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Abstract 

Modelling of PV Output Power Based on Experimental 

Data Using Empirical Models 

MA, Department of Mechanical 

Engineering (December), (2021), (85) pages 

Predicting the photovoltaic (PV) output power is an essential for the secure, 

stable and economic operation of power grid. Hence, identification of the most 

relevant parameters that influenced the PV output power is an important task to 

achieve accurate predictions. This paper presents a comparative study between an 

empirical equation (Quadratic model (QM)), Multilayer Feed-Forward Neural 

Network (MFFNN), Cascade Feed-forward Neural Network (CFNN), Radial Basis 

Neural Network (RBNN), and Elman neural network (ENN)) and multiple linear 

regression (MLR) for modelling daily PV output power (PV-output) of 68kW grid-

connected rooftop solar system located in Amman, Jordan. 57 models with various 

combinations of parameters including (Day (D), relative humidity (RH), average 

temperature (AT), maximum temperature (Tmax), minimum temperature (Tmin), wet-

bulb temperature (Tw), wind speed (WS) and global solar radiation (GSR)) were 

proposed to identify most influencing input parameters for predicting the PV output 

power. The coefficient of determination and root mean squared error were used to 

select the best predictive model.  For this purpose, the meteorological parameters 

including average temperature, minimum and maximum temperatures, wet-bulb 

temperature, relative humidity, global solar radiation, and wind speed were measured 

using weather-monitoring device. Furthermore, the PV output power of 68kW grid-

connected PV system was measured using data logger. The data set covers 12 

operating months (01 January-31 December 2020). The collected actual data indicate 

that the maximum value of PV output of 451.25 MWh occurred in May and the 

minimum value of 32.83 MWh is recorded in January. Out of the 57 machine learning 

models, The ENN#24, ENN#56, CFNN#12 and CFNN#57 with the combination of 

[Tw, GSR], [D, Ta, Tmax, Tmin, Tw, GSR, RH], [Ta, GSR], and [D, Ta, Tmax, Tmin, 

Tw, GSR, WS, RH], respectively, have shown the best prediction. The most significant 

input parameter for forecasting the PV-output are found to be wet-bulb temperature, 

global solar radiation and average temperature. In the end, the findings demonstrated 

that the ENN and CFNN models performed well and presented high accuracy in 

estimating the value of PV output power. 

Key Words: Quadratic model; artificial intelligence models; Multiple linear regressions; 

meteorological parameters, PV output power; Amman; Jordan
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CHAPTER I 
 

Introduction 
 

This chapter contains information about the research's origins, aim, and 

limitations. 

 
Background 

 
Humanity has always relied on energy. Until recently, traditional fossil fuels 

were sufficient to meet this need Nevertheless, fossil fuel consumption has degraded 

the environment and caused climate change because it emits greenhouse gases (Riahi 

et al. 2017). Because of the environmental issues associated with greenhouse gas 

emissions, which have resulted in increased usage of fossil fuels, scientific experts have 

supported the development of alternative energy sources that can both create energy 

and safeguard the environment (Vijayavenkataraman et al. 2012; Researchers have 

discovered that renewable energy sources, such as solar and wind, can significantly 

reduce greenhouse gas emissions. A requirement for zero-emission manufacturing is 

solar thermal energy, as suggested by Schnitzer et al. (2007). The role of renewable 

energies in future energy supply and reduction of greenhouse gas emissions is well 

documented by Shahsavari and Akbari (2018). Iran's ecology may benefit from the use 

of solar energy, according to Shahsavari et al. (2018). 

In a recent report, solar energy was named as a promising, economically 

feasible, and environmentally friendly renewable energy source. There have been a 

number of studies looking at the feasibility of converting solar energy into electricity 

all around the world. For instance, Adnan et al. (2012) assessed Pakistan's solar energy 

potential by measuring weather data from fifty-eight meteorological stations across 

Pakistan. A 100-square-meter plot of land can generate 45 MW to 83 MW of power 

every month in the southern Punjab, Sindh, and Baluchistan areas. Using wind and solar 

energy as sources of energy for a small home, Kassem et al. (2019) investigated the 

possibilities in three northern Cyprus metropolitan areas. These cities have large 

potential Potential of solar energy vs. potential of wind energy the viability of a 12MW 

grid-connected wind/PV project in two Northern Cyprus districts was investigated by 

Kassem et al. (2018). Comparison to wind energy, the results showed that the chosen 

places had a lot of potential. Enongene et al. (2019) conducted a techno-economic 

analysis of a small-scale PV system in n residential structures in Nigeria's Lagos 
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Metropolitan Area. According to the findings, the suggested approach has the potential 

to help Nigeria meet its GHG reduction goals. 

 

Purpose of the Study 

 
Energy has been a vital requirement for humans. Until recently, traditional 

fossil fuels were able to meet this need. However, because of greenhouse gas 

emissions, the usage Climate change has been worsened by the over-use of fossil 

fuels (Riahi et al. 2017). Due to environmental concerns over greenhouse gas 

emissions, which have resulted in significant usage of fossil fuels, scientists have 

pushed the development of alternative energy sources that can both create energy 

and protect the environment (Vijayavenkataraman et al. 2012; Arreyndip and Joseph 

2018). Many scientific studies have discovered that green solar reduced carbon 

dioxide emissions (GHG) are achieved in part through energy and wind. Solar 

thermal energy was found to be an essential step toward achieving zero-emission 

manufacturing by Schnitzer et al. (2007), for instance. A growing part of future 

energy expansion can be implemented through renewable energy sources, assert 

Shahsavari and Akbari (2018). Iran's eco-system may benefit from producing power 

through the use of solar systems, based on Shahsavari et al. (2018). Predicting the 

photovoltaic (PV) output power is an essential for the secure, stable and economic 

operation of power grid. Hence, identification of the most relevant parameters that 

influenced the PV output power is an important task to achieve accurate predictions. 

This paper presents a comparative study between an empirical equation (Quadratic 

model (QM)), Multilayer Feed-Forward Neural Network (MFFNN), Cascade Feed-

forward Neural Network (CFNN), Radial Basis Neural Network (RBNN), and 

Elman neural network (ENN)) and multiple linear regression (MLR) for modelling 

daily PV output power (PV-output) of 68kW grid-connected rooftop solar system 

located in Amman, Jordan. 57 models with various combinations of parameters 

including (Day (D), relative humidity (RH), average temperature (AT), maximum 

temperature (Tmax), minimum temperature (Tmin), wet-bulb temperature (Tw), 

wind speed (WS) and global solar radiation (GSR)) were proposed to identify most 

influencing input parameters for predicting the PV output power. The coefficient of 

determination and root mean squared error were used to select the best predictive 

model.  For this purpose, the meteorological parameters including average 

temperature, minimum and maximum temperatures, wet-bulb temperature, relative 
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humidity, global solar radiation, and wind speed were measured using weather-

monitoring device. Furthermore, the PV output power of 68kW grid-connected PV 

system was measured using data logger. The data set covers 12 operating months 

(01 January-31 December 2020). The collected actual data indicate that the 

maximum value of PV output of 451.25 MWh occurred in May and the minimum 

value of 32.83 MWh is recorded in January. Out of the 57 machine learning models, 

The ENN#24, ENN#56, CFNN#12 and CFNN#57 with the combination of [Tw, 

GSR], [D, Ta, Tmax, Tmin, Tw, GSR, RH], [Ta, GSR], and [D, Ta, Tmax, Tmin, 

Tw, GSR, WS, RH], respectively, have shown the best prediction. The most 

significant input parameter for forecasting the PV-output are found to be wet-bulb 

temperature, global solar radiation and average temperature. In the end, the findings 

demonstrated that the ENN and CFNN models performed well and presented high 

accuracy in estimating the value of PV output power. 

 

Recent research indicates solar energy is one of the most effective, 

environmentally friendly, and economically viable sources of renewable energy. 

Solar energy has been the subject of several studies looking at the possibility of 

generating electricity from it in various parts of the world. A study by Adnan et al. 

(2012), for instance, evaluated the potential of solar power in Pakistan by using fifty-

eight meteorological stations. An area of 100 m2 in southern Punjab, Sindh, and 

Pakistan could generate 45 MW to 83 MW of power each month, according to the 

findings. This could be applied to the Baluchistan regions as well. According to 

Kassem et al. (2019), they investigated whether wind and solar energy can be used 

for a small home in three metropolitan areas in Northern Cyprus. The selected 

locations showed a much greater potential for solar energy than windy environments. 

Researchers from Kassem et al. (2018) examined two districts of Northern Cyprus.  

An investigation was carried out into the feasibility of a grid-connected 

12MW wind/PV plant. The results showed that the selected places have a very high 

potential for wind energy compared with wind power. According to Enongene et al. 

(2019), residential buildings in Lagos Metropolitan Area, Nigeria, are equipped with 

small-scale PV systems.The findings revealed that the suggested approach has the 

potential to help Nigeria meet its GHG reduction objectives. 
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CHAPTER II 
 

Jordan 

 

This chapter provides research-related conceptual definitions, descriptions, 

and information on the subject that already exists in the literature. 

 

Jordan 

 
There are 89,342 km2 of territory in Jordan's Hashemite Kingdom (HKJ) on 

the northern Arabian Peninsula. In addition to Palestine, Iraq, Syria, and Saudi 

Arabia, it shares borders with them all. In most of the country, only about a quarter 

can be cultivated. In summer, Jordan has a semiarid climate while in winter, it has 

a frigid climate. Across all industries, Jordan has seen a steady rise in consumption 

of 4–5% annually over the past few years. Electricity usage in 2018 was 17,439 

GWh, with a peak load of 3,100 GWh. Furthermore, home consumption accounted 

for 45.12 percent, with industry (22.07 percent), water pumping, and commercial 

accounting rounding out the top five (15 percent ). Jordan needs to import 7,656 

ktoe (thousand tonnes of oil equivalent) of energy to satisfy its needs due to native 

supplies. As a result, Jordan has two major challenges: the first is growing energy 

consumption, and the second is a scarcity of local resources. This makes meeting 

the country's demands difficult. 

Jordan's government has set a goal of using renewable energy sources such 

as wind and solar energy to meet 10% of its energy demands. By 2020, the majority 

of this will be accomplished by expanding renewable power output from 1.13 GW 

to 1.8 GW. 

Wind speeds in Jordan range from 7 to 11 m/s, which are ideal for producing 

energy. In comparison to other sections of the country, the southern and northern 

parts of the country have the greatest wind energy potential. At 1996, the German 

Eldorado program built the first wind farm in Hofa, which has a capacity of 

1.125MW. The second wind farm, with a capacity of 320 kW and funded by a Dutch 

business, was established in 1998 at Brahimyya. Ma'an hosts the third wind farm, 

which has a capacity of 66MW (southeast of Jordan). In general, the quantity of 

power generated by wind energy is predicted to rise from 600MW to 1000MW 

between 2019 and 2021.Moreover, Jordon seems to have an average of 310 bright 

days per year with direct solar radiation intensity ranging from 5kWh/m2 to 
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7kWh/m2. Furthermore, yearly direct sun radiation levels range from 1800 to 2700 

kWh/m2. Furthermore, the daily average of horizontal solar radiation is around 5.6 

kWh/m2. Solar energy will create around 800MW of power in 2020. In 2015, 

twelve direct Power Purchase Ma'an Development Area has signed PPAs for 

building and generating 200 MW of electricity. One more solar power plant in the 

Quweirah area (Aqaba) has been sponsored by Gulf Corporation Council Fund. 

which is now being assessed. Capacity ranges from 75 to 100 megawatts. Solar 

water heaters are installed on the roofs of nearly 20% of Jordanian homes. By 2020, 

solar water heating systems will be used in 30% of all residences, according to the 

Energy Master Plan. Installed on roofs are solar water heater panels covering 1.40 

km2 and a PV system generating 150 kWh of electricity. Over 4500 solar water 

heaters are produced annually by 25 small solar water heater manufacturers in the 

area. There are three windmills with a combined capacity of 125 to 150 MW in the 

government's proposal, along with hybrid CSPs with a combined capacity of 100 to 

250 MW. 

Jordan has conducted scientific research into the potential of solar and wind 

energy in a variety of regions (Anagreh et al. 2010; Alzoubi and Alshboul 2010; 

Badran et al.  2010, Al-Salaymeh et al. 2010a; Al-Salaymeh et al. 2010b; Anagreh 

and Bataineh 2011; Al Alawin et al. 2012; El-Tous et al. 2012; Zyadin et al. 2012; 

Abu-Shikhah et al. 2012; Aagreh and Al-Ghzawi 2013; Alsaad 2013; Fasfous et al. 

2013; Sakhrieh and Al-Ghandoor 2013; Al-Sayed 2013; Bataineh  et al. 2014; 

Qasaimeh et al. 2014; Al-Soud and Alsafasfeh 2015; Jaber et al. 2015; Al-Nhoud 

and Al-Smairan 2015; Ammari et al. 2015; Tashtoush et al. 2015; Khasawneh et al. 

2015; Altarawneh et al. 2016; Al-Najideen and Alrwashdeh 2017; Okonkwo et al. 

2017; Jaber et al. 2017; Dalabeeh 2017; Al-Ghussain et al. 2017; Alomari et al. 

