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ABSTRACT 

 

COVID-19 and non-COVID-19 viral pneumonia are diseases that affect the human lungs. 

World health organization (W.H.O) announced coronavirus as a pandemic in 2020; the 

virus started from china and propagated to other countries of the world. Early diagnosis of 

the patients containing the virus helps in saving the patient and preventing further spread 

of the virus. The convolutional neural network (CNN) model is proposed in this research 

work to help in the early diagnosis of the virus using chest X-Ray images, as it is one of 

the fastest and low-cost ways of diagnosing the disease. Two convolutional neural 

networks (CNN) models were trained with two different datasets, the first model was 

trained for binary classification with one of the datasets that only have pneumonia case 

and normal chest X-Ray images, where the second model makes use of the knowledge 

learned by the first model using transfer learning and trained for 3 class classifications on 

COVID-19, pneumonia, and normal cases chest X-Ray images which is the second 

dataset. The model gives promising results of Accuracy, Recall, precision, and F1_score 

of 98.3, 97.9, 98.3, and 98.0 respectively on test data. 

 

Keywords: CNN; deep learning; transfer learning; COVID-19, pneumonia; chest X-Ray 

images; diagnosis. 
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ÖZET 

 

COVID-19 ve COVID-19 olmayan viral pnömoni, insan akciğerlerini etkileyen 

hastalıklardır. COVID-19, 2020 yılında dünya sağlık örgütü tarafından salgın ilan edildi, 

koronavirüs Çin'de başladı ve dünyanın diğer ülkelerine yayıldı. Virüs içeren hastaların 

erken teşhisi, hastayı kurtarmaya ve virüsün daha fazla yayılmasını önlemeye yardımcı 

olur. Konvolüsyonel sinir ağı (CNN) modeli, bu araştırmada, hastalığı teşhis etmenin en 

hızlı ve düşük maliyetli yollarından biri olduğu için göğüs röntgeni görüntülerini 

kullanarak virüsün erken teşhisine yardımcı olmak için önerilmiştir. İki evrişimli sinir ağı 

(CNN) modeli, iki farklı veri kümesiyle eğitildi, ilk model, yalnızca pnömoni vakası ve 

normal göğüs röntgeni görüntülerine sahip veri kümelerinden biri ile ikili sınıflandırma 

için eğitildi; ikinci model, bilgiyi kullanır. transfer öğrenmeyi kullanan ilk model 

tarafından öğrenildi ve ikinci veri seti olan COVID-19, pnömoni ve normal vakalarda 

göğüs röntgeni görüntüleri üzerinde 3 sınıf sınıflandırması için eğitildi. Model, test 

verilerinde sırasıyla 98.3, 97.9, 98.3 ve 98.0 olan Doğruluk, Geri Çağırma, hassasiyet ve 

F1_score'unun umut verici sonuçlarını verir. 

 

Anahtar Kelimeler: CNN; derin öğrenme; transfer öğrenimi; COVID-19, pnömoni; 

göğüs röntgeni görüntüleri; Teşhis. 
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CHAPTER 1 

INTRODUCTION 

 

 

COVID-19 is a respiratory infection that affects the human lungs, which is now declared 

as a pandemic that is affecting the globe. As of today October 2, 2020, there are over 34 

million total cases, 23.9 million recoveries, and 1.02 million deaths reported to the world 

health organization (“WHO Coronavirus Disease (COVID-19) Dashboard | WHO 

Coronavirus Disease (COVID-19) Dashboard,” n.d.). The initial case of COVID-19 was 

in December 2019 at Wuhan, Hubei province, china(Q. Li et al., 2020), from where it 

started propagating to other countries of the world. As the COVID-19 virus is 

transmittable, early detection is very important for both the patients and the peoples 

around them, the patient will get proper care and the people will be protected. The best 

way to fight against the COVID-19 pandemic is the early diagnosis of the patient that 

contains the virus as early as possible and given special care and treatments. Reverse 

transcription-polymerase chain reaction (RT-PCR) is commonly used in the diagnosing 

test of COVID-19, this method has low sensitivity in the early stage of the virus, and 

hence, it may lead to further transmissions(L. Li et al., 2020). This test kit is expensive 

and scares, therefore, for early diagnosis chest X-Ray images and computer tomography 

(CT) scans are the best option to uses in diagnosing any patient that shows symptoms of 

pneumonia.  

 

Non-COVID-19 Pneumonia is also one of the most leading diseases that cause death 

among young children and old peoples. According to the center for disease control and 

prevention (CDC) over 1 million adult pneumonia patients are hospitalized and almost 

50,000 patients die every year from this disease in the USA alone (“Pneumonia | Home | 

CDC,” n.d.). As stated by W.H.O that, chest X-rays are the best available way in 

diagnosing pneumonia disease (World Health Organization, 2001). Pneumonia is a 

respiratory infection that affects the lungs; it can be caused by bacteria, viruses, or fungi. 

Diagnosing pneumonia is considered a tedious task, even by the expert radiologist, 

because its symptoms appeared to be similar to other pathologies that affect the lungs. In 
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this thesis, the study will use a CNN model to diagnose the presence of these viral diseases 

on CXR images. In recent years deep learning models prove to be a promising method in 

the field of medicine for pathologies diagnosis, those pathologies are not just long 

pathology which is the focus of this study but it gives a very promising result in 

diagnosing breast cancer, and some other skin diseases, with this, we make use of it in this 

study in diagnosing COVID-19 and pneumonia. As the diagnosis of those diseases appears 

to be a tedious task, even among the expert radiologist, this study is aiming to help the 

radiologist to diagnose pneumonia and COVID-19 from CXR scans easily within a short 

time. 

This thesis aims to design an intelligent system that will detect COVID-19 and 

pneumonia diseases with high accuracy. In the thesis, Convolutional Neural Network 

(CNN) models were developed to help in detecting COVID-19 and pneumonia cases in 

X-Ray images to help for early diagnosis to prevent its transmission to other peoples.

Two different datasets were used in this research, one contains only pneumonia scans and 

normal scans chest X-Ray, and the other one contains COVID-19 CXR scans, pneumonia, 

and normal chest X-Ray scans. Two CNN models were developed; the first one was 

trained on pneumonia and normal cases chest X-Ray images, where the second model 

make use of the knowledge that was learned from the first model and trained on COVID-

19, pneumonia, and normal cases data. Transfer learning approach was utilized to transfer 

the weight/knowledge of the first model to the second model for COVID-19, pneumonia, 

and normal class classification. 

This study focused on the way to diagnose the COVID-19 virus and pneumonia from 

chest X-ray scans with a CNN model with the help of the transfer learning method. The 

transfer learning method is employed in this thesis research to archive a high performance 

in training the network with a small number of images and archive a promising result, 

unlike the traditional way which is known as the data consuming. The study aims at 

developing a system that will help the radiologist in detecting COVID-19 patients and 

pneumonia patients using CXR images easily and within a short time. And it also aims to 
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help those that have no access to a radiologist for early diagnosis so that proper action can 

be taken before the situation becomes worst and puts the patient in danger. 

 

This study is important to both the expert radiologist and those that have no access to a 

radiologist. It is important to expert radiologists because the system is designed to help 

them diagnose COVID-19 and pneumonia more accurately in a short period. And those 

that have no access to a radiologist, it helps them to be diagnosed early so that proper 

action can be taken before the infection becomes chronic. This study contributes to the 

field of medicine by helping them to diagnose the presence of COVID-19 and pneumonia 

in a short period, unlike the traditional way in which it takes series of examination 

processes before confirming the cases. This study also contributes to the artificial 

intelligence field by showing that the deep learning model is capable to diagnose 

pathologies of a human body. 

 

This study is limited to the only use of the chest X-ray image, unlike the professional 

radiologist that also used the physical symptoms of a patient together with the CXR scans 

to diagnose the presence of COVID-19 or pneumonia patients. The delimitation part of 

this research is the practical aspect in terms of the availability of high-performance 

processing hardwire for the fast and easy development of the algorithm that is used to 

diagnose COVID-19 and pneumonia. The use of a small portion of data in the system 

development is also delimitation, though the study is aiming to find a way to develop the 

system which traditionally is a large data consuming using only small data. 

 

1.1 Thesis Overview 

The thesis remaining parts is structured and organized as follows: 

 

 Chapter 2 reviews the literature of the research study, where some research papers are 

reviewed to solidify the understanding and application of the research problem. 
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 Chapter 3 described the thesis methodology, including how the dataset is collected, 

the preprocessing techniques used, and the explanation of convolutional neural 

network parts like convolutional layers, pooling layers, activation functions, loss 

functions, and optimization algorithms. And also explain some important evaluation 

matrices used to evaluate the experimental result of the thesis. 

 

 Chapter 4 shows the experimental results of the thesis research and provided the 

evaluation matrices results from the classification task performed. 

 

 Chapter 5 concludes the thesis research by providing a summary of the overall thesis 

methodology and the experimental results, and also a recommendation that will 

improve the performance of the system. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

2.1. Review on Deep Learning in Diagnosing of Pneumonia 

 

Different algorithms based on deep learning models have been developed for diagnosing 

Coronavirus and viral pneumonia diseases in CXR scan images and computer 

tomography (CT) scans images.  

(Q. Li et al., 2020) used CheXNet, DenseNet, VGG19, MobileNet, InceptionV3, 

ResNet18, ResNet101, and squeezeNet architecture to trained on the 3 class classification 

using transfer learning and the use of data augmentation techniques on the dataset that 

they introduced to the public which consisting of 423 COVID-19 cases, 1485 viral 

pneumonia cases, and 1575 normal cases CXR scan images, and their networks attained a 

recall, precision, F1 score, specificity, and accuracy of 97.94, 97.95, 97.94, 98.80, and 

97.94 respectively. 

 

 (L. Li et al., 2020) presents a network architecture called CovXNet to diagnosed COVID-

19, viral pneumonia, and bacterial pneumonia, their dataset consists of 1,583 normal X-

Ray images, 1493 non-COVID-19 pneumonia CXR images, 2,980 bacterial pneumonia 

X-Ray images, and 305 COVID-19 CXR scan images cases from different patients, their 

model performance has the accuracy, recall, precision, F1 score, AUC scores, and 

specificity of 90.2, 89.9, 90.8, 90.4, 91.1, and 89.1 respectively. 

