

COVID-19 AND PNEUMONIA DETECTION IN

X-RAY IMAGES USING CONVOLUTIONAL

NEURAL NETWORKS

A THESIS SUBMITTED TO THE GRADUATE

SCHOOL OF APPLIED SCIENCES

OF

NEAR EAST UNIVERSITY

By

ABDULLAHI ISMA’IL

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

In

Computer Engineering

NICOSIA, 2020

COVID-19 AND PNEUMONIA DETECTION IN

X-RAY IMAGES USING CONVOLUTIONAL

NEURAL NETWORKS

A THESIS SUBMITTED TO THE GRADUATE

SCHOOL OF APPLIED SCIENCES

OF

NEAR EAST UNIVERSITY

By

ABDULLAHI ISMA’IL

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

In

Computer Engineering

NICOSIA, 2020

Abdullahi ISMA’IL: COVID-19 AND PNEUMONIA DETECTION IN X-RAY

IMAGES USING CONVOLUTIONAL NEURAL NETWORKS

Approval of Director of Graduate School of

Applied Sciences

Prof. Dr. Nadire ÇAVUŞ

We certify that this thesis is satisfactory for the award of the degree of Master of

Science in Computer Engineering

Examining Committee in Charge:

Prof. Dr. Rahib Abiyev

Committee Chairman, Supervisor,

Department of Computer

Engineering, NEU

Assoc. Prof. Dr. Kamil Dimililer

Department of Automotive

Engineering, NEU

Assist. Prof. Dr. Mohammad K.S.Ma’aita

Department of Management and

Information System, NEU

I hereby declare that all the information, results, figures, and diagrams in this research

work that is not originally my work is fully cited and referenced according to the academic

rules and ethics of research. I have also declared that I have given credits to those that I

use anything from their work in this thesis. Otherwise, any information, result, figures,

and diagrams are originals.

Name, Last Name: Abdullahi Isma’il

Signature:

Date: 12/01/2021

ii

ACKNOWLEDGEMENTS

Alhamdulillah! I will like to express my deepest appreciation and gratitude to my

supervisor who is also my adviser prof. Dr. Rahib Abiyev for his support and guidance

throughout the research. I have to say a big thank you to my parents for their prayers,

financial support, and everything. I will not forget with my friends that care so much for

me especially Saminu Abdullahi who is not tired of always asking me how my thesis is

going; he is such a darling friend that I am deeply grateful to have.

iii

I dedicate this thesis research to all COVID-19 patients around the world.

iv

ABSTRACT

COVID-19 and non-COVID-19 viral pneumonia are diseases that affect the human lungs.

World health organization (W.H.O) announced coronavirus as a pandemic in 2020; the

virus started from china and propagated to other countries of the world. Early diagnosis of

the patients containing the virus helps in saving the patient and preventing further spread

of the virus. The convolutional neural network (CNN) model is proposed in this research

work to help in the early diagnosis of the virus using chest X-Ray images, as it is one of

the fastest and low-cost ways of diagnosing the disease. Two convolutional neural

networks (CNN) models were trained with two different datasets, the first model was

trained for binary classification with one of the datasets that only have pneumonia case

and normal chest X-Ray images, where the second model makes use of the knowledge

learned by the first model using transfer learning and trained for 3 class classifications on

COVID-19, pneumonia, and normal cases chest X-Ray images which is the second

dataset. The model gives promising results of Accuracy, Recall, precision, and F1_score

of 98.3, 97.9, 98.3, and 98.0 respectively on test data.

Keywords: CNN; deep learning; transfer learning; COVID-19, pneumonia; chest X-Ray

images; diagnosis.

v

ÖZET

COVID-19 ve COVID-19 olmayan viral pnömoni, insan akciğerlerini etkileyen

hastalıklardır. COVID-19, 2020 yılında dünya sağlık örgütü tarafından salgın ilan edildi,

koronavirüs Çin'de başladı ve dünyanın diğer ülkelerine yayıldı. Virüs içeren hastaların

erken teşhisi, hastayı kurtarmaya ve virüsün daha fazla yayılmasını önlemeye yardımcı

olur. Konvolüsyonel sinir ağı (CNN) modeli, bu araştırmada, hastalığı teşhis etmenin en

hızlı ve düşük maliyetli yollarından biri olduğu için göğüs röntgeni görüntülerini

kullanarak virüsün erken teşhisine yardımcı olmak için önerilmiştir. İki evrişimli sinir ağı

(CNN) modeli, iki farklı veri kümesiyle eğitildi, ilk model, yalnızca pnömoni vakası ve

normal göğüs röntgeni görüntülerine sahip veri kümelerinden biri ile ikili sınıflandırma

için eğitildi; ikinci model, bilgiyi kullanır. transfer öğrenmeyi kullanan ilk model

tarafından öğrenildi ve ikinci veri seti olan COVID-19, pnömoni ve normal vakalarda

göğüs röntgeni görüntüleri üzerinde 3 sınıf sınıflandırması için eğitildi. Model, test

verilerinde sırasıyla 98.3, 97.9, 98.3 ve 98.0 olan Doğruluk, Geri Çağırma, hassasiyet ve

F1_score'unun umut verici sonuçlarını verir.

Anahtar Kelimeler: CNN; derin öğrenme; transfer öğrenimi; COVID-19, pnömoni;

göğüs röntgeni görüntüleri; Teşhis.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... ii ii

ABSTRACT .. iii iv

ÖZET ... iv v

LIST OF FIGURES ... ix ix

LIST OF TABLES ... xi xi

LIST OF ABBREVIATIONS .. xii xii

CHAPTER 1: INTRODUCTION

1.1 Thesis Overview .. 3

CHAPTER 2: LITERATURE REVIEW

2.1. Review on Deep Learning in Diagnosing of Pneumonia................................... 5

CHAPTER 3: METHODOLOGY

3.1 Design .. 10

3.2 System Architecture ... 11

3.3 Dataset ... 12

3.4 Preprocessing ... 16

3.5 Convolutional Neural Network (CNN) ... 16

3.5.1 Convolutional layer ... 17

3.5.2 Pooling layer .. 19

3.5.3 Activation Functions .. 21

3.5.4 Loss Functions... 26

3.5.5 Optimizers ... 27

vii

3.6. Transfer learning ... 32

3.7 Evaluation Matrices ... 33

3.7.1 Confusion Matrix .. 34

3.7.2 Accuracy Matric .. 35

3.7.3 Recall Matric ... 35

3.7.4 Precision Matric .. 36

3.7.5 Precision/Recall Tradeoff .. 36

3.7.6 F1 Score Matric ... 37

3.7.7 Area Under the ROC Curve (AUC) .. 37

CHAPTER 4: IMPLEMENTATION RESULTS

4.1 Results ... 39

4.2 First Model Results ... 39

4.3 Second Model Results .. 42

5.4 Comparison ... 49

CHAPTER 5: CONCLUSION

REFERENCES………………………………………………………………………. 52

APPENDICES

APPENDIX 1 ... 58

FIRST MODEL CODE .. 58

viii

APPENDIX 2 ... 66

SECOND MODEL CODE ... 66

APPENDIX 2 ... 79

Turnitin Report ... 79

Ethical Aproval Letter .. 80

LIST OF FIGURES

Figure 3.1: block diagram of the design stages ... 10

Figure 3.2: System Architecture .. 12

Figure 3.3: COVID-19/Pneumonia/Normal chest X-ray images 13

Figure 3.4: top first all data, top second training data, top third test data, top forth

validation data .. 15

Figure 3.10: Convolutional Neural network structure/architecture 17

Figure 3.11: Convolutional operation with the same padding 18

Figure 3.12: Convolutional operation with valid padding .. 18

Figure 3.13: Max pooling operation .. 20

Figure 3.14: Min pooling operation .. 20

Figure 3.15: Average pooling operation .. 20

Figure 3.16: sigmoid activation function... 22

Figure 3.17: Hyperbolic Tangent (Tanh) Activation function 23

Figure 3.18: Rectified Linear Unit Activation Function ... 24

Figure 3.19: Softmax activation function .. 25

Figure 3.20: Exponential linear unit activation function ... 26

Figure 3. 221: transfer learning structure .. 33

Figure 3.22: Confusion matric ... 34

Figure 3.23: precision-recall tradeoff ... 37

Figure 3.24: Area under the curve plot .. 38

Figure 4.1: First model summaries .. 40

Figure 4. 2: First model accuracy per epoch .. 41

Figure 4.3: First model loos per epoch .. 41

Figure 4. 4: The architecture of the proposed model... 44

Figure 4.5: Second Model Accuracy per Epoch ... 45

Figure 4.6: Second Model Loos per Epoch ... 45

x

Figure 4. 7: shows the activation map in some convolutional layers of the network.... 47

Figure 4. 8: shows the Grad_CAM of COVID-19, and viral Pneumonia cases 48

LIST OF TABLES

Table 3.1: Loss Functions .. 27

Table 4. 1: First Dataset distribution ... 40

Table 4. 2: First model test results ... 42

Table 4.3: Dataset splitting for training, validation, and testing 48

Table 4.4: Second Model test results ... 49

Table 4.5: Comparative performance on test data for this research, and other state-of-the-

art approaches ... 49

xii

LIST OF ABBREVIATIONS

AI: Artificial Intelligence

AUC: Area Under Curve

CNN: Convolutional Neural Network

CPU: Central Processing Unit

CT: Computer Tomography

CXR: Chest X-Ray

DL: Deep Learning

GPU: Graphical Processing Unit

Grad_CAM: Gradient Class Activation Map

ML: Machine Learning

MLP: Multilayered Perceptron

ReLU: Rectified Linear Unit

RGB: Red, Green, Blue

TL: Transfer Learning

TPU: Tensor Processing Unit

1

CHAPTER 1

INTRODUCTION

COVID-19 is a respiratory infection that affects the human lungs, which is now declared

as a pandemic that is affecting the globe. As of today October 2, 2020, there are over 34

million total cases, 23.9 million recoveries, and 1.02 million deaths reported to the world

health organization (“WHO Coronavirus Disease (COVID-19) Dashboard | WHO

Coronavirus Disease (COVID-19) Dashboard,” n.d.). The initial case of COVID-19 was

in December 2019 at Wuhan, Hubei province, china(Q. Li et al., 2020), from where it

started propagating to other countries of the world. As the COVID-19 virus is

transmittable, early detection is very important for both the patients and the peoples

around them, the patient will get proper care and the people will be protected. The best

way to fight against the COVID-19 pandemic is the early diagnosis of the patient that

contains the virus as early as possible and given special care and treatments. Reverse

transcription-polymerase chain reaction (RT-PCR) is commonly used in the diagnosing

test of COVID-19, this method has low sensitivity in the early stage of the virus, and

hence, it may lead to further transmissions(L. Li et al., 2020). This test kit is expensive

and scares, therefore, for early diagnosis chest X-Ray images and computer tomography

(CT) scans are the best option to uses in diagnosing any patient that shows symptoms of

pneumonia.

Non-COVID-19 Pneumonia is also one of the most leading diseases that cause death

among young children and old peoples. According to the center for disease control and

prevention (CDC) over 1 million adult pneumonia patients are hospitalized and almost

50,000 patients die every year from this disease in the USA alone (“Pneumonia | Home |

CDC,” n.d.). As stated by W.H.O that, chest X-rays are the best available way in

diagnosing pneumonia disease (World Health Organization, 2001). Pneumonia is a

respiratory infection that affects the lungs; it can be caused by bacteria, viruses, or fungi.

