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ÖZET 

Amaç: Bu çalışmanın birincil amacı, Yen Tanı Almış Multiple Myeloma (NDMM) 

hastalarının risk gruplarını sınıflandırmak ve Progresyonsuz Sağkalım (PS) ve Genel 

Sağkalım (GS) oranlarını tahmin edebilmek için Gen Ekspresyonu Profili (GEP) 

tabanlı mevcut prognostik imzaların performansını karşılaştırmaktır. 

Gereç ve Yöntem: Bu çalışmada Multiple Myeloma Research Foundation'ın (MMRF) 

Compass araştırmasının (NCT01454297) global kayıt sürümü IA15'ten 774 adet 

NDMM hastasının verilerini incelenmektedir. Yeni Nesil Dizileme (YND) ile elde 

edilen verilerin klinik bulgularla birleştirilmesi ve gen ekspresyonu düzeylerinin PS ve 

GS'ı değerlendirmedeki performansını belirlemek için sağkalım analizi temelinde 

çözümlemeler yapılmıştır.  

Bulgular: Çalışma kriterlerine uygun 767 adet NDMM hastasının ortanca PS ve GS 

süresi, Gen Ekspresyonu İmzaları’ndan (GES) bağımsız olarak sırasıyla 634 (259–

1233) ve 1118 (409.5–1590) gün olarak bulunmuştur. Hem PS hem de GS için, 

değerlendirilen tüm GES için, düşük risk grubu ile yüksek risk grubu arasında 

istatistiksel olarak önemli farklılık tespit edilmiştir. EMC-92, IFM15, HM19 ve 

MRCIX6 gen imzalarının tümü, 767 NDMM hastasının 116'sında (15.12%) yüksek 

riskli bir popülasyon tanımlanmıştır. Benzer şekilde, UAMS70 ve UAMS17 gen 

imzalarının her ikisi de 767 hastadan 114 NDMM hastasından oluşan yüksek riskli bir 

popülasyon tanımlanmıştır (14.86%). Tanımlanabilen iki risk grubu için tüm GES'inde 

PS, GS'dan istatistiksel olarak önemli düzeyde daha kısadır (p<0.05). 

Sonuçlar: Araştırmada incelenmiş olan tüm GES’ler, risk gruplarını ayırt etmede 

istatistiksel olarak önemli düzeyde başarılı olmuşlardır. Tüm GES’ler için sağkalım ve 

yüksek riskli vakaları diğer vakalardan ayırt etmeye yönelik analizlerde istatistiksel 

olarak önemli sonuçlar elde edilebilmiştir.   

Anahtar Kelimeler: Progresyonsuz Sağkalım; Genel Sağkalım; Gen Ekspresyonu 

İmzaları; Yeni Nesil Dizileme  
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Name of the student: Mustapha Touray 

Mentor: Assist. Prof. Dr. Özgür Tosun 

Department: Biostatistics 

ABSTRACT 

Aim: The primary purpose of this study is to compare the performance of existing 

GEP-based prognostic signatures in stratifying risk groups and predicting 

NDMM patients' PFS and OS rates.  

Material and Method: This study included 774 NDMM patients' data from the 

Multiple Myeloma Research Foundation's (MMRF) CoMMpass trial (NCT01454297), 

global registry version IA15, that were characterized by NGS and analyzed to 

determine the performance of GES in evaluating PFS and OS rate. 

Findings: The median PFS and OS time in days of the 767 NDMM patients available 

for study were 634 (259–1233) and 1118 (409.5–1590) days, respectively, regardless 

of the GES. For both PFS and OS, all of the GES evaluated discriminated a high-risk 

group that was significantly different from the low-risk group (Figure 3A to D,  Figure 

4E to H, and Figure 5I to L). The EMC-92, IFM15, HM19, and MRCIX6 gene 

signatures all identified a high-risk population of 116 out of 767 (15.12%) NDMM 

patients (Table 7). Similarly, UAMS70 and UAMS17 gene signatures both identified 

a high-risk population of 114 NDMM patients out of 767 (14.86%) (Table 6). For each 

of the two categorized risk groups, the PFS was significantly shorter than the OS in all 

of the GES (Figure 5). 

Results: All of the GES performed significantly well in distinguishing risk groups as 

distinctively as possible, and the proportion of classified predicted risk groups varies 

less among the GES, with nearly all signatures being equally sensitive in predicting 

survival outcomes and identifying high-risk cases in NDMM patients. 

Key Words: Progression free survival; overall survival; gene expression signatures; 

performance; next-generation sequencing. 
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CHAPTER 1  

INTRODUCTION 

1.1 Disease Overview 

Multiple myeloma (MM) is a biologically heterogeneous clonal plasma cell 

disease with three stages: premalignant (monoclonal gammopathy of undermining 

significance (MGUS)), non-symptomatic (smoldering multiple myeloma (SMM)), and 

lastly symptomatic disease with remissions and relapses (Prideaux et al., 2014). 

Several disease subtypes have been uncovered at the genetic and molecular level, 

despite their outward similarities. These genetic groups are linked to various 

clinicopathological features and outcomes (Fonseca et al., 2009). MM accounts for 

10% of all hematological malignancies. It has a 160,000-case global incidence and a 

106,000-case death rate. Myeloma incidence, patient empowerment, access to cancer 

medications, and health-care spending are all linked to the mortality-to-incidence ratio, 

which ranges from 9% to 64% (Ludwig et al., 2020). The elderly are disproportionately 

affected by this malignancy, with a median age of around 70 years at the time of 

diagnosis (Piazzi et al., 2016).  

Patients with MM have a wide range of outcomes, with some dying weeks after 

diagnosis and others living for more than ten years. The causes of this heterogeneity 

are complex, involving interactions between host variables and disease biology 

characteristics. The underlying genetic characteristics of tumor cells are gradually 

being recognized as playing a key influence in the clinical heterogeneity of MM 

(Fonseca et al., 2009). Anemia, hypercalcemia, renal disease, and an increased risk of 

infection are some of the other common clinical symptoms (Short et al., 2011). 

The disease is split into two groups based on karyotype investigations: 

hyperdiploid and nonhyperdiploid myeloma, with approximately 10 molecular 

subgroups based on gene expression studies (Hassan & Szalat, 2021, Fonseca et al., 

2009 and Prideaux et al., 2014). Patients with IgH translocations, which are connected 

to more severe clinical features and shorter survival, make up the majority of the latter 
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group. t (11;14) (q13; q32), t (4;14) (p16; q32), and t (14;16) (q32; q23) are the three 

most common IgH translocations in myeloma. Trisomies describe hyperdiploid 

myeloma is a less severe form of the disease. Chromosomal 13 and 17 deletions, as 

well as chromosome 1 abnormalities (1p deletion and 1qamplification), have all been 

discovered as genetic progression factors (Fonseca et al., 2009).  

The incidence of MM is projected to rise in Africa, Latin America, lower-income 

Asian Pacific countries, Europe, and North America. Lower-income Asia Pacific is 

predicted to increase in prevalence at the fastest rate: 71% by 2027 (Sharma & Kumar, 

2018). 

Thanks to recent methods such as gene expression profiling and array-based 

genome wide sequencing, researchers have gained a deeper understanding of the 

disease's molecular subgroups. Most myeloma cases can be categorized into one of 

many genetic subcategories based on the integration of data from these investigations 

and data gathered in other ways (Fonseca et al., 2009). Next-generation sequencing 

(NGS) (also known as high-throughput sequencing) methods have recently uncovered 

the complicated genetic landscape of MM, drastically altering our understanding of 

myeloma genesis (Kuiper et al., 2015 and Piazzi et al., 2016). As a result, the goal of 

this study is to evaluate the performance of various gene expression signatures (GES) 

on progression free survival (PFS) and overall survival (OS) using data characterized 

by NGS. 