 

(Gunraj, Wang, & Wong, 2020) proposed a COVID-Net network to diagnose the 

presence of COVID-19 and pneumonia diseases, they introduced a new dataset of 13,975 

CXR scans images from 13,870 patients, and their model attained performance of 93.3 

accuracies, the paper only presents an accuracy as the performance matric for 3 class 

classification. 
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In (Han et al., 2020), an attention-based deep 3D multiple instance learning (AD3D-MIL) 

approach for screening of COVID-19 pneumonia from other forms of viral pneumonia, 

the researchers used a dataset of computer tomography (CT) scans that includes 230 scans 

of COVID-19 from 79 patients, 100 scans of pneumonia from 100 patients, and 130 CT 

scans from 130 peoples that do not have pneumonia. They reported that their algorithm 

attained an overall accuracy of 97.9. 

 

(Rajaraman et al., 2020) proposed iterative pruned deep learning model ensemble to 

detect Coronavirus in CXR scan images. They trained two models in their research; the 

first one was trained to classify normal and abnormal chest X-Rays, the second model 

was trained to classified COVID-19 and pneumonia cases by using the training weights of 

the first model with help of the transfer learning method. They used the ensemble method 

to improve the prediction performance of their model. They achieved an accuracy and 

AUC score of 99.01 and 0.9972 in detecting COVID-19 cases respectively. 

 

(Hammoudi et al., 2020) presented tailored models for early-stage detection of COVID-

19 pulmonary symptoms. Their models were trained with a dataset that has bacterial and 

viral pneumonia and normal chest X-Ray images, in their research they assume that, if 

their model predicts a chest X-Ray image as viral pneumonia then there will be a high 

chance that it is COVID-19, they explained that, they do not include any COVID-19 case 

chest X-Ray image in their model training phase, because they believed that, the number 

of COVID-19 chest X-Ray images that are currently available at the time of their research 

is not enough to train deep learning models. Hence, they take their assumption of if their 

model prediction shows a high probability of viral pneumonia then it is likely to be a 

COVID-19 case. Their model archived the best performance using tailored DenseNet169 

architecture with an accuracy of 95.72. 

 

(Ko et al., 2020) presents a 2D deep learning called first-track COVID-19 classification 

network (FCONet) to diagnosed COVID-19 on a single chest computer tomography scan. 

They used a transfer learning approach to training the FCONet model. Computer 

tomography (CT) scans of 3,993 with pneumonia, normal and COVID-19 were used for 
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training and testing the FCONet models. In all the pre-trained FCONet models, ResNet50 

FCONet has a high-performance result of 99.8, 100, and 99.87 sensitivity, specificity, and 

Accuracy respectively on the test dataset. 

 

(Rajpurkar et al., 2017) developed an algorithm that detects pneumonia using a 

convolutional neural network, where they used 121-layers convolutional neural network 

on a dataset that contains 100,000 frontal views of chest X-ray images. Their algorithm 

was compared with an expert Radiologist from the Stanford university Radiology 

department, their model was found to do better than the expert Radiologist that has many 

years of experience in the field. They extended their algorithm to detect 14 different 

pathologists in the chest and archive state of the art result in all the 14 different diseases 

that affect human respiration. They used the F1 score to compare their algorithm and the 

4 radiologists and have 0.387 and 0.435 F1 average scores respectively. Even though they 

found out that their algorithm has some limitations compared to radiologists, like access 

to patient medical history which was not used to both radiologists and the algorithm, they 

were only provided with a frontal view of chest X-ray. 

 

In (Ayan & Ünver, 2019) developed a computer-aided diagnosis system, to detect the 

presence of pneumonia in a chest X-ray image, they used transfer learning in two well-

known algorithms that were trained in an image net dataset which is a large dataset of 

different images, they used pre-train Xception Network and VGG16 Network and archive 

an accuracy of 0.82% and 0.87% respectively. They used a dataset of only 5,856 frontal 

X-ray images and archived their result. They compared the performance of the two 

networks and found out that the Xception network performs well in diagnosing 

pneumonia cases, and the VGG16 network performs well in diagnosing normal cases. 

This shows that each of the networks has it is own detection capability. 

 

In (Abiyev, Khaleel, & Ma’aitah, 2018) proposed an algorithm that detects chest 

pathologies including pneumonia using CXR scan images. The authors employed back 

propagation neural network (BFNN), competitive neural network (CpNN), and CNN in 

the detection of diseases. They train both the BFNN and CpNN from the same dataset of 
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1000 CXR scan images and train the CNN from 120,120 CXR scan images, and 

compared the pathology recognition rate of the algorithm and concluded that CNN 

outperforms both the BFNN and the CpNN. The algorithm accuracy of BFNN, CpNN, 

and CNN is 80.04%, 89.57%, and 92.4% respectively.  

 

Er et al. (2009) presented an artificial immune system and three different neural networks 

which are multilayers, probabilistic, and learning vector quantization networks to 

diagnose chronic obstructive pulmonary and pneumonia. They used a dataset of 201 X-

ray images containing 38 features (laboratory examinations) and achieved a classification 

accuracy of multilayers, probabilistic, learning vector quantization, and artificial immune 

system as 93.08%, 93.92%, 92.65%, and 94% respectively. 

 

Antin et al. (2017) proposed a machine learning logistic regression model and deep 

learning convolutional neural network for pneumonia diagnosis, 112,120 chest X-ray 

scans images from 30,805 different patients that are available from Kaggle are used. Their 

model classified the presence of pneumonia or not in the scanned image. The archived the 

performance 0.6037 and 0.609 AUC for logistic regression and convolutional neural 

network respectively. 

 

Jaiswal et al. (2019) used mask recurrent convolutional neural network (Mask RNN) to 

identify symptoms of pneumonia in image data; their network was pre-trained on COCO 

weights to extract important image features. Public available chest radiographs dataset 

from RSNA which is a subset of the original 112,000 chest X-ray datasets are used to 

train their mask RSNN; they also used data augmentation in the training processes for 

generalization in identifying the presence of the virus. 

 

Rosenberg et al. (2019) employed an artificial swarm intelligent (ASI) system, that uses 

eight radiologists connected by the swarming algorithm to increase the accuracy of 

pneumonia diagnosis. Their studies revealed that the ASI system outperforms the 

diagnosis of the individual radiologist and the state of the art deep learning algorithm 
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(CheXNet) when compared in respect to binary classification, mean absolute error, and 

ROC analysis. They disclosed that previous studies on the CheXNet have higher AUROC 

with 0.7680 than their ASI system with AUROC of 0.7080. Their studies show that 

swarm-based technologies are very promising in diagnosis. 

 

Saraiva et al. (2019) developed a CNN model and multilayer perceptron (MLP) to 

diagnose pneumonia presence in an X-ray image. A Dataset of 5863 X-ray images was 

used in the studies, the two networks were compared in terms of their accuracy to 

diagnose pneumonia. 94.40% and 92.16% accuracy of convolutional neural network CNN 

and multilayer perceptron respectively were archived. 

 

From the analysis of different research works, it was shown that the different models 

based on deep learning have been designed for improving the accuracy of diagnostic 

systems. However, the designed models are designated for special cases. In this thesis, we 

are developing a unique approach for diagnosing pneumonia diseases using a deep 

learning model. The designed system will detect COVID-19 and pneumonia diseases with 

high accuracy.  
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CHAPTER 3 

METHODOLOGY 

 

 

3.1 Design  

The design of this study is a software implementation of an algorithm that can diagnose 

COVID-19 and pneumonia cases from chest X-ray images. Deep learning algorithm 

specifically convolutional neural network (CNN) is used in the implementation together 

with the Tensor processing unit (TPU) as the hardware that processes the algorithm. 

Transfer learning is used for feature extraction to save more training time, reduce 

overfitting, and improve the accuracy of the algorithm. There are four main stages for the 

model implementation which are: 

1) Input stage 

2) Pre-processing stage 

3) Training stage 

4) Output stage 

 

Figure 3.1: block diagram of the design stages 

 

1) Input stage: The input of the model is a red green blue (RGB) chest X-ray images in 

PNG format. This is the first stage of the algorithm. After the X-ray images are feed 

to the model it will then start the next stage which is a pre-processing stage.  

2) Pre-processing stage: This is the second stage of the algorithm, where the input chest 

X-ray images are check if it is in RGB form or not if it is not then it will be converted 

to RGB form, then the X-ray images will be resized to 180 by 180, then it will be 

normalized by dividing each input image pixels by 255 which will make the pixels to 

range from 0 - 1, not 0 – 225 which is the original range of image pixels. The 
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preprocessing stage helps the algorithm to easily learn and extract important image 

features in a short time. 

3)  Training stage: Training is the third stage of the model. In this stage the pre-

processed chest X-ray images are feed to the input layer of the convolutional neural 

network (CNN), and then to the hidden layers where features learn and extracted, then 

the output of the last hidden layer will pass the image to the output layer. 

4) Output stage: This stage is the last and final stage of the model. The final decision of 

the model is decided in this layer (output layer) of the network by producing three 

outputs classes which are COVID-19, pneumonia, and normal. This decision comes 

from the last layer of the convolutional neural network which is in probability form. 

When a COVID-19 class has a higher probability value then the decision of the 

algorithm is COVID-19, or if the pneumonia class has a higher probability value then 

the decision of the algorithm is pneumonia otherwise it is a normal class.  

 

3.2 System Architecture 

The system architecture is summarized in fig.4.2 which includes the following steps 

below. 

1. A pre-trained model (base model) which was trained with a dataset of only pneumonia 

and normal X-Ray images was used as the base model of the research model 

architecture using transfer learning techniques. 

2. The research dataset which includes COVID-19, pneumonia, and normal X-Ray 

images are preprocessed and prepared for the training phase. 

3. The proposed model architecture was trained on the preprocess chest X-ray images of 

COVID-19, pneumonia, and normal cases. 