Diagnosing pneumonia is considered a tedious task, even by the expert radiologist,

because its symptoms appeared to be similar to other pathologies that affect the lungs. In

2

this thesis, the study will use a CNN model to diagnose the presence of these viral diseases

on CXR images. In recent years deep learning models prove to be a promising method in

the field of medicine for pathologies diagnosis, those pathologies are not just long

pathology which is the focus of this study but it gives a very promising result in

diagnosing breast cancer, and some other skin diseases, with this, we make use of it in this

study in diagnosing COVID-19 and pneumonia. As the diagnosis of those diseases appears

to be a tedious task, even among the expert radiologist, this study is aiming to help the

radiologist to diagnose pneumonia and COVID-19 from CXR scans easily within a short

time.

This thesis aims to design an intelligent system that will detect COVID-19 and

pneumonia diseases with high accuracy. In the thesis, Convolutional Neural Network

(CNN) models were developed to help in detecting COVID-19 and pneumonia cases in

X-Ray images to help for early diagnosis to prevent its transmission to other peoples.

Two different datasets were used in this research, one contains only pneumonia scans and

normal scans chest X-Ray, and the other one contains COVID-19 CXR scans, pneumonia,

and normal chest X-Ray scans. Two CNN models were developed; the first one was

trained on pneumonia and normal cases chest X-Ray images, where the second model

make use of the knowledge that was learned from the first model and trained on COVID-

19, pneumonia, and normal cases data. Transfer learning approach was utilized to transfer

the weight/knowledge of the first model to the second model for COVID-19, pneumonia,

and normal class classification.

This study focused on the way to diagnose the COVID-19 virus and pneumonia from

chest X-ray scans with a CNN model with the help of the transfer learning method. The

transfer learning method is employed in this thesis research to archive a high performance

in training the network with a small number of images and archive a promising result,

unlike the traditional way which is known as the data consuming. The study aims at

developing a system that will help the radiologist in detecting COVID-19 patients and

pneumonia patients using CXR images easily and within a short time. And it also aims to

3

help those that have no access to a radiologist for early diagnosis so that proper action can

be taken before the situation becomes worst and puts the patient in danger.

This study is important to both the expert radiologist and those that have no access to a

radiologist. It is important to expert radiologists because the system is designed to help

them diagnose COVID-19 and pneumonia more accurately in a short period. And those

that have no access to a radiologist, it helps them to be diagnosed early so that proper

action can be taken before the infection becomes chronic. This study contributes to the

field of medicine by helping them to diagnose the presence of COVID-19 and pneumonia

in a short period, unlike the traditional way in which it takes series of examination

processes before confirming the cases. This study also contributes to the artificial

intelligence field by showing that the deep learning model is capable to diagnose

pathologies of a human body.

This study is limited to the only use of the chest X-ray image, unlike the professional

radiologist that also used the physical symptoms of a patient together with the CXR scans

to diagnose the presence of COVID-19 or pneumonia patients. The delimitation part of

this research is the practical aspect in terms of the availability of high-performance

processing hardwire for the fast and easy development of the algorithm that is used to

diagnose COVID-19 and pneumonia. The use of a small portion of data in the system

development is also delimitation, though the study is aiming to find a way to develop the

system which traditionally is a large data consuming using only small data.

1.1 Thesis Overview

The thesis remaining parts is structured and organized as follows:

 Chapter 2 reviews the literature of the research study, where some research papers are

reviewed to solidify the understanding and application of the research problem.

4

 Chapter 3 described the thesis methodology, including how the dataset is collected,

the preprocessing techniques used, and the explanation of convolutional neural

network parts like convolutional layers, pooling layers, activation functions, loss

functions, and optimization algorithms. And also explain some important evaluation

matrices used to evaluate the experimental result of the thesis.

 Chapter 4 shows the experimental results of the thesis research and provided the

evaluation matrices results from the classification task performed.

 Chapter 5 concludes the thesis research by providing a summary of the overall thesis

methodology and the experimental results, and also a recommendation that will

improve the performance of the system.

5

CHAPTER 2

LITERATURE REVIEW

2.1. Review on Deep Learning in Diagnosing of Pneumonia

Different algorithms based on deep learning models have been developed for diagnosing

Coronavirus and viral pneumonia diseases in CXR scan images and computer

tomography (CT) scans images.

(Q. Li et al., 2020) used CheXNet, DenseNet, VGG19, MobileNet, InceptionV3,

ResNet18, ResNet101, and squeezeNet architecture to trained on the 3 class classification

using transfer learning and the use of data augmentation techniques on the dataset that

they introduced to the public which consisting of 423 COVID-19 cases, 1485 viral

pneumonia cases, and 1575 normal cases CXR scan images, and their networks attained a

recall, precision, F1 score, specificity, and accuracy of 97.94, 97.95, 97.94, 98.80, and

97.94 respectively.

 (L. Li et al., 2020) presents a network architecture called CovXNet to diagnosed COVID-

19, viral pneumonia, and bacterial pneumonia, their dataset consists of 1,583 normal X-

Ray images, 1493 non-COVID-19 pneumonia CXR images, 2,980 bacterial pneumonia

X-Ray images, and 305 COVID-19 CXR scan images cases from different patients, their

model performance has the accuracy, recall, precision, F1 score, AUC scores, and

specificity of 90.2, 89.9, 90.8, 90.4, 91.1, and 89.1 respectively.

(Gunraj, Wang, & Wong, 2020) proposed a COVID-Net network to diagnose the

presence of COVID-19 and pneumonia diseases, they introduced a new dataset of 13,975

CXR scans images from 13,870 patients, and their model attained performance of 93.3

accuracies, the paper only presents an accuracy as the performance matric for 3 class

classification.

6

In (Han et al., 2020), an attention-based deep 3D multiple instance learning (AD3D-MIL)

approach for screening of COVID-19 pneumonia from other forms of viral pneumonia,

the researchers used a dataset of computer tomography (CT) scans that includes 230 scans

of COVID-19 from 79 patients, 100 scans of pneumonia from 100 patients, and 130 CT

scans from 130 peoples that do not have pneumonia. They reported that their algorithm

attained an overall accuracy of 97.9.

(Rajaraman et al., 2020) proposed iterative pruned deep learning model ensemble to

detect Coronavirus in CXR scan images. They trained two models in their research; the

first one was trained to classify normal and abnormal chest X-Rays, the second model

was trained to classified COVID-19 and pneumonia cases by using the training weights of

the first model with help of the transfer learning method. They used the ensemble method

to improve the prediction performance of their model. They achieved an accuracy and

AUC score of 99.01 and 0.9972 in detecting COVID-19 cases respectively.

(Hammoudi et al., 2020) presented tailored models for early-stage detection of COVID-

19 pulmonary symptoms. Their models were trained with a dataset that has bacterial and

viral pneumonia and normal chest X-Ray images, in their research they assume that, if

their model predicts a chest X-Ray image as viral pneumonia then there will be a high

chance that it is COVID-19, they explained that, they do not include any COVID-19 case

chest X-Ray image in their model training phase, because they believed that, the number

of COVID-19 chest X-Ray images that are currently available at the time of their research

is not enough to train deep learning models. Hence, they take their assumption of if their

model prediction shows a high probability of viral pneumonia then it is likely to be a

COVID-19 case. Their model archived the best performance using tailored DenseNet169

architecture with an accuracy of 95.72.

(Ko et al., 2020) presents a 2D deep learning called first-track COVID-19 classification

network (FCONet) to diagnosed COVID-19 on a single chest computer tomography scan.

They used a transfer learning approach to training the FCONet model. Computer

tomography (CT) scans of 3,993 with pneumonia, normal and COVID-19 were used for

7

training and testing the FCONet models. In all the pre-trained FCONet models, ResNet50

FCONet has a high-performance result of 99.8, 100, and 99.87 sensitivity, specificity, and

Accuracy respectively on the test dataset.

(Rajpurkar et al., 2017) developed an algorithm that detects pneumonia using a

convolutional neural network, where they used 121-layers convolutional neural network

on a dataset that contains 100,000 frontal views of chest X-ray images. Their algorithm

was compared with an expert Radiologist from the Stanford university Radiology

department, their model was found to do better than the expert Radiologist that has many

years of experience in the field. They extended their algorithm to detect 14 different

pathologists in the chest and archive state of the art result in all the 14 different diseases

that affect human respiration. They used the F1 score to compare their algorithm and the

4 radiologists and have 0.387 and 0.435 F1 average scores respectively. Even though they

found out that their algorithm has some limitations compared to radiologists, like access

to patient medical history which was not used to both radiologists and the algorithm, they

were only provided with a frontal view of chest X-ray.

In (Ayan & Ünver, 2019) developed a computer-aided diagnosis system, to detect the

presence of pneumonia in a chest X-ray image, they used transfer learning in two well-

known algorithms that were trained in an image net dataset which is a large dataset of

different images, they used pre-train Xception Network and VGG16 Network and archive

an accuracy of 0.82% and 0.87% respectively. They used a dataset of only 5,856 frontal

X-ray images and archived their result. They compared the performance of the two

networks and found out that the Xception network performs well in diagnosing

pneumonia cases, and the VGG16 network performs well in diagnosing normal cases.

This shows that each of the networks has it is own detection capability.

In (Abiyev, Khaleel, & Ma’aitah, 2018) proposed an algorithm that detects chest

pathologies including pneumonia using CXR scan images. The authors employed back

propagation neural network (BFNN), competitive neural network (CpNN), and CNN in

the detection of diseases. They train both the BFNN and CpNN from the same dataset of

8

1000 CXR scan images and train the CNN from 120,120 CXR scan images, and

compared the pathology recognition rate of the algorithm and concluded that CNN

outperforms both the BFNN and the CpNN. The algorithm accuracy of BFNN, CpNN,

and CNN is 80.04%, 89.57%, and 92.4% respectively.

Er et al. (2009) presented an artificial immune system and three different neural networks

which are multilayers, probabilistic, and learning vector quantization networks to

diagnose chronic obstructive pulmonary and pneumonia. They used a dataset of 201 X-

ray images containing 38 features (laboratory examinations) and achieved a classification

accuracy of multilayers, probabilistic, learning vector quantization, and artificial immune

system as 93.08%, 93.92%, 92.65%, and 94% respectively.

Antin et al. (2017) proposed a machine learning logistic regression model and deep

learning convolutional neural network for pneumonia diagnosis, 112,120 chest X-ray

scans images from 30,805 different patients that are available from Kaggle are used. Their

model classified the presence of pneumonia or not in the scanned image. The archived the

performance 0.6037 and 0.609 AUC for logistic regression and convolutional neural

network respectively.

Jaiswal et al. (2019) used mask recurrent convolutional neural network (Mask RNN) to

identify symptoms of pneumonia in image data; their network was pre-trained on COCO

weights to extract important image features. Public available chest radiographs dataset

from RSNA which is a subset of the original 112,000 chest X-ray datasets are used to

train their mask RSNN; they also used data augmentation in the training processes for

generalization in identifying the presence of the virus.

