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ABSTRACT 

 

 

Early-stage diagnosis of infectious diseases is crucial for increasing survival rate of patients, 

preventing spread of disease and decreasing diagnosis and treatment cost. Pneumonia caused 

as a result of both virus from Coronaviridae family and other viral species such as bacteria, 

fungi and tuberculosis caused by Mycobacterium tuberculosis have been a major challenge 

for medical and healthcare sectors in many underdeveloped countries and remote 

communities with limited diagnosis tools and treatment approach. Molecular testing 

approaches based on anti-body-based approach and PCR techniques are currently the 

standard techniques employed by medical expert for diagnosis of disease caused by bacteria 

and viruses.  

Other techniques include microscopy, culture test, sputum test, complete blood count. These 

techniques are still hindered by the utmost need of highly-skilled professionals, equipped 

and sophisticated tools, chemical reagents and thus, limit point of care diagnosis. Thus, there 

is need for development of fast, cheap, simple and accurate detection approach for diagnosis 

and predictions of these diseases. The recent advancement in synthetic biology has led to 

discovery of Clustered Regular Interspace Short Palindromic Repeat (CRISPR) based on 

synthetic RNA design to match DNA sequence of pathogens. This technology has proven to 

be among the most, reliable, accurate, sensitive, specific and fast method for screening of 

pathogens such as Dengue virus, Zika virus as well as SARS-CoV-2 which is currently under 

clinical trial.  

The fabrication of point of care biosensor based on CRISPR may take time and it will be 

expensive for underdeveloped countries. Thus, there is high need to explore other 

alternatives which are simple, fast, reliable, cheap and precise. Pneumonia is among the 

signs of Covid-19 infection which can be spotted using Chest Xray scan. Tuberculosis can 

be detected from microscopic slides and chest X-ray but as a result of the high cases of 

Covid-19 and tuberculosis, this method can be tedious for both Pathologist and Radiologist 

and can lead to miss diagnosis. This challenge can be solved by employing the means of 

Computer Aided Detection via AI-driven models which learn features based on convolution 

and result in an output with high accuracy, precision and recall. 
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In this paper, we described automated discrimination of X-ray images of disease which are 

caused by Coronavirus (such as COVID-19) pneumonia caused by different strains of 

bacteria, non-coronavirus-infection (like as Influenza virus, staphylococcus aureus etc.) and 

microscopic slide image of tuberculosis into positive and negative cases using pretrained 

AlexNet Models. Pneumonia images were obtained from optical OCT scans and CXR 

images with total dataset of 5853. Tuberculosis images were obtained from Near East 

university hospital. To evaluate the average efficiency of the model, 10K Cross-validation 

was carried out and machine vs humans. 371 CXR images COVID-19 were obtained from 

GitHub and Kaggle databases. The model is trained to classify COVID-19 pneumonia from 

healthy CXR images as well as other binary classification of pneumonia and multiclass (3-

way classification and 4-way classification). 

For classification of tuberculosis and healthy microscopic slide based on the whole dataset 

(i.e., 70% for training and 30% for testing), the model achieved training score-accuracy of 

99.19%, validation score-accuracy of 98.73%, sensitivity (precision) of 98.59% and 

specificity (recall) of 98.48%. In terms of cross validation based on 10-K folds, the model 

achieved average performance of 99.28% training accuracy and 98.29% testing accuracy. 

To check the efficiency of the model, machine vs human is carried out. 30 unseen images 

are given to the model, beginners and certified pathologist. The model was able to 

discriminate the images accurately outperforming both pathologists. 

For classification of pneumonia using x-ray images, models are trained based on different 

splits (50:50, 60:40, 70:30, 80:20 and 90:10) and cross validation based on 10-k folds to 

differentiate between viral pneumonia and healthy patients. Based on 50:50 data split, the 

model achieved 97.98% training accuracy, 97.94% testing accuracy, 96.21% sensitivity and 

99.00% specificity. 60:40 splits, the model achieved 98.94% training accuracy, 98.95% 

testing accuracy, 99.09% sensitivity and 98.81% specificity. For 70:30 split, the model 

achieved 99.19% training accuracy, 98.73% testing accuracy, 98.59% sensitivity and 

98.84% specificity. For 80:20 split, the model achieved 99.36% training accuracy, 100% 

testing accuracy, 99.11% sensitivity and 99.66% specificity. For 90:10 split, the model 

achieved 99.86% training accuracy, 100% testing accuracy, 99.11% sensitivity and 100% 

specificity. Based on cross validation, the models achieved average performance of 97.70% 
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training accuracy, 96.04% testing or validation accuracy-score, 97.34% precision and 

97.79% recall. 

In terms of discrimination of disease causes by SARS-CoV-2 and other strains of viral 

species causing pneumonia and normal or negative cases, the trained-model was able to 

discriminate between different classes based on binary classifications, multiclass (3-way and 

4-way classifications) with high accuracies, sensitivities and specificities.  

Our result is in line with the notion that CNN models can be used for classifying medical 

images with higher accuracy and precision. These models can now serve as a confirmation 

system for diagnosis of both pneumonia and tuberculosis, maximizing miss diagnosis and 

offer an alternative to relieve the heavy and tedious workload experiencing by radiologist 

and pathologist in Near East University Hospital. Comparing CRISPR-based biosensors and 

CAD approaches, CRISPR-based biosensors have shown to be one of the most precise, 

sensitive and specific approach for diagnosis of infectious disease. CAD on the other hand 

can be used as a confirmatory approach or as substitute for molecular diagnosis due to it low 

sensitivity and specificity compare to CRISPR-based method. 

 

 

Keywords: Pneumonia; Tuberculosis; CRISPR, AlexNet; Cross Validation; X-ray Images; 
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ÖZET 

 

 

Enfeksiyon hastalıklarının erken evrede teşhisi, hastaların sağkalım oranının artırılması, 

hastalığın yayılmasının önlenmesi, teşhis ve tedavi maliyetlerinin düşürülmesi açısından çok 

önemlidir. COVID-19'un neden olduğu pnömoni, COVID-19 olmayan virüsler, bakteriler 

ve Mycobacterium tuberculosis'in neden olduğu mantarlar ve tüberküloz, birçok az gelişmiş 

ülkede ve sınırlı teşhis araçları ve tedavi yaklaşımına sahip uzak topluluklarda tıp ve sağlık 

sektörleri için büyük bir zorluk olmuştur. Anti-vücut temelli yaklaşıma ve PCR tekniklerine 

dayalı moleküler test yaklaşımları, şu anda tıp uzmanları tarafından bakteri ve virüslerin 

neden olduğu hastalıkların teşhisi için kullanılan standart tekniklerdir. 

Diğer teknikler arasında mikroskopi, kültür testi, balgam testi, tam kan sayımı bulunur. Bu 

teknikler, yüksek vasıflı profesyonellere, donanımlı ve sofistike aletlere, kimyasal reaktiflere 

olan ihtiyaç nedeniyle hala engellenmektedir ve dolayısıyla bakım noktası teşhisini 

sınırlamaktadır. Bu nedenle, bu hastalıkların teşhis ve öngörüleri için hızlı, ucuz, basit ve 

doğru tespit yaklaşımının geliştirilmesine ihtiyaç vardır. Sentetik biyolojideki son 

gelişmeler, patojenlerin DNA dizisini eşleştirmek için sentetik RNA tasarımına dayanan 

Clustered Regular Interspace Short Palindromic Repeat'in (CRISPR) keşfedilmesine yol 

açtı. Bu teknolojinin, Dang virüsü, Zika virüsü gibi patojenlerin yanı sıra halihazırda klinik 

deneme aşamasında olan SARS-CoV-2 gibi patojenlerin tespiti için en doğru, güvenilir, 

hassas, spesifik ve hızlı yöntem olduğu kanıtlanmıştır. 

CRISPR'ye dayalı bakım noktası biyosensörünün imalatı, gelişmemiş ülkeler için zaman 

alabilir ve pahalı olabilir. Bu nedenle, basit, hızlı, güvenilir, ucuz ve kesin olan diğer 

alternatifleri keşfetmeye büyük ihtiyaç vardır. Pnömoni, Covid-19 hastalığının göğüs 

röntgeni taramasıyla tespit edilebilen semptomlarından biridir. Tüberküloz, mikroskobik 

slaytlardan ve göğüs röntgeninden tespit edilebilir ancak çok sayıda Covid-19 ve tüberküloz 

vakası nedeniyle bu yöntem hem Patolog hem de Radyolog için yorucu olabilir ve yanlış 

tanıya yol açabilir. Bu zorluk, evrişime dayalı özellikleri öğrenen ve yüksek doğruluk, 

hassasiyet ve geri çağırma ile sonuçlanan yapay zeka destekli modellere dayalı Bilgisayar 

Destekli Algılama kullanılarak çözülebilir. 
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Bu yazıda, pnömoninin röntgen görüntülerinin (Bakteriyel, COVID-19 ve COVID-19 

olmayan viral pnömoni) ve tüberkülozun mikroskobik slayt görüntüsünün önceden eğitilmiş 

AlexNet Modelleri kullanılarak pozitif ve negatif vakalara sınıflandırılmasını tanımladık. 

Pnömoni görüntüleri optik Koherens Tomografi ve göğüs röntgeni görüntülerinden toplam 

5853 veri setinden elde edildi. Tüberküloz görüntüleri Yakın Doğu üniversite hastanesinden 

elde edildi. Modelin ortalama verimliliğini değerlendirmek için 10K Çapraz doğrulama 

gerçekleştirildi ve makineye karşı insan. 371 CXR görüntüsü COVID-19 GitHub ve Kaggle 

veritabanlarından elde edildi. Model, COVID-19 pnömonisini sağlıklı CXR görüntülerinden 

ve diğer ikili pnömoni ve multiclass sınıflandırmasından (3 yollu sınıflandırma ve 4 yollu 

sınıflandırma) sınıflandırmak üzere eğitilmiştir. 

Tüm veri setine göre tüberküloz ve sağlıklı mikroskobik slayt sınıflandırması için (yani 

eğitim için% 70 ve test için% 30), model% 99,19 eğitim doğruluğu,% 98,73 test 

doğruluğu,% 98,59 duyarlılık ve% 98,48 özgüllük elde etti . 10-K kıvrımlara dayalı çapraz 

doğrulama açısından model,% 99,28 eğitim doğruluğu ve% 98,29 test doğruluğu ortalama 

performansına ulaştı. Modelin verimliliğini kontrol etmek için makine vs insan yapılır. 

Modele, yeni başlayanlara ve sertifikalı patoloğa 30 görünmeyen görüntü verilir. Model, her 

iki patologdan daha iyi performans gösteren görüntüleri doğru bir şekilde sınıflandırmayı 

başardı. 

X-ışını görüntüleri kullanılarak pnömoninin sınıflandırılması için, modeller farklı 

bölünmelere (50:50, 60:40, 70:30, 80:20 ve 90:10) göre eğitilir ve 10-k katlara dayalı çapraz 

doğrulama, viral pnömoni ve sağlıklı hastalar. 50:50 veri bölüşümüne dayalı olarak, model% 

97.98 eğitim doğruluğu,% 97.94 test doğruluğu,% 96.21 hassasiyet ve% 99.00 özgüllük elde 

etti. 60:40 bölme, model% 98,94 eğitim doğruluğu,% 98,95 test doğruluğu,% 99,09 

duyarlılık ve% 98,81 özgüllük elde etti. 70:30 bölme için model% 99,19 eğitim doğruluğu,% 

98,73 test doğruluğu,% 98,59 duyarlılık ve% 98,84 özgüllük elde etti. 80:20 bölme için 

model,% 99,36 eğitim doğruluğu,% 100 test doğruluğu,% 99,11 hassasiyet ve% 99,66 

özgüllük elde etti. 90:10 bölme için model,% 99,86 eğitim doğruluğu,% 100 test 

doğruluğu,% 99,11 duyarlılık ve% 100 özgüllük elde etti. Çapraz doğrulamaya dayalı 

olarak, modeller% 97,70 eğitim doğruluğu,% 96,04 test doğruluğu,% 97,34 duyarlılık ve% 

97,79 özgüllük ortalama performans elde etti. 

 



 
 

 viii 

Covid-19 ve sağlıklı CXR görüntülerinin sınıflandırmaları için model,% 99,71 eğitim 

doğruluğu,% 99,16 test doğruluğu,% 97,44 hassasiyet ve% 100 özgüllük elde etti. Covid-19 

ve Covid-19 dışı viral pnömoninin sınıflandırılması için model,% 99,57 eğitim doğruluğu,% 

99,62 test doğruluğu,% 90,63 duyarlılık ve% 99,89 özgüllük elde etti. Covid-19 dışı viral 

pnömoni ve sağlıklı CXR görüntülerinin sınıflandırılması için model,% 96.43 eğitim 

doğruluğu,% 94.05 test doğruluğu,% 98.19 duyarlılık ve% 95.78 özgüllük elde etti. 

Bakteriyel pnömoni ve sağlıklı CXR görüntülerinin sınıflandırılması için model,% 95,28 

eğitim doğruluğu,% 91,96 test doğruluğu,% 91,94 duyarlılık ve% 100 özgüllük elde etti. 

Çok sınıflı 3 yollu sınıflandırma (Covid-19, bakteriyel pnömoni ve CXR görüntüleri)% 

97,40 eğitim doğruluğu,% 95,00 test doğruluğu,% 91,30 duyarlılık ve% 84,78 özgüllük ile 

sonuçlanır. 4 yollu sınıflandırmaya göre (Covid-19 olmayan viral pnömoni, Covid-19, 

bakteriyel pnömoni ve CXR görüntüleri), model% 94,18 eğitim doğruluğu,% 93,42 test 

doğruluğu,% 89,18 duyarlılık ve% 98,92 özgüllük elde etti. 

Elde ettiğimiz sonuç, CNN modellerinin tıbbi görüntüleri daha yüksek doğruluk ve 

hassasiyetle sınıflandırmak için kullanılabileceği düşüncesi ile uyumludur. Bu modeller 

artık hem pnömoni hem de tüberküloz tanısı için bir doğrulama sistemi olarak hizmet 

edebilir, yanlış tanıyı en üst düzeye çıkarabilir ve Yakın Doğu Üniversitesi Hastanesi'nde 

radyolog ve patologun yaşadığı ağır ve yorucu iş yükünü hafifletmek için bir alternatif sunar. 

CRISPR tabanlı biyosensörler ve CAD yaklaşımlarını karşılaştıran CRISPR tabanlı 

biyosensörler, bulaşıcı hastalığın tespiti için en hassas ve spesifik yöntem olduğunu 

göstermiştir. Öte yandan CAD, doğrulayıcı bir yaklaşım olarak veya CRISPR tabanlı 

yönteme kıyasla düşük duyarlılık ve özgüllük nedeniyle moleküler tanı yerine kullanılabilir. 

 

Anahtar Kelimeler: Pnömoni; Tüberküloz; CRISPR; AlexNet; Çapraz Doğrulama; X-ışını 

Görüntüleri; Mikroskobik slayt Görüntüleri;  
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CHAPTER 1 

INTRODUCTION 

 

 

 

Computed Aided Diagnosis (CADx) also referred to Computer Aided Detection (CADe) is 

a computer-based application that assist medical experts in decision-making (Doi, 2007). In 

healthcare system, medical practitioner uses medical image to evaluate information such as 

abnormality from images for proper diagnosis. Interpretation of medical images is very 

critical in medical field due to the fact that any miss-diagnosis can be detrimental (Halalli & 

Makandar, 2018). Different field of medicine deals with specific type of images such as 

microscopic slide images by Microbiologist, pathological stain slide by oncologist, CT scans 

or Chest Xray (CXR) by Radiologist as well as ultrasound and endoscopy (Chen et al., 2013). 

Nuclear imaging technique gives significant metabolic information as opposed to anatomical 

information obtained from conventional mammography, ultrasound and magnetic resonance 

imaging (Histed et al., 2012).  

CAD technology revolve around the use of multiple concepts such as medical image 

processing, computer vision and Artificial Intelligence (AI). The primary function of CAD 

system is detection of abnormality in medical images such as providing quantified image 

metrics to compute probabilities of different diagnoses and identification of potential 

Regions of Interests (ROIs) (Cicerone & Camp, 2019). These techniques have been applied 

for detection of different grades of tumors (such as colon, prostate, breast and lung cancer) 

from pathological stain images, detection of Mycobacterium tuberculosis from both 

microscopic slide images and radiographic images, detection of pneumonia from CT scans 

and diabetic retinopathy. Other application of CAD systems includes diagnosis of 

Alzheimer’s disease, pathological brain detection, coronary artery disease, bone metastases 

etc. (Halalli & Makandar, 2018). 

The first application of CAD technology in medical field is dated back 1990s and still up to 

this date, the technology has not reached its full potentials. However, the advancement in 

the field of Deep Learning (DL) has unfold and unwind many twists that hinders its 

potentials. The use of DL such as Convolutional Neural Networks (CNNs) and Artificial 
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Neural Networks (ANNs) have revolutionized CAD technology. Currently, there are many 

AI-driven models that performed better in terms of classification of diseases than medical 

experts.  

Most of the images obtained from medical devices have low quality or low contrast. To 

enhance their quality, image pre-processing techniques are employed such as filtering, 

enhancement of image quality through levelling, noise removal, decreasing background 

artefacts etc.  

1.1 Artificial Intelligence 

The concepts of AI have been buzzing throughout the last 5 decades as shown in Figure 1.1. 

Many scholars vary in defining the concept. However, AI is termed as any technique that 

enables computers to mimic human behavior.  

 

Figure 1.1: History of AI, ML and DL 

1.1.1 Machine Learning  

ML is defined in 1959 by Arthur Samuel as a field of AI that gives computers the ability to 

learn without being explicitly programmed. ML algorithms are categorized into 3 main 

categories, Supervised ML, Unsupervised ML and Reinforcements learning. Supervised ML 

are the most popular ML techniques utilize by medical expert in which data are labelled and 

the model or network learn features to identify patterns in data for prediction or 
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classification. The most widely used supervised ML techniques include Neural Networks 

(NNs), Support Vector Machine (SVM), Random Forest (RF), decision Tree (DT), etc. 

(Brownlee, 2016; Paiva et al., 2018). 

In Unsupervised ML, models learn from unlabeled data. These models learn to forecast 

result from the data based on the patterns learned. The most common unsupervised machine 

learning models include Rule Mining and Clustering algorithms. Subsequently, 

Reinforcements learning is termed as “when a computer program learns from Experience 

(E) with respect to some Task (T) based on the Performance (P) measures, if P at T is 

measured by P improve with experience.  

1.1.2 Deep learning and Artificial Neural Networks (ANNs) 

Deep learning is a subfield of ML which is inspired by how human brain’s function due to 

connections or synopsis of nerve cells or neurons. Model learn as a result of data connection 

between neurons in the network. A simple neural network is termed as perceptron which 

take input as data set and produced an output as classification category or prediction 

outcome. Deep learning neural networks are made of multiple perceptron’s with an input 

layer (IL), and many hidden layers (HL) before output layer (OL) (Abiyev et al 2018; 

Helwan & Abiyev 2016) as shown in Figure 1.2. Since the emergence of Deep learning in 

2010, scientist have designed different models using convolutional neural networks that can 

classify and analyze medical images such as cancer, tuberculosis, radiological images for 

diagnosis of diseases (Mnih & Hinton 2009; Helwan et al 2017). 
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Figure 1.2: DL architecture with input layer (IL), hidden layers (HL) and output layer 

(OL) 

1.1.3 Convolutional Neural Networks (CNNs) 

CNN is a class of ANN with multi-layer perceptron which are fully connected network in 

which each neuron from one layer is connected to all neurons in the next layer. CNN are 

termed as networks that utilize series of mathematical operations knows as “Convolution” 

There are various neural networks architectures developed. Some of the architectures have 

performed better than others in terms of regression, classification and denoising images. The 

current best models include AlexNet with 8 layers, VGGNet with 19 and 16 layers, Inception 

module also known as GoogleNet with 22 layers and 9 modules and Residual or ResNet with 

152 layers (Russakovsky et al 2015) as shown in Figure 1.3. To train a NN, a 

backpropagation algorithm is used to adjust the weight according to the data pattern and 

optimize the error between predicted output and actual output (Simonyan & Zisserman 2014; 

He et al 2016). 

