

T.R.N.C

NEAR EAST UNIVERSITY INSTITUTE OF GRADUATE STUDIES

ALLELIC FREQUENCIES OF GENES INVOLVED IN HORMONAL REGULATION OF POLYCYSTIC OVARY SYNDROME

By

SANA MUNEEM MADHHER

Master of Science in Medical Biology and Genetics

Supervisor

Assoc. Prof. Pinar Tulay

June 2021

Nicosia, North Cyprus

T.R.N.C

NEAR EAST UNIVERSITY INSTITUTE OF GRADUATE STUDIES

ALLELIC FREQUENCIES OF GENES INVOLVED IN HORMONAL REGULATION OF POLYCYSTIC OVARY SYNDROME

By

SANA MUNEEM MADHHER

Master of Science in Medical Biology and Genetics

Supervisor

Assoc. Prof. Pinar Tulay

June 2021

Nicosia, North Cyprus

APPROVAL

Thesis submitted to the Institute of Graduate Studies of Near East University in partial fulfillment of the requirement for the degree of Master of Science in Medical Biology and Genetics.

Thesis Committee:

Chair of the committee and Supervisor:	Assoc. Prof. Pinar Tulay Near East University
Member:	Assoc. Prof. Mahmut Ç. Ergören Near East University
	Assist. Prof. Özel Yürüker Girne University
Approved by:	Prof. Kemal Hüsnü Can Baser Director of Institute of Graduate Studies Near East University

DECLARATION

I declare that, this thesis entitled as "Allelic frequencies of genes involved in hormonal regulation of polycystic ovary syndrome" conducted by me under supervision of Assoc. Prof. Pinar Tulay, with respect to ethical guidelines.

I also declare that information obtained from published work of others had been cited in text and listed in the reference list.

Name-Surname:

Sana Muneem Madhher Signature:

COMPLIANCE AND APPROVAL

Her master thesis "Allelic frequencies of genes involved in hormonal regulation of polycystic ovary syndrome" was written in accordance with the NEU Postgraduate thesis proposal and thesis writing directive.

Prepared by Thesis Sana Muneem Madhher

Supervisor

Assoc. Prof. Pinar Tulay

DEDICATION

I am dedicating this research work to the spirit of my first teacher, my soul, my ideals, and the ideal of fatherhood who cultivated love for knowledge and principles of life inside me, my father (God bless him).

ACKNOWLEDGMENT

First, I thank God Almighty for His many blessings for the first of which is the blessing of health with which I have been blessed, and I have been able to complete my thesis. With special thanks to my best friend Resa Saifaldeen for their supports all the time and Dr-Dlear Hasan for their help and supports all the time.

Secondly, I thank and gratitude and appreciation to -Assoc. Prof. Dr. Pinar Tulay- for overseeing my thesis, which was all the time helping me and guides me in various ways to reach my goal and achieve my dream. With my thanks, appreciation and gratitude to all the lecturers in the "Medical Biology and Genetics in Near East University Faculty of Medicine" for the efforts, assistance, and encouragement they provided me during my studies in particular "Research Assistant Mr. Huseyin Cagsin, Miss. Merdiye Mavis, Miss. Meryem Osum" and Miss Nadire Kıyak.

ABSTRACT

ALLELIC FREQUENCIES OF GENES INVOLVED IN HORMONAL REGULATION OF POLYCYSTIC OVARY SYNDROME

SANA MUNEEM MADHHER

Department of Medical Genetics

Thesis supervisor: Assoc. Prof. Pinar Tulay

Aim: The aim of this thesis was to investigate the allelic frequencies of *FSHR* gene for p.Ala307Thr (c.919G>A; rs6165) and p.Ser680Asn (c.2039C>T; rs6166) that are involved in the regulation of oogenesis.

Background: Polycystic ovary syndrome (PCOS) is a common complicated endocrine condition. PCOS causes а number of health problems. Hyperandrogenism, hirsutism, anovulation, infertility, insulin resistance, impaired glucose tolerance, gestational diabetes (GDM) and type 2 diabetes (T2DM), dyslipidemia, obstructive sleep apnea, and psychological disorders (increased anxiety, depression and poor quality of life) have been reported in females with PCOS. Therefore, PCOS is increasingly recognized that it is not only a reproductive problem but also a metabolic disease with significant health risks. The appearance of symptoms can vary by age. Reproductive and psychological symptoms predominate in young women. The prevalence of metabolic features increases with age and also occurs in young women, especially when they are overweight. The etiology of PCOS is complicated. It has been suggested that both environmental factors as well as genetic factors are involved in the development of PCOS. The hormonal regulation has proven to be important in the normal development of oocytes and any anomalies of the hormonal levels may lead to the development of PCOS.

Material and Methods: A total of 120 blood samples were collected from females with polycystic ovary syndrome and females without polycystic ovary syndrome as control group from the NEU Hospital. The clinical background and body mass index (BMI) were reported. DNA extraction was performed from whole blood of each sample. The analysis of allelic

viii

frequencies were investigated by real-time PCR and SNPs in the *FSHR* gene in two regions associated with PCOS, p.Ala307Thr (c.919G>A; rs6165) and p.Ser680Asn (c.2039C>T; rs6166), were evaluated. The statistically program SPSS was used to conduct Fischer's exact test.

Results: The data was analyzed by SPSS program (version 25) by using Fischer's exact test. There were no statistically significant differences shown when PCOS patients compared with control group depending on the allelic frequency of *FSHR* p.Ala307Thr (c.919G>A; rs6165). The p-value was recorded as 0.999 and this is higher than alpha value 0.05. The p -value for *FSHR* p.Ala307Thr (c.919G>A; rs6165) was 0.498 between the patient and the control groups that is higher than alpha value 0.05. Majority of the patients were heterozygous for *FSHR* Ala307Thr while only two patients are found to be homozygous. On other hand, both the patients in the patient and the control group was found to be heterozygotes for *FSHR* p.Ser680Asn (c.2039C>T; rs6166).

Conclusions: In this study, the allelic frequency and genetic condition of *FSHR* gene p.Ala307Thr (c.919G>A; rs6165) and p.Ser680Asn (c.2039C>T; 6166) have shown no statistical significant difference when both groups were compared (PCOS and control groups, respectively). This would mean that the allelic frequency of *FSHR* gene including both p.Ala307Thr (c.919G>A; rs6165) and p.Ser680Asn (c.2039C>T; rs6166) was not associated with the pathogenicity of PCOS and cannot be considered as one of the factors in the oogenesis regulation.

Keywords: FSHR, PCOS, Ala307Thr, Ser680Asn, polymorphism.

LIST OF CONTENTS

COVER PAGEi
TITLE PAGE ii
APPROVAL iii
DECLARATION iv
COMPLIANCE AND APPROVALv
DEDICATION vi
ACKNOWLEDGMENTvii
ABSTRACTviii
LIST OF CONTENTSix
LIST OF TABLExi
LIST OF FIGURESxii
LIST OF ABBREVIATIONxiii
CHAPTER ONE1
1.1 Introduction1
1.2 Clinical significance of polycystic ovary syndrome1
1.3 Polycystic ovary syndrome associated abnormalities and diseases
1.3.1 Infertility and PCOS2
1.3.2 Cardiovascular risk (CVD) and PCOS
1.3.3 Metabolic risk and PCOS
1.3.4 Endometrial cancer and endometriosis risk and PCOS4
1.3.5 Psychiatric disturbances and PCOS4
1.4 Pathophysiology of PCOS4
1.5 Secretion of gonadotropin and their effects4
1.6 SNPs mechanism6
1.7 The <i>FSHR</i> gene
1.8 The fertility treatment
1.9 Objectives of the study9
1.10 Significance of the study9
1.11 Thesis structure9
CHAPTER TWO

MATERIALS AND METHODS	10
2.1 The sample collection	10
2.2 DNA extraction for Real-Time Analysis	10
2.3 DNA concentration	11
2.4 Real-Time-Polymerase Chain Reaction (RT-PCR)	11
2.5 Statistical analysis	12
CHAPTER THREE	13
3.1 Results	13
3.2. Fischer's exact test for FSHR p.Ala307Thr gene in tow groups (PCOS &	Control) 18
3.3 Fischer's exact test for <i>FSHR</i> p.Ser680Asn gene in tow groups (PCC)S &
Control)	21
CHAPTER FOUR	22
4.1 DISCUSSION	24
4.2 CONCLUSION	24
REFERENCES	25

LIST OF TABLE

Table 2.1.a. Details of primer sequences	12
Table 2.1.b. Table showing the PCR steps	12
Table 3.1. Describe the details for PCOS group	14
Table 3.2. Describe the details for control group	16
Table 3.3. Summary table for the percentage of genetic condition FSHR Ala307Thr	
(c.919G>A; rs6165) gene in two groups (PCOS & Control)	18
Table 3.4. Summary table for the percentage of SNP of FSHR Ala307Thr	
(c.919G>A; rs6165) gene in two groups (PCOS & Control)	20
Table 3.5. Summary table for the percentage of genetic condition FSHR Ser680Asn	
(c.2039C>T; rs6166) gene in two groups (PCOS & Control)	21
Table 3.6 Summary table for the percentage of SNP of FSHR Ser680Asn (c.2039C	:>T;
rs6166) gene in two groups (PCOS & Control)	21

LIST OF FIGURES

Figure 1.1 The ultrasonography showing the PCOS
Figure 1.2 The diagram showing the <i>GnRH</i> cycle
Figure 3.1a Real-time PCR image showing the amplification of mutant type allel
p.Ala307Thr(c.919G>A;rs6165)17
Figure 3.1b Real-time PCR image showing the amplification of wild type allele
p.Ala307Thr
Figure 3.2 The percentage for alleles detected at the FSHR Ala307Thr in two groups
(PCOS & Control)
Figure 3.3 The percentage of alleles deected at the FSHR Ala307Thr in two groups
(PCOS & Control)

LIST OF ABBREVIATION

DNA	: Deoxyribonucleic acid
PCOS	: Polycystic Ovary Syndrome
FSHR	: Follicle Stimulating Hormone Receptor
T2DM	: Type 2 diabetes Mellitus
GDM	: Gestational diabetes Mellitus
BMI	: Body mass index
SNPs	: Single_nucleotide polymorphisms
GnRH	: Gonadotropin-releasing hormone
IR	: Insulin Resistance
IRS	: Insulin Receptor Substrate
CVS	: Cardiovascular Disease
CRP	: C-Reactive Protein
HDL	: High-Density Lipoprotein
EDTA	: Ethylenediaminetetra-acetic Acid
cDNA	: Complementary Deoxyribonucleic Acid
IVF	: In vitro Fertilization
POF	: Premature Ovarian Failure
FSH	: Follicle Stimulating Hormone
LH	: Luteinizing hormone
LHCGR	: luteinizing hormone/chorionic gonadotropin receptor
PPAR-y	: Peroxisome proliferator-activated receptor gamma
FTO	: Fat mass and obesity associated
VDR	: Vitamin D receptor
ER-α	: Estrogen receptor alpha
5-HTTLPR	: Serotonin-transporter-linked polymorphic region

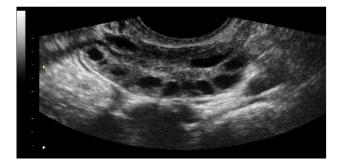
РСОМ	: Polycystic Ovarian Morphology
PCR	: Polymerase Chain Reaction
ND	: Nano Drop
HRM	: High resolution melting method
НРО	: Hypothalamic pituitary ovarian
Con.	: Concentration

CHAPTER ONE

1.1 Introduction:

Polycystic ovary syndrome (PCOS) is an endocrine condition. This can be seen in the various females. Anovulation, menstrual cycle disruption, increased androgen hormones, insulin resistance, abdominal fat gain and infertility are among the symptoms (Norman et al., 2007). PCOS is complex condition that is caused by both genetic factors (CM, 2011, Diamanti-Kandarakis et al., 2006) and environmental factors (Qu et al., 2012, Wang et al., 2014). PCOS affects approximately 7% of females in their reproductive years (Goodarzi et al., 2011). The polymorphism of genes may impact hormonal regulation and play a role in the normal development of oocytes and Polycystic ovary syndrome can develop as a result of hormonal imbalances (Goodarzi et al., 2011).

1.2 Clinical significance of polycystic ovary syndrome:


Females with polycystic ovary syndrome frequently experience irregular menstrual cycles, a high level of androgen and the inability to procreate. Menstrual cycle disarray is characterized by abnormally light menstrual bleeding , menstrual cycle suppression, and irregular menstrual bleeding lasting a long period (Farquhar, 2007). Around 30% of women suffering from polycystic ovary syndrome don't have any issues with menstruation (Balen et al., 1995). Nearly 85% to 90% of women with polycystic ovary syndrome have from abnormally light menstrual cycles, while 30% to 40% of women with polycystic ovary syndrome have suppressed menstruation (Hart et al., 2004).

Approximately 80% of women with polycystic ovary syndrome produce excessive amounts of androgen (Azziz et al., 2004). Women with polycystic ovary syndrome have high levels of androgen production and hirsutism in about 70% of cases (Fauser et al., 2012). The Feriman-Gallwey score system is used to calculate hirsutism (Ferriman et al., 1961). More than 90% of women have hirsutism with regular monthly cycle but have polycystic ovaries (Adams et al., 1986), while 50% of females suffering from polycystic ovary have excess unwanted body hair (Souter et al., 2004). Acne is another sign of excessive androgen production, although it is not common in polycystic ovary syndrome. However, 15%-30% of women with polycystic ovary syndrome still develop

1

acne (Azziz et al., 2004, Wijeyaratne et al., 2002, Eden, 1991)). Depending on the expression levels of 5α -reductase in the fatty gland and the hair follicle, the distribution of hirsutism and acne changes (Lowenstein, 2006). Additionally, weight gain is associated with polycystic ovary syndrome (Isikoglu M et al., 2007). Women with polycystic ovary syndrome are advised to follow a healthy diet to reduce weight gain, overall fat mass, testosterone and insulin levels (Teede et al., 2011).

