
 NICOSIA, 2021

ENHANCING REINFORCEMENT LEARNING

BEHAVIOR BY PRE-TRAINING THE MODEL

A THESIS SUBMITTED TO THE INSTITUTE

OF GRADUATE STUDIES

OF

NEAR EAST UNIVERSITY

By
Alaa Al Thafari

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

In

Computer Engineering

Alaa Al Thafari: Enhancing Reinforcement Learning Behavior by Pre-Training the Model

Approval of Director of Institute of Graduate Studies

Prof. Dr. Hüsnü Can Başer

We certify this thesis is satisfactory for the award of the degree of Masters of Sciences in
Computer Engineering

Examining Committee in Charge:

Prof.Dr. Rahib H. Abiyev Committee Chairman, Department of Computer
Engineering, NEU

Assoc. Prof. Dr. Kamil Dimililer Department of Automotive Engineering, NEU

Assit.Prof. Dr. Elbrus Imanov Supervisor, Department of Computer Engineering,
NEU

I certify that this research work entitled “Enhancing Reinforcement Learning Behavior by Pre-Training
the Model” is my own work. No portion of the work presented in this research report has been submitted in
support of another award or qualification either at this institution or elsewhere. Where material has been
used from other sources it has been properly acknowledged / referred. If any part of this project is proved to
be copied or found to be a report of some other, I will stand by the consequences.

Alaa Al Thafari

Signature

Date

25/8/2021

i

ACKNOWLEDGEMENTS

To my supervisor Dr. Elbrus Imanov who had enough faith and trust in me and my work to
keep me going,

To my mother who supported me and sacrificed with a lot for this moment.

To my uncle Tarek who has the credits of me being here more than a lot of my teacher.

To my aunt Amel for her support and her efforts in making this possible.

To my advisor and chariman Dr. Rahib Abiyev.

To my family for believing in me and looking forward to more achievements in my life.

To my family in Cyprus Şefik and Duygu.

To Dr. Murat Özgören who treated me like a son and the entire NERITA family for their
support, help and providing all the help I needed.

To my colleagues and friends Abdullahi Isma’il, Qussai Toumeh and Ezekiel T. Ogidan for
their continuous help.

To all the friends who shared any moment with me during the period of this degree.

ii

ABSTRACT

Deep reinforcement learning has performed extraordinarily in sequential tasks where they are

augmented with deep neural networks as an approximation function and when the learning

process is based on the immediate environment. A drawback to this however is that the deep

RL has to learn features for every state from the environment and must also learn a policy.

As a result, deep RLs can be time intensive and computationally expensive to train. They

also require very large amounts of data for training These reasons make deep RLs largely

unsuitable for many applications.

In this research, training has been sped up by attempting to solve the issue of features

learning, solving a substantial part of the problem and reducing the work that needs to be

done by the deep RL. It proves that the use of small dataset demonstrated by a non-expert

human actor, with supervised learning during the pre-training phase results in significant

improvement in both time and performance. This work has been empirically evaluated using

the deep Q-network in the AI control environment Cart-Pole. The results show that having a

trained policy network serves in providing a major improvement with the time required for

training my deep RL model, even when data used is small and not perfect.

Keywords: Reinforcement Learning, Q-Learning, Deep Learning, Pre-training

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. i

ABSTRACT .. ii

TABLE OF CONTENTS.. iii

TABLE OF FIGURES ... v

TABLE OF TABLES .. vi

LIST OF ABBREVIATIONS ... vii

CHAPTER 1 INTRODUCTION .. 1

1.1 Thesis Overview ... 4

CHAPTER 2 LITERATURE REVIEW .. 6

CHAPTER 3 OVERVIEW ... 9

3.1 Reinforcement Learning.. 9

3.2 Deep Reinforcement Learning .. 10

3.2.1 Model-Based ... 11

3.2.2 Model-Free .. 11

CHAPTER 4 METHODOLOGY ... 13

4.1 Design .. 13

4.1.1 Environment Setup .. 15

4.1.2 Memory Reply .. 16

4.1.3 Q-Table ... 17

4.1.4 Strategy ... 17

4.1.5 Agent ... 18

4.1.6 Supervised Training ... 18

iv

4.2 Reinforcement Learning Algorithm ... 19

4.3 Data Collection ... 22

4.4 Supervised Learning .. 23

CHAPTER 5 IMPLEMENTATION RESULTS ... 25

5.1 Results ... 25

5.2 First Experiment (Reinforcement Learning)... 27

5.3 Second Experiment (Reinforcement Learning + Supervised Learning) 28

CHAPTER 6 CONCLUSION ... 31

REFERENCES ... 32

APPENDICES .. 34

APPENDIX 1 DATA COLLECTION CODE ... 35

APPENDIX 2 REINFORCEMENT LEARNING CODE .. 39

APPENDIX 3 REINFORCEMENT LEARNING + SUPERVISED LEARNING CODE 50

APPENDIX 4. ETHICAL APPROVAL LETTER ... 62

APPENDIX 5. SIMILARITY .. 63

v

 TABLE OF FIGURES

Figure 1.1 - Differences between supervised learning, unsupervised learning and reinforcement
learning ... 1