 

Figure 1.3: Performance of ImageNet architectures 

Some of the challenges of these models is underfitting and overfitting. An effective model 

also known as fitted model is the one that result in high accuracy during training and testing 

with low bias and variance. Overfitting is a challenge that occurs during training which result 
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in high training accuracy and low testing accuracy due to high variance and low bias. 

Underfitting on the other hand is due to low variance and high bias which result in low 

accuracy in both training and testing operations. These challenges can be avoided or can be 

overcome through cross validation, early stopping, weights pretraining and penalization, 

drop out layers etc. (Oyedotun et al 2017; Dawud et al 2019). 

The principle behind the application of CNN in classification or regression revolves around 

series of dot products of weight matrices and input matrix. These processes are categorized 

into two stages known as Feature learning and Classification. Future learning is based on the 

use of convolutional blocks with operations such as convolution which is a process of 

computing input matrix and feature matrix to obtain a convolve map or feature map, 

activation operation is the use of activation function (AF) like tanh, sigmoid and Rectified 

Linear Unit (ReLu) to squash output into zero or within ranges of 0 and 1 or from -1 to 1, 

pooling operation is carry out to reduce computation by taking the most important part of 

the convolve map by either max pooling or average (mean) pooling. The output is obtained 

after these operations in all the layers (including fully connected layers or global average 

pooling layers) and the use of classifier such as SoftMax based on probabilities to 

categorized output (Acharya et al 2018; Smith & Topin 2016). 

1.1.4 AlexNet 

Is the first CNN developed that outperform other models in the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) competition in 2012. AlexNet is developed by Alex 

Krizhevsky. The model consists of overall 8 layers, 5 are convolutional layers and 3 fully 

connected layers. The first two convolutional layers are made of 3 operations which include 

convolution, pooling and normalization. AlexNet use ReLu as an activation function unlike 

Tanh and sigmoid functions that are used in traditional machine learning. ReLU converts 

negative numbers to zeros and help models learn non-linear functions (Krizhevsky et al 

2012; Aloysius et al 2017). 

Max pooling is the most common pooling methods which main function is to down sample 

or to reduce image size by pooling most important feature by pooling out the number with 

highest pixel value. The next 2 layers are mainly convolution layers without pooling and 

normalization and the final convolution layer consist of only convolution and pooling 
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without normalization. The first 2 fully connected layers are dropout layers which main 

function is to reduce overfitting through reduction of number of neurons. The final FCL is 

basically for classification as shown in Figure 1.4 (Liang et al 2015; Han et al 2017). 

 

Figure 1.4: AlexNet architecture (Han et al 2017) 

1.1.5 Transfer Learning (TL) 

TL is defined as ML approach where a model trained on a specific task is re-purposed on 

other related task or a means to extract knowledge from a source setting and apply it to a 

different target setting. TL can also be described as a process where what models learned 

from a specific task or setting is harnessed to improve better outcome in another task or 

setting as shown in Figure 1.5. TL compare to DL without transfer has demonstrated to be 

an easier approach that can quickly retrain NNs on dataset of interests with high accuracy 

(Raghu et al., 2019). 
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 Figure 1.5: Transfer Learning 

1.1.6 Model parameters: Training, Learning and Testing 

During training, input variables are feed into the network at the input layer which will flow 

through the hiding layers arriving at the output, as inputs flows between layers they will be 

multiply by random weights. Different weights signify the intensity of connections between 

layers and they are the most significant factors in transforming the input to output. Bias and 

AF is added to the input data as it slides through the model, example of AF is Sigmoid 

function which will squash any output results between 0 and 1. The obtain outputs will end 

up been incorrect (i.e., 0.5).  

For network to learn, there must be a process of feedback involve which is conducted via 

back propagation. This process revolves around comparing the output obtained with the 

output it should produce.  

𝑂𝐴 − 𝑂𝑂        (1.1) 

The difference will be use to modify the weight of the connection. The network will be run 

over and over again each time adjusting the weight using Gradient descent which is 

employed to move the network toward the lowest possible errors. Cost function is a GD 

which provide a measure of how far off the 𝑂𝑂 from 𝑂𝐴 . Mean square error is the most 

common CF use to address the errors. 

𝐽(𝜃) =
1

𝑚
∑ (ℎ𝜃

𝑚
𝑖=𝑚 (𝑥(𝑖)) − 𝑦(𝑖))2     (1.2) 
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This equation can be adopted to provide information to the GD that the model needs to 

reduce the errors across all weight in the network. After training and learning, model can be 

tested using 25-30% data.  

1.1.7 Application of AI in Medicine 

Advances in computational technology paired with high amount clinical data and health 

records has open a window to the use of AI to improve healthcare system. AI has been 

utilized in healthcare and medicine to increase accuracy of diagnosis, prevent errors, miss-

diagnosis, aid in decision making, reducing time of diagnosis etc. Application of AI in 

healthcare sectors can be categorized into 2 (1) virtual and (2) physical. The virtual 

application of AI in medicine includes electronic health records system and guidance in 

decision making using neural networks. In terms of physical application, some of the 

examples include the use of robots in assisting surgeons in performing surgery and the use 

of intelligent prostheses for elderly people and handicapped (Amisha et al., 2019; Hamet & 

Tremblay, 2017; Mintz & Brodie, 2019). In healthcare system, AI have been applied for: 

1. Pharmaceutical: In pharmacy, AI aid in development of new drugs, identification of 

potent drugs, selection of patients for specific drug trials, development of vaccines. 

Scientist have also developed an application known as AI cure that can monitors the 

use of medications via smartphones etc. 

2. Diagnosis: diagnosis is the sub-field of medicine that received attention from AI 

specialist due to the availability of data. Scientist utilize different set of data such as 

MRI scans (CT and CXR) biopsy tissue samples, microscopic slide images to train 

computer to distinguish between disease and normal cases (i.e., based on 

classification or probability score). 

3. Monitoring: scientist have developed so many AI-driven models that can monitor 

and track physiological variables such as blood pressure, glucose level, heart rate, 

sleep levels, intake and suspended calories, temperature etc. 

4. Nursing and AI-Assisted care: AI specialist and health care professionals developed 

“Molly” a virtual nurse that can provide follow-up care to patients that are discharged 

from the clinic so that doctors can focus on in-patients. Different applications are 

undergoing trials such as AI-Assisted Care designed based on smart ICUs that can 
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sense any behavioral changes in ICU patients and elderly people living alone. The 

application of AI is shown in Figure 1.6. 

 

Figure 1.6: Applications of artificial intelligence within the Healthcare Landscape 

(Gilvary et al., 2019) 

1.2 Thesis Problem 

Most of the microbiological, radiological and pathological diagnosis that has to do with stain 

slides and radiographic images are interpreted by experienced medical experts experienced 

in the field. However, there have been so many cases of miss-diagnosis, inaccuracy, 

irreproducibility and false positive results. The use of microscope for quantitative analysis 

of Mycobacterium tuberculosis is very crucial for diagnosis. This approach is clouded by 

several limitations which can lead to miss-diagnosis (1) The overlapping of the bacteria 

against each other makes it difficult to carry out accurate diagnosis (2) Examining large 

amount of microscopic slide image can be very tedious as a result of workload (3) The size 

of the bacilli is too small as well as its heterogenous shape, irregular appearance, faint 

boundaries and low background contrast. 



 
 

 10 

Pneumonia have been a major challenge for medical and healthcare sectors in many 

underdeveloped countries and remote communities with limited diagnosis tools and 

treatment approach. Interpretation of microscopic slide image and X-ray images of 

pneumonia obtained from patients is sometimes tedious for qualified pathologist. However, 

the development of fast, cheap, simple and accurate detection approach for diagnosis and 

predictions of these diseases are highly required. 

As the magnitude for the exponential growth of COVID-19 cases continue to sky rocket so 

as the number of death tolls around the world. This rise in cases has exhausted many 

countries testing capacity. Apart from lack of enough test kit, other challenges associated 

with detection of COVID-19 is the time it takes to transport samples for area of infection to 

specialized laboratory for RT-PCR testing. This approach (RT-PCR) is the current standard 

approach used by medical experts for detection of genetic content from pathogens (viruses, 

bacteria etc.). However, one of the limitations of this method is it provide false positive 

results which means they are not consistently accurate. In order to solve these challenges, 

scientists are working beyond the clock to develop a more sensitive, accurate, precise, 

reliable and point-of-care diagnostic kit that can be utilized for screening or diagnosis of 

COVID-19 Infection. 

The use of CRISPR/Cas systems for detection of pathogens such as Zika virus, dengue virus, 

pathogenic bacteria such as tuberculosis have been successful in the past. Currently scientists 

are exploring and harnessing the collateral cleavage of CRISPR/Cas13a in order to develop 

CRISPR-based biosensor for diagnosis and screening of COVID-19 (aka SARS-CoV-2). 

Moreover, the fabrication of point of care biosensor based on CRISPR may take time and 

expensive for underdeveloped countries. Thus, there is high need to explore other 

alternatives which are simple, fast, reliable, cheap and precise. Considering the fact that 

pneumonia is one of the symptoms of COVID-19 disease and can be detected using Chest 

Xray scan, scientist rely on this approach as an alternative or confirmatory approach. 

However, as a result of high number cases related to COVID-19, this method is tedious to 

radiologist and can lead to miss diagnosis. This challenge can be solved by using AI-driven 

models which learn features based on convolution and result in an output with high accuracy, 

precision and recall.  
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1.3 Aims and Objectives  

• To train DL models to classify microscopic slide image of tuberculosis and 

normal images. 

• To train DL models to classify different types of pneumonia (caused by non-

COVID-19 viral pneumonia such as Influenza virus, COVID-19 pneumonia by 

SARS-CoV-2, bacterial pneumonia from healthy Chest Xray (CXR) images. 

• To compare precision in terms of sensitivity for screening of tuberculosis, 

COVID-19 pneumonia using CRISPR-based biosensors and Deep Learning 

Models.   

1.4 Significance of the Study 

The field of medicine and microbiology has witnessed tremendous growth due to invention 

of microscope which enable scientists to view cells and its organelles. The instruments help 

medical practitioners to detect pathogenic viruses, bacteria and microscopic fungi. The cases 

of pneumonia and tuberculosis are predominant in underdeveloped countries with poor 

healthcare sectors, lack of medical personnel and resources for detection, screening and 

therapy (Stephen et al 2019; Mathur et al 2018). Thus, these challenges open an area for 

scientist to developed an alternative, cheap, fast and precise methods that can be used to 

discriminate between positive cases of specific diseases and normal (negative cases). Thus, 

the findings of this study will enable pathologist to utilize AI-driven tools as a confirmatory 

or an alternative approach for the diagnosis of tuberculosis, bacterial pneumonia COVID-19 

pneumonia, non-COVID-19 viral pneumonia and normal microscopic slide image or chest 

Xray scans.   

1.5 Assumption and Limitations of the Study 

In this study, a pretrained AlexNet model is used for binary classification of tuberculosis 

from microscopic slide images, COVID-19 pneumonia from normal Chest Xray images and 

Non-COVID-19 viral pneumonia from normal CT scan images. In terms of pneumonia, 

different type of pneumonia (bacterial, non-COVID-19 viral and COVID-19) and normal 

chest Xray images are classified. Apart from AlexNet, there are other high performing CNN 

models such as ResNet, Inception V3, GoogleNet and VGGNet, but due its simplicity, a 
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smaller number of layers, minimum error and computational time restraints, it was utilized, 

nonetheless. 

1.5 Structure of The Thesis 

The introductory part as Chapter 1 presents the overview of the thesis and concept, including 

the statement of the problem, the significance of the study, detail aims and objectives and 

assumptions and limitations. Chapter 2 elaborate on clinical background of tuberculosis, 

general pneumonia and COVID-19 pneumonia caused by SAR-CoV-2, the chapter also 

outline symptoms and transmission of the diseases, number of cases, death tolls, diagnosis 

and treatment as well as CRISPR-based biosensor for detection of tuberculosis and 

pneumonia. The literature review based on the current-state-of-the arts are addressed in 

Chapter 3. The methodology of the analysis including dataset and model training are detailed 

in Chapter 4 with results and discussion addressed in Chapter 5. Conclusion, challenges 

faced during the analysis and future work are presented in Chapter 6. 
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CHAPTER 2 

CLINICAL BACKGROUND 

 

 

2.1 Tuberculosis 

Tuberculosis is an airborne infection caused by a bacterium known as Mycobacterium 

tuberculosis (MBTB) which are slender, rod shape microbes with length ranging from 1-

10mm and strict aerobes (need oxygen to survive). They possess a waxy cell wall as a result 

of formation of “Mycolic Acid” making them “Acid fast” which signifies that they can retain 

on to a dye or stain in spite of being exposed to alcohol, thus, making the bacilli look red in 

color when Ziehl-Nelson stain is applied. However, due to the nature of their waxy cell wall, 

they tend to repelled weak disinfectants and can survive on a dry surface for a longer period 

of time (Tsai et al., 2013). According to WHO report 2019, deaths as a result of TB-related 

disease decrease from 1.6 million in 2017 to 1.5 million in 2018. It was estimated that 10 

million people fall ill as a result of TB in 2018 with the majority of patients coming from 

India, Pakistan and china. The symptoms of pneumonia include hemolysis (coughing up 

blood), fever, weight loss, night sweats etc. (Stewart et al., 2003; Katti, 2004; Polesky et al., 

2005). 

2.1.1 Transmission  

MBTB TB can be transmitted via inhalation of droplets from infected person to another 

through sneezing, coughing, spitting and speaking (Druszczynska et al., 2012). When 

inhaled, the droplet moves to the lungs, however, the body exercise different defense 

mechanisms to counter the bacteria: 

1. In the upper airways, the air is toxic and thus driving the bacteria against the mucus 

in order to destroy them. Despite that, the bacteria can maneuverer through the mucus 

trap and proceed into the lung’s alveoli  

2. The lungs contain “Macrophages” which destroy foreign cells. The mechanism 

behind this activity is as a result of the macrophages recognition of the foreign cells 

and engulfed the bacteria in a space known as “Phagosome” which contain 
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lysosomes which are hydrolytic enzyme and can breaks down any biochemical 

molecules. In spite of this defense mechanism, the bacteria can survive through the 

engulfment by secreting proteins that can inhibit the action of the enzymes. Thereby 

causing pulmonary TB which developed symptoms as shown in Figure 2.1. But in 

some cases, it is asymptomatic with flu-like symptoms. 

3. Few weeks after exposure, in response, cells mediated immunity become triggered 

and immune cells mount on to the site of the infection forming a “Granuloma” in 

order to prevent the bacteria from proliferating.  

 

Figure 2.1: (A) Mycobacterium tuberculosis (MBTB) (B) Ziehl Nelson stain slide 

showing MBTB in Pink color 

The tissue inside the granuloma dies due to a process known as “Caseous Necrosis”. The 

area is termed as “Ghon focus or Ghon complex”. These bacilli can also be transported to 

close by lymph nodes by the immune cells or through direct extension of the lymph of the 

Ghon complex leading to caseation. Moreover, the dead-tissue inside the granuloma 

undergoes a process known as “Fibrosis or calcification” leading to a scar tissue that can be 

observed using Xray. This calcified Ghon complex is termed as “Ranke complex”. In some 

cases, these bacilli remain viable of dormant (latent) and can be reactivated when the 

immune system is weakened due to diseases like HIV and as a result of ageing. The bacilli 

can spread to either one or both of the upper lobes of the lungs due to the abundance of 

oxygen. To stop the proliferation of the bacteria. The immune T-cells release cytokines and 

thus lead to formation of multiple caseous necrosis and form cavities which allows the 
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bacteria to escape and spread through the lymphatic channels to other regions in the lungs 

and thus lead to “Bronchopneumonia”. (González-Martín et al., 2010). 

When the bacteria spread to other tissues in the body it is termed as “Systematic miliary 

tuberculosis”. When bacteria spread to other tissues it causes complications to related organs 

affected such as sterile pyuria of the kidneys due to high levels of white blood cells in the 

urine, meningitis as a result of meninges of the brain, hepatitis in the liver, Pott diseases 

associated to the lumbar vertebrate, Addison’s diseases in the adrenal gland, Scrofula as a 

result of lymphadenitis in the neck etc. (Polesky et al., 2005; González-Martín et al., 2010). 

The most popular type of TB is pulmonary tuberculosis which attacks the lungs. The other 

type of tuberculosis is known as extrapulmonary TB which cause damage to other organs 

such as Kidney, brain and spine. Tuberculosis can lead to mortality if not treated. Another 

classification of TB is based on active and dormant (latent). Active TB is contagious and can 

be easily transmitted while latent TB is not contagious but can become active without proper 

medication (Druszczynska et al., 2012; Panicker et al 2018).  

2.1.2 Diagnosis and Treatment 

There are many approached adopted by pathologist for the detection of tuberculosis, some 

of the techniques include Tuberculin Skin Test (TST), microscopy, Chest X-ray, Purified 

Protein Derivative (PPD), GeneXpert, culture test and Interferon γ-release assay. However, 

among these techniques, microscopic sputum smear evaluation using microscope remain the 

most common approach globally especially in underdeveloped and developing countries due 

to its affordability, simplicity, speed and maintenance compare to other techniques (Tsai et 

al., 2013; Priya & Srinivasan 2015). 

The treatment of tuberculosis is highly dependent on the severity of the disease, stage at 

which it is diagnosed, type of causative pathogens. For latent tuberculosis, doctors prescribe 

a single drug such as Isoniazid which can be used for a prolong period of time. For active 

tuberculosis, treatment depends on the type of causative pathogens, in this case doctors 

prescribed combinations of different antibiotics. Other measures taking against active 

tuberculosis include isolation of patients in negative pressure rooms. In the case of drug 

resistant strains, combination of drugs is prescribed (Katti, 2004; González-Martín et al., 

2010; Druszczynska et al., 2012). 
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2.2. Pneumonia 

Pneumonia is originally derived from Greek word “Pneumon” which means “lungs”. 

Therefore, pneumonia is attributed to diseases associated with the lungs. In medicine, 

pneumonia is defined as either inflammation of one or the two lungs parenchyma. 

Pneumonia occurs due to infections instigated by different types of pathogens which include 

viruses, bacteria and fungi, exposure to toxic chemicals and food aspiration (Gilani et al 

2012). Pathologically, pneumonia infection occurs when the lung’s alveoli became filled up 

with fluid or puss which in return decrease the exchange of CO2 and O2 between blood and 

the lungs leading to difficulty in breathing. Figure 2.2 and Table 2.1 Shows classification of 

pneumonia according to pathogens.  