Figure 1.1: The ultrasonography showing the PCOS (Nardo and Wadhwa, 2007).

1.3 Polycystic ovary syndrome associated abnormalities and diseases:

PCOS has been associated with various diseases. PCOS is linked to infertility, as previously stated. Furthermore, PCOS plays a role in the development of cardiovascular diseases and psychological disorders including, nervousness and stress. Additionally, it has been associated with cancers such as breast cancer and endometrial cancer. infertility and abortion affect nearly 20 percent of women (Diamanti-Kandarakis et al., 1998).

1.3.1 Infertility and PCOS:

Infertility affects nearly 40% of women with polycystic ovary syndrome (Teede et al., 2010). Around 90-95% of women with polycystic ovary syndrome do not have a mature egg and consequently do not ovulate. Despite having a normal number of primordial follicles, women are arrested at the pre-antral stage. While, the normal follicles remain at lower diameter of 4-8 μ m, resulting in anovulation (Brassard et al., 2008). PCOS impacts 42% to 73% of women who have abortions (Glueck et al., 2001, Jakubowicz et al., 2002). The polymorphisms of *FSHR* gene, such as p.Thr307Ala, have been considered to play a role in the development of polycystic ovary syndrome (Jakubowski, 2005, Layman et al., 1998).

1.3.2 Cardiovascular risk (CVD) and PCOS:

Polycystic ovary syndrome promotes a two-fold increase in the risk for cardiovascular disease in women. The risks include, high blood pressure, an abnormal amount of lipid in the blood, a high blood sugar level, and high body mass index. Furthermore, PCOS has also been associated with less prevalent risks, such as C-reactive protein (CRP), homocysteine, and tumor necrosis factor-alpha (TNF-alpha) (Toulis et al., 2011). Females of various ages with polycystic ovary syndrome have a major stranger sign for cardiovascular disease and these high risks can exist without an abnormal amount of lipid in the blood but with increased levels of lipid (Fauser et al., 2012). The polymorphism of *PPAR-y* gene affects lipid and high blood sugar levels (Falcão-Pires et al., 2009, Auwerx, 1999).

1.3.3 Metabolic risk and PCOS:

Obesity is an increasingly common symptom in women with PCOS. Women with polycystic ovary syndrome have high body mass index and abdominal fat (Bates et al., 2013), there is a strong link between vascular fat accumulation with increased insulin resistance (IR) (Carmina et al., 2007, Cascella et al., 2008). The accumulation of fat in the vascular system is related to high fasting insulin level and smaller insulin space than a detour (Carmina et al., 2007, Cascella et al., 2008). At the same time the accumulation of fat in the body related with a dyslipidemic profile, which includes elevated triglyceride levels in the blood and lower high-density lipoprotein levels (HDL) (Lord et al., 2006, Pasquali et al., 1994). Despite the fact that polycystic ovary syndrome is considered as one of the causes of type 2 diabetes mellitus (T2DM), women with polycystic ovary syndrome have a higher risk of developing T2DM (Alberti et al., 2007). The polymorphisms of IR and IRS play a role in the development of type 2 diabetes mellitus and polycystic ovary syndrome (Shi et al., 2016). The FTO gene polymorphisms may be involved in obesity-related polycystic ovary syndrome (Demirci et al., 2010, Shi et al., 2007). At the same time, a variation in the vitamin D receptor (VDR) gene, which is responsible for vitamin D levels and is correlated to polycystic ovary syndrome, may have a role in the development of PCOS (Ogunkolade et al., 2002, Mahmoudi and sterility, 2009).

1.3.4 Endometrial cancer and endometriosis risk and PCOS:

According to a meta-analysis, women with PCOS had a higher risk of developing endometrial cancer (Barry et al., 2014). While ovarian and breast cancers are less common, they are nonetheless possible (Barry et al., 2014). The polymorphism of the (ER)- α gene plays a significant role in endometrial cancer (Kang et al., 2005).

1.3.5 Psychiatric disorders and PCOS:

Psychological problems impact women with PCOS, lowering their quality of life (Moran et al., 2012). According to recent meta-analysis, it has been estimated that 14% to 67% of females with polycystic ovary syndrome had 4-fold increase risk of developing depression (Dokras et al., 2011). Women who have polycystic ovary syndrome experience anxiety (Dokras et al., 2011). The polymorphism in the *serotonin transporter* gene (*5-HTTLPR*) plays a role in the psychiatric disorders and polycystic ovary syndrome (Serretti et al., 2007).

1.4 Pathophysiology of PCOS:

with Patients PCOS have phenotypic manifestations linked ovarian hormone to production abnormalities and elevated androgen levels, as well as clinical features increased insulin resistance and hyperinsulinemia. insulin resistance and related to hormonal abnormalities play a significant role in the pathophysiology of PCOS in approximately 50-70% of cases (Skrgatic et al., 2013, Diamanti-Kandarakis et al., 2008).Hyperinsulinemia, hyperandrogenemia and ovarian hormone imbalances (with subsequent anovulation) have all been correlated to PCOS. Insulin interacts with gonadotropins and stimulates and enhances steroidogenesis by directly binding to its receptor in the ovary (Makker et al., 2012, Li et al., 2017).

1.5 Secretion of gonadotropins and their effects:

From an etiological point of view, PCOS could be caused by a dysfunction in neuronal pathways that control the hypothalamic-pituitary-ovarian (HPO) axis in the brain (Moore et al., 2016). In vast majority of mammals, the function of ovaries are controlled by GnRH neurons, which are found adjacent to optic in hypothalamus, (Moore et al., 2016) and produce GnRH neuropeptide into median eminence and portal vein,

stimulating adenohypophysis gland to secrete gonadotropins, hormones that control ovarian folliculogenesis and steroidogenesis (Carmel et al., 1976). Binding of follicular stimulation hormone (FSH) to its receptors on granulosa cells mediates the development of follicles in the ovary. Long-term FSH deficiency can cause impaired follicular maturation and ovulation failure resulting in subfertility. These immature follicles will appear as small cysts on ultrasound examination (Bafrouei et al., 2018, MELISSA et al., 2000).

Another gonadotropin, luteinizing hormone (LH), mediates follicular growth, stimulates steroidogenesis and develops corpus luteum (Shoham et al., 1993, Dufau, 1998). LH induces ovulation by binding to LH receptors and the luteinizing hormone/chorionic gonadotropin receptor (*LHCGR*) which is also the target receptor of HCG (Almawi et al., 2015). Improper production and release of gonadotropins (FSH and LH) is a major cause of PCOS (Sheykhha et al., 2007).

The main neuroendocrine change involved in the pathogenesis of PCOS is an elevation of GnRH levels, which is manifested as increased LH production. LH production is the most important factor in the etiology of PCOS (Sheykhha et al., 2007). This role can be explained by different mechanisms or hypotheses. The first mechanism is an elevation of circulating insulin that mediates overactivation of either GnRH nerve cells or the response of the pituitary gland to GnRH. The second mechanism is a decrease in serum progesterone, which causes anovulation, and this in turn cancels the effect of negative feedback of progesterone on GnRH release. The third mechanism is a rise in androgen levels that reduces negative feedback of steroid hormones (Moore et al., 2016). It has been found that, in contrast to *GnRH* and its *receptor* (*GnRHR*) genes, *FSH* and *LH receptor* (*FSHR/LHCGR*) genes have been correlated with an increased risk of development, regardless of ethnic differences (Almawi et al., 2015).

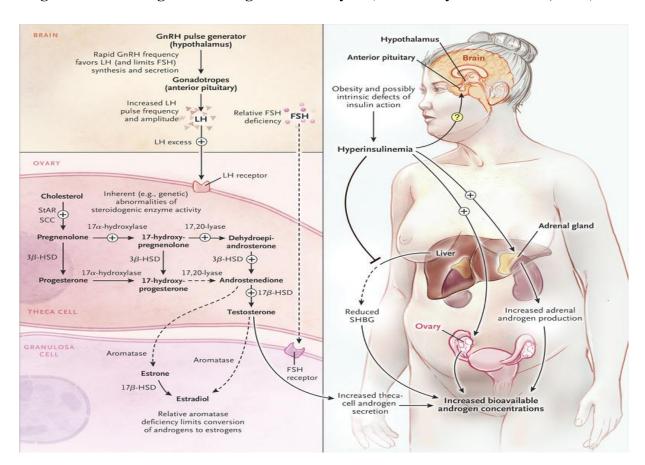


Figure 1.2: The diagram showing the GnRH cycle (McCartney and Marshall, 2016).

1.6 SNP mechanism:

A change in DNA sequence by single nucleotide (A, T, C, or G) is referred to as single nucleotide polymorphism (SNP). Around two out of three SNPs, Cytosine (C) is replaced by thymine (T). An SNP is found every 100-300 bases within the human genome. SNPs change less frequently from generation to generation in terms of evolution. SNPs constitutes about 90% of all human genetic variants and can be found in both coding and non-coding regions along the 3,200,000,000 base human genome with no obvious effect on cell function, meanwhile, some SNPs may have adverse effect on individuals or change their response to certain drugs. Scientists can use the SNP map to identify genes related to certain pathological conditions such as cancer, vascular disease, mental illness and diabetes.

There are many pathways involved in pathogenesis of PCOS, such as steroid synthesis (Carey et al., 1994, Gharani et al., 1997), gonadotropin action (Franks, 1995), signaling

pathways of insulin (Ciaraldi et al., 1992, Dunaif et al., 1995) and body weight regulation (Kiddy et al., 1992).

Although many SNPs within these genes involved in these pathways were investigated, (Carey et al., 1994, Gharani et al., 1997, O'Rahilly et al., 1991, Krook et al., 1996), only a few of them showed a correlation with the etiology of PCOS, while others did not (Carey et al., 1993). These inconclusive findings are not uncommon in diseases with complex genetic background like PCOS and this could be attributed to many factors including genetic heterogeneity, multiple underlying causes and environmental impact, some studies conducted to find the mode of inheritance in PCOS suggested a dominant inheritance of single gene and high penetrance (Govind et al., 1999), although others do not support this finding (Jahanfar et al., 1995). Previously published study on a group of 37 genes from 150 families showed that follistatin gene has the strongest evidence of linkage with PCOS (Urbanek et al., 1999). Another large-scale study on linkage between *FOLLISTATIN* gene and PCOS came to the same conclusion. This could have a role in functional defect of FSH-granulosa cell axis in PCOS. Many other genes involved in production of hormones like androgen, insulin and gonadotropin have been investigated and studied to find a possible linkage with PCOS (Urbanek et al., 1999).

1.7 The FSHR gene:

The FSHR gene is composed of nine introns and ten exons and located in chromosome 2-p21-p16 of human genome. Exons one through nine encode for extracellular domain of FSHR, while exon ten encodes for C-terminal end of all three domains of the receptor including extracellular, transmembrane and intracellular parts of the receptor. Exon ten is essential for transduction of signals but not for ligand binding. About 1800 SNPs in the FSHR gene have been identified and made available to researchers in National Center for Biotechnology information (NCBI) **SNPs** database (http://www.ncbi.nim.nih.gov). SNPs can be located anywhere in the gene. In case of FSHR gene, only eight SNPs were identified in coding regions (exons), with seven of them situated in exon ten at codon positions 307, 329, 449, 524, 567, 665, and 680. Six of these SNPs cause amino acid substitution so they are non-synonymous. Among these, p.Ala307Thr (c.919G>A; rs6165) and P.Ser680Asn (c.2039C>T; rs6166) are two most known and well characterized polymorphisms identified in exon ten of the

7

FSHR gene, both of which are linked and occurred during recombination (Tempfer et al., 2009).

There are different studies conducted to find if there is a link between polymorphisms FSHR The identified in the gene and ovarian function. amino acid serine polymorphism at codon 680 on both alleles results in elevation in endogenous serum FSH levels with subsequent prolonged follicular phase, which means that this variant is less sensitive to FSH. Accordingly, those who have this variant with serine on both alleles will need more FSH hormone to stimulate their ovaries during in vitro fertilization (IVF) cycles. In addition, Asn680Ser polymorphism was not linked to premature failure of ovary. Various studies have found different allelic variations in women with polycystic ovarian morphology (PCOM) (Tempfer et al., 2009, Valkenburg O et al., 2015).

1.8 The fertility treatment:

In mammals, the active oocyte is segregated from primordial follicles prior to delivery, it occasionally lingers in the ovary to become cystic (McLaughlin and McIver, 2009). Due to limited number of follicles that are ready for fertilization, obtaining functioning primordial follicles is difficult (McGee and Hsueh, 2000). The menopause begins around the age of 50 in females (Macklon and Fauser, 1999). Early menopause, which is defined as the cessation of the monthly cycle, is caused by premature ovarian failure (POF), which is induced by inactivation ovary and results in the absence of the premature follicle. This phenomenon happens in women around the age of 40, the rate of this occurrence is 1% of females, which is a heterogeneous defect (Okeke et al., 2013). POF can be a result of variety of conditions including genetic diseases, autoimmune defects and toxic exposure (Goswami and Conway, 2007). In cancer cases, the rate of the POF is increasing, due the chemotherapy and radiotherapy that have a negative impact on the ovarian function especially in young women (Linkeviciute et al., 2014). In POF cases, IVF may be an option for reproduction (Goswami and Conway, 2007). Many of the primordial follicles are not suitable for IVF, due to abnormal functioning of FSH receptor (McGee and Hsueh, 2000, Buratini et al., 2010).