4. The model output is a decision making part of the model architecture of either the X-

Ray image is of COVID-19, pneumonia, or normal cases. 
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Figure 3.2: System Architecture 

3.3 Dataset  

The research study uses two datasets, All the datasets that were used in this research study 

are collected (downloaded) from the Kaggle dataset repository through the Google newly 

lunch 25 million free datasets early this year. (Kermany et al., 2018) is the First dataset 

contains 5.863 X-ray images in JPEG format, anterior-posterior chest X-ray images of 

pediatric patients of age ranging from one to five years old are selected from Guangzhou 

women and children’s medical center, The chest X-ray images were screen to remove all 

X-Ray images that is unreadable or have low-quality scans? Two expert radiologists 

check and evaluate the diagnosis (Label). The third expert radiologist also rechecks the 

validity of the diagnosis to avoid errors. The dataset is categorized into three parts, 

training, validation, and testing part, each part is sub-categorized into two classes Normal 

and pneumonia class. The dataset contains bacterial and viral pneumonia which are 

considered and label as pneumonia class. 4,185 chest X-ray images were used as training 

data, 1,047 chest X-ray images for validation, 624 images for testing where 390 are 

pneumonia cases and 234 are Normal cases. All the chest X-ray images from these three 

parts are both from pneumonia and Normal classes. The second dataset contained 

COVID-19, pneumonia, and normal cases chest X-Ray images, this dataset was created 

by a team of researchers from Qatar University, the University of Dhaka Bangladesh with 

their collaborators from Pakistan and Malaysia in collaboration with medical doctors (Q. 

Li et al., 2020). The dataset contains 219 COVID-19 chest X-Ray images, 1341 normal 
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chest X-Ray images, and 1345 viral pneumonia chest X-Ray images cases. Below is the 

sample of chest X-ray images from COVID19, pneumonia, and Normal class. 

 

 

Figure 3.3: COVID-19/Pneumonia/Normal chest X-ray images 

 

The figure below shows COVID-19/Pneumonia/Normal class distribution in the training, 

validation, and testing part of the dataset in form of a bar chart. 
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Figure 3.4: top first all data, top second training data, top third test data, top forth                

validation data 
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3.4 Preprocessing  

After the dataset is collected, the next step is to pre-process the data to march the 

expectation of our model. First, the chest X-ray images are check to see whether there are 

in RGB (Red Green Blue) format or not, if it is not it will be converted to RGB format, 

then the X-ray images will be categorized (label) into 0 for Normal cases and 1 for 

COVID-19 cases, and 2 for Pneumonia cases. The images will then be resized to 180 by 

180, followed by normalizing the resized image by dividing each pixel of the image (X) 

by 225, this will make the image pixels to range from 0 to 1, instead of 0 to 225 which is 

the standard intensity level of digital images. The pre-processing steps are useful since it 

helps the algorithm to learn and extract features from image easily, and it also helps in 

reducing the training time of the algorithm. The normalization is mathematically given 

below. 

 

X = 
 

   
                                                                              (3.1) 

 

 

3.5 Convolutional Neural Network (CNN) 

A convolutional neural network is a kind of neural network just like the traditional 

artificial neural network, that consist of fully connected layers, and activation functions 

like sigmoid and ReLu with an addition of two important layers: Convolutional layers and 

pooling layers as shown in fig.8 below. A convolutional neural network was evolved from 

the visual context studies neocognitron in 1980 by k. Fukushima (Fukushima, 1980). In 

1998 Yann Lecun, Leon Bottou, and Yoshua Bengio archived a very important milestone 

on a convolutional neural network by introducing a nowadays well-known architecture 

called LeeNet-5 (LeCun, Bottou, Bengio, & Haffner, 1998), which is widely used in the 

handwritten recognition task. As mention convolutional neural network has two main 

building block layers: convolutional layers and pooling layers, we will dive deep into 

these two layers to understand how they work. 
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Figure 3.5: Convolutional Neural network structure/architecture 

 

3.5.1 Convolutional Layer 

The convolutional layer is one of the important building blocks of a convolutional neural 

network. The layer is used to learn and extract features from an image, a convolutional 

layer is where the input image pixels values which have some weight and height are 

multiplied or convolute with convolutional filters or kernels. The convolutional result 

output dimension will have fewer dimensions than before the convolution operation. 

Filters, stride, and padding types are the hyperparameters of convolutional layers that 

have to be set. Fig.8 shows a sample example of convolution operation on a 7x7x1 input 

image, convolute with a 3x3x1 filter with the stride of 2 and valid padding type (with 

padding). Fig. 9 shows a sample example of a convolution operation of a 7x7x1 input 

image, convolute with a 3x3x1 filter with a stride of 2 and the same padding type (zero 

paddings). 

The convolution operation performs by the convolutional layer can be represented by the 

mathematical formula below. 

 

  ∑             
                                          (3.3) 

 

Where; 

X is the input 
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ω is the filter and  

b is the bias 

 

Figure 3.6: Convolutional operation with the same padding 

 

  

    

Figure 3.7: Convolutional operation with valid padding 

 

7 x 7 x 3 

3 x 3 x 3 3 x 3 x 3 

7 x 7 x 3 

3 x 3 x 3 3 x 3 x 3 
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The output dimension of the convolution of input image pixels with a convolution filter or 

kennel can be calculated using the below mathematical formula. 

 

  
        

 
                                  (3.4)  

 

Where; 

n  is the image dimension 

p  is the padding type, 0 for no padding and 1 for padding 

f  is the filter or kennel size and 

s  is the stride value. 

 

3.5.2 Pooling Layer 

The pooling layer is a layer that comes after the convolutional layer, where its main 

purpose is to shrink or reduce the input image size. The number of parameters, memory 

usage, and computational power will be reduced by pooling layers, and it also helps in 

reducing model overfitting risk. As in convolutional layers, pooling layers also have some 

hyper-parameters that must be set. The size of the pooling layer, the padding, and the 

stride are the hyper-parameters in each pooling layer that must be set. Pooling layers are 

not like convolutional layers that will do some convolutional operation; rather it just uses 

aggregate functions to aggregate the input. The commonly used aggregation functions are 

max aggregation, min aggregation, and average aggregation also known as max-pooling, 

min-pooling, and average-pooling respectively. Fig. 10, Fig. 11, and Fig.12 show max-

pooling, min-pooling, and average pooling with 4 x 4 pooling kennel, a stride of 2, and no 

padding for all the three pooling types. 
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Figure 3.8: Max pooling operation 

 

Figure 3.9: Min pooling operation 

 

 

Figure 3.10: Average pooling operation 

4 x 4 x 3 

2 x 2 x 3 

4 x 4 x 3 

2 x 2 x 3 

4 x 4 x 3 

2 x 2 x 3 
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As we can see in the pooling layer operation from the above figures, it is obvious that 

pooling layers are a powerful layer which with only 2 x 2 kennels and stride of 2, shrinks 

the pooling layer output by half.  

 

3.5.3 Activation Functions 

Activation is a function that decides on either an output of a neural network layer will be 

passing to the next layer or not. The activation function is added at the end of each layer 

of a neural network (NN). There are linear and nonlinear activation functions, which are 

used to decide on the output of each neural network layer. Nonlinear activation functions 

are the functions that are mostly used in neural networks and deep learning algorithms. In 

this research, the five most widely used activation functions will be highlighted. Which 

are: 

1. Sigmoid activation function 

2. Hyperbolic Tangent (tanh) activation function 

3. Rectified Linear Unit (ReLu) activation function 

4. Softmax activation function, and 

5. Exponential Linear Unit (Elu) activation function 

1) Sigmoid Activation Function 

A sigmoid activation function is a probabilistic decision-making approach activation 

function. Its values range from 0 to 1 as shown graphically in fig.13, this activation 

function can be used to predict or decide on the output result of neural network layers, it 

can be used in both regression and classification problems, but is mostly used on 

algorithms that it prediction result is needed in probability form. Below is the 

mathematical equation for the sigmoid activation function. 

 

 ( )   
 

       
         (3.5) 

 

Where; 

x is the input tensor. 
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Figure 3.11: sigmoid activation function 

 

2) Hyperbolic Tangent (Tanh) Activation Function 

Hyperbolic tangent activation function (Tanh) is another activation function that is used 

to makes decisions on regression problems and classification problems. This activation 

function ranges from -1 to 1 as shown graphically in fig.14, and it maps all negative 

inputs into negative values. Hyperbolic tangent activation function (Tanh) is the 

exponential of the input tensors minus the exponential of the negative input tensors 

divided by the sum of the exponential of input tensors and exponential of the negative 

input tensors, as mathematically shown in the below equation. 

 

    ( )   
       

       
         (3.6) 

 

Where; 

x is the input tensor 
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Figure 3.12: Hyperbolic Tangent (Tanh) Activation function 

 

3) Rectified Linear Unit (ReLu) Activation Function 

The Rectified Linear Unit activation function is a decision function that is mostly used in 

today’s research. This activation function ranges from 0 to infinity as shown graphically 

in fig.15, if there is any negative values tensor it will be converted to zero by this 

activation function. The rectified linear unit activation function is the maximum value 

between the input tensors and zeroes as shown mathematically in the equation below. 

 

 ( )      (   )         (3.7) 

 ( )  {
     
     

         (3.8) 

 

Where; 

x is the input tensor. 
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Figure 3.13: Rectified Linear Unit Activation Function 

 

4) Softmax Activation Function 

A softmax activation function is a function that is used to make decisions, mostly it is 

used in the last layer of a neural network, this activation function gives a value to the 

input tensors in relation to their weight, and if all the values are added, they will sum up 

to one. The softmax activation function is generally used in binary classification and 

multi-class classification problems. The mathematical equation for the softmax activation 

function is given below. 

 

 ( )   
  

∑     
   

         (3.9) 

 

Where; 

x is the input tensor 

n is the number of the input tensors 
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Figure 3.14: Softmax activation function 

 

5) Exponential Linear Unit (Elu) Activation Function 

The exponential linear unit (Elu) activation function is a new decision function introduced 

in 2016 by Djork-Arne clevert, Thomas unterthiner, and sepp Hochreiter. In their research 

paper, they stated and proved that their activation function gives higher classification 

accuracy and less time for learning in deep neural networks compare to other activation 

functions like Relu (Clevert, Unterthiner, & Hochreiter, 2016). Unlike the Relu activation 

function, elu has negative values as shown in fig.17. Below is the mathematical equation 

for the exponential linear unit activation function. 

