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ABSTRACT 
 
 

Deep reinforcement learning has performed extraordinarily in sequential tasks where they are 

augmented with deep neural networks as an approximation function and when the learning 

process is based on the immediate environment. A drawback to this however is that the deep 

RL has to learn features for every state from the environment and must also learn a policy. 

As a result, deep RLs can be time intensive and computationally expensive to train. They 

also require very large amounts of data for training These reasons make deep RLs largely 

unsuitable for many applications.  

 

In this research, training has been sped up by attempting to solve the issue of features 

learning, solving a substantial part of the problem and reducing the work that needs to be 

done by the deep RL. It proves that the use of small dataset demonstrated by a non-expert 

human actor, with supervised learning during the pre-training phase results in significant 

improvement in both time and performance. This work has been empirically evaluated using 

the deep Q-network in the AI control environment Cart-Pole. The results show that having a 

trained policy network serves in providing a major improvement with the time required for 

training my deep RL model, even when data used is small and not perfect. 

 

Keywords: Reinforcement Learning, Q-Learning, Deep Learning, Pre-training 
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CHAPTER 1 

INTRODUCTION 

 
 

Reinforcement learning is an area of machine learning focused on how the intelligence system 

acts in an environment. It has the objective of making a series of decisions that would yield 

the best rewards in an arbitrary and complex environment. The model has to figure out by 

itself how to maximize the intended output or reward and adjusts its decisions based on 

feedback. 

Conventional machine learning algorithms based on supervised or unsupervised learning 

usually require huge datasets to work efficiently and its work is only limited to the 

environment that it was trained at. Any other form of input that the model is not familiar with 

cannot be processed without preprocessing actions which makes it difficult to handle arbitrary 

data. 

 

Figure 1.1: Differences between supervised learning, unsupervised learning and reinforcement 

learning 
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New artificial intelligence systems are trying to have customized trained products. This means 

the product will be adaptive and learn from to suit the environment that it’s working at 

without the need for professional setup, and saving the time wasted on studying the 

environment and training the AI model to. 

This helps creating adaptive products that can be trained and customized based on the users 

need, the reinforcement learning provides the solution to this problem, and helps in adapting 

the system and updating its performance while working to have the best performance if it 

encounters any change in the environment, without the need to stop the system and retrain it 

with every change. 

However, the performance of reinforcement learning is still slow and requires a lot of time to 

gain an acceptable performance, this raises a very important problem especially in the fields 

where time is expensive. 

The advantage of RL is that the model can learn a certain feature even when provided with an 

incomplete representation of its current state. As seen in Figure 1.1, single value in the shape 

of a penalty or reward is returned as a training signal and this feedback also represents the 

quality of the model’s performance. 

In the supervised learning method, the agent trains through a series of states that provide 

recommended actions as training signals. The output is the classification of the inputs into 

groups of similar entities or objects. 

In RL, agents learn by exploring their environment and then develop the different approaches 

to perform the intended task. It releases the developer from the role of having to know the 

best aapproach for each state the model may encounter as this is also developed in the training 

process. The downside to having this freedom however is that RL often has a tendency of 

being too slow to converge. 

One of the most recent developments of neural networks in RL is the advent of Deep 

Reinforcement Learning. This is an approach where deep neural networks are used for 

function approximation. 

However, to help make deep RL successful and useful in real-world projects, as it is 
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successful in the virtual world, the long training time that is required to learn a policy must be 

addressed. 

Deep RL suffers from bad performance when initialized, along with the longer time it takes to 

learn because it has to learn the features from the environment directly instead of human 

engineered features. Apart from having to learn the policy, deep RL must learn to build 

applicable high-level features from the environment. 

These problems become important in real-life applications like in finance and medicine where 

data can often be expensive. 

Demonstrating with humans is one method to enhance deep RL learning time. 

The use of human experience in RL is not a new approach but it recently became popular as a 

possible way of reducing the training time of deep RL. 

By solving the two problems deep RL is trying to tackle, speeding it up can be achieved: 

1. Feature’s learning 

2. Policy learning 

In this research the main goal is to solve the problem of the time needed for features learning 

by pre-training the model to learn from dataset generated from the same environment. 

This study proves that learning better features results in having better performance from the 

RL agent, without changing the strategy used in policy learning. 

