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Abstract
Prediction of Cetane Number ofVarious Biodiesels Using Mathematical Models

AL -ANI, Ahmed
MA , Department of Mechanical Engineering

November, 2021, 63 pages

The cetane number (CNJf the biodiesel is a very essentialhich lets to
reduce the quality of the biodiesel, thus affect the engine performanites study,
acomparative study between an empirical equatioedr, linear + squared, linear +
interaction and full quadraficmultilayer perceptromeural network EMLP) and
Radial Basis Neural Network (RBNN famodellingCN of biodiesel 36 models with
various combinations of parameters includititge(sum of the saturateB (Y"00 ), i
monounsaturated(® "Y 006 ) andpolyunsaturatedg0 “Y 00 )) \ere proposed to
identify most influencing input parameters for predicting @ The coefficient of
determination and root mean squared error were used to select the best predictive
model.lt is found thatVIE#16 and RBFNN#5with the combination of§ 0 "Y 06 D i
B"Y'06 ) and [BO “Y'00 §) BO Y 00 D riespectively, are the bestodels for
estimating theCN. Moreover, the lowest value of RMSE is recorded for the model of
RBFNN#5 with the combination ofB 0 "Y"06 ) B 0 “Y 00 Dféllowed by ME#22
with the combination of B0 "Y"06 HB 0 Y06 D B Y00 | i

Key Words Biodiese| Cetane number, machine learning, empirical equattaty, acid profile
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CHAPTER |

Introduction

This chapter includes the problems, aims, importance, limitations and
related descriptions of the research.

Background

Sustainable development is the main and nominal goal efhibé world.
Energyis the main engine and the active element fogiaivth and development
In addition it is the basic element for all sectors of the econand a companion
to human life. Sustainable development is based primarily on protecting the
environment, ensuring optimal use and equitable distribution of resooeteeen
the current generation and subsequent generations, such traditional energy does not
allow the achievement of development sustainableis, finding an alternative
energy sourcike biofuelis the best sation for saving the environment.

Biofuels is a term used to refer to all fuels produced from biomass, i.e. waste
from plant organisms avaltée in the present environmemli( et al. 2020Nalule
2020) as shown in Figure 1Biofuel ingredients usually come from oilseeds, corn,
sugarcane, wheat, cassava or cassava, soybeans or soybeans, eucalyptus, palm trees,
sunflowers, pine and algal ¢iDlanreleet al. 2020KocarandC i v2818 Choet
al. 2011;Voloshinet al. 20160Iguin 2012;Li et al. 2008Wahlenet al. 2013.

The use of the prefix "bio" indicates that the fuel is renewable and, in theory,
its use results in less environmental impact, that isfavours sustainable
consumption.

A positive factor in the biofuel pragttion process is that plants, while
growing in large fields, tend to absorb carbon dioxide from the environment.
However, the energy cost of processing raw materials into biofuels is greater than
its benefits.
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Figure 1.1

Biofuel
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production

Gaseous
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Moreover, in2010, global production of biofuels reached 105 billion liters,
more than 1% more than in 200@Hannonet al. 2008Griffiths et al. 2021 Balat

andBalat2009) Biofuels contribute 2% of the world's fuel used in road transport,

Photosynthesis

especially ethanol anddaliesel(Liaquatet al. 2010)Global production of ethanol
fuel reached 86 billion liters in 2010. The United States and Brazil were the top
producers, together contributing 90 percent of global production. The world's
largest producer of biodiesel isstEuropean Union, which contributed’s 8f total
biodiesel production in 201(Bhalaby2013)

At the beginning of this century, the United States announced/aarylan
to produce 150 billion liters of ethanol using wheat, some plants and wood, after it
relied on corn for its ethanol production, which producés d6global production
(MenonandRa02012)

With the exception oéthanol produced by Brazil from sugar cane, whose

production costs are considered the lowest among the countries producing biofuels
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This type of fuel cannot currently compete with fossil fuels without obtaining
government subsidies, special facilitiesgddax incentives that enabled it to survive
commercially in many case@opp et al. 2014) As for biodiesel production,
America and Brazil produce it from soybeans, and the European Union countries
from rapesee@Poppet al. 2014)

Furthermore, the use &ind to grow energy crops, and the transformation
of agricultural fields producing food crops for human or animal consumption into
fields for the production of biofuels, causes an imbalance in global agricultural
diversity, the uprooting of many forestadanatural reserves, an increase in soil
erosion rates, and the consumption of huge amounts of water. Some studies estimate
that producing one liter of biofuel requires 5,000 liters of water, and that producing

13 liters of ethanol needs, for example, RBagrams of cor(Groomet al. 2008)

Figure 1.2
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Biofuels cause a high level of water and air pollution caused by the large
guantities of agricultural pesticides and fertilizers required to grow energy crops,
andwill affect and exhaust soil qualiffimentelet al. 2008)

Other restrictions include petroleum discoveries in different regions of the
world, especially in the Middle East, which play an important role in rearranging
the current and future energystem, and formulating it in the direction of
reconsidering policies to expand or accelerate the production of biofuels and energy
alternatives in general.

Main Advantages of Biofuels
Biofuels havanany advantagg¥an Ginkelet al. 2015Jumbeet al.2009;
De Gorteret al. 2013Pesketet al. 2007Dahmaret al. 2019puch as
It is an environmental fuel
Biofuel contains 11 percent of oxygen and no sulfur.
Its use can extend the life of diesel engines, as it contains more
lubricant than petroleum.

1 Biodiesel is safe in terms of control and transportation, as its
biodegradation is similar to sugar, and its toxicity is 10 times lower
than that of table salt.

1 The success of this technology has been proven experimentally, as it
was used to drive vehiclésr 30 million miles in the United States
of America alone.

1 Its combustion does not produce unpleasant odors such as those
produced by burning fossil fuels, and thus eliminates a form of

pollution.

Disadvantages of Biofuels
There aredisadvantagesor biofuelsas show in Figure 1.3(Deora,et al.
2021;Simionesctet al. 2017)

1 With all the benefits associated with biofuels, its production in the
current market is very expensive, as of now the interest and capital
investment that is invested biofuel production is rather low but
can match the demantl the demands increasedhen the increase

in supply will be practical Long term and potentially very costly, this
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drawback still prevents the use of biofuels from becoming more
common.