2018; Al-Ghussain et al. 2018; Ayadi et al. 2018; Hammad et al. 2018; Alrwashdeh 

2018a, Alrwashdeh 2018b; Alkhalidi et al. 2018;  Al-omary et al. 2018; Alrwashdeh 

2018c; Alrwashdeh 2018d; Al Safely and Harb 2018; Alrwashdeh and FMA 2018; 

Alrwashdeh 2018e; Alrwashdeh 2018f; Al-Ghriybah et al. 2019; Abujubbeh et al. 

2019; Al-Smairan and Al-Nhoud 2019; Alrwashdeh 2019; Pastor et al. 2020; Al-

Addous et al. 2020; Alkhalidi et al. 2020; Al-Addous et al. 2020; Abu-Rumman et 

al. 2020). For instance, Badran et al. (2010) found that the PV system was 

considered to be the better option for power generation in the Amman region. 

Aagreh and Al-Ghzawi (2013) In Ajloun city, Jordan, the on-grid/small wind 
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turbines and off-grid PV systems proved to be the best energy resources for feeding 

the hotel's demand. Al-Najideen and Alrwashdeh (2017) assessed that a grid-tied 

PV system installed at Mu'tah University in Al-Karak region covered the energy 

demand for the Engineering Faculty with a 56.7kW system. 

The solar PV systems identified by Al-Soud and Alsafasfeh (2015) are 

deemed suitable for generating electricity in the rural areas of Jordan. From 

previous studies. Figure 2.1 Show Map Solar of Jordan According to previous 

scientific studies, it can be concluded that: 

• Using solar energy in Jordan can help the country generate electricity and 

become less reliant on fossil resources. 

• PV systems have the ability to reduce fossil fuel burning and greenhouse gas 

emissions, particularly CO2. 

• Renewable energy technologies, particularly photovoltaic systems, assist to 

fulfill the country's rising energy demand. 

• PV systems produce more electricity in certain areas and are more suited for small-

scale power generation. 
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Figure 2.1 

Map Solar of Jordan 
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Jordan climate 

Jordan has a relatively hot, dry climate, with short, cold winters and long 

warm, dry summers. Due to its geographic location between the Arabian Desert and 

the eastern Mediterranean, Jordan's climate is influenced by subtropical aridity. In 

January, temperatures range between 5 and 10 degrees Celsius, while in August, 

temperatures range between 20 and 35 degrees Celsius. Temperatures can reach 

40°C or more on some days, especially when the Shirocco, a hot, dry southerly 

breeze, blows. Sandstorms can occur when these winds become very strong. 

Between November and March, the nation receives over 70% of its annual rainfall; 

June through August are frequently dry. Rainfall fluctuates from year to year and 

season to season. During intense storms, precipitation is typically concentrated, 

producing erosion and local floods, especially in low-lying areas. 

 Between November and March, the nation receives over 70% of its annual 

rainfall; June through August are frequently dry. Rainfall fluctuates from year to 

year and season to season. During intense storms, precipitation is typically 

concentrated, producing erosion and local floods, especially in low-lying areas. 

 
 

Energy situations in Jordan 
 

Jordan's energy consumption has been increasing as a result of two factors: 

economic growth in various industries and an increase in the number of refugees 

fleeing regional conflict from neighboring countries. The national energy expense, 

which accounted for 20% of the state budget in 2015, was reduced to 10% in 2018 

due to the deployment of energy-saving measures and an increase in the 

contribution of renewables to the national energy mix. Jordan implemented 

National Energy Efficiency Action Plans (NEEAPs) in 2012, with the goal of 

reducing primary power consumption by 20% by 2020. 

Growing energy consumption and limited local resources to meet the 

country's demands are two main difficulties for the oil and gas sector. For example, 

in 2018, local energy output was 790 ktoe, with natural gas, renewable energy, and 

to a lesser extent crude oil accounting for the majority of it (representing 7.8 percent 

of the national energy demand of 9,712 ktoe). Jordan's main energy sources for 2018 

are depicted in Figure 1. Imported oil and natural gas supply 87 GW of solar energy 
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(9,712 ktoe), with domestic sources providing for 7.8% of overall energy supply, 

with renewables accounting for 7%. 

 

 Jordan's electricity output is steadily increasing, paving the opportunity for 

foreign investment to supply the money and capacity needed to meet the expanding 

demand. Electricity output reached 5,236.4 megawatts (MW) in 2018 and is 

predicted to reach 5,770 meters by 2020, highlighting the importance of deploying 

dependable and clean energy options for the country's socio-economic 

development.  

Transportation accounted for 49% of national power consumption, with 

home needs accounting for 21.5 cents (lighting, cooling, and heating), the industrial 

sector accounting for 14%, and agriculture and forestry contributing for 15.5 

percent. All gasoline subsidies were phased out by 2012, and power subsidies were 

phased out in 2017. In 2018, Jordan had to import 8,922 ktoe of energy, which cost 

the country 10% of its GDP. Egypt was the most significant natural gas supplier 

because of its large discounts. Regrettably, this supply were cut off, putting Jordan's 

energy security in jeopardy. Jordan started looking for secure alternatives to 

renewable resources as a result of the region's unstable political situation. This will 

provide the state financial weight in procuring low-priced gas from a variety of 

sources, albeit the political cost is unknown. 

 

Renewable energy in Jordan  

 
Considering the large number of refugees, the expanding residential and 

retail sectors, and the higher costs of imported fuel and GHG emissions, the 

country's decision-makers have prioritized a clean, sustainable, and competitive 

power system. Government officials focused on establishing energy efficiency 

measures and tracking progress on renewable energy. 

Renewable Energy and Energy Efficiency Law (REEL) No. 13 was 

approved by the government in 2012 to help meet its environmental objectives. 

Services and industries, which consume the most energy, are covered by energy 

management and efficiency measures. Through the Jordan Investment Commission, 

a "one-stop-shop" office is being established to expedite the licensing process for 

new renewable energy projects to promote new investment. Concerned over energy 
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production and import costs, the government developed the National Energy 

Strategy Plan. 

Government and EU plans to invest $ 20 billion in energy development by 

2020, with a primary focus on renewable energy. The country has recently cut back 

on nuclear power because of public protests and budget constraints. Oil shale 

development and renewable energy are also priority efforts. 

As a result of this strategy, the percentage of electricity generated from 

renewable sources will increase from 7% in 2018 to 10% in 2020. Direct investment 

will create 2,000 MW of wind and solar energy by 2020, according to the National 

Energy Strategy Plan. A wind farm of 117 MW went online near Al-Tafileh in 2015, 

and a solar farm of 200 MW was completed in Ma'an in 2016. 

Wind and solar energy are two viable renewable energy sources for 

generating power in the nation. According to a Bloomberg survey from 2017, 

Jordan ranked first in the Middle East and North Africa (MENA) region for 

renewable energy adoption and clean energy growth, as well as third globally. 

 The research, which was founded on the evolution of Jordan's renewable 

and Investment plans and laws in the renewable energy industry were highlighted. 

It also looked at the amount of investment that has been made and is expected to be 

made in the country, as well as the impact of these activities on carbon emission 

reduction sources. Jordan's trademark in the quest of clean power has been the 

building of prototype and demonstrator facilities as well as continual investigation 

of technical advancements in renewable industries. In addition, the electrical 

regulatory commission published the "Reference Price List" in full disclosure to 

encourage investment in renewable energy projects and to safeguard investors. 

Investors can now examine the viability and potential profitability of their project 

with less risk, which encourages them to invest in renewable energy. 

Table 2.1 in the "Benchmark Price List" displays the predicted pricing 

(Tariff) for renewable energy-generated power. Investors can evaluate their planned 

investment in renewable energy sources using the "Reference Price List" as the 

Feed-in Tariff. Developers can bid below this maximum since the winning bidder 

will receive an additional 15% tariff if they install a 100% local renewable energy 

source. This will benefit the country's renewable energy companies by encouraging 

technology transfer.On behalf of Jordanian authorities, the National Electricity 

Power Company (NEPCO) signed twelve Power Purchase Agreements (PPAs) with 
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developers to contribute 200 MW of solar energy to the national grid through direct 

proposal submission. The Church for Energy and Natural Resources (MEMR) has 

begun Phase II of direct proposal submissions to encourage foreign investment in 

renewable energy, with the goal of adding 650 MW of wind and solar electricity to 

the grid. In the second phase, thirteen investors will be chosen to give each 

developer with 50 megawatts of electricity. The MEMR received financial bids 

from twenty-three firms for the initial review and negotiation. a brief overview 

 

Table 2.1 

Tariff (reference price list) to Renewable Sources. 

 

Resource                                                                                Cents/KWh 

Thermal Solar Energy (CSP)                                                             20 

PV                                                                                                      15 

Biomass                                                                                             13 

Wind Energy                                                                                     11 

Biogas                                                                                                 9 

 

 

Importance of the study 

 
It is becoming increasingly critical for PV plants to improve the precision of 

their power generation predictions in order to improve their penetration into the 

electrical grid. Energy budgets are particularly affected by solar radiation and the 

number of clear, sunny days (Mehmood et al. 2014; Khandelwal and Shrivastava 

2017). Several researchers have investigated the impact of various input variables 

on solar radiation forecasts, evaluated their impact on accuracy, and then concluded 

which are the most useful. The results of this investigation are summarized in Table 

S1. Other related studies are outlined here. 

Empirical methods, including machine learning algorithms and 

mathematical formulae, are used to estimate PV power output and global solar 

radiation. Sunlight hours, maximum temperature, lowest temperature, wind speed, 

rainfall, dew point temperature, relative humidity, cloud cover, and pressure are 

some of the typical meteorological characteristics used for assessing solar radiation, 

according to the literature study. According to the authors' review, one research 
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(Lopes et al. 2020) employed dew point temperature as an input variable for the 

machine-learning model. Furthermore, it demonstrates a distinct lack of ability in 

Jordan to anticipate the output power of PV systems. According to our knowledge, 

no comprehensive studies have been conducted in Jordan that forecast daily PV 

system output power using average temperatures, minimum and maximum 

temperatures, wet-bulb temperatures, relative humidity, global solar radiation, and 

wind speed as inputs.As a result, the goal of this article is to look at the impact of 

meteorological conditions on PV system output power. Five empirical models 

(Quadratic model (QM), Multilayer Feed-Forward Neural Network (MFFNN), 

Cascade Feed-Forward Neural Network (CFNN), Radial Basis Neural Network 

(RBNN), and Elman neural network (ENN)) and multiple linear regression (MLR) 

are used to identify the most relevant parameters for daily PV-output power 

prediction in PV systems. 

A weather-monitoring system was used to measure meteorological data such 

as average temperature, minimum and maximum temperatures, Wet-bulb 

temperature, relative humidity, global sun radiation, and wind speed. Furthermore, 

data loggers were used to assess the PV output power of a 68kW grid-connected PV 

system erected on a flat building section in Amman, Jordan. 
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Table 2.2 

Input Variables Used in Empirical Models Based Prediction of Solar Radiation 

and Output Power of PV System 

 

References country Model Input Output 

Egeonu et al 

(2015) 

Nigeria Artificial 

neural  network 

sunshine hours, 

maximum 

temperature, relative 

humidity and cloud 

cover as network 

inputs 

Global 

Solar 

Radiation 

Worki et al 

(2016) 

Ethiopia Backward 

Propagation 

Artificial 

Neural 

Network 

Daily average 

relative humidity, 

Daily Maximum 

Temperature, Daily 

Minimum 

Temperature, Daily 

sunshine, Daily 

wind speed 

Global 

Solar 

Radiation 

Ogliari et al 

(2017) 

Italy Artificial 

neural network 

Ambient 

temperature, Global 

Horizontal Solar 

irradiance, Plane Of 

Array total solar 

irradiance, wind 

speed, wind 

direction, pressure, 

and precipitation. 

Electricity 

power  

Safaripourand 

and 

Mehrabian 

(2011) 

Iran Page model 

equations and 

Bird-Hulstrom 

model 

equations 

solar constant, 

zenith angle, surface 

pressure, ground 

albedo, perceptible 

water vapor, total 

ozone, and 

broadband turbidity 

Global 

solar 

radiation 

Rezrazi et al 

(2016) 

Algeria Artificial 

neural 

networks 

Direct normal 

radiation, diffuse 

radiation (90°), 

global radiation 

(90°), global 

radiation (30°) 

Direct 

normal 

radiation 

An et al 

(2020) 

China Artificial 

neural network 

Direct normal solar 

irradiance 

Global 

solar 

radiation 

Lopes et al 

(2020) 

Ireland Random Forest 

and multiple 

linear 

regression 

Dew point 

temperature, 

humidity level, 

visibility, air 

pressure, wind speed  

Global 

horizontal 

irradiation 
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Table 2.2 (Continued) 

References country Model Input Output 

Alizamir et 

al (2020) 

Turkey 

and USA 

Multilayer 

perceptron 

neural 

network. 

Adaptive 

neuro-fuzzy 

inference 

systems. 

Multivariate 

adaptive 

regression 

spline. 

Wind speed, 

maximum air 

temperature, 

minimum air 

temperature and 

relative humidity 

Global 

solar 

radiation 

Boubaker 

et al 

(2020). 