 

Figure 2.2: Pathogens that causes pneumonia 

Table 2.1: Classification of pneumonia based on Pathogens 

Pathogen Specie  

Bacteria S. pneumoniae  



 
 

 17 

 L. pneumophila 

 M. pneumoniae 

 C. pneumoniae 

Viruses  Influenza virus 

 Severe Acute Respiratory Syndrome Coronavirus (SAR-CoV-1 and 2)  

 Middle East Respiratory Syndrome (MERS) Coronavirus 

 Respiratory Syncytial virus (RSV) 

 Adenovirus 

 Hantavirus  

 Rhinovirus 

 Varicella-zoster virus 

 Human metapneumovirus 

 Enteroviruses 

Fungi  Pneumocystis jirovecii 

 Aspergillus spp 

 Mucoromycetes 

 Histoplasmosis 

 Coccidioidomycosis 

 Cryptococcus 

 

The common symptoms of pneumonia include shortness of breath, fever, chest pain, cough 

etc. Moreover, elderly people (between the age of 65years and above), children (below the 

age of 5 years) and patient suffering from other critical diseases such as impaired immune 

system disorders, patients placed on a ventilator machine, patients with HIV, tuberculosis, 

asthma, other Acute Respiratory Distress syndromes (ARDS) and other chronic diseases, as 

well as people who smoke are regarded as the categories prone or at more risk of contracting 

pneumonia (Falade et al 2011). 

According to WHO, over 4 million premature deaths occur due to infections associated with 

household air pollution including pneumonia and tuberculosis. More than 150 million people 

were estimated to be infected with pneumonia annually and more prevalence in children less 

than 5 years old (WHO, 2018). Globally, pneumonia is among the top disease that affect 

children and account for 15% of mortality of infants and children below 5 years leading to 
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over 1.4 million death in 2018 and 2.56 million in 2017. Even though the prevalence of the 

disease is common in children but it can also affect young and older people.  

2.2.1 Diagnosis and Treatment of Pneumonia 

Medical expert such as clinical pathologist, microbiologist and radiologist employ different 

method for the diagnosis of pneumonia. Some of these methods includes: sputum test, 

complete blood count, chest X-ray, Thoracentesis, arterial blood gas etc. the treatments of 

pneumonia are mostly defendants on the causative pathogens. For viral pneumonia (ones 

caused by influenza virus, hantavirus, SAR-CoV-1 and 2, MERS etc.) antiviral drugs are 

used which inhibit or destroy the virus. In the case of bacterial pneumonia (ones caused by 

Streptococcus pneumoniae, Legionella pneumophila etc.) antibacterial drugs such as 

antibiotics are used to destroy or inhibit the growth and differentiation of the bacterial cells. 

For fungal pneumonia (ones caused by Pneumocystis jirovecii, Aspergillus spp, 

Mucoromycetes etc.) antifungal drugs are used. 

2.3 COVID-19 and Pneumonia 

COVID-19 has been making headlines throughout 2020 as a result of global health crisis 

due to the outbreak of SARS-CoV-2 on the eve of 2020 in Wuhan China. Prior to the year 

of outbreak, other viruses from same family “Coronaviridae” name SARS-CoV-1 and 

MERS-CoV have led to epidemics with higher mortality rates (Huang et al., 2020; Gomez 

et al., 2020). The word “Corona” means “Crown” and thus the virus is named coronavirus 

after the spike proteins present on their surface which looks like a crown as shown in Figure 

2.3. 
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Figure 2.3: Coronavirus specie (Fan et al., 2019) 

Like other ARDS, COVID-19 disease can be transmitted in the form of respiratory droplets 

(sneeze or cough) exhaled by infected person or through physical contact with infected 

person or coming in contact with surface contaminated by the virus. Just like the pathology 

of common pneumonia, SARS-CoV-2 when contacted invaded the alveoli present in the 

which are organs that are liable for the exchange of O2 and CO2 between lungs and blood 

and thus leading to COVID-19 pneumonia. Symptoms associated to COVID-19 disease 

include: severe pneumonia, dry cough, fever, sputum secretion, fatigue, anorexia, dyspnea, 

organ failure, myalgias, septic shock etc (Fan et al., 2019; Gomez et al., 2020).  

2.3.1 Pandemic and Epidemic of Coronaviridae Family  

1. SARS-COV-2 Pandemic  

The word “Pandemic” was introduced in 2005 and it was only declared global health 

emergency on 5 counts, in 2009 as a result of Influenza virus, 2014 as a result of Ebola and 

polio virus, in 2016 as a result of Zika virus, 2019 as a result of Ebola and in 2020 as a result 

of SARS-CoV-2. The first case of this virus was declared in a city known as Wuhan, Hubei 

province in the mainland China on the eve of 1st January, 2020. Though, it was not until 11th 

March 2020 that the WHO declared the disease “Pandemic”. The virus has spread to over 

200 countries and infected more than 30 million and closed to 1 million death toll and still 

counting.  
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The mortality rate of SARS-CoC-2 is low compare to SARS-CoV-1 and MERS-CoV, 

currently, close to 20 million patients have recovered. The outbreak of COVID-19 has led 

to city lockdowns in many countries, border closure, flight cancellations, restrictions, 

quarantine, evacuation, cancelations and postponement of educative, sportive, cultural and 

religious activities. To control the widespread of the virus, government implement the use 

of facemask, hand sanitation and social distancing based on personal hygiene (Huang et al., 

2020). 

2. MERS-CoV Epidemic 

The first case of MERS-CoV was declared in the month of April 2012 in Saudi Arabia. The 

virus has spread to 27 countries with majority in the middle east and 8 countries from Europe. 

According to WHO, prior to the year 2020, there are 2500 laboratory confirmed cases of 

MERS with close to 1000 death leading to 34% mortality rate. Even though the exact source 

of the virus is still unknown but scientist attributed the virus to dromedary camel as the main 

reservoir which transmitted the virus to humans as shown in Figure 2.4. The main symptoms 

of MERS include shortness of breath, fever, cough, diarrhea etc. (WHO, 2019; CDPC, 

2019). 

 

Figure 2.4: Transmission of MERS-CoV 
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3. SARS-COV-1 Epidemic 

The first case of coronavirus (SARS-CoV-1) was declared on the month of November 16, 

2002 in Guangdong province of Southern China. Unlike MERS-CoV, bats are regarded as 

the reservoirs of the virus and civets’ cats are the main carriers that infect humans. The 

symptoms of SARS include diarrhea, fever, dry cough, myalgia, malaise, headache and 

rigorous shivering among others. However, not all patients suffering from the disease are 

symptomatic in the first week of illness especially patients who are on immunosuppressants. 

The virus has spread to 29 countries with over 8 thousand confirmed cases and 774 death 

tolls worldwide and estimated mortality rate of 9.675% CFR ((Keogh-Brown and Smith, 

2008).  

The mortality rate of the 3 coronaviruses is shown in Figure 2.5. Mortality rate of infection 

are calculated based on Infection Fatality Rate (IFR) which is define as the number of deaths 

over number of infected patients multiply by 100 and Case Fatality Rate (CFR) define as the 

number of deaths over number of confirmed cases multiply by 100 (WHO, 2019). 

2.3.2 Diagnosis and Treatment of Coronavirus 

Reverse Transcript Polymerase Chain Reaction (RT-PCR) is a molecular genetic test which 

is the current gold standard method for detection or diagnosis of viral diseases such as 

HIV/AIDS, COVID-19, diseases caused by Influenza virus etc. This method directly detects 

the pathogenic virus through series of steps and procedures. These steps include  

Step1: Sample collection based on using swab to obtain samples from suspected person’s 

nose or throat. 

Step 2: Extraction: different chemical reagents are added to the sample in order to remove 

biochemical substances such as fats and proteins to obtained pure viral RNA. 

Step 3: Reverse Transcripts (RT): since SARS-CoV-2 is a virus which stored it genetic 

materials in RNA, scientist converts the RNA to DNA so that it can be amplified. 

Step 4:  PCR amplification and detection: DNA resulted from RT is amplified using RT-

PCR machine to obtain thousands of copies for easy detection (due to the large quantity of 

the DNA). Detection of the virus is based on the fragments that attach to the target part of 
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the viral DNA with marker labels which release fluorescent dye which can be quantified by 

the machine and display the result on the screen (Tahamtan & Ardebili, 2020). 

Apart from RT-PCR approach, scientist also use Computed Tomography (CT) scan or Chest 

Xray scans for screening or diagnosis of COVID-19 pneumonia. The use of CXR and CT 

scans are the 2 main techniques employed by Radiologist to differentiate between patient 

suffering from or positive of pneumonia disease and the healthy ones. The discrimination is 

due to the presence of white hazy patches described as “Ground-glass opacity” in individual 

positive of pneumonia which is not present in healthy person (Shan et al., 2020; Yang and 

Yan, 2020). 

Currently, there is no specific or agreed drugs or vaccines for the treatment of COVID-19 

disease. However, medical experts rely on antiviral drugs that prove effective against other 

viral diseases. The use of some of these drugs are based on identification AI-driven models 

which screen thousands of drugs and predict the most potent ones and their probability for 

use against the virus. Scientist all over the world are working at an unprecedented speed for 

development of safe and effective vaccines that can prevent the transmission chain of the 

virus. Currently, there are over 150 candidate vaccines under development with over 20 

going through clinical human trials (WHO COVID-19 Vaccines, 2020)  

2.4 CRISPR/Cas System 

Application of genetic engineering is crucial for correcting genetic disorders such as sickle 

cell anemia, cystic fibrosis, Duchene muscular dystrophy, Huntington’s disease etc. In the 

past, scientist have relied on genetic tools such as Zinc Finger Nuclease (ZFN), TALENS, 

recombinant DNA, meganucleases adenovirus as shown in Figure 2.5. However, these tools 

are clouded by several challenges such as high off-targets rate, tedious laboratory work, 

longer period of time, less sensitive, inaccurate and expensive. The discovery of CRISPR in 

1987 by Japanese scientist has given birth to a new approach. However, the breakthrough of 

CRISPR as genetic tool come as a result of experiment carried out by Jennifer Doudna and 

Emanuel Charpentier in 2012. Unlike previous gene editing tools, CRISPR is cheaper, faster, 

efficient and easy to use.  



 
 

 23 

 

Figure 2.5: Gene editing Tools 

CRISPR is an acronym which stand for Clustered Regularly Interspaced Short Palindromic 

Repeat which is a bioweapon ceased from viruses such as bacteriophage and store in a 

warehouse known as CRISPR array. These bioweapons are used by bacterial cells as form 

of immunity to fight foreign invaders. Scientist biomimic this system to developed gene 

editing tool for editing genes and bases in eukaryotic cells. 

2.3.1 Discovery of CRISPR 

CRISPR discovery is first dated to the late 1980s when Japanese scientist known as Ishino 

Yoshizumi, was experimenting using E. coli for specific gene responsible for conversion of 

isoenzyme to alkaline. In the process he discovered an odd sequence which is palindromic 

(read in both forward and backward direction), he published the work without discussing 

about the function of the sequence. In 2002, Jansen rename the palindromic sequence as 

SRSR (Short Regulatory Spaced Repeat). Another group of scientists discovered Cas genes 
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known as CRISPR associated systems. These genes form a complex structure with guide 

RNA and together locate target sequence and destroy it (Baltimore et al., 2015). 

Between the year 2005-2007, similar sequence was discovered in archaea by Francisco 

Mojica. The remarkable discovery of CRISPR as an adaptive immune system utilize by 

bacteria and archaea was achieved by Barrangou and Horvath in 2007 as a result of an 

experiment using bacteria used in production of yoghurt (Barrangou et al., 2007; Liu et al., 

2017). However, the golden key to the pandora box of CRISPR as genetic engineering tool 

was discovered Jennifer Doudna and Emanuel Charpentier who together engineered the first 

artificial single guide RNA(SgRNA) which is a duplex (chimeric) RNA made up of CRISPR 

RNA (CrRNA) and Trans-activating RNA (TracrRNA). 

As a result of their discovery, scientist have reported the application of CRISPR/Cas systems 

to edit prokaryotic cells such as bacteria and archaea. The application of this technology to 

edit mammalian cells was first carried out by Feng Zeng in 2013 (Barrangou et al., 2007; 

Ishino et al., 2018). Scientist that contributes to the discovery and advancement of CRISPR 

are presented in Figure 2.6. and Table 2.2. 

Table 2.2: Discovery and advancement of CRISPR 

Year SCIENTIST DISCOVERY 

1987 Yoshizumi Ishino Discovered CRISPR in E. coli  

2000 Mojica and colleagues  CRISPR is present throughout 

prokaryotes and archaea 

2002 Jansen et al Proposed the word CRISPR 

2005 Mojica and colleagues Sequence between repeat is 

surprisingly foreign 

2007 Alexander Bolotin Discovery of Cas9 and PAM 

 

2007 Phillipe Horvath  Bacteria are immune to virus 

and stored a Viral DNA into 

their CRISPR 

2010 Sylvain Morneau Cas9 is guided by spacer Cas9 

cleaves target DNA 
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2011 Emmanuelle Charpenteir Discovery of tracrRNA for 

Cas9 system 

 

2012 Charpenteir and Doudna  crRNA and the tracrRNA 

could be fused together to 

create a single synthetic guide 

for gene editing 

2013  The Use CRISPR-Cas9 for 

genome editing in eukaryotic 

cells 

2014 Nishimasu and Feng Zhang Crystal structure of Cas9 

gRNA complex 

 

 

Figure 2.6: Timeline of CRISPR (Wang et al., 2018) 
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2.3.2 CRISPR in Nature 

CRISPR/Cas system is an adaptive immune system that result through evolution in bacteria 

and archaea as defense mechanism against viruses (Horvath and Barrangou, 2010; Liu et al., 

2017). When viruses invade bacteria, they inject their DNA which replicate and destroy the 

bacterial cell, in order to prevent the virus from replicating, these organisms utilize 3 steps 

process to ensure immunity (Bhaya et al., 2011; Ishino et al., 2018). These steps or stages 

include adaptation, expression (biogenesis or recognition) and interference as shown in 

Figure 2.7. 

Adaptation stage occur when bacterial or archaeal cells first came in contact with viral DNA. 

The CRISPR loci translated Cas genes into Cas proteins (Cas9, Cas2 and Cas1). These Cas 

proteins surveys for the viral DNA, cut part of it (known as spacer) and store it in CRISPR 

array’s leader strand. The second stage known as expression stage is only initiated when the 

viral DNA attack again. The bacterial or archaeal cell’s CRISPR array transcribed it stores 

spacers into small non-coding RNA known as Pre- CRISPR RNA which link with 

TracrRNA through base pairing and form hybrid RNA or matured CRISPR RNA. The 

CRISPR RNA is employed in the third stage known as interference stage where it forms 

complex with effector Cas enzyme (such as Cas9 which is translated from the Cas genes 

adjacent in CRISPR loci). This complex locates the viral DNA as a result of the unique 

Protospacer Adjacent Motif (PAM) sequence and destroy the viral DNA leading to complete 

immunity (Barrangou et al., 2007; Garneau et al., 2010; Bhaya et al., 2011). 
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Figure 2.7: Stages involve in CRISPR Adaptive Immunity in Bacteria 

2.3.3 Classification of CRISPR-Cas system 

The classification of CRISPR-Cas system still remains a challenge to scientist as many types 

and subtypes are yet to be identified. Throughout the last decade different types and subtypes 

are identified. CRISPR-Cas systems are classified basically based on adaptor module (i.e., 

acquisition) and effector module (i.e., maturation of CrRNA, recognition and interference) 

(Rath et al 2015). Other approaches classify CRISPR-Cas system into 3 main types; type I, 

type II and type III quite number of subtypes based on genetic content, function and 

structure. These types differ based on their biochemical functions and the protein they 
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encode. The universal Cas System which includes Cas 1 and Cas 2 are found in all types and 

subtypes (Barrangou et al 2014) as shown in Table 2.3. 

The recent classification of Cas system is based on the configuration of effector modules. 

These approaches classify CRISPR-Cas system into class 1 and class 2. Class 1 system 

combine with CrRNA and other Cas proteins to form effector complex. While class 2 system 

utilizes a CrRNA along with a large single Cas protein and interfere with target sequence 

(Zotsche et al 2015). Bioinformatics characterization study of type II CRISPR-Cas system 

served as the base for discovery of other types, subtypes and classes (Koonin et al 2017). 

Table 2.3: Classification of Cas System 

Class  Type Adaptation Pre-

CrRNA 

Processing 

Effector module Target 

cleavage  

Class 1 I Cas1, Cas2 and Cas4 Cas 6 Cas7 and Cas5 Cas 3 

III Cas 1 and Cas 2 Cas 6 Cas7 and Cas5 Cas 10 

IV - - Cas7 and Cas5 - 

Class 2 II Cas1, Cas2 and Cas4 RNaseIII Cas9 Cas9 

V Cas1, Cas2 and Cas4 - Cpf1 (Cas 12) Cpf1 (Cas 12) 

VI   Cas 13 Cas 13 

 

The class 1 CRISPR-Cas system is made up of type I, type III and type IV and which are 

mostly found in Archaeal CRISPR loci and less frequent in bacterial cell (Koonin et al 2017). 

Type I contain different subtypes ranging from type IA-IF. The common Cas candidate of 

type I is Cas 3 protein which is made of helicase and DNASE domains required for cleaving 

a specific target. Cas 3 along with other universal Cas system (Cas1 and Cas 2) encode for 

a complex known as Cascade which bind to CrRNA, unwind the DNA in order to locate the 

target specific sequence (Devashish et al 2015). Type III is the only Cas system that can 

target both DNA and RNA. Cas 10 is type III candidate which function is not yet clear (Rath 

et al 2015). 

The class 2 CRISPR-Cas system is made up of type II, type V and type VI as shown in Table 

2.4. Type II I known to contain two different subtypes, type II-A and type II-B. Type 

IICRISPR Cas system is the most adopted Cas system use in genetic engineering (gene 
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editing). It encodes the universal Cas system (Cas 1 and 2) Cas9 and in some cases Cas 4 

(csn2). Cas 9 gene is transcribed to Cas 9 enzyme which along with universal Cas function 

in adaptation stage. It forms a complex structure with CrRNA and trans-activating RNA 

(TracrRNA) to cleave target DNA and destroy it (Rath et al 2015).  

Cas 9 is the sole effector protein of type II Cas system. The structure and length of Cas 9 

varies among different species. Cas 9 is large with several nuclease domains with size 

ranging from 950 to 1600 amino acids. The two significance domains in Cas 9 are the RubC 

domain and HNH domain which are specific for inducing double strand break on target. Cas 

9 is the most widely engineered nuclease employed by scientist to edit genome in both 

prokaryotic and eukaryotic cells (Shmakov et al 2015). 
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Figure 2.8: Classification of class 2 CRISPR-Cas system based on Domain (Koonin et al 

2017) 

Cpf1 (Cas 12) is a unique type II Cas system that induced a single break on target due to it 

single RubC nuclease domain. It is a single stranded target nuclease that induced a staggered 

cut on target DNA (Shmakov et al 2015). Cpf1 is an acronym for CRISPR obtained from 

Prevotella and Francisella. It is made up of approximately 1,300 amino acid. The uniqueness 

of Cpf1 is unlike other Cas system, it does not require trans activating (TracrRNA). Unlike 

Cas 9 that guide target sequence based on NGG PAM, Cpf1 recognize a T-rich PAM and 
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cleaved the target or induced a staggered break on the target (Zotsche et al 2015). Type II-

A Cas system poses an extra Cas gene known as csn2 which is mainly employed in 

adaptation stage but not needed in interference stage. Instead of csn2 type II-B poses Cas 

gene known as Cas 4. In all the subtypes of type II, they both poses pair of Cas 1 and Cas 2 

genes that work primarily in the acquisition stage (Chylinski et al 2014). 

