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ABSTRACT 

 

Binary logistic regression is a statistical model for predicting the probability of an 

occurrence, and is a good way to see how independent factors are related to a binary 

response variable. This type of model is commonly used to simulate a variety of real-world 

problems. The theoretical basis for understanding the logistic regression model and the 

mathematical equations associated with it are reviewed in this research. Correct 

determination of influential observations must be important part in process of modelling 

logistic regression since the unsuccess to detect influential observations cause misleading 

infrerences from the model. Existing techniques for the determination of influential data 

points in the literature are founded on the leave-one-out techniques. But, the findings from 

these single-observation based techniques are often specious because of swamping and 

masking problems in the existence of multiple influential data points in the dataset. 

Thus, in this research the identification of the optimal group of influential observation 

problems has been regarded as a combinatorial optimization issue and the Binary Particle 

Swarm Optimization (BPSO) method has been utilized as a novel simultaneous strategy for 

identifying the optimal group of influential observations in the logistic model. The 

performance of the suggested BPSO-based method has been checked against standard 

diagnostic approaches by simulated studies in accordance with several evaluation criteria. 

 

Keywords: Logistic regression model; Influential observations; Binary Particle Swarm 

Optimization; Likelihood Displacement; Masking Issue; Swamping Issue 
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ÖZET 

 

Lojistik regresyon, bir olayın meydana gelme olasılığını tahmin etmek için sıklıkla 

kullanılan istatistiksel bir modeldir ve bağımsız faktörlerin bir ikili yanıt değişkeniyle nasıl 

ilişkili olduğunu görmenin iyi bir yoludur. Bu tür bir model, çeşitli gerçek dünya 

problemlerini simüle etmek için yaygın olarak kullanılır. Bu araştırmada lojistik regresyon 

modelini anlamak için teorik temel ve bununla ilişkili matematiksel denklemler gözden 

geçirilmiştir. Etkili gözlemlerin doğru belirlenmesi, lojistik regresyonu modelleme 

sürecinde önemli bir rol oynamalıdır, çünkü etkili gözlemlerin tespit edilememesi 

modelden yanıltıcı çıkarımlara neden olur. Literatürde etkili veri noktalarının 

belirlenmesine yönelik mevcut teknikler, tek gözleme dayalı tekniklerdir. Ancak, bu tek 

gözleme dayalı tekniklerden elde edilen bulgular, veri setinde birden fazla etkili veri 

noktasının varlığında maskeleme ve süpürme sorunları nedeniyle genellikle yanıltıcıdır. 

Bu nedenle, bu araştırmada, etkili gözlem problemlerinin optimal grubunun tanımlanması, 

bir kombinatoryal optimizasyon sorunu olarak kabul edilmiş ve Ikili Parçacık Sürü 

Optimizasyon (BPSO) yöntemi, lojistik regresyon modelindeki etkili gözlemlerin optimal 

grubunu belirlemek için yeni bir eşzamanlı strateji olarak kullanılmıştır. Önerilen BPSO 

tabanlı yöntemin performansı, çeşitli değerlendirme kriterlerine uygun olarak simüle 

edilmiş çalışmalarla standart tanı yaklaşımlarına göre kontrol edilmiştir. 

 

Anahtar Kelimeler: Lojistik regresyon modeli; Etkili gözlemler; Ikili Parçacık Sürü 

Optimizasyon; Olabilirlik değişim istatistiği; Maskele problemi; Süpürme problemi 
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CHAPTER 1 

INTRODUCTION 

 

 

 

Regression models are important tools in order to characterize the relationship between a 

response (dependent) variable and one or more explanatory variables. According to 

distribution of response variable, there are different types of regression models. When the 

dependent variable has Bernoulli distribution, in other words, response variable is binary or 

dichotomous, logistic regression model is employed to infer association between binary 

response variable and the independent variables [1]. In a binary dependent variable, only 

two values, "0" and "1" could be taken to indicate results such as success/failure. Binary 

logistic regression model has become a significant method utilized to estimate the 

probability that the response will occur as a linear function of one or more continuous 

and/or dichotomous explanatory variables. 

        The objective of logistic regression is to discover a convenient function to depict the 

connection among the dichotomous features of dependent response variables and a group 

of independent variables.    

Explained by Kleinbaum and Klein [2] the mathematical form on which the logistic model 

was built by   ( )  
 

                 ,  ( ) values take S-shape as   alters from 

   to   , when   is   , the logistic function  ( ) is equivalent to  , and  ( ) is 

equivalent to   if   is   . Therefore, as illustrated in Figure (2.1), the value of  ( ) 

ranges between   and  , regardless of   value. The logistic model is very popular due to 

the logistic function  ( ) that ranges between   and  . The model is formed to illustrate a 

probability, that is always a number between   and  . Therefore, it is unthinkable to obtain 

a risk estimate either above   or below   for the logistic model. For other possible models, 

this is not always the same case. Thus, whenever a probability is evaluated, the logistic 

model is usually the first choice. As illustrated in Figure (1), when we begin at      

and shift to the right, then as   rises, the value of  ( ) hovers close to zero for a while, then 
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begins to rise greatly to  , and eventually levels of around   as   boosts to   . The 

outcome is an elongated, S-shaped figure [2].  

The logistic regression model has been commonly used in a range of fields and in recent 

years has increased dramatically. Diagnostic tools for model adequacy determination is 

important part of regression modeling process [15]. There are required conditions or 

assumptions that must be met in this process. Because the distortion form and the required 

assumptions form are unreliable and misleading, this model needs to be applied. Therefore 

checking the model assumption is important. A significant assumption in regression model 

is that the constructed model is appropriate for all observations in the data. But, it is quite 

difficult to obtain a dataset in which the all assumptions are met. Furthermore, logistic 

model is not robust model. It means that even one single unusual observation is sufficient 

to affect the modeling process in a bad way. These observations can cause bad effect on the 

estimates obtained from the model. It is obvious that not all observations in the data have 

same role when constructing the model. Data points that dramatically affect the estimations 

in model are called as influential observations. An outlier observation is a data point with 

large residual that does not follow general trend of the observations, while influential 

observations are data points that have an effect on any part of the model results (parameter 

estimates, model adequacy and model assumption). [17, 18, 19, 20, 21, 22, 23, 24]. 

Hawkins' definition [19] perfectly catches the essence and spirit of the word: "An outlier is 

an observation that deviates so much from the other observations as to arouse suspicions 

that it was generated by a different mechanism".  

The existence of influential observations would possibly result in distorted analysis and 

ambiguous results [25, 26, 27], and therefore, in the interpretation of the outcome, it is 

essential to be sensitive to influential observations and take account of them. The points of 

an outlier are extremely closely related to influential observations. These Influential 

observations are illustrated as points that have a noticeably higher influence on the 

computed values of various estimations, either separately or in combination with other 

observations (coefficients, standard errors, t-values etc.) [28]. Outliers and influential 

observations could arise during logistic regression as misclassification between binary (0, 

1) answers. Points on the incorrect side of the hyperplane/classifier are referred to as 
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misclassification [29]. It can happen when there is a significant change in the predictor 

(explanatory) variables, which causes a deviation in the response (labels). 

Diagnostic measures are particular amounts calculated from data in order to detect 

influential points that may be used to eliminate or fix these influential points. Changes in 

the regression model can be caused by the absence of each observation, but removing the 

influential observations will create major changes in the model [30]. In the logistic 

regression model, several traditional diagnostic approaches are available to determine a 

single influential observation, which are DFBETAS statistics [64], DFFITS [24] 

Likelihood displacement statistics [41], Cook`s Distance (CD) [36]. Much of the 

approaches focused on the idea that the single observation is excluded from the data set to 

explore any improvements to regression coefficients with respect to the regression fitting. 

In truth, not all of these approaches can particularly be utilized to detect multiple 

influential observations. Due to the fundamental issues of masking and swamping, the 

results of these techniques are usually disappointing [31]. In case a single influential 

observation is not determined as an influential observation, the masking problem arises 

because influential observations in multiple forms cover each other effectively. In the 

different manner, when natural observations are mistakenly determined as an influential 

observation, a swamping problem arises. So it is known that it is important to use a 

simultaneous case method or multiple case method instead of the techniques mentioned 

previously. For the accurate detection of influential observations, as they are more efficient 

in preventing these problems as well as determining the optimal set of influential 

observations. Some authors introduce some ways to detect multiple influential 

observations. These are Burcin Coskun & O. Alpu [65] who proposed two novel multiple 

influential observation diagnostic measures (Generalized Cook Distance based on 

Generalized Standardized Pearson Residuals- GCD. GSPR and Modified Cook Distance-

mCD*) for the model named as logistic regression model, A.A.M.Nurunnabi and A.H.M. 