 

A well-known technique was applied to deep RL, this technique is widely used to enhance the 

training time in deep learning. However, the success of this technique in deep supervised 

learning depends on the datasets available and used to pre-train the networks. 

In deep RL, data are unavailable or difficult to find most of the time. 

In this research, an approach was proposed to enhance deep reinforcement learning 

algorithms learning time, that requires little non-expert experience data. 
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This approach starts applying supervised learning using human demonstrations to pre-train 

the deep neural network. 

It has been proven that through this step the agent will learn to imitate the human actor [1]. 

However, in this case, pre-training the agent would implicitly learn the environment features 

through supervised learning. 

This approach has been tested on a well-known deep RL algorithm called the Deep Q-

Network, and its performance was evaluated in the AI environment Cart-Pole. The test 

included two cases. The first one is running the model directly and the second one is running 

the model after training the policy network. 

The results show speed up in the learning time and the enhancement in the performance by 

comparing both the run time and the moving average of both test cases. The moving average 

is used as a parameter for analysis here as it helps us to see clearly the long term trends and 

smooths out any inconsequential fluctuations in the results [14].  

The main feature of this approach is being generic, which means it can be applied to multiple 

deep RL algorithms. 

 

 

1.1 Thesis Overview 

This work is structured as follows: 

• Chapter 2 reviews the current state and developments on the study. Here some research 

papers are analyzed and discussed to help better understand the research problem. 

• Chapter 3 an overview about reinforcement learning and deep reinforcement learning. 

• Chapter 4 discusses the methodology of my work. Here, I discuss everything from data 

gathering to data preprocessing. I also discuss the fine details of the neural network used 

and its parameters. I also discuss the evaluation metrics used to measure my results. 

• Chapter 5 discusses the results from my work and highlights the results for evaluation 

metrics from the classification task carried out. 
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• Chapter 6 concludes the work with a summary of the methodds employed and how they 

affect results obtained. It also discusses the future perspectives of this research. 
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CHAPTER 2 

LITERATURE REVIEW 

 

Reinforcement learning poses a unique and impressive approach to the problems of control 

theory - using data to improve future decision making in dynamic and sometimes unstable 

environment [7]. As shown in the first chapter of this thesis, RL poses the optimal machine 

learning approach to solving control theory problems in an environment where the states are 

unknown and dynamic. While conventional control theory seemingly solves this problem 

already, it does so under a number of assumptions such as linearity and time-invariance, 

which might not always be the case in a real world environment [8]. The RL approach to this 

problem allows features to be learned and policies to be developed under any conditions, 

solving the limiting issues of conventional control theory. With RL, this can be done even if 

the analytical model is not already known. For these reasons, RL is the preferred choice for 

control systems like in robotics [12]. 

While this is the case, the RL approach also has its own issues. The Q-learning algorithm 

proposed by Watkins in the RL community is often used in artificial intelligence and robotics 

for its powerful ability to learn in complex and unknown environments. It is an off policy 

reinforcement learning algorithm and so makes decisions without the need for an already 

existing policy, focusing on primarily on optimizing the reward [9]. The fact that decisions 

are made without consideration of any already existing policies means that if a poor action is 

selected, it does not affect the Q-function of the current state [15]. The method of updating 

the Q value is shown below. 

Q(s, a) ← Q(s, a) + α[R + γ max Q(s0 , a 0 ) − Q(s, a)] 

α represents the learning rate and R is the reward. 

However, some of the problems are not solved by the real-world application. One of the 

difficult tasks is maintaining the right balance between “exploration” and “exploitation”, the 

other is “the curse of dimensionality” problem.  

These main issues are getting huge attention in various fields and have seen considerable 
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levels of research. These research efforts put forth a number of approaches to solving the 

problem such as multilayer and recurrent neural networks, generalized neural networks and 

back propagation [10]. 

In Q-learning, the exploration strategies of ε-greedy and Softmax have been used more often 

and have proven to be effective [2]. 

Some other works tried to combine the fuzzy control systems with the reinforcement learning 

and the problems risen related to nonlinearities and uncertainties in the system were solved. 

However, although the study fixed the high requirements needed with external disturbance, 

accuracy and robustness [3], it didn’t solve the time needed to get a decent result in a short 

amount of time or number of simulations. 