Hail KSA Feed-Forward 

Artificial 

Neural 

Networks 

Temperature, 

radiation and 

humidity 

Global 

horizontal 

irradiation 

Guijo-

Rubio et al 

(2020) 

Spain Artificial 

neural 

networks 

Solar radiation Global 

solar 

radiation 

Physical 

model 

     

Guermoui 

et al (2020) 

Italy Artificial 

neural 

networks 

Temperature , 

Relative humidity, 

Wind speed 

Global 

solar 

radiation 

     

Kosovic et 

al (2020) 

China Computational 

fluid dynamics 

Daily average 

relative humidity, 

Daily Maximum 

temperature, Daily 

Minimum. 

Temperature, Daily 

sunshine, Daily 

wind speed 

Solar 

radiation 

Demircan 

et al (2020) 

Turkey Artificial Bee 

Colony 

Air temperature and 

relative humidity 

Global 

solar 

radiation 

Polo et al 

(2020)  

Spain Reanalysis Atmospheric 

composition, cloud 

properties 

solar 

radiation 

Tymvios et 

al (2005) 

Cyprus Artificial 

neural 

networks 

Daily maximum and 

minimum 

temperatures 

Global 

solar 

radiation 

Bosch el at 

(2008) 

India Artificial 

neural 

networks 

Relative humidity, 

Ambient air 

temperature, Inlet 

air temperature, 

Mean air 

temperature Plate. 

Thermal 

efficiency 
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Table 2.2 (Continued) 

References country Model Input Output 

Linares-

Rodríguez 

et al (2011) 

Spain Multilayer 

Perceptron’s 

Latitude, longitude, 

day of the year, daily 

clear sky global 

radiation, cloud 

cover, total column 

ozone and water 

vapor 

Predict 

solar 

radiation 

Khatib et al 

(2012) 

Malaysia Multilayer 

Perceptron’s 

Latitude, longitude, 

days number and 

sunshine ratio 

Solar 

irradiation 

Khatib et al 

(2011) 

Malaysia Linear, 

nonlinear, fuzzy 

logic and ANN 

models 

Latitude, longitude, 

day number and 

sunshine ratio 

Global 

solar 

energy 

Elminir et 

al (2005) 

Aswan Multilayer 

Perceptron’s 

Wind direction, wind 

velocity, ambient 

temperature, relative 

humidity, cloudiness 

and water vapor 

Global 

insolation 

Khatib et al 

(2012) 

Malaysia Multilayer 

Perceptron’s 

Latitude, longitude, 

days number and 

sunshine ratio 

Solar 

irradiation 

Khatib et al 

(2011) 

Malaysia Linear, 

nonlinear, fuzzy 

logic and ANN 

models 

Latitude, longitude, 

day number and 

sunshine ratio 

Global 

solar 

energy 

Elminir et 

al (2005) 

Aswan Multilayer 

Perceptron’s 

Wind direction, wind 

velocity, ambient 

temperature, relative 

humidity, cloudiness 

and water vapor 

Global 

insolation 

Tymvios et 

al (2005) 

Cyprus Artificial neural 

networks and 

Angström 

Theoretical daily 

sunshine duration, 

measured daily, 

sunshine duration, 

month, daily 

maximum 

temperature, monthly 

mean value of 

theoretical sunshine 

duration, monthly 

mean value of 

measured sunshine 

duration 

Solar 

radiation 

 

 

 



 

 

27 

Table 2.2 (Continued) 

References country Model Input Output 

Benghanem 

et al (2009) 

Saudi 

Arabia 

Artificial neural 

networks 

Different 

combination of air 

temperature, 

relative humidity, 

sunshine duration 

and the day of year 

Daily 

global 

solar 

radiation 

Fadare 

(2009) 

Nigeria Artificial neural 

networks 

Latitude, longitude, 

altitude, month, 

mean sunshine 

duration, mean 

temperature, and 

relative humidity 

Global 

solar 

radiation 

Azadeh et al 

(2009) 

Iran Integrated ANN- 

Multilayer 

Perceptron’s 

Location, month, 

mean value of 

maximum 

temperature, 

minimum 

temperature, 

relative humidity, 

vapor pressure, 

total precipitation, 

wind speed and 

sunshine hour 

Global 

solar 

radiation 

Rahimikhoob 

(2010) 

Iran Artificial neural 

networks 

Maximum and 

minimum air 

temperature, 

extraterrestrial 

radiation 

Global 

solar 

radiation 

Hasni et al 

(2012) 

Algeria Artificial neural 

networks 

Air temperature, 

relative humidity 

Global 

solar 

radiation 

     

Koca et al 

(2011) 

Turkey Multilayer 

Perceptron’s 

Latitude, longitude, 

altitude, months, 

average 

temperature, 

average cloudiness, 

average wind 

velocity and 

sunshine duration 

Global 

solar 

radiation 

Mubiru et al 

(2008) 

Uganda Feed forward 

backpropagation 

Artificial neural 

networks; 

Levenberg–

Marquard 

Annual average of 

sunshine hours, 

cloud cover, 

relative humidity, 

rainfall, latitude, 

longitude and 

altitude 

Global 

solar 

irradiation 
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CHAPTER III 
 

Methodology 
 

Material and methods 

 
The research design, participants/sample, data collecting and analysis 

processes, as well as how the findings are analyzed, are all covered in this chapter. 

(The components in this section might be sorted based on the research's field of 

study and methodology.) 

 

Study area   
 

Jordan (Figure 3.1) is situated in the centre of the Middle East region, with 

a total size of 89,342km2. Jordan has a climate that is a mix of Mediterranean and 

semi-arid. Furthermore, annual precipitation varies from less than 50 millimetres in 

the eastern and southern deserts to 600 millimetres in the northern highlands. 

Jordan's weather is warm and dry in the summer and pleasant and humid in the 

winter. In the desert regions, average yearly temperatures vary from 12 to 25 

degrees Celsius, with maximum temperatures reaching 35 degrees Celsius in the 

summer. Winter is the only time when it rains. Furthermore, there are roughly 310 

bright days each year on average. The average annual worldwide horizontal and 

direct normal sun radiation in Amman, according to the Global Solar Atlas, is 

projected to be 5.850kWh/m2/day and 6.862kWh/m2/day, respectively. 

 In addition, the annual specific PV power output in Amman is 1877.8 

kWh/kWp. According to the Global Wind Atlas, the mean wind power density is 

58 W/m2 and 133 W/m2, respectively, which are rated as low by wind power 

density categorization at 10m/s and 50m/s. Finally, it is established that, in 

comparison to the wind speed, Amman has a large solar potential. 

A PV system with a capacity of 68kW was developed, built, and tested in 

this study. This project's experimental work will be carried out in a specific building 

in Amman, Jordan, which is located at 31.953296°N, 35.907528°E and is 

approximately 950 feet above sea level. 
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Figure 3.1 

 Map of Jordan 

 

 

              

 

Meteorological parameters measurement 

 
Wet-bulb temperature, relative humidity, global solar radiation, and wind 

speed were a few of the daily measurements captured by the weather monitoring 

system. For this study, daily weather data were collected between January 1, 2020, 

and December 31, 2020. 
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PV system 

 
As illustrated in Figure 3.2, the grid-connected PV system employed in this 

study is positioned on a flat building component. There are 183 modules in the PV 

system, with peak outputs ranging from 350 to 370 watts (All of these modules are 

Mono Crystalline Jinkosolar). 

With a total surface of 1098 m2, the system has a total installed capacity of 

68 kW. Inside the system, there are three PV-inverters of varied sizes pointed 

southerly at a fixed angle of 5.5 degrees, Azimuth angle 27. (15kW and 25kW). 

This system, on the other hand, was designed primarily to function as a power 

supply. During the monitoring period, Monitoring was performed of in-panel 

irradiation totals, array output power, and system energy output power. Based on 

the performance statistics collected at one-hour intervals, the built-in web server on 

the inverter computed hourly, weekly, and monthly performance statistics Tables 

3.1 and 3.2 list the specification of selected PV panels and inverter, respectively. 
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Figure 3.2 

Photo of PV System Located in The Selected Building in Amman, Jordan 
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Table 3.1 

Specification of The PV Panel Used (Module type: JKM370M-72-V) 

 

Variables  
Standard Test 

Conditions 

Nominal Operating Cell 

Temperature 

Maximum Power (Pmax) 370Wp 278Wp 

Maximum Power Voltage (Vmp) 39.9 V 38.1 V 

Maximum Power Current (Imp) 9.28 A 7.30 A 

Open-circuit Voltage (Voc) 48.5 V 47.0 V 

Short-circuit Current (Isc) 9.61 A 7.75 A 

Module Efficiency STC (%) 18.01% 

Operating Temperature(℃) (-40℃~+85℃ ) 

Maximum system voltage 1500 VDC (IEC) 

Maximum series fuse rating 20 A 

Power tolerance 0~+3% 

Temperature coefficients of Pmax (-0.40%/℃ ) 

Temperature coefficients of Voc (-0.29%/℃ ) 

Temperature coefficients of Isc (0.048%/℃) 

Nominal operating cell temperature 

(NOCT) 
45±2℃ 

 

 

Table 3.2 

Specification of the inverters used  

 

Input data ECO 25-3-S ECO 20-3-S    
Max.input current  44.2A 33.0 A / 27.0 A 

Max array short circit 

current  

71.6 A 49.5 A / 40.5 A 

DC input voltage range  580-1000 V 200 - 1000 V 

Usable MPP Voltage 

range 

650 V 200 V 

Feed in start voltage  580-850 V 200 - 800 V 

Number of DC 

connections  

6 3+3 

Max PV generator 

output  

37.8KW peek 30.0 kWpeak 

Output data ECO 25-3-S ECO 20-3-S    
Max output power  25,000 VA 20,000 VA 

AC output current  37.9 A / 36.2 A 28.9 A 

Grid Connection 

(Voltage Range) 

3~NPE 380 V / 220 V or 

3~NPE 400 V / 230 V (+20 

% / - 30 %) 

3-NPE 400 V / 230 V or 

3~NPE 380 V / 220 V 

(+20 % / -30 %) 

Frequency (frequency 

range) 

50 Hz / 60 Hz (45 - 65 Hz) 50 Hz / 60 Hz (45 - 65 

Hz) 

Total harmonic 

distortion 

< 2.0 % 1.30% 

Power factor (cos 

φac,r) 

0 - 1 ind. / cap. 0 - 1 ind. / cap. 
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Empirical models 
 
Artificial neural networks (ANN) 

 
Machine learning models have been used to characterize complex systems 

(Livingstone 2009; Keat et al., 2015; Kassem et al., 2019; Kassem et al. 2018; 

Gökçekuş et al. 2020). They are used in a wide range of engineering and research 

applications. Four empirical models are built in this study to forecast PV output: 

Multilayer feed-Forward Neural Network (FFNN), Cascade Forward Neural 

Network (CFNN), Radial Basis Function Neural Network (RBFNN), and Elman 

neural network (ENN). The explanatory input variables in this study include Day 

(D), relative humidity (RH), average temperature (AT), maximum temperature 

(Tmax), lowest temperature (Tmin), wet-bulb temperature (Tw), wind speed (WS), 

and global solar radiation (GSR). The data is separated into training and testing 

groups, and the models' output is compared to each other. In this study, data was 

used to teach participants for eight months. And the developed model was used to 

predict remaining months, and then compared with actual data. Table 3.3 lists the 

developed models with various input combinations as shown in Table  

 

Multilayer feed-forward neural network (MFFNN)  
 

Three layers make up the MFFNN (input layer, hidden layer, and output 

layer). The number of neurons and hidden layers should be carefully chosen since 

they have an impact on training accuracy. TRAINLM is used for training purposes. 

In addition, the Mean Squared Error (MSE) is calculated to determine the training 

algorithm's optimal performance. The back-propagation algorithm's decreasing 

gradient is used to lower the MSE between the actual and estimated output. Kassem 

and Gokcekus provided a description of the created model (2021). Figure 3.3 

depicts the suggested MFFNN method's explaining process. 

 

Cascade feed-forward neural network (CFNN) 
 

CFNN stands for a static neural network in which the signals only go 

forward (Alkhasawneh and Tay 2018). It's comparable to a feed-forward neural 

network, except it has a link between the input and every previous layer and the 

layers of the next layer (Hedayat et al. 2009; Zheng et al. 2020).  
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This model has the benefit of displaying nonlinear relationships without 

removing the linear link between input and output. The minimal value of RMSE is 

used to determine the optimal number of neurons. Kassem and Gokcekus provided 

a description of the created model (2021). The suggested model's phases are 

depicted in Figure 3.4 (CFNN). 

 

Radial basis neural networks (RBFNN) 
 

A feed-forward network with one input layer, one hidden layer, and one 

output layer is known as an RBFNN. Radial basis functions are utilized as activation 

functions (Pham et al. 2018). Due to their basic structure, RBFNN models have the 

most significant benefits over other multi-layer perceptron models in terms of speed 

and efficiency. Kassem and Gokcekus provided a description of the created model 

(2021). The suggested model's phases are depicted in Figure 3.5 (RBFNN). 

 

Elman neural network (ENN)  
 

A simple form of recurrent neural network is the ENN. The input layer, 

context layer, hidden layer, and output layer are the four primary layers (Yu et al. 