Carbon botprint of biofuels is lower than that ofreeentional fuels
when combustedowever the process by which they are produced
makes up for this, as production largely depends on a lot of water
and oil. Large industries dedicated to biofuel production aocsvk

to emit large amounts of emissions and cause water pollution on a
small scale as well, unless more efficient production methods are put
in place the overall carbon emissions will not have a significant
impact, andt causes an increase in NRitrogen Water use: Large
amounts of water are required to irrigate biofuel crops and this may
put pressure on local and regional water resources if not managed
wisely.

Production ofbiofuels consisting mostly of hydrogen, carbon and
carbon dioxidethat contribtes to global warming. It is true that
biofuels produce fewer greenhouse gas emissions than fossil fuels,
but this only slows down global warming and does not stop or
reverseit. Thus, biofuels may be able to help alleviate our energy
needs but thewill not solve all of our problems, as they can only
serve as shoterm alternatives when we invest in other
technologies.

Biofuels are less suitable for use at lower temperatures, they are
more likely to attract moisture than fossil diesel, which causes
problems in cold weather, and they increase the growth of microbes

in the engine that clog engine filters.
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Purpose of the Study

The aim of this study is to evaluatapact of thefatty acidprofile on the
prediction of CN of biodieseT o this aim,6 empirical modelsvere,namely linear
model, linear+interaction modelinear+squared model, full quadratic madel

feedforward artificial neural networkmultilayer perceptron (MLP and radial
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basis functiorare used to identify the most relevant parameters for prediction of

CN of fuel For this purposel 35 different type of biodiesel witht4 methy esters

of the following fattyacids: Capric acid (C10:00), Lauric acid (C12:00), Myristic
acid (C14:00), Palmitic acid (C16:00), Paitoleic acid (C16:01), Steariacid
(C18:00), Oleic acid (C18:01), moleic acid (C18:02), Linoleniacid (C18:03),
Arachidic acid (CR:00), Paullinic acid (C20:01Behenicacid (C22:00), Erucic
acid (C22:01), and Lignoceric acid (C24:0@re used for developing the proposed
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model. To this aim, 36 models were developed with @asi input parameter of

combinations.

Significance of the Study

It is becoming more and more important to improve the precision in the
prediction ofproperties of biodiesel mainly cetane number (CNje CN is a
reference value by which the readiness of the fuel for spontaneous combustion,
under pressure and in the presentoxygen, can be indicatethe cetane number
refers to cetane (hexadecane). Thydrocarborignites easily under pressure and
in thepresence of oxygen. Therefore, cetane is used as a reference fuel to determine
the cetane number of diesel fuel as a measure eigstiion.

Generally, nadetailed stug aboutfinding the important parametetisose
affectthe predicting of CNaccording o aut haor s’ review
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CHAPTER Il

Literature review

Main characteristics of biodiesel, empirical models used to estimate the

properties of biodieseregiven in this chapter.

Biodiesel
Biodiesel is a cleaburning alternativéuel (Demirbas 2008). It is derived

from local and renewable sources such as vegetable oils or anin{&idate 2.)
(Singh et al. 2020). This type of fuel does not usually contain petroleum, but it is
possible to create a blend of biodiesel by mixing it with petroleum diesel (Elkelawy

et al. 2019Hosamani and Kat&018).

Figure 2.1
Biodiesel cycle
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This type offuel is considered completely safe because it is free of any toxic
substance, and it is rapidly degradable (Hughes et al. 2020). Thus, the effect of
releasing biodiesel into the environment in small quantities is less than that of
releasing the same amouwfiordinary fuel or oil. However, getting rid of it in larger
guantities is still generally harmful to the environment. Moreover, it is not
expensive because it is made from cheap raw materials: fats, cooking oil and grease
(Gebremariam and Marchetti 2018 hese items have no other use except for
dumping in the garbage. Additionally, it is almost ready for use without any major
modifications, which significantly reduces cost. It can be used in any model of
diesel vehicles without any need for a new typesiogine (Noor et al. 2020).
Biodiesel improves lubrication and conductivity, making them good for mechanical
functions and the smooth running of vehicle engines (Dey et al. 2021).

In the end, it has many advantages over diesel fuel such as inhereitylubric
norttoxic and biodegradable, free of sulfur and aromatics, higher cetane number
and flashpoint, reducing greenhouse gas emissions (Figure 2.2) anckhaeast
emissions excepting higher N@&missions (Sharma and Murugan 2017; Zhou et al.
2017).

Figure 2.2
CO2 emissions for road transport
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Biodiesel and conventional diesel blends are commonly distributed for use
in the diesel fuel retail market. Much of the world uses a system known as the "B"
factor to determine the amount of biodiesel in fugy mixture. For example, 100%
biodiesel is referred to as B100, 20% biofuel, 80% petrodiesel labeled B20, 5%
biofuel, 95% petrodiesel labeled B5 and 2% biofuel, 98% petrodiesel labeled B2.

Biodiesel is commonly produced by tragsterification of vegable oil or
animal fat feedstock, and other redible raw materials such as frying oil, etc
(Elgharbawy et al. 2021). There are several methods for carrying out this
transesterification reaction including common batch process, heterogeneous
catalysts, spercritical processes, ultrasound methods, and even microwave
methods (Elgharbawy et al. 2021).

Chemically, esterification biodiesel comprises a mixture of rrelkygl
esters of longchain fatty acids. The most common form uses methanol to produce
methyl esers biodiesel because it is the cheapest alcohol available, although ethanol
can be used to produce ethyl ester biodiesel and higher alcohols such as isopropanol
and butanol have been used (Mamat et al. 2019). The use of alcohols with higher
molecular weghts improves the cold flow properties of the resulting ester, at the
expense of a less efficient esterification reaction.

A fat transesterification process is used to convert the oil into the desired
esters base. Any free fatty acids in the essentiareikither converted into soap
and removed from the process, or esterified (to produce more biodiesel) using an
acid catalyst. After this processing, unlike straight vegetable oil, biodiesel has very
similar combustion properties to petroleum diesel fae] can replace it in most
current uses. The methanol used in most biodiesel production processes is
manufactured using fossil fuel inputs. However, there are sources of renewable
methanol made using carbon dioxide or biomass as a feedstock, making their

production processes free of fossil fuels.