8

1.9 Objectives of the study:

The main goal of this study was to investigate allelic frequencies of *FSHR* gene p.Ala307Thr (c.919G>A; rs6165) and p.Ser680Asn (c.2039C>T; rs6166) which are responsible for production of hormones that are involved in the regulation of oogenesis. Since hormonal regulation is very important in the development of PCOS, we hypothesized that specific alleles within *FSHR* gene that are involved in the hormonal regulation could cause PCOS.

1.10 Significance of the study:

Allelic frequencies of two *FSHR* genes involved in hormonal regulation, p.Ala307Thr (c.919G>A; rs6165) and p.Ser680Asn (c.2039C>T; rs6166), were investigated in this study. The results will have a great impact on both clinical and basic research. We would have a prediction strategy for PCOS patients' reproductive possibilities based on the data.

1.11 Thesis Structure:

The first chapter provides background information about the study. Basic information about allelic frequencies of the *FSHR* gene, which is involved in hormonal regulation of polycystic ovary syndrome, is available at this section. The second chapter discusses the methodology used for data collection and the statistical methods utilized to analyze data for the study. The basic information about the research findings will be provided in the third chapter. The fourth chapter delves deeper into the findings, comparing them to a literature review and making various recommendations for future research. Also, this chapter presents research's conclusions and a summary.

CHAPTER TWO

Materials and methods

2.1 The sample collection:

The samples used for this project were obtained from patients of NEU Hospital. The clinical information of each patient as well as their Body Mass Index (BMI) was provided. In this study, 65 females with polycystic ovary syndrome and 55 females without polycystic ovary syndrome were divided into two groups. The experiments were performed in DESAM laboratory in Near East University Hospital, Nicosia, North Cyprus, using the ethylenediaminetetra-acetic acid (EDTA) tube for blood sample collection

2.2 DNA extraction for Real Time Analysis:

DNA isolation and purification were conducted using the Invitrogen by thermo fisher scientific kit (pure link genomic DNA mini kit, USA). There was no need for mechanical-homogenization because the samples were lysed enzymatically. For this analysis, 200ml of peripheral blood sample was drawn from the study group and placed in EDTA tubes with no leukocytes separation. The (EDTA) tube acts as anticoagulant in blood samples, minimizing the risk of hemolysis. ≤200µL fresh blood sample was added into a sterile microcentrifuge tube, followed by 20µL Proteinase K add 20µL RNase, By vortexing for a few seconds, the contents were thoroughly mixed, and incubated at room temperature for two minutes. Then, 200µL Purelink Genomic Lysis/Binding Buffer were added and mixed well by vortexing to obtain a homogenous solution, To promote protein digestion, samples were incubated at 55°C for ten minutes. After the incubation period, 200µL of 96-100% ethanol (v/v) was added to the lysate. The solution was vortexed thoroughly to ensure that it was homogeneous. PureLink spin column was placed in a Collection tube, lysate (~ 640µL) with Lysis /Binding Buffer and ethanol was loaded and the column was centrifuged at 10,000 x g for one minute at room temperature, collection tube was discarded and spin column was placed into a new collection tube. The column was washed with 500µL Wash Buffer before being centrifuged at 10,000 x g for one minute at room temperature. The column was then placed in a new collection tube after the collection tube had been The column was rinsed with 500µL of Wash Buffer two that had been discarded. prepared with ethanol, centrifuged at maximum speed for three minutes at room temperature before being discarded. The spin column was placed in a sterile 1.5mL microcentrifuge tube. 200µL of PureLink Genomic Elution Buffer was used to elute DNA, which was then incubated the column at room temperature for one minute. Finally, the eluted DNA was obtained by centrifuging the column at high speed for one minute at room temperature.

2.3 DNA concentration:

The concentration of DNA was determined by the Nano Drop ND-200 (thermo scientific, Pittsburg, USA) for measuring the quantity of the DNA obtained. The wavelength for measuring the absorbance was between (260-280 nm) ratios.

2.4 Real- Time-Polymerase Chain Reaction (RT-PCR):

Real-time PCR was used to genotype the SNPs. A fluorescent reporter dye is used in real-time PCR that is linked to a probe or is a fluorescent molecule that is able to bind to double stranded DNA (eg. SYBR Green). The fluorescent signal corresponds to the amplified fragment concentration. When the run is completed, the results are analyzed using dedicated software associated with the kit used.

Reaction mixture was prepared by adding 5µl maser mix, 0.8 µl Forward and Reverse Primer (final concentration of 25μ M), 1.4 µl water and 2µ of DNA into a microtube. The mixture was vortexed briefly and spun for 5 seconds before being placed in RT-PCR machine. The RT-PCR was started by selecting the program whose temperatures and durations were determined. Norgen's Transcript-First Strand cDNA synthesis kit (Norgen, Canada) was used for reverse transcription from RNA to synthesize cDNA following manufacturer's protocol with no modification. All the steps of PCR preparation performed in laminar flow hood to avoid contamination. The Real-time PCR was used to analyze the allelic frequency of two SNPs within the *FSHR* gene followed by high resolution melting method (HRM). The primers were designed to flank the exon-exon boundaries to avoid amplification of any DNA that may be contaminating the samples. The primer sequences are listed in table 2.1 a and the PCR steps are listed in table 2.1 b.

2.1. a Details of primer sequences:

Primer name	Sequence 5'-3'
FHSR_rs6165wt_F	CAG AGA GAA TCT CTG AAC CCT AGT
FSHR_rs6165wt_R	ATCAGTGCTGTCGCTGTCAC
FHSR_rs6165mt_F	CAG AGA GGG TCT CTG AGC CCT AGC
FHSR_rs6165mt_R	GGC AAG AAG TTG ATT ATA TGA CTC AG
FHSR_rs6166wt_F	AGG GAC AAG TAT GTA AGT AGA ACC AT
FHSR_rs6166mt_F	AGG GAC AAG TAT GTG AGT GGA ACC AC
FHSR_rs6166_R	CTC TTC AGC TCC CAG AGT CAC CA

2.1. b Table showing the PCR steps:

PCR steps	Temperature Cº/ Time sec	Cycles	HRM
Denaturing	94 C° for 30sec	1	95 for 1 hour 40 for 1 hour
Annealing	52-58C° for 30sec		65 for 1 seconds 97 for 1 seconds
Elongation	72C° for 30sec	40	

2.5 Statistical analysis:

Data were analyzed by using the statistical package for Social Sciences (SPSS, version 25). Fisher's exact test was used to compare the genetic condition and allelic frequency in two groups (PCOS and control groups, respectively). A p-value of ≤ 0.05 is considered as statistically significant.

CHAPTER THREE

3.1 RESULTS:

The main aim of this study was to investigate the allelic frequencies of genes involved in the hormonal regulation of polycystic ovary syndrome. A total number of 120 blood samples, 65 from women diagnosed with PCOS and 55 from healthy women, were collected. The table 3.1 shows the details of each patient with PCOS and the table 3.2 involves the details of control group patients, respectively. The PCOS patients were diagnozed by measuring the hormonal levels and vaginal ultrasonography. In this study, the average age was 20 and the average body mass index was 17 for both groups. Table 3.1 shows the details for PCOS patients and table 3.2 for control patient, respectively.

The amplification of the *FSHR* gene for two alleles at the p.Ala307Thr (c.919G>A; rs6165) and p.Ser680Asn (c.2039C>T; rs6166) were carried out. The principle of real time PCR is the detection of fluorescent signals when SYBR Green binds to dsDNA following each amplification. Sample signals are then assessed based on the threshold. In this study, high resolution melting analysis was also performed, in such after PCR amplification the amplicon produced melted gradually. Each melting analysis was performed when the DNA was 50% double-stranded and 50% single-stranded.

The results of this study were shown in the table table 3.1 for PCOS patients and table 3.2 for control patients, respectively. SPSS program was used to determine the statistical significant differences of allelic frequency for FSHR gene *FSHR* gene p.Ala307Thr (c.919G>A; rs6165) and p.Ser680Asn (c.2039C>T; rs6166), respectively. A p-value of ≤ 0.05 is considered as statistically significant.

13

P.co	Date of birth	Oligo	PCOS	Hyperan	Heigh	Wei	BMI	FSH	LH	T.Test	S.Tes	Amp.	Amp.	Genetic	Amp	Amp	Genitic
de		meno re		drogenis m		ght				esteron e	tester one	allel FSH Rrs61 65 mt	allel FSH Rre61 65 wt	condition	.allel FSH Rre6 166 mt	.allel FSH Rrs6 166 wt	condition
1	27.0,1199 6	YE S	YES	YES	158	46	18.4	5.64	7.20	1.70	1.55	19.3 4	21.8	Heterozy gous	14. 56	16. 7	Heterozyg ous
2	20.11.198 7	NO	YES	YES	169	55	19.3	8.08	21.58	1.44	1.19	18.8 8	21.8 7	Heterozy gous	13. 88	16. 8	Heterozyg
3	05.12.199	NO	YES	YES	168	60	21.3	4.24	6.02	39.8 5(Y)	2.87 (Y)	23.6 6	24.9 5	Heterozy gous	14. 32	22. 07	Heterozyg
4	23.09.199 6	YE S	YES	YES	164	57. 5	9.7	2.55	1.15	1.73	5.3	23.3 8	23.0	Heterozy gous	13. 73	19. 32	Heterozyg
5	22.11.199	YE S	YES	YES	172	64	9.8	3.46	3.8	49.2 0(Y)	1.27	19.0 4	20.8 4	Heterozy gous	16. 59	16. 85	Heterozyg
6	10.12.199 7	YE S	YES	YES	165	63	9.3	5.46	4.76	0(1)		19.8 7	23.3	Heterozy gous	17. 38	16. 11	Heterozyg
7	15.05.199 2	YE S	YES	NO	171	58	9.0	3.49	1.54			19.7 5	21.5 5	Heterozy gous	15. 91	17. 45	Heterozyg
8	07.04.199	NO	YES	YES	168	68	10.9	4.83	3.89	1.32	1.73	18.5 5	22.1	Heterozy gous	14. 68	21. 19	Heterozyg
9	27.03.200 0	YE S	YES	YES	178	82	25.88	3.37	1.83	1.04	1.75	19.0 2	20.8 8	Heterozy gous	13. 56	16. 1	Heterozyg
10	07.01.198 8	NO	YES	YES	164	65	24.2	4.29	4.9	0.3		23.8 6	0	Homoz ygous	14. 33	19. 84	Heterozyg
11	12.09.199 5	YE S	YES	YES	170	65	22.5	5.22	4.77	1.55	1.75						
12	06.10.199 7	NO	YES	YES	158	62	24.8										
13	05.04.200 1	YE S	YES	YES	162	57	25.5	5.10	2.93	0.89	0.69	19.5 1	22.2 5	Heterozy gous	14. 11	16. 52	Heterozyg ous
14	10.04.199 7	YE S	YES	NO	171	93	31.8					17.8 4	22.0 3	Heterozy gous	15. 47	16. 31	Heterozyg ous
15	17.02.198 8	YE S	YES	YES	176	74	23.9	4.09	5.39	1.12	1.59	18.3 4	22.2 7	Heterozy gous	14. 15	16. 49	Heterozyg ous
16	29.11.198 6	YE S	YES	NO	160	76	29.69	4.59	4.43			19.0 8	23	Heterozy gous	14. 18	16. 63	Heterozyg
17	29.02.200 0	YE S	YES	YES	153	42	17.9	9.48	6.39	2.26(Y)	2.74	19.6 5	21.7 9	Heterozy gous	15. 01	15. 64	Heterozyg
18	29.03.199	YE S	YES	NO	150	73	32.4	5.41	4.11	2.10(Y)	2.32	18.8 7	23.6 8	Heterozy gous	15. 06	17. 63	Heterozyg
19	08.11.199	NO	YES	YES	163	83	31.2	3.91	2.18	1.39	1.49	,	0	gous	00	00	ous
20	25.11.199 7	YE S	YES	YES	167	86	30.84	4.66	8.18	2.48	2.29	19.8 8	21.9 6	Heterozy gous	14. 73	16. 97	Heterozyg ous
21	, 11.11.199 6	NO	YES	YES	172	64	21.8	4.22	6.84	2.89(Y)	2.49	19	21	Heterozy gous	13. 65	16. 7	Heterozyg
	Ŭ											.9	.2	gous			ous
22	25.04.199	YE	YES	YES	171	13	45.5	1.25	0.41	0.79	0.83	4 21.8	3 24.9	Heterozy	14.	19.	Heterozyg
	2	S				3.2 5						7	6	gous	2	19	ous
23	02.01.198 9	YE S	YES	YES	167	82. 2	29.4	4.85	4.17	0.95	1.36	18.6 4	21.2 8	Heterozy gous	14. 5	16. 51	Heterozyg ous
24	22.02.199 6	YE S	YES	YES	158	53	21.2	4.30	2.55	1.56	1.43	18.6 5	22.4 8	Heterozy gous	12. 72	16. 39	Heterozyg ous
25	1.3.1996	NO	YES	YES	150	48	21.3	4.53	2.93	1.79	2.23	18.1 9	21.3 7	Heterozy gous	14. 56	16. 82	Heterozyg ous
26	25.02.198 7	YE S	YES	NO	172	10 6	35.8	5.22	6.44			19.0 4	21.3 6	Heterozy gous	14. 33	16. 54	Heterozyg ous
27	20.04.200 4	YE S	YES	YES	161	39. 2	15	6.96	10.24	0.77	1.42	19.4 1	21.5 5	Heterozy gous	15. 01	16. 53	Heterozyg ous
28	12.02.199 7	YE S	YES	NO	160	69. 2	27.0					18.1	21.6 9	Heterozy gous	14. 07	16. 96	Heterozyg ous
29	22.10.199 4	YE S	YES	YES	163	56	21.08	4.07	8.63	1.76	1.96	21.9 7	21.3	Heterozy gous	16. 91	19. 43	Heterozyg ous
30	17.06.199 5	NO	YES	NO	170	61	21.11	4.66	3.27		1.91	18.6 1	22.4 7	Heterozy gous	15. 43	16. 96	Heterozyg ous
31	26.06.199 5	YE S	YES	YES	173	69	23.5	4.09	3.95	1.16	1.27						
32	30.06.198 4	YE S	YES	NO	172	92	31.1	4.7	4.02	1.14	1	18.9 8	21.7 9	Heterozy gous	13. 73	16. 1	Heterozyg ous
33	28.08.199 7	YE S	YES	YES				3.01	9.99	3.27	2.75	18.3	21.9 5	Heterozy gous	14. 09	20. 94	Heterozyg ous
34	18.01.199 7	YE S	YES	YES	159	79	31.25					23.1	25.4 6	Heterozy gous	14. 2	19. 85	Heterozyg ous
35	28.09.199 7	YE S	YES	YES	162	69	28.29	5.3	8.1	2.09	2.34	24.6 4	24.7	Heterozy gous	14. 07	19. 63	Heterozyg ous
36	24.09.199 7	YE S	YES	YES	172	50	18.9	6.02	5.39	1.43	1.09	24.4 8	25.9 1	Heterozy gous	14. 17	20. 07	Heterozyg ous
L		. ~	i	1			i		·			. ~		5043	1		045