Rosenberg et al. (2019) employed an artificial swarm intelligent (ASI) system, that uses

eight radiologists connected by the swarming algorithm to increase the accuracy of

pneumonia diagnosis. Their studies revealed that the ASI system outperforms the

diagnosis of the individual radiologist and the state of the art deep learning algorithm

9

(CheXNet) when compared in respect to binary classification, mean absolute error, and

ROC analysis. They disclosed that previous studies on the CheXNet have higher AUROC

with 0.7680 than their ASI system with AUROC of 0.7080. Their studies show that

swarm-based technologies are very promising in diagnosis.

Saraiva et al. (2019) developed a CNN model and multilayer perceptron (MLP) to

diagnose pneumonia presence in an X-ray image. A Dataset of 5863 X-ray images was

used in the studies, the two networks were compared in terms of their accuracy to

diagnose pneumonia. 94.40% and 92.16% accuracy of convolutional neural network CNN

and multilayer perceptron respectively were archived.

From the analysis of different research works, it was shown that the different models

based on deep learning have been designed for improving the accuracy of diagnostic

systems. However, the designed models are designated for special cases. In this thesis, we

are developing a unique approach for diagnosing pneumonia diseases using a deep

learning model. The designed system will detect COVID-19 and pneumonia diseases with

high accuracy.

10

CHAPTER 3

METHODOLOGY

3.1 Design

The design of this study is a software implementation of an algorithm that can diagnose

COVID-19 and pneumonia cases from chest X-ray images. Deep learning algorithm

specifically convolutional neural network (CNN) is used in the implementation together

with the Tensor processing unit (TPU) as the hardware that processes the algorithm.

Transfer learning is used for feature extraction to save more training time, reduce

overfitting, and improve the accuracy of the algorithm. There are four main stages for the

model implementation which are:

1) Input stage

2) Pre-processing stage

3) Training stage

4) Output stage

Figure 3.1: block diagram of the design stages

1) Input stage: The input of the model is a red green blue (RGB) chest X-ray images in

PNG format. This is the first stage of the algorithm. After the X-ray images are feed

to the model it will then start the next stage which is a pre-processing stage.

2) Pre-processing stage: This is the second stage of the algorithm, where the input chest

X-ray images are check if it is in RGB form or not if it is not then it will be converted

to RGB form, then the X-ray images will be resized to 180 by 180, then it will be

normalized by dividing each input image pixels by 255 which will make the pixels to

range from 0 - 1, not 0 – 225 which is the original range of image pixels. The

11

preprocessing stage helps the algorithm to easily learn and extract important image

features in a short time.

3) Training stage: Training is the third stage of the model. In this stage the pre-

processed chest X-ray images are feed to the input layer of the convolutional neural

network (CNN), and then to the hidden layers where features learn and extracted, then

the output of the last hidden layer will pass the image to the output layer.

4) Output stage: This stage is the last and final stage of the model. The final decision of

the model is decided in this layer (output layer) of the network by producing three

outputs classes which are COVID-19, pneumonia, and normal. This decision comes

from the last layer of the convolutional neural network which is in probability form.

When a COVID-19 class has a higher probability value then the decision of the

algorithm is COVID-19, or if the pneumonia class has a higher probability value then

the decision of the algorithm is pneumonia otherwise it is a normal class.

3.2 System Architecture

The system architecture is summarized in fig.4.2 which includes the following steps

below.

1. A pre-trained model (base model) which was trained with a dataset of only pneumonia

and normal X-Ray images was used as the base model of the research model

architecture using transfer learning techniques.

2. The research dataset which includes COVID-19, pneumonia, and normal X-Ray

images are preprocessed and prepared for the training phase.

3. The proposed model architecture was trained on the preprocess chest X-ray images of

COVID-19, pneumonia, and normal cases.

4. The model output is a decision making part of the model architecture of either the X-

Ray image is of COVID-19, pneumonia, or normal cases.

12

Figure 3.2: System Architecture

3.3 Dataset

The research study uses two datasets, All the datasets that were used in this research study

are collected (downloaded) from the Kaggle dataset repository through the Google newly

lunch 25 million free datasets early this year. (Kermany et al., 2018) is the First dataset

contains 5.863 X-ray images in JPEG format, anterior-posterior chest X-ray images of

pediatric patients of age ranging from one to five years old are selected from Guangzhou

women and children’s medical center, The chest X-ray images were screen to remove all

X-Ray images that is unreadable or have low-quality scans? Two expert radiologists

check and evaluate the diagnosis (Label). The third expert radiologist also rechecks the

validity of the diagnosis to avoid errors. The dataset is categorized into three parts,

training, validation, and testing part, each part is sub-categorized into two classes Normal

and pneumonia class. The dataset contains bacterial and viral pneumonia which are

considered and label as pneumonia class. 4,185 chest X-ray images were used as training

data, 1,047 chest X-ray images for validation, 624 images for testing where 390 are

pneumonia cases and 234 are Normal cases. All the chest X-ray images from these three

parts are both from pneumonia and Normal classes. The second dataset contained

COVID-19, pneumonia, and normal cases chest X-Ray images, this dataset was created

by a team of researchers from Qatar University, the University of Dhaka Bangladesh with

their collaborators from Pakistan and Malaysia in collaboration with medical doctors (Q.

Li et al., 2020). The dataset contains 219 COVID-19 chest X-Ray images, 1341 normal

13

chest X-Ray images, and 1345 viral pneumonia chest X-Ray images cases. Below is the

sample of chest X-ray images from COVID19, pneumonia, and Normal class.

Figure 3.3: COVID-19/Pneumonia/Normal chest X-ray images

The figure below shows COVID-19/Pneumonia/Normal class distribution in the training,

validation, and testing part of the dataset in form of a bar chart.

14

15

Figure 3.4: top first all data, top second training data, top third test data, top forth

validation data

16

3.4 Preprocessing

After the dataset is collected, the next step is to pre-process the data to march the

expectation of our model. First, the chest X-ray images are check to see whether there are

in RGB (Red Green Blue) format or not, if it is not it will be converted to RGB format,

then the X-ray images will be categorized (label) into 0 for Normal cases and 1 for

COVID-19 cases, and 2 for Pneumonia cases. The images will then be resized to 180 by

180, followed by normalizing the resized image by dividing each pixel of the image (X)

by 225, this will make the image pixels to range from 0 to 1, instead of 0 to 225 which is

the standard intensity level of digital images. The pre-processing steps are useful since it

helps the algorithm to learn and extract features from image easily, and it also helps in

reducing the training time of the algorithm. The normalization is mathematically given

below.

X =

 (3.1)

3.5 Convolutional Neural Network (CNN)

A convolutional neural network is a kind of neural network just like the traditional

artificial neural network, that consist of fully connected layers, and activation functions

like sigmoid and ReLu with an addition of two important layers: Convolutional layers and

pooling layers as shown in fig.8 below. A convolutional neural network was evolved from

the visual context studies neocognitron in 1980 by k. Fukushima (Fukushima, 1980). In

1998 Yann Lecun, Leon Bottou, and Yoshua Bengio archived a very important milestone

on a convolutional neural network by introducing a nowadays well-known architecture

called LeeNet-5 (LeCun, Bottou, Bengio, & Haffner, 1998), which is widely used in the

handwritten recognition task. As mention convolutional neural network has two main

building block layers: convolutional layers and pooling layers, we will dive deep into

these two layers to understand how they work.

17

Figure 3.5: Convolutional Neural network structure/architecture

3.5.1 Convolutional Layer

The convolutional layer is one of the important building blocks of a convolutional neural

network. The layer is used to learn and extract features from an image, a convolutional

layer is where the input image pixels values which have some weight and height are

multiplied or convolute with convolutional filters or kernels. The convolutional result

output dimension will have fewer dimensions than before the convolution operation.

Filters, stride, and padding types are the hyperparameters of convolutional layers that

have to be set. Fig.8 shows a sample example of convolution operation on a 7x7x1 input

image, convolute with a 3x3x1 filter with the stride of 2 and valid padding type (with

padding). Fig. 9 shows a sample example of a convolution operation of a 7x7x1 input

image, convolute with a 3x3x1 filter with a stride of 2 and the same padding type (zero

paddings).

The convolution operation performs by the convolutional layer can be represented by the

mathematical formula below.

 ∑
 (3.3)

Where;

X is the input

18

ω is the filter and

b is the bias

Figure 3.6: Convolutional operation with the same padding

Figure 3.7: Convolutional operation with valid padding

7 x 7 x 3

3 x 3 x 3 3 x 3 x 3

7 x 7 x 3

3 x 3 x 3 3 x 3 x 3

19

The output dimension of the convolution of input image pixels with a convolution filter or

kennel can be calculated using the below mathematical formula.

 (3.4)

Where;

n is the image dimension

p is the padding type, 0 for no padding and 1 for padding

f is the filter or kennel size and

s is the stride value.

3.5.2 Pooling Layer

The pooling layer is a layer that comes after the convolutional layer, where its main

purpose is to shrink or reduce the input image size. The number of parameters, memory

usage, and computational power will be reduced by pooling layers, and it also helps in

reducing model overfitting risk. As in convolutional layers, pooling layers also have some

hyper-parameters that must be set. The size of the pooling layer, the padding, and the

stride are the hyper-parameters in each pooling layer that must be set. Pooling layers are

not like convolutional layers that will do some convolutional operation; rather it just uses

aggregate functions to aggregate the input. The commonly used aggregation functions are

max aggregation, min aggregation, and average aggregation also known as max-pooling,

min-pooling, and average-pooling respectively. Fig. 10, Fig. 11, and Fig.12 show max-

pooling, min-pooling, and average pooling with 4 x 4 pooling kennel, a stride of 2, and no

padding for all the three pooling types.

20

Figure 3.8: Max pooling operation

Figure 3.9: Min pooling operation

Figure 3.10: Average pooling operation

4 x 4 x 3

2 x 2 x 3

4 x 4 x 3

2 x 2 x 3

4 x 4 x 3

2 x 2 x 3

21

As we can see in the pooling layer operation from the above figures, it is obvious that

pooling layers are a powerful layer which with only 2 x 2 kennels and stride of 2, shrinks

the pooling layer output by half.

3.5.3 Activation Functions

Activation is a function that decides on either an output of a neural network layer will be

passing to the next layer or not. The activation function is added at the end of each layer

of a neural network (NN). There are linear and nonlinear activation functions, which are

used to decide on the output of each neural network layer. Nonlinear activation functions

are the functions that are mostly used in neural networks and deep learning algorithms. In

this research, the five most widely used activation functions will be highlighted. Which

are:

1. Sigmoid activation function

2. Hyperbolic Tangent (tanh) activation function

3. Rectified Linear Unit (ReLu) activation function

4. Softmax activation function, and

5. Exponential Linear Unit (Elu) activation function

1) Sigmoid Activation Function

A sigmoid activation function is a probabilistic decision-making approach activation

function. Its values range from 0 to 1 as shown graphically in fig.13, this activation

function can be used to predict or decide on the output result of neural network layers, it

can be used in both regression and classification problems, but is mostly used on

algorithms that it prediction result is needed in probability form. Below is the

mathematical equation for the sigmoid activation function.

 ()

 (3.5)

Where;

x is the input tensor.

22

Figure 3.11: sigmoid activation function

2) Hyperbolic Tangent (Tanh) Activation Function

Hyperbolic tangent activation function (Tanh) is another activation function that is used

to makes decisions on regression problems and classification problems. This activation

function ranges from -1 to 1 as shown graphically in fig.14, and it maps all negative

inputs into negative values. Hyperbolic tangent activation function (Tanh) is the

exponential of the input tensors minus the exponential of the negative input tensors

divided by the sum of the exponential of input tensors and exponential of the negative

input tensors, as mathematically shown in the below equation.