Main Characteristics of Biodiesel

As mentioned beforébiodieselis derived from vegetable oils or animal fats
by the transesterification process, and the resulting fuel is used as an alternative to
petroleumbased fuels in diesel engines.

Vegetable oils and animal fats have high densities and viscosities, which

consttutes an obstacle that prevents their use in internal combustion engines directly



22

(Singh et al. 2020) Therefore, it is resorted to treating these materials by the
transesterification method using shohain alcohols (especially methanol), and this
process results in methyl exsts of fatty acidsSalaheldeeet al. 2021) Therefore, it

is necessary to know the physical properties of biodiesel fuel as a function of
temperature. This can be achieved by developing tight mathematical models to
estimate theseroperties or by measuring directly. This is necessary for the
engineering study of combustion processes in engines, especially when using
computersin the design, simulation, figontrol processeand so onResearchers
have paid a lot of attention taodelling the combustion process of biodiesel to use

it optimally by understanding the principleBesidestheypaid a lot of attentiomo

mix the biodiesel with diesahcrease the performance of diesel engine raddce

the demand for petroleum fuelsloreover,there is an important environmental
reason behind the use of biodieskte previous studies showed tha use of this

fuel reduces the emissions resulting from combustion of unburned organic
compounds, suspended matter and carbon monoxide.

In order to obtain accurate estimates of the combustion process of alternative
fuels, it is necessary first to accurately estimate the physical properties, mainly in the
cases of atomization, spraying and combustion in the combustion chamber of the
engine.

Generally, densitgndviscosity are important physical properties that help to
define the quality of fuels, besides being widely used in models of combustion, as
well as for the design, operation, and control of processmEng2019) Density and
viscosity areassociatedo the atomization process of fuels during its injection into
the combustion chamb@doangandLe 2019.

Furthermore, cetane numbg€N) is one of the mainindicators that
characterizéiodiesel fue(Kaisanet al. 2017)TheCN is an indicator of the quality
of combustion of fuels during the ignition procéSshweidtmanret al. 2020) The
cetane number characterizes the flammaubility of the(fisddeckaset al. 2017) The
higher this indicator, the less tenpasses from the injection of fuel into the working
cylinder to the beginning of its combustion, and, accordinglysttioeter the engine
warm-up time (abeckast al. 2017).

The cetane number is a reference value by which the readiness of the fuel
for spontaneous combustion, under pressure and in the peesfenicygen, can be

indicated(Nabiet al. 2015)The cetane number refers to cetane (hexadecane). This
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is a hydrocarbon that ignites easily under pressure and in the presence of oxygen.
Therefore, etane is used as a reference fuel to determine the cetane number of
diesel fuel as a measure of sglition. The behavior of the fuel is compared to
that of cetane. A cetane number of i80Gneanthat the fuel behaves like 100%
cetane. However, there ® need for cetane to be present in the fuel: the cetane
number is a reference value that says sometitdogt the behavior of the fuel.

In general, the higher the cetane number, the better to run a diesel engine on
it. Several scientific studies have bemalyzedhe effect of cetane number of the
performance of diesel engif€hukwuezieet al. 2017;i ¢ 1 ramdiAltiparmak
2003; Ahmedand Chaichan2012;Li et al. 2014Musthafa2017;Labeckaset al.

2017). For instancel ¢ 1 ragdiAltiparmak (2003) investigatedthe effect of
various fuel cetane numbers on fierformance of the diesel engine. They found
that the performance of engine increased when the cetane nisvdimve than
54.5. Ahmed and Chaichan (2012¥tudied the effect of adding theeghythexyl
nitrate on theetane number of fuel dieskl.et al. (2014) used threetane number
improvers which added to the biodiesalethanol blends with various ratios to

improve the engine performance.

Empirical Models

Many models and techniques asach as machine learning models and
mathematical models are used as alternative tools to descript a complex system. They
are utilized in a wide variety of applications.

Numerous scientific researchers have used various empirical models to
predict the prperties of biodieseFor exampleFreitas et al(2011)used different
models for predicting the viscosity of biodiesel at various temperatures. Pratas et al.
(2011)pr oposed a met hodol ogy based on the
contribution method dr predicting the density of ten samples of biodiesel as a
function of temperatureRamirezVerduzco et al.(2012) developed empirical
correlations to predict the cetane number, density, viscosity, and higher heating value
(HHV) of biodiesel from its chemal compositionPilot-Rodriguez et al(2013)
predicted the cetane number of biodiesehg artificial neural networks. The authors
used an array of 11:5:1, eleven entries for the composition of methyl esters in
biodiesel, five neurons in the hidden layer, and one variable for the output that

corresponds to the cetane number. Meng et(2014) obtained a correlation
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coefficient of 0.9772 on the prediction of the kinematic viscosity at 313 K. Balabin
et al.(2011) showed that their developed artificial neural network had a small mean
squared error with respect to other models. Saldana @04dl2)reported different
models of artificial neural network with correlation coefficientvestn 0.985 and
0.995.Miraboutalebi et al(2016)developed and compared the random forest and
ANN models to estimate CN based on the fatty acid medlsyers ontent of
biodiesel Tong et al.(2011) used multiple linear regression model (MLRM) to
correlate CN and fatty acid methyl ester (FAME) of biodiebkelsseinpour et al.
(2016) utilized partial least square (PLS) based on ANN was also used to estimate
CN from its FAMESs In another study, the effect of biodiesel composition on Cetane
number was defined through straigiain saturated factor (SCSF) and modified the
degree of unsaturation (DUm) comparing 9 different biodiesel {ivishraet al.

2016) Theregression coefficient of 0.95 and average absolute deviation of 1.63 was
reported in this study.

Artificial Neural Network Models

The ANN is a simulation technique fonodellinga complex systemsee
Figure 2.1(Kalogirou 2003; Kalogirou 2011}t hasbeen utilized in various areas of
science and engineeringhe scientificresearchers have developed manyesypf
ANNs such as of which théeedforward neural networKFFNN) or multilayer
perceptron (MLP)s one of the most popular ANNs. The nodenbers in the input

and output layers are estimated by the nature of the priablem
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Figure 2.3
ANN model
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In general, there are three main layers including input layer, hidden layer and
output layer in MLP.The number of hidden layes estimated based on ttr&al and
errormethod. The backpropagation algorithmvsdely usedas a learning algorithm
and it is a gradient descent algorithm.