Table 3.1 Describe the details for PCOS group:

37 38 VES VES VES VES VES No S2 S2 S3 Component																		
38 0.06.199 YE YES NO 159 52 0.07 r r r 2.7 2.4 9 Heeroxy r 17. 4 90 Heeroxy ro 18.	37			YES	YES	164	75	27.89	3.87	2.81	2.41	2.18						
7 8 7 8 7 8 7 8 7 4 0 0 8 10 2 10 1 2 10 11 2 2 8 10 11 2 2 10 1	38	-		YES	NO	159	52	20.57						-	^o			
4 8 7	50	7				107	02	20.07					9	2>		72	4	ous
40 62.12.199 YE YES <	39			YES	NO				3.52	0.8	1.9							
8 8 8 7 765 765 765 765 775 74 210 68 2333 7 7 1	40			VES	VES	176	80	28.73	5.38	2.53	1 13	1.42	-	-	^o			
41 90.95.199 YE YES YES YES YES 70 68 23.33 71 7.1 <t< td=""><td>40</td><td></td><td></td><td>1123</td><td>1123</td><td>170</td><td>09</td><td>20.75</td><td>5.56</td><td>2.33</td><td>1.15</td><td>1.42</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	40			1123	1123	170	09	20.75	5.56	2.33	1.15	1.42						
42 16.10.199 YE YES YES YES 74 24.16 5.27 5.74 1.72 21.7 1.83 8 8 1.0 Hetrory B 5. 1.6 Hetrory B 3.8 8 8 1.0 Hetrory B 3.1 1.6 Hetrory B 3.3 </td <td>41</td> <td>09.05.199</td> <td>YE</td> <td>YES</td> <td>YES</td> <td>170</td> <td>68</td> <td>23.53</td> <td></td>	41	09.05.199	YE	YES	YES	170	68	23.53										
8 8 9 YE YES	40			VEC	VEG	175	74	24.16	5.07	5.74	1.70	0.17	10.0	21.0	XX /	15	16	TT .
43 12:11:99 YE YES YES Personal of the second seco	42			YES	YES	1/5	/4	24.16	5.27	5.74	1.72	2.17						
44 17.04.199 YE YES YES 160 76 29.69 3.97 6.63 2.31 18.4 11.9 Hetroxy 16 13 Hetroxy 50 50 45 02.01.199 YE YES NO 162 52 19.81 2.99 1.72 0.81 -	43			YES	YES													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-																
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	44			YES	YES	160	76	29.69	3.97	6.63	2.31						13	
5 8 -	45			YES	NO	162	52	19.81	2.99	1.72	0.81		1	1	gous	39		ous
8 8 - - - - - 3 3 - genus 5 35 onus 47 0.52 9.8 - 168 77 27.3 0.52 0.81 1.37 - 19 21.6 Hetrozy 15. 16. Hetrozy 48 29.11.99 YE YES 165 60 22 3.82 6.3 1.6 18.0 21.0 Hetrozy 15. 21. Hetrozy 15. 3.8 7 200.0 25. 16. 60. 25.5 17. 1.31 1.34 1.87 21.8 21.8 16.0 20. Hetrozy 16. 20. Hetrozy 16. 20. Hetrozy 16. 20. Hetrozy 16. 16.0 </td <td></td> <td>5</td> <td>S</td> <td></td>		5	S															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	46			YES	YES	170	60	20.76	0.05	2.66	0.87							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	47	-		YES		168	77	27.3	0.52	0.81	1 37							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		9		125		100		27.0	0.02	0.01	1.57							
49 21.07.199 YE YE YES YES 164 72 26.8 3.94 2.54 1.73 19.6 21.2 Hetrozy 15. 21. Hetrozy 05. 01.0 10.1 1	48			YES	YES	165	60	22	3.82	6.43	1.6							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	40	-		VES	VES	164	72	26.8	2.04	2.54	1 72				0			
50 11.03.199 YE	49			165	ILS	104	12	20.8	5.94	2.34	1.75							ous
51 06.01.199 YE YES <	50	11.03.199				165	69.	25.5					21.8	20.7	0			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	06.01.199 8		YES	YES	167	60	21.5	4.18	11.31	1.34		18.7					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	52	04.02.200		YES	YES	170	65	22.5					15.3					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1	S										4					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	53	27.11.199		YES	YES	167	81	29	3.06	2.17	1.37							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	54	/		VES	VES	173	59			-								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	51			125	1125	175	57											
56 10.01.200 YE YES YES 162 73 27.8 4.25 6.15 2.07 18.4 21.9 Heterozy 14. 15. Heterozy 00us 57 30.05.199 NO YES NO 178 80 25.22 2 18.8 21.9 Heterozy 20. 16. Heterozy 70us 38 70us 72 38 70us 72 38 70us 72 38 75 70us 75<	55	14.09.200		YES	YES	158	70	28	2.91									
1 S - - - - - - 9 5 gous 14 82 ous 57 30.05.199 NO YES NO 178 80 25.22 1 18.8 21.9 Heterozy 20. 16. Heterozy 3 87 ous 58 15.07.199 YE YES YES 173 59 16.3 21.9 Heterozy 22. . . Heterozy . <	56	0		VES	VEC	162	72	27.9	4.25	6.15	2.07			-				
57 30.05.199 NO YES NO 178 80 25.22 18.8 21.9 Heterozy 20. 16. Heterozy ous 58 15.07.199 YE YES YES 173 59 20 16.3 Homoz 21. 22. 38 ous 59 03.08.199 NO YES YES 163 72 20 18.1 22.0 Heterozy 22 16. Heterozy 90 ous ous 59 03.08.199 NO YES YES 163 72 20 18.1 22.0 Heterozy 13. 31. Heterozy 90 33 31. Heterozy 90 33 31. Heterozy 90 33 463 ous 008 008 463 008	30	10.01.200		165	ILS	102	15	27.0	4.23	0.15	2.07							
58 15.07.199 YE YES YES 173 59 173 59 173 59 173 59 173 59 173 59 173 59 18.1 22.0 Homoz 21.7 22 38 use ous 59 03.08.199 NO YES YES 163 72 2 16.3 20 gous 72 38 ous 60 17.01.198 YE YES YES 167 52 2 18.1 22.0 Heterozy 13.31. Heterozyg ous 61 31.07.199 YE YES YES 158 53 2 22.4 21.8 Heterozy 13.31. Heterozyg ous 61 31.07.199 YE YES YES 158 53 2 22.4 21.8 Heterozy 14. 17 Heterozyg ous 62 11.01 YE YES NO 161 53 22.4 22.4 22.3 Heterozy 16. 17. Heterozyg ous	57	30.05.199		YES	NO	178	80	25.22					18.8		-	20.		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	50	1	VE	MEG	MEG	152	50						5	-				
59 $0.308.199$ YE YES 163 72 163 72 18.1 22.0 Heterozy 22 $16.$ Heterozy 9 75 $0us$ 60 $17.01.198$ YE YES 167 52 21 18.0 21.8 Heterozy $13.$ $31.$ Heterozyg 9 61 $31.07.198$ YE YES 158 53 22.4 21.8 Heterozy $14.$ 17 Heterozyg 9 64 63 $0us$ 61 $31.07.199$ YE YES 158 53 22.4 21.8 Heterozy $14.$ 17 Heterozyg $0us$ 62 11.01 YE YES NO 161 53 22.4 22.4 22.3 Heterozy $16.$ $17.$ Heterozyg $0us$	58			YES	YES	173	59											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-													30			
	59		NO	YES	YES	163	72									22		
9S \sim </td <td>60</td> <td></td> <td>YE</td> <td>YES</td> <td>YES</td> <td>167</td> <td>52</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td>^o</td> <td>13.</td> <td></td> <td></td>	60		YE	YES	YES	167	52		1	1	1				^o	13.		
8 S 0 0 0 0 4 5 gous 29 0 0 62 11.01 YE YES NO 161 53 22.4 22.3 Heterozy 16. 17. Heterozyg 63 7.01.1981 -		9	S										7	4	gous	64	63	ous
62 11.01 YE YES NO 161 53 22.4 22.3 Hetrozy 16. 17. Hetrozyg ous 63 7.01.1981 19.5 21.6 Hetrozy 16. 16. 17. Hetrozyg ous 64 1 20.4 22.3 Hetrozy 16. 17. Hetrozyg ous 64	61			YES	YES	158	53										17	
1989 S S Image: S <thimage: s<="" th=""> <thimage: s<="" th=""> Image: S</thimage:></thimage:>	62	-		YES	NO	161	53			+	<u> </u>			-	^o		17	
63 7.01.1981 Image: Constraint of the con	02			125		101	55											
64 64 18.8 22.7 Heterozy gous 15. 16. Heterozy gous 65 65 19 10 18.7 21.7 Heterozy 14. 16. Heterozy gous	63	7.01.1981												21.6	Heterozy			
65 1 1 gous 22 46 ous 65 18.7 21.7 Heterozy 14. 16. Heterozy	64				-	+	+			+	ł		-	72.7	^o			
65 65 18.7 21.7 Heterozy 14. 16. Heterozy	04					1												
	65						1			1			18.7	21.7	0	14.		
													1		gous	39	67	

Table 3.2 Describe the details for	r control group:
------------------------------------	------------------