 ()

 (3.6)

Where;

x is the input tensor

23

Figure 3.12: Hyperbolic Tangent (Tanh) Activation function

3) Rectified Linear Unit (ReLu) Activation Function

The Rectified Linear Unit activation function is a decision function that is mostly used in

today’s research. This activation function ranges from 0 to infinity as shown graphically

in fig.15, if there is any negative values tensor it will be converted to zero by this

activation function. The rectified linear unit activation function is the maximum value

between the input tensors and zeroes as shown mathematically in the equation below.

 () () (3.7)

 () {

 (3.8)

Where;

x is the input tensor.

24

Figure 3.13: Rectified Linear Unit Activation Function

4) Softmax Activation Function

A softmax activation function is a function that is used to make decisions, mostly it is

used in the last layer of a neural network, this activation function gives a value to the

input tensors in relation to their weight, and if all the values are added, they will sum up

to one. The softmax activation function is generally used in binary classification and

multi-class classification problems. The mathematical equation for the softmax activation

function is given below.

 ()

∑

 (3.9)

Where;

x is the input tensor

n is the number of the input tensors

25

Figure 3.14: Softmax activation function

5) Exponential Linear Unit (Elu) Activation Function

The exponential linear unit (Elu) activation function is a new decision function introduced

in 2016 by Djork-Arne clevert, Thomas unterthiner, and sepp Hochreiter. In their research

paper, they stated and proved that their activation function gives higher classification

accuracy and less time for learning in deep neural networks compare to other activation

functions like Relu (Clevert, Unterthiner, & Hochreiter, 2016). Unlike the Relu activation

function, elu has negative values as shown in fig.17. Below is the mathematical equation

for the exponential linear unit activation function.

 () {

 (())
 (3.10)

 () {

 ()
 (3.11)

Where;

x is the input tensor

26

α is the hyperparameter that controls the values to which elu saturate negative inputs

Figure 3.15: Exponential linear unit activation function

3.5.4 Loss Functions

The loss function is a function that is used to estimate the error or loss of a model. The

model has to know how well or bad it perform to optimize the loss while training. This is

done by knowing the loos or error it makes, which is provided by the loss function. The

model will optimize the loos by updating the weights of the algorithm to attend a good

performance using the result return by the loss function. The loss function is computed

from the predicted labels provided by the model and the true labels. There are many loss

functions that can be used depending on the problem at hand, such as regression and

classification problems. In this thesis research, the five most widely used regression,

classification problems loss functions will be highlighted, which are:

1. Root Mean Square Error (RMSE)

2. Mean Absolute Error (MAE)

3. Binary Cross-Entropy

4. Categorical Cross-Entropy, and

5. Sparse Categorical Cross-Entropy

27

Root mean square error and mean absolute error are loss function that is used to estimate

losses in regression related problems, while binary cross-entropy, categorical cross-

entropy, and sparse categorical cross-entropy are loss functions that are used to measure

the degree of losses or error in classification related problems. Table.1 below summarizes

the uses, functions, and formulas of the above-listed loss functions.

Table 3.1: Loss Functions

Wherefrom the above table;

f(x) is the predicted labels

y is the true labels, and

n is the data point number.

3.5.5 Optimizers

An optimizer is an algorithm or process/method that uses the loss function to update the

weight of a neural network by reducing the loos in the model, to attend the most accurate

performance possible. In this thesis research, I am going to highlights some of the most

28

widely used, and the fastest optimization algorithms used to train a neural network, which

is the following:

1. Momentum optimizer

2. Nesterov Accelerated Gradient optimizer

3. AdaGrad optimizer

4. RMSProp optimizer

5. Adam optimizer

1) Momentum Optimizer

Momentum optimizer was proposed by Boris polyak in 1964 (Polyak, 1964), where it

aims at considering the previous gradients while computing the weight to soften the

convergence and reduced the variance of the model. When compared to the stochastic

gradient descent algorithm SGD it has a soften convergence and lower variance.

Momentum optimizer converges fast by going directly to the global minimum without

going through an irrelevant direction toward the global minimum. Each iteration this

optimizer sums up the local gradient to its parameter called momentum represented by m.

the weight is updated by subtracting the momentum from it. The momentum algorithm is

shown in the below equation.

1. () (3.14)

2. (3.15)

Where;

m is the momentum

β is the decay rate

j() is the cost function

α is the learning rate

θ is the weight parameter

29

2) Nesterov Accelerated Gradient Optimizer

Nesterov accelerated gradient optimizer or Nesterov momentum optimizer was proposed

in 1983 by Yurii Nesterov. This optimizer is almost the same as the momentum optimizer

with some small changes. Nesterov momentum optimizer is using position slightly ahead

of local minimum to measure the gradient of the cost function, and this position is of

course toward the direction of the momentum. The optimizer also updated the weight by

subtracting the momentum from the weight as shown in the equation below.

1. () (3.16)

2. (3.17)

Where;

m is the momentum

β is the decay rate

α is the learning rate

θ is the weight parameter

3) AdaGrad Optimizer

AdaGrad optimizer is using a second-order optimization algorithm, the optimizer is

proposed by Duchi, Hazan, and Singer in 2011 (Duchi, Bartlett, & Wainwright, 2012).

The learning rate in this optimizer is not manually set or constant as in the other

optimization algorithms, the learning rate is set according to the updated frequency of the

parameter while training. The equation for the AdaGrad algorithm is shown below.

1. () () (3.18)

2. () √ (3.19)

30

Where;

s is the square of the gradient vector

j() is the cost function

α is the learning rate

θ is the weight parameter

 is the element-wise multiplication symbol

 is the element-wise division symbol

4) RMSProp Optimizer

RMSProp optimizer was proposed by Hinton in 2012 (Lyon & Lyon, 2017), where its

optimization performance is better than that of AdaGrad optimizer, in AdaGrad

optimization technique it goes down to the gradient too fast and may end up never

converge to the global minimum, RMSProp solve this problem by considering the most

recent gradient in the iteration cycle, this is done by using the exponential decay from the

first step. This optimizer is the choice of many researchers before the introduction of the

Adam optimizer. Below is the equation showing the RMSProp optimization algorithm.

1. () () () (3.20)

2. () √ (3.21)

Where;

s is the square of the gradient vector

j() is the cost function

α is the learning rate

β is the decay rate

θ is the weight parameter

 is the element-wise multiplication symbol

 is the element-wise division symbol

31

5) Adam Optimizer

Adam optimizer is proposed by P. Kingma and Lee Ba in 2014(Kingma & Ba, 2015).

Adam stands for an adaptive moment estimator. This optimizer encapsulated the idea of

momentum optimizer and RMSProp optimizer by monitoring both the exponential decay

average of the previous gradient and the exponential decaying average of the previous

square gradient respectively. Adam optimizer is the best among the other optimizers

because the algorithm is too fast and also converges rapidly. The equation below shows

the Adam optimization algorithm.

1. () () () (3.22)

2. () () (3.23)

3.

 (3.24)

4.

 (3.25)

5. √ (3.26)

Where;

m is the momentum

s is the square of the gradient vector

j() is the cost function

α is the learning rate

θ is the weight parameter

 is the element-wise multiplication symbol

32

 is the element-wise division symbol

 is the momentum decay hyperparameter

 is the momentum decay hyperparameter

 is the smoothing term

T is the iteration number starting from 1

3.6. Transfer learning

Transfer learning is the method of reusing an already train machine learning model which

is train with a large amount of data in a particular task and re-use that model to train a

new classifier of a similar or different task by turning the model hyperparameters or

freezing all or some of the layers of the already trained model as shown in fig.21.

Transfer learning helps us to train a convolutional neural network with a small size of

dataset. In transfer learning, the new model that is built with a pre-train model does not

have to train with a large dataset to perform well. Since all the base features are already

learned in the pre-train model, the training time is not as much as to train from scratch

that is to train without using the transfer learning method, the memory, and computational

resources will also be reduced compared to training from scratch. Many pre-train

algorithms are trained with large datasets like the ImageNet dataset (Russakovsky et al.,

2015), which have over 15 million images from around 22,000 categories. Those pre-train

algorithms are once that is used mostly as a base in the transfer learning method.

Transfer learning is a process of reusing an already trained model that is trained for a

specific tasking to a new task either the tasks are similar or not. The transfer learning

method is usually and most widely used method in computer vision-related tasks.

Transfer learning help in the following ways:

I. It reduced the training time of a model.

II. It reduced the computational cost.

III. It prevents or reduced model over-fitting

IV. It allows the training of large CNN with a small amount of data.

V. It also increases/bust the performance of a model.

33

Xception Network, VGG16 Network, ResNet50 Network, Inception V3 Network,

DenseNet121 Network are the popular and most used pre-train algorithms which are the

state-of-the-art algorithms that are trained with ImageNet dataset.

Figure 3. 216: transfer learning structure

3.7 Evaluation Matrices

Evaluation matrices are matrices that are used to measure the performance of machine

learning or deep learning models. There exist different types of evaluation matrices that

can be used to evaluate models. Different evaluation matrices are uses to evaluate the

performance of different models regarding the problem at hand. Some evaluation matrices

34

are best in measuring the performance of regression models, while some are best for the

classification models. As mentioned, there exist many types of evaluation matrices,

wherein this thesis research, I am going to highlight the most widely used evaluation

matrices in today’s research community, which are as follows:

1. Confusion matrix

2. Accuracy

3. Recall

4. Precision

5. F1 score, and

6. Area Under the Rock Curve (AUC)

3.7.1 Confusion Matrix

Confusion matrix is a matric that is used to measure the performance of classification

algorithms. The classification problems may be a binary or multi-class classification.

Confusion matric provides the exact number of true positive class, false-positive class,

true negative class, and false-negative class by comparing the actual classes from the

original data with a predicted label from the classification algorithm. Below is the sample

confusion matric of a binary classification problem.

 P N

P

TP

FN

N

FP

TN

Figure 3.17: Confusion matric

Predicted labels

Tr
u

e
 la

b
el

s

35

Where;

P is the positive class

N is negative class

TP is the true positive class

TN is a true negative class

FP is the false positive class

FN is false negative class

3.7.2 Accuracy Matric

Accuracy is an evaluation metric that is used in measuring the performance of

classification algorithms or regression algorithms. Accuracy will be problematic or

misleading performance matric when use to evaluate a model that is trained on

unbalanced data. For this evaluation matric to provide a good and reliable performance

measure, the data to be used in training the model must be balanced. Accuracy is

computed by summing up the true positive and true negative class divided by the

summation of true positive, true negative, false positive, and false negative classes as

shown in the formula below.

 (3.27)

3.7.3 Recall Matric

A recall is another evaluation metric that is used to measure the performance of the

classifier. A recall is a correctly classified class from the classification model. A recall is

computed by dividing the true positive class with the summation of the true positive class

and false-negative class as shown in the formula below.

 (3.28)

36

3.7.4 Precision Matric

Precision is also an evaluation matric usually used together with recall evaluation matric

to measure the performance of classification algorithms. Precision is a positive prediction

result that corresponds to the correctly classified class. Precision is computed by dividing

the true positive class with the summation of true positive and false positive class as

shown in the formula below.