1.2 Diagnosis 

The detection of 10% or more clonal plasma cells in bone marrow and M-protein 

in the blood has traditionally been used to diagnose MM. In recent years, the presence 

of at least one myeloma defining events (MDEs), as well as confirmation of at 

least 10% clonal plasma cells on bone marrow examination or a biopsy-proven 

plasmacytoma, has been necessary for a diagnosis of multiple myeloma (Table 1). The 

presence of CRAB features such as hypercalcemia, renal disease, anemia, or lytic bone 

lesions, as well as the 3 key biomarkers: clonal bone marrow plasma cells greater than 

60%, serum free light chain (FLC) ratio greater than 100 mg/L, and more than one 
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focal lesion on MRI, define MDE (Rajkumar, 2018). In patients who do not have a 

large M- component, laboratory tests, imaging, and professional expertise are used to 

make a diagnosis (Ludwig et al., 2020). 

Table 1: International myeloma working group diagnostic criteria for multiple myeloma and related 

plasma cell disorders 

Modified from (Rajkumar, 2018). 

a Patients with low-risk MGUS (IgG type, M protein 15 gm/L, normal free light chain ratio) who have no clinical 

symptoms suggestive of myeloma can avoid having their bone marrow removed. 
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1.3 Molecular Classification 

MM is actually a group of cytogenetically distinct plasma cell malignancies, 

despite the fact that it is still viewed as a single disease (S. K. Kumar & Vincent 

Rajkumar, 2018 and S. Kumar et al., 2012, Table 2). Trisomies or IgH translocations 

affect just a tiny fraction of the people and are the most prevalent chromosomal 

abnormalities seen as MGUS progresses. Additional chromosomal abnormalities such 

as gain(1q), del(1p), del (17p), del (13), RAS mutations, and secondary translocations 

involving MYC emerge over the course of multiple myeloma. Additionally, primary 

and secondary chromosomal anomalies can have an impact on the disease's 

progression, treatment response, and prognosis. Importantly, chromosomal 

abnormalities in multiple myeloma have different meanings and repercussions 

depending on the phase of the infection at which they are discovered (Rajan & 

Rajkumar, 2015). 

Table 2: Primary molecular cytogenetic classification of multiple myeloma 

 

Reproduced from (Rajkumar, 2018) who modified it from (S. Kumar et al., 2012). 
a Includes the t(6;14)(p21;q32) translocation, and rarely, other IgH translocations involving 

uncommon partner chromosome. 
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1.4 Survival Prediction and Risk Classification 

Fluorescence in-situ hybridization (FISH), G-banded karyotype, and gene 

expression profiling were used to determine prognosis and risk classification. These 

techniques have proven to be extremely useful in detecting the bulk of cytogenetic 

abnormalities and structural rearrangements that cause MM (An NGS Primer for 

Multiple Myeloma, 2017). Today, ECOG performance status, cancer load, and cancer 

biology, as defined by well-established genetic changes revealed through FISH or 

karyotype testing, are now used as prognostic indicators. Furthermore, prognostic 

indications include age, LDH levels, macroglobulin levels, and aggregate rankings 

such as the International Staging System (ISS). IgH translocations or genomic 

abnormalities such as hyperdiploidy, chromosomal gains, or deletions are considered 

prognostic genetic abnormalities (Piazzi et al., 2016). 

Although it is estimated that 15% of MM patients have an average life span below 

two years, and 20% have an average life span of greater than ten years (Piazzi et al., 

2016). Nonetheless, over the last decade, risk stratification methods have improved, 

effectively segmenting populations that respond to different therapies and extending 

life expectancy by a decade or more (Anderson, 2014). The Revised International 

Staging System (RISS) is the latest recent guideline. It takes a holistic approach to 

prediction, including the disease biology prognostic markers indicated in (Table 3). In 

addition, the Mayo Clinic produced another risk stratification guideline (mSMART, 

Table 3) to provide therapeutic guidance for people in various risk groups (JR et al., 

2013).  

While well-defined cytogenetic prognostic markers have long been included in 

MM guidelines, they have yet to be linked to medicines or widely employed in 

treatment decisions. Although other translocations, such as the t(4:14), have been 

associated to other changes, the Del17 alteration is regarded to be a stand-alone 

biological marker for poor outcomes. A few of the more rare mutations, such as the 

t(14;16) translocation, are gradually becoming identified as disease risk factors 

(Fonseca et al., 2009).  
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Despite the fact that a large number of Patients with MM relapse, and the 

prognosis for a minority of cases continues to worsen, with early relapse and poor 

survival, risk classification is critical to identifying these patients and developing and 

changing therapy regimens for them. The ISS criteria (Table 3) are used to assess risk 

upon diagnosis, which include beta-2 microglobulin and albumin levels, as well as 

three chromosomal abnormalities: 17p13 deletion, t(4;14), and t(14;16). These criteria 

can also be used to identify individuals with high-risk MM who have a poor prognosis, 

early relapse, or initial refractory disease, as well as a shorter survival period. This 

patient subgroup must be identified in order to determine the optimum treatment plan 

using currently existing medicines and to develop novel treatments (Szalat & Munshi, 

2016). GES have recently become accessible as substitute to these risk classifiers. 

Despite the fact that they have yet to be widely adopted, numerous groups have 

independently identified them in the last five years, and at least two study groups have 

described them. When compared to cytogenetic tests, gene expression profiles may 

provide a predictive solution that is both technically superior and more accurately 

reflects the patient's MM biology (Piazzi et al., 2016).  

Table 3: Risk Stratification Guideline  

Reproduced from (An NGS Primer for Multiple Myeloma, 2017) 
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1.5 Disease Progression 

Landgren et al. (2009) found that MM develops from an asymptomatic pre-malignant 

stage known as MGUS (Figure 1) and that more than half of patients identified with 

MGUS have had the disease for more than ten years before being diagnosed (TM et 

al., 2012). Over the course of five to ten years, smoldering multiple myeloma (SMM), 

an intermediate and more advanced asymptomatic stage, progresses to the multiple 

myeloma stage (Rajkumar, 2018). Plasma cell leukemia (PCL) is the final stage of the 

disease, in which the diseased plasma cell becomes proliferative, departing the bone 

marrow with rapid proliferation and eventually dying (Prideaux et al., 2014). 

 

Figure 1 Clonal composition of multiple myeloma during disease progression and treatment. Derived 

from (Prideaux et al., 2014) who adopted it from (Morgan et al., 2012) 

 

1.6 Treatment of Newly Diagnosed MM 

Individual suitability with chronological age remains a crucial component in 

therapy selection in MM, despite the fact that adequate treatment choices are based on 

the reliable identification of high-risk  patients at diagnosis (Manasanch et al., 2021). 

Over the last few years, overall survival (OS), progression-free survival (PFS), and 
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time to progression (TTP) have all improved significantly. In recent years, new 

therapeutics for MM have been developed, including innovative drugs given as 

combination regimens with well-established chemotherapy schemes, as well as 

autologous hematopoietic stem cell transplantation (Piazzi et al., 2016). However, 

determining which treatment will have the greatest impact is difficult due to the wide 

range of disease development (Martinez-Lopez et al., 2014). 

As a first-line therapy, patients are given bortezomib, lenalidomide, and 

dexamethasone (VRd). Carfilzomib, lenalidomide, dexamethasone (KRd) is a 

substitute to VRd in high-risk patients. In suitable patients, first therapy is administered 

for 3-4 cycles, followed by autologous stem cell transplantation (ASCT). Low-risk 

patients can choose to have their ASCT postponed after the first relapse. VRd is 

administered to patients who are not transplant candidates for about 8 to 12 cycles 

before taking lenalidomide or lenalidomide plus dexamethasone. After ASCT, patients 

with standard-risk disease should stay on lenalidomide, while those with intermediate 

or high-risk disease should stay on a bortezomib-based regimen (Rajkumar, 2018). 

Attempts to use gene expression profiling to find effective therapy have failed 

miserably. According to the findings, identifying effective treatments capable of 

attaining complete remission requires more than a basic gene expression level (Amin 

et al., 2014). NGS data, on the other hand, identifies novel indicators that accurately 

reflect prognosis, patient outcome, and treatment response, enabling for the 

development of tailored therapy (Szalat & Munshi, 2016). 

1.7 GEP in MM 

Multiple myeloma prognostication at the RNA level has been extensively 

examined and documented using gene expression profiling of cancerous plasma cells. 