Figure 3.1 - Block Diagram of Reinforcement Learning Concept ... 9
Figure 4.1 - Block Diagram of the Design Stage .. 13
Figure 4.2 - Line Plot of Rectified Linear Activation for Negative and Positive Inputs 15
Figure 4.3 - Cart-Pole Environment Visualization ... 16
Figure 4.4 - Block Diagram of Epsilon Greedy Strategy .. 18
Figure 4.5 - Flow Chart of RL Algorithm .. 21
Figure 4.6 - Data Collection Flow Chart .. 22
Figure 4.7 - Cross-Entropy Gradient Descent ... 24
Figure 4.8 - Block Diagram of the Design Stage Including the Supervised Learning 24
Figure 5.1 - Model Summaries .. 25
Figure 5.2 - Reinforcement Learning Results .. 27
Figure 5.3 - Reinforcement Learning + Supervised Learning Results .. 29

vi

 TABLE OF TABLES

Table 1 - Hyper Parameters' Values .. 26

vii

LIST OF ABBREVIATIONS

AI Artificial Intelligence

RL Reinforcement Learning

ML Machine Learning

DRL Deep Reinforcement Learning

DL Deep Learning

NLP Natural Language Processing

CV Computer Vision

SGD Stochastic Gradient Descent

1

CHAPTER 1

INTRODUCTION

Reinforcement learning is an area of machine learning focused on how the intelligence system

acts in an environment. It has the objective of making a series of decisions that would yield

the best rewards in an arbitrary and complex environment. The model has to figure out by

itself how to maximize the intended output or reward and adjusts its decisions based on

feedback.

Conventional machine learning algorithms based on supervised or unsupervised learning

usually require huge datasets to work efficiently and its work is only limited to the

environment that it was trained at. Any other form of input that the model is not familiar with

cannot be processed without preprocessing actions which makes it difficult to handle arbitrary

data.

Figure 1.1: Differences between supervised learning, unsupervised learning and reinforcement

learning

2

New artificial intelligence systems are trying to have customized trained products. This means

the product will be adaptive and learn from to suit the environment that it’s working at

without the need for professional setup, and saving the time wasted on studying the

environment and training the AI model to.

This helps creating adaptive products that can be trained and customized based on the users

need, the reinforcement learning provides the solution to this problem, and helps in adapting

the system and updating its performance while working to have the best performance if it

encounters any change in the environment, without the need to stop the system and retrain it

with every change.

However, the performance of reinforcement learning is still slow and requires a lot of time to

gain an acceptable performance, this raises a very important problem especially in the fields

where time is expensive.

The advantage of RL is that the model can learn a certain feature even when provided with an

incomplete representation of its current state. As seen in Figure 1.1, single value in the shape

of a penalty or reward is returned as a training signal and this feedback also represents the

quality of the model’s performance.

In the supervised learning method, the agent trains through a series of states that provide

recommended actions as training signals. The output is the classification of the inputs into

groups of similar entities or objects.

In RL, agents learn by exploring their environment and then develop the different approaches

to perform the intended task. It releases the developer from the role of having to know the

best aapproach for each state the model may encounter as this is also developed in the training

process. The downside to having this freedom however is that RL often has a tendency of

being too slow to converge.

One of the most recent developments of neural networks in RL is the advent of Deep

Reinforcement Learning. This is an approach where deep neural networks are used for

function approximation.

However, to help make deep RL successful and useful in real-world projects, as it is

3

successful in the virtual world, the long training time that is required to learn a policy must be

addressed.

Deep RL suffers from bad performance when initialized, along with the longer time it takes to

learn because it has to learn the features from the environment directly instead of human

engineered features. Apart from having to learn the policy, deep RL must learn to build

applicable high-level features from the environment.

These problems become important in real-life applications like in finance and medicine where

data can often be expensive.

Demonstrating with humans is one method to enhance deep RL learning time.

The use of human experience in RL is not a new approach but it recently became popular as a

possible way of reducing the training time of deep RL.

By solving the two problems deep RL is trying to tackle, speeding it up can be achieved:

1. Feature’s learning

2. Policy learning

In this research the main goal is to solve the problem of the time needed for features learning

by pre-training the model to learn from dataset generated from the same environment.

This study proves that learning better features results in having better performance from the

RL agent, without changing the strategy used in policy learning.

A well-known technique was applied to deep RL, this technique is widely used to enhance the

training time in deep learning. However, the success of this technique in deep supervised

learning depends on the datasets available and used to pre-train the networks.

In deep RL, data are unavailable or difficult to find most of the time.

In this research, an approach was proposed to enhance deep reinforcement learning

algorithms learning time, that requires little non-expert experience data.

4

This approach starts applying supervised learning using human demonstrations to pre-train

the deep neural network.