Rahmatullah Imon and M. Nasser [66] proposed a new criterion for the determination of 

multiple influential observations in logistic regression on the basis of a generalized version 

of DFFITS. A.A.M. Nurunnabi, M. Nasser & A.H.M.R. Imon [67] introduced a resilient 

influence distance that has the ability of identifying multiple Influential observations. 
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 A. H. M. Rahmatullah Imon a & Ali S. Hadi [33] developed a generalized version of 

standardized Pearson residuals (GSPR) on the basis of group deletion and then proposed a 

technique to determining multiple outliers. Simultaneous methods can tackle these 

problems by concurrently looking for ideal solutions in the search space. The simplest 

solution of multiple case influence observation detection systems can be generated by 

taking all potential influence observation combinations. This means that all potential 

permutations for data set observations are put together in two sub-sets; influential and non-

influent, and that a choice is then taken depending upon which the best combination is 

formed. Although it is nearly difficult to do this practically, it needs so many potential 

subsets and combinations with substantial computation. Thus, it may be viewed as a 

combinatorial optimization problem to examine the ideal group of influencing 

observations. Therefore, meta-heuristic algorithms, nowadays, have been widely developed 

to address optimization problems, which require little or no assumptions about a problem 

and may search in very wide areas for possible solutions. Because of their capacity to 

explore the world and use local resources, population-based meta-heuristic algorithms are 

ideal for global searches [32]. It is to present a new technique for identifying the best 

collection of observations with a strong effect on the partial likelihood function and 

therefore parameter estimations, and also the model's predictive abilities in a Logistic 

regression model based on the meta-heuristic algorithm. Therefore, in this research, the 

naturally generated population dependent Binary Particle Swarm Optimization (BPSO) 

method used by Kennedy and Eberhart [51] was utilized for the multiple case analysis 

approach to represent the optimal collection of influential observations utilizing the 

objective function, designed to prevent possible masking and swamping difficulties in the 

Logistic Model through the use of  likelihood displacement statistic. This is done in order 

to strengthen the logistic regression estimate with the identification and elimination of 

influence.  

In this analysis, the aim of using the BPSO is that it has a structure which is basic, easy to 

use, quick and inexpensive, with few adjusting parameters and a global search strategy that 

is less dependent on the starting point [32], [68]. Thus, without the need for onerous 

computations, the optimum collection of influential observations would be determined 
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simultaneously. BPSO is used as an experimentation method for this aim. With the aid of 

numerous simulation trials and actual data sets, the suggested system efficacy was checked.  

In Chapter 2, the logistic regression model, likelihood function, confusion matrix and area 

under the ROC curve are discussed. In Chapter 3, the influential observations and some 

traditional techniques to determine a single influential observation are given. In Chapter 4, 

the proposed BPSO-based method is introduced. A complete simulation study is used to 

demonstrate the performance of suggested BPSO-based method. In Chapter 5, result of 

simulation study is presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

CHAPTER 2 

 LOGISTIC REGRESSION 

 

 

 

2.1. Introduction 

Regression models are important tools in order to characterize the link between a response 

(dependent) variable and one or more explanatory variables. According to distribution of 

response variable, there are different types of regression models. When the dependent 

variable has Bernoulli distribution, in other words, response variable is binary or 

dichotomous, logistic regression model is emplyed to infer partnership between binary 

response variable and the independent variables [1]. In a binary dependent variable, only 

two values, "0" and "1" could be taken to indicate results such as success/failure. Binary 

logistic regression model has become a significant method utilized to estimate the 

probability that the response will occur as a linear function of one or more continuous 

and/or dichotomous explanatory variables. 

        The objective of logistic regression is to discover a convenient function to depict the 

connection among the dichotomous feature of dependent response variables and a group of 

independent variables.    

  

2.2 The Logistic Regression Model 

The mathematical form on which the logistic model was built was explained by Kleinbaum 

and Klein [2] by: 

 

 ( )  
 

                                                                        (   ) 

 

 ( ) values take S-shape as   alters from    to   , when   is   , the logistic function 

 ( ) is equivalent to  , and  ( ) is equivalent to   if   is   . Therefore, as illustrated in 

Figure (1), the value of  ( ) ranges between   and  , regardless of   value.  
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Figure 1: Curve of the logistic function 

 

The logistic model is very popular due to the logistic function  ( ) that ranges between   

and  . The model is formed to illustrate a probability, that is always a number between   

and  . Therefore, it is unlikely to gain a risk estimate either above   or below   for the 

logistic model. For other possible models, this is not always the same case. Thus, whenever 

a probability is evaluated, the logistic model is usually the first choice. As illustrated in 

Figure (1), when we begin at      and shift to the right, then as   rises, the value of 

 ( ) hovers close to zero for a while, then begins to rise greatly to  , and eventually levels 

of around   as   boosts to   . The outcome is an elongated, S-shaped figure (Kleinbaum 

and Klein) [2]. 

 

Assume a generalized linear model like this formula [3] 

      
                                                                                           (   ) 

Where,  

      
  [               ]  Data matrix,            and   

                                      

     [            ]  Coefficient vectors 
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         And    is the response variable that picks the value 0 or 1. Suppose, the variable    

could be a Bernoulli random variable together with probability distribution as takes after:  

 

  (    )      

  (    )        

 

Presently since    (  )      (  )      , this suggests that 

 

  (  )     
                                                                                    (   ) 

 

In case the answer is binary, the error expression      can have two values, 

 

    {
  (   

  )            

         
                    

                                                       (   ) 

 

The logit response function has the form: 

 

     
 

   
 .  

   /
                                                                                     (   )

  

The binary regression logistic model determines the likelihood of the selected answer on 

the basis of the values of the explanatory variables. The main difficulty with the linear 

probability model is that there are limits to probabilities at 0 and 1. However, linear 

functions are inherently limitless. The fix is to shift the possibilities so that they are no 

longer limited. The probability is converted into odds by lowering the upper limit and the 

natural odds logarithm. Therefore, configuring the outcome to match a linear function of 
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the separate variables requires a logit or a binary response model [4]. All of these 

demonstrate details that are appeared here in [3,5,6].  

 

         .
  

    
/     

                                                                      (   ) 

 

Look that after accepting   to both sides of Equation (   ), we get 

 

     
  

    
     

                                                                               (   ) 

 

    Assume a test of     independent observations of the group (             )   

            where    indicates the value of a dichotomous result variable (which is coded 

as 0 or 1, speaking to the nonappearance or the appearance of the characteristic, separately) 

and      is the value of the     (         ) independent variables for the     subject. 

The equation can be expressed as [1]. 

 

   (    )  
 
(                 )

   
(                 ) 

                       
    

  

      
  

                                                                         (   ) 

 

Where     is the     row of    (
 
 
 
 

     

 
      

 
 
 

     

 
     

)  which is an    (   ) matrix of 

values for independent variables. The regression coefficients are a vector of the 

   (          ).  
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     The response variable    is the Bernoulli random variable in logistic regression, and the 

probability mass function of    is [7]: 

 

   (  )    
  (    )

       ,                                                    (   ) 

 

2.3 Likelihood Function and Maximum Likelihood Estimation (MLE) 

2.3.1 Likelihood Function 

The likelihood function is similar in the figure to the probability density function, except 

the function parameters are reversed: the likelihood function communicates the values of   

with respect to well-known, constant values for  . Hence, the likelihood function for 

controlling the data can be given as [7]: 

 

  ( | )  ∏   
  (    )

     
                                                          (    )    

 

2.3.2 Maximum Likelihood Estimates (MLE): 

The estimate of logistical models in anomalous data is one of the most strong questions to 

cite [8], The ML (Maximum Likelihood) technique is the most common method used to 

estimate the logistic regression model parameter [7].The (MLE) is the way in which the 

parameters (β) are estimated to maximize the likelihood function in Equation (    ). The 

basic point (maxima or minima) of a function happen when the first derivative equals 0. 

Nonetheless, the critical point is maximum in case the second derivative assessment at that 

point is less than zero (See a great calculus content, like Spivak). Hence, we get the result 

of (MLE) from calculating primary and secondary derivatives of the likelihood function. 

To pick the derivative of Equation (    ) with respect to  . After modifying conditions, 

we can write the maximized equation as follows:   
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  ( | )  ∏ .
  