Importantly, RNA sequencing has supplanted microarrays as a method of studying 

gene expression. This method can be used to analyze both coding and noncoding RNA, 

revealing not only the levels of expression of the genes but also differential splicing 

and isoform expression, gene mutations profiles, and fusions (Szalat & Munshi, 2016).  
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In 2006, GEP of tumor cells was utilized to explain the molecular classification of 

myeloma (Zhan et al., 2006). A study of 4750 individuals in clinical trials using 

multiple GEP platforms confirmed the effectiveness of GEP as a prognosis tool 

(Kuiper et al., 2015). According to various research, GEP is also more precise than 

FISH in risk categorization (Decaux et al., 2016 & Manasanch et al., 2021). 

Various GES have been developed using gene expression profiling to identify 

patients with high- and low-risk disease. The Arkansas group described a 70-gene 

signature, the Intergroupe Francophone du Myélome (IFM) a 15-gene signature, and 

the HOVON group a 92-gene signature (Decaux et al., 2008). Approximately 20% to 

25% of patients with all three signatures are at high risk of dying within the next two 

years. However, because each of these signatures contains diverse genes with limited 

intersection, it is challenging to apply them universally. In a recent study, a combined 

unique signature was created, which could be employed in therapeutic practice in the 

future (Chng et al., 2016). 

Several high-throughput technologies have become available over the last 15 

years (Table 4). Whole-genome and whole-exome sequencing, array comparative 

genomic hybridization, and high-density single nucleotide polymorphism arrays are 

all examples of DNA-based research. Reoccurring mutations and affected pathways, 

mutational signatures, clonality and clonal evolution traits, and copy number 

alterations can all be identified using these methods (Decaux et al., 2008).  

Table 4: Genomic Methodologies and Their Practical Clinical Uses 

Modified from (Szalat & Munshi, 2016) 
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1.8 Next-Generation Sequencing Technology Approaches 

NGS profiling has emerged in MM studies, and it has the potential to move the 

field into a new era of precision medicine. NGS research has revealed that the genome 

of MM cancer is exceedingly convoluted. The discovery and application of NGS is 

rapidly changing cancer patient care in some indications and cancer care facilities 

(Piazzi et al., 2016). Whole Genome Sequencing (WGS), Whole Exome Sequencing 

(WES), and Targeted Sequencing (TS) are examples of NGS technologies that have 

been utilized extensively to analyze the genomes of multiple myeloma patients. This 

corpus of study has shed insight on the DNA abnormalities identified in MM cells, as 

well as the symptoms and course of the disease (An NGS Primer for Multiple Myeloma, 

2017).  

NGS data explains myeloma biology by providing information on disease 

dynamics that can be used to inform prognosis and, in particular, to define low- and 

high-risk disease. At this moment, a combination of validated markers, ISS, and 

cytogenetic characteristics can be utilized to appropriately classify low- and high-risk 

multiple myeloma. Three main outcomes with a dismal prognosis are amp(1q23.3), 

amp(5q31.3), and del(12p13.31). New prognostic markers are now based on new gene 

and microRNA expression profiles, as well as specific mutations and clonal alterations 

(Szalat & Munshi, 2016). Translational researchers have recently used next-generation 

sequencing (NGS) to characterize genomic changes in MM, yielding new information 

on indels, gene fusions, chromosomal abnormalities, single nucleotide variations 

(SNVs), single nucleotide polymorphisms (SNPs), and larger shifts in DNA and RNA. 

When it comes to diagnosis and relapse, the ability to use NGS to determine a patient's 

prognosis can be used to rationally construct a personalized treatment strategy (An 

NGS Primer for Multiple Myeloma, 2017). 

1.9 Aim 

The primary goal of this study is to analyze and contrast the performance of 

existing GEP-based prognostic signatures in stratifying risk groups and predicting PFS 

and OS in newly diagnosed multiple myeloma (NDMM) patients. The data on which 
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GES were evaluated on in this study was described using NGS technology. In this case, 

the signatures EMC-92, UAMS-70, UAMS-17, IFM-15, HM19, and MRC-IX-6 were 

evaluated. This research also aims to determine if there is a difference in survival 

between low- and high-risk patients in each of the GEP prognostic signatures stated 

above. Furthermore, the study tried to assess the performance of the EMC-92 gene 

signature in predicting survival and stratifying risk groups in comparison to other gene 

signatures. 

1.10 Statement of the Problem 

Multiple myeloma is diagnosed in over 100,000 patients worldwide each year, has 

an increasing incidence and prevalence in many locations, and has a relapsing course, 

making it a major and growing healthcare burden (Ludwig et al., 2020). Treating MM 

is a unique clinical challenge due to the disease's variability. Furthermore, despite 

major improvements in patients' outcomes, the vast majority of people with MM 

remain incurable, necessitating an ongoing quest for novel therapeutic options (Piazzi 

et al., 2016).  

Several new MM treatments have improved results, and improvements in NGS 

technologies have allowed researchers to gain a deeper understanding of the disease's 

molecular underpinnings and how it progresses. Because of the disease's complexity, 

however, better methodologies for predicting and tracking therapy response are 

required (An NGS Primer for Multiple Myeloma, 2017). The tumor progression status 

could also be captured by the survival related gene signatures, which could lead to 

more patient-tailored therapy. Furthermore, no study has yet been published in which 

gene expression profiling characterized by NGS technology was used to predict 

survival of and stratify NDMM patients, to our knowledge. As a result, a study like 

this, as well as the results that come with it, could assist improve risk 

stratification, improve clinical decision making, and help NDMM patients find new 

therapy alternatives. 
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1.11 Significance of the Study 

GEP characterized by NGS is starting to have an impact on clinical judgements 

and therapeutic decisions. It helps to identify high-risk patients who relapse early and 

have a shorter life expectancy, as well as advance our knowledge of the disease. 

Furthermore, GEP characterized by NGS can be used to identify those who need early 

identification and treatment, and NGS has recently been shown to be effective in 

detecting one cell out of a million in bone marrow, where the lack of myeloma 

indicates a better prognosis (Szalat & Munshi, 2016). Understanding gene expression 

signatures that are better predictors of PFS and OS in MM characterized by such a 

technology may thus aid clinicians in clearly separating risk groups and predicting 

stable groups of appropriate size. As a result, the patient and clinician may be in a 

better position to make an informed treatment decision, which could result in a better 

outcome. Furthermore, this novel technology in understanding GES performance in 

predicting survival and stratifying risk groups in NDMM can be used to supplement 

traditional prognostic markers like ISS and R-ISS stage and adverse cytogenetics, 

resulting in increased accuracy in outcome prediction and accurate prognosis, as well 

as the development of treatment schedules tailored to the individual. 
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CHAPTER 2 

LITERATURE REVIEW 

ISS was described by the IMWG to ensure a more objective classification of 

patients based on ß2-microglobulin and albumin levels (Table 3). These clinical 

features, which were chosen because they are widely available and easy to detect in 

blood samples, classify MM patients into three stages: stage 1 has a median OS of 62 

months, stage 2 has a median OS of 44 months, and stage 3 has a median OS of 29 

months (Paszekova et al., 2014). 

Patients with high-risk MM have been described as having a grim prognosis, 

experiencing early relapse or primary refractory disease, and having a shorter life 

expectancy in various studies. High serum LDH and β2 microglobulin levels, low 

albumin levels, and any of three chromosomal abnormalities (17p13 deletion, t (4; 14), 

and t (14; 16) are used to diagnose high-risk myeloma in the R-ISS, which is one of 

the most up-to-date criteria for defining high-risk myeloma (Palumbo et al., 2015). 

This classification, on the other hand, does not precisely identify all high-risk patients 

or those with a favorable prognosis. As a result, NGS technologies have lately been 

used to untangle the intricate genetic landscape of myelomagenesis, substantially 

altering our understanding of the disease (Hassan & Szalat, 2021). According to 

Shaughnessy et al. (2007), established clinical prognostic markers such as serum ß2-

microglobulin, creatinine, C-reactive protein, and serum lactate dehydrogenase 

(LDH), as well as chromosome 13 deletion and other cytogenetic abnormalities, 

demonstrated a significant link with the high-risk group. 