2019). The basic structure of the ENN is comparable to that of a multilayer neural 

network. As previously indicated, ENN has a context layer, whose inputs originate 

from the hidden layer's outputs, which were used to store the hidden layer's output 

values from the prior time (Yu et al. 2017; Liu et al. 2018). 
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Table 3.3 

57 Models With Different Input Combinations 

 

Model 

number 
Inputs 

Model 

number 
Inputs 

#1  D #2  Ta 

#3  Tmax #4  Tmin 

#5  Tw #6  GSR 

#7  WS #8  RH 

#9  Ta, Tmax #10 Ta, Tmin 

#11 Ta, Tw #12 Ta, GSR 

#13 Ta, WS #14 Ta, RH 

#15 Tmax, Tmin #16 Tmax, Ta 

#17 Tmax, Tw #18 Tmax, WS 

#19 Tmax, RH #20 Tmin, Tw 

#21 Tmin, GSR #22 Tmin, WS 

#23 Tmin, RH #24 Tw, GSR 

#25 Tw, WS #26 Tw, RH 

#27 GSR,WS #28 GSR,RH 

#29 WS, RH #30 D, Ta 

#31 D, Tmax #32 D, Tmin 

#33 D, Tw #34 D,GSR 

#35 D, Ws #36 D,RH 

#37 D, Ta, Tmax #38 D, Ta, Tmin 

#39 D, Ta, Tw #40 D, Ta, GSR 

#41 D, Ta, WS #42 D, Ta, RH 

#43 D, Ta, Tmax, Tmin #44 D, Ta, Tmax, Tw 

#45 D, Ta, Tmax, GSR #46 D, Ta, Tmax, WS 

#47 D, Ta, Tmax, RH #48 
D, Ta, Tmax, Tmin, 

Tw 

#49 
D, Ta, Tmax, Tmin, 

GSR 
#50 

D, Ta, Tmax, Tmin, 

WS 

#51 D, Ta, Tmax, Tmin, RH #52 
D, Ta, Tmax, Tmin, 

Tw, GSR 

#53 
D, Ta, Tmax, Tmin, Tw, 

WS 
#54 

D, Ta, Tmax, Tmin, 

Tw, RH 

#55 
D, Ta, Tmax, Tmin, Tw, 

GSR, WS 
#56 

D, Ta, Tmax, Tmin, 

Tw, GSR, RH 

#57 
D, Ta, Tmax, Tmin, Tw, 

GSR, WS, RH 
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Figure 3.3  

The Proposed Algorithm of Predicting PV-Output Using MFFNN 
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Figure 3.4 

The proposed Algorithm of Predicting PV-Output Using CFNN 
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Figure 3.5  

The Proposed Algorithm of Predicting PV-Output Using CFNN 
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Quadratic model (QM) 
 

The QM is a mathematical model that can represent both input and output 

variables that are influenced by input factors. The goal of this model is to determine 

the degree of effect of the input variables (Day (D), relative humidity (RH), average 

temperature (AT), maximum temperature (Tmax), minimum temperature (Tmin), 

wet temperature (Tw), wind speed (WS), and global solar radiation (GSR)) on the 

output parameter (PV-output) of a 68kW grid-connected PV system. The 

connection form between the input and output parameters is shown in Eq. (1). 

 

                       𝑃𝑉 − 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓(𝐷, 𝑅𝐻, 𝑇𝑎, 𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛, 𝑇𝑤, 𝑊𝑆, 𝐺𝑆𝑅)                            (01) 

 

Based on the actual data, regression analysis was carried out by the 

following quadratic polynomial model:  

𝑌 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑛

𝑖=1

+ ∑ 𝛽𝑖𝑖𝑥𝑖
2

𝑛

𝑖=1

+ ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑖=𝑖+1

𝑛−1

𝑖

                                                  (02) 

 

Where 𝑌 is the predicted response, 𝛽0 a constant, 𝛽𝑖 the linear coefficient, 

𝛽𝑖𝑖 the squared coefficient, and 𝛽𝑖𝑗 the cross-product coefficient, 𝑛 is the number 

of factors, xi and xj are the independent variables. 

 

Multiple linear regressions (MLR) 

 

MLR is a classical method, which attempts to model the correlation between 

independent variables (x) and dependent (y). It explores how the dependent and 

independent variables are correlated. The MLR model is 

 

𝑌 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑖𝑥𝑖      𝑖 = 1,2 … 𝑛                                                           (03) 

 

Where 𝑌 is the predicted response, 𝛽0 a constant, 𝛽𝑖 the intercept and 𝑥𝑖 

where i=1, 2,..,n, denotes the explanatory or independent variables 
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Model performance criteria 
 

The performance of the proposed models were evaluated based on the 

following equations: 

 

R-squared 

 

𝑅2 = 1 −
∑ (𝑎𝑎,𝑖 − 𝑎𝑝,𝑖)

2𝑛
𝑖=1

∑ (𝑎𝑝,𝑖 − 𝑎𝑎,𝑎𝑣𝑒)
2𝑛

𝑖=1  
                                                                                        (04) 

 

Mean squared error 

 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑎𝑎,𝑖 − 𝑎𝑝,𝑖)

2
𝑛

𝑖=1

                                                                                                (05) 

 

Root mean squared error 

 

𝑅𝑀𝑆𝐸

= √
1

𝑛
∑(𝑎𝑎,𝑖 − 𝑎𝑝,𝑖)

2
𝑛

𝑖=1

                                                                                                       (06) 

 

Mean absolute error  

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑎𝑎,𝑖 − 𝑎𝑝,𝑖|

𝑛

𝑖=1

                                                                                                   (07) 
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CHAPTER IV 
 

 
Result and Discussions 

 
 

Characteristics of measuring data 
 

Table 4.1 shows the summary statistics for the machine learning models' 

input and output variables (day (D), relative humidity (RH), average temperature 

(AT), maximum temperature (Tmax), lowest temperature (Tmin), wet temperature 

(Tw), wind speed (WS), and global solar radiation (GSR). Furthermore, Figure 4.1 

depicts the daily fluctuation of the study's assessed variables. The greatest PV 

output of 451.25 MWh was recorded in May, while the lowest figure of 32.83 MWh 

was recorded in January. Furthermore, as indicated in Figure 4.1, the highest 

temperature of 46.03°C is recorded in September, while the lowest temperature of 

0.92 is recorded in February. Wind speed measurements range from 1.12 m/s in 

March to 7.31 m/s in February, according to the data. 

 

Table 4.1  

Statistical Parameters of Used Variables 

 

Variable Unit Mean SD CV Minimum Maximum 

D - 183.5 105.8 57.66 1 366 

RH % 54.027 15.285 28.29 17.77 88.16 

Ta ℃ 21.308 7.394 34.7 5.49 36.41 

Tmin ℃ 15.441 6.298 40.79 0.92 28.98 

Tmax ℃ 28.799 8.927 31 10.65 46.03 

Tw ℃ 10.599 4.137 39.03 -0.54 19.58 

WS m/s 3.2697 1.1058 33.82 1.12 7.31 

GSR W/m2 4925.1 1701.5 34.55 521 8377 

PV-

output 
MWh 272.94 99.2 36.34 32.83 451.25 
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Figure 4.1 

 

 Daily Variation of Measurement Data During the Investigation Period. 
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 Figure 4.1 (Continued) 
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Machine learning models 

 

Evaluate the influence of input variables 
 

Three neural network models were used to forecast the PV output of a solar 

system in Amman, Jordan, as previously indicated. As a result, explanatory input 

variables include Day (D), relative humidity (RH), average temperature (AT), 

maximum temperature (Tmax), lowest temperature (Tmin), wet temperature (Tw), 

wind speed (WS), and global solar radiation (GSR). The data was split into training 

and testing groups, and the models' outcomes were compared against each other. In 

this study, data for 10 months was used to train the model, which was then used to 

forecast the remaining months and compared to the actual data. 57 models with 

varied input combinations were constructed in this study. to find the most 

influencing input parameters for estimating the output power of PV system. As 

mentioned previously, the optimum number of hidden layer (HL), neurons number 

(NN) and transfer function (TF) were selected based on the minimum value of MSE. 

 

Case 1: parameter selection for one input 
 

Table 4.2 as supplemental material shows the best HL, NN, and TF for 8 

models (Model#1-Model#8), which were chosen based on the lowest MSE value. 

For estimating the input, it was discovered that RBFNN performed the best, 

followed by ENN, FFNN, and CFNN. Furthermore, it was discovered that 

RBFNN#6 had the greatest R2 value of 0.8472, followed by ENN#6 with a value 

of 0.4565. Furthermore, ENN#2 has the lowest RMSE value of 0.0021, followed 

by MFFNN#7, which has the highest RMSE value of 0.0024 

 

Case 2: parameter selection for two inputs 
 

To test the accuracy of employing the discovered parameters, 28 models 

with varying two inputs were presented in this scenario. The acquired values of the 

statistical parameters for both the training (HL, NN, TF, and MSE) and testing 

phases were presented in Table 4.3 as supplemental material (R2 and RMSE). With 

R2 values of 0.9090 and 0.0007, respectively, ENN#24 with a combination of [Tw, 

GSR] has the greatest value of R2 and the lowest value of RMSE 
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Case 3: parameter selection for three inputs 
 

Three parameters are used as input variables for the suggested models in this 

scenario. As a result, five models with varied combinations were created, as 

presented in Table 4.4 as supplementary material. RBFNN#40, when used in 

conjunction with [D,Ta,GSR], yielded the greatest R2 value of 0.7420. 

Furthermore, the combination of [D,Ta,Tw] results in a minimal RMSE of 0.0023 

for MFFNN#39. 

 

Case 4: parameter selection for four inputs 
 

As indicated in Table 4.5 as supplemental material, five models were created 

with distinct four different input factors in this example to find the most input 

variables that impact the estimation of power output of the PV system. RBFNN#45 

[D,Ta,Tmax,GSR] is shown to be the best combination for calculating the power 

output of the PV system, followed by ENN#46 [D,Ta,Tmax,WS] based on the value 

of R2. Furthermore, MFFNN#44 yielded the lowest RMSE value of 0.0026, 

according to the results. 

 

Case 5: parameter selection for five inputs 
 

The performance of the suggested models with five input variables is 

summarized in Table 4.6 as supplemental material. With R2 values of 0.5059 and 

0.0082, respectively, the ENN#48 [D,Ta,Tmax,Tmin,Tw] and RBFNN#50 

[D,Ta,Tmax,Tmin,WS] yielded the greatest R2 value and the lowest RSME. 

 

Case 6: parameter selection for six inputs 
 

To estimate the PV system's power production, three models with six input 

variables were presented. As demonstrated in Table 4.7 as supplemental material, 

the highest R2 value and minimum RMSE value for MFFNN#52 are recorded using 

a combination of [D,Ta,Tmax,Tmin,Tw,GSR]. 

 

Case 7: parameter selection for seven inputs 
 

Seven parameters are included as input variables for the suggested models 

in this example. As demonstrated in Table 4.8 as supplemental material, ENN#56 

yielded the highest R2 and lowest RMSE with values of 0.8168 and 0.0011, 

respectively. 
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Case 8: parameter selection for eight inputs 
 

All input variables are used as input parameters for the suggested models in 

this scenario. As shown in Table 4.9 as supplemental material, CFNN#57 with a 

combination of [D, Ta, Tmax, Tmin, Tw, GSR, WS, RH] has demonstrated high 

prediction accuracy with values of R2 and RMSE of 0.8623 and 0.0011, 

respectively. 

 

Comparative analysis 
 

The model ranking is investigated in this part based on the RMSE value, as 

shown in Tables 4.10 - 4.13 for machine learning models. The best models for 

predicting the PV-output of a 68kW grid-connected PV system are MFFNN#19, 

CFNN#12, ENN#24, and RBFNN#32, which use a mixture of [Tmax, RH], [Ta, 

GSR], [Tw, GSR], and [D, Tmin], respectively. The ENN#24 model has the lowest 

RMSE among the MFFNN#19, CFNN#12, ENN#24, and RBFNN#32 models, with 

a value of 0.00070. The most important characteristics that determine the 

performance of a PV system, according to the literature, are air temperature, relative 

humidity, and global solar radiation. Furthermore, the ambient temperature has a 

significant impact on global sun radiation forecasts. 

For example, Meenal and Selvakumar (2018), Yadav et al. (2014), and Rao 

et al. (2018) discovered that ambient temperature, relative humidity, and sunlight 

hours were the most critical factors affecting solar radiation availability. Yesilata 

and Firatoglu (2008) determined that global solar radiation has an impact on the 

solar system's power production. Furthermore, the data suggest that the temperature 

of the wet bulb had a major effect in forecasting PV production. This was confirmed 

by several scientific researchers (Hosseini et al. 2019; Simsek et al. 2021). Hosseini 

et al. (2019) looked into the effect of dew formation on solar panel performance. 