 (3.29)

3.7.5 Precision/Recall Tradeoff

This is a tradeoff between the recall and the precision of classifiers, where a classifier will

have to give off one to gain the other. Here giving off one does not mean to not use it but

to have less performance than the other. For instance, let’s say you have a problem with

diagnosing a patient with pneumonia cases; here you will want your classifier to classify

all the patients with pneumonia cases than to classified patients with pneumonia cases as

a patient with no pneumonia. In this particular case, you will have to trade off the

classifier precision to have more recall since the problem at hand needs more recall than

the precision. The same goes for the precision also; thresholds have to be set between the

recall and the precision defending on the problem that is to be solved. Below shows a plot

of a tradeoff between precision and recall at a certain threshold.

37

Figure 3.18: precision-recall tradeoff

3.7.6 F1 Score Matric

F1 score evaluation matric is used to measure the performance of a classifier by

combining the recall and precision evaluation matrices as one single performance

measure evaluation matric. F1 score evaluation matric is computed by dividing the twice

of precision multiply by recall with a summation of recall and precision evaluation matric

result. Below shows how the F1 score evaluation matric is computed.

 (3.30)

3.7.7 Area Under the ROC Curve (AUC)

Ares under the ROC curve is a performance evaluation matric that is used to measure the

aggregate performance of all the possible thresholds of the classifier. AUC of greater than

80% is generally considered to be an excellent performance by the classifier. AUC is a

38

plot of the true positive rate versus the true negative rate from the classifier. Below shows

a sample AUC plot.

Figure 3.19: Area under the curve plot

39

CHAPTER 4

IMPLEMENTATION RESULTS

4.1 Results

The main aim of this research is to develop a system that will correctly diagnose the

presence of COVID-19 and viral pneumonia in X-Ray images. The transfer learning

approach was used in developing the system, two models were trained in two different

datasets, the first model was trained on a dataset that contain only normal and pneumonia

cases, the second model used the first model as the base model so as to say it uses the

knowledge learned by the first model to train on the dataset that contains COVID-19,

pneumonia, and normal cases. The training and testing of the model were performed

using Keras and TensorFlow framework in a python programming language with tensor

processing unit (TPU) as an accelerator in Kaggle kennel.

4.2 First Model Results

Figure 4.1 below shows the configuration of the first model that used the first dataset to

learn the features and detect the presence of Pneumonia cases in X-Ray images. The first

model takes an X-Ray image of size 180 x 180 x 3 as an input, and output probabilistic

results from the last layer of the network which used sigmoid activation function, the

result of this layer is pneumonia if the probabilistic result is greater than 0.5, otherwise,

the X-Ray image is normal.

40

Figure 4.1: First model summaries

Table 4. 1: First Dataset distribution

Cases

Training data

Validation data

Test data

Normal 1,067 282 234

Pneumonia 3,118 765 390

Total 4,185 1,067 624

41

Table 4.1 above shows the distribution of the first dataset which includes pneumonia and

normal chest X-Ray images, this dataset is used to train the first model.

Figure 4. 2: First model accuracy per epoch

Figure 4.3: First model loos per epoch

42

The above figure 4.2-4.3 are the training accuracy and loos respectively for the first

model, the model is trained to the extends that it learn the important basic X-Ray image

features and can differentiate pneumonia case from normal with good accuracy, though

the model plot above shows a sign of model underfitting, and this is because the first

dataset used in the model training is small, so this issue can be solved by adding the

training data, and further tuning the hyperparameters of the model.

Table 4. 2: First model test results

Epoch

Recall

Precision

F1_Score

Accuracy

Loos

First

Model

46 0.96 0.82 0.88 0.85 0.44

Table 4.2 above shows the evaluation results of the first model that was trained with the

first dataset. The model attends a recall, precision, F1_scores, and Accuracy of 0.96, 0.82,

0.88, and 0.85 respectively. The performance of this model can be improved by turning

the model hyperparameters, the addition of more training data, and using data

augmentation techniques. Though with this result we are able to get what we need in

order to help us in building the main model that classified COVID-19 and Pneumonia

cases from chest X-Ray images.

4.3 Second Model Results

Figure 4.4 shows the overall architecture of the proposed model. The architecture

received an X-Ray images data of size 180 x 180 x 3, it has 2 convolutional layers

followed by one max-pooling layer, then 3 sequential layers followed by a dropout layer,

then another sequential layer followed by dropout layer, flatten layer flowed by 3

sequential layers, a dense layer followed by an output layer which performed

classification. All the layers use the “RELU” activation function, “SAME” padding type,

43

and filter of size 3 for all the convolutional layers. Adam optimizer with default

parameters and categorical cross-entropy loss is used in the model training.

Figure 4.5 – 4.6 presents the training and validation plots of the model accuracy and loss

against each epoch. As shown on the plot, the model has achieved high performance with

only 20 epochs, from the plot it is clearly seen that both the accuracy and the model loss

looks great, and this is because of the use of transfer learning which helps in reducing the

training time, and also in attaining the high performance with a small number of training

data and number of epochs.

44

Figure 4. 4: The architecture of the proposed model

45

Figure 4.5: Second Model Accuracy per Epoch

Figure 4.6: Second Model Loos per Epoch

46

Figure 4.7 shows the activation map of the convolutional layers of the network. The

activation maps show what a network learned at a particular layer. For instance, the

Conv2d_6 layer shows the high-level features learn by the network, and the sequential_30

layer shows low-level features which are more specific features of the classification

classes in the data. The deeper the network the more and more specific features to be

learned for each class by the network.

Figure 4.8 shows the Grad_CAM of COVID-19, and viral Pneumonia cases. The

Grad_CAM helps us to visualize where exactly the model looks to perform the prediction

on each and every X-Ray image. The first 10 X-Ray images are for COVID-19 cases, and

the last 10 X-Ray images are for viral pneumonia cases. In all the X-Ray images, the part

that is rainbow/yellowish in color is the most important part of the image used by the

model in making decisions, while the parts with purple color are less important to the

model for the making decision. Only 20 X-Ray images are shown in figure 5.4, more X-

Ray images can be shown for a clear understanding of each case predicted by the model.

47

Figure 4. 7: shows the activation map in some convolutional layers of the network

48

Figure 4. 8: shows the Grad_CAM of COVID-19, and viral Pneumonia cases

Table 4.3: Dataset splitting for training, validation, and testing

Cases

Training sets

Validation set

Testing set

Total

Normal 1,082 118 141 1,341

COVID-19 186 12 21 219

Pneumonia 1,084 132 129 1,345

Total 2,352 262 291 2,905

49

Table 4.4 shows the result of the model on test data. The result below is the model

evaluation on test data, the table provided the recall, precision, F1 score, and accuracy

which are 0.979, 0.982, 0.980, 0.982 respectively archived by the model, which are

remarkable performance.

Table 4.4: Second Model test results

Epoch

Recall

Precision

F1

Score

Accuracy

Loss

Second

Model

20

0.979

0.982

0.980

0.982

0.045

5.4 Comparison

Table 4.5: Comparative performance on test data for this research, and other state-of-the-

art approaches

Authors (Year)

Recall

(%)

Precision

(%)

Specificity

(%)

F1 Score

(%)

Accuracy

(%)

Chowdhury et al.,

(2020)

97.94 97.95 98.80 97.94 97.94

Cavallo et al.,

(2020)

- - 90 - 90.8

Lin & Lee, (2020) 92.6 89.7 - - 93.1

Rajpal, et al.,

(2020)

- - - 95 94.4

50

Echtioui,et al.,

(2020)

88.33 91 - 89.66 91.34

Pham, (2020)

- 95 98 96 95

Neural et al.,

(2020)

- - 100 - 96.9

Alotaibi, (2020) 97.42 97.42 - 97.23 98.3

This research 97.94 98.27 - 98.0 98.28

51

CHAPTER 5

CONCLUSION

To conclude, the research work was aimed at developing a system that will help

radiologists in diagnosing COVID-19 and pneumonia cases easily in this trying time of

the pandemic. Therefore, CNN algorithms were used as shown in the methodology

section for the detection of these viruses as early as possible. Due to the lack of COVID-

19 data, we have shown how the transfer learning approach was used to bridge the gap of

these issues. As explained, two CNN algorithms were trained with two unique datasets;

the first model was trained for binary classification (pneumonia/normal) on the first

dataset that contains only pneumonia cases and normal CXR images. While the second

model with the help of the transfer learning method uses the first model as the base model

and trained on the second dataset that contained COVID-19, pneumonia, and normal

cases images for three classes classification (COVID-19, pneumonia, and normal). The

implementation result of the model that diagnose COVID-19 and pneumonia achieved the

performance of 98.3, 97.9, 98.3, and 98.0 Accuracy, Recall, precision, and F1_scores

respectively, hence, the proposed model proved to be efficient in diagnosing COVID-19

and pneumonia cases. A convolutional neural network (CNN) is known as a black box,

hence, class activation map of some convolutional layers were shown to help understand

what the model learn at a particular layer. Grad_CAM is also shown to help us know

where exactly the model is looking at on image data to perform the classification task. At

the end of the research, some of the other author’s results were compared with this

research work result, and this work archived a high performance than the others.

52

REFERENCES

Abiyev, R. H., Khaleel, M., & Ma’aitah, S. (2018). Deep Convolutional Neural Networks

for Chest Diseases Detection. https://doi.org/10.1155/2018/4168538

Alotaibi, A. (2020). Transfer Learning for Detecting Covid-19 Cases Using Chest X-Ray

Images. International Journal of Machine Learning and Networked Collaborative

Engineering, 4(1), 21–29. https://doi.org/10.30991/ijmlnce.2020v04i01.003

Antin, B., Kravitz, J., & Martayan, E. (2017). Detecting Pneumonia in Chest X-Rays with

Supervised Learning. 1–5.

Ayan, E., & Ünver, H. M. (2019). Diagnosis of pneumonia from chest X-ray images using

deep learning. 2019 Scientific Meeting on Electrical-Electronics and Biomedical

Engineering and Computer Science, EBBT 2019, 1–5.

https://doi.org/10.1109/EBBT.2019.8741582

Cavallo, A. U., Troisi, J., Forcina, M., Mari, P., Forte, V., Sperandio, M., … Geraci, F.

(2020). Texture Analysis in the Evaluation of Covid-19 Pneumonia in Chest X-Ray

Images: a Proof of Concept Study. 1–12. https://doi.org/10.21203/rs.3.rs-37657/v1

Chowdhury, M. E. H., Rahman, T., Khandakar, A., Mazhar, R., Kadir, M. A., Mahbub, Z.

Bin, … Islam, M. T. (2020). Can AI Help in Screening Viral and COVID-19

Pneumonia? IEEE Access, 8, 132665–132676.

https://doi.org/10.1109/ACCESS.2020.3010287

Clevert, D. A., Unterthiner, T., & Hochreiter, S. (2016). Fast and accurate deep network

learning by exponential linear units (ELUs). 4th International Conference on

Learning Representations, ICLR 2016 - Conference Track Proceedings, 1–14.

Duchi, J. C., Bartlett, P. L., & Wainwright, M. J. (2012). Randomized smoothing for

(parallel) stochastic optimization. Proceedings of the IEEE Conference on Decision

and Control, 12, 5442–5444. https://doi.org/10.1109/CDC.2012.6426698

Echtioui, A., Zouch, W., Ghorbel, M., Mhiri, C., & Hamam, H. (2020). Detection Methods

of COVID-19. SLAS Technology. https://doi.org/10.1177/2472630320962002

Er, O., Sertkaya, C., Temurtas, F., & Tanrikulu, A. C. (2009). A comparative study on

chronic obstructive pulmonary and pneumonia diseases diagnosis using neural

networks and artificial immune system. Journal of Medical Systems, 33(6), 485–492.