    
/
  

(    )
 
                                                        (    ) 

 

 Let      
  

    
  ∑      

 
                                                                     (    )      

 

 Which, after some algebraic from Equation (    )    becomes 

 

    
 
∑      
 
   

   
∑      
 
   

                                                                              (    ) 

 

Replacing Equation (2.12) and Equation (2.13) for the first and second term on Equation 

(2.11) respectively, the result will be:   

  ( | )  ∏ . ∑      
 
   /

  

(  
 
∑      
 
   

   
∑      
 
   

) 
                            (    ) 

Equation (2.14) can be composed as: 

 

 ∏ .   ∑      
 
   / .   ∑      

 
   /

  
 
                                         (    ) 

 

Usually, the part of the likelihood function to maximize. The ordinary method in 

connection with estimating     is called the (ML) method which takes the values of   that 

maximize the above likelihood function. Mathematically, it is much simpler to maximize 

the log-likelihood function which is defined as: 

    ( | )   ( )  ∑    .   ∑      
 
   /     .   ∑      

 
   /
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  ∑      . ∑      
 
   /      (   ∑      

 
   ) 

                                                         

                ∑   (∑      
 
   )   

        (   ∑      
 
   )                                (    )                                                              

 

To discover the critical points from the log likelihood function, we have to design the 

initial derivative with regard to every   on par with zero agreeing with equation (2.16).  

 

  
 

   
∑      

 
                                                                              (    ) 

  
  ( )

   
 ∑ [      

 

   
∑      
 
   

 

   
.   ∑      

 
   /] 

             

           ∑ *      
 
∑      
 
   

   
∑      
 
   

   +
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The (MLE) with regard to   can be established by checking every     equations in 

Equation (2.18) which is to zero to find every     . 

If the matrix of the second partial derivative is non-positive, at that moment the critical 

point will be maximum. The generalized form of the matrix of second partial derivative 

with respect to     for Equation (2.18) is:  
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    Newton's method is the foremost known method for finding out the systems of non-

linear equations, and it is renowned as the Newton Raphson method as well [7] 

2.4 Newton-Raphson method:  

Setting the equation equal to zero in equation (2.18) results in a series of nonlinear 

equations of     each of the unknown variables    . The vector with elements    is 

the solution to the system. After proving that the second partial derivative matrix is less 

than zero, it is the global maximum instead of the local maximum. Thuse, we may 

conclude that this vector includes estimates of parameters with the highest probability of 

occurrence of the observed data. On the other hand, the system of nonlinear equations is 

difficult to solve, and the answer cannot be deduced algebraically, as is the case with linear 

equations. An iterative method should be used to approximate the answer numerically. 

Newton's technique is probably the most widely used solving method for systems of 

nonlinear equations. 

    Newton’s approach starts with an expectation for the solution and then employes the 

initial two terms of Taylor polynomial which were assessed at the start quess to get a new 

estimate which is nearer to the solution. This operation continued until the rapprochement 

of the genuine result. We see that the first   terms in the Taylor series for   at point      

is 

    

 ∑
 ( )(  )

  
(    )

  
                                                                          (    ) 

 

Assuming that all of   is first   derivatives at    exist. The equation of a tangent line is 

also the premier degree of Taylor polynomial for f at the point (    (  )). For the next 

approximation of the root to be found where  ( )   , we will use the point (   ) which 
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is cutting the tangent line with the x-axis. The first step of Newton’s method is to require 

the first degree Taylor polynomial as a guess for  , which we need to set a break-even with 

to zero: 

  (  )    (  )  (    )                                                          (    ) 

 

After some algebraic to find  , we get: 

 

     
 (  )

  (  )
                                                                                   (    ) 

 

    This present value of    will be the next root approximation. We make        and 

continue to produce            until the successive approximations have converged. 

    It is not difficult to generalize Newton’s mechanism to a system of equations. In this 

case, those in Equation (2.18) are the equations whose roots we want to find a solution to 

the first derivatives of the equation of log-likelihood. In fact, as equation (2.18) is a system 

of P + 1 we want to get its roots at the same time, the use of matrix notation to express 

every step of the Newton-Raphson is more convenient. The equation (2.18) can be written 

as   ( ). For each   , Let the vector of initial approximations be represented by  (   ), 

then the first step of Newton-Raphson could be shown as: 

 

 ( )   (   )  [   ( (   ))]
  

     ( (   ))                                  (    )         

 

  Let     be a length     column vector with elements      . Notice that it is also possible 

to write each element of     as      (  ). Using the multiplication of matrices, we can 

demonstrate that: 
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   ( )    (   )                                                                            (    ) 

 

Is a length of       column vector with the element  
  ( )

   
 , as derived from the equation 

(2.18). Now let     be a square matrix of order  , with    (    ) elements on the 

diagonal and all others be zeros elsewhere. Again, we can check that by using matrix 

multiplication  

 

  ( )                                                                                         (    ) 

 

Which is a square matrix (   )  (   ) with the elements   
   ( )

       
. The equation 

(2.23) can now be written down as: 

 

 ̂( )   ̂(   )  ,    -      (   )                                             (    ) 

 

Where       ( ̂ (   ̂ )) which was newly estimated by using  ̂(   ). By expressing 

previous iterative updates with a given algebraic operation,  ̂   in equation (2.27) is 

obtained at convergence, leading to an iteratively reweighted least square solution (IRLS):   

 

 ̂   ,    -                                                                            (    ) 

 

Where, on the basis of the outcome in the (   )th iterative,       ( ̂ (   ̂ )) with 

 ̂  and      (   )     (   ). 
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2.5 Confusion Matrix 

The confusion matrix is an instrument which effortlessly and potently states performance 

of classifier and it has the benefit of being simple to illustrate the finding. The performance 

of any models and algorithm can be evaluated using confusion matrix. The row of the 

confusion matrix indicate the values of the predictive class, while the columns indicate the 

actual class values. Each cell exemplifies one of the probable mixture of actuality and 

predictive. True positives (TP), false positives (FP), false negatives (FN), and true false 

(TF) are the four types of the 2x2 confusion matrix [9]. The excellent model will only have 

values on the diameter, with all other cells being zeros, while the poor model will be 

distributed alike across all cells.  The measure of how bad a model is can be shown by the 

error matrix.  A misclassified pattern can be determined by each cells value [10] 

Table 1: Confusion matrix 

 

 

 

 

 

So as to summarize the outcome of confusion matrix, the accuracy, sensitivity, precision, 

and specificity methods can be used.  

 

           
     

           
                                                              (    )     

The accuracy is gained by dividing the exactly expected number (TP+TN) by all samples 

collectively, and is embodied by (2.28). With all methods that have been mentioned above 

so as to summarize the outcome of confusion matrix, precision and sensitivity are the most 

prevalent methods as seen in (2.29) and (2.30) in turn. 

 

 

Predicted Values 

P True Positives False Positives 

N False Negatives True Negatives 

 

Confusion matrix 
Actual Values 

P N 
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                                                                          (    ) 

 

Precision is a positive predictive value that determines how many of the predicted positive 

samples (TP+FP) are genuine positives (TP). When attempting to decrease the amount of 

false positives (FP), precision is utilized as a performance measure. 

 

             
  

     
                                                                       (    )     

 

The number of total positive samples (TP+FN) categorized as positive classes (TP) is 

measured by sensitivity. 

 

             
  

     
                                                                       (    )   

 

The number of total negative samples (TN+FP) categorized as negative classes (TN) is 

measured by specificity. 

 

2.6 Area under the ROC curve 

To categorize a test result as positive, sensitivity and specificity rely on a single cut point 

[15]. The area under the ROC (Receiver Operating Characteristic) curve provides a more 

detailed assessment of categorization accuracy. This curve, which comes from signal 

detection theory, illustrates how the receiver handles signal presence when there is noise. 

For a full range of feasible cut points, it shows the likelihood of detection genuine signal 

(sensitivity) and false signal (1-specificity).   
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     ∫    ( )    ( )    
 

  
                                                    (    ) 

 

TPR(C) and FPR' (C) represent the true positive rate (sensitivity), as well as false positive 

rate (1-specificity) for a given cutoff or threshold value, in turn. The AUC is computed as 

the region under the ROC curve that traces the TPR at different thresholds according to 

FPR. [11], [12].  

 

2.7 Mean Square Error (MSE) for MLE: 

The function   given by  ( ̂   )
 
 is the mean square error (MSE) of the estimator   for 

parameter  ̂, and this is referred to as     ̂.This is also known as estimators risk function, 

with the quadratic loss function called ( ̂   )
 
. In comparison with other distance scales, 

MSE has at least two advantages: First, it can be analytically monitored and, secondly, the 

interpretation of it is [13] 

    ̂   ( ̂   )
 
    ( ̂)  ( ( ̂)   )

 
 

    ( ̂)  (        ̂ )
 
                                                               (    ) 

The discrepancy between the expected value of  ̂ and the real value of   is the bias of an 

estimator  ̂ of a parameter  ; that is,     ( ̂)   ( ̂)   . The unbiased estimator is 

called an estimator whose bias is identically equal to 0 and satisfies  ( ̂)    for all  . 