Previously, microarray technology was utilized to discover gene expression 

indices connected to survival outcomes in order to evaluate whether an NDMM patient 

has a severe form of the disease. The UAMS 70 gene signature, which is made up of 

51 over- and 19 under-expressed genes, is one such MM-specific indicator. Despite 

continuously high performance across a number of MM datasets, using this 

signature with RNASeq data causes problems. In their work, Penaherrera et al. (2018) 
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reported that GEP has predictive efficacy in a large patient group treated with 

contemporary medicines. They further reveal that despite triplet initial therapy and 

triplet maintenance therapy, high-risk patients remain to have poor medical outcomes. 

GEP is also a useful tool for predicting which patients would have inferior outcomes 

with existing treatments, according to the researchers. As a result, it was more accurate 

than high-risk FISH in identifying patients who died of progressive myeloma in their 

patient cohort.  

Traditional prognostic markers like ISS and unfavorable cytogenetics, according 

to Kuiper et al. (2012), have been shown to be enhanced by GES in MM research to 

improve the accuracy of outcome prediction. Furthermore, more precise prognosis has 

been found to lead to the development of therapeutic strategies targeted to increase the 

survival of high-risk MM patients. Precisely, a signature must be able to clearly 

differentiate risk groups and forecast stable groupings of relevant size in order to be 

clinically useful. Of note, both criteria are met by the EMC-92 signature according to 

Kuiper et al. (2012).  

According to survival projections for each patient considering the first line of 

treatment, Mosquera Orgueira et al. (2021) revealed that patients in their research 

cohort treated with the best-predicted drug combination were significantly less likely 

to die than those treated with alternative schemes. This was especially true for 

individuals who received a triplet treatment that included bortezomib, an 

immunomodulatory drug (ImiD), and dexamethasone. According to a study conducted 

by Paszekova et al. (2014), preliminary results reveal good response rates with 

innovative medications such as bortezomib, lenalidomide, and thalidomide in high-

risk patients, implying that when using this sort of therapy, the effect of adverse 

prognostic factors can be overcome. 

Because GEP reflects the biology of MM in individual patients, there has been an 

urgent need in recent years to improve the prognosis of NDMM patients. As a result, 

Kuiper et al. (2012), Chng et al. (2016), and EH et al. (2017) discovered that patients 

categorized as high-risk by the EMC-92-gene signature have a significantly shorter OS 

than those classified by the other signatures. Furthermore, Kuiper et al. (2012) 
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discovered that this signature is unrelated to presently used prognostic markers and is 

superior to or similar to previously described signatures in multivariate investigations.  

GES has been found to be very effective in estimating event-free survival and 

overall survival (OS) in MM in several trials using various techniques. The GES have 

been established as a predictive biomarker on their own in the majority of these trials. 

Researchers recently published a combination of already existing prognostic 

signatures, characterizing it as a single reliable signature that can be used to predict 

outcome in MM at diagnosis and relapse, in an effort to simplify GEP application in 

clinical settings and produce a unique tool (Szalat et al., 2016). Kuiper et al. (2012) 

evaluated factors such as heterogeneity in data sets, demographic variations, and 

changes in methodology to all have a part in identifying which gene is most closely 

linked to survival in a given set. They further highlighted other explanations could be 

identified in the therapeutic procedures adopted, where other genes could be to blame 

for the poor prognosis. 

Many approaches, including the use of GEP and NGS, have been developed to 

increase baseline classification (Bolli et al., 2018). According to Avet-Loiseau (2010) 

and Lonial et al. (2015), Within two years of being diagnosed, around 20% of 

individuals with MM will either relapse or die. As per the R-ISS, only 10% of patients 

are at high risk of disease progression and/or death, while 6.1% of patients are at high 

risk of progression and/or death according to the NGS-based "double-hit" 

categorization (Avet-Loiseau, 2010). It has also been reported that MM affects men 

slightly more than women, and African-Americans are twice as likely as Caucasians 

to have the disease (Landgren et al., 2009). When patients are diagnosed, they are on 

median 66 years old, with a median survival time of 33 months (Kyle et al., 2003).  

In a study, Shaughnessy et al., 2007 employed GEPs to produce risk scores and 

proliferation indexes for MM disease prediction based on the expression levels of 70 

and 11 genes, respectively. They discovered that higher risk ratings and greater 

proliferation indexes were linked to a shorter survival time for MM patients. 

Furthermore, using log-rank analyses of expression quartiles, they discovered that 

30% of the 70 genes linked to chromosome 1 were associated with a higher risk 
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of disease-related death (P<.001). Essentially, most of the up-regulated genes were 

connected to chromosome 1q, while the majority of down-regulated genes were 

associated to chromosome 1p, resulting in a high-risk score in a small group of 13% 

of cases with a short survival period. After a median follow-up of 33 months (1.51–

55.75 months) in another trial, 82 individuals were still alive. High-risk GEP patients 

had a significantly lower three-year RFS (41%) than low-risk GEP patients (60%) and 

a significantly lower three-year OS (71%) than low-risk GEP patients (83%) (P = 

0.034). Patients classified as high-risk by FISH had a three-year RFS/OS that was also 

shorter. Furthermore, deletion 17p and t(14;16) were linked to a shorter RFS/OS 

(Manasanch et al., 2021).  

Walker et al. (2019) revealed genetic variables that strongly relate to PFS and OS 

in a whole-genome and exome data exploratory study of 1273 NDMM patients. Using 

recursive partitioning, they discovered that a high-risk subset of the population (6.1%) 

has a median PFS of 15.4 months and an OS of 20.7 months. Furthermore, IGH 

translocations containing t(4; 14) were related with a shorter PFS but not an OS, 

whereas hyperdiploidy had no effect on outcome. Smadja et al. (2001) reflect similar 

findings, stating that chromosome ploidy number is important and that hyperdiploid 

and nonhyperdiploid patients had a significant difference in survival. They reported 

that nonhyperdiploid patients have a lower OS rate and are more likely to have 

structural abnormalities, such as translocations involving the IGH locus at 14q32. 

Furthermore, in a multivariate analysis of multiple prognostic factors, non-

hyperdiploidy was revealed to be the single most significant predictor of OS. 

Decaux et al. (2008) generated a 15-gene model that predicts survival in newly 

diagnosed MM patients. The Intergroupe Francophone du Myélome (IFM) asserts that 

their 15-gene signatures are more sensitive than FISH and improves ISS 

prognostication when it comes to stratifying MM patients based on survival. According 

to their findings, high-risk patients' myeloma cells overexpress genes involved in cycle 

advancement and monitoring, whereas low-risk patients' myeloma cells are more 

diverse and contain the hyperdiploid gene signature. Furthermore, the results revealed 

a survival-predictor score that was statistically significantly related to survival in both 

the training and test sets, as well as the external validation cohorts. In this investigation, 
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Kaplan-Meier estimates of 3-year survival rates for cases with a low- or a high-risk 

were 90.5% and 47.4%, respectively, independent of established prognostic markers 

(Decaux et al., 2016). Similarly, Chen et al. (2015) employed hierarchical clustering 

to divide all of the samples in one of their datasets into two groups: high-risk and low-

risk groups, to see if gene expression profiles could reliably predict overall survival. 

In predicting OS, the found high- and low-risk categories were significantly different 

(P<.01) according to their Kaplan-Meier estimation. 

The EMC92-ISS classification is a new biological and clinical prognostic tool that 

outperforms existing biomarkers and gives a stable, clinically useful 4-group 

classification. The highest risk group had a median survival time of 24 months, the 

intermediate risk groups 47 and 61 months, and the lowest risk group had a median 

survival time of 96 months. GEP classifiers showed improvement in OS than for PFS, 

with PFS hazard ratios (HRs) ranging from 1.8 (95% CI, 1.5-2.1; IFM15) to 2.3 (95% 

CI, 1.9-2.7; EMC92). EMC-92, UAMS17, and UAMS70 had 18 percent, 12 percent, 

and 9 percent of patients at high risk, respectively, whereas UAMS80 and HM19 had 

8 percent (Rowan Kuiper et al., 2015). In their study, Dickens et al. (2010) compared 

three signatures: UAMS70, IFM15, and their own 97 gene cell death signature. Except 

for one gene, BIRC5, each signature has its own set of genes. 37 patients were 

identified as having a poor prognosis using all three signatures. In total, 89 cases were 

recognized as having a poor prognosis by their own signature, 64 by the IFM15 gene 

signature, and 90 by the UAMS70 gene signature. 