2.3.3 CRISPR as Gene Editing Tool 

CRISPR/Cas systems as the new born gene editing tool has revolutionized genetic 

engineering due to its ability to precisely edit genes. This system is made up of Cas proteins 

(Cas9, Cas12 and Cas13) which cut DNA/RNA (i.e., Cas9 which acts like a pair of molecular 

scissors) and synthetic guide RNA (which is made up of 100 nucleotides with the first 20 

nucleotide function in navigating the complex to the target sequence) which can be program 

to target specific sequence and induced double or single strand break. Once the DNA/RNA 

is cleaved, the cells initiate repairing mechanism known as Non-homologous Enjoining 

(NHEJ) which is a natural way cells stick together through insertions or deletions of 

nucleotides (known as indels). However, this method is prone to mutation and can lead to 

gene dysfunction or deactivation. Scientist can use this window to introduced a desired 

homologous DNA template through a process known as Homologous Repair (HR) or 

Homologous Directed Repair (HDR) (Doudna and Charpentier, 2014; Ma et al., 2015) as 

shown in Figure 2.9. 
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Figure 2.9: The use of CRISPR as Gene Editing Tool 

A. CRISPR/Cas 9 

CRISPR/Cas9 is the most popular gene editing tool use by scientist to make precise changes 

in genes of prokaryotic and eukaryotic cells. Cas9 can be isolated from different bacterial 

species such as Streptococcus pyogenes, Streptococcus thermophilus, Staphylococcus 

aureus etc. Cas9 enzyme is made up of 2 domains, RubC and HNH. These domains cleaved 

both opposite and complementary strand of the target sequence (Ma et al., 2015) as shown 

in Figure 2.10. 
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Figure 2.10: Molecular mechanism of CRISPR/Cas9-mediated DNA cleavage (Wang et 

al., 2018) 

B. CRISPR/Cas 12  

Cas12 also known as Cpf1 (CRISPR derived from Prevotella and Francisella 1). Unlike 

Cas9. Cas12 induced single strand break or staggard cut on target DNA sequence due to the 

presence of only 1 domain (known as RubC domain) unlike Cas9 that poses both RubC and 

HNH domains. In all the Cas effectors, Cas12 is the only Cas system that does not require 
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TracrRNA and recognize target sequence based on PAM sequence rich in Thymine (T) 

(Koonin et al., 2017). 

C. CRISPR/Cas 13 

Unlike CRISPR/Cas9, CRISPR/Cas s13 target and cleave RNA via 2 Higher Eukaryotic and 

Prokaryotic Nucleotide (HEPN) domains which exhibit RNase activity. Cas 13 enzyme form 

complex with mature CRISPR RNA and locate target RNA through PFS (protospacer 

flanking site) instead of PAM in Cas9 and cleave target RNA which activate the complex to 

cut other RNA as a result of a process known as “Collateral Activity”. Currently, there are 

so many applications of Cas13 for diagnostic and treatment of diseases based on RNA 

knockout and binding based on dCas13 which is the mutated version of Cas13 (i.e., inactive 

form) where the 2 HEPN domains are deactivated to bind to target without exerting collateral 

activity (Geraldi & Girl-Richman, 2018). The differences between all Cas effectors are 

presented in Table 2.5. 

Table 2.5: Differences between Cas effectors 

Differences Cas 9 Cas 12 Cas 13 

Domains RubC and HNH RubC 2 HEPN 

Target DSDNA SSDNA RNA 

Organism 

derived from 

Streptococcus pyogenes 

Streptococcus thermophilus 

Staphylococcus aureus 

Prevotella sp. 

Francisella sp. 

Lachnospiraceae 

bacterium ND 2006 

Acidaminococcus sp. 

Prevotella sp. 

Leptotrichia wadei 

Types of cut Blunt Staggard - 

TracRNA Present  Absent  Present 

PAM sequence NGG T-rich PFS 

 

2.3.4 Application of CRISPR/Cas systems 

Currently, there are so many applications of CRISPR/Cas systems undergoing clinical trials 

for editing diseases associated with human genes mutations such as treatment of sickle cell 

diseases and cancer therapies. Apart from gene editing using CRISPR/Cas systems to edit 
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human genes, scientist developed “base editing” which can edit DNA bases instead of genes. 

This approach has shown potentials for treatment of thousands of heredity diseases 

(Barrangou and Doudna, 2016) 

2.3.5 CRISPR-based Biosensors 

The field of biosensors is growing rapidly as a result of technological advancement in 

biology, electronics, computer science and nanotechnology. Biosensors are termed as 

analytical tools that integrate biological materials such as Nucleic Acid (NA), antibodies, 

enzymes, cell receptors etc integrated with transducers (such as electrochemical, magnetic, 

optical, piezoelectric, thermometric etc (Lazcka et al., 2007; Li et al., 2019). 

Prior to integration of CRISPR/Cas systems in biosensors, scientist rely on benchwork 

diagnosis assays base on antibodies (recombinant polyclonal and monoclonal) and enzymes. 

These assays require trained technicians, long procedures, the use of reagents and pre-

processing steps (such as extraction, amplification, centrifugation etc) (Nayak et al., 2009). 

other limitations associated with conventional biosensors include low sensitivity, accuracy 

and specificity (Stefano & Fernandez, 2017). 

CRISPR-based biosensors have emerged as specific and sensitive molecular diagnostic tools 

for detection of pathogenic diseases, cancer mutations and genetic disorders. Unlike 

conventional biosensors, CRISPR-based biosensors are very specific due to hybridization 

with matching target sequence, rapid, sensitive, easy to use and cheap (Abudayyeh & 

Gootenberg, 2019) CRISPR-based biosensors are classified into 2 categories (binding and 

cleavage) according Cas effectors (Cas13, Cas12 and Cas9) (Li et al., 2019). 

A) CRISPR/Cas9/dCas9-based Biosensors 

Different CRISPR-based biosensors have been developed such the use of Cas9 and NA 

amplification based on Nucleic Acid Sequence Based Amplification (NASBA) or Nucleic 

Acid Sequence Based Amplification CRISPR Cleavage (NASBACC). These systems 

required amplification of target DNA which is cleaved by Cas9 resulting in signal generation 

(Li et al., 2019). The use of dCas9 along with single microring resonator has shown high 

sensitivity for detection of tick-borne disease which include Scrub typhus (ST) and Severe 

Fever Thrombocytopenia Syndrome (SFTS) (Koo et al., 2018).  
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Another CRISPR/Cas9 based biosensor was developed named CRISPR-Chip biosensor 

which utilize the binding activity of dCas9 and the high electron mobility of graphene-based 

effect transistor (gFET). However, the on-chip biosensor has shown high sensitivity for 

detection of genes associated with Duchene Muscular Dystrophy (DMD) (Hajian et al., 

2019). In order to increase testing capacity of the pandemic caused by Zika virus, scientist 

developed paper-based optical CRISPR/Cas9 biosensor which can accurately discriminate 

between different viral strains at fM concentration (Pardee et al., 2016). 

B) CRISPR/Cas12 based Biosensors 

HOLMES (known as 1-Hour Low-cost Multipurpose Highly Efficient System) is one of the 

most popular Cas12a-based biosensors which detect target SSDNA quenched with 

fluorescent. The biosensor activity is based on the collateral cleavage activity of Cas12a 

isolated from Lachnospiraceae bacterium ND 2006 (LbCas12a) which form ternary complex 

with the target sequence resulting in cleavage of target sequence and trans-cleavage of non-

target SSDNA as shown in Figure 2.11. HOLMES-based biosensor is versatile as it can 

function with or without amplification and can distinguish single base differences on target 

DNA sequence (Li et al., 2015). Cas12a-biosensor extracted from LbCas12a and 

Acidaminococcus sp. (AsCas12a) has shown pM sensitivity for detection of human 

papillomavirus (HPV-16) and Parvovirus (Batista & Pacheco, 2018). 

 

Figure 2.11: Cas12a/Cas13a-CRISPR-based Biosensor ((Geraldi & Girl-Richman, 2018) 

C) CRISPR/Cas13 based Biosensors 
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CRISPR/Cas13-based biosensor is currently the most utilized CRISPR-based biosensor due 

to it collateral activity on reporter RNAs. An electrochemical CRISPR/Cas13-based 

biosensor has been developed to detect Micro RNAs (miR-lab) without amplification in 

blood serum of patients with brain cancer. The biosensor achieved detection limit in pM 

concentration (Bruch et al., 2019). SHERLOCK (Specific High-Sensitivity Enzymatic 

Reporter Unlocking) is another CRISPR/Cas13-based biosensor paired with Reverse 

Transcript Recombinase Polymerase Amplification (RT-RPA) or Recombinase polymerase 

Amplification (RPA) or and T7 transcription.  The system utilize Cas13a derived from 

LwCas13a for detecting both DNA and RNA target sequence at aM sensitivity for detection 

of Dengue virus and Zika virus, bacterial isolates, human DNA genotype, antibiotic 

resistance genes, cancer mutations etc. (Gootenberg et al., 2017) as shown in Figure 2.12. 

 

 

Figure 2.12: HUDSON and SHERLOCK 

A second version of SHERLOCK V2 utilized Cas13b isolated from Prevotella sp. 

(PsmCas13b) instead of Cas13a in V1. The biosensor achieved higher sensitivity (2aM) than 

previous version for detection of gene mutations, Zika virus and Dengue virus in patient’s 

liquid biopsy samples (Gootenberg et al., 2018). However, development of deployable 

biosensor has been a major challenge for scientist, recently, a group of scientists combine 

HUDSON (Heating Unextracted Diagnostic Sample to Obliterate Nuclease) with 

SHERLOCK for detection of viral DNA in bodily fluids (urine, serum and whole blood) 

within a sensitivity range of 20-90aM (Myhrvold et al., 2018). 

2.3.6 CRISPR-based Biosensors for Detection of Tuberculosis 

The use of CAS-EXPAR (CRISPR/Cas9 Exponential Amplification) which amplified target 

DNA for cleavage using Cas9 and the use of fluorescence monitoring has shown high 
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sensitivity for discriminating between single base mismatch at aM concentration (Haung et 

al., 2018). The use of 2 dCas9 enzymes in order to target amplified DNA sequence derived 

from Mycobacterium tuberculosis using PCR and detection method based on fluorescence 

tag has shown high detection sensitivity of equimolar sensitivity (Zhang et al., 2016). 

 

Figure 2.13: Detection of Mycobacterium tuberculosis using 2 dCas9 

2.3.7 CRISPR-based Biosensors for Detection of COVID-19 Disease 

The pandemic caused by SARS-CoV-2 has destabilized almost every sector leading to 

lockdowns, closure of borders, quarantine and massive screening. However, even with all 

these majors and restrictions, the number of infected patients continue to rise as well as death 

tools. In order to limit the spread of the virus through diagnosis, scientist rely on RT-PCR 

and qPCR method which is hindered by so many challenges. To addressed these challenges, 

researchers from Harvard and MIT developed a sensitive and specific paper based 

CRISPR/Cas13 biosensor for detection of SAR-CoV-2 RNA sequence. This technique is 

currently undergoing clinical trials and regulations (Patchsung et al., 2020; Zhang et al., 

2020). 
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Figure 2.14: Detection of SARS-CoV-2 using Cas13a/Cas13b 

These team of researchers employed SHERLOCK approach which has been successfully 

used for detection of Dengue virus, Zika virus and HPV (Myhrvold et al., 2018; Gootenberg 

et al., 2018). Unlike the current SHERLOCK technique, this new method revolves around 

the collateral cleavage activity of either Cas13a or Cas13b for detection of SARS-CoV-2 

RNA fragments within 1 hour. The laboratory procedure for detection of COVID-19 rely on 

3 steps (Zhang et al., 2020). 

1. Sample collection and extraction: Nucleic acid are extracted from suspected patient’s 

samples such as blood, nasal swab, urine etc. 

2. Amplification: RPA technique is used for amplifying extracted viral RNA which last 

for 25 minutes.  
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3. Detection: Cas13a or Cas13b is employ which cleave target viral RNA fragments 

and the use of paper dipstick for visual read out which last for 32 minutes.  
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CHAPTER 3 

LITERATURE REVIEW  

 

 

Throughout last cade, scientist have been trying to integrate application of AI and its subfield 

which comprise of ML and DL in healthcare system. Researchers have utilized CNN to solve 

challenges in medicine such as detection using classification and segmentation approach for 

skin disease, brain cancer, breast cancer, diabetes (retinopathy) (Al-Turjman 2016; Serte & 

Demirel 2019). In the field of microbiology, Microbiologist, radiologist and computer 

scientist have been working side by side in order to detect microbial infections such as 

tuberculosis, malaria and pneumonia through the means of computer aided diagnosis 

(Kallianos et al 2019). 

3.1 Tuberculosis  

Automated detection of Mycobacterium tuberculosis has aided in accurate diagnosis of the 

disease. Smith et al., 2018 utilized a high-quality microscope designed to collect high 

resolution stain slide images. In order to make the bacilli visible, the researchers amplified 

the number of colonies and stained using dye to acquired 25000 images. Different types of 

image augmentation were carried out which are fed into a CNN model to discriminate 

various types of bacteria (rod, chain and round-shapes). The model achieved an overall 

accuracy of 95%.  The classification of Mycobacterium tuberculosis and normal cases using 

ANN is provided by Khan et al., 2019. The study utilized over 12 thousand images which 

are partitioned into 70% for training of the model and 30% for validation. The image training 

was carried out using feedforward backpropagation model and the model achieved 94% 

testing accuracy.  

To detect tuberculosis using deep learning approach such as image classification method, 

scientist utilized either microscopic slide image or chest X-ray radiographs. Lakhani & 

Sundaram (2017) employed CNN to discriminate between normal and pulmonary 

tuberculosis using radiographs. The study utilized 1007 posterior chest radiographs which 

were partition into training, validation and testing respectively and dataset was trained using 
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GoogleNet and AlexNet. The two models ensembled together to achieved AUC of 0.99 with 

a sensitivity of 97.3% and specificity of 94.7%.  

A CNN Model built from scratch by Xiong et al., 2018 name TB-AI was used for detection 

of mycobacterium tuberculosis bacillus. The model was trained using 45 total samples with 

15 as negative cases and 30 as positive cases which are tissue samples that were treated using 

acid-fast stain. The result has shown TB-AI achieved 83.65% specificity and 97.94% 

sensitivity. A study based on model designed from scratch is proposed by Aguiar et al., 2016. 

The study was carried out to classify pulmonary TB using ANN designed using multi-

perceptron. The model was trained using different types of datasets such as radiological 

images, pulmonary TB cases acquired from bronchoalveolar lavage and sputum samples 

(with 315 total cases), respiratory symptoms and patient’s demographics. The dataset was 

partitioned into 80% and 20% for training and validation respectively and the model 

achieved 89% specificity and 96% sensitivity. 

Panicker et al., 2018 utilized CNN approach to detect Mycobacterium tuberculosis bacillus 

from microscopic sputum spear images. The dataset was obtained from a public domain with 

120 images which were cropped to 900 patches for both positive and negative samples for 

segmentation method. The model accomplished sensitivity of 97.13% and specificity of 

78.4%. Quinn et al., 2016 applied deep learning approach to diagnose tuberculosis from 

sputum smear sample stained with Ziehl Nelson stain. The authors used microscope to 

obtained 315,142 test patches. The results have shown a higher AUC value of 0.99 and the 

potential of the CNN model in classifying test samples. 

A study based on the use of SVM for detection of Mycobacterium tuberculosis is provided 

by Costa et al., 2015. The study employed 120 smear microscopic slide image from 12 cases. 

Prior to training the images undergo conventional smear microscopy and segmentation. The 

study reported an error rate of 3.38% and sensitivity of 96.8%. The same approach was 

adopted by Yahiaoui et al., 2017 to classify tuberculosis from healthy samples using SVM. 

The model was trained using 15 total CXR images (which are acquired from 50 patients 

suffering from TB and 100 healthy samples). However, the model achieved 96.7% accuracy. 

A deeper model was employed by El-melegy et al., 2019 for detection of Ziehl Nelson 

stained sputum smear of tuberculosis and healthy images. The research utilized 500 images 

which are divided into 80% and 20% for training and validation respectively and train using 
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Faster Region-based convolutional neural network plus CNN (F-R-CNN+CNN) and 

Region-based convolutional neural network F-R-CNN. F-R-CNN+CNN achieved 85.1% 

sensitivity and 98.4% accuracy while F-R-CNN achieved 82.6% sensitivity and 98.3% 

accuracy.  

The use of TL based on VGGNet and SVM as the model classifier is reported by Ahsan et 

al., 2016. The study utilized dataset obtained from Shenzhen hospital, China and from 

Montgomery County Tuberculosis Control Program (MCTCP) in the form of CXR images. 

The dataset was trained based on (I) with augmentation and (II) without augmentation. The 

model achieved 81.25% validation accuracy with augmentation and 80% validation 

accuracy without augmentation. Chang et al., 2020 proposed a 2-stage classification of 

tuberculosis based on TL on CNN. The study made used of 1727 cases of tuberculosis 

culture acquired from Tao-Yuan general hospital, Taiwan. The dataset was trained using 

VGGNet, YOLO and CNN designed from scratch. By targeting the result of the model on 

non-negative class, the proposed system achieved 98% recall and 99% precision.  

Due to the prevalence of tuberculosis in Uganda, Muyama et al., 2020 utilized 3 TL models 

based on ResNet (inception V3), GoogleNet and VGGNet for computer assisted-detection 

of tuberculosis from Ziehl-Nelson sputum smear slide images. The study made used of 

dataset obtained from an online database and the ones captured using cell phone’s camera in 

the university microbiology laboratory. The 2 datasets are combined together and partitioned 

into 80% for training and 30% for validation. The models were trained according to (I) find-

tunning (II) with augmentation and (III) without augmentation. However, among all the pre-

trained models, ResNet achieved the highest accuracy score of 86.7%. 

To classify normal and abnormal X-ray images of individuals suffering from tuberculosis, 

Abbas and Abdelsamea, 2018 utilized a pretrained AlexNet model. The model was trained 

based on 138 total CXR images (58 normal and 80 abnormal X-ray images). To increase 

number of training set, the X-ray images undergo data augmentation. The model 

hyperparameters were turned according to deep-tuning, shallow-tuning and fine-tuning 

techniques. The study revealed that hyperparametric fine-tuning of pretrained AlexNet 

outperform other tuning techniques with 0.998 AUC score, 99.7% sensitivity and 99.9% 

specificity.  
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The application of hybrid model for automated detection of tuberculosis is proposed by 

Sahol et al., 2020. The hybrid model comprises of MobileNet with 88 layers and feature 

selector in the form of Artificial Ecosystem-based optimization (AEO) algorithm. The model 

was trained on X-ray dataset acquired from Shenzhen hospital, China with 662 totals frontal 

CXR images (of which 336 are positive and 336 negative). The model achieved 90.2% best 

classification accuracy, 93.85% sensitivity and 86.76% specificity.  