Therefore, the mean square error (MSE) has two parts, one measures the estimator 

uncertainty (precision), and the other measures its bias. The combined variance and bias of 

an estimator that has good mean square error (MSE) properties is minimal. We need to find 

estimators that control both variance and bias to discover an estimator with strong mean 

square error properties.  
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For an unbiased  ̂ estimator, we have: 

 

    ̂   ( ̂   )
 
    ( ̂)                                                        (    ) 

 

   According to [14] asymptotically  ̂   is commonly distributed, and the asymptotic 

variance-covariance matrix is equal to the inverse of the Fisher information matrix, that is 

computed by     

                                    

   ( ̂  )  ,    -                                                                       (    ) 

 

And since  ̂   is unbiased estimator of  ,     of   ̂   is obtained as  

 

    ( ̂  )    .   ( ̂  )/   ( ̂    )
 
 ( ̂    ) 

   ((    )  )  ∑
 

  

 
                                                                 (    )    

Where the     eigenvalue of      is   , and the trace operator is tr. 

 

2.8 Model Assumptions of Logistic Regression: 

It has to satisfy the assumption of logistic regression so as to satisfy the validity of the 

model. The general assumptions used in logistic regression analysis are as follows:  

1- A logistical function of the explanatory variables is the conditional probabilities. 

2- No major variables will be omitted. 

3- No irrelative variables are included. 
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4- Independence of errors. 

5- The observation of the variables are independent. 

6- The explanatory variables do not depend linearly on each of them. 

7- The error of the model is distributed binomially. 

8- There should be no outlier and influential point in the dataset 

Evaluation and validation of model performance should be an additional and critical step 

after adapting the logistic regression model and before reaching any conclusion based on 

fit. Evaluating the results of logistic regression with the influential outlier observations in 

the data set is the subject of this thesis. 
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CHAPTER 3 

THE INFLUENTIAL OBSERVATIONS IN THE LOGISTIC REGRESSION 

 

 

 

3.1 Introduction  

The logistics regression model has been commonly used in a range of fields and in recent 

years has increased dramatically. His success raises the need for diagnostic instruments to 

assess the model's suitability. "Diagnosis has been an important element of logistical 

stagnation in recent years," said Hosmer and Lemeshow [15]. An outlier observation is a 

data point with large residual that does not follow general trend of the observations. Data 

points that significantly affect the estimations in model are called as influential 

observations [16]. Such findings are identified and their effects on the binary logistics 

model are studied. In this part, we study the form and the detection methods of outliers and 

influential observations in LR. 

 

3.2. Outlier and Influential Observations in Logistic Regression Model 

The logistic regression model has been commonly used in a range of fields and in recent 

years has increased dramatically. Diagnostic tools for model adequacy determination is 

important part of regression modeling process [15]. There are required conditions or 

assumptions that must be met in this process. Because the distortion form and the required 

assumptions form are unreliable and misleading, this model needs to be applied. Therefore 

checking the model assumption is important. A significant assumption in regression model 

is that the constructed model is appropriate for all observations in the data. But, it is quite 

difficult to obtain a dataset in which all the assumptions are met. Furthermore, logistic 

model is not robust model. It means that even one single unusual observation is sufficient 

to affect the modeling process in a bad way. These observations can cause bad effect to the 
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estimates obtained from the model. It is obvious that not all observations in the data have 

same role when constructing the model. Data points that substantially affect the estimations 

in model are called as influential observations. An outlier observation is a data point with 

large residual that does not follow general trend of the observations, while influential 

observations are data points which possess an effect on any part of the model results 

(parameter estimates, model adequacy and model assumption). [17, 18, 19, 20, 21, 22, 23, 

24]. Hawkins' definition [19] perfectly catches the essence and spirit of the word: "An 

outlier is an observation that deviates so much from the other observations as to arouse 

suspicions that it was generated by a different mechanism".  

The presence of influential observations would possibly result in distorted analysis and 

ambiguous results [25, 26, 27], and therefore, in the interpretation of the outcome, it is 

essential to be sensitive to influential observations and take account of them. The points of 

an outlier are extremely closely related to influential observations. Influential observations 

are accounted for as points that have a noticeably higher influence on the computed values 

of various estimations, either separately or in combination with other observations 

(coefficients, standard errors, t-values etc.) [28]. Outliers and influencing observations may 

arise during logistic regression as misclassification between binary (0, 1) answers. Points 

on the incorrect side of the hyperplane/classifier are referred to as misclassification [29]. It 

can happen when there is a significant change in the predictor (explanatory) variables, 

which causes a deviation in the response (labels). 

Diagnostic measures are particular amounts calculated from data in order to detect 

0nfluential points that may be used to eliminate or fix these influential points. Changes in 

the regression model can be caused by the absence of each observation, but removing the 

influential observations will create major changes in the model [30]. 

 

3.3 Literature Review and Problem Statement    

A residual vector and projection matrix [8] are the fundamental building blocks of the 

logistic regression to evaluate outlying and influential points. The approach originally used 

for linear regression and logistic regression is also used to expand this thinking and use 

linear regression approximations as pointed out in citation [8]. In the logistic regression 
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model, several traditional diagnostic approaches are available to determine a single 

influential observation, which are DFBETAS statistics [64], DFFITS [24] Likelihood 

displacement statistics [41], Cook`s Distance (CD) [36].  

Many of the approaches focused on the idea that the single observation is excluded from 

the data set to explore any improvements to regression coefficients with respect to the 

regression fitting. In truth, not all of these approaches can particularly be utilized to detect 

multiple influential outlying observations. Due to the fundamental issues of masking and 

swamping, the results of these techniques are usually disappointing [31]. When  one 

influential observation is not determined as an influential observation, the masking 

problem arises because multiple influential observations cover each other effectively. 

Reversely, when natural observations are mistakenly determined as an influential 

observation, a swamping problem arises. So it is known that it is important to use a 

simultaneous case method or multiple case methods instead of the techniques mentioned 

previously for the accurate detection of influential observations, as they are more efficient 

in preventing these problems as well as determining the optimal set of influential 

observations. Some authors introduce some ways to detect multiple influential 

observations. These are Burcin Coskun & O. Alpu [65] who proposed two novel multiple 

influential observation diagnostic measures (Generalized Cook Distance based on 

Generalized Standardized Pearson Residuals- GCD.GSPR and Modified Cook Distance-

mCD*) for the model known as logistic regression model, A.A.M.Nurunnabi and A.H.M. 

Rahmatullah Imon and M. Nasser [66] proposed a new measure for the determination of 

multiple influential observations in logistic regression on the basis of a generalized version 

of DFFITS. A.A.M. Nurunnabi, M. Nasser & A.H.M.R. Imon [67] introduced a resilient 

influence distance that has the capability of stating multiple Influential observations. A. H. 

M. Rahmatullah Imon a & Ali S. Hadi [33] developed a generalized version of 

standardized Pearson residuals (GSPR) on the grounds of group deletion and then proposed 

a technique to determining multiple outliers. Simultaneous methods can tackle these 

problems by concurrently looking for ideal solutions in the search space. The simplest 

solution of multiple case influence observation detection systems can be generated by 

taking all potential influence observation combinations. This means that all potential 
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permutations for data set observations are put together in two sub-sets which are influential 

and non-influent, and that a choice is then taken, depending upon which the best 

combination is formed. Although it is nearly difficult to do this practically, it needs so 

many potential subsets and combinations with substantial computation. Thus, it may be 

viewed as a combinatorial optimization problem to examine the ideal group of influencing 

observations. 

In order to solve optimization issues with a high-dimensional search space, exact 

optimization algorithms are unable to give a suitable solution. Exhaustive search is not 

practicable in these cases because the search space expands steadily with the problem size. 

Classical approximation techniques of optimization such as greedy algorithms provide 

several hypotheses for resolving issues. Sometimes, in every situation, it is difficult to 

validate these assumptions, therefore, meta-heuristic algorithms, nowadays, have been 

widely developed to address optimization problems, which require little or no assumptions 

about a problem and it is possible to do a search across wide areas for possible solutions. 