  



 

20 

 

CHAPTER 3  

MATERIAL AND METHOD 

1.12 Study Design 

The Multiple Myeloma Research Foundation's (MMRF) CoMMpass trial 

(NCT01454297) is a 10-year prospective longitudinal observation study of over 1000 

NDMM patients receiving different standard accepted therapies with the aim of 

acquiring data on patients' biopsy, genetic information, wellbeing, and various 

ailments and clinical outcomes throughout the trial (dbGaP Study (nih.gov)).  

1.13 Patients and Treatment 

Data from participants in this prospective observational trial were used in this 

analysis. Ethics committees or review boards at the study areas approved the study, 

and it was conducted in accordance with the Helsinki declaration. A formal informed 

written consent was signed by all of the patients (D’Agostino et al., 2020). 

The data was gathered from the MMRF CoMMpass global registry version IA15, 

which contains 1143 NDMM patients who had clinical lab data available at diagnosis. 

Patients were followed up on every six months for eight years at 76 different locations 

throughout the world (https://themmrf.org/finding-a-cure/our-work/the-mmrf-

commpass-study/). From this trial, the present study included 774 NDMM patients 

who were characterized using next-generation sequencing. To examine PFS and OS, 

patients' survival information containing their survival profiles were analyzed. 

1.14 Next-Generation Sequencing  

Before starting systemic therapy, baseline bone marrow CD138+ cells were 

collected (within 30 days before first-line treatment). The Translational Genomics 

Institute (TGen) performed long-insert WGS and WES. Somatic tumor alterations 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000748.v7.p4
https://themmrf.org/finding-a-cure/our-work/the-mmrf-commpass-study/
https://themmrf.org/finding-a-cure/our-work/the-mmrf-commpass-study/
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were discovered by comparing cancer cells to patient-specific matched healthy cells 

(D’Agostino et al., 2020).  

1.15 Gene Expression Signatures 

In predicting survival in NDMM patients, the performance of the following gene 

expression signatures was evaluated in this study: EMC-92, UAMS70, UAMS17, 

IFM15, HM19 and MRCIX6. Normalization was done using log scaling and cutoffs 

were calculated using 85% quantile. 

1.16 Statistical Analysis 

Flowchart of the analyses is given in (Figure 2). The Bioconductor geneClassifier 

package was used to get the Affymetrix probe IDs for the various gene expression 

signatures, as well as their weighting coefficients. The following platforms were used 

to convert the obtained probe IDs of the respective signatures to ensembl IDs: 

http://www.ensembl.org/biomart;  

http://biogps.org/#goto=welcome;  

https://genecards.weizmann.ac.il/geneannot/index.shtml; 

https://www.affymetrix.com/site/mainPage.affx;  

http://xavierlab2.mgh.harvard.edu/cgi-bin/DiscoveryDB.py.  

The CoMMpass survival dataset was used to cross-validate the converted ensembl 

IDs of each gene expression signature. For PFS and OS, only ensembl IDs that were 

common to both datasets were analyzed. PFS was defined as the period from diagnosis 

to progression or death, while OS was defined as the period from diagnosis to death 

from all causes. The survival signature scores, which are the total of normalized 

gene expression values multiplied by the probe set-specific weighing coefficients of 

each gene expression signature, were also stratified using an 85 percent cut-off 

http://www.ensembl.org/biomart
http://biogps.org/#goto=welcome
https://genecards.weizmann.ac.il/geneannot/index.shtml
https://www.affymetrix.com/site/mainPage.affx
http://xavierlab2.mgh.harvard.edu/cgi-bin/DiscoveryDB.py
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criterion. Signature scores above the prescribed level were classified as high-risk, 

while those below it was classified as low-risk. 

The Kaplan-Meier approach was used to analyze PFS and OS as time-to-event 

data. To examine if there is a difference in PFS and OS between low- and high-risk 

patients, the log-rank test was used, with a p-value of less than 0.05 indicating 

statistical significance. The Cox proportional hazards model was used to calculate the 

hazard ratios (HRs) and 95% confidence intervals (CIs). R version 4.1.0 and the 

Survival Analysis package version 0.2.0 were used to conduct all analyses. 

1.17 Data Deposition 

The Data Access Use Committee has authorized access to the Interim Analysis 15 

(IA15) version of CoMMpass, which is available for download upon approval of 

request at https://research.themmrf.org/rp/download. The data is stored in the database 

of Genotypes and Phenotypes (dbGaP; Study Accession phs000748.v7.p4 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study 

id=phs000748.v7.p4). 

 

 

  

https://research.themmrf.org/rp/download
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study
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Figure 2: Flowchart of the data analysis 
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CHAPTER 4  

FINDINGS 

The performance of the six gene expression signatures (GES) was investigated 

using a CoMMpass dataset that included 1143 patients with survival data and 773 

patients with genomic data, with only 767 NDMM patients matched. Based on the 85 

percent quantile of the sum of expressed gene weighing coefficients, gene expression 

levels on CD138-selected plasma cells described using NGS from the 767 NDMM 

patients were dichotomized into low- and high-risk groups, and log-rank tests were 

used to determine the statistical significance difference between the classified risk 

groups in the various GES considered in this study (Table 5 and Table 6).  

The median PFS and OS time in days of the 767 NDMM patients available for 

study were 634 (259–1233) and 1118 (409,5–1590) days, respectively, regardless of 

the GES. Only 2 (<1%) patients were uniquely commonly identified as high-risk 

patients by either of the signatures, while 407 (53,1%) patients were uniquely 

commonly identified as low-risk patients by either of the signatures. The median PFS 

and OS were 708 (297–163) and 1 221 (419–1 608) days, respectively, among the low-

risk patients commonly identified by either of the GES. The median PFS and OS were 

(278 and 81 days) and (409 and 389 days), respectively, for the two patients who were 

commonly identified as high-risk by either of the GES. 

The performance of all the GES in a survival analysis of 767 NDMM patients 

revealed great results, with patients classified as low-risk for each of the signatures 

having significantly good PFS and OS times, while those classified as high-risk had 

significantly worse PFS and OS times (Table 5, Table 6, Figure 3, Figure 4 and Figure 

5). For both PFS and OS, all of the GES evaluated discriminated a high-risk group that 

was significantly different from the low-risk group (Figure 3A to D,  Figure 4E to H, 

and Figure 5I to L).  

The EMC-92, IFM15, HM19, and MRCIX6 gene signatures all identified a high-

risk population of 116 out of 767 (15,12%) NDMM patients in this study (Table 7), 
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with PFS significantly shorter than OS for each of the two defined risk groups in each 

of these signatures. The median PFS of the 651 low-risk patients, 1 052, 1 069, 1 090, 

and 1 090 days for each of the above-mentioned signatures, respectively, was 

significantly greater than that of the 116 high-risk patients, 715, 769, 560, and 610 

days for each of the above-mentioned signatures, respectively, with p<0,05 for each of 

them (Table 5, Figure 3A and C, and Figure 4E and G). In OS, the median significant 

differences between the identified risk groups of these signatures were maintained 

(Table 6, Figure 3B and D, and Figure 4F and H). However, there is a greater 

significant difference in OS than in PFS between the risk groups in all these signatures, 

p<0,01 (Figure 3 and Figure 4).  

The UAMS70 and UAMS17 gene signatures both identified a high-risk 

population of 114 NDMM patients out of 767 (14,86%) (Table 6), with PFS 

significantly shorter than OS in each signature's two categorized groups (Figure 5). 

The median PFS of the 653 low-risk patients (1 065 and 1 082 days, respectively) was 

significantly greater than that of the 114 high-risk patients (776 and 553 days, 

respectively) for each of these signatures, with p<0,05 (Table 5, Figure 3I and K). 

Similarly, the median significant differences observed between the classified risk 

groups of these two signatures were maintained in OS too (Table 6, Figure 3J and L). 