The results indicated that as the quantity of dew on the module's surface 

rose, the performance of the solar panel reduced. Simsek et al. (2021) investigated 

the impact of dew development on PV panel performance. They discovered that 

when the amount of dew formation increased, the energy generation of PV panels 

reduced dramatically. Finally, it can be argued that two parameter combinations of 

input variables are sufficient for accurately estimating the PV-output. 
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Table 4.10 

 Ranking of MFFNN Models Based on RMSE 

 

Model 
Input variables 

RMSE Rank 
D Ta Tmax Tmin Tw GSR WS RH 

MFFNN#19   +     + 0.00224 1 

MFFNN#39 + +   +    0.00230 2 

MFFNN#7       +  0.00235 3 

MFFNN#52 + + + + + +   0.00247 4 

MFFNN#44 + + +  +    0.00258 5 

MFFNN#21    +  +   0.00303 6 

MFFNN#40 + +    +   0.00356 7 

MFFNN#53 + + + + +  +  0.00359 8 

MFFNN#42 + +      + 0.00362 9 

MFFNN#14  +      + 0.00396 10 

MFFNN#35 +      +  0.00406 11 

MFFNN#41 + +     +  0.00418 12 

MFFNN#29       + + 0.00441 13 

MFFNN#16   +  +    0.00479 14 

MFFNN#47 + + +     + 0.00516 15 

MFFNN#37 + + +      0.00539 16 

MFFNN#26     +   + 0.00637 17 

MFFNN#15   + +     0.00640 18 

MFFNN#8        + 0.00642 19 

MFFNN#36 +       + 0.00642 20 

MFFNN#30 + +       0.00650 21 

MFFNN#32 +   +     0.00668 22 

MFFNN#4    +     0.00675 23 

MFFNN#9  + +      0.00699 24 

MFFNN#20    + +    0.00740 25 

MFFNN#2  +       0.00887 26 

MFFNN#56 + + + + + +  + 0.01031 27 

MFFNN#49 + + + +  +   0.01064 28 

MFFNN#5     +    0.01141 29 

MFFNN#3   +      0.01500 30 

MFFNN#11  +   +    0.01658 31 

MFFNN#50 + + + +   +  0.01660 32 

MFFNN#22    +   +  0.01704 33 

MFFNN#10  +  +     0.01788 34 

MFFNN#28      +  + 0.02624 35 

MFFNN#43 + + + +     0.03273 36 

MFFNN#17   +   +   0.03335 37 

MFFNN#18   +    +  0.04094 38 

MFFNN#55 + + + + + + +  0.04477 39 

MFFNN#34 +     +   0.05396 40 

MFFNN#31 +  +      0.06436 41 

MFFNN#23    +    + 0.07303 42 

MFFNN#12  +    +   0.07509 43 

MFFNN#27      + +  0.08117 44 

MFFNN#13  +     +  0.08670 45 

MFFNN#51 + + + +    + 0.10213 46 

MFFNN#33 +    +    0.10297 47 

MFFNN#24     + +   0.10367 48 
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Table 4.10 (Continued) 

Model 
Input variables 

RMSE Rank 
D Ta Tmax Tmin Tw GSR WS RH 

MFFNN#38 + +  +     0.10406 49 

MFFNN#48 + + + + +    0.11440 51 

MFFNN#57 + + + + + + + + 0.11602 52 

MFFNN#1 +        0.11967 53 

MFFNN#6      +   0.12077 54 

MFFNN#46 + + +    +  0.14762 55 

MFFNN#54 + + + + +   + 0.15865 56 

MFFNN#45 + + +   +   0.18034 57 
 

 

Table 4.11  

 Ranking of CFNN Models Based on RMSE 

 

Model 
Input variables  

RMSE Rank 
D Ta Tmax Tmin Tw GSR WS RH 

CFNN#12  +    +   0.000997 1 

CFNN#57 + + + + + + + + 0.001087 2 

CFNN#14  +      + 0.001638 3 

CFNN#37 + + +      0.001645 4 

CFNN#54 + + + + +   + 0.004195 5 

CFNN#31 +  +      0.004562 6 

CFNN#36 +       + 0.005446 7 

CFNN#21    +  +   0.005655 8 

CFNN#25     +  +  0.006613 9 

CFNN#24     + +   0.006681 10 

CFNN#40 + +    +   0.006941 11 

CFNN#35 +      +  0.006992 12 

CFNN#18   +    +  0.008743 13 

CFNN#34 +     +   0.009424 14 

CFNN#22    +   +  0.009561 15 

CFNN#27      + +  0.009791 16 

CFNN#7       +  0.009883 17 

CFNN#47 + + +     + 0.010575 18 

CFNN#29       + + 0.010643 19 

CFNN#5     +    0.011171 20 

CFNN#8        + 0.011396 21 

CFNN#26     +   + 0.011588 22 

CFNN#3   +      0.012888 23 

CFNN#46 + + +    +  0.013639 24 

CFNN#16   +  +    0.01399 25 

CFNN#11  +   +    0.020908 26 

CFNN#30 + +       0.023197 27 

CFNN#52 + + + + + +   0.024015 28 

CFNN#4    +     0.025058 29 

CFNN#15   + +     0.02579 30 

CFNN#19   +     + 0.028703 31 

CFNN#49 + + + +  +   0.028775 32 
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Table 4.11 (Continued) 

Model 
Input variables  

RMSE Rank 
D Ta Tmax Tmin Tw GSR WS RH 

CFNN#50 + + + +   +  0.035575 33 

CFNN#55 + + + + + + +  0.042679 34 

CFNN#44 + + +  +    0.063617 35 

CFNN#1 +        0.075403 36 

CFNN#6      +   0.076376 37 

CFNN#45 + + +   +   0.079251 38 

CFNN#51 + + + +    + 0.09061 39 

CFNN#56 + + + + + +  + 0.103742 40 

CFNN#41 + +     +  0.104388 41 

CFNN#38 + +  +     0.105749 42 

CFNN#13  +     +  0.116951 43 

CFNN#43 + + + +     0.122549 44 

CFNN#39 + +   +    0.138521 45 

CFNN#20    + +    0.141946 46 

CFNN#9  + +      0.143538 47 

CFNN#28      +  + 0.146937 48 

CFNN#33 +    +    0.147018 49 

CFNN#10  +  +     0.152145 50 

CFNN#17   +   +   0.168132 51 

CFNN#32 +   +     0.177411 52 

CFNN#42 + +      + 0.179998 53 

CFNN#48 + + + + +    0.181134 54 

CFNN#23    +    + 0.201018 55 

CFNN#53 + + + + +  +  0.215223 56 

CFNN#2  +       0.251434 57 

 

 

Table 4.12 

 Ranking of ENN models based on RMSE 

 

 

Model 
Input variables 

RMSE Rank 
D Ta Tmax Tmin Tw GSR WS RH 

ENN#24     + +   0.00070 1 

ENN#56 + + + + + +  + 0.00106 2 

ENN#31 +  +      0.00167 3 

ENN#2  +       0.00208 4 

ENN#33 +    +    0.00234 5 

ENN#26     +   + 0.00271 6 

ENN#37 + + +      0.00282 7 

ENN#17   +   +   0.00287 8 

ENN#5     +    0.00292 9 

ENN#38 + +  +     0.00307 10 

ENN#3   +      0.00316 11 

ENN#20    + +    0.00327 12 

ENN#46 + + +    +  0.00351 13 

ENN#7       +  0.00361 14 
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Table 4.12 (Continued) 

Model 
Input variables 

RMSE Rank 
D Ta Tmax Tmin Tw GSR WS RH 

ENN#34 +     +   0.00426 15 

ENN#16   +  +    0.00491 16 

ENN#9  + +      0.00494 17 

ENN#29       + + 0.00500 18 

ENN#27      + +  0.00510 19 

ENN#14  +      + 0.00514 20 

ENN#47 + + +     + 0.00516 21 

ENN#19   +     + 0.00559 22 

ENN#21    +  +   0.00578 23 

ENN#30 + +       0.00650 24 

ENN#32 +   +     0.00668 25 

ENN#40 + +    +   0.00699 26 

ENN#15   + +     0.00699 27 

ENN#10  +  +     0.00699 28 

ENN#44 + + +  +    0.00699 29 

ENN#11  +   +    0.00699 30 

ENN#4    +     0.00699 31 

ENN#28      +  + 0.00720 32 

ENN#39 + +   +    0.00982 33 

ENN#49 + + + +  +   0.01064 34 

ENN#55 + + + + + + +  0.01478 35 

ENN#23    +    + 0.01528 36 

ENN#36 +       + 0.01998 37 

ENN#48 + + + + +    0.02325 38 

ENN#51 + + + +    + 0.02533 39 

ENN#53 + + + + +  +  0.02630 40 

ENN#25     +  +  0.02798 41 

ENN#42 + +      + 0.04072 43 

ENN#18   +    +  0.07213 44 

ENN#43 + + + +     0.10399 45 

ENN#57 + + + + + + + + 0.10859 46 

ENN#1 +        0.11967 47 

ENN#35 +      +  0.12023 48 

ENN#6      +   0.12077 49 

ENN#22    +   +  0.12879 50 

ENN#50 + + + +   +  0.12950 51 

ENN#12  +    +   0.14100 52 

ENN#8        + 0.14560 53 

ENN#41 + +     +  0.14748 54 

ENN#45 + + +   +   0.18034 55 

ENN#13  +     +  0.18081 56 

ENN#54 + + + + +   + 0.22098 57 

 

 

 

 

 
 

 



 

 

51 

Table 4.13  

 Ranking of RBFNN models based on RMSE 

 

Model 
Inputs  

RMSE Rank 
D Ta Tmax Tmin Tw GSR WS RH 

RBFNN#32 +   +     0.006636 1 

RBFNN#5     +    0.006777 2 

RBFNN#13  +     +  0.006910 3 

RBFNN#38 + +  +     0.006910 4 

RBFNN#20    + +    0.007014 5 

RBFNN#21    +  +   0.007014 6 

RBFNN#30 + +       0.007193 7 

RBFNN#7       +  0.007281 8 

RBFNN#14  +      + 0.007402 9 

RBFNN#22    +   +  0.007414 10 

RBFNN#1 +        0.007443 11 

RBFNN#18   +    +  0.007507 12 

RBFNN#3   +      0.007526 13 

RBFNN#9  + +      0.007597 14 

RBFNN#31 +  +      0.007917 15 

RBFNN#19   +     + 0.008008 16 

RBFNN#2  +       0.008010 17 

RBFNN#4    +     0.008050 18 

RBFNN#37 + + +      0.008148 19 

RBFNN#46 + + +    +  0.008152 20 

RBFNN#43 + + + +     0.008167 21 

RBFNN#41 + +     +  0.008179 22 

RBFNN#8        + 0.008213 23 

RBFNN#25     +  +  0.008228 24 

RBFNN#50 + + + +   +  0.008232 25 

RBFNN#29       + + 0.008546 26 

RBFNN#28      +  + 0.008668 27 

RBFNN#17   +   +   0.008847 28 

RBFNN#35 +      +  0.008904 29 

RBFNN#45 + + +   +   0.009240 30 

RBFNN#12  +    +   0.009247 31 

RBFNN#34 +     +   0.009270 32 

RBFNN#53 + + + + +  +  0.009286 33 

RBFNN#40 + +    +   0.009317 34 

RBFNN#33 +    +    0.009554 35 

RBFNN#47 + + +     + 0.009572 36 

RBFNN#36 +       + 0.009575 37 

RBFNN#42 + +      + 0.009636 38 

RBFNN#48 + + + + +    0.009756 39 

RBFNN#11  +   +    0.009810 40 
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Table 4.13 (Continued) 

Model 
Input variables  

RMSE Rank 
D Ta Tmax Tmin Tw GSR WS RH 

RBFNN#39 + +   +    0.009819 41 

RBFNN#52 + + + + + +   0.009893 42 

RBFNN#49 + + + +  +   0.009957 43 

RBFNN#56 + + + + + +  + 0.010301 44 

RBFNN#44 + + +  +    0.010473 45 

RBFNN#16   +  +    0.010541 46 

RBFNN#54 + + + + +   + 0.010620 47 

RBFNN#24     + +   0.011208 48 

RBFNN#57 + + + + + + + + 0.011322 49 

RBFNN#26     +   + 0.011472 50 

RBFNN#23    +    + 0.011968 51 

RBFNN#10  +  +     0.012674 52 

RBFNN#15   + +     0.012705 53 

RBFNN#27      + +  0.013611 54 

RBFNN#6      +   0.013630 55 

RBFNN#55 + + + + + + +  0.014776 56 

RBFNN#51 + + + +    + 0.025326 57 
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Comparison of quadratic model (QM) and multiple linear regression (MLR) 

with machine learning models  

 

To demonstrate the accuracy of the proposed model, the performance of 

machine learning models is compared to quadratic model (QM) and multiple linear 

regression (MLR) in this section. The models' estimating success was measured 

using root mean squared error (RMSE) and mean absolute error (MAR). The 

mathematical equations for the QM and MLR models, as well as the RMSE and MAE 

values for all models, are shown in Table 9. The ENN#24, ENN#56, CFNN#12, and 

CFNN#57, respectively, with the combination of [Tw, GSR], [D, Ta, Tmax, Tmin, 

Tw, GSR, RH], [Ta, GSR], and [D, Ta, Tmax, Tmin, Tw, GSR, WS, RH], have 

demonstrated the best prediction. The lowest error value was obtained by combining 

[Tw, GSR]. 