Table 3.1: Detection of tuberculosis using AI-driven tools 

Reference Neural 

Network 

Sample type Data 

set/Training 

Results 

Khan et al., 

2019 

CNN Microscopic 

Stained image 

12,636 94% accuracy 

Costa et al., 

2015 

SVM & CNN Microscopic 

stained images 

120 96.80% accuracy 

Smith et al., 

2018 

CNN Microscopic 

stained image 

25,000 images  95% accuracy 

El-Melegy et 

al., 2019 

CNN Microscopic 

stained image 

500 images F-R-CNN achieved 

98.3% accuracy and 

82.6% sensitivity  

F-R-CNN+CNN 

achieved 98.4% 

accuracy and 85.1% 

sensitivity 

Xiong et al., 

2018 

CNN Microscopic 

stained image 

 Cases: 45  

30 positives  

15 negatives 

97% sensitive and 

83.65% specific 
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Klassen et al., 

2018 

Automated 

recognition and 

pattern analysis 

Flougraphic 

chest Images 

Negative = 

238  

Positive = 70 

sensitivity 75.0-

87.2%,  

specificity 53.5-

60.0%, 

Aguiar et al., 

2016 

ANN (multi-

perceptron) 

radiological data 

and pulmonary 

tuberculosis 

sputum samples 

315 cases, 

80% training 

and 20% 

testing 

96% sensitivity and 

89% specificity 

Yahiaoui, & 

Yumusak, 

2017 

SVM chest x-ray 

images 

150 cases 50 

positive and 

100 negatives 

96.68% accuracy 

Muyama et al., 

2020 

ResNet 

GoogleNet 

VGGNet 

Ziehl-Nelson-

stained smear 

sputum slides 

Not specified 86.7% accuracy 

Abbas & 

Abdelsamea, 

2018 

Pretrained 

AlexNet model 

Chest Xray 138 (58 

negative and 

80 positive 

cases) 

0.998 AUC score, 

99.7% sensitivity and 

99.9% specificity 

Sahol et al., 

2020 

Hybrid model 

(MobileNet and 

Artificial 

Ecosystem-

based 

optimization 

algorithm 

Frontal Chest 

Xray 

662 (336 

positive and 

336 negative) 

90.2% best 

classification 

accuracy, 93.85% 

sensitivity and 

86.76% specificity. 
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2.2 Pneumonia 

Chest radiographs based on Computed Tomography (CT) scan or Chest X-ray (CXR) is a 

technique employed by radiologist to discriminate between individual affected with 

pneumonia and healthy (i.e., normal) ones. The major difference between Xray images of 

infected person and healthy ones due to the appearance of white hazy spots which also 

described as “Ground-glass opacity” in individual positive of pneumonia which is absent in 

healthy individuals.  

Xray images are the basic components used for detection of pneumonia using Machine 

learning approach. This idea is adopted by Stephen et al., 2019. The authors employed DL 

method to classify samples of CXR images. The research employed a CNN that is built from 

scratch using Keras open source with TensorFlow to extract distinctive features from 

positive and negative images. The dataset contain 5856 X-ray images of normal and 

pneumonia images collected from pediatric patients between 1-5 years old. The dataset was 

further augmented to yield a greater number of training dataset. The model was tested on 

different data size (100-300) and the model achieved average accuracy of 94.81% 93.01% 

training and validation respectively. 

ChestX-Ray8 is a new dataset from Chest X-Ray Database and Benchmarks which is utilized 

by Wang et al., 2019. The datasets contain X-ray images with total number of 108,948 from 

32,717 patients for detection of thoracic diseases. The authors utilized the dataset and trained 

using CNN networks such as AlexNet, VGGNet-16, GoogleNet and ResNet-50. The 

research achieved AUC value of 0.6333 for “Pneumonia. A similar study adopted by 

Rajpurkar et al., 2017 who developed a 121 CNN called CHeXNet. The research utilized 

more than 100 thousand frontal view CXR images with more than 10 diseases. For detection 

of Pneumonia, the model achieved AUC of 0.8887 with the model outperforming 

Radiologist.  

Saraiva et al., 2019 Classified x-ray Images of Children positive of Pneumonia using CNN 

models. The research dataset was obtained online from research of Kermany et al., 2018 

characterized as Optical Coherence Tomography (OCT) and CXR Images with total number 

of 5863 images. The model was train base of cross validation (k = 5) and the model achieved 

95.30% average accuracy. Recently, Chouhan et al., 2020 adopted TL approach to classify 

X-ray images into positive and negative pneumonia samples. The research employed transfer 
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learning models of Resnet (Inception V3), GoogleNet, DenseNet121 and AlexNet. A total 

of 5856 normal and pneumonia (bacteria and virus) were used. The model achieved 

respective training (at different epochs for the models) and testing accuracies with AlexNet 

(98.97 and 92.86%), DenseNet121 (99.23 and 92.62%), GoogleNet (99.48 and 93.12%) and 

ResNet (99.48 and 94.23%). 

To discriminate between viral and bacterial pneumonia, Rajaraman et al., 2018 employed 

CNN (VGG-16, Residual and Inception CNN) for detection of pneumonia in in Pediatric 

Chest Radiographs by localizing the region of Interest (ROI). The dataset contains total 

number of 5856 including normal CXR images, bacterial pneumonia and viral pneumonia 

CXR images. The models achieved 96.2% for bacterial pneumonia and 93.6% for viral 

pneumonia. A more sophisticated study is carried out by Zech et al., 2018 who utilized Deep 

NN and split validation approach to screen for pneumonia in CXR images. The researched 

employed a total number of 158,323 CXR images collected from 3 different platforms. The 

results have shown higher accuracy and AUC values with distinction of the 3 institutions 

where the dataset was acquired. 

As the need for accurate detection of pneumonia in underdeveloped countries continue to 

rise due to unavailability of sensitive testing kit, Rahman et al., 2020 proposed the use of 4 

different pretrained CNN models (SqueezeNet, AlexNet, DenseNet and ResNet18). The 

models were trained using 5247 total CXR images which contain 2561 bacterial pneumonia, 

1345 viral pneumonia and 1341 healthy CXR images which are made available online 

(Kaggle website). Dataset was split into training and validation and the training dataset 

undergoes augmentation to increase the number of images which are fed into the models. 

The outperformance on test set has shown that the models achieved 98% accuracy for 

classification of healthy cases vs pneumonia, 95% for classification of bacterial vs viral 

pneumonia and 93.3% for classification of healthy CXR images, viral pneumonia and 

bacterial pneumonia. 

The application of ensemble CNN has shown great promise for classification of images. A 

study conducted by Liz et al., 2020 ensembled CNN and design of Explainable Artificial 

Intelligence (EAI) (a novel clinical support system) for the classification of pneumonia into 

consolidation and non-consolidation base on heatmaps. The study made use of 950 X-ray 
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images for training and validation which result in 0.92 AUC score and 0.73 True Positive 

Rate (TPR) score.  

Table 3.2: Table 2: Detection of different types of pneumonia using AI-driven tools. 

Reference Type of 

pneumonia 

Dataset Result 

Stephen et al. 2019 Viral pneumonia 

(Influenza virus) 

5856 CXR images 94.81% average training 

accuracy and 93.01% 

validation accuracy  

Rajpurkar et al. 

2017  

Not specified  108,948 X-ray 

images 

0.6333 AUC score 

Wang et al. 2017  Not specified 100, 000 X-ray 

images 

0.8887 AUC score 

Wang et al. 2020  Viral pneumonia 

(COVID-19) 

453 CT scan images 82.9% validation 

accuracy, 84% sensitivity 

and 80.5% specificity. 

73.1% testing accuracy, 

74% sensitivity and 67% 

specificity  

Saravia et al. 2019  Viral pneumonia 

(strain not 

specified) 

5863 CXR Images  Accuracy of 95.30% 

Chouhan et al. 

2020 

Viral and 

Bacterial 

pneumonia 

(strains not 

specified) 

5863 Chest X-Ray 

Images 

Different models were 

used  

Xu et al. 2020 viral pneumonia 

(COVID-19, 

Influenza-A) 

618 CT scan Images Accuracy of 86.7%. 

Rajaraman et al. 

2018 

Viral and 

Bacterial 

pneumonia 

(strains not 

specified) 

5856 CXR images 96.2% accuracy for 

bacterial pneumonia and 

93.6% for viral 

pneumonia 

Zech et al. 2018 Viral and 

Bacterial 

pneumonia 

(strains not 

specified) 

158,323 chest 

radiographs 

Different models were 

used 

Liz et al., 2020 Viral Pneumonia  950 X-ray 0.92 AUC score and 0.73 

True Positive Rate (TPR) 

score 

 

3.3 COVID 19 

3.3.2 COVID 19 vs Normal CXR images 
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The use of 3 CNN models which consist of models built from scratch and TL models 

(Inception-ResNetV2, Inception V3 and pretrained ResNet-50) for screening of COVID-19 

is proposed by Narin et al., 2020. The research utilized 100 total CXR images (50 COVID-

19 cases and 50 normal images). The dataset was partitioned into 80% and 20% for training 

and validation respectively. The models were training based on the data split and 5-fold cross 

validation. The models achieved 98% accuracy for pretrained ResNet50, 87% accuracy for 

Inception-ResNet V2 and 97% accuracy for Inception V3. 

Mei et al., 2020 proposed the use of AI-driven networks to classify COVID-19 based on CT 

scan images of patients diagnosed using laboratory testing kit (RT-PCR and next-generation 

sequencing RT-PCR) along with exposure history and clinical symptoms. The study utilized 

905 total number of patients which are partitioned into 626 for training and 279 for testing. 

The dataset was trained using Deep CNN which learn image characteristics and the use of 3 

classifiers (multilayer perceptron, SVM and random forest) for classification. The model 

performance was compared with senior thoracic radiologist and the model achieved AUC 

value of 0.92 outperforming the radiologist in terms of total positive rate.   

The use of lightweight Xray images obtained from mobile phone for screening of COVID-

19 using CNN is proposed by Zulkifley et al., 2020. The model named LightCovidNet was 

trained on different Xray images achieving 92.37% accuracy. Turkoglu (2020) proposed the 

use of DL model known as COVIDetectioNet model, a pretrained AlexNet model integrated 

with SVM as a classifier, the model was trained using 6092 total CXR images which contain 

both COVID-19 pneumonia and normal images and it attained an AUC value of 99.76 and 

accuracy of 98.43% on testing dataset.  

Another study which makes use of TL is proposed by Mohammedi et al., 2020. Different 

pretrained models (MobileNet, VGG-19, VGG-16 and ResNet/Inception V2) are used for 

binary classification of COVID-19 from healthy CXR images. The study employed 348 total 

CXR images (112 positive and 236 negative). To increase the number of datasets, data 

augmentation techniques were carried out by zooming, rotation, flipping (horizontal and 

vertical), height shift, width shift and filling (nearest mode). After training the models were 

validated on unseen dataset with MobileNet achieving highest classification performance 

resulting in 99% F1 score, 99.1% accuracy, 100% precision and 98% recall. 

Table 3.3: Binary classification of CXR images using AI-Driven Models 
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Reference Model type Dataset Result 

Narin et al., 

2020 

COVID-19 100 total images 

(50% COVID-19 

and 50% healthy 

CXR images) 

87% accuracy for Inception-

ResNetV2 and 97% accuracy for 

InceptionV3 

Abbas et al., 

2020 

COVID-19 185 normal CXR 

images and 11 

COVID-19 

The model achieved 95.12% 

accuracy, 97.91% sensitivity of 

97.91% and 91.87% specificity 

of 91.87%. 

Wang S et 

al., 2020 

COVID-19 453 COVID-19 

CXR images 

The model achieved external 

73.1% testing accuracy, 74% 

sensitivity and 67% specificity 

Mohammedi 

et al., 2020 

MobileNet, VGG-

19, VGG-16 and 

Inception V2 

348 total CXR 

images (112 

positive and 236 

negative). 

MobileNet achieved 99% F1 

score, 99.1% accuracy, 100% 

precision and 98% recall 

Zulkifley et 

al., 2020 

CNN - 92.37% accuracy 

Turkoglu 

(2020) 

COVIDetectioNet 

plus SVM 

6092 total CXR 

images 

The model achieved an AUC 

value of 99.76 and 98.43% 

accuracy on testing dataset.  

Mei et al., 

2020 

Deep CNN plus 

classifiers 

(multilayer 

perceptron, SVM 

and random forest) 

626 CT scans  AUC value of 0.92 

Ozturk et al., 

2020 

DarkNet model - The model achieved 98.08% 

 

3.3.2 Multiclass (Covid 19, Non-Viral COVID-19) 

The use of DL system to screen and classify the novel 2019 coronavirus and influenza-A 

viral pneumonia using CT scans was proposed by Butt et al., 2020, the study acquired 618 

total transverse section CT scans with 219 images from 110 patients suffering from COVID-
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19 disease (confirmed by RT-PCR testing method), 224 CT scans images of patients 

suffering from Influenza-A viral pneumonia and 175 CT scans images of control (normal 

cases). The model performance resulted in 0.996 AUC score for discrimination of COVID-

19 vs non-COVID-19 viral pneumonia with 98.2% sensitivity and 92.2% specificity.  

In order to classify non-COVID-19 viral pneumonia, COVID-19 pneumonia and bacterial 

pneumonia using CXR images. Hall et al., 2020 utilized pretrained DL neural network to 

trained the model using over than 4 thousand bacterial pneumonia and non-COVID-19 viral 

pneumonia and 124 COVID-19 CXR images. The model performance resulted in an AUC 

value of 0.997 and 95% accuracy for discrimination of other viral pneumonia (bacterial and 

non-COVID-19) and 100% accuracy for COVID-19 on unseen (testing dataset).  

Truncated Inception ResNet based on TL is utilized by Das et al., 2020 to scan different 

classes of pneumonia (Non-COVID-19 and COVID-19 cases), tuberculosis and normal 

CXR cases. The study utilized 162 COVID-19 CXR images granted by Cohen et al., 2020, 

4280 viral pneumonia and 1583 Normal/healthy CXR images from Kaggle and 682 CXR 

cases from Montgomery county and Shenzhen China. The model achieved AUC value of 

1.0 and 99.96% accuracy for classification of COVID-19 from both healthy CXR images 

and viral pneumonia. For multiclass (COVID-19, tuberculosis, viral pneumonia and normal 

CXR images), the performance of the model resulted in an AUC value of 0.99 and 99.92% 

accuracy.   

Ozturk et al., 2020 proposed the use of automated approach for the screening of COVID-19 

from normal CXR images. The dataset used for the study was made available by Cohen et 

al., 2020. The images were trained using DarkNet model designed using 17 convolutional 

layers to classify binary dataset (COVID-19 cases and No findings) and multiclass (COVID-

19 cases, other viral pneumonia and No findings). The model performance resulted in 

98.08% for binary classification and 87.02% for multiclass classification. 

The application of TL (pretrained models) on DL for classification of multi-types of 

pneumonia is proposed by Chowdhury et al., 2020. The study utilized dataset made available 

online to create a single public database that combined all the dataset. The model was trained 

using 423 CXR images COVID-19 pneumonia, 1579 healthy CXR images, 1485 non-

COVID-19 viral pneumonia. The performance evaluation has demonstrated that models 

achieved 99.7% sensitivity and 99.7% specificity for discrimination of COVID-19 and 
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normal CXR images with augmentation and 99.7% sensitivity and 99.55% specificity for 

discrimination of COVID-19 and normal CXR images without augmentation. In terms of 

multiclass, the models achieved 97.9% sensitivity and 97.95% specificity for classification 

of COVID-19, non-COVID-19 viral pneumonia and healthy CXR images with augmentation 

and 97.9% sensitivity and 98.885% specificity for classification of normal CXR images, 

Non-COVID-19 viral pneumonia and COVID-19 pneumonia without augmentation.  

A combination of 2 models (i.e., hybrid networks) for 2-way screening of positive COVID-

19 and negative cases based on CXR images and 3-way screening of viral pneumonia, 

bacterial pneumonia and COVID-19 pneumonia was stated by Quan et al., 2020. Detection 

of COVID-19 was made possible by fusion of CNN models in the form of DensNet and 

capsule network known as CapsNet on dataset containing 1472 CXR images for binary 

discrimination of COVID-19 and normal CXR images. The multiclass classification utilized 

dataset made available by Linda Wang et al., 2020 which contain closed to 14 thousand X-

ray images. The model performance resulted in 99.32% validation accuracy, 100% 

specificity and 98.85% sensitivity. 

The use of CNN for classification of normal CXR images, COVID-19 pneumonia, non-

COVID-19 viral pneumonia was reported by Echtioui et al., 2020. The study utilized 500 

COVID-19 CXR images acquired from GitHub repository (an open-source dataset) and 

1000 (500 non-COVID-19 viral pneumonia and 500 normal CXR images acquired from 

ChestXray8 from the same repository. The model was trained based on CNN model with 13 

total layers (10 convolutional layers and 3 fully connected layers. The validation of the 

model on unseen dataset resulted in 91.34% accuracy for 3-way discrimination Normal CXR 

images, COVID-19, non-COVID-19 viral pneumonia. 

Table 3.4: Multiclass detection of Pneumonia using AI-driven tools. 

Reference  Type of pneumonia Dataset  Result 

Li et 2020 

al., 

COVID-19 and 

Community Acquired 

Pneumonia (CAP) 

4352 CT scans 

(1292 of COVID-

19, 1735 of CAP 

and 1325 normal 

CT scans) 

The models achieved 90% 

*SV and 96% *SF for 

detection of COVID-19 and 

87% *SV and 92% *SF for 

detection of CAP 
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Chowdhury 

et al., 2020 

COVID-19 and non-

COVID-19 VP 

423 COVID-19, 

1458 viral 

pneumonia and 

1579 normal Chest 

X-ray images 

The models performance 

resulted in higher accuracies, 

sensitivities and specificities  

 

Mahmud et 

al., 2020 

COVID-19, non-

COVID-19 VP, BP 

1493 non-COVID-

19 viral pneumonia, 

305 COVID-19 

pneumonia, 2780 

bacterial 

pneumonia 

The model performance 

resulted in 97.4% *AC for 

COVID-19 vs normal, 96.9% 

for COVID-19 Vs non-

COVID-19 VP, 94.7% for 

COVID-19 vs BP and 90% 

for multi-class 

Rajaraman 

et al., 2018 

Non-COVID-19 VP 

and BP (strains not 

specified) 

5856 chest X-ray The model achieved *Ac of 

96.2% accuracy for BP and 

93.6% for non-COVID-19 

VP 

Quan et al., 

2020 

COVID-19, non-

COVID-19 viral 

pneumonia and 

normal X-ray images 

14 thousand CXR 

images. 

The model performance 

resulted in 99.32% validation 

accuracy, 100% specificity 

and 98.85% sensitivity. 

 

Echtioui et 

al., 2020 

COVID-19, non-

COVID-19 viral 

pneumonia and 

normal X-ray images 

500 COVID-19, 

500 non-COVID-

19 viral pneumonia 

and 500 normal X-

ray images 

The model achieved 91.34% 

accuracy 

Ozturk et 

al., 2020 

COVID-19 cases, 

other viral pneumonia 

and No findings 

 The model achieved 87.02% 

accuracy 
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CHAPTER 4 

EXPERIMENTAL SET UP  

 

 

The overall method behind this research is shown in flow chart in figure 5.1. The method 

can be summarized based on data collection from different sources such a Near East Hospital 

and dataset made available by online website such as GitHub and Kaggle, image processing 

is conducted for the purpose of reducing the size of the images to fit into AlexNet model. 

Other approaches employed include Data augmentation which is carried out on training 

dataset, model training using Matlab and performance evaluation based on accuracy, 

sensitivity and specificity. 

 
Figure 4.1: Work flow chart 

In this study, 2 different types of dataset are used; Microscopic slide images for classification 

of tuberculosis and chest X-ray images for classification of pneumonia and its sub-class 
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which include COVID-19 pneumonia, Non-COVID-19 viral pneumonia (e.g., Influenza 

virus) and bacterial pneumonia. 