The logistiesigmoid (ogsig) and tangersigmoid (ansig are used as
activation functionsvhose outputs lie between 0 and 1 and are defined as
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Figure 22 shows theschematic diagram of typical mulayer feed forward
neural network architecture
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Figure 24
Multi-layer feed forward network model

Input Layer(s) Output layer

Hidden Layer(s)

Another type of ANN is radial basis function (RBFNIRBFNN is one of the
most popular kinds of ANNs that utilizes radial basis flomgi as activation
functions It is a type of FFNN composed of three layers (input, hidden and output
layers)(BaratrHarooniandNajafi-Marghmaleki2016) Gaussian function isidely
used as the transfer function in computational umitgddition the training of the
RBFNN model is terminated once the calculated error reached the desired values or
number of traning iterations. The number of nodes of input layer is identical to the

number of model inputs.

Mathematical M odel (ME)

Several matheatical models are utilized to predict the properties of biodiesel
such as response surface methodology (RIREM is applied for developing,
improving, and optimizing complex procesg€kpalaekeet al. 2020Betiku et al.
2014) This method has some benefits lilessening the number of measurements
and bringing analytically results.

Based on the actual data, regressiaalysis was carried out by the following
model:



where®is the predicted response, a constant, the linear coefficient,
the squared coefficient, afid the crosgproduct coefficient, n is the number of

factors,w andw are the independent variables.

27
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CHAPTER llI
Material and Method

This chapterprovidesinformation aboutthe data collection and analysis
proceduress well as how the findings aaealysed.

Data Collections

Thevalueof CN andchemical compositionsf various type of iodieselare
collected from the previous studigSdpinathet al. 2009;Tong et al. 2011 Piloto-
Rodriguezet al. 2013;Azam et al. 2005Winayanuwattikuret al. 2008) Nameof
the selected biodiesel atige fatty acid composition of 135 biodiesel including 14
methy esters of the following fattgcids: Capric acid (C10:00), Lauric acid (C13;00
Myristic acd (C14:00), Palmitic acid (C16:00), Paitoleic acid (C16:01), Stearic
acid (C18:00), Oleic acid (C18:01),Adleic acid (C18:02), Linoleniacid (C18:03),
Arachidic acid (CR:00), Paullinic acid (C20:01Behenicacid (C22:00), Erucic acid
(C22:01), and Lignoceric acid (C24:00¢spectivelyare shown in appendix.A

In this study,the estimating values of the sum of the saturatdy(O0 ), i
monounsaturated Bl “Y"00 ¥, i polyunsaturated B0 "Y"00 )) iwere estimated
using the below equations.

0YOb0i &6 o
0YOb0i O®éad 0®SE o o
YOb Oi 06 codam o

The summary statistics of the independent variables, which are considered as

input and dependent variables (output), are given in Takle



Table 3.1

Models with different input combinations

Variable Mean Standard deviation Minimum Maximum
C10:00 0.821 8.613 0 100
C12:00 5.18 18.54 0 100
C14:00 3.27 11.83 0 100
C16:00 13.09 13.87 0 100
Cle:01 1.164 8.712 0 100
C18:00 7.89 13.07 0 100
c18:01 34.99 22.43 0 100
C18:02 22.94 22.17 0 100
C18:03 4.07 12.74 0 100
C20:00 1.752 9.404 0 100
C20:01 0.975 8.651 0 100
C22:00 0.959 8.619 0 100
C22:01 1.27 9.621 0 100
C24:00 1.22 9.789 0 100
0 "Y00 0 384 23.92 0 100
0 Y06 § 27.01 25.49 0 100

YO0 0 34.19 28.74 0 118.99

CN 54.257 10.526 22.7 100
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ANN models

In this study,TRAINLM wasutilized as a training functiomn addition Mean
squared error (MSE) is estimated to find the best performance of the training
algorithm. The declining gradient of the bgmopagation algorithmvas usedo
reduce the value of MSE between the actual and estimated oMpteover,
Gaussian functiors usedas the transfer function in computational ufotsRBFNN.
Figures 3.1 and 3.2illustrate the explanation process of the proposed MFENH
RBFNN method. In this study, the data are divided into training and testing groups
and the results by the models are compared with &8t of the data comprise the
training part and the othe5% goes into the testing part. A series of models are
examined to estimatle optimum number of hidden layers (HL), number of neurons
(NN) and transfer function (TF) for the MFFNNodel.



Figure 3.1
The proposed algorithm of predicti@N using MFFNN
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Figure 3.2
The proposed algorithm of predictif@gN usingRBFNN
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ME Models

The response surface regression model was used to study the response pattern
and to determine the optimum combination of variables. The Minitab statistical
software 17 was used for thegression and graphical analysis of the data.

Generallythe following model carried out regression analysis

W T (o [ T ow o8

where®is the predicted response, a constant, the linear coefficient,

the squared coefficient, afnd the crosgproduct coefficient, n is the number of

factors,w andw are the independent variables.
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Model Performance Criteria
The performance of the proposed models were evaluated based on the

following equations

N s s s e B QR Qf

Y T nNowl RQ od
B Wl Wk

quenowDuQuQs-ér D Wp o

Y¢E saoQu)lsr]owlelQalé— O ®f oX

Proposed Models

Sevenconditions were considered in the model development of empirical
models with different input combinations and are utilized to train the model to
identify the best combination of inputs to estimateGineof biodiesel. In this work,
several empirical modewith various possible combinations of the used inputs were
built as shown in Table 3. Then they were trained respectively and then the
performance of these models was estimated.



Table 32

Models with different input combinations

Model Name Combination of input

Model#3 VOB D i

Model#4 B0 Y00 {Bi0 Y00 0 i
Model#5 B0 Y00 HBY'00 O i

Model#6 B0 "Y'06 BiY00 0 i

Model#7 B0 "Y'06 HB O "Y'06 BIY'00 U i

34
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CHAPTER IV

Findings and Discussion

This chaptepresents théindings based on the collectaethta.lt should be
noted thatseries of models were examined to estimate the optimadels,, it was
found thatansigwas chosen abfie best TF for MFFNN model

Evaluate thelnfluence oflnput Variables

In the first casefarameter selection for one input2 models withoneinput
were developed to find the most influencing input parameters for estimati@iNthe
Table 4.1 showshe value of the Bquaredand RMSE for all developed models.
Additionally, the mathematical equation for models (MBAE#6) can be expressed

as shown below.