It has been proven that through this step the agent will learn to imitate the human actor [1].

However, in this case, pre-training the agent would implicitly learn the environment features

through supervised learning.

This approach has been tested on a well-known deep RL algorithm called the Deep Q-

Network, and its performance was evaluated in the AI environment Cart-Pole. The test

included two cases. The first one is running the model directly and the second one is running

the model after training the policy network.

The results show speed up in the learning time and the enhancement in the performance by

comparing both the run time and the moving average of both test cases. The moving average

is used as a parameter for analysis here as it helps us to see clearly the long term trends and

smooths out any inconsequential fluctuations in the results [14].

The main feature of this approach is being generic, which means it can be applied to multiple

deep RL algorithms.

1.1 Thesis Overview

This work is structured as follows:

• Chapter 2 reviews the current state and developments on the study. Here some research

papers are analyzed and discussed to help better understand the research problem.

• Chapter 3 an overview about reinforcement learning and deep reinforcement learning.

• Chapter 4 discusses the methodology of my work. Here, I discuss everything from data

gathering to data preprocessing. I also discuss the fine details of the neural network used

and its parameters. I also discuss the evaluation metrics used to measure my results.

• Chapter 5 discusses the results from my work and highlights the results for evaluation

metrics from the classification task carried out.

5

• Chapter 6 concludes the work with a summary of the methodds employed and how they

affect results obtained. It also discusses the future perspectives of this research.

6

CHAPTER 2

LITERATURE REVIEW

Reinforcement learning poses a unique and impressive approach to the problems of control

theory - using data to improve future decision making in dynamic and sometimes unstable

environment [7]. As shown in the first chapter of this thesis, RL poses the optimal machine

learning approach to solving control theory problems in an environment where the states are

unknown and dynamic. While conventional control theory seemingly solves this problem

already, it does so under a number of assumptions such as linearity and time-invariance,

which might not always be the case in a real world environment [8]. The RL approach to this

problem allows features to be learned and policies to be developed under any conditions,

solving the limiting issues of conventional control theory. With RL, this can be done even if

the analytical model is not already known. For these reasons, RL is the preferred choice for

control systems like in robotics [12].

While this is the case, the RL approach also has its own issues. The Q-learning algorithm

proposed by Watkins in the RL community is often used in artificial intelligence and robotics

for its powerful ability to learn in complex and unknown environments. It is an off policy

reinforcement learning algorithm and so makes decisions without the need for an already

existing policy, focusing on primarily on optimizing the reward [9]. The fact that decisions

are made without consideration of any already existing policies means that if a poor action is

selected, it does not affect the Q-function of the current state [15]. The method of updating

the Q value is shown below.

Q(s, a) ← Q(s, a) + α[R + γ max Q(s0 , a 0) − Q(s, a)]

α represents the learning rate and R is the reward.

However, some of the problems are not solved by the real-world application. One of the

difficult tasks is maintaining the right balance between “exploration” and “exploitation”, the

other is “the curse of dimensionality” problem.

These main issues are getting huge attention in various fields and have seen considerable

7

levels of research. These research efforts put forth a number of approaches to solving the

problem such as multilayer and recurrent neural networks, generalized neural networks and

back propagation [10].

In Q-learning, the exploration strategies of ε-greedy and Softmax have been used more often

and have proven to be effective [2].

Some other works tried to combine the fuzzy control systems with the reinforcement learning

and the problems risen related to nonlinearities and uncertainties in the system were solved.

However, although the study fixed the high requirements needed with external disturbance,

accuracy and robustness [3], it didn’t solve the time needed to get a decent result in a short

amount of time or number of simulations.

An example of real-world projects is self-driving cars, a self-driving car can recognize the

data collected from the sensors and makes a decision based on this data, it is important for the

agent to determine the current state for it to make a correct decision. However, after the agent

has fully explored the space of states, the RL can determine the value of the, which means in

RL the agent must search all possible behaviors, this results in consuming longer learning

time [11]. In this example, this could have serious implications.

The work proposed a pre-training framework that pre-initialize the agent’s policy gradient

neural network based on behaviors from pre-learned images or human experts processed

images [4]. However, this still requires a lot of data that will be hard to collect if found or the

creation of a special data which will be expensive in terms of time and other resources since it

relies on experts.

Another work exhibited that administered pre-training can be accomplished utilizing spare

variational dropout regularization, and proved it speeds up basic RL compared to basic

regularizes like L2.

Decreases your dependence on massive amount of demonstrations, or on having preparing

dataset that investigates a huge state space to accomplish great outcomes [5]. This work did

solve the time-consuming issue of the reinforcement learning but it raised another problem

which is the noise tuning of the data used in the training, using poorly tuned noise affected the

8

learning rates.

Another noteworthy work to discuss featured an approach done by using human

demonstrations to play some Atari games, the research used humans to play some of the

games and recorded their actions to be used as training data [6], the same approach was

applied in this study but using a different platform. They were able to prove that pretraining

the RL model significantly reduced the training time and that these significant improvement

could be achieved even if the data used for the pretraining process was small.