Because of their capacity to explore the world and use local resources, population-based 

meta-heuristic algorithms are ideal for searches across the globe [32]. This is so to present 

a new technique for identifying the best collection of observations with a strong effect on 

the partial likelihood function and therefore parameter estimations, and also the model's 

predictive abilities in a Logistic regression model on the grounds of the meta-heuristic 

algorithm. Therefore, in this research, the nature-inspired population-based Binary Particle 

Swarm Optimization (BPSO) method used by Kennedy and Eberhart [51] was used for the 

multiple case analysis approach to represent the optimal collection of influential 

observations utilizing the objective function, which is designed to prevent possible 

masking and swamping difficulties in the Logistic Model by the use of the likelihood 

displacement statistic. This is done in order to strengthen the logistic regression estimate 

with the identification and elimination of influence. In this analysis, the aim of using the 

BPSO is that it has a structure which is basic, easy to use, quick and inexpensive, with few 

adjusting parameters and a global search strategy that is less dependent on the starting 

point [32], [68]. Thus, without the need for onerous computations, the optimum collection 

of influential observations would be determined simultaneously. BPSO is used as an 
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experimentation method for this aim. With the aid of numerous simulation trials and actual 

data sets the suggested system efficacy was checked. 

 

3.4 Detection Methods of Influential Observations in Logistic Regression 

 

3.4.1 Residual and leverage   

The residual     is accounted for as the difference between the observed value and the 

fitted value in linear regression(    ̂ ) [33]. To stress the fitted values in logistic 

regression for each covariate pattern, we record the fitted value of the     covariate pattern 

as  ̂   ̂  for that covariate pattern. As a result, the     residual is calculated as follows:  

 

 ̂      ̂ ,                                                                                           (   ) 

 

The hat matrix is of critical importance for the study's linear regression. The values for 

dropping the outcome variable into the covariate space are provided by this matrix. The 

residuals linear regression (   ̂) is also described by the hat matrix so that this forms a 

variety of studies. Pregibon [8] considered a linear approach to the fitted values that create 

a hat matrix for logistical regression by using the linear regression of the weighted least 

squares., 

 

    
 

  (    )     
 
                                                                      (   ) 

 

 

Where   is the     diagonal matrix with the general variable     ̂ (   ̂ ). The 

diagonal components of the hat matrix are considered the leverage values of linear 

regression. To signal by the quantification    we indicate the     diagonal part of matrix   

described in (3.2 ). It is clear to demonstrate this 

 

    ̂ (   ̂ )  
 (    )                                                                (   ) 

 

Where,   
  [               ] is a     vector of      case observations.  
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        The residuals calculate the magnitude of ill-fitted factor/covariate patterns in logistic 

regression. Thus, the suspicious outliers are the observations that have a significant 

residual. At this point, however, we have a normal question: How large is this? The 

residual described in (3.1) is not qualified, so they do not contribute easily to outliers 

detection. Let us now add several scaled versions of the above residues which are widely 

used for the diagnosis of outliers. 

       The Pearson residuals are chi-square elements from Pearson and these can be put to 

use to classify patterns that are unacceptable. The big assumption in the linear regression is 

that the variance of the error doesn’t depend on conditional mean (  |  )   ̂ . Nonetheless, 

we have Bernoulli errors in logistic regressions, there for the error variance is a function of 

the conditional mean, i.e. 

 

    ( 
 
|  )      ̂ (   ̂ )                                                            (   ) 

 

For     factor/covariant pattern, the Pearson residual described is given by 

 

   
    ̂ 

√  
,                                                                                (   ) 

 

An observation is referred to as an outlier if the appropriate Pearson residual is over a 

number c in absolute terms. because residuals from Pearson have been scaled, a rational 

option maybe 3 for c (refer to [34] ), which is consistent with the normal theory's 3-

distance law. But we often experience that too many observations are identified as outliers 

by the cut-off value 3. Chen and Liu [35] can then be accompanied by c as an appropriately 

selected constant between 3 and 5. 

       If we apply the Pregibon  [8] linear regression-like approximation of the residual for 

   , we see that  

 

  ̂      ̂  (    )                                                                    (   ) 

 

As a result, we can calculate the residual variance as 
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  ( ̂ )    (    )                                                                            (   ) 

 

As a result, the Pearson residues do not have an equivalent variable of 1. That is why we 

must use the standard Pearson residues, which are denoted by: 

 

     
    ̂ 

√  (    )
                                                                          (   ) 

 

if |   |   , The     observation can be labeled an outlier 

 

3.4.2 Cook’s Distance  

The Cook’s distance statistics suggested by Cook [36] measures the Euclidean distance 

between  ̂ and  ̂( ) which is parameter estimation when     observation isn't in the data set 

anymore. The distance of      Cook is defined in the case of a logistic regression model 

[30] as:  

 

    
( ̂(  )  ̂)

 
(    )( ̂(  )  ̂)

  ̂                                                 (   ) 

 

Where  ̂(  ) with the     observation removed is the estimated parameter of  . Use linear 

approximations including those proposed in [8], Equation (3.9) can be indicated as: 

 

    
 

 
   
 .

   

     
/                                                                                                                    (    ) 

 

Where     is the residual of     standard Pearson defined as: 

     
    ̂ 

√  (    )
                                                                        (    )          

 

Where the leverage value of      is    , which is actually the     diagonal element of the 

matrix  of leverage  
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  (    )     
 

                                                                   (    )          

 

And   is a matrix diagonal, with the    element diagonal defined as follows: 

 

 (  |  )      ̂ (   ̂ )                                                              (    ) 

 

An observation is considered influential if the result of Cook's distance is larger than 1. 

(see Ref.[37])       

                 

3.4.3 Difference of Fits (DFFITS) 

Belsley, Kuh and Welsch also suggested DFFITS in 1980 and it is based on  ̂   and   ̂ 
(  )

 

discrepancy. The difference of fits (DFFITS) was first mentioned in Ref. [24], it is 

characterized by: 

 

        
 ̂   ̂ 

(  )

 ̂(  )√   
                                                                (    ) 

 

With the     observations removed,  ̂(  ) represents the fitted response and  ̂(  ) represents 

the estimated standard error. DFFITS can be denoted by the remaining Pearson criteria and 

leverage values as: 

 

           √
   

(     )
 

  

 
 
(  )                                                             (      ) 

 

If the observation values DFFITS is bigger than  √
 

 
 , where   is a properly selected 

constant of 2 to 3 or more [38, 39, 40], then it is termed as an observation. 
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3.4.4 Difference in Beta (DFBETAS) 

The one-step difference between the MLE of the parameter vector and the MLE of the 

parameter vector without the     observation is defined as DFBETA and used to measure 

the influence of the    observation. A Fisher scoring step is assumed in this one-step and is 

calculated as follows: 

   ̂( )          (    )    
   

 

 (     )
 

 

                     (      )  

 

Where    is the leverage and     is the standardized Pearson residual 

        DFBETAS is the standardized DFBETA statistics for evaluating the impact of     

observation on the     regression parameter which is known as DFBETA for the     

parameter divided by it is estimated standard deviation. The standard deviation is 

calculated using the data in this case. 

 

        ( )  
       ( )

 ̂(  )
                                                               (      )  

 

Value of         ( ) greater than two would certainly indicate a major impact from a 

single point [64]                     

 

3.4.5 Likelihood Displacement (LDi) Statistic 

The likelihood of displacement, introduced by Cook (1986), is one useful and general 

technique for comparing  ̂ and  ̂(  ).  

Let   be a     vector for unknown parameters and  ̂ be the maximum likelihood (ML) 

estimate of   obtained from a sample of size  . The influence of the     observation on the 

parameter estimate can be assessed by studying the difference between   and  ̂(  ), where 

 ̂(  ) denotes the  ML estimate of   obtained from the sample of size     excluding the 

    observation. Likelihood displacement, which is defined as [41]  

 

   ( )   [   ( ̂)     ( ̂(  ))]                                                   (    ) 
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Where  ( ̂) is the logistic regression partial likelihood function,  ̂ is a vector estimation 

parameter from the entire data set and  ̂(  ) is the parameter estimate set obtained when the 

observation i is removed. Since conventional instruments frequently provide specious 

outcomes because of masking and swamping difficulties, it is more appropriate to assess 

the likelihood displacement by eliminating a group of notes rather than eliminating them 

one by one. In this study, the fitness function of the PSO system is divided by the “number 

of observations detected as influencers”. The goal of this approach is to locate observations 

that maximize the fitness function. 
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CHAPTER 4 

A PROPOSED TECHNIQUE FOR PARTICLE SWARM OPTIMIZATION TO 

DETERMINE THE INFLUENTIAL OBSERVATIONS IN A LOGISTIC 

REGRESSION MODEL 

 

 

 

 

4.1 Introduction 

Problems of optimization are common in different disciplines. Sometimes, the objective 

function or model's actual and practical nature restrictions can make these difficulties 

exceedingly complicated. Derivative-based approaches, as summarized in [42], [43], have 

traditionally been used in optimization procedures. These methods are dependable and 

have been demonstrated to be efficient in a variety of optimization issues. However, these 

methods may encounter problems including becoming stuck at local minimums, increasing 

computing complexity, and being unsuitable for certain types of objective functions. This 

resulted in the necessity to design a new class of techniques to solve such deficiencies. 