60 V& X ™Mroydp O Y00 0 i 15
60 Vv@p McP 0OYOODiMimoBw O YO0 D i 8
60 @®T OMoC Pwd YOO O i ®
60 @@ mTtT®u o 0080 msimodc 0Y0D D i 18
OO0 T@uv ™M@ T 1L YOO Ui ®
00 T®p MYDg YOO U im@tmm @l p "Y'OO 0 i T

It is found thatRBFNN#2 gave the best performance followed by ENN,
FFNN, and CFNN for estimating the input. Moveo, it is observed that RBFNN#2
gave the highest®Rvalue with a value 0®.6459followed by ME#4 with a value of
0.6277. Furthermore, it isioticed that the lowest RMSE value®®417is recorded
for RBFNN#2followed byME#4 with RMSE value 06.3992



Table 4.1

Performance of the proposed models with one input

Model Name  Input R? RMSE

MLP#1 0 Y08 01 0153 10.4066
MLP#2 0Y06 01 g6169 65181
MLP#3 YO0 01 4181 80070
RBENN#1 0 Y08 01 7987 8.8062
RBFNN#2 0 Y08 01 geasg 62417
RBFNN#3 0 Y08 01 4579 7.7257
ME#1 0 Y08 0 i 0078 10.4462
ME#2 0 Y08 0 i 0565 10.1863
ME#3 0Y08 01 6270 6.4048
ME#4 00801 6277 63992
ME#5 YO0 01 4195 7.9899
ME#6 Y0001 90048  7.9735

In the second cas@drameter selection fawo inputs), 18 models withtwo
combination of parametevgereproposed as shown in Table 4.2. Eqs. (4(%)18)

representhe expression of thenathematical equation for models (MEME#18)
60 o@ x Muyx 0YOO U im®emt Y00 i 18
60 o@®@c Mt 0YO00Iimg Ty YOO Ui

minnt 0YO00i mMmp p w'YOO Ui @
60 o@w ™ YPob YOO D imdx wx YOO Ui

TP QU OYOODi YOO i T80
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MImnPcd YOO 0i Mrmmy P Yoo b i

Mmoot @ YOO i Y006 i TP
60 @ty e Yo Y0d 0 im®decud YOO i ™ p
60 @ M M XcpOYOdDimg pt p0d YOO 0 i

munp Yortd YO TP w0 YOd0i 19 ¢
60 o@®p MpPpctOYOdD M Prmgd YOb D i

mrnp O°Y0d0i0 YO0 0 i 0
60 @@ @ & X udx O YO0d D img @1 0 Y00 0 i
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60 LRWM VWD YOS D I me v YO0d D i TP U
60 V@V T ET TV YOS MBtooTt YO D i
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The analysis show that ME#1fth a combination ofdd "y'os pgy08 { has
the highest value of Rwhile RBFNN#5 has thiewest value of RMSE with a value
of 5.3128.
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Table 4.2

Performance of the proposed models Wit inputs

Model Name  Input R? RMSE
MLP#4 BO Y06 ) B"Y'0d Ui 0.7079 5.7526
MLP#5 BO "Y'06 ) BO "Y'06 0 0.6707 6.0516
MLP#6 B0 Y06 DB"Y'06 0 i 0.6264 6.4513
RBFNN#4 B0 "Y'0b6 ) BY'0O5 Ui 0.6678 6.0784
RBFNN#5 BO "Y'06 ) BO "Y'06 0 0.7528 5.3128
RBFNN#6 B0 "Y'06 DB"Y'06 0 i 0.6711 6.0644
ME#7 B0O Y00 ) B'Y'0O0 0 i 0.7001 5.7841
ME#8 B0O "Y'00 ) B'Y'00 Ui 0.7086 5.7041
ME#9 B0O "Y'00 ) B'Y'00 Ui 0.7145 5.6471
ME#10 B0O Y00 ) B'Y'00 Ui 0.7170 5.6213
ME#11 BO Y08 ) BO Y06 0 0.7039 5.7467
ME#12 B0 Y06 ) BO "Y'00 O 0.7198 5.5932
ME#13 B0 Y06 ) BO "Y'06 O 0.7058 5.7288
ME#14 BO Y08 ) BO "Y0b 0 0.7205 5.5860
ME#15 B0 Y06 DB"Y'086 0 i 0.7040 5.7460
ME#16 B0 "Y'0b6 DB"Y'06 0 i 0.9880 5.5945
ME#17 B0 Y06 DB"Y'0b6 0 i 0.7039 5.7472
ME#18 B0 Y06 DB"Y'06 0 i 0.7221 5.5701

In the third casegarameter selection fahreeinputs (all inputs) all input
variables are utilized as input parameters for the proposed models. It is found that
ME#22 with a combination of B0 Y00 ) B0 "Y'00 ) B"Y"06 { thas shown
good prediction accuracy with value of Rnd RMSE of (294 and 5.4981
respediely as shown in Tabl&.3 It should be noted thaEqgs. (419) —(4.22)

representhe expression of thenathematical equation for models (ME¥ME#22)

60 o® Treyx O0YO80Iim®ce 07YO0D DI

Tto @ Y00 Ui P W



60 @@ T ww OYO080img pe 0TYO0dD mdtuvo "YOb D i
mMrnpp PO YOd0i mrmpx x0 YOO i
Mt @ YOO 0 i & T
60 o® T8I Y O Y00 )iy P 07Y08 0 fmstg T "YO0 Ui
mrmnmoxd YO8 0i07Y0d i
TP Pwhd YOO Oi YOo i
TMINTPoo6 YOO 0 iY0Od i 8 p
60 weoc® OYObOicH 0OYObOB YOO Ui
MCCL DYOO0iI TMprye 07YO0S 0 i
M L YO 0i mMpcopdYOS0i0d YOO i
T ¢uv 0YO000i" YO0 i

m X 0 Y00 0i"Y0od i 18 ¢
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Table 4.3