The platform in this study can be run using both continuous and discrete actions, and because

it’s closer to real-world problem, the problems addressed in [6] such as sparsity of some

action and the actions being closely related are solved.

Reinforcement learning has been used in some very complex problems and as such has

become the preferred approach to solving control theory problems.

9

CHAPTER 3

OVERVIEW

3.1 Reinforcement Learning

RL is a subfield of ML, it is considered in the computational agents learning to achieve the

best results on its own in a complex and uncertain environment.

The main difference between RL and supervised learning, is that RL doesn’t need labelled

input/output pairs to operate.

The agent executes trial and error behavior to find a solution to the given problem, through

these trial and errors, the agent gets either rewards or penalties depends on how close was the

action to the solution.

Figure 3.1: Block Diagram of Reinforcement Learning Concept

The agent recognizes the solution based on a policy defined by the designer of the problem.

The main goal of RL is that the agent should attempt to learn the optimal policy to maximize

its rewards.

10

The two main strengths of RL are:

1. Performance optimizing using samples.

2. Large environments handling using approximation functions.

Which makes RL useable in the following situations:

• Environment is modeled but no analytic solution.

• Only an environment simulation is modeled.

• Interaction with the environment is required to get information about it.

The main property needs to be well tuned is the exploration-exploitation rate, this rate

represents the amount of states where the agent will attempt to explore the results of new

actions, instead of relying on previous explored experiences.

The major challenge with reinforcement learning is the design of the simulation

environment, it’s a very important task because the task performed will be highly depended

on it.

Reinforcement learning is applied to many fields such as:

• Game development

• Control and automation

• Operational research

• Economics

• Robot control

• Telecommunications

3.2 Deep Reinforcement Learning

DRL is a subfield of ML, it assemble the RL with DL.

The main advantage of deep RL over RL, is that deep RL uses deep learning as a part of the

solution, this allows agents to decide based on unstructured data without manual engineering

11

of the state space.

The reinforcement learning problems are usually modeled using Markov Decision Process

(MDP) where the agent takes a single action at every timestep, the states of MDP in many

decision-making problems are high-dimensional which makes unsolvable by RL. Therefore,

DRL algorithms uses DL combined with reinforcement learning to solve this kind of

problems.

The neural network is an approximator, it is used with RL to approximate what we call policy

function. Because the neural network can map (state, action) pairs to Q-values instead of

having to have a lookup table for all possible states and their values.

The two main techniques used to train RL policies are:

• Model-based

• Model-free

3.2.1 Model-Based

In this technique, DRL evaluates advanced model of the environment’s dynamics, this is often

achieved using SL. After that using the learned model, actions are obtained.

3.2.2 Model-Free

This technique teaches the policy without explicitly modeling the forward dynamics.

By estimating the policy gradient directly, the policy can be improved to maximize the

returns. However, it will suffer from high variance which will makes it unsuitable for function

approximation in deep RL.

Another class of model-free based algorithms relies on dynamic programming, which is

inspired by interim difference learning and Q-learning.

This kind of algorithms often learns the neural network’s Q-function, which estimates the

returns based on the action taken from the state in discrete action spaces.

12

In continuous action spaces, in usual these algorithms do learn the policy and the value

estimate.

The deep RL is applied in several fields like:

• Robots

• Games

• NLP

• CV

• Schools

• Transportation

• Finance

• Medical care

13

CHAPTER 4

METHODOLOGY

4.1 Design

The design of this study is a software implementation to compare the performance of the

reinforcement learning only, and the performance of the reinforcement learning after pre-

training the policy network using human demonstrated data.

The approach will be tested for both study cases, using a deep Q linear network for simplicity,

and on an open-source AI control platform called Cart-Pole to make the results generic.

 Two case studies were compared in this study, the following is a description of each case

study.

Both case studies use the same AI model, which consists of the following layers:

1. Input layer: has two inputs represents the width and height of the frame.

2. First hidden layer: is a linear hidden layer that has three filters for each color channel,

thus the input of this layer is 3*width*height and the output was set to 24 output

features.

3. Second hidden layer: is another linear hidden layer that has 24 input features and 32

output features.

4. Output layer: finalize the decision to either one of two states.

Input Pre-Processing Explore/
Exploit Take Action Update Q-

Table Output

Figure 4.1: Block Diagram of the Design Stage

14

The process using the forward function is the same in both case studies including the

activation functions of the layers, and it goes as follows:

1. It starts by flattening the input into a single dimension vector to be processed in a

linear way later through the hidden layers.

2. The first hidden layer has a "ReLU" activation function.

3. The second hidden layer also has a “ReLU” activation function.

4. The last step is to output the result value.

The ReLU activation function is defined as the positive part of its arguments.