P.c od e	Date of birth	Olig ome nore	Co ntr ol	Hyper andro genis m	Heigh t	We igh t	BMI	FSH	LH	T.Tes tester one	S.Tes tester on	Amp. allel FSHR re 6165 mt	Amp. allel FSHR rs616 5wt	Genetic condition	Amp.a llelFS HR616 6mt	Amp.a lleIFS HRrs6 166wt	Genetic condition
1	15.06.1 995	NO	NO	NO								19.47	20.84	Heterozyg ous	15.41	15.96	Heteroz ygous
2	24.10.1 996	NO	NO	NO								19.27	22.32	Heterozyg ous	14.68	16.11	Heteroz ygous
3	17.06.1 996	NO	NO	NO								18.2	21.41	Heterozyg ous	14.1	20.98	Heteroz ygous
4		NO	NO	NO								18.44	21.49	Heterozyg ous	14.25	16.54	Heteroz ygous
5	09.12.1 994	NO	NO	NO								18.97	21.18	Heterozyg ous	15.14	17.2	Heteroz ygous
6	03.01.1 996	NO	NO	NO													
7	30.05.1 996	NO	NO	NO	165	65	25.4					21.32	20.83	Heterozyg ous	14.85	15.95	Heteroz ygous
8	28.02.1 995	YE S	NO	YES	168	96		4.34	2.96	1.92	2.36	18.44	21.36	Heterozyg	14.5	15.9	Heteroz ygous
9	21.07.1 995	YE S	NO	YES	172	67	22.6	4.21	3.18	1.68	2.10	18.49	22.19	Heterozyg	14.2	16.55	Heteroz ygous
10	02.03.1 989	YE S	NO	YES	158	68	27.2	5.11	6.19	1.49	2.13	18.28	20.96	Heterozyg	14.17	15.95	Heteroz ygous
11	24.07.2 006	YE S	NO	YES				4.14	9.17	2.04	1.57	29.96	21.25	Heterozyg	14.32	16.97	Heteroz ygous
12	12.07.1 993	NO	NO	NO	168	52	18.4					18.95	22.54	Heterozyg	21.37	17.46	Heteroz ygous
13	21.01.1 995	NO	NO	NO	160	65	25.24					18.34	21.67	Heterozyg	21.86	16.85	Heteroz ygous
14	995 15.01.1 997	NO	NO	NO	166	72	26.1					17.9	21.56	Heterozyg	15.07	21.28	Heteroz
15	15.11.1 997	NO	NO	NO	163	56	21.1					18.16	22.3	ous Heterozyg	22.54	22.34	ygous Heteroz
16	01.01.1 997	YE	YE	NO	168	90						18.15	21.32	ous Heterozyg	14.29	15.97	ygous Heteroz
17	23.05.1 998	S NO	S NO	NO	156	68						19.3	20.98	ous Heterozyg	15.38	16.78	ygous Heteroz
18	998 10.07.1 998	NO	NO	NO	168	59						19.2	22.13	ous Heterozyg	14.77	16.55	ygous Heteroz
19	998 07.10.1 995	NO	NO	NO	160	56						18.85	22.85	ous Heterozyg ous	15.98	16.44	ygous Heteroz
20	03.05.1 995	NO	NO	NO	156	39						18.41	20.87	Heterozyg	15.25	17.17	ygous Heteroz ygous
21	12.06.1 996	NO	NO	NO	160	59						22.18	11.19	Heterozyg	14.69	17	Heteroz
22	21.06.1 997	NO	NO	NO	170	52. 5						18.8	20.72	Heterozyg	14.62	16.58	ygous Heteroz
23	20.03.1 995	NO	NO	NO	172	60						17.78	20.12	ous Heterozyg	14.76	15.63	ygous Heteroz
24	20.02.1	NO	NO	NO	162	73						18.93	22.35	ous Heterozyg	15.96	16.63	ygous Heteroz
25	995 30.09.1 999	NO	NO	NO	158	56						18.98	21.78	Heterozyg	14.78	16.34	ygous Heteroz
26	08.02.1 996	NO	NO	NO	174	60						17.99	20.12	ous Heterozyg	13.94	15.29	ygous Heteroz
27	27.09.1 991	NO	NO	NO	156	62						22.67	21.15	ous Heterozyg	15.16	16.81	ygous Heteroz
28	04.04.1	NO	NO	NO	159	50						21.56	21.79	ous Heterozyg	15	16.93	ygous Heteroz
29	996 11.09.1	NO	NO	NO	165	72						17.83	21.64	ous Heterozyg	14.24	16.32	ygous Heteroz
30	996 22.11.1	NO	NO	NO	170	62						21.79	21.87	ous Heterozyg	14.68	33.28	ygous Heteroz
31	995 20.03.1 996	NO	NO	NO	174	64						22.05	21.76	ous Heterozyg	15.12	17.27	ygous Heteroz
32	20.01.1 999	NO	NO	NO	167	56						18.89	22.38	OUS Heterozyg	15.4	18.52	ygous Heteroz
33	16.05.1	NO	NO	NO	161	72						18.75	22.39	OUS Heterozyg	15.39	17.06	ygous Heteroz
34	996 28.08.1	NO	NO	NO	160	58						19.55	31.31	Ous Heterozyg	21.42	21.76	ygous Heteroz
35	998 06.07.1	NO	NO	NO	160	61						18.7	22.75	ous Heterozyg	21.66	17.06	ygous Heteroz
36	989 20.01.1	NO	NO	NO	164	62						18.42	22.6	ous Heterozyg	21.18	16.5	ygous Heteroz
37	991 30.09.1	NO	NO	NO	177	72						18.69	22.1	ous Heterozyg	21.46	16.49	ygous Heteroz
38	991 06.02.1	NO	NO	NO	164	68						18.53	22.14	ous Heterozyg	21.93	16.53	ygous Heteroz

	991	[1		1				ous			ygous
39	22.09.1	NO	NO	NO	155	50					18.13	21.59	Heterozyg	21.25	15.97	Heteroz
	990												ous			ygous
40	21.04.1	NO	NO	NO	163	56					18.13	33.27	Heterozyg	21.32	16.29	Heteroz
	996												ous			ygous
41	03.12.1	NO	NO	NO	157	58					18.66	22.54	Heterozyg	20.96	16.61	Heteroz
	995												ous			ygous
42	09.07.1	NO	NO	NO	164	62					18.26	21.44	Heterozyg	20.25	16.34	Heteroz
	997												ous			ygous
43	23.01.1	NO	NO	NO	162	62.					18.24	21.89	Heterozyg	26.23	16.13	Heteroz
	994				4.50	5					10.00		ous	10.01		ygous
44	28.02.1	NO	NO	NO	169	63					18.93	22.18	Heterozyg	13.94	16.48	Heteroz
45	999 29.11.1	NO	NO	NO	159	67					18.86	22.67	ous	16.05	17	ygous
45	29.11.1 993	NO	NO	NO	159	0/					18.80	22.67	Heterozyg	16.05	17	Heteroz
46	24.03.1	NO	NO	NO	160	62			1		20.1	21.79	ous Heterozyg	14.71	17.05	ygous Heteroz
40	24.05.1 997	NO	NO	NO	100	02					20.1	21.79	ous	14.71	17.05	ygous
47	0.8.10.	NO	NO	NO	166	58					18.18	22.05	Heterozyg	16.17	16.8	Heteroz
	1998	110			100	20					10.10	22.00	ous	10.17	10.0	ygous
48	02.11.1	NO	NO	NO	148	54					18.49	22.46	Heterozyg	15.4	17.35	Heteroz
	998												ous			ygous
49	02.09.1	NO	NO	NO	150	46					18.42	22.44	Heterozyg	15.63	16.26	Heteroz
	995												ous			ygous
50	11.01.1	NO	NO	NO	170	68					18.72	22.39	Heterozyg	20.58	16.28	Heteroz
	991												ous			ygous
51	12.11.1	NO	NO	NO	155	58					18.86	22.27	Heterozyg	20.71	21.87	Heteroz
	998												ous			ygous
52	24.06.2	NO	NO	NO	178	48					17.95	21.88	Heterozyg	21.32	21.79	Heteroz
50	000	NO	NO	NO	1.60	50						10.00	ous	24.60	21.04	ygous
53	03.01.1 999	NO	NO	NO	160	59.			1			18.32		34.69	21.84	Heteroz
51		NO	NO	NO	154	5						16.95		21.6	21.95	ygous
54	10.11.1 991	NO	NO	NO	154	54						16.85		21.6	21.85	Heteroz
55	15.01.1	NO	NO	NO	151	46			+			16.69		34.01	22.39	ygous Heteroz
55	997	INU	NO	NO	151	40			1			10.09		54.01	22.39	ygous
	///						1	1		1						Jgous

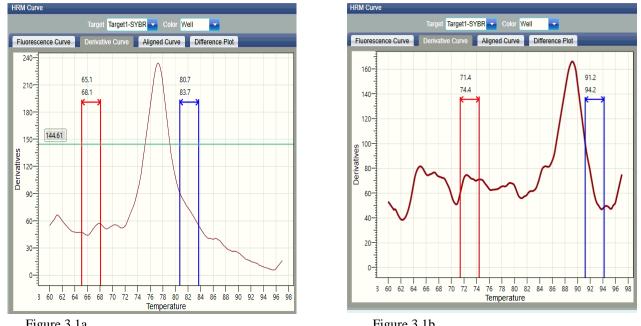
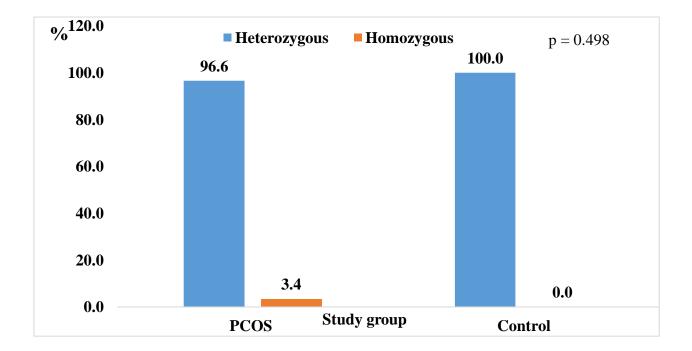


Figure 3.1a

Figure 3.1b

Figure 3.1a Real-time PCR image showing the amplification of mutant type allele p.Ala307Thr (c.919G>A; rs6165).


Figure 3.1b Real-time PCR image showing the amplification of wild type allele p.Ala307Thr.

3.2 Fischer's exact test for *FSHR* **p.Ala307Thr gene in two groups (PCOS & Control):**

Table 3.3 summarizes the percentage of alleles detected at the *FSHR* Ala307Thr (c.919G>A; rs6165) gene in two groups (PCOS & Control) with 96.6% and 3.4% for heterozygous and homozygous in the PCOS group, respectively (Figure 3.2). The heterozygosity was 100% in the control group. The p-value of was 0.498. Six samples in PCOS group and four samples in the control group have been excluded from the study since the PCR amplification was not detected. Thus, no statistical significance was observed between both groups.

Table 3.3: Summary table for the percentage of genetic condition *FSHR* Ala307Thr (c.919G>A; rs6165) gene in two groups (PCOS & Control):

	PCOS		Control		Total	Р	
							value
	Number of	%	Number of	%	Number	%	
	patients		patients		of patients		0.400
Heterozygous	57	96.6	51	100.0	108	98.2	0.498
Homozygous	2	3.4	0	0.0	2	1.8	
Total	59	100.0	51	100.0	110	100.0	

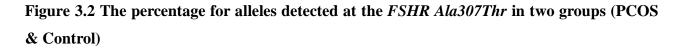


Table 3.4 summarizes the percentage alleles detected at the *FSHR* Ala307Thr (c.919G>A; rs6165) gene in two groups (PCOS & Control) with 96.6% and 100% for GA in both PCOS and control groups, respectively (Figure 3.3). Furthermore, 1.7% of homozygous GG and homozygoes AA was detected in the PCOS group, respectively. The p-value was 0.999. Thus, there no statistically significant difference was observed for the alleles detected at the *FSHR* gene p.Ala307Thr (c.919G>A; rs6165).

Table 3.4: Summary table for the percentage of SNP of *FSHR* Ala307Thr (c.919G>A; rs6165) gene in two groups (PCOS & Control):

	PCOS		Contro	ol		Total		Р
								value
Genotypes	Number of patients	%	Number patients	of	%	Number of patients	%	
GA	57	96.6	51		100.0	108	98.2	>0.999
GG	1	1.7	0		0.0	1	0.9	
AA	1	1.7	0		0.0	1	0.9	
Total	59	100.0	51			110	100.0	
					100.0			

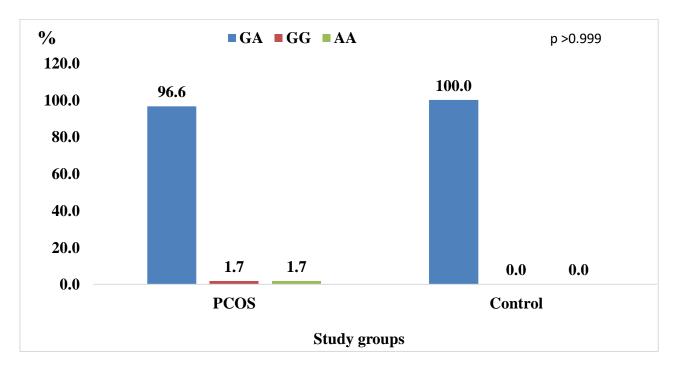


Figure 3.3 The percentage of alleles detected at the *FSHR Ala307Thr* in two groups (PCOS & Control)

3.3 Fischer's exact test for FSHR p.Ser680Asn in two groups (PCOS & Control):

Table 3.5 summarizes the percentage of genotypic status for *FSHR* Ser680Asn (c.2039C>T; rs6166) gene in two groups (PCOS & Control) with 100% for heterozygous status in both groups, that is why the p-value is not available. Six samples in PCOS group and one sample in control group have been excluded as amplification was obtained.

	PCOS		Control		Total	P value	
	Number of patients	%	Number of patients	%	Number of patients	%	
Heterozygous	59	100.0	54	100.0	113	100.0	NA
Homozygous	0	0.0	0	0.0	0	0.0	1
Total	59	100.0	54	100.0	113	100.0	-

Table 3.5: Summary table for the percentage of alleles detected at the FSHR Ser680Asn
(c.2039C>T; rs6166) in two groups (PCOS & Control):

Table 3.6 summarizes the percentage of alleles detected at the *FSHR* Ser680Asn (c.2039C>T; rs6166) gene in two groups (PCOS & Control) with 100% for heterozygous CT in both PCOS and control groups.

Table 3.6: Summary table for the percentage of SNP of *FSHR* Ser680Asn (c.2039C>T; rs6166) gene in two groups (PCOS & Control):

	PCOS		Contro	l	Total	Р	
Genotypes							value
	Number of	%	Number of	%	Number of	%	
	patients		patients		patients		NA
СТ	59	100.0	54	100.0	113	100.0	

CHAPTER FOUR

4.1 DISCUSSION

Polycystic ovary syndrome (PCOS) is one of the most common disease affecting females during childbearing age that results from abnormal endocrine function. About 5-10% of women in the population complain of some features of PCOS (Franks, 1995). According to the Rotterdam criteria (Franks, 1995), a clinical diagnosis of PCOS requires that a patient present with two of the following symptoms; oligo-ovulation or anovulation, hyperandrogenism, clinical (including sign such as hirsutism) or biological (including a raised free androgen index or free testosterone). Both genetic and environmental factors are considered to play an important role in the etiology and pathogenesis of PCOS (Shen et al., 2011).

FSH mediates its function through follicle stimulation hormone receptor FSHR (Fauser and van Heusden, 1997) and it is responsible for development of follicles, regulation of steroid synthesis and maturation of oocytes (Gu et al., 2010). FSHR is a member of Gprotein coupled receptor family. FSHR gene is located on chromosome 2p21 and composed of ten exons and nine introns (Gromoll et al., 1996). FSHR expression affects FSH secretion and its level in blood, and so any change in FSHR gene and protein may affect ovarian function (Gu et al., 2010). A number of SNPs have already been identified in the FSHR gene and no major mutations have been characterized as revealed by many studies (Simoni et al., 2002, Mayorga et al., 2000). Ala307Thr and Ser680Asn polymorphisms in exon ten are interesting examples of SNPs in the FSHR gene that result in alteration of amino acids and FSHR protein configuration. Many studies revealed that these FSHR SNPs at 307 and 680 positions could be clinically relevant because of their role in ovarian response to FSH, ovarian overstimulation, menstrual cycle alteration and pathogenesis of premature ovarian failure (POF) and PCOS (Lussiana et al., 2008).