Performance of the proposed models \thiteeinputs

Model Name  Input R? RMSE
MLP#7 BO "Y'06 HBO "Y'0b ) B"Y'06 0 i 0.6491 6.2783
RBFNN#7 BO "Y'06 HBO "Y'0b ) B"Y'06 0 i 0.6986 5.8251
ME#19 B0 "Y'06 DBD "Y'00 ) BY'08 0 i 0.7041 5.7451
ME#20 B0 "Y'0b6 DBDO "Y'06 ) BY'08 0 i 0.7215 5.5766
ME#21 B0 Y06 DBO "Y'06 ) BY06 Ui 0.7213 5.5784
ME#22 B0 "Y'06 DBDO "Y'00 ) BY'08 O i 0.7294 5.4981
Comparative Analysis

In this section, the model ranking is explored based on the vaRisauiared
andRMSE as shown in Tables4 and 4.5or all proposednodels.Based on the
value of Rsquaredit is found thatME#16 andRBFNN#5with the combination of
[BO YO0 DEY'00 ) and[B 0 Y06 )B O Y00 Préspectively, are the best
models for estimating thEN. Furthermore, the lowest value of RM&Erecorded
for the model of RBFNN#5 with the combination ofB0 "Y'00 ) B0 Y00 D i
followed by ME#22 with the combination of [B0 YO8 § B0 Y006 [ i
B"Y"O0 {ds shown in Table 4.5.

Moreover, estimatedalues of CN using the bestput combination of all
developed models amompared with the actual valees shown in Figure 4.1t
should benoted that the number of the selected biodiesel used for testing is shown in
Table 4.6.Furthermore,the performance oproposed modelss compared with
previous modes used in the literature as shown in Tahle 4.7

Figure 4.2 shows theomparisorbetweerthe actual data and estimated data
of CN expressed by therelative errorlt showed that thealues of relative error are
with the range of 9.023.0Q which can be considered an excellent agreement

between the measured and estimated data.



Table 4.4
Ranking ofproposednodels based oR-squared

Model

Name Is3=4 |ga=4 {35=1 R Rank
ME#16 n ¥ 0.9880 1
RBFNN#5 + + 0.7528 2
ME#22 + + + 0.7294 3
ME#18 + + 0.7221 4
ME#20 + + + 0.7215 5
ME#21 + + + 0.7213 6
ME#14 + + 0.7205 7
ME#12 + + 0.7198 8
ME#10 + + 0.7170 9
ME#9 + + 0.7145 10
ME#8 + + 0.7086 11
MLP#4 + + 0.7079 12
ME#13 + + 0.7058 13
ME#19 + + + 0.7041 14
ME#15 + + 0.7040 15
ME#11 + + 0.7039 16
ME#17 + + 0.7039 17
ME#7 + + 0.7001 18
RBFNN#7 + + + 0.6986 19
RBFNN#6 + + 0.6711 20
MLP#5 + + 0.6707 21
RBFNN#4 + + 0.6678 22
MLP#7 + + + 0.6491 23
RBFNN#2 + 0.6459 24
ME#4 + 0.6277 25
ME#3 + 0.6270 26
MLP#6 + + 0.6264 27
MLP#2 + 0.6169 28
RBFNN#3 + 0.4579 29
ME#5 + 0.4195 30
MLP#3 + 0.4181 31
RBFNN#1 + 0.2987 32
ME#2 + 0.0565 33
MLP#1 + 0.0153 34
ME#1 + 0.0078 35

ME#6 + 0.0048 36




Table 45
Ranking ofproposednodels based oRMSE

Model

Name I=q=1 {3 =4 RMSE Rank

RBFNN#5 + + 5.312777 1
ME#22  + + + 5.498141 2
ME#18 + + 5.570132 3
ME#20  + + + 5.576624 4
ME#21  + + + 5.578368 5
ME#14  + + 5.585976 6
ME#12  + + 5.593154 7
ME#16 + + 5.594502 8
ME#10  + + 5.621313 9
ME#9 + + 5.647074 10
ME#8 + + 5.704117 11
ME#13  + + 5.72878 12
ME#19  + + + 5.745142 13
ME#15 + + 5.746025 14
ME#11  + + 5.746691 15
ME#17 + + 5.747195 16
MLP#4  + + 5.752562 17
ME#7 + + 5.78411 18
RBFNN#7 + + + 5.825092 19
MLP#5  + + 6.051561 20
RBFNN#6 + + 6.064389 21
RBFNN#4 + + 6.07844 22
RBFNN#2 + 6.24165 23
MLP#7  + + + 6.278317 24
ME#4 + 6.399153 25
ME#3 + 6.40478 26
MLP#6 + + 6.451321 27
MLP#2 + 6.518062 28
RBFNN#3 + 7.725684 29
ME#6 + 7.973451 30
ME#5 + 7.989883 31
MLP#3 + 8.006996 32
RBFNN#1 + 8.806161 33
ME#2 + 10.1863 34
MLP#1 — + 10.40656 35
ME#1 + 10.44623 36
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Figure 4.1

Comparison between actual and estimatatlies
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Table 4.6

Name of the selectdmodiesel used for testing data

Number of biodiesel

Name of biodiesel

1

©O© 00 ~NO UL WN

W WWWNDNDNDNNMNNNNNREPERPRPERPEPEPEPRPEPRPRPREPR
WNPFPOOO~NOURARWMNMPEPOOONOOUGMWDNEO

Beef Tallow

JCt 50:50

Coconut

Inedible tallow

Canola

Lard

Yellow grease

Linseed

Wild mustard

Waste palm oil

Palm

Olive

Peanut

Rape

Soybean

Sunflower

Grape

H.O. Sunflower

Corn

Almond

Apocynacea&rvatamia coronaria Stapf
Cannabinaceae Cannabis sativa Linn
Combretaceae Terminalia bellirica Roxb
Corylaceae Corylus avellana

Aleurites moluccana Wild

Euphorbia helioscopia Linn

Perilla frutescens Britton

Litsea glutinosd&obins

Magnoliaceae Michelia champaca Linn
Rosaceae Princepia utilis Royle
Simaroubaceae Quassia indica Nooleboom
Sterculaceae Pterygota alata Rbr
Ulmaceae Holoptelia integrifolia
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Figure 4.2

Comparison between actual aedtimated/aluesfor tested data
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Table 47

Comparison of present modelith other existingnodels in the literature

Marquardtbackpropagatiotearning algorithm,
and tangent sigmoid and ihear transfer
functions in the hidden and output layers,

respectively

Model o Statistical

used Characteristics oerformance Ref.