4.1. Tuberculosis   

4.1.1 Data collection  

The sputum smear slides utilized in this experiment were prepared by smearing the sputum 

specimen on a clean slide. A low flame was used to fix the air-dried smear for 2-3 times. 

Auramine O stain is then utilized to fill the slides in order to bind on to the cell wall of the 

acid-fast bacteria which last for 10 minutes. subsequently, decolorization technique was 

carried on the slides using alcohol and later washed using running water. Potassium 

permanganate was employed to counter stained the slides in order to obtain a clear contrast 

background prior to rinsing with clean water and dried using air. (Priya & Srinivasan 2016). 

The images were acquired using a camera in monochrome binning mode attached to a 20× 

objective fluorescence microscope of 0.5 numerical aperture. The camera (AxioCam HR) 

has a resolution of 4164 × 3120 with a pixel size 6.45 μm (h) × 6.45 μm (v). 

Positive cases (Ziehl Nelson acid fast stained were obtained from Near East University 

Hospital plus 100 from Istanbul Tuberculosis Control Association (ITCA). Negative 

samples were prepared by pathologist using the same staining approach on samples obtained 

from individuals without suspicion of tuberculosis leading to 530 total images as shown in 

Figure 4.2 
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Figure 4.2: Positive (tuberculosis) microscopic slide image. The purple and red thick 

bacilli depict mycobacterium tuberculosis 

 

Figure 4.3: Negative (tuberculosis) microscopic slide image 

4.1.2 Data Processing 

All the images acquired are evaluated by specialist by going through each image and 

labelling them accordingly. For Tuberculosis, the images are labelled into 2 groups, positive 
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(due to the presence of red bacilli after staining) and negative (due to the absence of red 

bacilli after staining) as shown in figure 4.2 and 4.3. For Chest X-ray images of pneumonia, 

images are labelled into 4 groups, COVID-19 pneumonia, non-COVID-19 viral pneumonia, 

bacterial pneumonia (due to the presence of multilobar ground glass opacities with posterior 

or peripheral distributions) and normal (i.e., healthy, negative due to the absence of 

multilobar ground glass opacities) as shown in figure 4.5 and 4.7. 

The images acquired ranges from 2 mega bite (MB) to 4MB, with pixels sizes (based on 

horizontal and vertical) ranging from 2000X3500 to 3000X5000. These images are too big 

to fit into AlexNet Models. However, in order to reduce them to 227X227X3 pixels size, an 

online system was employed known as BIRME available at this website: 

https://www.birme.net/?target_width=227&target_height=227 

The interfaced of the settings is shown in Figure 4.4. 

https://www.birme.net/?target_width=227&target_height=227
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Figure 4.4: BIRME Interfaced 

After resizing the images to the required pixels size and labelling each type according to 

respective classes, the images are fed into the Matlab using the codes presented in Appendix 

A. 

4.1.2 Data split 

Splitting dataset is integral for training and validating performance of AI-driven models. 

Scientist recommends the use of different data split such as 70:30, 75:25 and 80:20. 
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However, we employed 70:30 split in order to have enough unseen dataset and for 

generalization. Based on the 530 total microscopic slide images validated by pathologist, 

367 are used as training (70%) and 159 images as testing (30%) dataset. 

4.1.3 Data augmentation 

Data augmentation is only carried out using training dataset mainly to increase the number 

of images for the model to learn efficiently. The augmentation approaches employed include 

cropping and rotation (900, 1800 and 2700) on 371 images resulting in 2444 total training 

dataset in which 1320 are positive (tuberculosis) and 1144 are negative (healthy). Prior to 

data augmentation, the slide images are more than 3456x4608x3 pixels size. Size reduction 

is carried out to reduce the images to 227x227x3 to fit into pretrained AlexNet model. 

Table 4.1: Data augmentation of Training Dataset 

Label Training  

Positive 1320 

Negative 1144 

Total  2464 

 

4.1.4 Machine Vs Human 

In order to compare the learning competence of the model on unseen dataset with ground 

truth (which are real samples validated by certified pathologist), we tested the model using 

30 unseen images. The same number of images are also used to compare the model with 

both beginners and certified pathologist. 

4.2. Pneumonia 

This study employed dataset (based on X-ray images) which are uploaded by Kermany et 

al., 2018. The images are categorized in to 3 main folders namely, training, testing and 

validation. The sum of the folders resulted in 5856 positive and negative cases as shown in 

Table 4.2. The portrait of the dataset is according to radiographic images acquired from 

patients older than 1 year and below 5 years as shown in Figure 4.3. 
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Figure 4.3: Pediatric CXR scans. Left: Pneumonia. Right: Normal CXR scan. 

Table 4.2: Datasets Description 

Label Number  

Positive 4273 

Negative 1583 

Total 5856 

 

 

4.2.2 Data split 

The datasets are partitioned into 50:50, 60:40, 70:30, 80:20 and 90:10 for both model training 

and model validation respectively as shown in Table 4.3.  

Table 4.3: Data split 

S/No Split                          Training  Split                     Testing  

% Positive Negative % Positive Negative 

1 50 2137 792 50 2136 791 

2 60 2564 950 40 1709 633 

3 70 2991 1108 30 1282 475 

4 80 3418 1266 20 855 317 

5 90 3846 1425 10 427 158 

 

4.3 COVID-19 

4.3.1 Dataset 

A) COVID-19 Vs Healthy CXR images  



 
 

 61 

Currently, there are closed to 80 million confirmed cases of patients suffering or suffered 

from COVID-19 disease. However, the number of CXR images available online on public 

database are limited. We acquired COVID-19 CXR images from 2 database. (1) 153 

radiographs from GitHub website (available at https://github.com/ieee8023/covid-

chestxray-dataset) and (2) 219 CXR images from Kaggle website (also available at 

https://www.kaggle.com/tawsifurrahman/covid19-radiography-database). Combining the 2 

datasets to make up 371 total COVID-19 CXR images plus 1341 healthy CXR images from 

the same website.  

B) Multiclass  

 

Figure 4.4: Workflow for multiclass classification 

The dataset for COVID-19 and part of healthy CXR images are stated in COVID-19 Vs 

Healthy CXR images as well as other viral strains-causing pneumonia stated in pneumonia 

dataset acquired from Kermany et al., 2018. Moreover, 4274 bacterial pneumonia 

radiographs were obtained from Kaggle website (available at 
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https://www.kaggle.com/tawsifurrahman/covid19-radiography-database). The workflow of 

the model is presented in Figure 4.4. Figure 4.5 shows the classes of pneumonia (positive) 

and negative radiographs while the number of each of the dataset is presented in Table 4.4. 

 

Figure 4.5: Dataset description: (1) COVID-19 (2) non-COVID 19 viral pneumonia (3) 

Healthy CXR scan (4) bacterial pneumonia 

Table 4.4: Dataset Description for all classes 

Image type Total number of radiographs 

Positive of COVID-19 371 

Positive of other viral strains 4237 

Positive with bacterial strains 4078 

Normal 2882 

 

4.3.2 Data split 

The datasets are categorized based on binary classification and multiclass classification. 

Each dataset is partitioned into 70% for training the model and 30% for evaluation of the 

model on unseen dataset as shown in Table 4.5. 

Table 4.5: Dataset split for multiclass 

Model Training 70% Validation (30%) 

Non-

COVID-

19 VP 

and 

Healthy 

Positive Negative Positive Negative 

 

2966 2017 1271 965 

BP and 

Healthy 

Positive Negative Positive Negative 

2853 2017 1225 965 
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COVID-

19 and 

Healthy 

COVID-19 Healthy COVID-19 Healthy 

260 2017 111 965 

COVID-

19 and 

Non-

COVID-

19 VP 

Positive  Non-COVID-19 VP Positive Positive 

260 2966 111 1271 

COVID-

19, BP 

and 

Healthy 

C-19 BP Negative COVID-

19 

BP Negative 

260 2853 2017 111 1225 965 

COVID-

19, Non-

COVID-

19 VP, 

BP and 

Healthy 

C-19 BP Non-C-

19 VP 

Negative C-19 BP Non-C-

19 VP 

Negative 

260 2853 2966 2017 111 1225 1271 965 

 

4.4 Model Training 

For both pneumonia and tuberculosis model training using 70% of dataset, we utilized a 

program known as “Matlab” which is run a on a PC with the following descriptions: an intel 

® Core i7-3537U, window-64-bit, GPU and 8GB random access memory (RAM). The 

remaining 30% of the dataset split was reserved for evaluation of the model on unseen 

dataset (aka a testing dataset). Pretrained AlexNet model is utilized in this experiment 

because of its high precision in extracting feature and image discrimination. Figure 4 show 

the AlexNet architecture use to classify both pneumonia Xray images and tuberculosis 

microscopic slide. AlexNet model architecture is based on different layers such as 

convolutional layers (which contain 5 convolution (CONV)) blocks made up of CONV-

filters size 3x3 without undergoing padding operation and 2x2 window size for maximum 

pooling process. The final 3 layers are classified into 2; 2 FCL and lastly, an output layer 
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(OL). Other concepts regarding AlexNet are FM and BN. For classifying output into 

different categories, SoftMax activation function is employed in place of other classifiers 

such as SVM. In terms of gradient descent, a minibatch optimization is employed in order 

to optimize the model. Moreover, the training of the model is reached 20 epochs and learning 

rate of 0.0001.  

The deep learning architecture utilized in this study is a CNN model known as AlexNet, a 

form of supervised machine learning which is the most popular ML techniques in which data 

are labelled and the model or network learn features to identify patterns in data for prediction 

or classification. 

 

Figure 4.8: Classification of Medical Images using Pretrained AlexNet Model 

Training ML models required series of steps depending on the deepness of the model. I.e., 

the deeper the model the more computation and number of layers. In this study, a Pretrained 
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AlexNet model is utilized which has 8 Layers as shown in Figure 4.6. The series of steps 

involved for training AlexNet model involves the following: 

Step 1: Inputting: This is the first conducted in training AlexNet Model where images are 

fed into the model by creating image pathway using the code line below; 

 imds = imageDatastore('training', ... 

    'IncludeSubfolders',true, ... 

    'LabelSource','foldernames'); 

Step 2: Labelling: Once the model located the paths of the image folders, a 2 lines codes is 

used to label the data into training and validation and the num groups, i.e., for binary 

classification, num grouping result in a response equal 2 (e.g., positive and negative), while 

in the case of 4-way classification of pneumonia classes and normal CXR images, it results 

into num number equal to 4. 

>> [imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized'); 

>> numTrainImages = numel(imdsTrain.Labels); 

Step 3: Model Specification and Layers: For Matlab to run a model, 2 lines codes are used 

to specify the model name by using net equal to the model (AlexNet, SqueezNet, MobileNet, 

GoogleNet etc.), these models have different layers and operations such as convolution, 

pooling, normalization etc. By adding the second code, Matlab will display all the network’s 

layers, operations, filter size etc. 

>> net = alexnet; 

>> net.Layers 

Step 4: Input Size: As mentioned before, each network has a specified input size, for 

AlexNet, image with input size 227X227x3 (which means both vertical and horizontal pixels 

dimensions are 227) and 3 specify the color channel known as RGB (Red, Green and Blue). 

While for GoogleNet, image with input size 224X224X3 is utilized. 

>>inputSize = net.Layers(1).InputSize 

Step 5: Transfer Learning: Since the model is a pretrained model, several line codes are used:  

>> layersTransfer = net.Layers(1:end-3); 

>> numClasses = numel(categories(imdsTrain.Labels)) 

>> layers = [ 

    layersTransfer 
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fullyConnectedLayer(numClasses,'WeightLearnRateFactor',20,'BiasLearnRateFactor',20) 

    softmaxLayer 

    classificationLayer]; 

>> pixelRange = [-30 30]; 

imageAugmenter = imageDataAugmenter( ... 

    'RandXReflection',true, ... 

    'RandXTranslation',pixelRange, ... 

    'RandYTranslation',pixelRange); 

augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ... 

    'DataAugmentation',imageAugmenter); 

>> augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation); 

Step 6: Training: To initiate training, learning rate, epoch size and iterations are set before 

kick starting the training using graph plot which shows number of iterations per epoch of 

training progress using 2 lines codes: 

>> options = trainingOptions('sgdm', ... 

    'MiniBatchSize',10, ... 

    'MaxEpochs',20, ... 

    'InitialLearnRate',1e-4, ... 

    'ValidationData',augimdsValidation, ... 

    'ValidationFrequency',3, ... 

    'ValidationPatience',Inf, ... 

    'Verbose',true, ... 

    'Plots','training-progress'); 

>> netTransfer = trainNetwork(augimdsTrain,layers,options); 

Testing and Validation:  

Step 1: Loading: To test the performance of the model, testing dataset are loaded by creating 

image pathway using the code line below: 

>> imdsTest = imageDatastore('Testing', ... 

'IncludeSubfolders',true, ... 

'LabelSource','foldernames'); 
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Step 2: Testing: After the images are loaded, a 3 lines codes are used to test the model based 

on accuracy: 

>> [YPred,scores] = classify(netTransfer,imdsTest); 

>> YValidation = imdsTest.Labels; 

>> accuracy = mean(YPred == YValidation) 

Step 3: Sensitivity and Specificity: In order to check the positive and negative rate 

classification of the model, a 3 lines codes are inputted: 

 >> y = grp2idx(YValidation); 

>> test = grp2idx(YPred); 

>> classperf(y,test) 

4.5 Cross Validation 

Cross validation (CV) is a vital technique utilized in ML for parameter selection and 

evaluation of learning performance and prediction. Based on this experiment, we utilized K-

fold Cross validation approach where the datasets are split into K sets of equal size (i.e., K 

= 10). In each K sets K-1 is used as training dataset and 1 set is used as validation dataset. 

Training of the dataset is repeated for K number of times (i.e., n = k) (Fan and Hauser 2018). 

The average performance of the training and testing dataset is computed as the evaluation 

index for the models. This approach is very efficient especially when there are limited 

number of samples as it takes advantage of the whole dataset (Men et al., 2018). Hence, 

Cross validation dataset for both pneumonia and tuberculosis are presented in the 

supplementary file 

4.6 Evaluation and Confusion Matrix 

To evaluate the performance of the learned models, some certain parameters are utilized; 

accuracy, Precision also known as sensitivity and specificity or recall. Accuracy is defined 

as the ratio of properly classified images over total sum of images; it is also described as the 

sum of precision and recall. For evaluating the accuracy and loss of the learned model the 

resulting formulas are employed: 

 𝐿𝑜𝑠𝑠 =  −
1

𝑛
∑ log 𝑃𝐶𝑛

𝑖=1                (2.1) 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  −
𝐶

𝑁
                     (2.2) 

 

Where N is the overall number of images during training and testing, n is the number of 

images and PC is the probability of the correctly classified images. 

Confusion matrix is the common approach used for evaluation of model performance based 

on True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN). 

TPs is the number of samples that are correctly identified by the model as positive cases or 

number of cases who actually have pneumonia or tuberculosis according to each model. TNs 

is the number of samples that are correctly identified by the model as negative cases or 

number of cases who are actually healthy (normal) and classified as negative according to 

each model. FPs are the number of samples that are incorrectly classified as negative by the 

model or number of cases that are actually negative (normal or healthy) but classified as 

pneumonia or tuberculosis according to each model. FNs are the number of samples that are 

incorrectly classified as positive by the model or number of cases that are actually positive 

(pneumonia or tuberculosis) but classified as normal or healthy according to each model as 

shown in Table 4.6. 

True Positive rate (Sensitivity) is the portion of positive cases or samples which are precisely 

classified as positive sample (i.e., it describes the ration of positive cases that are correctly 

identified as positives). 

 Sensitivity 
TPs

TPs+FNs
       (2.3) 

 

False positive rate (FPR) also known as Specificity is the portion of positive cases or 

samples which are wrongly classified as positive samples (i.e., it describes the ratio of 

negative samples that are incorrectly classified as positives). 

Specificity 
TNs

TNs+FPs
           (2.4) 

Table 4.6: Confusion matrix 

Predictions Actual Positive Actual Negatives 

Positive Predictions TP FP 

Negative Predictions FN TN 
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CHAPTER 5 

PERFORMANCE EVALUATION  

 

  

The models are trained using pretrained AlexNet which comprise of 8 total layers, 5 CONV 

layers and 3 FCLs. The models were able to learn various features from all the convolutional 

layers. Each convolutional layer performs separate form of feature selection (point, edges, 

structure etc.). The neurons in convolution 1 are very active in spotting features while the 

final convolutional layer (Conv 5) is very active in level detection and descriptive features. 

However, all the convolutional layers learn features differently which enhance the model 

learning efficiency. The last layer (fully connected layer 8) classifies the images into binary 

(in tuberculosis, Mycobacterium tuberculosis vs healthy microscopic slide, COVID-19 vs 

Normal CXR images, other viral strains-causing pneumonia vs normal radiographic images) 

and into 3 and 4 classes (in classification of different types of pneumonia and healthy 

radiographs). Some of the parameters for training the models include: 

1. Iterations: which is define as the total number of batches required to complete a 

single epoch (i.e., circle). 

2. Epoch: is termed as the number of iterations multiply by the size of the batch which 

is further divided by total number of images used in training. 

3. Iterations per epoch is calculated based on dividing maximum iterations by epoch. 

5.1 Tuberculosis 

5.1.1 Performance Evaluation 

Training of the model resulted in maximum iterations of 3440, 20 completed epochs and 172 

iterations per epoch. 0.0001 learning rate was achieved and 0.0127 error rate. In terms of 

performance evaluation, the model achieved training accuracy of 99.19%, validation 

accuracy of 98.73%, sensitivity of 98.59% and specificity of 98.48%. The description of the 

result is presented in figure 5.1, learning curve in Figure 5.2 and Table 5.1. 
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Figure 5.1: Classification of tuberculosis and healthy microscopic slides using pretrained 

AlexNet Model 

Table 5.1: Model Learning Parameters and Performance 

Learning Parameters Values  

Training ratio (%) 70 

Learning rates 0.0001 

No of epochs 20 

Training accuracy (%) 99.19 

Testing accuracy (%) 98.73 

Sensitivity 98.59 

Specificity  98.84 

Achieved mean square error 0.0127 
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Figure 5.2: Learning Curve of AlexNet network 

5.1.2 Cross Validation 

CV was carried out to assess the overall performance of the model by utilizing every K-Fold 

as training and testing set. The model achieved average performance of 99.28% training 

accuracy and 98.29% testing accuracy. Based on sensitivity and specificity, the model 

achieved 99.20% and 99.39% respectively. Comparing the result of general dataset with CV, 

the average performance of CV ranked higher in terms of training accuracy, testing accuracy 

and sensitivity while general dataset performed better in terms of specificity. The means 

(average) result obtained from all the folds are presented in Table 5.2. 