In this study, the allelic frequency of *FSHR* Ala307Thr and *FSHR* Ser680Asn were analysed using SPSS program by Fischer's exact test. The results of this study have shown no statistically significant difference in the genotypes of *FSHR* p.Ala307Thr (c.919G>A; rs6165) in two groups (PCOS & Control). Furthermore, the allelic frequency of *FSHR* Ala307Thr did not show any statistical significance between the PCOS and the control groups. The SNP is represented by C/T

22

100% in PCOS and C/T 100% in the control groups, respectively. Thus, no statistical analysis was available. This indicates that *FSHR* gene polymorphisms of p.Ala307Thr and p.Ser680Asn are not associated with pathogenicity of PCOS.

Previously published studies genotyped the FSHR Ala307Thr and FSHR Ser680Asn and analysed the association with PCOS (Kim et al., 2017). The genotype distribution of the PCOS group shown statistically significant difference from control group. The allelic frequency for genotype of FSHR Ala307Thr was shown to be Thr/Thr 38.5%, Thr/Ala 46.7% and Ala/Ala 14.9% in the PCOS group and Thr/Thr 46.6%, Thr/Ala 45.4%, and Ala/Ala 8.0% in the control groups with a p-value of 0.05, respectively. While the allelic frequency of FSHR Ser680Asn was Asn/Asn 39.5%, Asn/Ser 47.2%, and Ser/Ser 13.3% in the PCOS group and Asn/Asn 46.4%, Asn/Ser 45.4%, and 8.2 % in the control groups with a p-value of 0.035, respectively. Thus, contradictory to our results, this study showed a statistically significant correlation between FSHR Ala307Thr and FSHR Ser680Asn polymorphisms and PCOS patients (Kim et al., 2017). Additionally, results obtained from other studies supported the fact that there is an association between FSHR polymorphisms and PCOS. An association between Ser680Asn of FSHR and PCOS in was reported while such association was not found between Ala307Thr and PCOS in Korean females (Gu et al., 2010). Another study from Shanghai in china revealed a clear correlation between Ser680Asn and PCOS (Du et al., 2010). On other hand, another study reported that Ala307Thr is statistically correlated with PCOS in Italian females (Dolfin et al., 2011). Similarly, statistical difference in the allelic frequencies of both Ala307Thr and Ser680Asn between PCOS patients and controls were not reported in the Turkish population (Unsal et al., 2009). Studies performed on Han ethnic from Shanxi province in China (Fu et al., 2013) and Netherlands (Valkenburg et al., 2009) showed no association between Ser680Asn polymorphism and PCOS patients. This variability in results obtained from different studies may support the fact that correlation between and FSHR polymorphisms might be attributed to race and geography. In PCOS conclusion different results concerned with association between SNPs in the FSHR gene and PCOS have been obtained from different studies that performed on different ethnic and geographic groups.

4.2 Conclusion:

In summary, in this study the allelic frequency of *FSHR* gene including both p.Ala307Thr (c.919G>A; rs6165) and p.Ser680Asn (c.2039C>T; rs6166) have shown statistically no significant difference when both groups were compared (PCOS & Control). This means that allelic frequency of *FSHR* p.Ala307Thr (c.919G>A; rs6165) and p.Ser680Asn (c.2039C>T; rs6166) are not associated with the pathogenicity of PCOS and cannot be considered as a factor in oogenesis regulation. Therefore, the aim for future studies has to focus on other susceptible alleles of *FSHR* gene using higher sample size to find possible association with PCOS.

REFFERENCE

- ADAMS, J., POLSON, D. & FRANKS, S. J. B. M. J. 1986. Prevalence of polycystic ovaries in women with anovulation and idiopathic hirsutism. 293, 355-359.
- ALBERTI, K. G. M. M., ZIMMET, P. & SHAW, J. J. D. M. 2007. International Diabetes Federation: a consensus on Type 2 diabetes prevention. 24, 451-463.
- ALMAWI, W. Y., HUBAIL, B., AREKAT, D. Z., AL-FARSI, S. M., AL-KINDI, S. K., AREKAT, M. R., MAHMOOD, N., MADAN, S. J. J. O. A. R. & GENETICS 2015. Leutinizing hormone/choriogonadotropin receptor and follicle stimulating hormone receptor gene variants in polycystic ovary syndrome. 32, 607-614.
- AUWERX, J. J. D. 1999. PPARy, the ultimate thrifty gene. 42, 1033-1049.
- AZZIZ, R., SANCHEZ, L., KNOCHENHAUER, E., MORAN, C., LAZENBY, J., STEPHENS, K., TAYLOR, K., BOOTS, L. J. T. J. O. C. E. & METABOLISM 2004. Androgen excess in women: experience with over 1000 consecutive patients. 89, 453-462.
- BAFROUEI, M. H. B., KHAZALI, H., KALANTAR, S. M. & KHORADMEHR, A. J. G. M. J. 2018. The Comparative Effect of Citrullus colocynthis Hydro-Alcoholic Extract and Metformin on Morphometric Ovarian Follicles Disorders in Estradilol valerate-Iinduced Polycystic Ovary Syndrome Rats. 7, 1045.
- BALEN, A. H., CONWAY, G. S., KALTSAS, G., TECHATRAISAK, K., MANNING, P. J., WEST, C. & JACOBS, H. S. J. H. R. 1995. Andrology: Polycystic ovary syndrome: the spectrum of the disorder in 1741 patients. 10, 2107-2111.
- BARRY, J. A., AZIZIA, M. M. & HARDIMAN, P. J. J. H. R. U. 2014. Risk of endometrial, ovarian and breast cancer in women with polycystic ovary syndrome: a systematic review and metaanalysis. 20, 748-758.
- BATES, G. W., LEGRO, R. S. J. M. & ENDOCRINOLOGY, C. 2013. Longterm management of polycystic ovarian syndrome (PCOS). 373, 91-97.
- BRASSARD, M., AINMELK, Y. & BAILLARGEON, J.-P. J. M. C. O. N. A. 2008. Basic infertility including polycystic ovary syndrome. 92, 1163-1192.
- BURATINI, J., PRICE, C. J. R., FERTILITY & DEVELOPMENT 2010. Follicular somatic cell factors and follicle development. 23, 32-39.
- CAPALBO, A., SAGNELLA, F., APA, R., FULGHESU, A. M., LANZONE, A., MORCIANO, A., FARCOMENI, A., GANGALE, M., MORO, F. & MARTINEZ, D. J. C. E. 2012. The 312 N variant of the luteinizing hormone/choriogonadotropin receptor gene (LHCGR) confers up to 2.7fold increased risk of polycystic ovary syndrome in a S ardinian population. 77, 113-119.
- CAREY, A., CHAN, K., SHORT, F., WHITE, D., WILLIAMSON, R. & FRANKS, S. J. C. E. 1993. Evidence for a single gene effect causing polycystic ovaries and male pattern baldness. 38, 653-658.
- CAREY, A. H., WATERWORTH, D., PATEL, K., WHITE, D., LITTLE, J., NOVELLI, P., FRANKS, S. & WILLIAMSON, R. J. H. M. G. 1994. Polycystic ovaries and premature male pattern baldness are associated with one allele of the steroid metabolism gene CYP17. 3, 1873-1876.
- CARMEL, P., ARAKI, S. & FERIN, M. J. E. 1976. Pituitary stalk portal blood collection in rhesus monkeys: evidence for pulsatile release of gonadotropin-releasing hormone (GnRH). 99, 243-248.
- CARMINA, E., BUCCHIERI, S., ESPOSITO, A., DEL PUENTE, A., MANSUETO, P., ORIO, F., DI FEDE, G., RINI, G. J. T. J. O. C. E. & METABOLISM 2007. Abdominal fat quantity and distribution in

women with polycystic ovary syndrome and extent of its relation to insulin resistance. 92, 2500-2505.

- CASCELLA, T., PALOMBA, S., DE SIO, I., MANGUSO, F., GIALLAURIA, F., DE SIMONE, B., TAFURI, D., LOMBARDI, G., COLAO, A. & ORIO, F. J. H. R. 2008. Visceral fat is associated with cardiovascular risk in women with polycystic ovary syndrome. 23, 153-159.
- CIARALDI, T. P., EL-ROEIY, A., MADAR, Z., REICHART, D., OLEFSKY, J. M., YEN, S. J. T. J. O. C. E. & METABOLISM 1992. Cellular mechanisms of insulin resistance in polycystic ovarian syndrome. 75, 577-583.
- CM, E. A. R. W. G. F. B. D. K. B. P. D. F. M. M. F. S. H. S. S. C. D. P. E. D. H. 2011. Contemporary genetic technologies and female reproduction. 17, 829-847.
- DEMIRCI, H., YILMAZ, M., ALI ERGUN, M., YURTCU, E., BUKAN, N. & AYVAZ, G. J. G. E. 2010. Frequency of adiponectin gene polymorphisms in polycystic ovary syndrome and the association with serum adiponectin, androgen levels, insulin resistance and clinical parameters. 26, 348-355.
- DIAMANTI-KANDARAKIS, E., ARGYRAKOPOULOU, G., ECONOMOU, F., KANDARAKI, E., KOUTSILIERIS, M. J. T. J. O. S. B. & BIOLOGY, M. 2008. Defects in insulin signaling pathways in ovarian steroidogenesis and other tissues in polycystic ovary syndrome (PCOS). 109, 242-246.
- DIAMANTI-KANDARAKIS, E., KANDARAKIS, H. & LEGRO, R. S. J. E. 2006. The role of genes and environment in the etiology of PCOS. 30, 19-26.
- DIAMANTI-KANDARAKIS, E., KOULI, C., TSIANATELI, T. & BERGIELE, A. J. E. J. O. E. 1998. Therapeutic effects of metformin on insulin resistance and hyperandrogenism in polycystic ovary syndrome. 138, 269-274.
- DOKRAS, A., CLIFTON, S., FUTTERWEIT, W., WILD, R. J. O. & GYNECOLOGY 2011. Increased risk for abnormal depression scores in women with polycystic ovary syndrome: a systematic review and meta-analysis. 117, 145-152.
- DOLFIN, E., GUANI, B., LUSSIANA, C., MARI, C., RESTAGNO, G., REVELLI, A. J. J. O. A. R. & GENETICS 2011. FSH-receptor Ala307Thr polymorphism is associated to polycystic ovary syndrome and to a higher responsiveness to exogenous FSH in Italian women. 28, 925-930.
- DU, J., ZHANG, W., GUO, L., ZHANG, Z., SHI, H., WANG, J., ZHANG, H., GAO, L., FENG, G., HE, L. J.
 M. G. & METABOLISM 2010. Two FSHR variants, haplotypes and meta-analysis in Chinese women with premature ovarian failure and polycystic ovary syndrome. 100, 292-295.
- DUFAU, M. L. J. A. R. O. P. 1998. The luteinizing hormone receptor. 60, 461-496.
- DUNAIF, A., XIA, J., BOOK, C.-B., SCHENKER, E. & TANG, Z. J. T. J. O. C. I. 1995. Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome. 96, 801-810.
- EDEN, J. A. J. M. J. O. A. 1991. The polycystic ovary syndrome presenting as resistant acne successfully treated with cyproterone acetate. 155, 677-680.
- FALCãO-PIRES, I., GONCALVES, N., HENRIQUES-COELHO, T., MOREIRA-GONCALVES, D., RONCON-ALBUQUERQUE JR, R., LEITE-MOREIRA, A. F. J. A. J. O. P.-H. & PHYSIOLOGY, C. 2009.
 Apelin decreases myocardial injury and improves right ventricular function in monocrotaline-induced pulmonary hypertension. 296, H2007-H2014.

FARQUHAR, C. J. P. O. S. 2007. Introduction and history of polycystic ovary syndrome. 2, 4-24.

FAUSER, B. & VAN HEUSDEN, A. M. J. E. R. 1997. Manipulation of human ovarian function: physiological concepts and clinical consequences.