R-squared is a measure of how well a regression line fits the data in general, 

whereas RMSE and MAE are direct techniques for describing variances. For 

maximum precision, R-squared, the combination of [Tw, GSR] has the highest value 

of R-squared followed by [D, Ta, Tmax, Tmin, Tw, GSR, WS, RH], [Ta, GSR] and 

[D, Ta, Tmax, Tmin, Tw, GSR, RH] as shown in Figure 4.2  
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Table 4.14 

 

Comparison of quadratic model (QM) and multiple linear regression (MLR) 

with machine learning models for testing data 

 

 QM and MLR with MFFNN   

Model Input RMSE MAE 

MFFNN#19 Tmax, RH 0.00224 0.00169 

MLR 0.00677 0.00523 

QM 0.00748 0.00647 

MFFNN#39 D, Ta, Tw 0.00230 0.00161 

MLR 0.00675 0.00544 

QM 0.01021 0.00745 

MFFNN#7 WS 0.00235 0.00190 

MLR 0.00511 0.00439 

QM 0.00551 0.00496 

 QM and MLR with MFFNN   

Model Input RMSE MAE 

CFNN#12 Ta, GSR 0.000997 0.000646 

MLR 0.006993 0.005722 

QM 0.007742 0.006076 

CFNN#57 D, Ta, Tmax, Tmin, Tw, GSR, WS, RH 0.001087 0.000864 

MLR 0.009543 0.007519 

QM 0.014767 0.010652 

CFNN#14 Ta, RH 0.001638 0.005722 

MLR 0.007591 0.006915 

QM 0.008219 0.001294 

 QM and MLR with MFFNN   

Model Input RMSE MAE 

ENN#24 Tw, GSR 0.0007 0.000512 

MLR 0.008034 0.006541 

QM 0.009321 0.006452 

ENN#56 D, Ta, Tmax, Tmin, Tw, GSR, RH 0.001056 0.000617 

MLR 0.009418 0.007652 

QM 0.014344 0.010238 

ENN#31 D, Tmax 0.00167 0.001397 

MLR 0.006052 0.005642 

QM 0.009118 0.006318 

 QM and MLR with MFFNN   

Model Input RMSE MAE 

RBFNN#32 D, Tmin 0.00664 0.00471 

MLR  0.00510 0.00428 

QM  0.00703 0.00536 

RBFNN#5 Tw 0.00678 0.00591 

MLR  0.00539 0.00415 

QM  0.00537 0.00462 

RBFNN#13 Ta, WS 0.00691 0.00638 

MLR  0.00511 0.00448 

QM  000685 0.00576 
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Comparison of quadratic model (QM) and multiple linear regression (MLR) 

with machine learning models for testing data: 

 

QM and MLR with MFFNN 

 
PV − output = 0.0423 − 0.0219 ∙ Tmax − 0.0394 ∙ RH                                     (08) 

 

PV − output = −0.134 + 0.314 ∙ Tmax + 0.369 ∙ RH − 0.168 ∙ (T)max ̂ 2

− 0.243 ∙ (RH)^2 − 0.345 ∙ (T)max ∙ RH                                    (09) 

 

PV − output = −0.0184 − 0.0174 ∙ D + 0.0263 ∙ Ta − 0.0224 ∙ Tw               (10) 

 

PV − output = 0.0067 − 0.126 ∙ D + 0.251 ∙ Ta − 0.0799 ∙ Tw + 0.097 ∙ D2 −

0.188 ∙ Ta
2 − 0.062Tw

2 − 0.109 ∙ D ∙ Ta + 0.0762 ∙ D ∙ Tw + 0.126 ∙ Ta ∙ Tw     (11)        

 

PV − output = 0.0145 − 0.0107 ∙ WS                                                                     (12) 

 

PV − output = 0.0082 + 0.0257 ∙ WS − 0.0417 ∙ (WS)^2                                (14) 

 

QM and MLR with CFNN 

 
PV − output = −0.00354 − 0.00206 ∙ Ta + 0.0443 ∙ GSR                                 (15) 

 

PV − output = −0.0029 + 0.0221 ∙ Ta + 0.0022 ∙ GSR − 0.0433 ∙ Ta
2

+ 0.0359 ∙ GSR2 + 0.006 ∙ Ta ∙ GSR                                                (16) 

 

V − output = 0.0637 − 0.0115 ∙ D − 0.066 ∙ RH − 0.113 ∙ Ta − 0.031 ∙ Tmin

+ 0.063 ∙ Tmax − 0.0396 ∙ Tw − 0.0094 ∙ WS + 0.0179

∙ GSR                                                                                                        (17) 
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PV − output = −1.08 − 0.056 ∙ D + 2.19 ∙ RH + 2.48 ∙ Ta + 0.44 ∙ Tmin

− 0.46 ∙ Tmax − 1.24 ∙ Tw + 0.28 ∙ WS + 0.698 ∙ GSR + 0.193 ∙ D2

− 1.01 ∙ RH2 − 22.1 ∙ Ta
2 − 3.85 ∙ Tmin

2 − 5.17 ∙ Tmax
2 + 0.03 ∙ Tw

2

− 0.0573 ∙ WS2 − 0.128 ∙ GSR2 − 0.146 ∙ D ∙ RH + 0.23 ∙ D ∙ Ta

− 0.249 ∙ D ∙ Tmin − 0.236 ∙ D ∙ Tmax + 0.156 ∙ D ∙ Tw − 0.0084 ∙ D

∙ WS − 0.118 ∙ D ∙ GSR − 2.6 ∙ RH ∙ Ta − 0.21 ∙ RH ∙ Tmin + 1.00

∙ RH ∙ Tmax + 0.67 ∙ RH ∙ Tw − 0.272 ∙ RH ∙ WS − 0.71   ∙ RH ∙ GSR

+ 18.3 ∙ Ta ∙ Tmin + 22.9 ∙ Ta ∙ Tmax + 0.65 ∙ Ta ∙ Tw + 0.22 ∙ Ta

∙ WS    − 0.60 ∙ Ta  ∙ GSR − 11.18 ∙ Tmin ∙ Tmax + 0.67 ∙ Tmin ∙ Tw

− 0.13 ∙ Tmin ∙ WS − 0.19 ∙ Tmin  ∙ GSR − 0.63 ∙ Tmax ∙ Tw  

− 0.49 ∙ Tmax ∙ WS + 0.12 ∙ Tmax ∙ GSR + 0.225 ∙ Tw ∙ WS

+ 0.473 ∙ Tw ∙ GSR − 0.039 ∙ WS

∙ GSR                                                                                                     (18)    

 

PV − output = 0.05 − 0.0307 ∙ Ta − 0.0456 ∙ RH                                                (19) 

 

𝑃𝑉 − 𝑜𝑢𝑡𝑝𝑢𝑡 = −0.061 + 0.208 ∙ 𝑇𝑎 + 0.192 ∙ 𝑅𝐻 − 0.143 ∙ 𝑇𝑎
2 − 0.141 ∙ 𝑅𝐻2

− 0.197 ∙ 𝑇𝑎 ∙ 𝑅𝐻                                                                                  (20) 

 

QM and MLR with ENN 

 
PV − output = 0.0026 − 0.0255 ∙ Tw + 0.0398GSR                                            (21) 

 

PV − output

= −0.014 + 0.0289 ∙ Tw + 0.0371 ∙ GSR + 0.0178 ∙ Tw
2 + 0.0678 ∙ GSR2

+ 0.13 ∙ Tw ∙ GSR                                                                                                             (22) 

 

PV − output = 0.0526 − 0.0098 ∙ D − 0.0577 ∙ RH − 0.115 ∙ Ta − 0.034 ∙ Tmin

+ 0.075 ∙ Tmax − 0.0355 ∙ Tw + 0.0195 ∙ GSR                             (23) 
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𝑃𝑉 − 𝑜𝑢𝑡𝑝𝑢𝑡

= −57 − 0.153 ∙ 𝐷 + 1.00 ∙ 𝑅𝐻 + 2.22 ∙ 𝑇𝑎 + 0.14 ∙ 𝑇𝑚𝑖𝑛 − 4.25 ∙ 𝑇𝑚𝑎𝑥

− 0.31 ∙ 𝑇𝑤 + 0.466 ∙ 𝐺𝑆𝑅 + 0.170 ∙ 𝐷2 − 0.30 ∙ 𝑅𝐻2 − 23.1 ∙ 𝑇𝑎
2 − 3.95 ∙ 𝑇𝑚𝑖𝑛

2

− 5.67 ∙ 𝑇𝑚𝑎𝑥
2 + 0.36 ∙ 𝑇𝑤

2 − 0.103 ∙ 𝐺𝑆𝑅2 + 0.008 ∙ 𝐷 ∙ 𝑅𝐻 + 0.24 ∙ 𝐷 ∙ 𝑇𝑎

− 0.210 ∙ 𝐷 ∙ 𝑇𝑚𝑖𝑛 − 0.073 ∙ 𝐷 ∙ 𝑇𝑚𝑎𝑥 + 0.025 ∙ 𝐷 ∙ 𝑇𝑤 − 0.102 ∙ 𝐷 ∙ 𝐺𝑆𝑅 − 1.83

∙ 𝑅𝐻 ∙ 𝑇𝑎 + 1.59 ∙ 𝑅𝐻 ∙ 𝑇𝑚𝑎𝑥 − 0.41 ∙ 𝑅𝐻 ∙ 𝑇𝑤 − 0.439 ∙ 𝑅𝐻 ∙ 𝐺𝑆𝑅 + 19.1

∙ 𝑇𝑎 ∙ 𝑇𝑚𝑖𝑛 + 24.9 ∙ 𝑇𝑎 ∙ 𝑇𝑚𝑎𝑥 + 0.07 ∙ 𝑇𝑎 ∙ 𝑇𝑤 − 0.76 ∙ 𝑇𝑎 ∙ 𝐺𝑆𝑅 − 11.60 ∙ 𝑇𝑚𝑖𝑛

∙ 𝑇𝑚𝑎𝑥 + 059 ∙ 𝑇𝑚𝑖𝑛 ∙ 𝑇𝑤 − 0.10 ∙ 𝑇𝑚𝑖𝑛 ∙ 𝐺𝑆𝑅 − 1.02 ∙ 𝑇𝑚𝑎𝑥 ∙ 𝑇𝑤 + 0.48 ∙ 𝑇𝑚𝑎𝑥

∙ 𝐺𝑆𝑅 + 0.262 ∙ 𝑇𝑤                                                     

∙ 𝐺𝑆𝑅                                                                                                                                   (24) 

 

PV − output = 0.01225 − 0.0195 ∙ D + 0.0161 ∙ Tmax                                       (25) 

 

PV − output = −0.0052 − 0.132 ∙ D + 0.1765 ∙ Tmax + 0.1337 ∙ D2

− 0.0655 ∙ Tmax
2 + 0.1114 ∙ D ∙ Tmax                                               (26) 

 

QM and MLR with RBFNN 

 
𝑃𝑉 − 𝑜𝑢𝑡𝑝𝑢𝑡 = 0.01521 − 0.017 ∙ 𝐷 + 0.0078 ∙ 𝑇𝑚𝑖𝑛                                         (27) 

 

𝑃𝑉 − 𝑜𝑢𝑡𝑝𝑢𝑡 = −0.0112 − 0.019 ∙ 𝐷 + 0.139 ∙ 𝑇𝑚𝑖𝑛 + 0.0163 ∙ 𝐷2

− 0.0937 ∙ 𝑇𝑚𝑖𝑛
2 − 0.0552 ∙ 𝐷 ∙ 𝑇𝑚𝑖𝑛                                               (28) 

 

PV − output = 0.01595 − 0.0094 ∙ Tw                                                                    (29) 

 

PV − output = 0.0041 + 0.0413 ∙ Tw − 0.0464 ∙ Tw
2                                            (30) 

 

PV − output = 0.0129 + 0.0028 ∙ Ta − 0.0102 ∙ WS                                           (31) 

 

PV − output = −0145 + 0.0961 ∙ Ta + 0.0475 ∙ WS − 0.0815 ∙ Ta
2

+ 0.0472 ∙ WS2 − 0.0417 ∙ Ta ∙ WS                                                (32) 
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Figure 4.2  

 

Comparison between actual and forecasted values by all the best combination 

of inputs 
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CHAPTER V 
 

 
Conclusion and Recommendations 

 
 

Conclusions 
 

The influence of meteorological conditions on PV system output power 

(PV-output) was explored in this study. By varying the weather parameters, six 

models were developed to address the main objective: quadratic model (QM), 

multiple linear regression (MLR), aMultilayer Feed-Forward Neural Network 

(MFFNN), Cascade Feed-Forward Neural Network (CFNN), Radial Basis Neural 

Network (RBFNN), and Elman neural network (ENN). 

The models were developed using a one-year database of daily relative 

humidity (RH), average temperature (AT), maximum temperature (Tmax), 

minimum temperature (Tmin), wet-bulb temperature (Tw), wind speed (WS), and 

global solar radiation (GSR), as well as measuring the value of PV system output 

power (PV-output). To train and test the models, 57 models with various 

combinations of inputs are used to train and test them in order to find the optimal 

combination of inputs for estimating daily PV output.  

