. Sch. Hotoro North, Kano    
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Qualification: Junior School Certificate Examination (JSCE)    

2001- Hotoro South Special Primary School, Kano state    

Qualification: Primary School Certificate 

 

4. ACADEMIC CAREER 

2015-Date – Department of Computer Science  

Kano University of Science and Technology, Wudil, Position: Assistant Lecturer 

2013-2014 – Khadija Memorial College, Kano    

 No. 50 CBN Quarters Hotoro GRA, Position: Classroom Teacher     

2013 – National Youth Service Corps 

 Government College Birnin Kudu, Jigawa State, Position: Classroom Teacher    

 

5. COURSES TAUGHT AT UNIVERSITY 

1. Introduction to Computer Science 

2. Introduction to Web Design 

3. Special Topics in Computer Science (Research Methodology) 

4. Human Computer Interface 

5. Data Structures and Algorithm (Summer Semester) 

6. Coding System and Information Theory (Summer Semester) 

7. System Modelling and Simulation (Summer Semester) 

 

6. PROJECT SUPERVISION 

1. Secured Organizational Messaging System: An Implementation of Private and Public Key 

Cryptography - A Case Study of Federal Medical Centre (FMC) Azare, Bauchi State - 

Nigeria 

2. Java Implementation of Machine Translation using Transfer Approach - A Case Study of 

English-Igala Noun Phrases 

3. Computer Base Test System, Population Information System 

4. Online Commodity Sales Application System (a case study of multipurpose cooperative 

society KUST, Wudil) 
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5. Design and Implementation of Online Scholarship Application and Screening System (a 

case study of Jigawa state scholarship board) 

6. Design and Implementation of NYSC Reporting System Based on ISO10002 (a case study 

of directorate of salary and pension, Jigawa state) 

7. Design and Implementation of E-Learning System (a case study of faculty of computing 

and mathematical science) 

8. A New Watermarking Algorithm Based on Discrete Wavelet-Chirp Z Transform-Singular 

Value Decomposition-QR Decomposition 

9. Staff Induction Training System (a case study of MTN, Nigeria) (etc.) 

7. PUBLICATIONS 
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autism quotient scores based on ethnicity. Malaysian Journal of Medical Research (MJMR), 

5(1), 1-5. 

Abdulkadir, M., Lawan, A. A., & Mamman, S. (2021). Peer-to-peer approach for distributed 

privacy-preserving deep learning. International Journal of Computer, 40(1), 91–108. 

Ahmad, A. L., & Cavus, N. (2018). The efficacy of employing social media for educational 

practice in the unrest regions of the world. Journal of Learning and Teaching in Digital Age, 

3(2), 22-26. 

Ahmad, A. L., & Cavus, N. (2019). Motives behind preference of internet communication tools 

among university students. Journal of Learning and Teaching in Digital Age, 4(1), 41-45. 
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7.2 Book/ Book Chapters 

Zakari, A., Lawan, A. A., & Bekaroo, G. (2017). Towards improving the security of low-

interaction honeypots: Insights from a comparative analysis. In Lecture Notes in Electrical 

Engineering (Vol. 416). https://doi.org/10.1007/978-3-319-52171-8_28 

Zakari, Abubakar, Lawan, A. A., & Bekaroo, G. (2017). A Hybrid Three-Phased Approach in 

Requirement Elicitation. In Lecture Notes in Electrical Engineering (vol. 416, pp. 331–340). 

https://doi.org/10.1007/978-3-319-52171-8_30 

Ahmad, A. L., & Hussain, A. (2018). General Computer Operations for Introductory Computer 

Labs (1st ed.). Mauritius: Scholar’s Press. 

7.3 Conference Presentations 

Lawan, A. A., Abdi, A. S., Abuhassan, A. A., & Khalid, M. S. (2019). what is difficult in 

learning programming language based on problem-solving skills? In Proceedings of 

the International Conference on Advanced Science and Engineering (pp. 18-22). IEEE. 

https://doi.org/10.1109/ICOASE.2019.8723740 

Ahmad, A. L., & Cavus, N. (2015). Efficacy of employing social media for educational 

practices in the unrest regions of the world. Paper presented at the Cyprus International 

Conference on Educational Research, 19-21 March 2015 Girne American University, 

Cyprus. 