- FAUSER, B. C., TARLATZIS, B. C., REBAR, R. W., LEGRO, R. S., BALEN, A. H., LOBO, R., CARMINA, E., CHANG, J., YILDIZ, B. O., LAVEN, J. S. J. F. & STERILITY 2012. Consensus on women's health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. 97, 28-38. e25.
- FERRIMAN, D., GALLWEY, J. J. T. J. O. C. E. & METABOLISM 1961. Clinical assessment of body hair growth in women. 21, 1440-1447.
- FRANKS, S. J. N. E. J. O. M. 1995. Polycystic ovary syndrome. 333, 853-861.
- FU, L., ZHANG, Z., ZHANG, A., XU, J., HUANG, X., ZHENG, Q., CAO, Y., WANG, L., DU, J. J. J. O. A. R.
 & GENETICS 2013. Association study between FSHR Ala307Thr and Ser680Asn variants and polycystic ovary syndrome (PCOS) in Northern Chinese Han women. 30, 717-721.
- GHARANI, N., WATERWORTH, D. M., BATTY, S., WHITE, D., GILLING-SMITH, C., CONWAY, G. S.,
 MCCARTHY, M., FRANKS, S. & WILLIAMSON, R. J. H. M. G. 1997. Association of the steroid synthesis gene CYP11a with polycystic ovary syndrome and hyperandrogenism. 6, 397-402.
- GLUECK, C., PHILLIPS, H., CAMERON, D., SIEVE-SMITH, L., WANG, P. J. F. & STERILITY 2001. Continuing metformin throughout pregnancy in women with polycystic ovary syndrome appears to safely reduce first-trimester spontaneous abortion: a pilot study. 75, 46-52.
- GOODARZI, M. O., DUMESIC, D. A., CHAZENBALK, G. & AZZIZ, R. J. N. R. E. 2011. Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. 7, 219-231.
- GOSWAMI, D. & CONWAY, G. S. J. H. R. I. P. 2007. Premature ovarian failure. 68, 196-202.
- GOVIND, A., OBHRAI, M., CLAYTON, R. J. T. J. O. C. E. & METABOLISM 1999. Polycystic ovaries are inherited as an autosomal dominant trait: analysis of 29 polycystic ovary syndrome and 10 control families. 84, 38-43.
- GROMOLL, J., PEKEL, E. & NIESCHLAG, E. J. G. 1996. The structure and organization of the human follicle-stimulating hormone receptor (FSHR) gene. 35, 308-311.
- GU, B.-H., PARK, J.-M. & BAEK, K.-H. J. I. J. O. M. M. 2010. Genetic variations of follicle stimulating hormone receptor are associated with polycystic ovary syndrome. 26, 107-112.
- HART, R., HICKEY, M., FRANKS, S. J. B. P., OBSTETRICS, R. C. & GYNAECOLOGY 2004. Definitions, prevalence and symptoms of polycystic ovaries and polycystic ovary syndrome. 18, 671-683.
- Isikoglu M, Berkkanoglu M, Cemal H, Ozgur K. 2007. Polycystic ovary syndrome: What is the role of obesity? In: Allahbadia GN, Agrawal R, editors. Polycystic Ovary Syndrome. Kent, UK: Anshan, Ltd;. pp. 157–163
- JAHANFAR, S., EDEN, J. A., WARREN, P., SEPPäLä, M., NGUYEN, T. V. J. F. & STERILITY 1995. A twin study of polycystic ovary syndrome. 63, 478-486.
- JAKUBOWICZ, D. J., IUORNO, M. J., JAKUBOWICZ, S., ROBERTS, K. A., NESTLER, J. E. J. T. J. O. C. E. & METABOLISM 2002. Effects of metformin on early pregnancy loss in the polycystic ovary syndrome. 87, 524-529.
- JAKUBOWSKI, L. J. E. P. 2005. Genetic aspects of plycystic ovary syndrome. 56, 285-291.
- KANG, S., ROH, J. W. & KIM, J. W. 2005. Single nucleotide polymorphism: a new risk factor for endometrial cancer?
- KIDDY, D. S., HAMILTON-FAIRLEY, D., BUSH, A., SHORT, F., ANYAOKU, V., REED, M. J. & FRANKS, S.
 J. C. E. 1992. Improvement in endocrine and ovarian function during dietary treatment of obese women with polycystic ovary syndrome. 36, 105-111.
- KIM, J. J., CHOI, Y. M., HONG, M. A., CHAE, S. J., HWANG, K., YOON, S. H., KU, S. Y., SUH, C. S., KIM, S. H. J. J. O. A. R. & GENETICS 2017. FSH receptor gene p. Thr307Ala and p.

Asn680Ser polymorphisms are associated with the risk of polycystic ovary syndrome. 34, 1087-1093.

- KROOK, A., O'RAHILLY, S. J. B. S. C. E. & METABOLISM 1996. Mutant insulin receptors in syndromes of insulin resistance. 10, 97-122.
- LAYMAN, L., AMDE, S., COHEN, D., JIN, M. & XIE, J. J. F. S. 1998. The Finnish follicle stimulating hormone receptor (FSHR) gene mutation in women with 46, XX ovarian failure is rare in the United States. 69, 300-302.
- LI, T., MO, H., CHEN, W., LI, L., XIAO, Y., ZHANG, J., LI, X. & LU, Y. J. R. S. 2017. Role of the PI3K-Akt signaling pathway in the pathogenesis of polycystic ovary syndrome. 24, 646-655.
- LINKEVICIUTE, A., BONIOLO, G., CHIAVARI, L. & PECCATORI, F. A. J. C. T. R. 2014. Fertility preservation in cancer patients: the global framework. 40, 1019-1027.
- LIU, N., MA, Y., WANG, S., ZHANG, X., ZHANG, Q., ZHANG, X., FU, L., QIAO, J. J. R. B. & ENDOCRINOLOGY 2012. Association of the genetic variants of luteinizing hormone, luteinizing hormone receptor and polycystic ovary syndrome. 10, 1-7.
- LORD, J., THOMAS, R., FOX, B., ACHARYA, U., WILKIN, T. J. B. A. I. J. O. O. & GYNAECOLOGY 2006. The central issue? Visceral fat mass is a good marker of insulin resistance and metabolic disturbance in women with polycystic ovary syndrome. 113, 1203-1209.
- LOWENSTEIN, E. J. J. D. T. 2006. Diagnosis and management of the dermatologic manifestations of the polycystic ovary syndrome. 19, 210-223.
- LUSSIANA, C., GUANI, B., MARI, C., RESTAGNO, G., MASSOBRIO, M., REVELLI, A. J. O. & SURVEY, G. 2008. Mutations and polymorphisms of the FSH receptor (FSHR) gene: clinical implications in female fecundity and molecular biology of FSHR protein and gene. 63, 785-795.
- MACKLON, N. & FAUSER, B. J. H. R. I. P. 1999. Aspects of ovarian follicle development throughout life. 52, 161-170.
- MAHMOUDI, T. J. F. & STERILITY 2009. Genetic variation in the vitamin D receptor and polycystic ovary syndrome risk. 92, 1381-1383.
- MAKKER, A., GOEL, M. M., DAS, V. & AGARWAL, A. J. G. E. 2012. PI3K-Akt-mTOR and MAPK signaling pathways in polycystic ovarian syndrome, uterine leiomyomas and endometriosis: an update. 28, 175-181.
- MAYORGA, M. P., GROMOLL, J. R., BEHRE, H. M., GASSNER, C., NIESCHLAG, E., SIMONI, M. J. T. J. O. C. E. & METABOLISM 2000. Ovarian response to follicle-stimulating hormone (FSH) stimulation depends on the FSH receptor genotype. 85, 3365-3369.
- MCALLISTER, J. M., LEGRO, R. S., MODI, B. P., STRAUSS III, J. F. J. T. I. E. & METABOLISM 2015. Functional genomics of PCOS: from GWAS to molecular mechanisms. 26, 118-124.
- MCCARTNEY, C. R. & MARSHALL, J. C. J. N. E. J. O. M. 2016. Polycystic ovary syndrome. 375, 54-64.
- MCGEE, E. A. & HSUEH, A. J. J. E. R. 2000. Initial and cyclic recruitment of ovarian follicles. 21, 200-214.
- MCLAUGHLIN, E. A. & MCIVER, S. C. J. R. 2009. Awakening the oocyte: controlling primordial follicle development. 137, 1.
- MELISSA, H. H., JAMES, J. S. & PHARM, D. J. A. F. P. 2000. Polycystic ovary syndrome: It's Not Just infertility. 62, 1079-1088.
- MOORE, A. M., CAMPBELL, R. E. J. T. J. O. S. B. & BIOLOGY, M. 2016. The neuroendocrine genesis of polycystic ovary syndrome: a role for arcuate nucleus GABA neurons. 160, 106-117.
- MORAN, L. J., DEEKS, A., GIBSON-HELM, M. & TEEDE, H. J. J. H. R. 2012. Psychological parameters in the reproductive phenotypes of polycystic ovary syndrome. 27, 2082-2088.

- MUTHARASAN, P., GALDONES, E., PEñALVER BERNABE, B., GARCIA, O. A., JAFARI, N., SHEA, L. D., WOODRUFF, T. K., LEGRO, R. S., DUNAIF, A., URBANEK, M. J. T. J. O. C. E. & METABOLISM 2013. Evidence for chromosome 2p16. 3 polycystic ovary syndrome susceptibility locus in affected women of European ancestry. 98, E185-E190.
- NARDO, L. G. & WADHWA, G. Polycystic Ovary Syndrome (PCOS).
- NORMAN, R. J., DEWAILLY, D., LEGRO, R. S. & HICKEY, T. E. J. T. L. 2007. Polycystic ovary syndrome. 370, 685-697.
- O'RAHILLY, S., CHOI, W. H., PATEL, P., TURNER, R. C., FLIER, J. S. & MOLLER, D. E. J. D. 1991. Detection of mutations in insulin-receptor gene in NIDDM patients by analysis of singlestranded conformation polymorphisms. 40, 777-782.
- OGUNKOLADE, B.-W., BOUCHER, B. J., PRAHL, J. M., BUSTIN, S. A., BURRIN, J. M., NOONAN, K., NORTH, B. V., MANNAN, N., MCDERMOTT, M. F. & DELUCA, H. F. J. D. 2002. Vitamin D receptor (VDR) mRNA and VDR protein levels in relation to vitamin D status, insulin secretory capacity, and VDR genotype in Bangladeshi Asians. 51, 2294-2300.
- OKEKE, T., ANYAEHIE, U., EZENYEAKU, C. J. A. O. M. & RESEARCH, H. S. 2013. Premature menopause. 3, 90-95.
- PASQUALI, R., CASIMIRRI, F., VENTUROLI, S., ANTONIO, M., MORSELLI, L., REHO, S., PEZZOLI, A. & PARADISI, R. J. M. 1994. Body fat distribution has weight-independent effects on clinical, hormonal, and metabolic features of women with polycystic ovary syndrome. 43, 706-713.
- PIERSMA, D., VERHOEF-POST, M., BERNS, E., THEMMEN, A. J. M. & ENDOCRINOLOGY, C. 2006. LH receptor gene mutations and polymorphisms: an overview. 260, 282-286.
- QU, F., WANG, F.-F., YIN, R., DING, G.-L., EL-PRINCE, M., GAO, Q., SHI, B.-W., PAN, H.-H., HUANG,
 Y.-T. & JIN, M. J. J. O. M. M. 2012. A molecular mechanism underlying ovarian dysfunction of polycystic ovary syndrome: hyperandrogenism induces epigenetic alterations in the granulosa cells. 90, 911-923.
- SERRETTI, A., KATO, M., DE RONCHI, D. & KINOSHITA, T. J. M. P. 2007. Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with selective serotonin reuptake inhibitor efficacy in depressed patients. 12, 247-257.
- SHEN, Y., WANG, L., ZHAO, Y., YOU, L., GENG, L., GU, H. F., CHEN, Z.-J. J. G. H. & RESEARCH, I.
 2011. Evaluation of the association between GHR exon 3 polymorphism and polycystic ovary syndrome among Han Chinese women. 21, 248-251.
- SHEYKHHA, M., GHASEMI, N. & KALANTAR, S. 2007. Genetics of polycystic ovary syndrome.
- SHI, X., XIE, X., JIA, Y., LI, S. J. J. O. O. & RESEARCH, G. 2016. Associations of insulin receptor and insulin receptor substrates genetic polymorphisms with polycystic ovary syndrome: A systematic review and meta-analysis. 42, 844-854.
- SHI, Y., GUO, M., YAN, J., SUN, W., ZHANG, X., GENG, L., XU, L. & CHEN, Z. J. N. L. 2007. Analysis of clinical characteristics in large-scale Chinese women with polycystic ovary syndrome. 28, 807-810.
- SHOHAM, Z., JACOBS, H. S., INSLER, V. J. F. & STERILITY 1993. Luteinizing hormone: its role, mechanism of action, and detrimental effects when hypersecreted during the follicular phase. 59, 1153-1161.
- SIMONI, M., NIESCHLAG, E. & GROMOLL, J. J. H. R. U. 2002. Isoforms and single nucleotide polymorphisms of the FSH receptor gene: implications for human reproduction. 8, 413-421.