Table 5.2: Cross validation result 

K Fold Training 

Accuracy 

validation Testing 

Accuracy 

Sensitivity Specificity 

1 98.15 0.9815 98.09 0.9677 1.000 

2 99.07 0.9907 97.45 0.9852 0.9963 

3 99.81 0.9981 97.45 1.0000 0.9963 

4 99.07 0.9907 98.73 1.0000 0.9815 

5 98.89 0.9889 98.09 0.9889 0.9889 

6 100.00 1.0000 100.00 1.0000 1.0000 

7 99.44 0.9944 98.64 1.0000 0.9868 

8 99.44 0.9944 98.73 0. 9963 0.9926 

9 99.63 0.9963 97.13 0.9963 0.9963 
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10 99.26 0.9926 98.54 0.9859 1.0000 

Average 992.76/10 

99.28 

9.99276/10 

0.9928 

982.85/10 

98.29 

9.92303/10 

0.9920 

9.9387/10 

0.9939 

 

 

5.1.3 Machine Vs Human 

Comparing machine vs human is conducted in order to test the network the performance. 30 

unseen images are given to the model, beginners and certified pathologist. The model was 

able to classify the images correctly outperforming both pathologists. The result of the 

performance is shown in table 5.3.  

Table 5.3: Performance evaluation of machine vas humans 

N = 30 

Participants Sensitivity (%) Specificity (%) Accuracy (%) 

Machine (Model in Ex C) 100 100 100 

Beginner 1 100 85.71 92.86 

Beginner 2 94.74 92.31 96.15 

Certified 1 94.74 100 97.37 

Certified 2 100 92.31 96.15 

 

5.1.4 Comparison with state of art 

We obtained a testing accuracy of 97.64% using general dataset and testing accuracy of 

98.29% using the average accuracies of Cross validation result. Our model has achieved a 

better accuracy than the study conducted by Xiong et al 2018 who built a model from scratch 

and trained using limited number of cases. The model achieved 83.65% specificity and 

97.94% sensitivity compare to our model which achieved 98.67% sensitivity and 100% 

specificity using general dataset and 99.20% sensitivity and 99.39% specificity using 

average performance of cross validation. The recent study carried out by Muyama et al., 

2020 achieved 86.7% accuracy which ranked lower in comparison with our model. 

Moreover, the experiment conducted by Panicker et al 2018 using microscopic sputum spear 

images trained on a CNN model achieved sensitivity of 97.13% and specificity of 78.4%. 

Table 5.4 depict the comparison between model outcome and related research. 

Table 5.4: Comparison between model outcome and state-of-the-art 
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Reference Model Accuracy 

(%) 

Sensitivity (%) Specificity  

Khan et al 2019  CNN 94.0 -  

Xiong et al 

2018  

CNN 97.0 97.94 83.65 

Smith et al 

2018  

CNN 95.0 -  

Costa et al 

2015 

SVM+CNN 96.8 -  

Panicker et al 

2018 

CNN - 97.13 78.4 

El-Melegy et al 

2019  

FRCNN 98.3 82.6  

FRCNN+CNN 98.4 85.1  

Muyama et al., 

2020 

Pretrained (ResNet, 

GoogleNet and 

VGGNet) 

86.7 - - 

Our Result Pre-trained 

AlexNet 

98.73 98.59 99.39 

CV Pre-trained 

AlexNet 

99.29 98.20 99.39 

 

 

5.2 Pneumonia  

5.2.1 General Dataset 

The model was trained using different set of data split. The entire dataset (i.e., 5856 total 

chest Xray images) were partition into 50:50, 60:40, 70:30, 80:20 and 90:10 percentages for 

training and testing. Matlab is employed to trained the dataset with 0.0001 learning rates, 20 

epochs and 5740 number of iterations. The model performances were evaluated based on 

accuracy, sensitivity and specificity. 

Based on 50:50 data split, the model achieved 97.98% training accuracy, 97.94% testing 

accuracy, 96.21% sensitivity and 99.00% specificity. As expected, by increasing number of 

training dataset to 60% and reducing number of testing dataset to 40%, the model achieved 

98.94% training accuracy, 98.95% testing accuracy, 99.09% sensitivity and 98.81% 

specificity. Considering the fact that training with large number of datasets mostly result in 

higher training accuracy. However, scientist recommend the use of 70:30 or 80:20 data split 

in order to allow the model learn efficiently and performed accurately on testing datasets 

(Zhang et al., 2018; Shorten & Khoshgoftaar, 2019). 
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Based on 70:30 data split, the model achieved 99.19% training accuracy, 98.73% testing 

accuracy, 98.59% sensitivity and 98.84% specificity. Training the model using 80% of the 

entire dataset and testing using 20% result in 99.36% training accuracy, 100% testing 

accuracy, 99.11% sensitivity and 99.66% specificity. While training using 90% of the entire 

dataset and testing using 10% result in 99.86% training accuracy, 100% testing accuracy, 

99.11% sensitivity and 100% specificity. The performance evaluation of models trained 

based on different data split is presented in table 5.5 and Figure 5.3. 

Table 5.5: Performance evaluation of models trained using different data split 

Split  Training 

Accuracy 

Testing Accuracy Sv Sf 

50-50 97.96 97.94 96.71 99.00 

60-40 98.94 98.95 99.09 98.81 

70-30 99.19 98.73 98.59 98.84 

80-20 99.36 100.00 99.11 99.66 

90-10 99.86 100.00 99.70 100.00 

 

  

  

 

Figure 5.3: Performance evaluation of AlexNet models trained using different data split 

So many studies have shown that using higher number of dataset results in higher model 

performance (i.e., increasing training dataset led to increase in training accuracy). As shown 
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in Table 5.4 and Figure 5.3, training accuracy increase from 97.96% in 50:50 data split to 

99.86% in 90:10 data split. The same applied to testing accuracy. As a result of training the 

model using large amount of dataset, it learns to classified both positive and negative cases 

correctly, resulting in higher testing accuracy (which increase from 97.94% in 50:50 data 

split to 100% in 90:10 data split). A similar approach was adopted by Prashanth et al., 2020 

who partitioned dataset into different data split (from 50:50 to 90:10) for model-training and 

validation respectively. The study reported higher accuracy for data split above 60:40. 

5.2.2 Cross Validation 

We divided the dataset into 10 folds, in each fold we used K-1 as validation dataset and the 

remaining as training dataset (i.e., 9 folds), separate untested new images are used as testing 

dataset to ascertain the performance of the TL architecture. The accuracy of training dataset 

is compared with the testing dataset to evaluate performance and overfitting. Sensitivity and 

specificity are other parameters used to check false positive rate and true positive rate 

likelihood.  

Comparing all the folds in terms of performances, testing accuracies of all the folds are lower 

than training accuracy as expected except for K-4. This is true for majority models trained 

using deep learning as reported by Keskar et al.,2016. Comparing the means of both training 

and testing accuracies, testing accuracy ranked lower (i.e., 96.04%) than training accuracy 

(i.e., 97.07%). However, there are so many variations in terms of sensitivity and specificity 

in the 10-folds. Moreover, based on the result achieved in terms of positive and negative 

rate, it shows that the models learned how to discriminate between pneumonia and healthy 

chest Xray images. The result of cross validation is presented in Table 5.6. 

Table 5.6: Cross validation result for Pneumonia 

K Fold Tr(A)* V* Ts(A) * Sv* Sf* 

1 98.35 0.9835 96.67 0.9800 0.9846 

2 96.78 0.9678 94.71 0.9767 0.9650 

3 97.72 0.9772 96.55 0.9867 0.9743 

4 97.56 0.9756 94.71 0.9567 0.9815 

5 97.72 0.9772 98.16 0.9567 0.9835 

6 97.48 0.9748 94.14 0.9867 0.9712 
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7 96.86 0.9686 93.45 0.9800 0.9650 

8 98.35 0.9835 96.21 0.9633 0.9897 

9 98.27 0.9827 95.63 0.9867 0.9815 

10 97.88 0.9788 97.13 0.9633 0.9835 

Average 976.97/10 

97.70 

9.76970/10 

0.9770 

960.36/10 

96.04 

9.37368/10 

0.9734 

9.7798/10 

0.9779 

 

5.2.3 Comparison between General Data Split and Cross Validation 

In general dataset, the whole images were split into 50:50, 60:40, 70:30, 80:20 and 90:10 for 

model-training and validation respectively resulting in irregular training accuracies, testing 

accuracies, sensitivities and specificities. However, based on CV, the average performance 

of the model result in 97.70% training accuracy, 96.04% testing accuracy, 97.34% sensitivity 

and 97.79% specificity. This shows that the results achieved in cross validation ranked lower 

than all the splits as presented in Table 5.7. 

Table 5.7: Performance evaluation of models trained using different data split 

Split  Training 

Accuracy 

Testing Accuracy Sv Sf 

50-50 97.96 97.94 96.71 99.00 

60-40 98.94 98.95 99.09 98.81 

70-30 99.19 98.73 98.59 98.84 

80-20 99.36 100.00 99.11 99.66 

90-10 99.86 100.00 99.70 100.00 

CV 97.70 96.34 97.34 97.79 

 

Radiologist have been relying radiological images for interpreting pneumonia based on the 

presence of infiltrates (white spots in the patient’s lungs) to identify or interpret the presence 

of the infection and other complications such as pleural effusions or abscesses. On the other 

hand, pathologist rely on staining techniques for visualization of tuberculosis bacilli in 

sputum smear slides. For both radiologist and pathologist, these approaches can be very 

tedious for large images and thus can lead to misinterpretation. The use of computer aided 
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diagnosis (CAD) which was introduced in 1990s offer a simple, reliable, precise and fast 

approach of interpreting results related to medical images. CAD approach assist pathologist 

and radiologist in identifying disease and healthy images while preventing misinterpretation.  

5.2.4 Comparison with State of Art 

The use of CNN to classify and characterize X-ray images has shown a better accuracy and 

precision than some radiologist. Since the development of deep neural network, scientist 

have been utilizing different CNN architectures such as ResNet, Inceptions, AlexNet, 

GoogleNet, SqueezeNet, VGGNet 16 and 17 etc. and other networks built from scratch to 

detect diseases such as pneumonia in x-ray images and tuberculosis in acid-fast stain images. 

These computer models are developed based on mathematical algorithms to solve problems 

such as predictions and image classification using probability score (Matsugu et al 2003). 

Comparing our result with state of art, for pneumonia we obtained a testing accuracy of 

96.04% using general dataset and testing accuracy of 97.70% using the average accuracies 

of Cross validation result. Our model has achieved a better accuracy than the study 

conducted by Stephen et al 2019 using the same dataset but different model that is built from 

scratch which achieved average accuracy of 94.81%. Saraiva et al 2019 utilized the same 

dataset with our study, the authors split the dataset into 5 K-folds and achieved 95.30% 

average accuracy while we split our dataset into 10 k-folds and achieved average accuracy 

of 97.70%. Rajaraman et al 2018 utilized VGG-16 to classify both bacterial and viral 

pneumonia. The models achieved 96.2% and 93.6% compare to our model that achieved 

96.43 for general dataset using AlexNet models. However, studies that utilized large amount 

of dataset of over 100 thousand have achieved a higher accuracy than our study such as Zech 

et al 2018 who utilized Deep NN to trained 158,323 x-ray images and Rajpurkar et al who 

developed a 121 CNN called CHeXNet and trained the model using more than 100 thousand 

frontal view X-ray images. Table 5.8 depict the comparison between model outcome and 

related research. 

Table 5.8: Comparison between model outcome and state-of-the-art 

Reference No of Dataset Model A/AUC Sv Sf 
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70:30   5856 PA 98.73 98.59 98.84 

CV 5856 PA 97.35 97.35 97.78 

Stephen et 

al. 2019  

5856 CNN 94.81 - - 

Chouhan 

et al. 2020  

5856 PA 92.86 - - 

Saravia et 

al. 2019  

5856 CNN 95.30 - - 

Rajaraman 

et al. 2018  

5856 CNN 92.2, 93.6 - - 

Kanaparth

i et al. 

2019 

108,948 PA 0.6333 - - 

Rajpurkar 

et al. 2017 

100,000 CheXNet 0.8887 - - 

 

 

5.3 COVID-19 and Other Pneumonia 

5.3.1 Binary Classification 

The classification of COVID-19 vs normal radiographs, COVID-19 vs other viral strain-

causing pneumonia, other viral strain-causing pneumonia vs normal CXR images, bacterial 

pneumonia vs healthy CXR. Table 5.9 and Figure 5.4 present the classification.  

For all the classifications, datasets are trained based on 70% and tested using 30%. For 

classifications of COVID-19 and normal CXR images, the performance of the model 

resulted in 99.71% training accuracy, 99.16% testing accuracy-score, 97.44% precision and 

100% recall. For 2-way classification of COVID-19 and other viral strain-causing 

pneumonia, the performance of the model resulted in 99.57% training accuracy score, 

99.62% testing accuracy score, 90.63% precision and 99.89% recall. Based on 2-way 

discrimination of other viral strain-causing pneumonia and normal radiographs, the 

performance of the model resulted in 96.43% training accuracy score, 94.05% testing 
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accuracy score, 98.19% precision and 95.78% recall. For classification of bacterial 

pneumonia and normal CXR images, the performance of the model resulted in 95.28% 

training accuracy score, 91.96% testing accuracy score, 91.94% precision and 100% recall. 

5.3.2 Multiclass 

A pilot study was initially conducted using equal number of datasets (i.e., 371 CXR images) 

for each class (COVID-19, other viral strain-causing pneumonia, bacterial pneumonia and 

normal radiographs). The justification for this amount is due to the fact that we acquired 

only 371 CXR images of COVID-19 pneumonia. However, the model performed poorly in 

terms of training accuracy score, testing accuracy score, precision and recall.  

 

Figure 5.4: Performance Evaluation of models based on accuracy score, precision and 

recall.  

The model was then trained using whole dataset partitioned into 70% for training and 30% 

for testing for each class as shown in Table 4.4. The model was trained according to 3-way 

classification (COVID-19, bacterial pneumonia and normal radiographs), the model 

performed very well in terms of training accuracy (97.40%), testing accuracy (95.00%), 

sensitivity (91.30%) and poorly in terms specificity (84.78%) compare to 2 classes. By 

adding non-COVID-19 viral pneumonia to the 3 classes above (i.e., making it 4 classes) the 

model achieved 94.18% training accuracy, 93.42% testing accuracy, 89.18% sensitivity and 

98.92% specificity as presented in Table 5.9 and Figure 5.4. 

Table 5.9: Performance evaluation of binary classes and multiclass 
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Dataset Training 

Accuracy 

(%) 

Testing 

Accuracy 

(%) 

  Sv 

 (%) 

   Sf 

 (%) 

other viral strain-

causing pneumonia 

 and Normal 

96.43 94.05 98.19 95.78 

Bacterial pneumonia 

and Normal 

95.28 91.96 91.94 100.00 

COVID-19 and healthy 99.71 99.16 97.44 100.00 

COVID-19 other viral 

strain-causing 

pneumonia 

99.57 99.62 90.63 99.89 

COVID-19, bacterial 

pneumonia and normal 

97.40 95.00 91.30 84.78 

COVID-19, other viral 

strain-causing 

pneumonia, bacterial 

pneumonia and normal 

94.18 93.42 89.18 98.92 

 

 

5.3.3 Comparison with State of Art 

Several studies have attempted to distinguished COVID-19 pneumonia from normal 

radiographs. However, few studies discriminate between COVID-19 pneumonia and other 

types of pneumonia from CXR scan images. Li et al., 2020 grouped both viral pneumonia 

and bacterial pneumonia as Community Acquired Pneumonia (CAP). Though, we deemed 

this classification unnecessary in terms of AI-models due to the facts that bacterial and viral 

pneumonia differs and majority of viral pneumonia have the same appearance in CXR scans.  

Based on binary classification of COVID-19 pneumonia from normal radiographs, our 

model achieved higher performance compared with studies that employed lesser amount of 

dataset such as Narin et al., 2020, Mahmud et al., 2020, Abbas et al., 2020 and Wang S et 

al., 2020. Among the studies we reviewed, Abbas et al., 2020 achieved a higher sensitivity 
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(97.91%) compare to our model. This study achieved higher sensitivity due to the use of TL 

on DL with more of layers. Also, Mohammedi et al., 2020 achieved higher performance in 

terms of sensitivity (98%) compare to our model. The scores are attributed to large amount 

of dataset resulted from data augmentation and the use of deep learning models with higher 

number of models than AlexNet. Different studies confirmed that TL models perform 

efficiently on less amount of data compare with models developed from scratch which 

required large amount of training datasets (Shin et al., 2016; Ravishankar et al., 2016; Yu et 

al., 2017). 

The discrimination of COVID-19 from other viral strain-causing pneumonia is critical in 

order to avoid miss-diagnosis. Differentiating between COVID-19 pneumonia and other 

viral strain-causing pneumonia is merely impossible for Radiologist due to the fact that both 

are viral pneumonia. It is quite easier for AI-driven models to discriminate between bacterial 

pneumonia and viral pneumonia (with COVID-19 pneumonia inclusive). This claimed is 

supported by study carried out by Chowdhury et al., 2020 who have shown that “models 

perform more efficiently on classification of COVID-19 pneumonia and normal radiographs 

compare to COVID-19 pneumonia and other viral strain-causing pneumonia.  

The result achieved by our model is in line with this study. In terms of classifying COVID-

19 pneumonia and other viral strain-causing pneumonia, our model achieved 90.63% 

sensitivity and 99.89% specificity compare with classification of COVID-19 pneumonia and 

normal radiographs where the model achieved 97.44% precision and 100% recall. Moreover, 

Narin et al., 2020 and Bai et al., 2020 also stated similarities in terms of appearance between 

COVID-19 pneumonia and non-COVID-19 viral pneumonia based on clinical and 

physiological prospective. 

Majority of pneumonia occur as a result of invading viruses and pathogenic bacteria. In 

terms of viral pneumonia, majority of cases are caused by Influenza virus which is 

prevalence in pediatric patients.  Differentiating between Influenza-causing pneumonia from 

healthy CXR images is crucial for proper diagnosis. Both CXR images of Influenza-causing 

pneumonia and healthy ones are made available by Kermany et al., 2018. Based on this 

dataset, our model performance resulted in 94.43% accuracy score, 98.19% precision and 

95.78% recall compare to Stephen et al., 2019 with accuracy of 93.01%, Wang SS et al., 

2020 with 73.1% accuracy, 74% sensitivity and 67% specificity, Xu et al., 2020 with 86.7% 
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accuracy and Rajaraman with 93.6% accuracy. However, only Saravia et al., 2019 achieved 

higher accuracy (95.30%) compare to our model. Table 5.10 shows the comparison between 

our model with previous studies.   

 

Table 5.10: Comparison between our Result (BC) with the State-of-the-Art 

Class Reference Result 

Ac S Sf 

COVID-19 and 

other viral strain-

causing 

pneumonia 

Mahmud et al., 2020 96.9%  - - 

Our model (COVID-

19 and other VP) 

99.62% 

  

90.63% 99.89% 

other viral strain-

causing 

pneumonia and 

normal datasets 

Stephen et al., 2019 93.01%  - - 

Wang SS et al., 2020  73.1%,  74% 67% 

Saravia et al., 2019  95.30% - - 

Xu et al., 2020 86.7%. - - 

Rajaraman et al., 2018 96.2% for 

BP and 

93.6% for 

Non-

COVID-19 

VP  

- - 

Our model (other viral 

strain-causing 

pneumonia and normal 

datasets 

94.43% 98.19% 95.78% 

COVID-19 and 

normal datasets 

Narin et al., 2020

   

97% for 

InceptionV3 

and 87% for 

Inception-

ResNetV2 

- - 

Mahmud et al., 2020 97.4%  - - 

Abbas et al., 2020 95.12%  97.91%  91.87% 

Wang et al., 2020 73.1% 74.00%  67.00% 
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Mohammedi et al., 

2020 

99.1% 98.0% 100% 

Our model (COVID-

19 and normal datasets 

99.16% 97.44% 100% 

 

 

Based on multiclass classification (i.e., 3-way and 4-way classification), our model 

performed better in terms of accuracy (94%), sensitivity (91.30%), specificity (84.78%) for 

3-way classification compare to result obtained by Mahmud et al., 2020 with 90% accuracy, 

Echtioui et al., 2020 with 91.3% accuracy and Ozturk et al.,2020 with 87.02% accuracy. 