𝑓𝑓(𝑥𝑥) = 𝑥𝑥+ = max (0, 𝑥𝑥)

Where x is the neuron’s input. There are a number of other activation functions, such as

Sigmoid, Tanh, etc as well as activation functions specifically used for output layers, such as

Softmax, and they all have advantages that make them best suited for specific tasks and

applications [13].

There are several advantages for using the ReLU function:

• Spares activation, so only about 50% of the hidden neurons are activated.

• Providing better gradient propagation and fewer vanishing gradient problems.

• Efficient computation.

• Scale-invariant.

Both hidden layers had the ReLU activation function because it makes the model easier to

train.

15

Figure 4.2: Line Plot of Rectified Linear Activation for Negative and Positive Inputs

Since this is a small problem used to get generic results, the training and testing methods had

to be kept as simple as possible to avoid any overfitting issues and to get the most accurate

results.

4.1.1 Environment Setup

The environment used is the open source AI environment Cart-Pole, this environment is very

basic and helps generalize the results of this study.

The environment simply can be described as a cart holding a vertical pole, the pole is fixed to

the cart through a pivot point, this point allows the pole to have one degree of freedom around

that point.

The agent’s task is to keep the pole in upright position for as long as possible by extracting

the state features and make a decision on whether to push the cart to the right or left, and how

much force should be applied.

16

Figure 2.3: Cart-Pole Environment Visualization

 A class will be defined to manage the environment, the main tasks of this class are:

1. Create and close the environment.

2. Provide the state pre-processing function.

3. Handle the actions choosing process.

4.1.2 Memory Reply

The memory reply is a class used to create an object to contain the (state, action) pairs, these

values will be used later during the run for the agent to decide the optimal activity to execute

dependent on its present state.

Each pair will be update as the agent learn more to enhance its performance.

17

4.1.3 Q-Table

The Q-Values generated by the agent on the run will based on the (state, action) pairs stored

in the memory.

The Q-Values class will take the current (state, action) pair and generate a Q-value based on

it, it will go through the memory and check for the (state, action) pair associated with the

highest Q-value.

These Q-values represents the reward, as the agents’ task is to maximize its rewards.

After finding the maximum Q-value, the class will return the action that generates the highest

reward.

4.1.4 Strategy

The strategy is used to calculate the exploration rate of the agent.

The exploration rate determines when and how much should the agent rely on the (state,

action) pairs stored in the memory, and when to explore a new (state, action) pair.

The smaller the value generated, the more the agent tends to explore new states.

The strategy used in this study is the Ɛ-Greedy. The Ɛ-Greedy is one of the easiest strategies

and it seeks the maximum reward, which means it prefers exploitation over exploration most

of the time. This is a useful feature for the study purpose since the main aim is to put the

training from a human demonstration in use later.

During the exploration phase, the Ɛ-Greedy strategy selects a random action and by so it

increases the chances of getting an action with a higher reward.

18

Figure 4.4: Block Diagram of Epsilon Greedy Strategy

4.1.5 Agent

The agent is a class responsible of selecting the next action, it uses the strategy and the

number of actions available in every state.

It uses the value generated by the strategy to determine whether to explore or exploit the

(state, action) pairs stored in the memory.

4.1.6 Supervised Training

The supervised learning in this study is applied to the policy network in the second study case

before starting the RL algorithm.

In this study a small number of data samples was used, and it’s been trained for a small

number of episodes.

19

4.2 Reinforcement Learning Algorithm

The reinforcement learning process starts by creating the environment using the environment

class, all hyper parameters will be defined in this stage.

The optimizer to update the network weights will be defined here. In this study the optimizer

used is Adam optimizer.

Adam optimizer is a variant of SGD optimizers, this redefines the slope computed over the

entire dataset and can be considered as a stochastic approximation optimization or gradient

descent optimization. This helps in reducing the computational expenses and time consumed

in trade for lower convergence rate.

ML considers the minimization of an object function has the form of sum.

𝑄𝑄(𝜔𝜔) =
1
𝑛𝑛
�𝑄𝑄𝑖𝑖(𝜔𝜔)
𝑛𝑛

𝑖𝑖=1

Where Ꞷ is a parameter that minimizes Q(ꞷ) to be estimated.

Gradient descent method performs the following iteration:

𝜔𝜔 ≔ 𝜔𝜔 − 𝜂𝜂∇𝑄𝑄(𝜔𝜔) = 𝜔𝜔 −
𝜂𝜂
𝑛𝑛
�∇𝑄𝑄𝑖𝑖(𝜔𝜔)
𝑛𝑛

𝑖𝑖=1

Where Qi(ꞷ) in this case is the value of the loss function at i-th example, Q(ꞷ) is the

empirical risk, and ꬼ is the learning rate.

Adam optimizer is short for “Adaptive Moment” is a variant and update of SGD.

Adam uses a moving average to plot the slope and second moments.

20

Adam’s parameter redevelop is shown in the following equation.