Heuristic optimization approaches are rapidly evolving tools that can overcome the 

majority of the drawbacks associated with derivative-based methods. 

In recent years, many algorithms for obtaining solution's subsets that aren't quite perfect 

have been presented. Colony optimization (ACO), Genetic Algorithms (GA), as well as 

particle swarm optimization (PSO) in addition to some other algorithms are examples of 

Algorithms that are meant to mimic evolutionary process. PSO is a type of evolutionary 

algorithm that is predicated on swarm intelligence and is relatively new. In comparison to 

other EA, PSO is less costly and can converge faster. [44] 

Particle swarm optimization (PSO) was initially referred to as a new heuristic approach by 

Kennedy and Eberhart [45], [46]. The original aim of their study was to use arithmetic to 

encourage the social behavior of fish schools and bird flocks and. As their study proceeded, 

they found out that with some alterations, their social behavior model can as well be used 

as an effective optimizer. In the original PSO version, only non-linear issues were dealt 

with for continuous improvement. However, numerous improvements in PSO development 

have strengthened their ability to deal with a wide range of difficult engineering and 
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scientific issue optimization. Recent progress in these fields is summarized in [47] and 

[48]. 

Several PSO algorithm variations have been proposed, but the most often used is Shi and 

Eberhart's [49] (Gbest model) global version of PSO, in which the entire population is 

treated as a single neighborhood during the optimization process. One of its most attractive 

features is the simplicity of the PSO method, as it only uses two model equations [50]. 

Each particle has a coordinated position (  ), and velocity (  ) is a feasible solution in 

PSO, using 2 vectors. The two vectors associated with each particle in the search space of 

N-dimension are    ,             - and    ,             -. A swarm is made up of 

a group of particles (or potential solutions) that move (fly) around the viable solution space 

in search of the best solution. On the basis of its best investigation, better swarm 

experience, and its prior speed vector, each particle adjusts its position based on the 

following model: 

 

   
        

      (       )⏞          
                   

     (       )
⏞          
                

                     (   ) 

              

   
       

     
                                                                                 (   ) 

 

 

In the case when    and    consist of two positive constants,    and    are numbers 

produced at random for ,   -,   is the weight of inertia,     is the best position particle   

achieved on the basis of its own experience. While,     depends on the total swarm 

experience which is optimum particle position and   is the iteration index. 

Kennedy and Eberhart [51] suggested binary particle swarm optimization to address 

problems involving combinatorial optimization in binary space (BPSO). 

 

4.2 Original Particle Swarm Optimization (PSO) Algorithm 

One of the most successful strategies developed is the optimization of the particulate 

swarm (PSO). PSO was created by Kennedy and Eberhart [52] as a meta-heuristic 
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optimization method based on the existence of the population. This technique based on 

swarm intelligence was influenced by means of social conduct of flocking birds, that is 

dependent on their prior knowledge when in search of food or companion. Each possible 

solution symbolizes a particle in this stochastic technique. In the PSO method, the 

population of the particle is said to swarm. Particles are put at random in the problem's 

search space. In PSO, each particle searches for random locations and velocities and is 

modified to spot the most effective solutions for each iteration. Every iteration updates the 

particle locations to a predetermined quality criterion named the objective function. The 

objective function in the PSO algorithm distinguishes between the particle and the food (or 

mat) [53]. At each stage, apart from the swarms expertise and personal knowledge, each 

particle's speed is refined and upgraded based on inertia. Each particle's experience is kept 

by its most effective location (Pbest). Swarm's knowledge is kept by the swarm's global 

best place (Gbest). PSO's unique function is that it explores multiple points in diverse 

regions at the same time for  solution space to identify a globally optimal solution.  

PSO is an evolutionary method based on population, with numerous significant benefits 

over other methods of optimization including [54] 

 Unlike many traditional approaches, it is a derivative-free algorithm. 

 It may be mixed and matched with other optimization methods to create hybrid 

tools. 

 They are less affected by the convexity and continuity of objective functions. 

 Unlike many other competing evolutionary methods, they have less parameters 

to modify. 

 It is capable of escaping local minima. 

 Simple mathematics and logic operations make it simple to implement and 

program. 

 It can address objective functions having a stochastic character, such as when 

one of the optimization variables is represented as random. 

  To start the iteration process, it doesn't need a premium starting solution. 

PSO is a well-known optimizer that has been frequently employed to find a solution for 

optimization problems. This has made it interesting to develop the performance of the 
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algorithm and theoretical research. Some research on the performance of PSO in 

topological systems and in parameter studies has also been undertaken [55] 

To improve performance in addressing multimodal problems, Kennedy and Mendes 

presented a ring topological structure PSO (LPSO) [56] and a Von Neumann topological 

structure PSO (VPSO) [57]. In addition, Liang and Suganthan [58] proposed the Dynamic 

Multi-Swarm PSO (DMS-PSO) to develop topological structure in a dynamic fashion. 

Hybrid PSO with different evolutionary paradigms is another current research area in PSO. 

A PSO selection process similar to GA has been presented by Angeline [59]. In addition, 

GA and PSO hybridisation was applied [60] to the ongoing construction of artificial neural 

networks. Beheshti et al. presented further research, based upon a more advanced PSO and 

Newtonian motion-legs, and also on Median-oriented Particle Swarm Optimization 

(MPSO) [61].   

The use of PSO is contingent on the shape of the problem and structure, that is the problem 

domain. Initially, PSO was used in continuous space to overcome optimization problems. 

There were, however, several discrete (or binary) problems with optimization. Therefore, 

to find solution for the problems of combinatorial optimization in binary space, the binary 

version of PSO is optimized.  

 

4.3 Binary Particle Swarm Optimization (BPSO) Algorithm 

The original PSO method could only be employed to find solutions to issues related to 

continuous real-valued solution elements. Kennedy and Eberhart  [62], who originally 

introduced the original PS0, devised a version of the PSO method for addressing issues 

with binary values, like combinational optimization issues. Binary particle swarm 

optimization is the name of the improved algorithm (BPSO). BPSO has an unusual 

characteristic in that it utilizes the identical velocity as PSO but replaces the position with 

the following selection of roulette wheel selection [63]. Each particle's location,    

(             ) in the BPSO approach are stated by binary values in which,     *   +. 

The distinction between PSO and BPSO in the concept of velocities in continuous space is 
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in the probability that the appropriate element in a particle will be given to the value 1, 

which defines the velocities of the individual     (             ) as defined.  

   Following are the BPSO algorithm steps: 

   Step1. Initial    and    randomly generated positions for each     particle are calculated 

as  

   (             )                                                                          (   )                    

   (             )                                                                          (   ) 

 

Where,     *   +,     is the velocity of the     particle in the     dimention. In the 

swarm, the particles number and position is defined by   and  , for           

respectively. the velocity of a particle is also confined to     ,         -.     is set to 

     when it is greater than      and if     is smaller than     , then     is set to     . 

          , normally. 

   Step2. All particle fitness values in the swarm are determined based on the objective 

function. 

   Step3. The particles of Pbesti and Gbest are calculated according to fitness values as in  

equations (4.5) and (4.6). 

 

       (                )               (   )                                                       

      (                )                                                             (   ) 

 

Where, Pbesti and Gbest are the vectors indicating the best locations of the     particle to 

date and the best particle with the most reliable fitness value found in the entire swarm. 

   Step4. Using equation (4.7) and equation (4.8) are needed respectively, to update velocity 

and position. 

   
         

        (       )⏞              
                   

       (       )
⏞              

                

         (   ) 
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                                               (   )                                     
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Where     (   
   ) is the function of sigmoid limiting transformation, in the interval ,   -,  

   ,    and    represent evenly dispersed numbers at random.    and    are two parameters 

that respectively Stand for coefficients of social and cognitive manner, whereas   

represents the parameter of inertia and   is the present number of iteration. 

   Step5. Steps 2, 3 and 4 are being used repeatedly till the specified number of iterations 

has been met. 

 

4.4 The BPSO based Suggested Method for Determining the Influential Observations 

      in   Logistic Model 

 

4.4.1 Proposed Method  

As mentioned before, single case deletion methods have many drawbacks. When several 

influential observations have been made, they show misleading results in particular. 