However, we couldn’t compare our result with the study reported by Li et al., 2020 due to 

the fact that they classified each class separately with 90% precision and 96% recall for 

COVID-19 and 87% precision and 92% recall for CAP. The study reported by Quan et al., 

2020 achieved higher performance compare to our work, this is due to the training of the 

model with large amount of dataset (i.e., 14 thousand) and the fusion of models which have 

shown to perform better than single model. Currently, there are no articles that addressed 4-

way classification. Multiclass comparison between our model and the current state-of-the-

art is presented in Table 5.11. 

Table 5.11: Multiclass Comparison between our Result with the State-of-the-Art 

Reference  Dataset  Result 

Ac Sv  Sf  

Li et al., 2020 4352 CT scans (1292 of 

COVID-19, 1735 of CAP 

and 1325 normal CT 

scans) 

- 90% for 

COVID-19 

87% for 

CAP 

96% for 

COVID-19 

92% for CAP 

Mahmud et al., 

2020 

1493 non-COVID-19 VP, 

305 COVID-19 P, 2780 

BP 

90%  - - 

Echtioui et al., 

2020 

500 non-COVID-19 VP, 

500 COVID-19 P and 500 

normal CXR images 

91.34% - - 
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Quan et al., 

2020 

14 thousand CXR images 

(COVID-19, bacterial 

pneumonia, viral 

pneumonia and normal) 

99.32% 98.55 100% 

Our model (3-

way 

classification) 

371 COVID-19, 4078 BP 

and 2882 healthy 

94.00%  91.30% 84.78% 

Our model (4-

way 

classification) 

371 COVID-19, 4237 non-

COVID-19 VP, 4078 BP 

and 2882 healthy 

 93.42%  89.18% 98.92% 

 

5.3.4 Comparison between CRISPR-based Biosensors and CAD 

CRISPR-based biosensors have shown to be the most sensitive and specific method for 

detection of infectious disease such as Tuberculosis, COVID-19 pneumonia, bacterial 

pneumonia and other viral pneumonia. However, this technique requires sophisticated 

instrument mount in laboratories, chemical reagents, highly trained personnel and longer 

processing and detection time. CAD on the other hand rely on PC or desktop and experts for 

training and running of the model and high amount of training dataset to reach optimum 

accuracy. This approach can be used as a confirmatory approach or as substitute for 

molecular diagnosis due to it low sensitivity and specificity compare to CRISPR-based 

method. 

Table 5.12: Comparison between CRISPR-based Biosensors and CAD 

Feature  CRISPR-based biosensor  CAD 

Sample/Dataset DNA/RNA isolated from patient’s 

blood, urine, sputum or nasal 

swab 

Microscopic slide images, 

CT scans and Chest X-ray 

images of patients 

Amplification PCR method, RPA Data augmentation 

Instruments/Analysis Require sophisticated instrument 

mount in laboratories, chemical 

reagents and highly trained 

personnel  

Require PC or desktop and 

experts for training and 

running of the model 

Detection efficiency Highly specific and sensitive High accuracy for 

classification 
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Processing time Diagnosis range between 1 hour to 

weeks depending on the pathogen 

and approach 

Training takes time 

depending on the amounts 

of datasets, classification 

takes less than 1 minutes 

Set-up Cost Very expensive Cheap  
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CHAPTER 6 

CONCLUSION 

 

 

Pneumonia and tuberculosis are among the common diseases that affects the lungs. 

Detection of these diseases are crucial due to their prevalence in underdeveloped countries 

and remote areas. These diseases are mostly diagnosed using bench diagnosis assays which 

utilize chemical reagent, trained pathologist and radiologist, longer procedure and heavy 

workload. The main goal of our study is to utilized DL approach to classify pneumonia based 

on CXR samples and tuberculosis based on microscopic slides images and to compare the 

efficiency between CAD approach and the use of CRISPR-based biosensor. In this 

framework, we employed pretrained AlexNet architecture as a form of TL technique.  

Based on discrimination of tuberculosis and healthy microscopic slide based on the whole 

dataset (i.e., 7:3 ratio for learning and validation respectively), the model achieved training 

accuracy of 99.19%, testing accuracy-score of 98.73%, precision of 98.59% and recall of 

98.48%. In terms of cross validation based on 10-K folds, the model achieved average 

performance of 99.28% training accuracy and 98.29% testing accuracy. To check the 

efficiency of the model, machine vs human is carried out. 30 unseen images are given to the 

model, beginners and certified pathologist. The model was able to classify the images 

correctly outperforming both pathologists. 

For classification of pneumonia using x-ray images, models are trained based on different 

splits (50:50, 60:40, 70:30, 80:20 and 90:10) and cross validation based on 10-k folds to 

differentiate between viral pneumonia and healthy patients. Based on 50:50 data split, the 

model achieved 97.98% training accuracy, 97.94% testing accuracy, 96.21% sensitivity and 

99.00% specificity. 60:40 splits, the model achieved 98.94% training accuracy, 98.95% 

testing accuracy, 99.09% sensitivity and 98.81% specificity. For 70:30 split, the model 

achieved 99.19% training accuracy, 98.73% testing accuracy, 98.59% sensitivity and 

98.84% specificity. For 80:20 split, the model achieved 99.36% training accuracy, 100% 

testing accuracy, 99.11% sensitivity and 99.66% specificity. For 90:10 split, the model 

achieved 99.86% training accuracy, 100% testing accuracy, 99.11% sensitivity and 100% 
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specificity. Based on cross validation, the models achieved average performance of 97.70% 

training accuracy, 96.04% validation accuracy-score, 97.34% precision and 97.79% recall. 

The outbreak of infection caused by a strain of coronavirus has led to global health and 

economic crisis. Medical practitioners rely on the RT-PCR method which is clouded by so 

many challenges, such as high cost of the test, laborious, tedious and high rate of false 

positive results. To provide an alternative, scientist turned to X-ray images for detection of 

pneumonia caused by COVID-19 disease. In the light of these challenges, we trained our 

models to classified COVID-19 from healthy CXR images as well as other binary 

classification of pneumonia and multiclass (3-way classification and 4-way classification). 

For classification of disease causes by SARS-CoV-2 and other viral pneumonia and healthy 

cases, the model was able to discriminate between different classes based on binary 

classifications, multiclass (3-way and 4-way classifications) with high accuracies, 

sensitivities and specificities.  

Our result is in line with the notion that CNN models can be used for classifying medical 

images with higher accuracy and precision. These models can now serve as a confirmation 

system for diagnosis of both pneumonia by and tuberculosis, maximizing miss diagnosis and 

offer an alternative to relieve the heavy and tedious workload experiencing by radiologist 

and pathologist in Near East University Hospital. Comparing CRISPR-based biosensors and 

CAD approaches, CRISPR-based biosensors have demonstrated to be among the most 

sensitive and specific method for diagnosis and screening of infectious disease. CAD on the 

other hand can be used as a confirmatory approach or as substitute for molecular diagnosis 

due to it low sensitivity and specificity compare to CRISPR-based method. 

Among the challenges and limitations of our research include the lack of sufficient amount 

of dataset especially for radiographic images of COVID-19 pneumonia. For classification of 

pneumonia from normal CXR images, only frontal radiographs are employed without 

augmentation. Normally, frontal images are the types interpreted by radiologist without the 

need of rotation or color shift. Thus, with large amount of dataset we can utilize different 

pretrained architectures such as VGGNet, GoogleNet and ResNet. Moreover, the use of 

hybrid models or combining CNN models with other models (i.e., ensembled ones) or 

regression tools and classifiers can help improve performance classification of the models. 
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Another challenge encountered in this study is lack of laboratory study for detection of 

tuberculosis and pneumonia using CRISPR-based biosensors.  
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APPENDIX 1  

MACHINE VS HUMAN 1 

Table 1: Results of participants Vs Actual results 

S 

No 

Machine Beginner 

1 

Certified 

1 

Beginner 

2 

Certified 2 Actual (Real) 

results 

1 + - + + + + 

2 + + + + + + 

3 + + + + + + 

4 - + + + + + 

5 + - - - - - 

6 - - - - - - 

7 - - - - - - 

8 + + + + + + 

9 - - - - - - 

10 + + + - + + 

11 + + + + + + 

12 + + + + + + 

13 + + + + + + 

14 + - + + + + 

15 - - - - - - 

16 - - - - - - 

17 + - - - - - 

18 + + + + + + 

19 + + + + + + 

20 + + + + + + 

21 - - - - - - 

22 - - - - - - 

23 + + + + + + 

24 + - + + + + 

25 + + + + + + 

26 + + + + + + 

27 + + + + + + 

28 - - - - - - 

29 - - - - - - 

30 + + + + + + 

31 - - - - - - 

32 - - - - - - 

33 + + + + + + 

34 + - - - - - 

35 - - - - - - 

36 + + + + + + 

37 + + + + + + 

38 + + + - + + 

39 - - - - - - 
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40 - - - - - - 

41 + + + + + + 

42 + + + - + + 

43 + + + + + + 

44 - - - - - - 

45 + + + - + + 

46 + + + + + + 

47 + + + + + + 

48 + - - - + + 

49 - - - - - - 

50 - + + + + + 

 45 CC 

5 MI 

46 CC 

4 MI 

49 CC 

1 MI 

45 CC 

5 MI 

50 CC 

0 MI 

 

Key:  

CC = Correctly classified or identified 

MI = Miss-interpreted (highlighted in different colours) 
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APPENDIX 2  

MACHINE VS HUMAN RESULT 

Table 2: Distribution of Tuberculosis positive and negative in confusion matrix for 50 

images 

Participants True Positive False Positive False Negative True Negative 

Machine 31 3 2 19 

Beginner 1 31 0 4 19 

Beginner 2 31 0 5 19 

Certified 1 31 0 1 19 

Certified 2 31 0 0 19 
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APPENDIX 3  

MACHINE VS HUMAN 2 

            Table 3 Results of participants Vs Actual results for 30 Images 

s/No Machine  Beginner 

1 

Certified 

1 

Beginner 2 Certified 

2 

Actual 

results 

1 - + - - - - 

2 - - - - - - 

3 + + + + + + 

4 + + + + + + 

5 - - - - - - 

6 + + + + + + 

7 - - - - - - 

8 - - - - - - 

9 + + + + + + 

10 + + + + + + 

11 + + - - + + 

12 + + + + + + 

13 - - - - - - 

14 + + + + + + 

15 + + + + + + 

16 - - - - - - 

17 + + + + + + 

18 - - - - - - 

19 - + - + + - 

20 - - - - - - 

21 + + + + + + 

22 + + + + + + 

23 + + + + + + 

24 + + + + + + 

25 + + + + + + 

26 - - - - - - 

27 + + + + + + 

28 - - - - - - 

29 + + + + + + 

30 + + + + + + 

  28 CC 

2 MI 

29 CC 

1 MI 

28 CC 

2 MI 

29 CC 

1 MI 

 

Key:  

CC = Correctly classified or identified 

MI = Miss-interpreted (highlighted in different colours) 
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APPENDIX 4  

MACHINE VS HUMAN 2 RESULT 

Table 4: Distribution of Tuberculosis positive and negative in confusion matrix 

Participants True Positive False Positive False Negative True 

Negative 

Machine 18 0 0 12 

Beginner 1 18 2 0 12 

Beginner 2 18 1 1 12 

Certified 1 18 0 1 12 

Certified 2 18 1 0 12 
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APPENDIX 5 

CODE 

TRAINING 

>> imds = imageDatastore('training', ... 

    'IncludeSubfolders',true, ... 

    'LabelSource','foldernames'); 

>> [imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized'); 

>> numTrainImages = numel(imdsTrain.Labels); 

>> net = alexnet; 

>> net.Layers 

>> inputSize = net.Layers(1).InputSize 

>> layersTransfer = net.Layers(1:end-3); 

>> numClasses = numel(categories(imdsTrain.Labels)) 

>> layers = [ 

    layersTransfer 

    

fullyConnectedLayer(numClasses,'WeightLearnRateFactor',20,'BiasLearnRateFactor',20) 

    softmaxLayer 

    classificationLayer]; 

>> pixelRange = [-30 30]; 

imageAugmenter = imageDataAugmenter( ... 

    'RandXReflection',true, ... 

    'RandXTranslation',pixelRange, ... 

    'RandYTranslation',pixelRange); 

augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ... 

    'DataAugmentation',imageAugmenter); 

>> augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation); 

>> options = trainingOptions('sgdm', ... 

    'MiniBatchSize',10, ... 

    'MaxEpochs',20, ... 

    'InitialLearnRate',1e-4, ... 
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    'ValidationData',augimdsValidation, ... 

    'ValidationFrequency',3, ... 

    'ValidationPatience',Inf, ... 

    'Verbose',true, ... 

    'Plots','training-progress'); 

>> netTransfer = trainNetwork(augimdsTrain,layers,options); 

 

VALIDATION 

>> [YPred,scores] = classify(netTransfer,augimdsValidation); 

>> YValidation = imdsValidation.Labels; 

>> accuracy = mean(YPred == YValidation) 

 

Specificity and Sensitivity 

>> y = grp2idx(YValidation); 

>> test = grp2idx(YPred); 

>> classperf(y,test) 

 

TESTING 

>> imdsTest = imageDatastore('Testing', ... 

'IncludeSubfolders',true, ... 

'LabelSource','foldernames'); 

>> [YPred,scores] = classify(netTransfer,imdsTest); 

>> YValidation = imdsTest.Labels; 

>> accuracy = mean(YPred == YValidation) 

 

 

 

 

 

 

 



 
 

 110 

 



 
 

 111 

 

 

 

 

CURRICULUM VITAE 

PERSONAL INFORMATION 

Surname, Name   : Abdullahi Umar Ibrahim     

Nationality    : Nigerian 

Date and Place of Birth  : 25 October 1987, Zaria.                                                     

Marital Status    : Single 

 

EDUCATION 

a. Schools Attended with Dates 
❖ Near East University               2017- 

❖ Cyprus International University                                                                2014-2016 

❖  Nigerian Institute of science and leather technology, Zaria              2008-2012 

❖ Science Secondary School Kufaina Zaria,            2002-2008 

❖ Primary Nuhu Bamalli polytechnic staff School            1996-2002

   

b. Qualifications Obtained with Dates 

PhD in view                                         2017- 
❖ Masters in Bioengineering                                                                          Feb, 2016 
❖ National Youth Service corps 

      (Certificate of National Service)                           Jun, 2014 
❖ Higher National Diploma in science Laboratory technology                              

(Biochemistry option) (Second Class Honors – Division)           Dec, 2012 
❖  National Diploma in science Laboratory technology  

 (Second Class Honors – Division)                          Dec, 2010 

 

❖ National Examination Council (NECO),                         July, 2008 
        

❖ First School Leaving Certificate (FSLC)            June,2002 

     

c. Research Project/ Serminar 
❖ Preservation of Tiger nut using Chemical and Natural Antimicrobial agents 
❖ Higher national Diploma “Comparative study of Sodium Nitrate  

and Sodium sulphite in g meet Preservation” 



 
 

 112 

❖ National Diploma “Investigation of blood Glucose Level in a Blood  
Sample of patient(Adults) (A case Study of The Department of Chemical 
 Pathology Ahmadu bello Teaching University Zaria)” 

d. Publications 
❖ CRISPR Technology: Advantages, Limitations and Future Direction.  

Journal of Biomedical and Pharmaceutical Sciences 2018. 

❖ Comparative study of crispr-cas9 and CRISPR interference  

(CRISPRi). Journal of Biomedical and Pharmaceutical Sciences 2019. 

❖ Utilization of Nanoparticles For Enhanced Delivery Of Crispr-Cas9  

In Cancer Treatment. Journal of Biomedical and Pharmaceutical  

                        Sciences 2019.  

❖ Application of Crispr Technology for the Generation of Biofuels:  

A Review. Journal of Fundamentals of Renewable Energy and  

Applications. 2019.  

❖  Futuristic CRISPR-based biosensing in the cloud and internet of things 

❖  era: an overview. Multimedia Tools and Applications 2020.  

❖ Abdullahi Umar Ibrahim, Mehmet Ozsoz, Sertan Serte, Fadi Al‑Turjman and 

Polycarp Shizawaliyi Yakoi4 (2020). Pneumonia Classification Using Deep 

Learning from Chest X‑ray Images During COVID‑19. Cognitive 

Computation https://doi.org/10.1007/s12559-020-09787-5. Received: 19 

August 2020 / Accepted: 21 October 2020. Accepted.  

❖ Abdullahi Umar Ibrahim, Emrah Guler, Meryem Guvenir, Prof Kaya Suer, 

DR Sertan Serte, Mehmet Ozsoz (2021). Automated detection of 

mycobacterium tuberculosis using Transfer learning. Journal of Infection in 

Developing Countries (JIDC). Accepted 

 

e. Membership of Professional Bodies/Affiliations 
f. National Association of Science laboratory Student(NASTES) 

        TITLE/RESPONSIBILITIES HOLD 

❖ Vice President, National Association Of Science and Technology  
Student(NASTES) CHELTECH Chapter 

❖ Social Director, Kaduna State Association (Kadsu)  CHELTECH Chapter 
❖ Laboratory Captain, Science Secondary School Kufaina, Zaria. 
❖ Press Club President, Science Secondary School Kufaina, Zaria 
❖ JET club President, Science Secondary School Kufaina, Zaria 
❖ Assistant Head boy, Nuhu Bamalli Polytechnic Zaria  

EMPLOYMENT HISTORY 

I assist in the following: 

❖ Research Assistant, Biomedical Engineering Near East University 

❖ Laboratory Technologist at Medical Biochemistry, Kaduna state university 

❖ Student assistant at Cyprus International University 

❖ Worked in the Hospital Heart to Heart (HIV UNIT), General Hospital Minna,  



 
 

 113 

Niger state 

❖ Worked in the Hospital Chemical Pathology Department. Ahmadu  

Bello University teaching Hospital, Zaria 

 

Here I acquired good Technical skills and became aware of good Laboratory practice. 

 

AWARD/PRIZES 

❖ Youngest sportsman Award, Sport CDS, National Youth service corps, Niger state, 

Minna, 2014. 

❖ Youngest Student Award, Nigerian Institute of Leather and Science Technology,  

2010 

INTERESTS 

I spend my spare-time planning, executing, and love to see the end of achievements of such 

plans at the set time. I love football, running, I also love music, reading, travelling, driving, 

meeting and making friends. 

REFEREES 

 (Dr.) Ayse Gunay Kibarer 

HOD  

Biomedical Engineering 

Near East University Directorate  

Mobile: +905338717451 

Email: aysegunay.kibarer@neu.edu.tr 

 

Prof. Dr. Mehmet Ozsoz 

Deen of Engineering  

Near East University 

Cyprus  

Mobile: +905338313735 

Email:  Mehmet.ozsoz@neu.edu.tr 

 

Abdulsalam Ibrahim Shema 

Research Assistant 

Cyprus International University 

Samaru Zariar, Kaduna State 

Mobile: +905488325677 

Email:shemadaddy@gmail.com 
 

 

 

 

 

 

 

 

mailto:aysegunay.kibarer@neu.edu.tr


 
 

 114 

 

 

 

 

 

 

 

 