𝑚𝑚𝜔𝜔
(𝑡𝑡+1) ← 𝛽𝛽1𝑚𝑚𝜔𝜔

(𝑡𝑡) + (1 − 𝛽𝛽1)∇𝜔𝜔𝐿𝐿(𝑡𝑡)

𝑣𝑣𝜔𝜔
(𝑡𝑡+1) ← 𝛽𝛽2𝑣𝑣𝜔𝜔

(𝑡𝑡) + (1 − 𝛽𝛽2)�∇𝜔𝜔𝐿𝐿(𝑡𝑡)�
2

𝑚𝑚�𝜔𝜔 =
𝑚𝑚𝜔𝜔

(𝑡𝑡+1)

1 − 𝛽𝛽1𝑡𝑡+1

𝑣𝑣�𝜔𝜔 =
𝑣𝑣𝜔𝜔

(𝑡𝑡+1)

1 − 𝛽𝛽2𝑡𝑡+1

𝜔𝜔(𝑡𝑡+1) ← 𝜔𝜔𝑡𝑡 − 𝜂𝜂
𝑚𝑚�𝜔𝜔

�𝑣𝑣�𝜔𝜔 + 𝜖𝜖

Where Ꞷ t is a given parameter, L(t) is a loss function, ℇ is a small number used to avoid

division by zero, and β1 and β2 are the forgetting elements of gradients and second moments

of gradients.

In this study Adam optimizer was used for many reasons, mentioning some below:

1. Straightforward implementation.

2. Efficient and fast.

3. Doesn’t require a lot of memory.

4. Invariant to diagonal rescale of the gradients.

5. Adaptive Gradient Algorithm.

Then this process retrieves the current state of the environment and provides the states and

policy to the agent to get an action.

After getting the action, it gets the reward based on that action, the updates the memory and

Q-values, it calculates the loss which represents error rate from that action in the following

state and it’s used by the optimizer to update the policy to gain better results.

21

Create an
Environment

Set Hyper
Parameters

Get Current State

Take Aaction

Get Reward

Update MemoryGet Next State

Calculate Loss

Update Policy

Check
Number of
Episodes

Terminate

Figure 4.5: Flow Chart of RL Algorithm

22

4.3 Data Collection

The data for this problem just like most of the RL problems, was not available.

Therefore, a specific data was designed for the scope of this study.

A human demonstration was recorded, each sample had the environment and the action taken

by the human actor recorded and linked using a unique ID.

The data recording was done using a third-party code designed specifically for this task and

gave the human actor the ability to control the cart.

The states’ features are stored with an ID every iteration, the same ID is used to index the

action taken and save it in a table.

This data was later converted into a form that our model can accept.

Start

Capture States’
Features

User Takes Action

Save the Action
with Corresponding

ID

Figure 4.6: Data Collection Flow Chart

23

4.4 Supervised Learning

Supervised learning is the most popular branch of machine learning, supervised learning

algorithms are designed to learn by training on previous examples.

In the scope of this study, supervised learning was used to train the policy network using the

data collected from the human actor in an earlier stage.

The optimizer used in this stage is the same optimizer used in the first study case, as well as

the hyper parameters, this will guarantee that the results will be transparent.

The loss function used is the cross-entropy loss function since we have only two actions.

For discrete probability distributions p and q equation is as shown below.

𝐻𝐻(𝑝𝑝, 𝑞𝑞) = −� 𝑝𝑝(𝑥𝑥) log 𝑞𝑞(𝑥𝑥)
𝑥𝑥∈𝒳𝒳

And for continuous distribution, p and q are assumed to be absolutely continuous with the

respect to reference measure r (such as Lebesgue measure), the equation will be as shown

below.

𝐻𝐻(𝑝𝑝, 𝑞𝑞) = −� 𝑃𝑃(𝑥𝑥) log𝑄𝑄(𝑥𝑥)𝜕𝜕𝜕𝜕(𝑥𝑥)
𝒳𝒳

 Where P and Q are probability density functions of p and q with respect to r.

Cross-entropy gives a loss based on how far the prediction result is far from the actual

expected result.

24

Figure 4.7: Cross-Entropy Gradient Descent

The value generate is between 0 and 1, the greater the error is the closer the value will be to 1.

After training the policy network, the same RL algorithm will be run using the trained

network to be the policy network.

In this case, in stead of starting the policy network from a random weights values, the policy

has already been trained to good values from the human actor’s demonstration.

Input Pre-Processing Explore/
Exploit Take Action Update Q-

Table Output

Collect DataTrain Policy
Network

Format the
Data

Pre-Process
the Data

Supervised Learning Stage

Reinforcement Learning Stage

Figure 4.8: Block Diagram of the Design Stage Including the Supervised Learning

25

CHAPTER 5

IMPLEMENTATION RESULTS

5.1 Results

The main aim of this study is to compare the results between the reinforcement learning

performance algorithm, and the performance of the same reinforcement learning algorithm

after running its policy through supervised training using human demonstrated data.

Both study cases are running with the same hyper parameters, and attempting to solve the

same problem.

The training dataset was collected specifically for the aim of this study and was formatted to

be accepted by the model used.

