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ABSTRACT 
 

 

Genetic Algorithms are a common probabilistic optimization methods based on the 

model of natural evolution. A genetic algorithm mainly composed of three genetic 

operations, which are selection, crossover and mutation operation. Selection operation 

uses some schemes such as proportionate-based selection scheme and ordinal-based 

selection scheme to select “good” individuals from the population to insert into mating 

pool. Then selected individuals from the mating pool are used by a recombination 

operator “crossover and mutation” to generate new fitness offspring for next generation. 

 

This thesis presents the comparison of selection schemes of genetic algorithm in 

numerical optimization with various selection schemes. The simulation results are studied 

by using various test cases. The quantitative analysis of the selection strategies is 

depicted and the numerical experiments show that genetic algorithm with ordinal-based 

selection strategy converges faster than with proportionate-based selection, schemes. But 

for the some multimodal test functions the quality of the solution obtained is better for 

proportionate-based selection schemes than for ordinal-based one. 
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INTRODUCTION 
 

Genetic algorithms are robust and adaptive methods for solving a wide range of the 

global numerical optimization problems [14]. 

 

By using the genetic algorithm to solve a problem, first present the candidate solutions as 

a sequence of values, and define an evaluation function to evaluate the candidate 

solutions. One population consists of a certain number of individuals which serve as 

candidate solutions. New generation of population is created by genetic operations such 

as selection, crossover and mutation in iteration.  

 

According to the Darwinian principles of survival, which is called “the survival of the 

fittest”, the excellent individuals have far more chances to adapt themselves to the 

environment and survive, while the inferior ones die out [8].  The survivals reproduce 

new individuals with better genes which make the new generation more endurable to the 

nature. The genetic algorithm uses this process of reproduction as a basic genetic 

operation for the algorithms.  

 

The genetic algorithm uses a selection scheme to select individuals from the population 

to insert into a mating pool. Individuals from the mating pool are used by a 

recombination operator to generate new offspring, with the resulting offspring forming 

the basis of the next generation. Since the individuals in the mating pool pass their genes 

on to the next generation, it is desirable that the mating pool comprise “good” individuals. 

A selection scheme in the genetic algorithm is simply a process that favors the selection 

of better individuals in the population for the mating pool. The selection operator is 

intended to improve the average quality of the population by giving individuals of higher 

quality a higher probability to be copied in to the next generation. So selection schemes 

are very important for the genetic algorithm to reach the better solutions. 
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There are two basic types of selection schemes commonly used today: proportionate-base 

selection and ordinal-based selection [2].  

 

Proportionate-based selection selects individuals on the basis of their fitness values 

relative to the fitness of the other individuals in the population. Some common 

proportionate-based schemes are proportionate selection (roulette-wheel) [4] and 

stochastic universal selection [12, 6].  

 

Ordinal-based selection schemes select individuals not according to their fitness, but on 

the basis of their rank within the population. The individuals are ranked according to their 

fitness. Some common ordinal-based selection schemes are tournament selection [9, 10], 

linear ranking selection and truncation selection [11]. 

 

The aim of this thesis is comparison of selection schemes of genetic algorithm in 

numerical optimization with various selection schemes such as proportionate-based 

scheme and ordinal-based scheme. For proportionate-based scheme roulette-wheel 

selection, and for ordinal-based scheme binary tournament selection is taken as 

representative because for each group, chosen selection methods has less selection 

intensity for its group. Also for proportionate selection scheme, stochastic universal 

sampling selection method simulated but not considered for the thesis purpose but also its 

simulated test result are given in Appendix A. The simulation results are studied by using 

various test cases such as speed of convergence to the global optimum, and the quality of 

optimal solution.  

 

The first chapter gives brief information about idea of a genetic algorithm and working 

principle step by step. In addition to this, discusses of chromosome representation in 

search space and encoding, decoding, mapping techniques of the parameters in a search 

space.  

 

The second chapter discusses briefly the proportionate-base selection and ordinal-based 

selection schemes. The subsequent titles deal with the selection methods such as, 

 12



proportionate selection, stochastic universal sampling selection, linear ranking selection, 

tournament selection and truncation selection algorithms and gives selection algorithms 

pseudo codes. Also mentions the comparisons of selection schemes according to selection 

intensity and selection probability. 

 

The third chapter shows the recombination operators “crossover and mutation”. 

Crossover techniques such as k point crossover, uniform crossover and order based 

crossover and mutation techniques as flip bit mutation, uniform mutation are given.  

  

The forth chapter describes the test functions “Rosenbrock Function, De Jong’s Function 

1 (Sphere Model), Griewank’s Function, Michalewicz’s Function, Shekel’s Function”. 

The test functions properties and their design are mentions. 

 

The fifth chapter gives information about the designing a computer program for genetic 

algorithm, the genetic algorithm program is written with C programming language and 

discusses program files and program functions. Subtitles give information about 

implementation of genetic algorithm operators and parameter selection for recombination 

operators. 