Nonetheless, there was a higher significant difference between the risk groups in OS 

than in PFS, p<0,05, in both signatures (Table 6 and Figure 3). Furthermore, median 

survival was not reached after 2 190 days in Kaplan-Meier estimations of OS for the 

lowest risk categories in all signatures (Figure 3B and D,  Figure 4F and H, and Figure 

5J and L). 
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Table 5: Summary Statistics of Kaplan-Meier Estimates of Progression-free Survival 

Signature 
Dichotomous 

(Cutoff 

value) 

Progression-free Survival 

n(Events) 

Low-risk 

n(Events) 

High-risk 

Median 

PFS 

(95% CI) 

Low-risk 

Median 

PFS 

(95% CI) 

High-risk 

p-

Value 

EMC92 0,5380177 335 (51,5%) 67 (57,8%) 1 052 

(908-1 186) 

715 

(612-1 090) 
0,0483 

UAMS70 0,3922542 339 (51,9%) 63 (55,3%) 1 065 

(917-1 176) 

776 

(677-1 052) 
0,023 

UAMS17 -1,242702 326 (49,9%) 76 (66,7%) 1 082 

(964-1 190) 

553 

(445 - 774) 
4e-04 

HM19 30,55749 323 (49,6%) 79 (68,1%) 1 090 

(964-1 222) 

560 

(454 - 791) 
4e-06 

IFM15 6,349037 329 (50,5%) 73 (62,9%) 1 069 

(938 -1 176) 

769 

(572 - 978) 
0,008 

MRCIX6 29,41472 326 (50,1%) 76 (65,5%) 1 090 

(964-215) 

610 

(449 - 833) 
2e-06 

 

Table 6:Summary Statistics of Kaplan-Meier Estimates of Overall Survival 

Signature 
Dichotomous 

(Cutoff 

value) 

Overall Survival 

n(Event) 

Low-risk 

n(Event) 

High-risk 

Median OS 

(95% CI) 

Low-risk 

Median OS 

(95% CI) 

High-risk 

p-

Value 

EMC92 0,5380177 152 (23,3%) 43 (37,1%) 
NA 

(2207 –NA) 

1 704 

(1 360 –NA) 
8e-04 

UAMS70 0,3922542 157 (24,0%) 38 (33,3%) NA 
2 207 

(345 - NA) 
0,014 

UAMS17 -1,242702 147 (22,5%) 48 (42,1%) 
NA 

(2207 - NA) 

1 670 

(1 033 –NA) 
1e-05 

HM19 30,55749 146 (22,4%) 49 (42,2%) NA 
2 207 

(1 094 –NA) 
2e-06 

IFM15 6,349037 152 (23,3%) 42 (36,2%) NA 
2 207 

(1 500 –NA) 
0,004 

MRCIX6 29,41472 148 (22,7%) 47 (40,5%) NA 
1 590 

(1 094 - NA) 
3e-06 

 

The performance of the classified risk groups in the various signatures were 

significantly better for OS than PFS (Table 7, Table 8, Figure 3, Figure 4, and Figure 

5) with HRs relative to the low-risk patients of the PFS ranging from 1,303 (95% CI, 

1,002-1,694; EMC-92) to 1,8326 (95% CI, 1,426-2,355; MRCIX-6). In terms of OS, 

HRs relative to the low-risk patients range from 1,553 (95% CI, 1,089-2,213; 

UAMS70) to 2,153 (95% CI, 1,549-2,99; MRCIX6). The proportion of high-risk 
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patients identified among some signatures are the same: 15,12% (EMC-92, IFM15, 

HM19, and MRCIX6), and 14,86% (UAMS70 and UAMS17). 

Among all the signatures, UAMS17 classified high-risk relative to low-risk 

patients had significantly the poorest PFS (median 553 vs. 1 082 days; HR 1,5658, 

95% CI: 1,219–2,011; P= 4,45× 10-4, estimated two-year PFS 44% vs. 63%; Figure 5 

I) while MRC-IX6 high-risk relative to low-risk patients had significantly the poorest 

OS (median 1 590 days vs. not reached; HR 2,1525, 95% CI: 1,549–2,99; P=4,87×10-

6, estimated two-years OS 44% vs. 63%; Figure 4 H) (Table 5, Table 6, Table 7, and 

Table 8). UAMS70 high-risk patients had considerably better PFS (median 776 vs. 1 

065 days; HR 1,3667, 95% CI: 1,044–1,79; P= 0,0232; estimated 2 years PFS 51% vs. 

63%; Figure 5 K) and OS (median 2 207 days vs. not reached; HR 1,5526, 95% CI: 

1,089–2,213; P= 0,015; estimated 2 years OS 78% vs. 81%; Figure 5 L) when it came 

to the best-performing signatures. Furthermore, UAMS70 high-risk patients have the 

same median OS time as HM19 (HR = 2,1398, 95% CI: 1,548-2,958; P= 4,14× 10-6; 

estimated 2 years OS 65% vs. 85%; Figure 3 D), and IFM15 (HR= 1,6515, 95% CI: 

1,173-2,324; P= 4,01×10-3; estimated 2 years OS 75% vs. 81%; Figure 4F) high-risk 

patients. However, their HRs and 95% CI differ (Table 5, Table 6, and Table 7, and 

Table 8).  

In analyzing the performance of the signatures in predicting the patients' two-year 

survival rate, we discovered that the two-year probability of PFS in this study was, on 

average, around 63% for low-risk patients, which is lower than the two-year OS 

probability, which was, on average, roughly 84% for the same group of patients. 

Similarly, we discovered that the two-year probability of PFS for high-risk patients 

was around 47% on average, which is much lower than the two-year probability of OS 

for the same group of patients, which was around 71%. Thus, regardless of the defined 

risk groups, the two-year probability of survival in OS was significantly higher than in 

PFS (Figure 3, Figure 4, and Figure 5).  
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Table 7:Summary Statistics of Cox Regression Analysis of Progression-free Survival 

High-risk signatures Proportion 

of High-risk 

Progression-free Survival 

Hazard ratio 95% CI Wald p-value 

EMC92 15,12% 1,3030 (1,002 – 1,694) 0,0483 

UAMS70 14,86% 1,3667 (1,044 – 1,79) 0,0232 

UAMS17 14,86% 1,5658 (1,219 – 2,011) 4,45e-04 

HM19 15,12% 1,7739 (1,386 – 2,27) 5,13e-06 

IFM15 15,12% 1,4039 (1,089 – 1,81) 0,00881 

MRCIX6 15,12% 1,8326 (1,426 – 2,355) 2,33e-06 

 

Table 8:Summary Statistics of Cox Regression Analysis of Overall Survival   

High-risk signatures Proportion 

of High-risk 

Overall Survival 

Hazard ratio 95% CI Wald p-value 

EMC92 15,12% 1,7749 (1,264 – 2,491) 0,00092 

UAMS70 14,86% 1,5526 (1,089 – 2,213) 0,015 

UAMS17 14,86% 2,0320 (1,467 – 2,815) 2,03e-05 

HM19 15,12% 2,1398 (1,548 – 2,958) 4,14e-06 

IFM15 15,12% 1,6515 (1,173 – 2,324) 0,00401 

MRCIX6 15,12% 2,1525 (1,549 – 2,99) 4,87e-06 
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Figure 3: Performance of the gene expression signatures in determining progression-free and overall survival of 

the defined two risk groups.  

LR means low-risk group; HR means high-risk group; p means the log-rank p-value; alpha (α) = 0.05; the vertical 

red dotted lines indicate survival at two years; and the horizontal black dotted lines indicates median survival. 
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Figure 4: Performance of the gene expression signatures in determining progression-free and overall survival of 

the defined two risk groups.  

LR means low-risk group; HR means high-risk group; p means the log-rank p-value; alpha (α) = 0.05; the vertical 

red dotted lines indicate survival at two years; and the horizontal black dotted lines indicates median survival. 
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Figure 5: Performance of the gene expression signatures in determining progression-free and overall survival of 

the defined two risk groups.  

LR means low-risk group; HR means high-risk group; p means the log-rank p-value; alpha (α) = 0.05; the vertical 

red dotted lines indicate survival at two years; and the horizontal black dotted lines indicates median survival. 
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The EMC-92 gene signature was compared to the other gene signatures using pair-

wise comparison to evaluate which one better explained survival prediction and risk 

classification. The intersection of high-risk patients between the EMC-92 gene and 

UAMS-70, UAMS-17, IFM15, HM19, and MRCIX-6 gene signatures was 24 (3.1%), 

37 (4,8%), 16 (2,1%), 32 (4,2%), and 34 (4,4%), respectively, of the overall 

population, according to the comparison. Furthermore, the EMC-92 signature 

classified 92(12%), 79(10,3%), 100(13%), 84(11%), and 82(10,7%) patients as high-

risk patients, while the UAMS-70, UAMS-17, IFM15, HM19, and MRCIX-6 

signatures identified them as low-risk patients, respectively (Figure 7). Similarly, in 

the stated comparable signatures, 90(11,7%), 77(10%), 100(13%), 84(11%), and 

82(10,7%) of the patients were exclusively categorized as high-risk, but in EMC-92 

they were regarded low-risk (Figure 7).  