MLP Onehidden layer MLPmodel with gradient Relativeerror = Ramadhagt
descent momenturbackpropagation learning 3.4% al. (2006)
algorithm, and tangent sigmoid and linear
transfer functions in the hidden and outpt
layers, respectively

MLP Onehidden layer MLP model with 5 hidden R?=0.9544 Piloto-
neurons,backpropagation learninglgorithm, Rodriguezt
and logistic output function al. (2013)

MLP Onehidden layer MLP model with 2 neurons Average Giwaet al.
LevenbergMarquardt backproggation  absolute (2015)
learning algorithm, anbbgarithmic sigmoid and deviation =
linear transfefunctions in the hidden and outpu 1.637%
layers, respectively

MLP Onehidden layer MLP model with 6 hidden MSE = 0.0135 Rocabrune
neurons, Levenberdlarquardt Valdés et al.
backpropagation learning algorithm, and (2015)
hyperbolic tangent and line&ransfer functions
in the hidden and output layersspectively

MLP Two-hidden layer MLP model with 7 and & R>=0.95 Miraboutalebi
neurons in the second and third hidden taye RMSE = 2.53 et al. (2016)
respectively, andangent sigmoid and linear
transfe functions in the hidden and outpu
layers, respectively

MLP 14 onehidden layer MLP models with 280 R?=0.9934 Hosseinpour

- neurons in the hidden layer as inner modéhe  MSE = 0.723 et al. (2016)

PLS partial least squar@LS)approach, Levenberg
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Table 47
Continued
Model o Statistical
used Characteristics performance Ref.
ME#16 Input paramters werB 0 “Y"0d DB"Y"00 § i R?=0.988 Current
RMSE =5.5945 study
RBFNN#5  Input paramters werd[0 "Y"00 B0 Y06 D i R?=0.7528
RMSE =5.3128
ME#22 Input paramters werB 0 “Y"006 OB O Y00 D i R?=0.7294

B"Y"00 { i

RMSE = 5.4981
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CHAPTER V

Conclusion andFuture Work

This chapter presents conclusions based on the research findings according to

the objective of the research and givesommendations accordingly

Conclusions

In this study, the effect of the effect the sum of the saturated,

monounsaturated and polyunsaturated on thdigiten CN was investigated. 36

models with various input combinationsvere developed Furthermore, the

proposed models were compared in terms of predictive accuracy to select the best

model. The most important results can be summarized in the following cases:

T

Forcase | ¢ne input parametgiRBFNN#2 and ME#4nodelsgave
the highestalueof R? and lowest value of RMSE.

For case Il (two inputs parameteriat ME#16 with a combination
of [BO "y'0b {Bi"Y"0b {Has the highest value of Rvhile RBFNN#5
with combination of B0 "Y"06 (B0 "Y 06 Phas the lowest value of
RMSE with a value of 5.3128.

For case Il (three inputs parameteME#22with a combination of
[BO Y06 B0 Y06 DB"Y'00 {hias shown good prediction
accuracy with value of fand RMSE of 7294and5.4981

Two parameter combinations of input variables are satisfactory to
estimate the CN with great accuracy.

The results showed th&0 Y 06 thas shown most significant
effect onthe value of CN

The mathematical models and RBFNidve performed well and
presented high accuracy in estimating the valueChf for the

biodiesel samples
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Future work

In the present studyhe effect of storage period and condition on the value
of CN wasnot taken into account. Thus, measui@g of various type of biodiesel
at different storage period and conditweil be future research. Besidele effect
of fatty acid profile, storage period and storage condition on the prediction of CN
valueshould be considered for future work. Moreover,dbeuracy of developing
a hybrid artificialneuralshouldinvestigate to understand the influencettudése

parameters on CN value
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Cetane Number for Different Type of Biodiesel

Appendices

Appendix A

=

Biodiesel name T3 = =5 = {3=4 cN
Capric acid ester 0 0 100 47.2
Lauricacid ester 0 0 100 60.8
Myristic acid ester 0 0 100 66.2
Palmitic acid ester 0 0 100 74.3
Palmitoleic acid ester 100 0 0 51
Stearic acid ester 0 0 100 75.6
Oleic acid ester 100 0 56.5
Linoleic acid ester 100 38.2
Linolenic acid ester 100 22.7
Arachidic acid ester 0 100 100
Paullinic acid ester 100 0 0 64.8
Behenic acid ester 0 0 100 79.49
Erucic acid ester 100 0 0 76
Lignoceric acid ester 0 0 100 82.23
Anacardiaceae Rhus succedanea Linn 46.8 27.8 25.4 52.22
Annonaceae Annonticulata Linn 52.6 21.7 25.7 53.47
Thevetia peruviana Merrill 60.9 12.6 26.5 57.48
Vallaris solanacea Kuntze 35.3 40.4 24.3 50.26
Balanitaceae Balanites roxburghii Planch 36.7 38.5 24.8 50.46
Burseraceae Canarium commune Linn 38.3 23 38.7 55.58
Terminalia chebula Retz 37.3 39.8 22.9 49.6
Compositaceae Vernonia cinerea Less 32 22 46 57.51
Croton tiglium Linn 56 29 15 49.9
Jatropa curcas Linn 40.8 321 27.1 52.31
Joannesia princeps Vell 45.8 46.4 7.8 45.2
Putranjiva roxburghii 33 3 118.99

Sapium sebiferum Roxb Flacourtiaceae 27.4 0 72.6 30.72
Guttiferae Calophyllum apetalum Wild 48 30 22 51.57
Calophyllum inophyllum Linn 45.2 15.8 39 57.3
Garcinia combogia Desr 57.9 1.2 40.9 61.5
Garcinia indica Choisy 394 1.7 58.9 65.16
Garciniaechinocarpa Thw 52.6 0 47.4 63.1
Garcinia morella Desr 49.5 0.9 49.6 63.52
Mesua ferrea Linn 60 15 25 55.1
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Icacinaceae Mappia foetida Milers
llliciceae lllicium verum Hook

Labiatae Saturega hortensis Linn
Lauraceae Actinodaphne angustifolia
Neolitsea cassia Linn

Neolitsea umbrosa Gamble

Meliaceae Aphanamixis polystachya Park
Azadirachta indica

Melia azadirach Linn

Swietenia mahagoni Jacq

Menispermaceae Anamirta cocculus Wight & Hi

Moraceae Broussonetia papyrifera Vent
Moringaceae Moringa concanensis Nimmo
Moringa oleifera Lam

Myristicaceae Myristica malabarica Lam
Papaveraceae Argemone mexicana
Papilionaceae Pongamia pinnata Pierre
Rhamnaceae Ziziphus mauritiana Lam
Rubiaceae Meyna laxiflora Robyns
Rutaceae Aegle marmelos correa Roxb
Salvadoraceae Salvadora oleoides Decne
Salvadora persica Linn

Sapindaceae Nepheliulppaceum Linn
Sapindus trifoliatus Linn

Sapotaceae Madhuca butyracea Mac
Madhuca indica JF Gmel

Mimusops hexendra Roxb

Urticaceae Urtica dioica Linn
Verbenaceae Tectona grandis Linn
Arachis hypoga Linn

Cocos nucifera

Oryza sativa

Elaeis guineensis

Glycine max (L.) merr

Helianthus annuus L.