The training and testing of the model were performed using PyTorch in a python

programming language, and were run of a high-performance GPU unit.

Figure 5.1 Model Summaries

26

The table below shows the hyper parameters used in both study cases

 RL
Supervised Learning +

RL

Exploration Rate
Random between

(0-1) % 10

Random between

(0-1) % 10

RL Batch Size 256 256

Gamma 0.865 0.865

Epsilon Start 1 1

Epsilon End 0.01 0.01

Epsilon Decay 0.001 0.001

Memory Size 100000 100000

Learning Rate 0. 0004 0. 0004

Number of Episodes 5000 5000

Supervised Learning’s

Learning Rate
̶ 0. 0004

Supervised Learning’s

Batch Size
̶ 32

Supervised Learning

Epochs
̶ 16

Supervised Learning

Data Size
̶ 269

Table 1 - Hyper Parameters' Values

27

5.2 First Experiment (Reinforcement Learning)

The figure shown below displays the results of running the reinforcement learning algorithm

directly without any sort of training, this means all weights of the policy network are

randomly generated.

Figure 5.2: Reinforcement Learning Results

The blue line represents the duration in milliseconds that the agent was able to maintain the

pole from falling in each episode.

The orange line the moving average of the last 100 episodes.

By considering both lines, it is clear that the agent started with a bad performance and it got

better after around 840 episodes, the maximum duration was less than 300ms.

 Duration ـــــــــــــــ

 .Moving Avg ـــــــــــــــ

28

This performance lasted for only about 400 episodes and then it decayed back to the values it

started from, and on the long run the model couldn’t hold the pole for more than 150ms.

Since the main goal of using reinforcement learning is making the model adaptative and keep

it learning while working, this goal was not achieved in this case.

By considering the moving average, it is easy to notice that the average of this duration

reached the peek after about 1000 episodes of operating, and then started to fall.

The agent ended the 5000 episodes with an average of 53.52ms.

Although the performance enhanced while going through more training episodes, but it’s

clear that the average didn’t have a significant improvement.

The experiment ended with a falling moving average curve.

5.3 Second Experiment (Reinforcement Learning + Supervised Learning)

The figure shown below displays the results of running the reinforcement learning algorithm

after training the model to human demonstrated data, this means the weights of the policy

network are being initialized based on good performance demonstration.

29

Figure 5.3: Reinforcement Learning + Supervised Learning Results

The blue line represents the duration in milliseconds that the agent was able to maintain the

pole from falling in each episode.

The orange line the moving average of the last 100 episodes.

By considering both lines and comparing with the previous figure, it is clear that the agent

had a better starting value and had better performance as through the rest of the training

period.

In this case the agent took longer time to reach the same number (less than 300ms), and this is

due to small training dataset, but on the other hand its performance enhanced significantly and

 Duration ـــــــــــــــ

 .Moving Avg ـــــــــــــــ

30

was able to keep the pole in upright position for 250ms in several episodes and in many other

episodes it was a little less than that number.

The agent ended the 5000 episodes with an average of 90.19ms, which is a significant

improvement from the previous experiment.

The experiment ended with a growing moving average curve, which gives us a hint that the

performance will be better when running more episodes.

31

CHAPTER 6

CONCLUSION

As a conclusion, the study aimed to compare the difference in performance between

reinforcement learning, and the reinforcement learning after training its model to a human

demonstrated data using one of the machine learning training algorithms. By considering the

results of both experiments, on the same problem with the same environment, conditions and

parameters, it is clear that training the policy network helped improving the performance with

more than 1.68 times. Since the dataset collected for this study was small, it is appropriate to

say that with larger and more accurate, and professional data, the agent will have better

results. The problem used in this study was a simple problem, used to test the concept and

theory. Choosing a simple and small problem helps in generalizing the concept, and therefore,

we can say that this study is valid for further and more complicated projects.

32

REFERENCES

[1] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. 2009. A

survey of robot learning from demonstration. Robotics and autonomous systems57, 5

(2009), 469–483.

[2] H. Yu, X. Xu, H. Ma, Z. Zhu and C. Chen, "Control design of two-level quantum

systems with reinforcement learning," 2018 33rd Youth Academic Annual Conference

of Chinese Association of Automation (YAC), 2018, pp. 922-927, doi:

10.1109/YAC.2018.8406503.

[3] Xiao-ting Cui and Xiang-dong Liu, "Fuzzy Neural Control of Satellite Attitude by TD

Based Reinforcement Learning," 2006 6th World Congress on Intelligent Control and

Automation, 2006, pp. 3983-3986, doi: 10.1109/WCICA.2006.1713120.

[4] J. Kim, S. Cha, M. Ryu and M. Jo, "Pre-training Framework for Improving Learning

Speed of Reinforcement Learning based Autonomous Vehicles," 2019 International

Conference on Electronics, Information, and Communication (ICEIC), 2019, pp. 1-2,

doi: 10.23919/ELINFOCOM.2019.8706441.