The ENN#24, ENN#56, CFNN#12, and CFNN#57 with the combination of 

[Tw, GSR], [D, Ta, Tmax, Tmin, Tw, GSR, RH], [Ta, GSR], and [D, Ta, Tmax, 

Tmin, Tw, GSR, WS, RH], respectively, have shown the best prediction out of the 

57 machine learning models. 

Wet-bulb temperature, global solar radiation, and average temperature are 

shown to be the most important input parameters for projecting PV production. 

Furthermore, the findings showed that the ENN and CFNN models could be utilized 

to properly estimate the daily PV production for the site. 
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Appendices 
 

Appendix  A 
  

Performance of the proposed models  

 

Table 4.2 

 Performance of the proposed models with one input 

 

Model Variable HL NN TF MSE R2 RMSE 

MFFNN 

MFFNN#1 D 1 5 TAN 4.26E-05 0.0028 0.1197 

MFFNN#2 Ta 1 5 TAN 2.81E-05 0.1088 0.0089 

MFFNN#3 Tmax 1 5 TAN 4.12E-05 0.0148 0.0150 

MFFNN#4 Tmin 1 5 TAN 4.03E-05 0.1616 0.0067 

MFFNN#5 Tw 1 5 LOG 4.94E-05 0.0000 0.0114 

MFFNN#6 GSR 1 5 LOG 3.72E-05 0.0556 0.1208 

MFFNN#7 WS 1 5 LOG 9.86E-06 0.0558 0.0024 

MFFNN#8 RH 1 5 TAN 0.000137 0.0232 0.0064 

CFNN 

CFNN#1 D 1 5 LOG 3.94E-05 0.0094 0.0754 

CFNN#2 Ta 1 5 LOG 2.76E-05 0.0026 0.2514 

CFNN#3 Tmax 1 5 TAN 3.67E-05 0.0140 0.0129 

CFNN#4 Tmin 1 5 LOG 0.023369 0.0025 0.0251 

CFNN#5 Tw 1 5 TAN 0.000162 0.0039 0.0112 

CFNN#6 GSR 1 5 TAN 4.16E-05 0.0193 0.0764 

CFNN#7 WS 1 5 TAN 9.69E-05 0.0118 0.0099 

CFNN#8 RH 1 5 LOG 2.63E-05 0.0004 0.0114 

ENN 

ENN#1 D 1 5 TAN 4.26E-05 0.0028 0.1197 

ENN#2 Ta 1 5 TAN 3.58E-06 0.2549 0.0021 

ENNl#3 Tmax 1 5 TAN 1.35E-05 0.0051 0.0032 

ENN#4 Tmin 1 8 LOG 3.87E-05 0.0000 0.0070 

ENN#5 Tw 1 5 TAN 8.87E-06 0.1614 0.0029 

ENN#6 GSR 1 5 TAN 3.92E-05 0.4565 0.1208 

ENN#7 WS 1 5 LOG 2.11E-05 0.0104 0.0036 

ENN#8 RH 1 5 TAN 2.72E-05 0.0110 0.1456 

RBFNN 

RBFNN#1 D - 2 - 0.005051 0.4314 0.0074 

RBFNN#2 Ta - 2 - 0.00506 0.1007 0.0080 

RBFNN#3 Tmax - 2 - 0.005065 0.2005 0.0075 

RBFNN#4 Tmin - 2 - 0.005058 0.0401 0.0080 

RBFNN#5 Tw - 2 - 0.005072 0.0009 0.0068 

RBFNN#6 GSR - 2 - 0.00501 0.8472 0.0136 

RBFNN#7 WS - 2 - 0.005073 0.0480 0.0073 

RBFNN#8 RH - 2 - 0.005053 0.3936 0.0082 
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Table 4.3 

Performance of the proposed models with two inputs 

 

Model Variable HL NN TF MSE R2 RMSE 

MFFNN 

MFFNN#9 Ta,Tmax 1 5 TAN 4.03E-05 0.1277 0.0070 

MFFNN#10 Ta,Tmin 1 8 LOG 7.06E-06 0.0884 0.0179 

MFFNN#11 Ta,Tw 1 5 TAN 0.033544 0.2124 0.0166 

MFFNN#12 Ta,GSR 1 8 LOG 6.83E-06 0.0360 0.0751 

MFFNN#13 Ta,WS 1 5 TAN 3.04E-05 0.0121 0.0867 

MFFNN#14 Ta,RH 1 5 TAN 3.0799-06 0.0342 0.0040 

MFFNN#15 Tmax,Tmin 1 5 LOG 4E-05 0.0239 0.0064 

MFFNN#16 Tmax,Ta 1 5 TAN 1.52E-05 0.0014 0.0048 

MFFNN#17 Tmax,Tw 1 5 TAN 1.54E-06 0.0107 0.0334 

MFFNN#18 Tmax,WS 1 5 LOG 1.59E-05 0.0835 0.0409 

MFFNN#19 Tmax,RH 1 5 TAN 5.47E-06 0.2163 0.0022 

MFFNN#20 Tmin,Tw 1 5 LOG 5.77E-05 0.1312 0.0074 

MFFNN#21 Tmin,GSR 1 5 TAN 8.41E-06 0.2052 0.0030 

MFFNN#22 Tmin,WS 1 5 LOG 1.61E-05 0.0048 0.0170 

MFFNN#23 Tmin,RH 1 5 TAN 2.66E-06 0.0272 0.0730 

MFFNN#24 Tw,GSR 1 5 TAN 4.28E-06 0.0081 0.1037 

MFFNN#25 Tw,WS 1 8 LOG 3.85E-05 0.0021 0.1043 

MFFNN#26 Tw,RH 1 5 TAN 1.78E-05 0.0016 0.0064 

MFFNN#27 GSR,WS 1 5 LOG 1.6E-05 0.0355 0.0812 

MFFNN#28 GSR,RH 1 5 LOG 3.33E-05 0.0073 0.0262 

MFFNN#29 WS,RH 1 5 TAN 1.55E-05 0.0365 0.0044 

MFFNN#30 D,Ta 1 5 TAN 5.34E-05 0.0366 0.0065 

MFFNN#31 D,Tmax 1 5 TAN 3.92E-05 0.0060 0.0644 

MFFNN#32 D,Tmin 1 5 TAN 5.11E-05 0.0028 0.0067 

MFFNN#33 D,Tw 1 5 TAN 6.51E-06 0.0556 0.1030 

MFFNN#34 D,GSR 1 8 LOG 9E-05 0.0125 0.0540 

MFFNN#35 D,Ws 1 5 TAN 1.74E-05 0.1343 0.0041 

MFFNN#36 D,RH 1 5 LOG 0.00013 0.0035 0.0064 

CFNN 

CFNN#9 Ta,Tmax 1 5 LOG 7E-06 0.0211 0.1435 

CFNN#10 Ta,Tmin 1 5 TAN 9.76E-06 0.0306 0.1521 

CFNN#11 Ta,Tw 1 5 TAN 0.00055 0.0260 0.0209 

CFNN#12 Ta,GSR 1 5 LOG 8.87E-05 0.8524 0.0010 

CFNN#13 Ta,WS 1 5 TAN 6.56E-05 0.0151 0.1170 

CFNN#14 Ta,RH 1 5 TAN 2.96E-06 0.5053 0.0016 
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Table. 4.3 (Continued). 

Model Variable HL NN TF MSE R2 RMSE 

CFNN 

CFNN#15 Tmax,Tmin 1 5 LOG 0.000504 0.1299 0.0258 

CFNN#16 Tmax,Ta 1 5 TAN 3.35E-05 0.0015 0.0140 

CFNN#17 Tmax,Tw 1 8 LOG 2.22E-05 0.0367 0.1681 

CFNN#18 Tmax,WS 1 5 TAN 8.24E-05 0.0102 0.0087 

CFNN#19 Tmax,RH 1 5 LOG 1.89E-05 0.0032 0.0287 

CFNN#20 Tmin,Tw 1 8 LOG 6.1E-05 0.0003 0.1419 

CFNN#21 Tmin,GSR 1 5 LOG 2.27E-05 0.0682 0.0057 

CFNN#22 Tmin,WS 1 5 LOG 8.06E-05 0.0084 0.0096 

CFNN#23 Tmin,RH 1 8 LOG 7.08E-06 0.0114 0.2010 

CFNN#24 Tw,GSR 1 5 LOG 3.19E-05 0.3652 0.0067 

CFNN#25 Tw,WS 1 5 TAN 2.44E-05 0.0085 0.0066 

CFNN#26 Tw,RH 1 8 LOG 5.14E-05 0.0391 0.0116 

CFNN#27 GSR,WS 1 5 LOG 9.44E-05 0.6907 0.0098 

CFNN#28 GSR,RH 1 8 LOG 1.19E-06 0.0235 0.1469 

CFNN#29 WS,RH 1 5 TAN 0.000153 0.1158 0.0106 

CFNN#30 D,Ta 1 5 LOG 0.000487 0.2980 0.0232 

CFNN#31 D,Tmax 1 5 TAN 1.79E-05 0.0633 0.0046 

CFNN#32 D,Tmin 1 5 LOG 4.1E-05 0.0200 0.1774 

CFNN#33 D,Tw 1 5 LOG 7.69E-06 0.0123 0.1470 

CFNN#34 D,GSR 1 5 TAN 3.16E-05 0.1564 0.0094 

CFNN#35 D,Ws 1 5 LOG 4.04E-05 0.0555 0.0070 

CFNN#36 D,RH 1 5 TAN 0.009976 0.0171 0.0054 

ENN 

ENN#9 Ta,Tmax 1 5 TAN 0.000132 0.0113 0.0049 

ENN#10 Ta,Tmin 1 5 LOG 3.54E-05 0.0393 0.0070 

ENN#11 Ta,Tw 1 5 LOG 3.59E-05 0.0239 0.0070 

ENN#12 Ta,GSR 1 5 LOG 8.28E-06 0.0056 0.1410 

ENN#13 Ta,WS 1 5 LOG 2.28E-05 0.0027 0.1808 

ENN#14 Ta,RH 1 8 LOG 2.96E-05 0.3165 0.0051 

ENN#15 Tmax,Tmin 1 5 LOG 4.66E-05 0.0224 0.0070 

ENN#16 Tmax,Ta 1 5 TAN 2.13E-05 0.0921 0.0049 

ENN#17 Tmax,Tw 1 5 LOG 8.7E-06 0.1098 0.0029 

ENN#18 Tmax,WS 1 5 LOG 0.000158 0.0109 0.0721 

ENN#19 Tmax,RH 1 5 LOG 2.45E-05 0.1036 0.0056 

ENN#20 Tmin,Tw 1 5 LOG 1.16E-05 0.1589 0.0033 

ENN#21 Tmin,GSR 1 5 TAN 3.41E-05 0.0395 0.0058 
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Table 4.3 (Continued).  

 

 

Model Variable HL NN TF MSE R2 RMSE 

ENN 

ENN#22 Tmin,WS 1 5 TAN 1.56E-05 0.0025 0.1288 

ENN#23 Tmin,RH 1 5 TAN 0.000227 0.0245 0.0153 

ENN#24 Tw,GSR 1 5 LOG 6.84E-07 0.9090 0.0007 

ENN#25 Tw,WS 1 5 TAN 0.02359 0.0026 0.0280 

ENN#26 Tw,RH 1 5 TAN 4.96E-06 0.2952 0.0027 

ENN#27 GSR,WS 1 8 LOG 1.93E-05 0.2528 0.0051 

ENN#28 GSR,RH 1 5 LOG 4.4E-05 0.7355 0.0072 

ENN#29 WS,RH 1 5 TAN 0.010329 0.0594 0.0050 

ENN#30 D,Ta 1 5 LOG 1.31E-05 0.0366 0.0065 

ENN#31 D,Tmax 1 5 TAN 8.06E-06 0.5120 0.0017 

ENN#32 D,Tmin 1 5 TAN 5.39E-05 0.0028 0.0067 

ENN#33 D,Tw 1 5 LOG 7.32E-06 0.1605 0.0023 

ENN#34 D,GSR 1 5 TAN 2.61E-05 0.0340 0.0043 

ENN#35 D,Ws 1 5 LOG 1.93E-05 0.0113 0.1202 

ENN#36 D,RH 1 5 TAN 0.000283 0.1411 0.0200 

RBFNN 

RBFNN#9 Ta,Tmax - 2 - 0.005065 0.1474 0.0076 

RBFNN#10 Ta,Tmin - 2 - 0.004997 0.2587 0.0127 

RBFNN#11 Ta,Tw - 2 - 0.005043 0.0021 0.0098 

RBFNN#12 Ta,GSR - 2 - 0.004996 0.6991 0.0092 

RBFNN#13 Ta,WS - 2 - 0.005076 0.1839 0.0069 

RBFNN#14 Ta,RH - 2 - 0.00507 0.2505 0.0074 

RBFNN#15 Tmax,Tmin - 2 - 0.004986 0.2286 0.0127 

RBFNN#16 Tmax,Ta - 2 - 0.005031 0.3069 0.0105 

RBFNN#17 Tmax,Tw - 2 - 0.005005 0.7591 0.0088 

RBFNN#18 Tmax,WS - 2 - 0.005068 0.3068 0.0075 

RBFNN#19 Tmax,RH - 2 - 0.005062 0.1912 0.0080 

RBFNN#20 Tmin,Tw - 2 - 0.005078 0.0733 0.0070 

RBFNN#21 Tmin,GSR - 2 - 0.005078 0.0733 0.0070 

RBFNN#22 Tmin,WS - 2 - 0.005065 0.0078 0.0074 

RBFNN#23 Tmin,RH - 2 - 0.005006 0.0723 0.0120 

RBFNN#24 Tw,GSR - 2 - 0.004978 0.4052 0.0112 

RBFNN#25 Tw,WS - 2 - 0.005058 0.0015 0.0082 

RBFNN#26 Tw,RH - 2 - 0.005003 0.0925 0.0115 

RBFNN#27 GSR,WS - 2 - 0.005003 0.2940 0.0136 

RBFNN#28 GSR,RH - 2 - 0.005019 0.8977 0.0087 

RBFNN#29 WS,RH - 2 - 0.005049 0.2589 0.0085 
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Table 3.4 (Continued).  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model Variable HL NN TF MSE R2 RMSE 