An example of real-world projects is self-driving cars, a self-driving car can recognize the 

data collected from the sensors and makes a decision based on this data, it is important for the 

agent to determine the current state for it to make a correct decision. However, after the agent 

has fully explored the space of states, the RL can determine the value of the, which means in 

RL the agent must search all possible behaviors, this results in consuming longer learning 

time [11]. In this example, this could have serious implications.  

The work proposed a pre-training framework that pre-initialize the agent’s policy gradient 

neural network based on behaviors from pre-learned images or human experts processed 

images [4]. However, this still requires a lot of data that will be hard to collect if found or the 

creation of a special data which will be expensive in terms of time and other resources since it 

relies on experts. 

Another work exhibited that administered pre-training can be accomplished utilizing spare 

variational dropout regularization, and proved it speeds up basic RL compared to basic 

regularizes like L2. 

Decreases your dependence on massive amount of demonstrations, or on having preparing 

dataset that investigates a huge state space to accomplish great outcomes [5]. This work did 

solve the time-consuming issue of the reinforcement learning but it raised another problem 

which is the noise tuning of the data used in the training, using poorly tuned noise affected the 
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learning rates. 

Another noteworthy work to discuss featured an approach done by using human 

demonstrations to play some Atari games, the research used humans to play some of the 

games and recorded their actions to be used as training data [6], the same approach was 

applied in this study but using a different platform. They were able to prove that pretraining 

the RL model significantly reduced the training time and that these significant improvement 

could be achieved even if the data used for the pretraining process was small. 

The platform in this study can be run using both continuous and discrete actions, and because 

it’s closer to real-world problem, the problems addressed in [6] such as sparsity of some 

action and the actions being closely related are solved. 

Reinforcement learning has been used in some very complex problems and as such has 

become the preferred approach to solving control theory problems.   
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CHAPTER 3 

OVERVIEW 

  

 

 

3.1  Reinforcement Learning 

RL is a subfield of ML, it is considered in the computational agents learning to achieve the 

best results on its own in a complex and uncertain environment. 

The main difference between RL and supervised learning, is that RL doesn’t need labelled 

input/output pairs to operate. 

The agent executes trial and error behavior to find a solution to the given problem, through 

these trial and errors, the agent gets either rewards or penalties depends on how close was the 

action to the solution. 

 
Figure 3.1: Block Diagram of Reinforcement Learning Concept 

 

The agent recognizes the solution based on a policy defined by the designer of the problem. 

The main goal of RL is that the agent should attempt to learn the optimal policy to maximize 

its rewards. 
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The two main strengths of RL are: 

1. Performance optimizing using samples. 

2. Large environments handling using approximation functions. 

Which makes RL useable in the following situations: 

• Environment is modeled but no analytic solution. 

• Only an environment simulation is modeled. 

• Interaction with the environment is required to get information about it. 

The main property needs to be well tuned is the exploration-exploitation rate, this rate 

represents the amount of states where the agent will attempt to explore the results of new 

actions, instead of relying on previous explored experiences. 

The major challenge with reinforcement learning is the design of the simulation 

environment, it’s a very important task because the task performed will be highly depended 

on it. 

Reinforcement learning is applied to many fields such as: 

• Game development 

• Control and automation 

• Operational research 

• Economics 

• Robot control 

• Telecommunications 

 

3.2  Deep Reinforcement Learning 

DRL is a subfield of ML, it assemble the RL with DL. 

The main advantage of deep RL over RL, is that deep RL uses deep learning as a part of the 

solution, this allows agents to decide based on unstructured data without manual engineering 
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of the state space. 

The reinforcement learning problems are usually modeled using Markov Decision Process 

(MDP) where the agent takes a single action at every timestep, the states of MDP in many 

decision-making problems are high-dimensional which makes unsolvable by RL. Therefore, 

DRL algorithms uses DL combined with reinforcement learning to solve this kind of 

problems. 

The neural network is an approximator, it is used with RL to approximate what we call policy 

function. Because the neural network can map (state, action) pairs to Q-values instead of 

having to have a lookup table for all possible states and their values. 