[5] T. Blau, L. Ott and F. Ramos, "Improving Reinforcement Learning Pre-Training with

Variational Dropout," 2018 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2018, pp. 4115-4122, doi: 10.1109/IROS.2018.8594341.

[6] Gabriel V Cruz Jr, Yunshu Du, and Matthew E Taylor. Pre-training neural

net-works with human demonstrations for deep reinforcement learning. arXiv

preprintarXiv:1709.04083, 2017.

[7] Recht, B. (2019). A tour of reinforcement learning: The view from continuous control.

Annual Review of Control, Robotics, and Autonomous Systems, 2(1), 253–279.

https://doi.org/10.1146/annurev-control-053018-023825

[8] Karanayil, B., & Rahman, M. F. (2018). Artificial neural network applications in

power electronics and Electric drives. Power Electronics Handbook, 1245–1260.

https://doi.org/10.1016/b978-0-12-811407-0.00041-6

[9] Violante, A. (2019, July 1). Simple reinforcement learning: Q-learning. Medium.

https://towardsdatascience.com/simple-reinforcement-learning-q-learning-

fcddc4b6fe56.

33

[10] Narendra, K. S., & Parthasarathy, K. (1990). Identification and control of dynamical

systems using neural networks. IEEE Transactions on Neural Networks, 1(1), 4–27.

https://doi.org/10.1109/72.80202

[11] Chen, X., & Hickey, C. (2018). Parallelized interactive machine learning on

autonomous vehicles. NAECON 2018 - IEEE National Aerospace and Electronics

Conference. https://doi.org/10.1109/naecon.2018.8556776

[12] Zhang, S. (2019). Continuous control for robot based on deep reinforcement learning.

https://doi.org/10.32657/10356/90191

[13] Gupta, D. (2020, July 19). Activation functions: Fundamentals of deep learning.

Analytics Vidhya. https://www.analyticsvidhya.com/blog/2020/01/fundamentals-

deep-learning-activation-functions-when-to-use-them/.

[14] Glen, S. (2021, June 12). Moving average: What it is and how to calculate it. Statistics

How To. https://www.statisticshowto.com/probability-and-statistics/statistics-

definitions/moving-average/.

[15] Jang, B., Kim, M., Harerimana, G., & Kim, J. W. (2019). Q-learning algorithms: A

comprehensive classification and applications. IEEE Access, 7, 133653–133667.

https://doi.org/10.1109/access.2019.2941229

34

APPENDICES

35

APPENDIX 1

DATA COLLECTION CODE

36

37

38

39

APPENDIX 2
REINFORCEMENT LEARNING CODE

40

41

42

43

44

45

46

47

48

49

50

APPENDIX 3
REINFORCEMENT LEARNING + SUPERVISED LEARNING CODE

51

52

53

54

55

56

57

58

59

60

61

62

APPENDIX 4. ETHICAL APPROVAL LETTER

ETHICAL APPROVAL DOCUMENT

Date: 04/08/2021

To the Institute of Graduate Studies

For the thesis project entitled as “Enhancing Reinforcement Learning Behavior by Pre-Training the
Model”, the researchers declare that they did not collect any data from human/animal or any other
subjects. Therefore, this project does not need to go through the ethics committee evaluation.

Title: Assist. Prof. Dr

Name Surname: Elbrus Imanov

Signature:

Role in the Research Project: Supervisor

63

APPENDIX 5. SIMILARITY

Enhancing Reinforcement Learning Behavior by Pre-Training the Model

Assist. Prof. Dr. Elbrus Imanov

	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	TABLE OF FIGURES
	TABLE OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTER 1 INTRODUCTION
	1.1 Thesis Overview
	CHAPTER 2 LITERATURE REVIEW
	CHAPTER 3 OVERVIEW
	3.1 Reinforcement Learning
	3.2 Deep Reinforcement Learning
	3.2.1 Model-Based
	3.2.2 Model-Free
	CHAPTER 4 METHODOLOGY
	4
	4.1 Design
	4.1.1 Environment Setup
	4.1.2 Memory Reply
	4.1.3 Q-Table
	4.1.4 Strategy
	4.1.5 Agent
	4.1.6 Supervised Training
	4.2 Reinforcement Learning Algorithm
	4.3 Data Collection
	4.4 Supervised Learning
	CHAPTER 5 IMPLEMENTATION RESULTS
	4
	5
	5.1 Results
	5.2 First Experiment (Reinforcement Learning)
	5.3 Second Experiment (Reinforcement Learning + Supervised Learning)
	CHAPTER 6 CONCLUSION
	REFERENCES
	APPENDICES
	APPENDIX 1 DATA COLLECTION CODE
	APPENDIX 2 REINFORCEMENT LEARNING CODE
	APPENDIX 3 REINFORCEMENT LEARNING + SUPERVISED LEARNING CODE
	APPENDIX 4. ETHICAL APPROVAL LETTER
	APPENDIX 5. SIMILARITY