Zea mays L.

Arachis hypogaea Linn.

Sesamum orientale L.

Sesamum indinum L.

Prunus dulcis

Brassica rapa (napus)

38.4
63.24
12
54

21
21.5
61.9
22.3

56
46.4
14.8
83.8
81.5
44.1
18.5
51.8
68.7
32.5
30.5

8.3

5.4
49.5
55.1
27.5
46.3

63
14.6
29.5

40.07

4.7

41.79

45.56

24.04

22.52
35.3

63.57

35.52

41.21

69.14

66.06

36.8
24.4
80

3.3
6.7
42.6
7.5
67.7
16.1

72
0.8
0.9

61.4
19
12.4
39.7
44.1
0.1

8.2

17.9

76.4
46.8
40.69
0.96
35.36
11.07
61.93
67.12
48.58
16.46
49.85
44.61
22.63
26.32

24.8
12.36

94.6
92.7
72.3
35.9
30.6
9.4
24.5
53.6
131
154
17.6
54.9
20.1
29.2
18.9
27.8
254
91.6
94.6
50.5
36.7
69.5
35.8
34

23.7
19.39
94.37
22.88
43.79
14.07
10.39
16.15
20.21
14.66

14.2

8.24

7.61

50.7
50.71
25.46

63.2
64.05
60.77
48.52
57.83
41.37
52.26
64.26
41.25
56.32
56.66
61.81
44.45
55.84
55.37
50.42

48.3
66.13
67.47
64.86
59.77
65.27
56.61
59.32
38.73
48.31
48.86

65.8
50.09
59.11
42.21
41.41

46.3
54.03
4591
46.92
50.54
52.98




Carthamus tinctorius Linn.

Olea europoea Linn.

Irvingia malayana Oliv. ex A.W. Benn
Parinari anamensi Hance

Ceiba pentandra (L.) Gaertn.
Dipterocarpus alatus Roxb. ex G. Don
Ricinus communis L.

Jatropha currcas L.

Nicotiana tabacum L.

Citrus maxima (Burm.) Merr

Carica papaya Linn.

Nephelium lappaceum L.

Cucurbita moschata Duchesne

Citrus reticulate Blan co

Dasymaschalon lomentaceum Fiet & Gagnep

Rapeseed
Soybean
Rubber seed
Cottonseed
Jatropha
Karanja
Jatropha:palm 50:50
Neem
Sunflower
Palm

Mahua

SFCt 50:50
Beef Tallow
JCt 50:50
Coconut
Inedible tallow
Canola

Lard

Yellow grease
Linseed

Wild mustard
Waste palm oil
Palm

Olive

Peanut

Rape

14.19
81.09
3.07
43.52
26.51
21.98
31.15
41.79
11.01
24.7
73.36
56.21
38.75
21.38
47
64.1
22.8
27.8
19.2
42.1
53.2
42.7
41.3
44
43.1
36.4
19.4
42.4
26.1
8.2
41.9
60.3
41.9
48.8
20
59.1
44.1
46.4
76
55.7
65.3

76.72
4.73
0.44

19.59

43.76

61.94

44.56

38.88
75.8

45.32
5.12
3.98

33.18

52.45

14.91
30.5
62.3
51.1
55.8
31.1
191
20.3
16.7
10.8
10.5
16.1
32.6

3.8
18.3
2.7
6.7
28.5
13.7
15.8
73
27.2
10.7
8.9
8.4
28.7
28.3

9.12
14.22
96.21
36.89
29.64

17
24.29
19.34
13.19
30.02
21.56

39.6
28.11
26.03
38.11

54

14.1

21

23.8

26.2

17.8

36.4

39.6

44.2

45.6
46.2
44.4
45.3

52.2

81.5
45.6

7.8

40.9

27.9

3.6
44.3
44.7
15.6
15.6

6.5

39.32
55
66.13
56.35
49.52
40.29
48.32
48.91
40.1
49.29
56.27
61.17
51.87
46.48
57.35
46
48
51
52.1
54
52
59
58.7
61.6
64
61.4
54.6
58.8
58
60
61.7
55
63.6
52.9
52
61.1
60.4
61
57
53
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Soybean

Sunflower

Grape

H.O. Sunflower

Corn

Almond

Apocynaceae Ervatamia coronaria Stapf
Cannabinaceae Cannabis sativa Linn
Combretaceae Terminalia bellirica Roxb
Corylaceae Corylus avellana

Aleurites moluccana Wild

Euphorbia helioscopia Linn
Perillafrutescens Britton

Litsea glutinosa Robins

Magnoliaceae Michelia champaca Linn
Rosaceae Princepia utilis Royle
Simaroubaceae Quassia indica Nooleboom
Sterculaceae Pterygota alata Rbr

Ulmaceae Holoptelia integrifolia

25.6
25.6
19.1
62.9
66.4
77.6
50.9
15
24
88
10.5
18.8
9.8
2.3
29.2
32.6
36
44
55.2

59.1
63.3
69.4
27.6
25.3
8.4
16.4
80
31
2.9
77
64.8
83.7

42.5
43.6
48
32.4

15.3
111
11.3
9.3
8.1
13.9
32.5

35
8.9
12.2
19.3

96.3
25.8
22.4

23
44.2

49
50
48
53
53
57
56.33
36.4
56.24
54.5
34.18
34.25
30.09
64.79
50.28
48.94
46.74
51.09
61.22
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