When EMC-92 was compared to each of the other GES in this study, patients 

exclusively classified as high-risk by EMC-92 had a significantly better prognosis than 

those identified as high-risk by EMC-92 and any of the other signatures (EMC92 vs. 

UAMS70: median 800 vs 581 days; HR 0,536, 95% CI: 0,3–0,918; P= 0,035; estimated 

2 years PFS 52% vs. 32%, EMC-92 vs. UAMS17: median 1066 vs. 393 days; HR 

0,425, 95% CI: 0,261–0,695; P= 6,4× 10-4, estimated 2 years PFS 61% vs. 23%, EMC-

92 vs. IFM15: median 750 vs. 552 days; HR 0,6051, 95% CI: 0,33–1,11; P= 0,105 , 

estimated 2 years PFS 50% vs. 32%, EMC-92 vs. HM19: median 1 066 vs. 393 days; 

HR 0,446, 95% CI: 0,269–0,740; P= 0,00178 , estimated 2 years PFS 60% vs. 19%, 

EMC-92 vs. MRCIX6: median 1 057 vs. 475 days; HR 0,504, 95% CI: 0,302–0,842; 

P= 0,0088 , estimated 2 years PFS 58% vs. 20%; Table 9, Table 10, Figure 8, Figure 

9, and Figure 6). Similarly, patients who were exclusively classified as high-risk by 

the EMC-92 gene signature had a significantly better prognosis than those who were 

classified as high-risk by EMC-92 intersection with any of the following signatures 

(EMC-92 vs. UAMS17: median Not reached after 1 825 vs. 796 days; HR 0,295, 95% 

CI: 0,162–0,540; P= 7,5× 10-5, estimated 2 years OS 88% vs. 52%, EMC-92 vs. HM19: 

median 1 704 vs. 847 days; HR 0,469, 95% CI: 0,254–0,867; P= 0,0157 , estimated 2 

years OS 83% vs. 56%; Table 9, Table 10, Figure 8, and Figure 9). On the contrary, 

the OS rate of patients exclusively identified as high-risk by EMC-92 gene expression 

signature had insignificantly better prognosis than high-risk patients commonly 
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identified between EMC-92 and anyone of the following signatures (EMC-92 vs. 

UAMS70: median Not reached after 1 825 vs. 1 170 days; HR 0,6116; 95% CI: 0,307–

1,217; P= 0,161, estimated 2 years OS 77% vs. 70%, EMC-92 vs. IFM15: median 1 

704 vs. 983 days; HR 0,771; 95% CI: 0,357–1,664; P= 0,508, estimated 2 years OS 

76% vs. 74%; EMC-92 vs. MRCIX6: median 1 704 vs. 983 days; HR 0,566; 95% CI: 

0,304–1,054; P= 0,0727 , estimated 2 years OS 81% vs. 62%;  Table 9, Table 10, Figure 

8, Figure 9, and Figure 6).  

 

 

Figure 6: Kaplan-Meier curves of the comparison between uniquely identified HR patients in EMC-92 and its 

intersection with the other GES. 

U-HR means uniquely identified high-risk patients by EMC-92; C-HR means the intersecting HR patients 

between EMC-92 and the other gene expression signature; HR means high-risk patients; P means the log-rank p-

value; alpha (α) = 0.05; the vertical red dotted lines indicate survival at two years; and the horizontal black 

dotted lines indicates median survival. 
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risk 

651 

(84,8%) 
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(74,8%) 

77 

(10%) 

Low-

risk 

651 

(84,8%) 

551 

(71,8%) 

100 

(13%) 

High-

risk 

116 

(15,1%)  

79 

(10,3%) 

37 

(4,8%) 

High-

risk 

116 

(15,1%) 

100 

(13%) 

16 

(2,1%) 

UAMS70   HM19 

Total Low-risk 
High-

risk 

E
M

C
-9

2
 

 Total 
Low-

risk 

High-

risk 

E
M

C
-9

2
 

Low-

risk 

651 

(84,8%) 

561 

(73,1%%) 

90 

(11,7%) 

Low-

risk 

651 

(84,8%) 

567 

(73,9%) 

84 

(11%) 

High-

risk 

116 

(15,1%) 

92           

(12%) 

24 

(3,1%) 

High-

risk 

116 

(15,1%) 

84 

(11%) 

32 

(4,1%) 

MRCIX6 

Total Low-risk High-risk 

E
M

C
9

2
 

Low-risk 651 (84,8%) 569 (74,2%) 82 (10,7%) 

High-risk 116 (15,1%) 82 (10,7%) 34 (4,4%) 

Figure 7: Confusion matrixes between EMC92 and the other five signatures 
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Table 9: Comparison of median survival between uniquely identified HR patients in EMC-92 and its intersection 

with the other GES 

Compared 

Signatures 
Survival 

n(Event) 

C_HR 

n(Event) 

U_HR 

Median PFS 

(95% CI) C_HR 

Median PFS 

(95% CI) U_HR 

p-

Value 

EMC-92 vs. 

UAMS70 

PFS 
15 

 

32 

 

581 

(268 - NA) 

800 

(634 – 1 176) 
0,03 

OS 11 32 
1 170 

(796 - NA) 

Not reached after 

1 825 days 
0,2 

EMC-92 vs. 

UAMS17 

PFS 
28 

 

39 

 

393 

(349 - 624) 

1066 

(715 – 1 518) 
4e-4 

OS 23 20 
796 

(469 – 1 670) 

Not reached after 

1 825 days 
3e-5 

EMC-92 vs. 

IFM15 

PFS 
13 

 

54 

 

552 

(278 – 1 149) 

750 

(625 – 1 176) 
0,1 

OS 8 35 
983 

(849 - NA) 

1 704 

(1 369 - NA) 
0,5 

EMC-92 vs. 

HM19 

PFS 
24 

 

43 

 

393 

(291 - 625) 

1 066 

(715 – 1 493) 
0,001 

OS 17 26 
849 

(401 - NA) 

1 704 

(1 574 - NA) 
0,01 

EMC-92 vs. 

MRCIX6 

PFS 
23 

 

44 

 

475 

(349 - 652) 

1 057 

(654 – 1 432) 
0,008 

OS 
16 

 

27 

 

983 

(574 - NA) 

1 704 

(1 574 - NA) 
0,07 

 

 

Table 10: Comparison of hazard ratios between uniquely identified HR patients in EMC-92 and its intersection 

with the other GES 

Signatures Survival 

2-years 

survival rate 

C_HR vs. UE_HR 

(%) 

Hazard 

ratio 
95% CI Wald p-value 

EMC92 

vs. 

UAMS70 

PFS 32/52 0,536 (0,3 – 0,958) 0,0352 

OS 70/77 0,612 (0,307 – 1,217) 0,161 

EMC92 

vs. 

UAMS17 

PFS 23/61 0,425 (0,261 – 0,695) 6,4e-4 

OS 52/88 0,295 (0,162 – 0,540) 7,5e-5 

EMC92 

vs. 

IFM15 

PFS 32/50 0,605 (0,33 – 1,11) 0,105 

OS 74/76 0,771 (0,357 – 1,664) 0,508 

EMC92 

vs. 

HM19 

PFS 19/60 0,446 (0,269 – 0,740) 0,00178 

OS 56/83 0,469 (0,254 – 0,867) 0,0157 

EMC92 

vs. 

MRCIX6 

PFS 20/58 0,504 (0,302 – 0,842) 0,00882 

OS 62/82 0,566 (0,304 – 1,054) 0,0727 
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Figure 8: Kaplan-Meier curves of the comparison between uniquely identified HR patients in EMC-92 and its 

intersection with the other GES. 