 

 ( )  {
     

 (   ( )   )    
       (3.10) 

  ( )  {
     

 ( )       
        (3.11) 

 

Where; 

x is the input tensor 
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α is the hyperparameter that controls the values to which elu saturate negative inputs 

 

 

Figure 3.15: Exponential linear unit activation function 

3.5.4 Loss Functions 

The loss function is a function that is used to estimate the error or loss of a model. The 

model has to know how well or bad it perform to optimize the loss while training. This is 

done by knowing the loos or error it makes, which is provided by the loss function. The 

model will optimize the loos by updating the weights of the algorithm to attend a good 

performance using the result return by the loss function. The loss function is computed 

from the predicted labels provided by the model and the true labels. There are many loss 

functions that can be used depending on the problem at hand, such as regression and 

classification problems. In this thesis research, the five most widely used regression, 

classification problems loss functions will be highlighted, which are: 

1. Root Mean Square Error (RMSE) 

2. Mean Absolute Error (MAE) 

3. Binary Cross-Entropy 

4. Categorical Cross-Entropy, and  

5. Sparse Categorical Cross-Entropy 
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Root mean square error and mean absolute error are loss function that is used to estimate 

losses in regression related problems, while binary cross-entropy, categorical cross-

entropy, and sparse categorical cross-entropy are loss functions that are used to measure 

the degree of losses or error in classification related problems. Table.1 below summarizes 

the uses, functions, and formulas of the above-listed loss functions. 

 

Table 3.1: Loss Functions 

 

 

Wherefrom the above table;  

f(x) is the predicted labels 

y is the true labels, and  

n is the data point number. 

 

3.5.5 Optimizers 

An optimizer is an algorithm or process/method that uses the loss function to update the 

weight of a neural network by reducing the loos in the model, to attend the most accurate 

performance possible. In this thesis research, I am going to highlights some of the most 
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widely used, and the fastest optimization algorithms used to train a neural network, which 

is the following:  

1. Momentum optimizer 

2. Nesterov Accelerated Gradient optimizer 

3. AdaGrad optimizer 

4. RMSProp optimizer 

5. Adam optimizer 

 

1) Momentum Optimizer   

Momentum optimizer was proposed by Boris polyak in 1964 (Polyak, 1964), where it 

aims at considering the previous gradients while computing the weight to soften the 

convergence and reduced the variance of the model. When compared to the stochastic 

gradient descent algorithm SGD it has a soften convergence and lower variance. 

Momentum optimizer converges fast by going directly to the global minimum without 

going through an irrelevant direction toward the global minimum. Each iteration this 

optimizer sums up the local gradient to its parameter called momentum represented by m. 

the weight is updated by subtracting the momentum from it. The momentum algorithm is 

shown in the below equation. 

 

1.          ( )        (3.14) 

 

2.               (3.15) 

 

Where; 

m is the momentum 

β is the decay rate  

j( ) is the cost function 

α is the learning rate  

θ is the weight parameter 
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2) Nesterov Accelerated Gradient Optimizer 

Nesterov accelerated gradient optimizer or Nesterov momentum optimizer was proposed 

in 1983 by Yurii Nesterov. This optimizer is almost the same as the momentum optimizer 

with some small changes. Nesterov momentum optimizer is using position slightly ahead 

of local minimum to measure the gradient of the cost function, and this position is of 

course toward the direction of the momentum. The optimizer also updated the weight by 

subtracting the momentum from the weight as shown in the equation below. 

 

1.          (    )       (3.16) 

 

2.               (3.17) 

 

Where; 

m is the momentum 

β is the decay rate  

α is the learning rate  

θ is the weight parameter 

 

3) AdaGrad Optimizer 

AdaGrad optimizer is using a second-order optimization algorithm, the optimizer is 

proposed by Duchi, Hazan, and Singer in 2011 (Duchi, Bartlett, & Wainwright, 2012). 

The learning rate in this optimizer is not manually set or constant as in the other 

optimization algorithms, the learning rate is set according to the updated frequency of the 

parameter while training. The equation for the AdaGrad algorithm is shown below. 

 

1.        ( )   ( )       (3.18) 

 

2.        ( )  √          (3.19) 
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Where; 

s is the square of the gradient vector 

j( ) is the cost function 

α is the learning rate  

θ is the weight parameter 

  is the element-wise multiplication symbol 

  is the element-wise division symbol 

 

4) RMSProp Optimizer 

RMSProp optimizer was proposed by Hinton in 2012 (Lyon & Lyon, 2017), where its 

optimization performance is better than that of AdaGrad optimizer, in AdaGrad 

optimization technique it goes down to the gradient too fast and may end up never 

converge to the global minimum, RMSProp solve this problem by considering the most 

recent gradient in the iteration cycle, this is done by using the exponential decay from the 

first step. This optimizer is the choice of many researchers before the introduction of the 

Adam optimizer. Below is the equation showing the RMSProp optimization algorithm. 

 

1.      (   )   ( )    ( )      (3.20) 

 

2.        ( )  √          (3.21) 

 

Where; 

s is the square of the gradient vector 

j( ) is the cost function 

α is the learning rate  

β is the decay rate  

θ is the weight parameter 

  is the element-wise multiplication symbol 

  is the element-wise division symbol 



31 
 

 

5) Adam Optimizer 

Adam optimizer is proposed by P. Kingma and Lee Ba in 2014(Kingma & Ba, 2015). 

Adam stands for an adaptive moment estimator. This optimizer encapsulated the idea of 

momentum optimizer and RMSProp optimizer by monitoring both the exponential decay 

average of the previous gradient and the exponential decaying average of the previous 

square gradient respectively. Adam optimizer is the best among the other optimizers 

because the algorithm is too fast and also converges rapidly. The equation below shows 

the Adam optimization algorithm. 

 

1.       (    )   ( )    ( )     (3.22) 

 

2.       (    )  ( )       (3.23) 

 

 

3.   
 

    
          (3.24) 

 

4.   
 

    
          (3.25) 

 

 

5.        √          (3.26) 

 

Where; 

m is the momentum 

s is the square of the gradient vector 

j( ) is the cost function 

α is the learning rate  

θ is the weight parameter 

  is the element-wise multiplication symbol 
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  is the element-wise division symbol 

     is the momentum decay hyperparameter 

    is the momentum decay hyperparameter 

  is the smoothing term 

T is the iteration number starting from 1 

 

3.6. Transfer learning 

Transfer learning is the method of reusing an already train machine learning model which 

is train with a large amount of data in a particular task and re-use that model to train a 

new classifier of a similar or different task by turning the model hyperparameters or 

freezing all or some of the layers of the already trained model as shown in fig.21. 

Transfer learning helps us to train a convolutional neural network with a small size of 

dataset. In transfer learning, the new model that is built with a pre-train model does not 

have to train with a large dataset to perform well. Since all the base features are already 

learned in the pre-train model, the training time is not as much as to train from scratch 

that is to train without using the transfer learning method, the memory, and computational 

resources will also be reduced compared to training from scratch. Many pre-train 

algorithms are trained with large datasets like the ImageNet dataset (Russakovsky et al., 

2015), which have over 15 million images from around 22,000 categories. Those pre-train 

algorithms are once that is used mostly as a base in the transfer learning method.  

 

Transfer learning is a process of reusing an already trained model that is trained for a 

specific tasking to a new task either the tasks are similar or not. The transfer learning 

method is usually and most widely used method in computer vision-related tasks. 

Transfer learning help in the following ways: 

I. It reduced the training time of a model. 

II. It reduced the computational cost. 

III. It prevents or reduced model over-fitting 

IV. It allows the training of large CNN with a small amount of data. 

V. It also increases/bust the performance of a model. 
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Xception Network, VGG16 Network, ResNet50 Network, Inception V3 Network, 

DenseNet121 Network are the popular and most used pre-train algorithms which are the 

state-of-the-art algorithms that are trained with ImageNet dataset. 

 

Figure 3. 216: transfer learning structure  

 

3.7 Evaluation Matrices 

Evaluation matrices are matrices that are used to measure the performance of machine 

learning or deep learning models. There exist different types of evaluation matrices that 

can be used to evaluate models. Different evaluation matrices are uses to evaluate the 

performance of different models regarding the problem at hand. Some evaluation matrices 
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are best in measuring the performance of regression models, while some are best for the 

classification models. As mentioned, there exist many types of evaluation matrices, 

wherein this thesis research, I am going to highlight the most widely used evaluation 

matrices in today’s research community, which are as follows: 

1. Confusion matrix 

2. Accuracy 

3. Recall 

4. Precision 

5. F1 score, and 

6. Area Under the Rock Curve (AUC) 

 

3.7.1 Confusion Matrix 

Confusion matrix is a matric that is used to measure the performance of classification 

algorithms. The classification problems may be a binary or multi-class classification. 

Confusion matric provides the exact number of true positive class, false-positive class, 

true negative class, and false-negative class by comparing the actual classes from the 

original data with a predicted label from the classification algorithm. Below is the sample 

confusion matric of a binary classification problem. 
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Figure 3.17: Confusion matric 
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Where; 

P is the positive class 

N is negative class 

TP is the true positive class 

TN is a true negative class 

FP is the false positive class 

FN is false negative class 

 

3.7.2 Accuracy Matric 

Accuracy is an evaluation metric that is used in measuring the performance of 

classification algorithms or regression algorithms. Accuracy will be problematic or 

misleading performance matric when use to evaluate a model that is trained on 

unbalanced data. For this evaluation matric to provide a good and reliable performance 

measure, the data to be used in training the model must be balanced. Accuracy is 

computed by summing up the true positive and true negative class divided by the 

summation of true positive, true negative, false positive, and false negative classes as 

shown in the formula below. 

 

           
     

           
        (3.27) 

 

3.7.3 Recall Matric 

A recall is another evaluation metric that is used to measure the performance of the 

classifier. A recall is a correctly classified class from the classification model. A recall is 

computed by dividing the true positive class with the summation of the true positive class 

and false-negative class as shown in the formula below. 