Ahmad, A. L., & Cavus, N. (2015).Motives behind preference of internet communication tools 

among university students. Paper presented at the International Computer & 

Instructional Technologies Symposium, 23-24 May 2015, Sandıklı-Afyonkarahisar, 

Turkey. 

 

7.4 Workshop, Seminar Participations and others 

2015- Participation in Model Checking Contest with a Model of “Internet Open Trading 

Protocol (IOTP model) using Petri Net” (published at Model Checking Contest 

MCC2015, France) 

2016- Departmental Seminar presentation on “What is & What is not Big Data??” at the 

Department of Computer Science, KUST 
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2011- Conference attended on North-West ICT4NEED at KUST, Wudil  

2011- Conference attended on “Developing Our Nation’s Economy through Information 

Technology (DONEIT)” at Federal University of Technology Minna 

2010- Computer Operation during “Student Industrial Working Experience Scheme (SIWES)” 

at Abubakar Rimi TV (ARTV) Kano.  

2015- Researched MSc. Thesis on “Investigating Computer Technology Acceptance and 

Readiness of Students: A Case Study in Northwestern Nigeria” 

2011- Researched BSc. Project on “Implementation of Computer Security using 

Cryptography” 

 

8. SPECIAL TRAINING AND AWARD 

2018- Training on “Life-Long Learning Skills for Academic Development” 

at Near East University, Nicosia Cyprus 

2012- Training on “School Records and Classroom Management” 

at Government College Birnin Kudu, Jigawa State. 

2012- Extensive Training on “Assessment of the Core Competence in Employability Service 

Sector (ACCESS)” at NestTrust Nigeria, Kano. 

2003- Trained Peer Educator during HIV/AIDS Peer Educators workshop at Government Day 

Secondary School Hotoro North, Kano. 

2012- Award of Best Computer Graduating Student 2011/2012, KUST, Wudil    

2010- Award of 1st Position at Nigerian Computer Society (NCS): Bi-Annual Olatunji 

Odegbami Competition. 

2011- Award of 1st Position at North-West Zone Ict4needs: Computer Programming Contest 

 

9. ADMINISTRATIVE DUTIES 

2018- Departmental Examinations Officer, Computer Science, KUST 

2016/2017- Students Advisor/ Level Coordinator, Computer Science, KUST 

2018- Secretary Departmental A&PC, Computer Science, KUST 

2018- Departmental Financial Secretary, Computer Science, KUST 

2016- Preparation of proposal for mounting MSc Computer Science, KUST 

2016- Preparation of proposal for mounting BSc Information Technology, KUST 



 

123 
 

2016- Member Undergraduate Project Standardization Committee, Computer Science 

2016- Member Undergraduate Curriculum Review Committee, Computer Science, KUST 

2016- Member Departmental Committee for Research and Publications, KUST 

2016- Preparation of Lab Manual for CSC1301: Introduction to Computer Science (etc.) 

 

10.  COMMUNITY SERVICES 

2008-2010 Voluntary Physics/ Biology Teacher at GGSS Hotoro South, Kano State  

2015- Voluntary Basic Science Teacher at GJSS Hotoro Walawai, Kano State 

2013-2018 Math Teacher at Attarbiyya International College during annual 3-month SSCE extra 

lesson organized by Almajlisul Islami Hotoro 

2008- To-date Member in many community-based development committees, Hotoro (etc.) 

   

11.  SKILLS 

 Skillful in computer operations, internet and software development.   

 Proficient in programming with C/C++ and Java etc. 

 Skillful in working with software packages esp. SPSS, MATLAB etc.  

 Ability to work under pressure and with little supervision.      

 Good cognitive, communication and interpersonal skills. 
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