U-HR means uniquely identified high-risk patients by EMC-92; C-HR means the intersecting HR patients between 

EMC-92 and the other gene expression signature; HR means high-risk patients; P means the log-rank p-value; 

alpha (α) = 0.05; the vertical red dotted lines indicate survival at two years; and the horizontal black dotted lines 

indicates median survival. 
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Figure 9: Kaplan-Meier curves of the comparison between uniquely identified HR patients in EMC-92 and its 

intersection with the other GES. 

U-HR means uniquely identified high-risk patients by EMC-92; C-HR means the intersecting HR patients between 

EMC-92 and the other gene expression signature; HR means high-risk patients; P means the log-rank p-value; 

alpha (α) = 0.05; the vertical red dotted lines indicate survival at two years; and the horizontal black dotted lines 

indicates median survival. 
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CHAPTER 5  

DISCUSSION OF RESULTS 

The research discussed in this paper adds to our understanding of how well GES 

performs in risk classification and survival prognostication in multiple myeloma. 

Clinical and cytogenetic characteristics are being used to predict poor prognosis. These 

indications, however, do not provide all predictive information. Gene expression 

analysis can be used to identify patients with a poor prognosis. Thus, based on patients' 

GEP characterized using NGS, the performance of GES in predicting OS and PFS of 

NDMM patients was evaluated in this study. 

The main findings of particular interest were, first and foremost, that survival 

performance in OS was significantly better than in PFS, regardless of the GES. This 

finding is consistent with what Rowan Kuiper et al. (2015) have reported. Furthermore, 

all GES performed significantly well in categorizing patients into their respective risk 

groups, with the categorized low-risk patients having significantly longer survival than 

the high-risk patients, which is highly significantly discriminated by all GES in both 

PFS and OS (Figure 3, Figure 4, and Figure 5). Chen et al. (2015) confirmed this 

conclusion, reporting a significant difference in OS between the low-risk and high-risk 

groups (p<0,01) in their study. Despite the fact that Shah et al. (2020) reported that 

EMC-92 and UAMS70 high-risk patients had considerably shorter OS, only EMC92 

had significantly shorter PFS in their study, which contradicts our findings. 

Dickens et al. (2010) and R. Kuiper et al. (2012) found that the signatures in their 

research intersected with a substantially larger proportion of cases with a poor 

prognosis. Their findings, however, are in contrast to ours, as only two individuals 

were commonly recognized as high-risk patients across all signatures in our 

investigation. Furthermore, all of the signatures in our study commonly identified 407 

patients as low-risk. In general, the patients in this study had a median PFS and OS of 

634 (259 – 1 233) and 1 184 (409 – 1 590) days, respectively, which is considerably 

less than what is reported by Walker et al. (2019) and Palumbo et al. (2015). 
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When comparing the number of high-risk patients identified by the various 

signatures, EMC-92, IFM15, HM19, and MRCIX6, our findings and those of Van 

Rhee et al. (2014) reveal that GES scores can identify about 15% of high-risk patients. 

Rowan Kuiper et al. (2015) and R. Kuiper et al. (2012), on the other hand, found that 

the proportion of high-risk patients varied by signature in their study, with roughly 

13% of patients identified as high-risk by either signature. This contradicts our findings 

because UAMS 70 and UAMS17 both identified the same proportion of high-risk 

patients (Table 7), which Shaughnessy et al. (2007) also confirmed. Similarly, in our 

study, the proportion of patients classified as having the worst prognosis by IFM15 

and UAMS70 was considerably higher than that found by Dickens et al. (2010). 

Furthermore, these discrepancies could be due to the prognostic stratification methods 

used and the platforms used in describing the signatures. 

When it comes to establishing how well the GES predicted PFS rate, low-risk 

patients identified by HM19 and MRCIX6 had a significantly better prognosis, while 

high-risk patients identified by UAMS70 and IFM15 had a significantly better 

prognosis (Table 5). Similarly, in OS, the low-risk patients identified by all GES had 

significantly much better survival prediction, with median survival not reached after 

2190 days in each. Similar findings were previously reported by Shaughnessy et al. 

(2007) and Zhan et al. (2014). Furthermore, in OS, the high-risk patients identified by 

HM19 and IFM15 performed significantly better in terms of median survival time 

(Table 6). Additionally, patients identified as high-risk by MRCIX6 had significantly 

highest hazard ratio in both PFS and OS, whereas those classified as high-risk by 

EMC-92 and UAMS70 had the significantly lowest hazard ratio in both PFS and OS 

(Table 7). This finding contradicts the findings of R. Kuiper et al. (2012), but it is 

consistent with the findings of Rowan Kuiper et al., 2015.  

When the predicted 2-year survival rates of the different gene expression 

signatures were compared, the high-risk patients classified by UAMS17 and MRCIX6 

had significantly lower 2-year PFS and OS rates, with 44% in each (Figure 4 H, Figure 

5 I). UAMS70 categorized high-risk patients performed significantly better in both 

survival events, with 2-year survival rates of 52% and 78%, respectively, than any 

other GES in predicting 2-year survival probability (Figure 5 K and L). Furthermore, 
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the MRCIX6 signature-classified low-risk patients had a significantly higher predicted 

2-year survival probability (Figure 5 G and H). In summary, in all of the GES in this 

study, the 2-year survival probability was significantly higher in OS than in PFS for 

all risk groups, notably in the low-risk patients (Figure 3, Figure 4, and Figure 5). 

Moreau et al. (2014), reported a similar finding too. 

In a pair-wise comparison to determine the GES that best explained the observed 

survival between the EMC-92 gene signature and each of the other GES, the result of 

our findings regarding the proportion of intersecting high-risk patients (3,1%) between 

EMC-92 and UAMS70 gene signatures, which is slightly higher than that between 

EMC-92 and the others (Table 9 and Table 10), is in discordance with the results of 

(R. Kuiper et al., 2012). Furthermore, the proportion of patients identified exclusively 

as high-risk by EMC-92 was either greater than or equal to that categorized exclusively 

by the other GES (Figure 7). Similarly, patients exclusively categorized as high-risk 

by EMC-92 had a significantly better prognosis for both PFS and OS events than the 

intersection of patients classified as high-risk between EMC-92 and any of the other 

GES (Table 9, Table 10, Figure 8, Figure 9, and Figure 6). R. Kuiper et al. (2012) also 

reported similar findings. 

Many GES have been studied and their association with outcomes has been 

reported in several publications (R. Kuiper et al., 2012; Moreaux et al., 2011). 

However, only EMC-92 and UAMS70 have been validated and approved into clinical 

practice so far. That said, in this study, our focus was centered on evaluating NDMM 

patients’ survival using prognostication and stratification performance of the GES 

based on 85% quantile dichotomization of the express genes weighting coefficients. 

This, of itself, is a limitation of this study because we do not evaluate the biological 

aspects of the GES, the therapies patients get, or the clinical and demographic factors 

of patients that may be associated with survival.  Furthermore, GES probe-ids in this 

study were converted from microarray to RNASeq, resulting in the exclusion of some 

GES probe-ids (EMC-92 less by 4 and UAMS less by 1) because they could not be 

matched. This could have an impact on the proportion of patients classified in the risk 

groups of the said GES. For further research, comparison between the GES and other 

known methods of survival prediction and risk stratification in MM patients should be 
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considered together with the signatures’ biological features associated with survival to 

provide a wholistic understanding and best method applicable. 

In conclusion, according to the findings of this study, all of the GES performed 

significantly well in distinguishing risk groups as distinctively as possible, and the 

proportion of classified predicted risk groups varies less among the GES, with nearly 

all signatures being equally sensitive in predicting survival outcomes and identifying 

high-risk cases in NDMM patients. Research using cutting-edge GEP technology is 

thought to have generated an important new insight into the molecular biology of 

myeloma. However, these breakthroughs have not resulted in better patient outcomes 

or care. Nonetheless, in this and previous studies, GEP has been shown to be a suitable 

candidate for predicting NDMM patients’ survival rate and stratifying them for 

treatment options in clinical trials, so we expect it will be considered useful in clinical 

settings someday soon. Moreover, using GES as an accurate stratification technique 

would also be a huge step forward in the clinical care of MM patients, with significant 

implications for improving their progression-free and overall survival rates, as well as 

quality of life.  
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