 

         
  

     
         (3.28) 
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3.7.4 Precision Matric 

Precision is also an evaluation matric usually used together with recall evaluation matric 

to measure the performance of classification algorithms. Precision is a positive prediction 

result that corresponds to the correctly classified class. Precision is computed by dividing 

the true positive class with the summation of true positive and false positive class as 

shown in the formula below. 

 

            
  

     
        (3.29) 

 

3.7.5 Precision/Recall Tradeoff 

This is a tradeoff between the recall and the precision of classifiers, where a classifier will 

have to give off one to gain the other. Here giving off one does not mean to not use it but 

to have less performance than the other. For instance, let’s say you have a problem with 

diagnosing a patient with pneumonia cases; here you will want your classifier to classify 

all the patients with pneumonia cases than to classified patients with pneumonia cases as 

a patient with no pneumonia. In this particular case, you will have to trade off the 

classifier precision to have more recall since the problem at hand needs more recall than 

the precision. The same goes for the precision also; thresholds have to be set between the 

recall and the precision defending on the problem that is to be solved. Below shows a plot 

of a tradeoff between precision and recall at a certain threshold.  
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Figure 3.18: precision-recall tradeoff 

 

3.7.6 F1 Score Matric 

F1 score evaluation matric is used to measure the performance of a classifier by 

combining the recall and precision evaluation matrices as one single performance 

measure evaluation matric. F1 score evaluation matric is computed by dividing the twice 

of precision multiply by recall with a summation of recall and precision evaluation matric 

result. Below shows how the F1 score evaluation matric is computed. 

 

           
                  

                
       (3.30) 

 

3.7.7 Area Under the ROC Curve (AUC) 

Ares under the ROC curve is a performance evaluation matric that is used to measure the 

aggregate performance of all the possible thresholds of the classifier. AUC of greater than 

80% is generally considered to be an excellent performance by the classifier. AUC is a 
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plot of the true positive rate versus the true negative rate from the classifier. Below shows 

a sample AUC plot. 

 

 

Figure 3.19: Area under the curve plot 
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CHAPTER 4 

IMPLEMENTATION RESULTS 

 

   

4.1 Results 

The main aim of this research is to develop a system that will correctly diagnose the 

presence of COVID-19 and viral pneumonia in X-Ray images. The transfer learning 

approach was used in developing the system, two models were trained in two different 

datasets, the first model was trained on a dataset that contain only normal and pneumonia 

cases, the second model used the first model as the base model so as to say it uses the 

knowledge learned by the first model to train on the dataset that contains COVID-19, 

pneumonia, and normal cases. The training and testing of the model were performed 

using Keras and TensorFlow framework in a python programming language with tensor 

processing unit (TPU) as an accelerator in Kaggle kennel. 

 

4.2 First Model Results 

Figure 4.1 below shows the configuration of the first model that used the first dataset to 

learn the features and detect the presence of Pneumonia cases in X-Ray images. The first 

model takes an X-Ray image of size 180 x 180 x 3 as an input, and output probabilistic 

results from the last layer of the network which used sigmoid activation function, the 

result of this layer is pneumonia if the probabilistic result is greater than 0.5, otherwise, 

the X-Ray image is normal. 
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Figure 4.1: First model summaries 

 

Table 4. 1: First Dataset distribution 

 

Cases 

 

Training data 

 

Validation data 

 

Test data 

Normal 1,067 282 234 

Pneumonia 3,118 765 390 

Total 4,185 1,067 624 
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Table 4.1 above shows the distribution of the first dataset which includes pneumonia and 

normal chest X-Ray images, this dataset is used to train the first model. 

Figure 4. 2:  First model accuracy per epoch 

Figure 4.3: First model loos per epoch 
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The above figure 4.2-4.3 are the training accuracy and loos respectively for the first 

model, the model is trained to the extends that it learn the important basic X-Ray image 

features and can differentiate pneumonia case from normal with good accuracy, though 

the model plot above shows a sign of model underfitting, and this is because the first 

dataset used in the model training is small, so this issue can be solved by adding the 

training data, and further tuning the hyperparameters of the model. 

 

Table 4. 2: First model test results 

  

Epoch 

 

Recall 

 

Precision 

 

F1_Score 

 

Accuracy 

 

Loos 

First 

Model 

46 0.96 0.82 0.88 0.85 0.44 

 

Table 4.2 above shows the evaluation results of the first model that was trained with the 

first dataset. The model attends a recall, precision, F1_scores, and Accuracy of 0.96, 0.82, 

0.88, and 0.85 respectively. The performance of this model can be improved by turning 

the model hyperparameters, the addition of more training data, and using data 

augmentation techniques. Though with this result we are able to get what we need in 

order to help us in building the main model that classified COVID-19 and Pneumonia 

cases from chest X-Ray images. 

 

4.3 Second Model Results 

Figure 4.4 shows the overall architecture of the proposed model. The architecture 

received an X-Ray images data of size 180 x 180 x 3, it has 2 convolutional layers 

followed by one max-pooling layer, then 3 sequential layers followed by a dropout layer, 

then another sequential layer followed by dropout layer, flatten layer flowed by 3 

sequential layers, a dense layer followed by an output layer which performed 

classification. All the layers use the “RELU” activation function, “SAME” padding type, 
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and filter of size 3 for all the convolutional layers. Adam optimizer with default 

parameters and categorical cross-entropy loss is used in the model training. 

 

Figure 4.5 – 4.6 presents the training and validation plots of the model accuracy and loss 

against each epoch. As shown on the plot, the model has achieved high performance with 

only 20 epochs, from the plot it is clearly seen that both the accuracy and the model loss 

looks great, and this is because of the use of transfer learning which helps in reducing the 

training time, and also in attaining the high performance with a small number of training 

data and number of epochs. 

 



44 
 

 

Figure 4. 4: The architecture of the proposed model 
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Figure 4.5:  Second Model Accuracy per Epoch 

 

 

 

 

Figure 4.6: Second Model Loos per Epoch 
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Figure 4.7 shows the activation map of the convolutional layers of the network. The 

activation maps show what a network learned at a particular layer. For instance, the 

Conv2d_6 layer shows the high-level features learn by the network, and the sequential_30 

layer shows low-level features which are more specific features of the classification 

classes in the data. The deeper the network the more and more specific features to be 

learned for each class by the network.  

 

Figure 4.8 shows the Grad_CAM of COVID-19, and viral Pneumonia cases. The 

Grad_CAM helps us to visualize where exactly the model looks to perform the prediction 

on each and every X-Ray image. The first 10 X-Ray images are for COVID-19 cases, and 

the last 10 X-Ray images are for viral pneumonia cases. In all the X-Ray images, the part 

that is rainbow/yellowish in color is the most important part of the image used by the 

model in making decisions, while the parts with purple color are less important to the 

model for the making decision. Only 20 X-Ray images are shown in figure 5.4, more X-

Ray images can be shown for a clear understanding of each case predicted by the model. 
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Figure 4. 7: shows the activation map in some convolutional layers of the network 
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Figure 4. 8: shows the Grad_CAM of COVID-19, and viral Pneumonia cases 

 

Table 4.3: Dataset splitting for training, validation, and testing 

 

 

Cases 

 

Training sets 

 

Validation set 

 

Testing set 

 

Total 

Normal 1,082 118 141 1,341 

COVID-19 186 12 21 219 

Pneumonia 1,084 132 129 1,345 

Total 2,352 262 291 2,905 
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Table 4.4 shows the result of the model on test data. The result below is the model 

evaluation on test data, the table provided the recall, precision, F1 score, and accuracy 

which are 0.979, 0.982, 0.980, 0.982 respectively archived by the model, which are 

remarkable performance. 

 

Table 4.4: Second Model test results 

  

Epoch 

 

Recall 

 

Precision 

 

F1 

Score 

 

Accuracy 

 

Loss 

 

Second 

Model 

 

20 

 

0.979 

 

0.982 

 

0.980 

 

0.982 

 

0.045 

 

 

5.4 Comparison 

 

Table 4.5: Comparative performance on test data for this research, and other state-of-the-

art approaches 

 

Authors (Year) 

 

Recall 

(%) 

 

Precision 

(%) 

 

Specificity 

(%) 

 

F1 Score 

(%) 

 

Accuracy 

(%) 

Chowdhury et al., 

(2020)  

97.94 97.95 98.80 97.94 97.94 

Cavallo et al., 

(2020)  

- - 90 - 90.8 

Lin & Lee, (2020)  92.6 89.7 - - 93.1 

Rajpal, et al., 

(2020)  

 

- - - 95 94.4 
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Echtioui,et al., 

(2020)  

88.33 91 - 89.66 91.34 

Pham, (2020) 

  

- 95 98 96 95 

Neural et al., 

(2020)  

- - 100 - 96.9 

Alotaibi, (2020)  97.42 97.42 - 97.23 98.3 

This research 97.94 98.27 - 98.0 98.28 
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CHAPTER 5 

CONCLUSION 

 

 

To conclude, the research work was aimed at developing a system that will help 

radiologists in diagnosing COVID-19 and pneumonia cases easily in this trying time of 

the pandemic. Therefore, CNN algorithms were used as shown in the methodology 

section for the detection of these viruses as early as possible. Due to the lack of COVID-

19 data, we have shown how the transfer learning approach was used to bridge the gap of 

these issues. As explained, two CNN algorithms were trained with two unique datasets; 

the first model was trained for binary classification (pneumonia/normal) on the first 

dataset that contains only pneumonia cases and normal CXR images. While the second 

model with the help of the transfer learning method uses the first model as the base model 

and trained on the second dataset that contained COVID-19, pneumonia, and normal 

cases images for three classes classification (COVID-19, pneumonia, and normal). The 

implementation result of the model that diagnose COVID-19 and pneumonia achieved the 

performance of 98.3, 97.9, 98.3, and 98.0 Accuracy, Recall, precision, and F1_scores 

respectively, hence, the proposed model proved to be efficient in diagnosing COVID-19 

and pneumonia cases. A convolutional neural network (CNN) is known as a black box, 

hence, class activation map of some convolutional layers were shown to help understand 

what the model learn at a particular layer. Grad_CAM is also shown to help us know 

where exactly the model is looking at on image data to perform the classification task. At 

the end of the research, some of the other author’s results were compared with this 

research work result, and this work archived a high performance than the others. 
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APPENDIX 1 