The two main techniques used to train RL policies are: 

• Model-based 

• Model-free 

 

3.2.1 Model-Based 

In this technique, DRL evaluates advanced model of the environment’s dynamics, this is often 

achieved using SL. After that using the learned model, actions are obtained. 

 

3.2.2 Model-Free 

This technique teaches the policy without explicitly modeling the forward dynamics. 

By estimating the policy gradient directly, the policy can be improved to maximize the 

returns. However, it will suffer from high variance which will makes it unsuitable for function 

approximation in deep RL. 

Another class of model-free based algorithms relies on dynamic programming, which is 

inspired by interim difference learning and Q-learning. 

This kind of algorithms often learns the neural network’s Q-function, which estimates the 

returns based on the action taken from the state in discrete action spaces. 
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In continuous action spaces, in usual these algorithms do learn the policy and the value 

estimate. 

The deep RL is applied in several fields like: 

• Robots 

• Games 

• NLP 

• CV 

• Schools 

• Transportation 

• Finance 

• Medical care  
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CHAPTER 4 

METHODOLOGY 

 
 
 

 

4.1 Design 

The design of this study is a software implementation to compare the performance of the 

reinforcement learning only, and the performance of the reinforcement learning after pre-

training the policy network using human demonstrated data. 

The approach will be tested for both study cases, using a deep Q linear network for simplicity, 

and on an open-source AI control platform called Cart-Pole to make the results generic. 

 Two case studies were compared in this study, the following is a description of each case 

study. 

Both case studies use the same AI model, which consists of the following layers: 

1. Input layer: has two inputs represents the width and height of the frame. 

2. First hidden layer: is a linear hidden layer that has three filters for each color channel, 

thus the input of this layer is 3*width*height and the output was set to 24 output 

features. 

3. Second hidden layer: is another linear hidden layer that has 24 input features and 32 

output features. 

4. Output layer: finalize the decision to either one of two states. 

 

Input Pre-Processing Explore/
Exploit Take Action Update Q-

Table Output

 

Figure 4.1: Block Diagram of the Design Stage 
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The process using the forward function is the same in both case studies including the 

activation functions of the layers, and it goes as follows: 

1. It starts by flattening the input into a single dimension vector to be processed in a 

linear way later through the hidden layers. 

2. The first hidden layer has a "ReLU" activation function. 

3. The second hidden layer also has a “ReLU” activation function. 

4. The last step is to output the result value. 

The ReLU activation function is defined as the positive part of its arguments. 

𝑓𝑓(𝑥𝑥) = 𝑥𝑥+ = max (0, 𝑥𝑥) 

Where x is the neuron’s input. There are a number of other activation functions, such as 

Sigmoid, Tanh, etc as well as activation functions specifically used for output layers, such as 

Softmax, and they all have advantages that make them best suited for specific tasks and 

applications [13]. 

There are several advantages for using the ReLU function: 

• Spares activation, so only about 50% of the hidden neurons are activated. 

• Providing better gradient propagation and fewer vanishing gradient problems. 

• Efficient computation. 

• Scale-invariant. 

Both hidden layers had the ReLU activation function because it makes the model easier to 

train. 
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Figure 4.2: Line Plot of Rectified Linear Activation for Negative and Positive Inputs 

 

Since this is a small problem used to get generic results, the training and testing methods had 

to be kept as simple as possible to avoid any overfitting issues and to get the most accurate 

results. 

4.1.1 Environment Setup 

The environment used is the open source AI environment Cart-Pole, this environment is very 

basic and helps generalize the results of this study. 

The environment simply can be described as a cart holding a vertical pole, the pole is fixed to 

the cart through a pivot point, this point allows the pole to have one degree of freedom around 

that point. 

The agent’s task is to keep the pole in upright position for as long as possible by extracting 

the state features and make a decision on whether to push the cart to the right or left, and how 

much force should be applied. 
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Figure 2.3: Cart-Pole Environment Visualization 

  

 A class will be defined to manage the environment, the main tasks of this class are: 

1. Create and close the environment. 

2. Provide the state pre-processing function. 

3. Handle the actions choosing process. 

 

4.1.2 Memory Reply 

The memory reply is a class used to create an object to contain the (state, action) pairs, these 

values will be used later during the run for the agent to decide the optimal activity to execute 

dependent on its present state. 