53

https://doi.org/10.1007/s10916-008-9209-x

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a

mechanism of pattern recognition unaffected by shift in position. Biological

Cybernetics, 36(4), 193–202. https://doi.org/10.1007/BF00344251

Gunraj, H., Wang, L., & Wong, A. (2020). COVIDNet-CT: A Tailored Deep Convolutional

Neural Network Design for Detection of COVID-19 Cases from Chest CT Images. 1–

12. Retrieved from http://arxiv.org/abs/2009.05383

Hammoudi, K., Benhabiles, H., Melkemi, M., Dornaika, F., Arganda-Carreras, I., Collard,

D., & Scherpereel, A. (2020). Deep Learning on Chest X-ray Images to Detect and

Evaluate Pneumonia Cases at the Era of COVID-19. 1–6. Retrieved from

http://arxiv.org/abs/2004.03399

Han, Z., Wei, B., Hong, Y., Li, T., Cong, J., Zhu, X., … Zhang, W. (2020). Accurate

Screening of COVID-19 Using Attention-Based Deep 3D Multiple Instance Learning.

IEEE Transactions on Medical Imaging, 39(8), 2584–2594.

https://doi.org/10.1109/TMI.2020.2996256

Jaiswal, A. K., Tiwari, P., Kumar, S., Gupta, D., Khanna, A., & Rodrigues, J. J. P. C.

(2019). Identifying pneumonia in chest X-rays: A deep learning approach.

Measurement: Journal of the International Measurement Confederation, 145, 511–

518. https://doi.org/10.1016/j.measurement.2019.05.076

Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C. S., Liang, H., Baxter, S. L., …

Zhang, K. (2018). Identifying Medical Diagnoses and Treatable Diseases by Image-

Based Deep Learning. Cell, 172(5), 1122-1131.e9.

https://doi.org/10.1016/j.cell.2018.02.010

Khademi, G., & Simon, D. (2019). Convolutional neural networks for environmentally

aware locomotion mode recognition of lower-limb amputees. ASME 2019 Dynamic

Systems and Control Conference, DSCC 2019, 1(June).

https://doi.org/10.1115/DSCC2019-9180

Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization. 3rd

International Conference on Learning Representations, ICLR 2015 - Conference

Track Proceedings, 1–15.

54

Ko, H., Chung, H., Kang, W. S., Kim, K. W., Shin, Y., Kang, S. J., … Lee, J. (2020).

COVID-19 pneumonia diagnosis using a simple 2d deep learning framework with a

single chest CT image: Model development and validation. Journal of Medical

Internet Research, 22(6), 1–13. https://doi.org/10.2196/19569

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11), 2278–2323.

https://doi.org/10.1109/5.726791

Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., … Xia, J. (2020). Using Artificial

Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on

Pulmonary CT: Evaluation of the Diagnostic Accuracy. Radiology, 296(2), E65–E71.

https://doi.org/10.1148/radiol.2020200905

Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., … Feng, Z. (2020). Early

transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia.

New England Journal of Medicine, 382(13), 1199–1207.

https://doi.org/10.1056/NEJMoa2001316

Lin, T. C., & Lee, H. C. (2020). Covid-19 chest radiography images analysis based on

integration of image preprocess, guided grad-CAM, machine learning and risk

management. ACM International Conference Proceeding Series, 281–288.

https://doi.org/10.1145/3418094.3418096

Lyon, R. F., & Lyon, R. F. (2017). Neural Networks for Machine Learning. Human and

Machine Hearing, 419–440. https://doi.org/10.1017/9781139051699.031

Neural, A. C., & Cnn, N. (2020). COVID-19 DISEASE DIAGNOSIS FROM RADIOLOGY

DATA WITH DEEP LEARNING.

Pham, T. D. (2021). Classification of COVID ‑ 19 chest X ‑ rays with deep learning : new

models or fine tuning ? Health Information Science and Systems.

https://doi.org/10.1007/s13755-020-00135-3

Pneumonia | Home | CDC. (n.d.).

Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods.

USSR Computational Mathematics and Mathematical Physics, 4(5), 1–17.

https://doi.org/10.1016/0041-5553(64)90137-5

55

Rajaraman, S., Siegelman, J., Alderson, P. O., Folio, L. S., Folio, L. R., & Antani, S. K.

(2020). Iteratively Pruned Deep Learning Ensembles for COVID-19 Detection in

Chest X-Rays. IEEE Access, 8, 115041–115050.

https://doi.org/10.1109/ACCESS.2020.3003810

Rajpal, S., Rajpal, A., Lakhyani, N., & Kumar, N. (2020). COV-ELM classifier: An

Extreme Learning Machine based identification of COVID-19 using Chest X-Ray

Images. ArXiv, 2019.

Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., … Ng, A. Y. (2017).

CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep

Learning. Retrieved from https://stanfordmlgroup.

Rosenberg, L., Lungren, M., Halabi, S., Willcox, G., Baltaxe, D., & Lyons, M. (2019).

Artificial Swarm Intelligence employed to Amplify Diagnostic Accuracy in

Radiology. 2018 IEEE 9th Annual Information Technology, Electronics and Mobile

Communication Conference, IEMCON 2018, (Ml), 1186–1191.

https://doi.org/10.1109/IEMCON.2018.8614883

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., … Fei-Fei, L. (2015).

ImageNet Large Scale Visual Recognition Challenge. International Journal of

Computer Vision, 115(3), 211–252. https://doi.org/10.1007/s11263-015-0816-y

Saraiva, A. A., Santos, D. B. S., Costa, N. C., Sousa, J. V. M., Fonseca Ferreira, N. M.,

Valente, A., & Soares, S. (2019). Models of learning to classify X-ray images for the

detection of pneumonia using neural networks. BIOIMAGING 2019 - 6th

International Conference on Bioimaging, Proceedings; Part of 12th International

Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC

2019, (Biostec), 76–83. https://doi.org/10.5220/0007346600760083

Taylor, L., & Nitschke, G. (2017). Improving Deep Learning using Generic Data

Augmentation. Retrieved from http://arxiv.org/abs/1708.06020

WHO Coronavirus Disease (COVID-19) Dashboard | WHO Coronavirus Disease

(COVID-19) Dashboard. (n.d.).

World Health Organization. (2001). Standardization of interpretation of chest radiographs

for the diagnosis of pneumonia in children / World Health Organization Pneumonia

56

Vaccine Trial Investigators’ Group. Retrieved from

http://www.who.int/iris/handle/10665/66956

57

APPENDICES

58

APPENDIX 1

FIRST MODEL CODE

import re

import os

import numpy as np

import pandas as pd

import tensorflow as tf

from kaggle_datasets import KaggleDatasets

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

try:

 tpu = tf.distribute.cluster_resolver.TPUClusterResolver()

 print('Device:', tpu.master())

 tf.config.experimental_connect_to_cluster(tpu)

 tf.tpu.experimental.initialize_tpu_system(tpu)

 strategy = tf.distribute.experimental.TPUStrategy(tpu)

except:

 strategy = tf.distribute.get_strategy()

print('Number of replicas:', strategy.num_replicas_in_sync)

print(tf.__version__)

AUTOTUNE = tf.data.experimental.AUTOTUNE

GCS_PATH = KaggleDatasets().get_gcs_path()

BATCH_SIZE = 16 * strategy.num_replicas_in_sync

IMAGE_SIZE = [180, 180]

EPOCHS = 25

filenames = tf.io.gfile.glob(str(GCS_PATH + '/chest_xray/trai

n/*/*'))

filenames.extend(tf.io.gfile.glob(str(GCS_PATH + '/chest_xray

/val/*/*')))

train_filenames, val_filenames = train_test_split(filenames,

test_size=0.2)

59

COUNT_NORMAL = len([filename for filename in train_filenames

if "NORMAL" in filename])

print("Normal images count in training set: " + str(COUNT_NOR

MAL))

COUNT_PNEUMONIA = len([filename for filename in train_filenam

es if "PNEUMONIA" in filename])

print("Pneumonia images count in training set: " + str(COUNT_

PNEUMONIA))

train_list_data = tf.data.Dataset.from_tensor_slices(train_fi

lenames)

val_list_data = tf.data.Dataset.from_tensor_slices(val_filena

mes)

for f in train_list_data.take(5):

 print(f.numpy())

TRAIN_IMG_COUNT = tf.data.experimental.cardinality(train_list

_data).numpy()

print("Training images count: " + str(TRAIN_IMG_COUNT))

VAL_IMG_COUNT = tf.data.experimental.cardinality(val_list_dat

a).numpy()

print("Validating images count: " + str(VAL_IMG_COUNT))

CLASS_NAMES = np.array([str(tf.strings.split(item, os.path.se

p)[-1].numpy())[2:-1]

 for item in tf.io.gfile.glob(str(GCS_

PATH + "/chest_xray/train/*"))])

CLASS_NAMES

def get_label(file_path):

 # convert the path to a list of path components

 parts = tf.strings.split(file_path, os.path.sep)

 # The second to last is the class-directory

 return parts[-2] == "PNEUMONIA"

def decode_img(img):

 # convert the compressed string to a 3D uint8 tensor

60

 img = tf.image.decode_jpeg(img, channels=3)

 # Use `convert_image_dtype` to convert to floats in the [0,

1] range.

 img = tf.image.convert_image_dtype(img, tf.float32)

 # resize the image to the desired size.

 return tf.image.resize(img, IMAGE_SIZE)

def process_path(file_path):

 label = get_label(file_path)

 # load the raw data from the file as a string

 img = tf.io.read_file(file_path)

 img = decode_img(img)

 return img, label

train_data= train_list_data.map(process_path, num_parallel_ca

lls=AUTOTUNE)

val_data= val_list_data.map(process_path, num_parallel_calls=

AUTOTUNE)

for image, label in train_ds.take(1):

 print("Image shape: ", image.numpy().shape)

 print("Label: ", label.numpy())

testl_list_data = tf.data.Dataset.list_files(str(GCS_PATH + '

/chest_xray/test/*/*'))

TEST_IMAGE_COUNT = tf.data.experimental.cardinality(testl_lis

t_data).numpy()

test_data= testl_list_data.map(process_path, num_parallel_cal

ls=AUTOTUNE)

test_data= test_ds.batch(BATCH_SIZE)

TEST_IMAGE_COUNT

def prepare_for_training(ds, cache=True, shuffle_buffer_size=

1000):

 # This is a small dataset, only load it once, and keep it

 in memory.