FIRST MODEL CODE 

 

import re 

import os 

import numpy as np 

import pandas as pd 

import tensorflow as tf 

from kaggle_datasets import KaggleDatasets 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

 

 

try: 

    tpu = tf.distribute.cluster_resolver.TPUClusterResolver() 

    print('Device:', tpu.master()) 

    tf.config.experimental_connect_to_cluster(tpu) 

    tf.tpu.experimental.initialize_tpu_system(tpu) 

    strategy = tf.distribute.experimental.TPUStrategy(tpu) 

except: 

    strategy = tf.distribute.get_strategy() 

print('Number of replicas:', strategy.num_replicas_in_sync) 

     

print(tf.__version__) 

 

 

 

AUTOTUNE = tf.data.experimental.AUTOTUNE 

GCS_PATH = KaggleDatasets().get_gcs_path() 

BATCH_SIZE = 16 * strategy.num_replicas_in_sync 

IMAGE_SIZE = [180, 180] 

EPOCHS = 25 

 

 

 

filenames = tf.io.gfile.glob(str(GCS_PATH + '/chest_xray/trai

n/*/*')) 

filenames.extend(tf.io.gfile.glob(str(GCS_PATH + '/chest_xray

/val/*/*'))) 

 

 

train_filenames, val_filenames = train_test_split(filenames, 

test_size=0.2) 
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COUNT_NORMAL = len([filename for filename in train_filenames 

if "NORMAL" in filename]) 

print("Normal images count in training set: " + str(COUNT_NOR

MAL)) 

 

COUNT_PNEUMONIA = len([filename for filename in train_filenam

es if "PNEUMONIA" in filename]) 

print("Pneumonia images count in training set: " + str(COUNT_

PNEUMONIA)) 

 

train_list_data = tf.data.Dataset.from_tensor_slices(train_fi

lenames) 

val_list_data = tf.data.Dataset.from_tensor_slices(val_filena

mes) 

 

 

for f in train_list_data.take(5): 

    print(f.numpy()) 

 

 

TRAIN_IMG_COUNT = tf.data.experimental.cardinality(train_list

_data).numpy() 

print("Training images count: " + str(TRAIN_IMG_COUNT)) 

 

VAL_IMG_COUNT = tf.data.experimental.cardinality(val_list_dat

a).numpy() 

print("Validating images count: " + str(VAL_IMG_COUNT)) 

 

 

CLASS_NAMES = np.array([str(tf.strings.split(item, os.path.se

p)[-1].numpy())[2:-1] 

                        for item in tf.io.gfile.glob(str(GCS_

PATH + "/chest_xray/train/*"))]) 

CLASS_NAMES 

 

 

def get_label(file_path): 

    # convert the path to a list of path components 

    parts = tf.strings.split(file_path, os.path.sep) 

    # The second to last is the class-directory 

    return parts[-2] == "PNEUMONIA" 

 

 

def decode_img(img): 

  # convert the compressed string to a 3D uint8 tensor 
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  img = tf.image.decode_jpeg(img, channels=3) 

  # Use `convert_image_dtype` to convert to floats in the [0,

1] range. 

  img = tf.image.convert_image_dtype(img, tf.float32) 

  # resize the image to the desired size. 

  return tf.image.resize(img, IMAGE_SIZE) 

 

 

def process_path(file_path): 

    label = get_label(file_path) 

    # load the raw data from the file as a string 

    img = tf.io.read_file(file_path) 

    img = decode_img(img) 

    return img, label 

 

 

train_data= train_list_data.map(process_path, num_parallel_ca

lls=AUTOTUNE) 

val_data= val_list_data.map(process_path, num_parallel_calls=

AUTOTUNE) 

 

 

for image, label in train_ds.take(1): 

    print("Image shape: ", image.numpy().shape) 

    print("Label: ", label.numpy()) 

 

testl_list_data = tf.data.Dataset.list_files(str(GCS_PATH + '

/chest_xray/test/*/*')) 

TEST_IMAGE_COUNT = tf.data.experimental.cardinality(testl_lis

t_data).numpy() 

 

test_data= testl_list_data.map(process_path, num_parallel_cal

ls=AUTOTUNE) 

test_data= test_ds.batch(BATCH_SIZE) 

 

TEST_IMAGE_COUNT 

 

 

def prepare_for_training(ds, cache=True, shuffle_buffer_size=

1000): 

    # This is a small dataset, only load it once, and keep it

 in memory. 

    # use `.cache(filename)` to cache preprocessing work for 

datasets that don't 

    # fit in memory. 

    if cache: 
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        if isinstance(cache, str): 

            ds = ds.cache(cache) 

        else: 

            ds = ds.cache() 

 

    ds = ds.shuffle(buffer_size=shuffle_buffer_size) 

 

    # Repeat forever 

    ds = ds.repeat() 

 

    ds = ds.batch(BATCH_SIZE) 

 

    # `prefetch` lets the dataset fetch batches in the backgr

ound while the model 

    # is training. 

    ds = ds.prefetch(buffer_size=AUTOTUNE) 

 

    return ds 

 

 

train_data= prepare_for_training(train_ds) 

val_data= prepare_for_training(val_ds) 

 

 

image_batch, label_batch = next(iter(train_ds)) 

 

 

def show_batch(image_batch, label_batch): 

    plt.figure(figsize=(10,10)) 

    for n in range(25): 

        ax = plt.subplot(5,5,n+1) 

        plt.imshow(image_batch[n]) 

        if label_batch[n]: 

            plt.title("PNEUMONIA") 

        else: 

            plt.title("NORMAL") 

        plt.axis("off") 

 

show_batch(image_batch.numpy(), label_batch.numpy()) 

 

 

def conv_block(filters): 

    block = tf.keras.Sequential([ 

        tf.keras.layers.SeparableConv2D(filters, 3, activatio

n='relu', padding='same'), 
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tf.keras.layers.SeparableConv2D(filters, 3, activatio

n='relu', padding='same'), 

tf.keras.layers.BatchNormalization(), 

tf.keras.layers.MaxPool2D() 

] 

) 

return block 

def dense_block(units, dropout_rate): 

block = tf.keras.Sequential([ 

tf.keras.layers.Dense(units, activation='relu'), 

tf.keras.layers.BatchNormalization(), 

tf.keras.layers.Dropout(dropout_rate) 

]) 

return block 

def build_model(): 

model = tf.keras.Sequential([ 

tf.keras.Input(shape=(IMAGE_SIZE[0], IMAGE_SIZE[1], 3

)), 

tf.keras.layers.Conv2D(16, 3, activation='relu', padd

ing='same'), 

tf.keras.layers.Conv2D(16, 3, activation='relu', padd

ing='same'), 

tf.keras.layers.MaxPool2D(), 

conv_block(32), 

conv_block(64), 

conv_block(128), 

tf.keras.layers.Dropout(0.2), 

conv_block(256), 

tf.keras.layers.Dropout(0.2), 

# ########## added layer 

# conv_block(512), 

# tf.keras.layers.Dropout(0.2), 

tf.keras.layers.Flatten(), 

# dense_block(1024, 0.8), ######## added layer 
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        dense_block(512, 0.7), 

        dense_block(128, 0.5), 

        dense_block(64, 0.3), 

         

        tf.keras.layers.Dense(1, activation='sigmoid') 

    ]) 

     

    return model 

 

 

initial_bias = np.log([COUNT_PNEUMONIA/COUNT_NORMAL]) 

initial_bias 

 

weight_for_0 = (1 / COUNT_NORMAL)*(TRAIN_IMG_COUNT)/2.0  

weight_for_1 = (1 / COUNT_PNEUMONIA)*(TRAIN_IMG_COUNT)/2.0 

 

class_weight = {0: weight_for_0, 1: weight_for_1} 

 

print('Weight for class 0: {:.2f}'.format(weight_for_0)) 

print('Weight for class 1: {:.2f}'.format(weight_for_1)) 

 

 

with strategy.scope(): 

    model = build_model() 

 

    METRICS = [ 

        'accuracy', 

        tf.keras.metrics.Precision(name='precision'), 

        tf.keras.metrics.Recall(name='recall') 

    ] 

     

    model.compile( 

        optimizer='adam', 

        loss='binary_crossentropy', 

        metrics=METRICS 

    ) 

 

 

history = model.fit( 

    train_ds, 

    steps_per_epoch=TRAIN_IMG_COUNT // BATCH_SIZE, 

    epochs=EPOCHS, 

    validation_data=val_ds, 

    validation_steps=VAL_IMG_COUNT // BATCH_SIZE, 

    class_weight=class_weight,) 
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checkpoint_cb = tf.keras.callbacks.ModelCheckpoint("PneomoNet

Best.h5", 

                                                    save_best

_only=True) 

 

 

 

early_stopping_cb = tf.keras.callbacks.EarlyStopping(patience

=10, 

                                                     restore_

best_weights=True) 

 

 

def exponential_decay(lr0, s): 

    def exponential_decay_fn(epoch): 

        return lr0 * 0.1 **(epoch / s) 

    return exponential_decay_fn 

 

 

exponential_decay_fn = exponential_decay(0.01, 20) 

 

lr_scheduler = tf.keras.callbacks.LearningRateScheduler(expon

ential_decay_fn) 

 

 

history = model.fit( 

    train_ds, 

    steps_per_epoch=TRAIN_IMG_COUNT // BATCH_SIZE, 

    epochs=100, 

    validation_data=val_ds, 

    validation_steps=VAL_IMG_COUNT // BATCH_SIZE, 

    class_weight=class_weight, 

    callbacks=[checkpoint_cb, early_stopping_cb, lr_scheduler

] 

) 

 

 

fig, ax = plt.subplots(1, 4, figsize=(20, 3)) 

ax = ax.ravel() 

 