- SKRGATIC, L., PAVICIC BALDANI, D., GERSAK, K., ZIVA CERNE, J., FERK, P. & CORIC, M. J. C. A. 2013. Genetic polymorphisms of INS, INSR and IRS-1 genes are not associated with polycystic ovary syndrome in Croatian women. 37, 141-146.
- SOUTER, I., SANCHEZ, L. A., PEREZ, M., BARTOLUCCI, A. A., AZZIZ, R. J. A. J. O. O. & GYNECOLOGY 2004. The prevalence of androgen excess among patients with minimal unwanted hair growth. 191, 1914-1920.
- TEEDE, H., DEEKS, A. & MORAN, L. J. B. M. 2010. Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. 8, 1-10.
- TEEDE, H. J., MISSO, M. L., DEEKS, A. A., MORAN, L. J., STUCKEY, B. G., WONG, J. L., NORMAN, R.
 J. & COSTELLO, M. F. J. T. M. J. O. A. 2011. Assessment and management of polycystic ovary syndrome: summary of an evidence-based guideline. 195, S65.
- TEMPFER, C., SIMONI, M., DESTENAVES, B. & FAUSER, B. J. H. R. U. 2009. Functional genetic polymorphisms and female reproductive disorders: part II—endometriosis. 15, 97-118.
- TOLEDO, S., BRUNNER, H. G., KRAAIJ, R., POST, M., DAHIA, P., HAYASHIDA, C. Y., KREMER H THEMMEN, A. J. T. J. O. C. E. & METABOLISM 1996. An inactivating mutation of the luteinizing hormone receptor causes amenorrhea in a 46, XX female. 81, 3850-3854.
- TOULIS, K. A., GOULIS, D. G., MINTZIORI, G., KINTIRAKI, E., EUKARPIDIS, E., MOURATOGLOU, S.-A., PAVLAKI, A., STERGIANOS, S., POULASOUCHIDOU, M. & TZELLOS, T. G. J. H. R. U. 2011. Meta-analysis of cardiovascular disease risk markers in women with polycystic ovary syndrome. 17, 741-760.
- UNSAL, T., KONAC, E., YESILKAYA, E., YILMAZ, A., BIDECI, A., ONEN, H. I., CINAZ, P., MENEVSE, A. J. J. O. A. R. & GENETICS 2009. Genetic polymorphisms of FSHR, CYP17, CYP1A1, CAPN10, INSR, SERPINE1 genes in adolescent girls with polycystic ovary syndrome. 26, 205-216.
- URBANEK, M., LEGRO, R. S., DRISCOLL, D. A., AZZIZ, R., EHRMANN, D. A., NORMAN, R. J., STRAUSS, J. F., SPIELMAN, R. S. & DUNAIF, A. J. P. O. T. N. A. O. S. 1999. Thirty-seven candidate genes for polycystic ovary syndrome: strongest evidence for linkage is with follistatin. 96, 8573-8578.
- VALKENBURG, O., UITTERLINDEN, A., PIERSMA, D., HOFMAN, A., THEMMEN, A., DE JONG, F., FAUSER, B. & LAVEN, J. J. H. R. 2009. Genetic polymorphisms of GnRH and gonadotrophic hormone receptors affect the phenotype of polycystic ovary syndrome. 24, 2014-2022.
- WANG, P., ZHAO, H., LI, T., ZHANG, W., WU, K., LI, M., BIAN, Y., LIU, H., NING, Y. & LI, G. J. E.
 2014. Hypomethylation of the LH/choriogonadotropin receptor promoter region is a potential mechanism underlying susceptibility to polycystic ovary syndrome. 155, 1445-1452.
- WIJEYARATNE, C. N., BALEN, A. H., BARTH, J. H. & BELCHETZ, P. E. J. C. E. 2002. Clinical manifestations and insulin resistance (IR) in polycystic ovary syndrome (PCOS) among South Asians and Caucasians: is there a difference? 57, 343-350.

Appendix

Table showing the genetic condition and SNP of FSHR gene p.Ala307Thr and p.Ser680Asn in PCOS group:

Patient code	CT of FSHR rs6165	CT of FSHR rs6165	Heterozygosity	Genotype	CT of FSHR rs6166	CT of FSHRr s6166	Heterozygosity	Genotype
	mt	wt			mt	wt		
1	19.34	21.81	Heterozygous	GA	14.56	16.7	Heterozygous	СТ
2	18.88	21.87	Heterozygous	GA	13.88	16.8	Heterozygous	СТ
3	23.66	24.95	Heterozygous	GA	14.32	22.07	Heterozygous	СТ
4	23.38	23.01	Heterozygous	GA	13.73	19.32	Heterozygous	СТ
5	19.04	20.84	Heterozygous	GA	16.59	16.85	Heterozygous	СТ
6	19.87	23.31	Heterozygous	GA	17.38	16.11	Heterozygous	СТ
7	19.75	21.55	Heterozygous	GA	15.91	17.45	Heterozygous	СТ
8	18.55	22.1	Heterozygous	GA	14.68	21.19	Heterozygous	СТ
9	19.02	20.88	Heterozygous	GA	13.56	16.1	Heterozygous	СТ
10	23.86		Homozygous	AA	14.33	19.84	Heterozygous	СТ
11								
12								
13	19.51	22.25	Heterozygous	GA	14.11	16.52	Heterozygous	СТ
14	17.84	22.03	Heterozygous	GA	15.47	16.31	Heterozygous	СТ
15	18.34	22.27	Heterozygous	GA	14.15	16.49	Heterozygous	СТ
16	19.08	23	Heterozygous	GA	14.18	16.63	Heterozygous	СТ
17	19.65	21.79	Heterozygous	GA	15.01	15.64	Heterozygous	СТ
18	18.87	23.68	Heterozygous	GA	15.06	17.63	Heterozygous	СТ
19								
20	19.88	21.96	Heterozygous	GA	14.73	16.97	Heterozygous	СТ
21	19.94	21.23	Heterozygous	GA	13.65	16.7	Heterozygous	СТ
22	21.87	24.96	Heterozygous	GA	14.2	19.19	Heterozygous	СТ
23	18.64	21.28	Heterozygous	GA	14.5	16.51	Heterozygous	СТ
24	18.65	22.48	Heterozygous	GA	12.72	16.39	Heterozygous	СТ
25	18.19	21.37	Heterozygous	GA	14.56	16.82	Heterozygous	СТ
26	19.04	21.36	Heterozygous	GA	14.33	16.54	Heterozygous	СТ
27	19.41	21.55	Heterozygous	GA	15.01	16.53	Heterozygous	СТ
28	18.1	21.69	Heterozygous	GA	14.07	16.96	Heterozygous	СТ
29	21.97	21.3	Heterozygous	GA	16.91	19.43	Heterozygous	СТ
30	18.61	22.47	Heterozygous	GA	15.43	16.96	Heterozygous	СТ
31								
32	18.98	21.79	Heterozygous	GA	13.73	16.1	Heterozygous	СТ
33	18.3	21.95	Heterozygous	GA	14.09	20.94	Heterozygous	СТ
34	23.1	25.46	Heterozygous	GA	14.2	19.85	Heterozygous	СТ
35	24.64	24.7	Heterozygous	GA	14.07	19.63	Heterozygous	СТ
36	24.48	25.91	Heterozygous	GA	14.17	20.07	Heterozygous	СТ
37	19.15	21.73	Heterozygous	GA	14.27	21.52	Heterozygous	СТ
38	22.79	24.9	Heterozygous	GA	12.72	19.4	Heterozygous	СТ

39	23.91	24.03	Heterozygous	GA	15.01	19.7	Heterozygous	СТ
40	25.44	22.37	Heterozygous	GA	14.84	19.18	Heterozygous	СТ
41								
42	18.63	21.08	Heterozygous	GA	15.22	16.31	Heterozygous	СТ
43	19.05	21.23	Heterozygous	GA	15.27	16.55	Heterozygous	СТ
44	18.47	11.91	Heterozygous	GA	16.59	13	Heterozygous	СТ
45								
46	18.63	20.83	Heterozygous	GA	15.5	21.35	Heterozygous	СТ
47	19	21.64	Heterozygous	GA	15.27	16.62	Heterozygous	СТ
48	18.06	21.04	Heterozygous	GA	13.88	15.62	Heterozygous	СТ
49	19.61	21.21	Heterozygous	GA	15.53	21.13	Heterozygous	СТ
50	21.88	20.77	Heterozygous	GA	16.28	20.8	Heterozygous	СТ
51	18.7	22.54	Heterozygous	GA	15.63	21.08	Heterozygous	СТ
52	15.34	33.96	Heterozygous	GA	14.93	25.29	Heterozygous	СТ
53	18.74	21.48	Heterozygous	GA	14.42	16.11	Heterozygous	СТ
54	18.95	21.81	Heterozygous	GA	21.64	17.77	Heterozygous	СТ
55	18.06	21.28	Heterozygous	GA	14.7	15.72	Heterozygous	СТ
56	18.49	21.95	Heterozygous	GA	14.14	15.82	Heterozygous	СТ
57	18.85	21.99	Heterozygous	GA	20.3	16.87	Heterozygous	СТ
58		16.32	Homozygous	GG	21.72	22.38	Heterozygous	СТ
59	18.17	22.06	Heterozygous	GA	22	16.75	Heterozygous	СТ
60	18.07	21.84	Heterozygous	GA	13.64	31.63	Heterozygous	СТ
61	22.44	21.85	Heterozygous	GA	14.29	17	Heterozygous	СТ
62	22.46	22.34	Heterozygous	GA	16.45	17.44	Heterozygous	СТ
63	19.51	21.6	Heterozygous	GA	16.59	16.77	Heterozygous	СТ
64	18.81	22.71	Heterozygous	GA	15.22	16.46	Heterozygous	СТ
65	18.71	21.7	Heterozygous	GA	14.39	16.67	Heterozygous	СТ

Patient	CT of	CT of	Heterozygosity	Genotype	CT of	CT of	Heterozygosity	Genotype
code	FSHR	FSHR			FSHR	FSHR		
	rs6165	rs6165			rs6166	rs616		
1	mt 19.47	wt 20.84	Untorozygous	<u> </u>	mt 15.41	6 wt 15.96	Unterozygous	СТ
2	19.47	20.84	Heterozygous	GA	13.41	15.90	Heterozygous	СТ
3	19.27		Heterozygous	GA	14.08		Heterozygous	СТ
<u> </u>	18.2	21.41	Heterozygous	GA		20.98	Heterozygous	CT
5		21.49	Heterozygous	GA	14.25	16.54	Heterozygous	СТ
	18.97	21.18	Heterozygous	GA	15.14	17.2	Heterozygous	СТ
6	01.20	20.92	TT-4	<u> </u>	14.05	15.05	TT-4	CT.
7	21.32	20.83	Heterozygous	GA	14.85	15.95	Heterozygous	СТ
8	18.44	21.36	Heterozygous	GA	14.5	15.9	Heterozygous	СТ
9	18.49	22.19	Heterozygous	GA	14.2	16.55	Heterozygous	СТ
10	18.28	20.96	Heterozygous	GA	14.17	15.95	Heterozygous	СТ
11	29.96	21.25	Heterozygous	GA	14.32	16.97	Heterozygous	СТ
12	18.95	22.54	Heterozygous	GA	21.37	17.46	Heterozygous	СТ
13	18.34	21.67	Heterozygous	GA	21.86	16.85	Heterozygous	СТ
14	17.9	21.56	Heterozygous	GA	15.07	21.28	Heterozygous	СТ
15	18.16	22.3	Heterozygous	GA	22.54	22.34	Heterozygous	СТ
16	18.15	21.32	Heterozygous	GA	14.29	15.97	Heterozygous	СТ
17	19.3	20.98	Heterozygous	GA	15.38	16.78	Heterozygous	СТ
18	19.2	22.13	Heterozygous	GA	14.77	16.55	Heterozygous	СТ
19	18.85	22.85	Heterozygous	GA	15.98	16.44	Heterozygous	СТ
20	18.41	20.87	Heterozygous	GA	15.25	17.17	Heterozygous	СТ
21	22.18	11.19	Heterozygous	GA	14.69	17	Heterozygous	СТ
22	18.8	20.72	Heterozygous	GA	14.62	16.58	Heterozygous	СТ
23	17.78	20.12	Heterozygous	GA	14.76	15.63	Heterozygous	СТ
24	18.93	22.35	Heterozygous	GA	15.96	16.63	Heterozygous	СТ
25	18.98	21.78	Heterozygous	GA	14.78	16.34	Heterozygous	СТ
26	17.99	20.12	Heterozygous	GA	13.94	15.29	Heterozygous	СТ
27	22.67	21.15	Heterozygous	GA	15.16	16.81	Heterozygous	СТ
28	21.56	21.79	Heterozygous	GA	15	16.93	Heterozygous	СТ
29	17.83	21.64	Heterozygous	GA	14.24	16.32	Heterozygous	СТ
30	21.79	21.87	Heterozygous	GA	14.68	33.28	Heterozygous	СТ
31	22.05	21.76	Heterozygous	GA	15.12	17.27	Heterozygous	СТ
32	18.89	22.38	Heterozygous	GA	15.4	18.52	Heterozygous	СТ
33	18.75	22.39	Heterozygous	GA	15.39	17.06	Heterozygous	СТ
34	19.55	31.31	Heterozygous	GA	21.42	21.76	Heterozygous	СТ
35	18.7	22.75	Heterozygous	GA	21.66	17.06	Heterozygous	СТ
36	18.42	22.6	Heterozygous	GA	21.18	16.5	Heterozygous	СТ
37	18.69	22.1	Heterozygous	GA	21.46	16.49	Heterozygous	СТ
38	18.53	22.14	Heterozygous	GA	21.93	16.53	Heterozygous	CT
39	18.13	21.59	Heterozygous	GA	21.25	15.97	Heterozygous	CT

Table showing the genetic condition and SNP of FSHR gene p.Ala307Thr and p.Ser680Asn in control group:

40	18.13	33.27	Heterozygous	GA	21.32	16.29	Heterozygous	СТ
41	18.66	22.54	Heterozygous	GA	20.96	16.61	Heterozygous	СТ
42	18.26	21.44	Heterozygous	GA	20.25	16.34	Heterozygous	СТ
43	18.24	21.89	Heterozygous	GA	26.23	16.13	Heterozygous	СТ
44	18.93	22.18	Heterozygous	GA	13.94	16.48	Heterozygous	СТ
45	18.86	22.67	Heterozygous	GA	16.05	17	Heterozygous	СТ
46	20.1	21.79	Heterozygous	GA	14.71	17.05	Heterozygous	СТ
47	18.18	22.05	Heterozygous	GA	16.17	16.8	Heterozygous	СТ
48	18.49	22.46	Heterozygous	GA	15.4	17.35	Heterozygous	СТ
49	18.42	22.44	Heterozygous	GA	15.63	16.26	Heterozygous	СТ
50	18.72	22.39	Heterozygous	GA	20.58	16.28	Heterozygous	СТ
51	18.86	22.27	Heterozygous	GA	20.71	21.87	Heterozygous	СТ
52	17.95	21.88	Heterozygous	GA	21.32	21.79	Heterozygous	СТ
53		18.32			34.69	21.84	Heterozygous	СТ
54		16.85			21.6	21.85	Heterozygous	СТ
55		16.69			34.01	22.39	Heterozygous	СТ