RBFNN 

RBFNN#30 D,Ta - 2 - 0.005047 0.3925 0.0072 

RBFNN#31 D,Tmax - 2 - 0.005037 0.4594 0.0079 

RBFNN#32 D,Tmin - 2 - 0.005057 0.1083 0.0066 

RBFNN#33 D,Tw - 2 - 0.004977 0.7254 0.0096 

RBFNN#34 D,GSR - 2 - 0.00504 0.0589 0.0093 

RBFNN#35 D,Ws - 2 - 0.005035 0.3133 0.0089 

RBFNN#36 D,RH - 2 - 0.005012 0.4498 0.0096 
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Table 4.4 

 Performance of the proposed models with three inputs 

 

Model Variable HL NN TF MSE R2 RMSE 

MFFNN 

MFFNN#37 D,Ta,Tmax 1 8 LOG 5.78E-06 0.2809 0.0054 

MFFNN#38 D,Ta,Tmin 1 5 LOG 9.38E-05 0.0316 0.1041 

MFFNN#39 D,Ta,Tw 1 5 LOG 6.24E-06 0.5072 0.0023 

MFFNN#40 D,Ta,GSR 1 5 TAN 3.9E-06 0.3284 0.0036 

MFFNN#41 D,Ta,WS 1 5 LOG 7.2E-06 0.2797 0.0042 

MFFNN#42 D,Ta,RH 1 5 LOG 1.5E-05 0.3011 0.0036 

CFNN 

CFNN#37 D,Ta,Tmax 1 5 TAN 5.61E-06 0.5560 0.0016 

CFNN#38 D,Ta,Tmin 1 5 TAN 3.43E-05 0.0168 0.1057 

CFNN#39 D,Ta,Tw 1 5 LOG 4.11E-05 0.0243 0.1385 

CFNN#40 D,Ta,GSR 1 5 LOG 3.74E-05 0.2436 0.0069 

CFNN#41 D,Ta,WS 1 5 LOG 1.91E-05 0.0112 0.1044 

CFNN#42 D,Ta,RH 1 5 LOG 1.5E-05 0.0394 0.1800 

ENN 

ENN#37 D,Ta,Tmax 1 8 LOG 4.7E-06 0.4746 0.0028 

ENN#38 D,Ta,Tmin 1 5 LOG 5.77E-06 0.6382 0.0031 

ENN#39 D,Ta,Tw 1 5 TAN 0.009939 0.2601 0.0098 

ENN#40 D,Ta,GSR 1 5 LOG 8.92E-06 0.0718 0.0070 

ENN#41 D,Ta,WS 1 5 TAN 1.7E-05 0.0004 0.1475 

ENN#42 D,Ta,RH 1 5 TAN 1.65E-05 0.0101 0.0407 

RBFNN 

RBFNN#37 D,Ta,Tmax - 2 - 0.005041 0.5222 0.0081 

RBFNN#38 D,Ta,Tmin - 2 - 0.005048 0.3211 0.0069 

RBFNN#39 D,Ta,Tw - 2 - 0.00502 0.2601 0.0098 

RBFNN#40 D,Ta,GSR - 2 - 0.00499 0.7420 0.0093 

RBFNN#41 D,Ta,WS - 2 - 0.005041 0.1451 0.0082 

RBFNN#42 D,Ta,RH - 2 - 0.005014 0.2419 0.0096 
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Table 4.5 

Performance of the proposed models with four inputs 

                   

Model Variable HL NN TF MSE R2 RMSE 

MFFNN 

MFFNN#43 D,Ta,Tmax,Tmin 1 5 TAN 2.42E-05 0.0343 0.0327 

MFFNN#44 D,Ta,Tmax,Tw 1 5 LOG 5.16E-06 0.3440 0.0026 

MFFNN#45 D,Ta,Tmax,GSR 1 5 LOG 0.000114 0.0114 0.1803 

MFFNN#46 D,Ta,Tmax,WS 1 8 LOG 9.74E-05 0.0114 0.1476 

MFFNN#47 D,Ta,Tmax,RH 1 5 TAN 2.91E-06 0.0733 0.0052 

CFNN 

CFNN#43 D,Ta,Tmax,Tmin 1 5 LOG 3.85E-06 0.0333 0.1225 

CFNN#44 D,Ta,Tmax,Tw 1 8 LOG 1.17E-05 0.0308 0.0636 

CFNN#45 D,Ta,Tmax,GSR 1 5 TAN 5.19E-06 0.0439 0.0793 

CFNN#46 D,Ta,Tmax,WS 1 5 TAN 0.009555 0.3061 0.0136 

CFNN#47 D,Ta,Tmax,RH 1 5 TAN 4.77E-05 0.0987 0.0106 

ENN 

ENN#43 D,Ta,Tmax,Tmin 1 8 LOG 3.14E-06 0.0162 0.1040 

ENN#44 D,Ta,Tmax,Tw 1 5 LOG 0.024434 0.1535 0.0070 

ENN#45 D,Ta,Tmax,GSR 1 5 LOG 9.12E-07 0.0114 0.1803 

ENN#46 D,Ta,Tmax,WS 1 5 LOG 2.21E-05 0.4583 0.0035 

ENN#47 D,Ta,Tmax,RH 1 5 TAN 2.91E-06 0.0733 0.0052 

RBFNN 

RBFNN#43 D,Ta,Tmax,Tmin - 2 - 0.005028 0.3930 0.0082 

RBFNN#44 D,Ta,Tmax,Tw - 2 - 0.004998 0.2505 0.0105 

RBFNN#45 D,Ta,Tmax,GSR - 2 - 0.004992 0.7796 0.0092 

RBFNN#46 D,Ta,Tmax,WS - 2 - 0.005044 0.1139 0.0082 

RBFNN#47 D,Ta,Tmax,RH - 2 - 0.004986 0.7764 0.0096 
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Table 4.6 

Performance of the proposed models with five inputs 

 

Model Variable HL NN TF MSE R2 RMSE 

MFFNN 

MFFNN#48 D,Ta,Tmax,Tmin,Tw 1 5 TAN 4.92E-06 0.0437 0.1144 

MFFNN#49 D,Ta,Tmax,Tmin,GSR 1 5 LOG 9.58E-05 0.0219 0.0106 

MFFNN#50 D,Ta,Tmax,Tmin,WS 1 5 LOG 2.71E-06 0.0954 0.0166 

MFFNN#51 D,Ta,Tmax,Tmin,RH 1 5 TAN 7.36E-06 0.0083 0.1021 

CFNN 

CFNN#48 D,Ta,Tmax,Tmin,Tw 1 5 LOG 9.86E-05 0.0175 0.1811 

CFNN#49 D,Ta,Tmax,Tmin,GSR 1 5 LOG 0.000771 0.2778 0.0288 

CFNN#50 D,Ta,Tmax,Tmin,WS 1 5 LOG 4.51E-05 0.0634 0.0356 

CFNN#51 D,Ta,Tmax,Tmin,RH 1 8 LOG 7.1E-06 0.0165 0.0906 

ENN 

ENN#48 D,Ta,Tmax,Tmin,Tw 1 5 TAN 0.009899 0.5059 0.0233 

ENN#49 D,Ta,Tmax,Tmin,GSR 2 5 LOG 9.58E-05 0.0219 0.0106 

ENN#50 D,Ta,Tmax,Tmin,WS 1 5 TAN 1.26E-05 0.0025 0.1295 

ENN#51 D,Ta,Tmax,Tmin,RH 1 5 TAN 0.000447 0.3050 0.0253 

RBFNN 

RBFNN#48 D,Ta,Tmax,Tmin,Tw - 2 - 0.005011 0.2458 0.0098 

RBFNN#49 D,Ta,Tmax,Tmin,GSR - 2 - 0.005007 0.4527 0.0100 

RBFNN#50 D,Ta,Tmax,Tmin,WS - 2 - 0.005042 0.1093 0.0082 

RBFNN#51 D,Ta,Tmax,Tmin,RH - 2 - 0.005005 0.3050 0.0253 
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Table 4.7 

 Performance of the proposed models with six inputs 

 

Model Variable HL NN TF MSE R2 RMSE 
MFFNN 

MFFNN#52 D,Ta,Tmax,Tmin,Tw,GSR 1 5 TAN 7.2551E-06 0.8429 0.0025 

MFFNN#53 D,Ta,Tmax,Tmin,Tw,WS 1 5 LOG 0.000094107 0.3136 0.0036 

MFFNN#54 D,Ta,Tmax,Tmin,Tw,RH 1 5 TAN 7.1252E-06 0.0492 0.1586 

CFNN 

CFNN#52 D,Ta,Tmax,Tmin,Tw,GSR 1 5 LOG 0.00028141 0.0983 0.0240 

CFNN#53 D,Ta,Tmax,Tmin,Tw,WS 1 5 TAN 0.000018485 0.0694 0.2152 

CFNN#54 D,Ta,Tmax,Tmin,Tw,RH 1 5 LOG 0.00025271 0.0858 0.0042 

ENN 

ENN#52 D,Ta,Tmax,Tmin,Tw,GSR 1 5 TAN 2.3393E-06 0.0267 0.0319 

ENN#53 D,Ta,Tmax,Tmin,Tw,WS 1 5 TAN 0.000092218 0.0291 0.0263 

ENN#54 D,Ta,Tmax,Tmin,Tw,RH 1 5 TAN 2.4514E-06 0.0058 0.2210 

RBFNN 

RBFNN#52 D,Ta,Tmax,Tmin,Tw,GSR - 2 - 0.00497947 0.7165 0.0099 

RBFNN#53 D,Ta,Tmax,Tmin,Tw,WS - 2 - 0.00503192 0.0303 0.0093 

RBFNN#54 D,Ta,Tmax,Tmin,Tw,RH - 2 - 0.00500603 0.2941 0.0106 
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Table 4.8 

Performance of the proposed models with seven inputs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.9 

Performance of the proposed models with eight inputs 

 

 

 

 

                  

 

 

 

 

   

 

 

 

 

Model Variable 
H

L 

N

N 
TF MSE R2 RMSE 

MFFNN 

MFFNN#5

5 

D,Ta,Tmax,Tmin,Tw,GSR,

WS 
1 5 

LO

G 

2.3735E-

06 

0.040

9 
0.0448 

MFFNN#5

6 

D,Ta,Tmax,Tmin,Tw,GSR,

RH 
1 8 

LO

G 

3.5354E-

06 

0.107

0 
0.0103 

CFNN 

CFNN#55 
D,Ta,Tmax,Tmin,Tw,GSR,

WS 
1 5 

TA

N 
0.0016807 

0.268

8 
0.0427 

CFNN#56 
D,Ta,Tmax,Tmin,Tw,GSR,

RH 
1 5 

LO

G 

0.0000163

2 

0.031

2 
0.1037 

ENN 

ENN#55 
D,Ta,Tmax,Tmin,Tw,GSR,

WS 
1 5 

LO

G 

0.0002411

2 

0.426

0 
0.0148 

ENN#56 
D,Ta,Tmax,Tmin,Tw,GSR,

RH 
1 5 

TA

N 

3.9848E-

07 
0.816

8 
0.0011 

RBFNN 

RBFNN#5

5 

D,Ta,Tmax,Tmin,Tw,GSR,

WS 
- 2 - 

0.0049737

1 

0.426

0 
0.0148 

RBFNN#5

6 

D,Ta,Tmax,Tmin,Tw,GSR,

RH 
- 2 - 

0.0049923

3 

0.597

1 
0.0103 

Model                            Variable HL NN    TF     MSE           R2 RMSE 

                                                                               MFFNN 

MFFNN#57 D,Ta,Tmax,Tmin,Tw,GSR,WS,RH 1 5 LOG 0.000029172 0.0692 0.1160 

                                                                                 CFNN 

CFNN#57 D,Ta,Tmax,Tmin,Tw,GSR,WS,RH 1 5 LOG 9.4502E-07 0.8623 0.0011 

                                                                                    ENN 

ENN#57 D,Ta,Tmax,Tmin,Tw,GSR,WS,RH 1 5 LOG 0.000017782 0.0398 0.1086 

                                                                                  RBFNN 

RBFNN#57 D,Ta,Tmax,Tmin,Tw,GSR,WS,RH - 2 - 0.00499465 0.2662 0.0113 
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Appendix B 

 

Turnitin Similarity Report 

 

 