Each pair will be update as the agent learn more to enhance its performance. 

 



17 
 

4.1.3 Q-Table 

The Q-Values generated by the agent on the run will based on the (state, action) pairs stored 

in the memory. 

The Q-Values class will take the current (state, action) pair and generate a Q-value based on 

it, it will go through the memory and check for the (state, action) pair associated with the 

highest Q-value. 

These Q-values represents the reward, as the agents’ task is to maximize its rewards. 

After finding the maximum Q-value, the class will return the action that generates the highest 

reward.  

 

4.1.4 Strategy 

The strategy is used to calculate the exploration rate of the agent. 

The exploration rate determines when and how much should the agent rely on the (state, 

action) pairs stored in the memory, and when to explore a new (state, action) pair. 

The smaller the value generated, the more the agent tends to explore new states. 

The strategy used in this study is the Ɛ-Greedy. The Ɛ-Greedy is one of the easiest strategies 

and it seeks the maximum reward, which means it prefers exploitation over exploration most 

of the time. This is a useful feature for the study purpose since the main aim is to put the 

training from a human demonstration in use later. 

During the exploration phase, the Ɛ-Greedy strategy selects a random action and by so it 

increases the chances of getting an action with a higher reward. 



18 
 

 
Figure 4.4: Block Diagram of Epsilon Greedy Strategy 

  

4.1.5 Agent 

The agent is a class responsible of selecting the next action, it uses the strategy and the 

number of actions available in every state. 

It uses the value generated by the strategy to determine whether to explore or exploit the 

(state, action) pairs stored in the memory. 

 

4.1.6 Supervised Training 

The supervised learning in this study is applied to the policy network in the second study case 

before starting the RL algorithm. 

In this study a small number of data samples was used, and it’s been trained for a small 

number of episodes.  
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4.2 Reinforcement Learning Algorithm 

The reinforcement learning process starts by creating the environment using the environment 

class, all hyper parameters will be defined in this stage. 

The optimizer to update the network weights will be defined here. In this study the optimizer 

used is Adam optimizer. 

Adam optimizer is a variant of SGD optimizers, this redefines the slope computed over the 

entire dataset and can be considered as a stochastic approximation optimization or gradient 

descent optimization. This helps in reducing the computational expenses and time consumed 

in trade for lower convergence rate. 

ML considers the minimization of an object function has the form of sum. 

𝑄𝑄(𝜔𝜔) =
1
𝑛𝑛
�𝑄𝑄𝑖𝑖(𝜔𝜔)
𝑛𝑛

𝑖𝑖=1

 

Where Ꞷ is a parameter that minimizes Q(ꞷ) to be estimated. 

Gradient descent method performs the following iteration: 

𝜔𝜔 ≔ 𝜔𝜔 − 𝜂𝜂∇𝑄𝑄(𝜔𝜔) = 𝜔𝜔 −
𝜂𝜂
𝑛𝑛
�∇𝑄𝑄𝑖𝑖(𝜔𝜔)
𝑛𝑛

𝑖𝑖=1

 

Where Qi(ꞷ) in this case is the value of the loss function at i-th example, Q(ꞷ) is the 

empirical risk, and ꬼ is the learning rate. 

Adam optimizer is short for “Adaptive Moment” is a variant and update of SGD. 

Adam uses a moving average to plot the slope and second moments. 
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Adam’s parameter redevelop is shown in the following equation. 

𝑚𝑚𝜔𝜔
(𝑡𝑡+1) ← 𝛽𝛽1𝑚𝑚𝜔𝜔

(𝑡𝑡) + (1 − 𝛽𝛽1)∇𝜔𝜔𝐿𝐿(𝑡𝑡) 

𝑣𝑣𝜔𝜔
(𝑡𝑡+1) ← 𝛽𝛽2𝑣𝑣𝜔𝜔

(𝑡𝑡) + (1 − 𝛽𝛽2)�∇𝜔𝜔𝐿𝐿(𝑡𝑡)�
2
 

𝑚𝑚�𝜔𝜔 =
𝑚𝑚𝜔𝜔

(𝑡𝑡+1)

1 − 𝛽𝛽1𝑡𝑡+1
 

𝑣𝑣�𝜔𝜔 =
𝑣𝑣𝜔𝜔

(𝑡𝑡+1)

1 − 𝛽𝛽2𝑡𝑡+1
 

𝜔𝜔(𝑡𝑡+1) ← 𝜔𝜔𝑡𝑡 − 𝜂𝜂
𝑚𝑚�𝜔𝜔

�𝑣𝑣�𝜔𝜔 + 𝜖𝜖
 

Where Ꞷ t is a given parameter, L(t) is a loss function, ℇ is a small number used to avoid 

division by zero, and β1 and β2 are the forgetting elements of gradients and second moments 

of gradients. 