Considering observations as influential and non-influential, detection of several 

observations of influential nature in the Logistic Regression Model may be called a 

problem of combinatorial optimization nature due to issues related to the masking and 

swamping. The power of BPSOs is because the technique is organized and can quickly 

solve a large number of problems through combination optimization, even the ones that are 

hard to address utilizing other methods. Given these features, it is considered that the 

BPSO solution may be optimal for solving this question of optimization. However, certain 

key elements should be taken into consideration so as to employ the benefits of the BPSO 

algorithm and to apply it correctly:    

 

4.4.1.1 Building of Particles 

The    (                   ) positions of each particle are evaluated as binary values, 

0 or 1. In fact, each particle has its own value as mock variable that represents     vector 

in which   can be described as observations number belonging to dataset.       

symbolizes the influential mock and       represents the non-influential mock for the 

    observation of the     particle for each          . We have allocated "0" for 

possible influential observations accepted by the proposed method dependant on BPSO. 

Thus, the results of these established observations will rest or delete from the model. 
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4.4.1.2 Definition of Objective Function 

The choice of the objective function for simultaneous identification of influencing 

observations is the most essential aspect of the BPSO. The objective function ought to be 

appropriate for the purpose of optimization problem. In this analysis, an LD-based 

objective function of Likelihood Displacement was used to define influential observations 

in the logistics model. 

 

    
 

 [   ( ̂)    ( ̂(   )
)]

   
                                                                  (   ) 

 

Where,   , is identified as possible observations in particles (or position) and m stands for 

the number for possible influential observations of influential nature (that is; the 0 s 

number in particles). As well as this,  ̂ is the vector of the estimates of the parameters 

gained from the complete dataset (                          ) and  ̂(   ) represent 

the vector's estimates of parameters gained when removing the observations   

observations identified in the particle as potential influential observations. The statistics of 

likelihood deisplacement, LDi identified by Cook [37] can be an efficient criterion to 

classify influential observations in the Logistic model; nonetheless, identical to the 

downsides of other single-case deletion approaches, it is evident that it is affected by 

swamping and masking issues as it detects one-by-one influential observations. It'd also be 

better fitting too to measure the likelihood of displacement by removing a collection of 

observations instead of singularly removing them. 
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END 

 

Start 

 

Initialize positions and velocities of each particle and PSO tune parameters:        

        , and maximum value of   is     . 

 

Evaluate the fitness of all particles by fitness function 

 

Get personal best fitness of all particles (pbest) 

 

Set the best of personal bests as global best (gbest) 

 

Update the velocity     of each particle   in  -dimensional space 

   
         

        (       )
⏞              

                   

       (       )
⏞              

                

 

 Where   is current iteration and,     is position of each particle   

  ,    are uniformly distributed random numbers in ,   - 

 

Update positions of each particle: 

    
    ,

                         (   
   )

                                        
 

                        Where 

    (   
   )  

 

       
    

                

               Convergence?              No 

                    Yes   

 

Figure 2: Flow chart of BPSO 
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 In the present analysis, the division by the "number of observations determined as 

influential data points" of these statistics measured for a group of observations is called an 

objective function in the BPSO method to avoid masking and swamping impacts. With 

such a method the goal would be finding a collection of observation which optimize the 

objective LD (0 s) function for the limit. In other words, since the collection of 

observations determined as powerful observations by BPSO is excluded, the aim would be 

spotting the collection of observations which possess the largest influence on partial 

likelihood algorithms. 

   For the observations group for      
, there are several potential combinations and it takes 

burdensome calculation to decide all possible combination groups. 

BPSO has consequently been utilized as an algorithm to detect the best collection of 

observations which impact partial probability function to eliminate this difficult calculation 

and to solve masking and swamping issues. By way of contrast, the BPSO-based 

theoretical technique would be aimed at excluding all points of data and that's not the case 

where it is able to assess important data points if the probability displacement statistics 

collected were not split by (m+1) for a set of observations. since our objective is to 

maximize and each data point appears to change the situation in likelihood displacement, 

the determination of non-influential data points as effective will be avoided and the right 

recognition maintaining important data points are to be given by splitting the likelihood 

displacement determined by removing a set of observations by (m+1). It is noted that since 

the group of 0s is the optimum collection of observations known as observations of 

influential type, the suggested objective function would obtain the maximum value. At the 

same time, masking and swamping results will not greatly impact it as they concurrently 

look for the optimum collection of insightful observations in the realm of search. 

 

 

 

 

 

 



40 
 

4.4.1.3 Definition of PSO Parameters  

The maximum number of iterations, number of particles, coefficients of acceleration 

(         ), weight of inertia ( ), and maximum velocity (    ) are all tuning parameters 

that can enhance the PSO’s inclusive efficiency. Clerc and Kennedy's analysis (2002) 

found that better convergence can be accomplished by deciding              based on 

what is seen below: 

 

,
   

 

    √     
        

                                                                             (    ) 

 

Where     and where that is to say, The tuning parameters are then dependent on the 

existence of the issue space. To put it another way, these parameters do not have a 

particular value that can be generalized to all optimization problems. The varying 

performance of the algorithm will result in changes to these parameters. Using the 

equations results as a quid (4.10) and the ones of an error and trial procedure within the 

analysis of simulation, the suggested BPSO-based approach fits very nicely together with 

the below group of parameters of tune type in Table 1, which provides the best success in 

determining the optimum set of influential observations. 

 

Table 2: Tune parameters in the approach suggested in the logistic regression model to 

determine observations of influential nature on the basis of BPSO. 

Tune parameters                                                 Values checked in the BPSO method 

 

Weight inertia (w)                                                                                0.9 

Coefficients of acceleration, (     )                                                      

                                                                                                        4 

Particulate number                                            the same as the number of particle positions,  

                                                                     i.e. the number of observations in the dataset (n)  

 Number of iterations to the limit                                                                  

 

 

 



41 
 

4.5 Simulation Design 

In this part, a simulation study of Monte Carlo under different contamination rates and 

sample sizes has been formulated to state the performance of BPSO based proposed 

method and to compare this method with the traditional diagnostic techniques; likelihood 

displacement (LD), Cook’s Distance (CD), DFBETAs.  Simulation study has been 

performed for 2 independent variables. The regression coefficients values in the model are 

fixed to be                    The independent variables values (X) in the logistic 

regression model were generated from the N(0,1) normal distribution and the error terms 

were derived from the logistic distribution   ~𝛬(0,1) with different sample sizes of 100, 

150 and 200 in the data sets for the simulation. Response variable values were generated by 

obtaining probability values  

 

 ( )  
   

  

     
  

                                                                                    (    ) 

 

and satisfying the following equation [69], [70]  

 

                                   

    {
                         
                         

                                       (    ) 

 

We have contaminated each simulated dataset at 4%, 6% and 10% rates for each sample 

size. It is ensured that the value set to be contaminated according to the contamination rates 

is randomly generated in a different order in each generated sample. The covariates to be 

contaminated were determined as +4  for mildly unusual observations and +7  for 

extreme unusual observations. The y values correlating to the contaminated observations 

were altered from 1 to 0 in the simulation conducted for influential observations [66]. 

Simulation study were repeated 100 times. The parameters have been estimated through 

eliminating the observations' collection identified for the suggested BPSO-based system; 

LD, CD, DFBETAs and for the authentic logistic model through the fitness of all points of 

data (including observations of influential type).  For each simulation scenario, we repeated 
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data creation and model fitting 100 times, recording the mean of each assessment criterion. 

These are recorded as mean square errors of parameter estimates (MSE), mean of 

sensitivity (Sens), area under the ROC curve (AUC) and Nagelkerke’s   . As well as this, 

the mean of masking percentage as a proportion of undetected real influential observations 

(MP) and the mean of swamping percentage as a rare of non-influential observations 

detected as influential observations (SP) have also been recorded [66], [71]. 
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CHAPTER 5 

RESULT AND CONCLUSION  

 

 

 

5.1 Result of Simulation  

On simulated datasets created employing the methods outlined in the preceding section, the 

suggested BPSO-based technique for identifying influential observations in the logistic 

regression model was compared against standard diagnostic approaches based on specified 

assessment criteria.  

 

Table 3 

The masking (MP) and swamping (SP) proportions of the proposed BPSO-based technique 

and standard diagnostic methods among 100 simulations for different contamination rates 

(rcont) and sample size (n). 