 

for i, met in enumerate(['precision', 'recall', 'accuracy', '

loss']): 

    ax[i].plot(history.history[met]) 

    ax[i].plot(history.history['val_' + met]) 

    ax[i].set_title('Model {}'.format(met)) 
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    ax[i].set_xlabel('epochs') 

    ax[i].set_ylabel(met) 

    ax[i].legend(['train', 'val']) 

 

 

loss, acc, prec, rec = model.evaluate(test_ds) 

 

model.save('PneomoNetBest.h5') 
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APPENDIX 2 

SECOND MODEL CODE 

 

import re 

import os 

import random 

import numpy as np 

import pandas as pd 

import tensorflow as tf 

from tensorflow import keras 

from kaggle_datasets import KaggleDatasets 

import matplotlib.pyplot as plt 

from tensorflow.keras import layers, models, optimizers 

from tensorflow.keras.layers import Dropout 

from keras.applications.vgg16 import VGG16 

import matplotlib.cm as cm 

from sklearn.model_selection import train_test_split 

 

try: 

    tpu = tf.distribute.cluster_resolver.TPUClusterResolver() 

    print('Device:', tpu.master()) 

    tf.config.experimental_connect_to_cluster(tpu) 

    tf.tpu.experimental.initialize_tpu_system(tpu) 

    strategy = tf.distribute.experimental.TPUStrategy(tpu) 

except: 

    strategy = tf.distribute.get_strategy() 

print('Number of replicas:', strategy.num_replicas_in_sync) 

     

print(tf.__version__) 

 

AUTOTUNE = tf.data.experimental.AUTOTUNE 

GCS_PATH = KaggleDatasets().get_gcs_path("covid19-

radiography-database") 

BATCH_SIZE = 16 * strategy.num_replicas_in_sync 

IMAGE_SIZE = [180, 180] 

 

filenames = tf.io.gfile.glob(str(GCS_PATH + '/COVID-

19 Radiography Database/COVID-19/*')) 

filenames.extend(tf.io.gfile.glob(str(GCS_PATH + '/COVID-

19 Radiography Database/NORMAL/*'))) 

filenames.extend(tf.io.gfile.glob(str(GCS_PATH + '/COVID-

19 Radiography Database/Viral Pneumonia/*'))) 
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random.seed(1337) 

tf.random.set_seed(1337) 

random.shuffle(filenames) 

 

COUNT_NORMAL = len([filename for filename in filenames if "NO

RMAL" in filename]) 

print("Normal images count : " + str(COUNT_NORMAL)) 

 

COUNT_COVID = len([filename for filename in filenames if "/CO

VID-19/" in filename]) 

print("COVID-19 images count : " + str(COUNT_COVID)) 

 

COUNT_PNEUMONIA = len([filename for filename in filenames if 

"Viral" in filename]) 

print("Pneumonia images count : " + str(COUNT_PNEUMONIA)) 

 

import seaborn as sns 

# intialise data of lists. 

data = {'Cases':['0', '1', '2'], 

        'Cases_count':[COUNT_NORMAL, COUNT_COVID, COUNT_PNEUM

ONIA] 

       } 

  

# Create DataFrame 

df = pd.DataFrame(data) 

 

# Get the counts for each class in the data 

 

plt.figure(figsize=(10,8)) 

sns.barplot(x=df.index, y= df['Cases_count'].values) 

plt.title('Number of All the Data', fontsize=14) 

plt.xlabel('Case type', fontsize=12) 

plt.ylabel('Count', fontsize=12) 

plt.xticks(range(len(df.index)), ['Normal(0)', 'Covid19(1)', 

'Pneumonia(2)']) 

plt.show() 

  

# Print the output. 

print(df) 

 

train_filenames, test_filenames = train_test_split(filenames,

 test_size=0.1) 
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train_filenames, val_filenames = train_test_split(train_filen

ames, test_size=0.1) 

 

COUNT_NORMAL_TRAINING = len([filename for filename in train_f

ilenames if "NORMAL" in filename]) 

print("Normal images count in training set: " + str(COUNT_NOR

MAL_TRAINING)) 

 

COUNT_COVID_TRAINING = len([filename for filename in train_fi

lenames if "/COVID-19/" in filename]) 

print("COVID-

19 images count in training set: " + str(COUNT_COVID_TRAINING

)) 

 

COUNT_PNEUMONIA_TRAINING = len([filename for filename in trai

n_filenames if "Viral" in filename]) 

print("Pneumonia images count in training set: " + str(COUNT_

PNEUMONIA_TRAINING)) 

 

import seaborn as sns 

# intialise data of lists. 

data = {'Cases':['0', '1', '2'], 

        'Cases_count':[COUNT_NORMAL_TRAINING, COUNT_COVID_TRA

INING, COUNT_PNEUMONIA_TRAINING]} 

  

# Create DataFrame 

df = pd.DataFrame(data) 

 

# Get the counts for each class in training data 

 

plt.figure(figsize=(10,8)) 

sns.barplot(x=df.index, y= df['Cases_count'].values) 

plt.title('Number of Training cases', fontsize=14) 

plt.xlabel('Case type', fontsize=12) 

plt.ylabel('Count', fontsize=12) 

plt.xticks(range(len(df.index)), ['Normal(0)', 'Covid19(1)', 

'Pneumonia(2)']) 

plt.show() 

  

# Print the output. 

print(df) 
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COUNT_NORMAL_VALODATION = len([filename for filename in val_f

ilenames if "NORMAL" in filename]) 

print("Normal images count in validation set: " + str(COUNT_N

ORMAL_VALODATION)) 

COUNT_COVID_VALODATION = len([filename for filename in val_fi

lenames if "/COVID-19/" in filename]) 

print("COVID-

19 images count in validation set: " + str(COUNT_COVID_VALODA

TION)) 

COUNT_PNEUMONIA_VALODATION = len([filename for filename in va

l_filenames if "Viral" in filename]) 

print("Pneumonia images count in validation set: " + str(COUN

T_PNEUMONIA_VALODATION)) 

import seaborn as sns 

# intialise data of lists. 

data = {'Cases':['0', '1', '2'], 

'Cases_count':[COUNT_NORMAL_VALODATION, COUNT_COVID_V

ALODATION, COUNT_PNEUMONIA_VALODATION]} 

# Create DataFrame 

df = pd.DataFrame(data) 

# Get the counts for each class in validation data 

plt.figure(figsize=(10,8)) 

sns.barplot(x=df.index, y= df['Cases_count'].values) 

plt.title('Number of Validation cases', fontsize=14) 

plt.xlabel('Case type', fontsize=12) 

plt.ylabel('Count', fontsize=12) 

plt.xticks(range(len(df.index)), ['Normal(0)', 'Covid19(1)', 

'Pneumonia(2)']) 

plt.show() 

# Print the output. 

print(df) 

COUNT_NORMAL_TEST = len([filename for filename in test_filena

mes if "NORMAL" in filename]) 

print("Normal images count in test set: " + str(COUNT_NORMAL_

TEST)) 
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COUNT_COVID_TEST = len([filename for filename in test_filenam

es if "/COVID-19/" in filename]) 

print("COVID-

19 images count in test set: " + str(COUNT_COVID_TEST)) 

 

COUNT_PNEUMONIA_TEST = len([filename for filename in test_fil

enames if "Viral" in filename]) 

print("Pneumonia images count in test set: " + str(COUNT_PNEU

MONIA_TEST)) 

 

import seaborn as sns 

# intialise data of lists. 

data = {'Cases':['0', '1', '2'], 

        'Cases_count':[COUNT_NORMAL_TEST, COUNT_COVID_TEST, C

OUNT_PNEUMONIA_TEST]} 

  

# Create DataFrame 

df = pd.DataFrame(data) 

 

# Get the counts for each class in test data 

 

plt.figure(figsize=(10,8)) 

sns.barplot(x=df.index, y= df['Cases_count'].values) 

plt.title('Number of test cases', fontsize=14) 

plt.xlabel('Case type', fontsize=12) 

plt.ylabel('Count', fontsize=12) 

plt.xticks(range(len(df.index)), ['Normal(0)', 'Covid19(1)', 

'Pneumonia(2)']) 

plt.show() 

  

# Print the output. 

print(df) 

 

train_list_data = tf.data.Dataset.from_tensor_slices(train_fi

lenames) 

val_list_data = tf.data.Dataset.from_tensor_slices(val_filena

mes) 

testl_list_data = tf.data.Dataset.from_tensor_slices(test_fil

enames) 

 

TRAIN_IMG_COUNT = tf.data.experimental.cardinality(train_list

_data).numpy() 

print("Training images count: " + str(TRAIN_IMG_COUNT)) 
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VAL_IMG_COUNT = tf.data.experimental.cardinality(val_list_dat

a).numpy() 

print("Validating images count: " + str(VAL_IMG_COUNT)) 

 

Test_IMG_COUNT = tf.data.experimental.cardinality(testl_list_

data).numpy() 

print("Testing images count: " + str(Test_IMG_COUNT)) 

 

CLASSES = ['NORMAL', 'COVID-19', 'Viral Pneumonia'] 

 

def get_label(file_path): 

    # convert the path to a list of path components 

    parts = tf.strings.split(file_path, os.path.sep) 

    # The second to last is the class-directory 

    return parts[-2] == CLASSES 

 

def decode_img(img): 

  # convert the compressed string to a 3D uint8 tensor 

  img = tf.image.decode_png(img, channels=3) 

  # Use `convert_image_dtype` to convert to floats in the [0,

1] range. 

  img = tf.image.convert_image_dtype(img, tf.float32) 

  # resize the image to the desired size. 

  return tf.image.resize(img, IMAGE_SIZE) 

 

 

def process_path(file_path): 

    label = get_label(file_path) 

    # load the raw data from the file as a string 

    img = tf.io.read_file(file_path) 

    img = decode_img(img) 

    return img, label 

 

train_data = train_list_data.map(process_path, num_parallel_c

alls=AUTOTUNE) 

val_data = val_list_data.map(process_path, num_parallel_calls

=AUTOTUNE) 

test_data = testl_list_data.map(process_path, num_parallel_ca

lls=AUTOTUNE) 

 

def prepare_for_training(ds, cache=True): 
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    # This is a small dataset, only load it once, and keep it

 in memory. 