In this study Adam optimizer was used for many reasons, mentioning some below: 

1. Straightforward implementation. 

2. Efficient and fast. 

3. Doesn’t require a lot of memory. 

4. Invariant to diagonal rescale of the gradients. 

5. Adaptive Gradient Algorithm. 

Then this process retrieves the current state of the environment and provides the states and 

policy to the agent to get an action. 

After getting the action, it gets the reward based on that action, the updates the memory and 

Q-values, it calculates the loss which represents error rate from that action in the following 

state and it’s used by the optimizer to update the policy to gain better results. 
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Figure 4.5: Flow Chart of RL Algorithm 
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4.3 Data Collection 

The data for this problem just like most of the RL problems, was not available. 

Therefore, a specific data was designed for the scope of this study. 

A human demonstration was recorded, each sample had the environment and the action taken 

by the human actor recorded and linked using a unique ID. 

The data recording was done using a third-party code designed specifically for this task and 

gave the human actor the ability to control the cart. 

The states’ features are stored with an ID every iteration, the same ID is used to index the 

action taken and save it in a table. 

This data was later converted into a form that our model can accept. 

Start

Capture States’ 
Features

User Takes Action

Save the Action 
with Corresponding 

ID
 

Figure 4.6: Data Collection Flow Chart 
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4.4  Supervised Learning 

Supervised learning is the most popular branch of machine learning, supervised learning 

algorithms are designed to learn by training on previous examples. 

In the scope of this study, supervised learning was used to train the policy network using the 

data collected from the human actor in an earlier stage. 

The optimizer used in this stage is the same optimizer used in the first study case, as well as 

the hyper parameters, this will guarantee that the results will be transparent. 

The loss function used is the cross-entropy loss function since we have only two actions.  

For discrete probability distributions p and q equation is as shown below. 

𝐻𝐻(𝑝𝑝, 𝑞𝑞) = −� 𝑝𝑝(𝑥𝑥) log 𝑞𝑞(𝑥𝑥)
𝑥𝑥∈𝒳𝒳

 

And for continuous distribution, p and q are assumed to be absolutely continuous with the 

respect to reference measure r (such as Lebesgue measure), the equation will be as shown 

below. 

𝐻𝐻(𝑝𝑝, 𝑞𝑞) = −� 𝑃𝑃(𝑥𝑥) log𝑄𝑄(𝑥𝑥)𝜕𝜕𝜕𝜕(𝑥𝑥)
𝒳𝒳

 

 Where P and Q are probability density functions of p and q with respect to r. 

Cross-entropy gives a loss based on how far the prediction result is far from the actual 

expected result. 
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Figure 4.7: Cross-Entropy Gradient Descent 

 

The value generate is between 0 and 1, the greater the error is the closer the value will be to 1. 

After training the policy network, the same RL algorithm will be run using the trained 

network to be the policy network. 

In this case, in stead of starting the policy network from a random weights values, the policy 

has already been trained to good values from the human actor’s demonstration. 

Input Pre-Processing Explore/
Exploit Take Action Update Q-

Table Output

Collect DataTrain Policy 
Network

Format the 
Data

Pre-Process 
the Data

Supervised Learning Stage

Reinforcement Learning Stage

 

Figure 4.8: Block Diagram of the Design Stage Including the Supervised Learning 
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CHAPTER 5 

IMPLEMENTATION RESULTS 

 
 

5.1 Results 

The main aim of this study is to compare the results between the reinforcement learning 

performance algorithm, and the performance of the same reinforcement learning algorithm 

after running its policy through supervised training using human demonstrated data. 

Both study cases are running with the same hyper parameters, and attempting to solve the 

same problem. 