 # use `.cache(filename)` to cache preprocessing work for

datasets that don't

 # fit in memory.

 if cache:

61

 if isinstance(cache, str):

 ds = ds.cache(cache)

 else:

 ds = ds.cache()

 ds = ds.shuffle(buffer_size=shuffle_buffer_size)

 # Repeat forever

 ds = ds.repeat()

 ds = ds.batch(BATCH_SIZE)

 # `prefetch` lets the dataset fetch batches in the backgr

ound while the model

 # is training.

 ds = ds.prefetch(buffer_size=AUTOTUNE)

 return ds

train_data= prepare_for_training(train_ds)

val_data= prepare_for_training(val_ds)

image_batch, label_batch = next(iter(train_ds))

def show_batch(image_batch, label_batch):

 plt.figure(figsize=(10,10))

 for n in range(25):

 ax = plt.subplot(5,5,n+1)

 plt.imshow(image_batch[n])

 if label_batch[n]:

 plt.title("PNEUMONIA")

 else:

 plt.title("NORMAL")

 plt.axis("off")

show_batch(image_batch.numpy(), label_batch.numpy())

def conv_block(filters):

 block = tf.keras.Sequential([

 tf.keras.layers.SeparableConv2D(filters, 3, activatio

n='relu', padding='same'),

62

tf.keras.layers.SeparableConv2D(filters, 3, activatio

n='relu', padding='same'),

tf.keras.layers.BatchNormalization(),

tf.keras.layers.MaxPool2D()

]

)

return block

def dense_block(units, dropout_rate):

block = tf.keras.Sequential([

tf.keras.layers.Dense(units, activation='relu'),

tf.keras.layers.BatchNormalization(),

tf.keras.layers.Dropout(dropout_rate)

])

return block

def build_model():

model = tf.keras.Sequential([

tf.keras.Input(shape=(IMAGE_SIZE[0], IMAGE_SIZE[1], 3

)),

tf.keras.layers.Conv2D(16, 3, activation='relu', padd

ing='same'),

tf.keras.layers.Conv2D(16, 3, activation='relu', padd

ing='same'),

tf.keras.layers.MaxPool2D(),

conv_block(32),

conv_block(64),

conv_block(128),

tf.keras.layers.Dropout(0.2),

conv_block(256),

tf.keras.layers.Dropout(0.2),

added layer

conv_block(512),

tf.keras.layers.Dropout(0.2),

tf.keras.layers.Flatten(),

dense_block(1024, 0.8), ######## added layer

63

 dense_block(512, 0.7),

 dense_block(128, 0.5),

 dense_block(64, 0.3),

 tf.keras.layers.Dense(1, activation='sigmoid')

])

 return model

initial_bias = np.log([COUNT_PNEUMONIA/COUNT_NORMAL])

initial_bias

weight_for_0 = (1 / COUNT_NORMAL)*(TRAIN_IMG_COUNT)/2.0

weight_for_1 = (1 / COUNT_PNEUMONIA)*(TRAIN_IMG_COUNT)/2.0

class_weight = {0: weight_for_0, 1: weight_for_1}

print('Weight for class 0: {:.2f}'.format(weight_for_0))

print('Weight for class 1: {:.2f}'.format(weight_for_1))

with strategy.scope():

 model = build_model()

 METRICS = [

 'accuracy',

 tf.keras.metrics.Precision(name='precision'),

 tf.keras.metrics.Recall(name='recall')

]

 model.compile(

 optimizer='adam',

 loss='binary_crossentropy',

 metrics=METRICS

)

history = model.fit(

 train_ds,

 steps_per_epoch=TRAIN_IMG_COUNT // BATCH_SIZE,

 epochs=EPOCHS,

 validation_data=val_ds,

 validation_steps=VAL_IMG_COUNT // BATCH_SIZE,

 class_weight=class_weight,)

64

checkpoint_cb = tf.keras.callbacks.ModelCheckpoint("PneomoNet

Best.h5",

 save_best

_only=True)

early_stopping_cb = tf.keras.callbacks.EarlyStopping(patience

=10,

 restore_

best_weights=True)

def exponential_decay(lr0, s):

 def exponential_decay_fn(epoch):

 return lr0 * 0.1 **(epoch / s)

 return exponential_decay_fn

exponential_decay_fn = exponential_decay(0.01, 20)

lr_scheduler = tf.keras.callbacks.LearningRateScheduler(expon

ential_decay_fn)

history = model.fit(

 train_ds,

 steps_per_epoch=TRAIN_IMG_COUNT // BATCH_SIZE,

 epochs=100,

 validation_data=val_ds,

 validation_steps=VAL_IMG_COUNT // BATCH_SIZE,

 class_weight=class_weight,

 callbacks=[checkpoint_cb, early_stopping_cb, lr_scheduler

]

)

fig, ax = plt.subplots(1, 4, figsize=(20, 3))

ax = ax.ravel()

for i, met in enumerate(['precision', 'recall', 'accuracy', '

loss']):

 ax[i].plot(history.history[met])

 ax[i].plot(history.history['val_' + met])

 ax[i].set_title('Model {}'.format(met))

65

 ax[i].set_xlabel('epochs')

 ax[i].set_ylabel(met)

 ax[i].legend(['train', 'val'])

loss, acc, prec, rec = model.evaluate(test_ds)

model.save('PneomoNetBest.h5')

66

APPENDIX 2

SECOND MODEL CODE

import re

import os

import random

import numpy as np

import pandas as pd

import tensorflow as tf

from tensorflow import keras

from kaggle_datasets import KaggleDatasets

import matplotlib.pyplot as plt

from tensorflow.keras import layers, models, optimizers

from tensorflow.keras.layers import Dropout

from keras.applications.vgg16 import VGG16

import matplotlib.cm as cm

from sklearn.model_selection import train_test_split

try:

 tpu = tf.distribute.cluster_resolver.TPUClusterResolver()

 print('Device:', tpu.master())

 tf.config.experimental_connect_to_cluster(tpu)

 tf.tpu.experimental.initialize_tpu_system(tpu)

 strategy = tf.distribute.experimental.TPUStrategy(tpu)

except:

 strategy = tf.distribute.get_strategy()

print('Number of replicas:', strategy.num_replicas_in_sync)

print(tf.__version__)

AUTOTUNE = tf.data.experimental.AUTOTUNE

GCS_PATH = KaggleDatasets().get_gcs_path("covid19-

radiography-database")

BATCH_SIZE = 16 * strategy.num_replicas_in_sync

IMAGE_SIZE = [180, 180]

filenames = tf.io.gfile.glob(str(GCS_PATH + '/COVID-

19 Radiography Database/COVID-19/*'))

filenames.extend(tf.io.gfile.glob(str(GCS_PATH + '/COVID-

19 Radiography Database/NORMAL/*')))

filenames.extend(tf.io.gfile.glob(str(GCS_PATH + '/COVID-

19 Radiography Database/Viral Pneumonia/*')))

67

random.seed(1337)

tf.random.set_seed(1337)

random.shuffle(filenames)

COUNT_NORMAL = len([filename for filename in filenames if "NO

RMAL" in filename])

print("Normal images count : " + str(COUNT_NORMAL))

COUNT_COVID = len([filename for filename in filenames if "/CO

VID-19/" in filename])

print("COVID-19 images count : " + str(COUNT_COVID))

COUNT_PNEUMONIA = len([filename for filename in filenames if

"Viral" in filename])

print("Pneumonia images count : " + str(COUNT_PNEUMONIA))

import seaborn as sns

intialise data of lists.

data = {'Cases':['0', '1', '2'],

 'Cases_count':[COUNT_NORMAL, COUNT_COVID, COUNT_PNEUM

ONIA]

 }

Create DataFrame

df = pd.DataFrame(data)

Get the counts for each class in the data

plt.figure(figsize=(10,8))

sns.barplot(x=df.index, y= df['Cases_count'].values)

plt.title('Number of All the Data', fontsize=14)

plt.xlabel('Case type', fontsize=12)

plt.ylabel('Count', fontsize=12)

plt.xticks(range(len(df.index)), ['Normal(0)', 'Covid19(1)',

'Pneumonia(2)'])

plt.show()

Print the output.

print(df)

train_filenames, test_filenames = train_test_split(filenames,

 test_size=0.1)

68

train_filenames, val_filenames = train_test_split(train_filen

ames, test_size=0.1)

COUNT_NORMAL_TRAINING = len([filename for filename in train_f

ilenames if "NORMAL" in filename])

print("Normal images count in training set: " + str(COUNT_NOR

MAL_TRAINING))

COUNT_COVID_TRAINING = len([filename for filename in train_fi

lenames if "/COVID-19/" in filename])

print("COVID-

19 images count in training set: " + str(COUNT_COVID_TRAINING

))

COUNT_PNEUMONIA_TRAINING = len([filename for filename in trai

n_filenames if "Viral" in filename])

print("Pneumonia images count in training set: " + str(COUNT_

PNEUMONIA_TRAINING))

import seaborn as sns

intialise data of lists.

data = {'Cases':['0', '1', '2'],

 'Cases_count':[COUNT_NORMAL_TRAINING, COUNT_COVID_TRA

INING, COUNT_PNEUMONIA_TRAINING]}

Create DataFrame

df = pd.DataFrame(data)

Get the counts for each class in training data

plt.figure(figsize=(10,8))

sns.barplot(x=df.index, y= df['Cases_count'].values)

plt.title('Number of Training cases', fontsize=14)

plt.xlabel('Case type', fontsize=12)

plt.ylabel('Count', fontsize=12)

plt.xticks(range(len(df.index)), ['Normal(0)', 'Covid19(1)',

'Pneumonia(2)'])

plt.show()

Print the output.

print(df)

69

COUNT_NORMAL_VALODATION = len([filename for filename in val_f

ilenames if "NORMAL" in filename])

print("Normal images count in validation set: " + str(COUNT_N

ORMAL_VALODATION))

COUNT_COVID_VALODATION = len([filename for filename in val_fi

lenames if "/COVID-19/" in filename])

print("COVID-

19 images count in validation set: " + str(COUNT_COVID_VALODA

TION))

COUNT_PNEUMONIA_VALODATION = len([filename for filename in va

l_filenames if "Viral" in filename])

print("Pneumonia images count in validation set: " + str(COUN

T_PNEUMONIA_VALODATION))

import seaborn as sns

intialise data of lists.

data = {'Cases':['0', '1', '2'],

'Cases_count':[COUNT_NORMAL_VALODATION, COUNT_COVID_V

ALODATION, COUNT_PNEUMONIA_VALODATION]}

Create DataFrame

df = pd.DataFrame(data)

Get the counts for each class in validation data

plt.figure(figsize=(10,8))

sns.barplot(x=df.index, y= df['Cases_count'].values)

plt.title('Number of Validation cases', fontsize=14)

plt.xlabel('Case type', fontsize=12)

plt.ylabel('Count', fontsize=12)

plt.xticks(range(len(df.index)), ['Normal(0)', 'Covid19(1)',

'Pneumonia(2)'])

plt.show()

Print the output.

print(df)

COUNT_NORMAL_TEST = len([filename for filename in test_filena

mes if "NORMAL" in filename])

print("Normal images count in test set: " + str(COUNT_NORMAL_

TEST))

70

COUNT_COVID_TEST = len([filename for filename in test_filenam

es if "/COVID-19/" in filename])

print("COVID-

19 images count in test set: " + str(COUNT_COVID_TEST))

COUNT_PNEUMONIA_TEST = len([filename for filename in test_fil

enames if "Viral" in filename])

print("Pneumonia images count in test set: " + str(COUNT_PNEU

MONIA_TEST))

import seaborn as sns

intialise data of lists.

data = {'Cases':['0', '1', '2'],

 'Cases_count':[COUNT_NORMAL_TEST, COUNT_COVID_TEST, C

OUNT_PNEUMONIA_TEST]}

Create DataFrame

df = pd.DataFrame(data)

Get the counts for each class in test data

plt.figure(figsize=(10,8))

sns.barplot(x=df.index, y= df['Cases_count'].values)

plt.title('Number of test cases', fontsize=14)

plt.xlabel('Case type', fontsize=12)

plt.ylabel('Count', fontsize=12)

plt.xticks(range(len(df.index)), ['Normal(0)', 'Covid19(1)',

'Pneumonia(2)'])

plt.show()