    # use `.cache(filename)` to cache preprocessing work for 

datasets that don't 

    # fit in memory. 

    if cache: 

        if isinstance(cache, str): 

            ds = ds.cache(cache) 

        else: 

            ds = ds.cache() 

 

    ds = ds.shuffle(buffer_size=1000) 

    ds = ds.batch(BATCH_SIZE) 

 

    if cache: 

        ds = ds.prefetch(buffer_size=AUTOTUNE) 

 

    return ds 

 

train_data = prepare_for_training(train_data) 

val_data = prepare_for_training(val_data) 

test_data = prepare_for_training(test_data, False) 

 

def show_batch(image_batch, label_batch): 

    plt.figure(figsize=(10,10)) 

    for n in range(15): 

        ax = plt.subplot(5,5,n+1) 

        plt.imshow(image_batch[n]) 

        plt.title(CLASSES[np.argmax(label_batch[n])]) 

        plt.axis("off") 

 

image_batch, label_batch = next(iter(train_data)) 

show_batch(image_batch.numpy(), label_batch.numpy()) 

 

early_stopping_cb = keras.callbacks.EarlyStopping(patience=5, 

                                                  restore_bes

t_weights=True) 

 

with strategy.scope(): 

    PneumoCovidNet = keras.models.load_model("../input/pneumo

netbest-model/PneomoNetBest.h5") 

    PneumoCovidNet.pop() 
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    PneumoCovidNet.add(layers.Dense(512, activation='relu')) 

#     PneumoCovidNet.add(layers.Dense(128, activation='relu')

) 

#     PneumoCovidNet.add(layers.Dense(64, activation='relu')) 

    PneumoCovidNet.add(keras.layers.Dense(3, activation='soft

max')) 

     

    METRICS = [ 

        'accuracy', 

        keras.metrics.Precision(name="precision"), 

        keras.metrics.Recall(name="recall") 

    ] 

     

    PneumoCovidNet.compile( 

        optimizer="adam", 

        loss="categorical_crossentropy", 

        metrics=METRICS, 

    ) 

 

history = PneumoCovidNet.fit( 

    train_data, 

    validation_data=val_data, 

    epochs=20, 

    callbacks=[early_stopping_cb] 

) 

 

fig, ax = plt.subplots(2, 2, figsize=(15, 10)) 

ax = ax.ravel() 

 

for i, met in enumerate(['precision', 'recall', 'accuracy', '

loss']): 

    ax[i].plot(history.history[met]) 

    ax[i].plot(history.history['val_' + met]) 

    ax[i].set_title('Model {}'.format(met)) 

    ax[i].set_xlabel('epochs') 

    ax[i].set_ylabel(met) 

    ax[i].legend(['train', 'val']) 

     

 

PneumoCovidNet.evaluate(test_data, return_dict=True) 

 

# PneumoCovidNet.save('PneumoCovid_Model.h5') 
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saved_Model = keras.models.load_model('../input/best-

model/PneumoCovid_Model.h5') 

saved_Model2 = keras.models.load_model('../input/best-model-

v2/PneumoCovid_Model V2.h5') 

 

saved_Model.evaluate(test_data, return_dict=True) 

saved_Model2.evaluate(test_data, return_dict=True) 

 

def get_intermediate_Activation(model, imge_path): 

     

    img_path = imge_path 

    from keras.preprocessing import image 

    import numpy as np 

    img = image.load_img(img_path, target_size=(180, 180)) 

    img_tensor = image.img_to_array(img) 

    img_tensor = np.expand_dims(img_tensor, axis=0) 

    img_tensor /= 255. 

    import tensorflow as tf 

    from tensorflow.keras import models 

    layer_outputs = [layer.output for layer in model.layers[:

5]] 

    activation_model = models.Model(inputs=model.input, outpu

ts=layer_outputs) 

    activations = activation_model.predict(img_tensor) 

 

    layer_names = [] 

    for layer in model.layers[:5]: 

        layer_names.append(layer.name) 

    images_per_row = 5 

    for layer_name, layer_activation in zip(layer_names, acti

vations): 

        n_features = layer_activation.shape[-1] 

        size = layer_activation.shape[1] 

        n_cols = n_features // images_per_row 

        display_grid = np.zeros((size * n_cols, images_per_ro

w * size)) 

        for col in range(n_cols): 

            for row in range(images_per_row): 

                channel_image = layer_activation[0, 

                                         :, :, 

                                         col * images_per_row

 + row] 

                channel_image -= channel_image.mean() 

                channel_image /= channel_image.std() 

                channel_image *= 64 
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                channel_image += 128 

                channel_image = np.clip(channel_image, 0, 255

).astype('uint8') 

                display_grid[col * size : (col + 1) * size, 

                      row * size : (row + 1) * size] = channe

l_image 

        scale = 1. / size 

        plt.figure(figsize=(scale * display_grid.shape[1], 

        scale * display_grid.shape[0])) 

        plt.title(layer_name) 

        plt.grid(False) 

        plt.imshow(display_grid, aspect='auto', cmap='viridis

') 

         

get_intermediate_Activation(saved_Model, '../input/covid19-

radiography-database/COVID-19 Radiography Database/COVID-

19/COVID-19 (1).png') 

 

# ploting the NeumoNet2 architecture 

from keras.utils import plot_model 

plot_model(saved_Model, to_file='PneumoCovidNet.png', show_sh

apes=True) 

 

# last convolution block of the model 

saved_Model.layers[7].layers 

 

def get_img_array(img_path, size=IMAGE_SIZE): 

    img = keras.preprocessing.image.load_img(img_path, target

_size=size) 

    # `array` is a float32 NumPy array 

    array = keras.preprocessing.image.img_to_array(img) 

    # We add a dimension to transform our array into a "batch

" 

    # of size (1, 180, 180, 3) 

    array = np.expand_dims(array, axis=0) / 255.0 

    return array 

 

def make_gradcam_heatmap(img_array, model): 

    # First, we create a model that maps the input image to t

he activations 

    # of the last conv layer 

    last_conv_layer = model.layers[7] 
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    last_conv_layer_model = keras.Model(model.inputs, last_co

nv_layer.output) 

     

    # Mark the classifying layers 

    classifier_layers = model.layers[-6:] 

 

    # Second, we create a model that maps the activations of 

the last conv 

    # layer to the final class predictions 

    classifier_input = keras.Input(shape=last_conv_layer.outp

ut.shape[1:]) 

    x = classifier_input 

    for classifier_layer in classifier_layers: 

        x = classifier_layer(x) 

    classifier_model = keras.Model(classifier_input, x) 

 

    # Then, we compute the gradient of the top predicted clas

s for our input image 

    # with respect to the activations of the last conv layer 

    with tf.GradientTape() as tape: 

        # Compute activations of the last conv layer and make

 the tape watch it 

        last_conv_layer_output = last_conv_layer_model(img_ar

ray) 

        tape.watch(last_conv_layer_output) 

        # Compute class predictions 

        preds = classifier_model(last_conv_layer_output) 

        top_pred_index = tf.argmax(preds[0]) 

        top_class_channel = preds[:, top_pred_index] 

 

    # This is the gradient of the top predicted class with re

gard to 

    # the output feature map of the last conv layer 

    grads = tape.gradient(top_class_channel, last_conv_layer_

output) 

 

    # This is a vector where each entry is the mean intensity

 of the gradient 

    # over a specific feature map channel 

    pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2)) 

 

    # We multiply each channel in the feature map array 

    # by "how important this channel is" with regard to the t

op predicted class 

    last_conv_layer_output = last_conv_layer_output.numpy()[0

] 
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pooled_grads = pooled_grads.numpy() 

for i in range(pooled_grads.shape[-1]): 

last_conv_layer_output[:, :, i] *= pooled_grads[i] 

# The channel-wise mean of the resulting feature map 

# is our heatmap of class activation 

heatmap = np.mean(last_conv_layer_output, axis=-1) 

# For visualization purpose, we will also normalize the h

eatmap between 0 & 1 

heatmap = np.maximum(heatmap, 0) / np.max(heatmap) 

return heatmap 

def superimposed_cam(file_path): 

# Prepare image 

img_array = get_img_array(file_path) 

# Generate class activation heatmap 

heatmap = make_gradcam_heatmap( 

img_array, saved_Model 

) 

# Rescale the original image 

img = img_array * 255 

# We rescale heatmap to a range 0-255 

heatmap = np.uint8(255 * heatmap) 

# We use jet colormap to colorize heatmap 

jet = cm.get_cmap("jet") 

# We use RGB values of the colormap 

jet_colors = jet(np.arange(256))[:, :3] 

jet_heatmap = jet_colors[heatmap] 

# We create an image with RGB colorized heatmap 

jet_heatmap = keras.preprocessing.image.array_to_img(jet_

heatmap) 

jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape

[0])) 

jet_heatmap = keras.preprocessing.image.img_to_array(jet_

heatmap) 

# Superimpose the heatmap on original image 
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    superimposed_img = jet_heatmap * 0.4 + img 

    superimposed_img = keras.preprocessing.image.array_to_img

(superimposed_img[0]) 

     

    return superimposed_img, CLASSES[np.argmax(saved_Model.pr

edict(img_array))] 

 

covid_filenames = tf.io.gfile.glob('../input/covid19-

radiography-database/COVID-19 Radiography Database/COVID-

19/*') 

pneumonia_filenames = tf.io.gfile.glob('../input/covid19-

radiography-database/COVID-

19 Radiography Database/Viral Pneumonia/*') 

 

plt.figure(figsize=(20,20)) 

for n in range(10): 

    ax = plt.subplot(5,5,n+1) 

    img, pred = superimposed_cam(covid_filenames[n]) 

    plt.imshow(img) 

    plt.title(pred) 

    plt.axis("off") 

for n in range(10, 20): 

    ax = plt.subplot(5,5,n+1) 

    img, pred = superimposed_cam(pneumonia_filenames[n]) 

    plt.imshow(img) 

    plt.title(pred) 

    plt.axis("off") 
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