 

n rcont 
MP and 

SP 

BPSO-based 

approach CD LD DFBETAs 

100 

0.04 
MP  0.073 0.749 0.578 0.333 

SP  0.000 0.000 0.015 0.015 

0.06 
MP  0.124 0.746 0.652 0.451 

SP  0.000 0.000 0.025 0.008 

0.1 
MP  0.101 0.828 0.725 0.497 

SP  0.003 0.000 0.056 0.005 

150 

0.04 
MP  0.096 0.762 0.664 0.396 

SP  0.000 0.000 0.025 0.015 

0.06 
MP  0.105 0.900 0.752 0.485 

SP  0.000 0.000 0.017 0.006 

0.1 
MP  0.196 0.852 0.814 0.521 

SP  0.002 0.000 0.020 0.021 

200 

0.04 
MP  0.102 0.732 0.523 0.415 

SP  0.000 0.001 0.019 0.012 

0.06 
MP  0.099 0.930 0.721 0.489 

SP  0.000 0.010 0.100 0.004 

0.1 
MP  0.138 0.861 0.852 0.638 

SP  0.007 0.008 0.109 0.007 
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After the application of the BPSO-based approach to the generated artificial data sets for 

the determination of influential observations, we found that the masking probability was in 

general close to a far extent to 0 and the swamping probability was on the verge of zero in 

all scenarios, demonstrating that the suggested identification procedure has decreased 

masking and swamping proportions, as seen in Table 3. Despite the fact that the SP for the 

CD method was zero in almost all situations, the MP for the CD method was the highest in 

every simulated dataset scenario. We know that masking is a more significant issue than 

swamping in outlier identification (Zhang et al. 2016). In addition, as shown in Table 3 in 

each simulated scenario, the LD and DFBETAs methods did not have a low masking and 

swamping proportions (especially masking proportion ) like the one of BPSO-based 

strategy. In order to highlight the effect of influential observations on the model outcomes 

through different assessment criteria, we first developed a logistic regression model using 

all observations on simulated datasets. And then, to demonstrate the impact of the 

observations found by the suggested BPSO-based technique and standard diagnostic 

procedures, we built a logistic regression model by eliminating the observations 

determined by the suggested BPSO-based technique and standard diagnostic techniques 

(results seen in Table 4 for MSE, sensitivity, AUC and   ). 

We can see that the MSE in each simulation scenario for the original model constructed 

with all observations was the highest, but MSE was the lowest when we built a logistic 

regression model by eliminating the data detected in each scenario using the BPSO-based 

technique. After the model was created with no observed data using standard diagnostic 

methods, MSE decreased marginally, but not as much as the proposed strategy. Each 

simulation scenario containing all data points, it is clear that the other evaluation criteria 

Nagelkerke’s    for the original model were the smallest. But when we built the logistic 

regression model without the observations detected by BPSO based proposed technique, 

   was the highest. It was discovered that    for the model that is constructed by omitting 

observations detected by standard diagnostic methods, has improved based on the original 

model along with all the data, although not by the same amount as the suggested technique. 
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Table 4: MSE, Sensitivity, AUC and Nagelkerke's R
2
 which are evaluated for the Logistic 

regression model by eliminating the set of data points that CD, LD, DFBETAs, BPSO-

based technique determined, respectively and for the original logistic regression model by 

constructing with all observations for differnet contamination rates (rcont) and sample size 

(n). 

 

n rcont 
Criteria 

 BPSO-

based Original   LD 

  

CD  DFBETAs 

100 

0.04 

MSE 0.789 9.122 3.712   5.633 2.544 

Sens  0.854 0.541 0.785   0.741 0.784 

AUC 0.899 0.652 0.754   0.702 0.801 

R
2 

0.785 0.362 0.578   0.498 0.611 

0.06 

MSE                          0.965 12.986 4.325   6.234 3.698 

Sens  0.841 0.448 0.698   0.654 0.722 

AUC 0.836 0.487 0.685   0.590 0.748 

R
2
 0.754 0.301 0.531   0.444 0.621 

0.1 

MSE 1.100 14.784 6.578   7.451 3.998 

Sens  0.803 0.450 0.657   0.607 0.706 

AUC 0.805 0.424 0.647   0.555 0.699 

R
2
 0.719 0.287 0.506   0.524 0.587 

150 

0.04 

MSE 0.955 12.641 4.639   7.744 3.512 

Sens  0.849 0.503 0.695   0.681 0.722 

AUC 0.854 0.539 0.648   0.632 0.784 

R
2
 0.773 0.349 0.581   0.457 0.625 

0.06 

MSE 1.237 16.360 6.455   8.784 5.178 

Sens  0.820 0.400 0.632   0.601 0.694 

AUC 0.815 0.396 0.619   0.517 0.687 

R
2
 0.715 0.287 0.465   0.406 0.578 

0.1 

MSE 1.321 17.455 7.779   9.632 4.897 

Sens  0.779 0.319 0.549   0.530 0.631 

AUC 0.746 0.380 0.584   0.432 0.617 

R
2
 0.703 0.251 0.451   0.420 0.497 

200 

0.04 

MSE 1.103 15.655 6.471   9.854 5.735 

Sens  0.806 0.473 0.608   0.574 0.685 

AUC 0.812 0.487 0.533   0.547 0.709 

R
2
 0.779 0.305 0.520   0.403 0.575 

0.06 

MSE 1.741 18.458 8.743   10.850 5.897 

Sens  0.782 0.354 0.584   0.521 0.634 

AUC 0.766 0.329 0.599   0.472 0.614 

R
2
 0.673 0.247 0.425   0.357 0.509 

0.1 

MSE 2.201 20.744 9.872   11.667 5.478 

Sens  0.715 0.257 0.461   0.489 0.574 

AUC 0.707 0.307 0.540   0.382 0.524 

R
2
 0.695 0.204 0.405   0.365 0.443 
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Moreover, the sensitivity and AUC of the original model together with all observation 

points in each scenario simulated were lowest, but is increased better than other diagnostic 

techniques when we built the logistic regression model by omitting the observation 

determined by the BPSO-based strategy in each scenario.  

All of these findings show that the suggested BPSO-based technique works well and is 

quite suitable alternative technique for determining influential observations, according to 

each evaluation measure. To put it another way, the proposed technique offers a reliable 

and efficient approach to this problem. In addition, these results show that the suggested 

data generation strategy for data pollution is valid as well in the simulation study, because 

all the negative impacts of the results affecting the model were revealed. The reason is the 

model results were rather poor based on each evaluation criterion when the logistic 

regression model was created using all the observations in the simulated data sets. 

Furthermore, when examining the results of evaluation measures by BPSO-based and 

conventional techniques for each sample size and contamination rate, we discovered that 

additional modification in sample size and contamination rate disproportionately affected 

the performance of each conventional diagnostic methodology. Despite this, the BPSO-

based technique was not influenced by the change in contamination rates and sample size, 

but rather achieved good results in the presence of high contamination and sample size. 

 

5.2 Conclusion 

Logistic regression model is commonly employed regression tool to infer relationship 

between binary response variable and independent variables using probability scores in 

many field of science. However, to obtain accurate results from the model, the models rely 

on some assumptions. One of these assumptions is that there should be no influential 

observations in the dataset. This is so because logistic model is not robust model and one 

single unusual data point is sufficient to affect model results unduly and cause misleading 

results from the model. Thus, correct determination of influential data points group is a 

quite significant step in the modeling duration. In logistic regression model, there are many 

diagnostic techniques for determination of influential observations. But these standard 

techniques are founded on single-step techniques and results acquired from these 
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techniques are frequently misleading because of masking and swamping problems. Thus, 

using standard diagnostic methods is not useful for the determination of the optimal group 

of influential observations as a result of these problems. 

Simultaneous techniques may solve masking and swamping problems because these 

techniques investigate optimal way simultaneously in search area. This work's main 

contribution is the idea for a novel simultaneous strategy to determine the optimal group of 

influential observations in the logistic regression model, based on BPSO. As shown in 

simulation studies, this proposed technique determines the best group of observations with 

a strong influence on both the partial likelihood function as well as parameter estimates, in 

addition to the predictive capabilities of the model. The suggested method has 

convincingly outperformed traditional techniques under different evaluation criteria in 

different simulated settings (MP, SP, MSE, R
2
, sensitivity, AUC). Compared to standard 

methods, this strategy clearly eliminates issues of masking and swamping problems. In 

addition, in each simulation case, the BPSO-based technique gives the lowest MSE value 

and the highest values of   , sensitivity and AUC. The model estimates were not 

significantly altered if the logistic regression model was obtained by removing the 

observations indicated by these standard diagnostic techniques. It is very likely that the 

effects of masking and swamping caused this to happen. The logistic regression has 

nevertheless become more resilient when the logistic models were designed by the 

elimination of the data indicated using the suggested BPSO-based technique. The 

suggested BPSO-based technique for identifying important data in a logistic regression 

model was shown to be effective in a simulation studies. It's also worth noting that the 

recommended data creation approach for the data set simulated with influencing 

observations is correct, as we've seen all of the model's unwanted impacts. This is because 

the model outcomes were comparatively bad according to every evaluation criterion when 

the logistic regression model was created by all observations of the simulated data set. 

Overall, we feel that the proposed method for identifying influencing data in a logistic 

regression model will be of great use as evidenced by the simulation results.  
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