Print the output.

print(df)

train_list_data = tf.data.Dataset.from_tensor_slices(train_fi

lenames)

val_list_data = tf.data.Dataset.from_tensor_slices(val_filena

mes)

testl_list_data = tf.data.Dataset.from_tensor_slices(test_fil

enames)

TRAIN_IMG_COUNT = tf.data.experimental.cardinality(train_list

_data).numpy()

print("Training images count: " + str(TRAIN_IMG_COUNT))

71

VAL_IMG_COUNT = tf.data.experimental.cardinality(val_list_dat

a).numpy()

print("Validating images count: " + str(VAL_IMG_COUNT))

Test_IMG_COUNT = tf.data.experimental.cardinality(testl_list_

data).numpy()

print("Testing images count: " + str(Test_IMG_COUNT))

CLASSES = ['NORMAL', 'COVID-19', 'Viral Pneumonia']

def get_label(file_path):

 # convert the path to a list of path components

 parts = tf.strings.split(file_path, os.path.sep)

 # The second to last is the class-directory

 return parts[-2] == CLASSES

def decode_img(img):

 # convert the compressed string to a 3D uint8 tensor

 img = tf.image.decode_png(img, channels=3)

 # Use `convert_image_dtype` to convert to floats in the [0,

1] range.

 img = tf.image.convert_image_dtype(img, tf.float32)

 # resize the image to the desired size.

 return tf.image.resize(img, IMAGE_SIZE)

def process_path(file_path):

 label = get_label(file_path)

 # load the raw data from the file as a string

 img = tf.io.read_file(file_path)

 img = decode_img(img)

 return img, label

train_data = train_list_data.map(process_path, num_parallel_c

alls=AUTOTUNE)

val_data = val_list_data.map(process_path, num_parallel_calls

=AUTOTUNE)

test_data = testl_list_data.map(process_path, num_parallel_ca

lls=AUTOTUNE)

def prepare_for_training(ds, cache=True):

72

 # This is a small dataset, only load it once, and keep it

 in memory.

 # use `.cache(filename)` to cache preprocessing work for

datasets that don't

 # fit in memory.

 if cache:

 if isinstance(cache, str):

 ds = ds.cache(cache)

 else:

 ds = ds.cache()

 ds = ds.shuffle(buffer_size=1000)

 ds = ds.batch(BATCH_SIZE)

 if cache:

 ds = ds.prefetch(buffer_size=AUTOTUNE)

 return ds

train_data = prepare_for_training(train_data)

val_data = prepare_for_training(val_data)

test_data = prepare_for_training(test_data, False)

def show_batch(image_batch, label_batch):

 plt.figure(figsize=(10,10))

 for n in range(15):

 ax = plt.subplot(5,5,n+1)

 plt.imshow(image_batch[n])

 plt.title(CLASSES[np.argmax(label_batch[n])])

 plt.axis("off")

image_batch, label_batch = next(iter(train_data))

show_batch(image_batch.numpy(), label_batch.numpy())

early_stopping_cb = keras.callbacks.EarlyStopping(patience=5,

 restore_bes

t_weights=True)

with strategy.scope():

 PneumoCovidNet = keras.models.load_model("../input/pneumo

netbest-model/PneomoNetBest.h5")

 PneumoCovidNet.pop()

73

 PneumoCovidNet.add(layers.Dense(512, activation='relu'))

PneumoCovidNet.add(layers.Dense(128, activation='relu')

)

PneumoCovidNet.add(layers.Dense(64, activation='relu'))

 PneumoCovidNet.add(keras.layers.Dense(3, activation='soft

max'))

 METRICS = [

 'accuracy',

 keras.metrics.Precision(name="precision"),

 keras.metrics.Recall(name="recall")

]

 PneumoCovidNet.compile(

 optimizer="adam",

 loss="categorical_crossentropy",

 metrics=METRICS,

)

history = PneumoCovidNet.fit(

 train_data,

 validation_data=val_data,

 epochs=20,

 callbacks=[early_stopping_cb]

)

fig, ax = plt.subplots(2, 2, figsize=(15, 10))

ax = ax.ravel()

for i, met in enumerate(['precision', 'recall', 'accuracy', '

loss']):

 ax[i].plot(history.history[met])

 ax[i].plot(history.history['val_' + met])

 ax[i].set_title('Model {}'.format(met))

 ax[i].set_xlabel('epochs')

 ax[i].set_ylabel(met)

 ax[i].legend(['train', 'val'])

PneumoCovidNet.evaluate(test_data, return_dict=True)

PneumoCovidNet.save('PneumoCovid_Model.h5')

74

saved_Model = keras.models.load_model('../input/best-

model/PneumoCovid_Model.h5')

saved_Model2 = keras.models.load_model('../input/best-model-

v2/PneumoCovid_Model V2.h5')

saved_Model.evaluate(test_data, return_dict=True)

saved_Model2.evaluate(test_data, return_dict=True)

def get_intermediate_Activation(model, imge_path):

 img_path = imge_path

 from keras.preprocessing import image

 import numpy as np

 img = image.load_img(img_path, target_size=(180, 180))

 img_tensor = image.img_to_array(img)

 img_tensor = np.expand_dims(img_tensor, axis=0)

 img_tensor /= 255.

 import tensorflow as tf

 from tensorflow.keras import models

 layer_outputs = [layer.output for layer in model.layers[:

5]]

 activation_model = models.Model(inputs=model.input, outpu

ts=layer_outputs)

 activations = activation_model.predict(img_tensor)

 layer_names = []

 for layer in model.layers[:5]:

 layer_names.append(layer.name)

 images_per_row = 5

 for layer_name, layer_activation in zip(layer_names, acti

vations):

 n_features = layer_activation.shape[-1]

 size = layer_activation.shape[1]

 n_cols = n_features // images_per_row

 display_grid = np.zeros((size * n_cols, images_per_ro

w * size))

 for col in range(n_cols):

 for row in range(images_per_row):

 channel_image = layer_activation[0,

 :, :,

 col * images_per_row

 + row]

 channel_image -= channel_image.mean()

 channel_image /= channel_image.std()

 channel_image *= 64

75

 channel_image += 128

 channel_image = np.clip(channel_image, 0, 255

).astype('uint8')

 display_grid[col * size : (col + 1) * size,

 row * size : (row + 1) * size] = channe

l_image

 scale = 1. / size

 plt.figure(figsize=(scale * display_grid.shape[1],

 scale * display_grid.shape[0]))

 plt.title(layer_name)

 plt.grid(False)

 plt.imshow(display_grid, aspect='auto', cmap='viridis

')

get_intermediate_Activation(saved_Model, '../input/covid19-

radiography-database/COVID-19 Radiography Database/COVID-

19/COVID-19 (1).png')

ploting the NeumoNet2 architecture

from keras.utils import plot_model

plot_model(saved_Model, to_file='PneumoCovidNet.png', show_sh

apes=True)

last convolution block of the model

saved_Model.layers[7].layers

def get_img_array(img_path, size=IMAGE_SIZE):

 img = keras.preprocessing.image.load_img(img_path, target

_size=size)

 # `array` is a float32 NumPy array

 array = keras.preprocessing.image.img_to_array(img)

 # We add a dimension to transform our array into a "batch

"

 # of size (1, 180, 180, 3)

 array = np.expand_dims(array, axis=0) / 255.0

 return array

def make_gradcam_heatmap(img_array, model):

 # First, we create a model that maps the input image to t

he activations

 # of the last conv layer

 last_conv_layer = model.layers[7]

76

 last_conv_layer_model = keras.Model(model.inputs, last_co

nv_layer.output)

 # Mark the classifying layers

 classifier_layers = model.layers[-6:]

 # Second, we create a model that maps the activations of

the last conv

 # layer to the final class predictions

 classifier_input = keras.Input(shape=last_conv_layer.outp

ut.shape[1:])

 x = classifier_input

 for classifier_layer in classifier_layers:

 x = classifier_layer(x)

 classifier_model = keras.Model(classifier_input, x)

 # Then, we compute the gradient of the top predicted clas

s for our input image

 # with respect to the activations of the last conv layer

 with tf.GradientTape() as tape:

 # Compute activations of the last conv layer and make

 the tape watch it

 last_conv_layer_output = last_conv_layer_model(img_ar

ray)

 tape.watch(last_conv_layer_output)

 # Compute class predictions

 preds = classifier_model(last_conv_layer_output)

 top_pred_index = tf.argmax(preds[0])

 top_class_channel = preds[:, top_pred_index]

 # This is the gradient of the top predicted class with re

gard to

 # the output feature map of the last conv layer

 grads = tape.gradient(top_class_channel, last_conv_layer_

output)

 # This is a vector where each entry is the mean intensity

 of the gradient

 # over a specific feature map channel

 pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))

 # We multiply each channel in the feature map array

 # by "how important this channel is" with regard to the t

op predicted class

 last_conv_layer_output = last_conv_layer_output.numpy()[0

]

77

pooled_grads = pooled_grads.numpy()

for i in range(pooled_grads.shape[-1]):

last_conv_layer_output[:, :, i] *= pooled_grads[i]

The channel-wise mean of the resulting feature map

is our heatmap of class activation

heatmap = np.mean(last_conv_layer_output, axis=-1)

For visualization purpose, we will also normalize the h

eatmap between 0 & 1

heatmap = np.maximum(heatmap, 0) / np.max(heatmap)

return heatmap

def superimposed_cam(file_path):

Prepare image

img_array = get_img_array(file_path)

Generate class activation heatmap

heatmap = make_gradcam_heatmap(

img_array, saved_Model

)

Rescale the original image

img = img_array * 255

We rescale heatmap to a range 0-255

heatmap = np.uint8(255 * heatmap)

We use jet colormap to colorize heatmap

jet = cm.get_cmap("jet")

We use RGB values of the colormap

jet_colors = jet(np.arange(256))[:, :3]

jet_heatmap = jet_colors[heatmap]

We create an image with RGB colorized heatmap

jet_heatmap = keras.preprocessing.image.array_to_img(jet_

heatmap)

jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape

[0]))

jet_heatmap = keras.preprocessing.image.img_to_array(jet_

heatmap)

Superimpose the heatmap on original image

78

 superimposed_img = jet_heatmap * 0.4 + img

 superimposed_img = keras.preprocessing.image.array_to_img

(superimposed_img[0])

 return superimposed_img, CLASSES[np.argmax(saved_Model.pr

edict(img_array))]

covid_filenames = tf.io.gfile.glob('../input/covid19-

radiography-database/COVID-19 Radiography Database/COVID-

19/*')

pneumonia_filenames = tf.io.gfile.glob('../input/covid19-

radiography-database/COVID-

19 Radiography Database/Viral Pneumonia/*')

plt.figure(figsize=(20,20))

for n in range(10):

 ax = plt.subplot(5,5,n+1)

 img, pred = superimposed_cam(covid_filenames[n])

 plt.imshow(img)

 plt.title(pred)

 plt.axis("off")

for n in range(10, 20):

 ax = plt.subplot(5,5,n+1)

 img, pred = superimposed_cam(pneumonia_filenames[n])

 plt.imshow(img)

 plt.title(pred)

 plt.axis("off")

79

APPENDIX 3

80