The training dataset was collected specifically for the aim of this study and was formatted to 

be accepted by the model used. 

The training and testing of the model were performed using PyTorch in a python 

programming language, and were run of a high-performance GPU unit. 

 
Figure 5.1 Model Summaries 
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The table below shows the hyper parameters used in both study cases 

 RL 
Supervised Learning + 

RL 

Exploration Rate 
Random between 

(0-1) % 10 

Random between 

(0-1) % 10 

RL Batch Size 256 256 

Gamma 0.865 0.865 

Epsilon Start 1 1 

Epsilon End 0.01 0.01 

Epsilon Decay 0.001 0.001 

Memory Size 100000 100000 

Learning Rate 0. 0004 0. 0004 

Number of Episodes 5000 5000 

Supervised Learning’s 

Learning Rate 
̶ 0. 0004 

Supervised Learning’s 

Batch Size 
̶ 32 

Supervised Learning 

Epochs 
̶ 16 

Supervised Learning 

Data Size 
̶ 269 

Table 1 - Hyper Parameters' Values 
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5.2 First Experiment (Reinforcement Learning) 

The figure shown below displays the results of running the reinforcement learning algorithm 

directly without any sort of training, this means all weights of the policy network are 

randomly generated. 

 
Figure 5.2: Reinforcement Learning Results 

  

The blue line represents the duration in milliseconds that the agent was able to maintain the 

pole from falling in each episode. 

The orange line the moving average of the last 100 episodes. 

By considering both lines, it is clear that the agent started with a bad performance and it got 

better after around 840 episodes, the maximum duration was less than 300ms. 

 Duration  ـــــــــــــــ

 .Moving Avg  ـــــــــــــــ
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This performance lasted for only about 400 episodes and then it decayed back to the values it 

started from, and on the long run the model couldn’t hold the pole for more than 150ms. 

Since the main goal of using reinforcement learning is making the model adaptative and keep 

it learning while working, this goal was not achieved in this case. 

By considering the moving average, it is easy to notice that the average of this duration 

reached the peek after about 1000 episodes of operating, and then started to fall. 

The agent ended the 5000 episodes with an average of 53.52ms. 

Although the performance enhanced while going through more training episodes, but it’s 

clear that the average didn’t have a significant improvement. 

The experiment ended with a falling moving average curve. 

5.3 Second Experiment (Reinforcement Learning + Supervised Learning) 

The figure shown below displays the results of running the reinforcement learning algorithm 

after training the model to human demonstrated data, this means the weights of the policy 

network are being initialized based on good performance demonstration. 
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Figure 5.3: Reinforcement Learning + Supervised Learning Results 

 

The blue line represents the duration in milliseconds that the agent was able to maintain the 

pole from falling in each episode. 

The orange line the moving average of the last 100 episodes. 

By considering both lines and comparing with the previous figure, it is clear that the agent 

had a better starting value and had better performance as through the rest of the training 

period. 

In this case the agent took longer time to reach the same number (less than 300ms), and this is 

due to small training dataset, but on the other hand its performance enhanced significantly and 

 Duration  ـــــــــــــــ

 .Moving Avg  ـــــــــــــــ
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was able to keep the pole in upright position for 250ms in several episodes and in many other 

episodes it was a little less than that number. 

The agent ended the 5000 episodes with an average of 90.19ms, which is a significant 

improvement from the previous experiment. 

The experiment ended with a growing moving average curve, which gives us a hint that the 

performance will be better when running more episodes. 
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CHAPTER 6 

CONCLUSION  

 

As a conclusion, the study aimed to compare the difference in performance between 

reinforcement learning, and the reinforcement learning after training its model to a human 

demonstrated data using one of the machine learning training algorithms. By considering the 

results of both experiments, on the same problem with the same environment, conditions and 

parameters, it is clear that training the policy network helped improving the performance with 

more than 1.68 times. Since the dataset collected for this study was small, it is appropriate to 

say that with larger and more accurate, and professional data, the agent will have better 

results. The problem used in this study was a simple problem, used to test the concept and 

theory. Choosing a simple and small problem helps in generalizing the concept, and therefore, 

we can say that this study is valid for further and more complicated projects. 
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APPENDIX 2 
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