 

The last chapter gives the computational test results of tournament selection and roulette-

wheel selection. Also comparison of the selection schemes given according to test results 

and analyze. 
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CHAPTER ONE 

GENETIC ALGORITHM 

 

1.1- Genetic Algorithm 
 

The genetic algorithm is a model of machine learning which derives its behavior from a 

metaphor of the processes of evolution in nature. This is done by the creation within a 

machine of a population of individuals represented by chromosomes, in essence a set of 

character strings that are analogous to the base-4 chromosomes that seen in humans DNA.  

The individuals in the population then go through a process of evolution. 

 

In nature, the encoding of genetic information (genome) is done in a way that admits 

asexual reproduction (such as by budding) typically results in offspring that are 

genetically identical to the parent. Sexual reproduction allows the creation of genetically 

radically different offspring that are still of the same general flavor (species). 

 

At the molecular level what occurs is that a pair of chromosomes bump into one another, 

exchange chunks of genetic information and drift apart. This is the recombination 

operation, which genetic algorithm generally refers to as crossover because of the way 

that genetic material crosses over from one chromosome to another. 

 

The crossover operation happens in an environment where the selection of who gets to 

mate is a function of the fitness of the individual, i.e.  How good the individual is at 

competing in its environment. Some genetic algorithms use a simple function of the 

fitness measure to select individuals (probabilistically) to undergo genetic operations 

such as crossover or asexual reproduction [4]. This is fitness-proportionate selection. 

Other implementations use a model in which certain randomly selected individuals in a 

subgroup competes and the fittest is selected [9]. This is called tournament selection. The 

two processes that most contribute to evolution are crossover and fitness based 

selection/reproduction. 
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Mutation also plays a role in this process, although how important its role is continues to 

be a matter of debate (some refer to it as a background operator, while others view it as 

playing the dominant role in the evolutionary process) [13]. It cannot be stressed too 

strongly that the genetic algorithm (as a simulation of a genetic process) is not a random 

search for a solution to a problem (highly fit individual). The genetic algorithm uses 

stochastic processes, but the result is distinctly non-random (better than random). 

 

Generation of initial population 

Evaluate of each individual 

 
 

Figure 1.1- Flowchart of genetic algorithm. 

 

Genetic algorithms are used for a number of different application areas [1]. An example 

of this would be multidimensional optimization problems in which the character string of 

the chromosome can be used to encode the values for the different parameters being 

optimized. 

Termination 
criterion met?

Selection 

Crossover 

Mutation 

Final solution 

Yes

No

 15



In practice, therefore, the implementation of this genetic model of computation by having 

arrays of bits or characters to represent the chromosomes. Simple bit manipulation   

operations allow the implementation of crossover, mutation and other operations. 

Although a substantial amount of research  has  been  performed  on  variable- length  

strings  and  other  structures,  the  majority  of work with genetic algorithm is focused on 

fixed-length character strings.  

 

When the genetic algorithm is implemented it is usually done in a manner that involves 

the following cycle: Evaluate the fitness of all of the individuals in the population. Create 

a new population by performing operations such as crossover, fitness-proportionate 

reproduction and mutation on the individuals whose fitness has just been measured. 

Discard the old population and iterate using the new population. 

 

An iteration of this loop is referred to as a generation. There is no theoretical reason for 

this as an implementation model. Indeed, do not see this punctuated behavior in 

populations in nature as a whole, but it is a convenient implementation model. 

 

The first generation (generation 0) of this process operates on a population of randomly 

generated individuals. From there on, the genetic operations, in concert with the fitness 

measure, operate to improve the population. 

 

1.1.1- Termination Conditions of Genetic Algorithm 

 

The above generational process is repeated until a termination condition has been reached. 

Common terminating conditions are; 

A solution is found that satisfies minimum or maximum criteria. 

Fixed number of generations reached. 

Allocated budget (computation time/money) reached. 

The highest ranking solution's fitness is reaching or has reached a plateau such that 

successive iterations no longer produce better results. 

Combinations of the above conditions. 
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1.1.2- Pseudo Code of Genetic Algorithm 

 

BEGIN GA 

 

   // start with an initial time 

   t := 0; 

   // initialize a usually random population of individuals 

   initpopulation P (t); 

   // evaluate fitness of all initial individuals of population 

   evaluate P (t); 

   // test for termination criterion (time, fitness, etc.) 

   while not done do 

 

    // increase the time counter 

         t := t + 1; 

         // select a sub-population for offspring production 

         P' := selectparents P (t); 

         // recombine the "genes" of selected parents 

         recombine P' (t); 

         // perturb the mated population stochastically 

         mutate P' (t); 

         // evaluate it's new fitness 

         evaluate P' (t); 

         // select the survivors from actual fitness 

         P := survive P, P' (t); 

 

   Od 

 

     END GA. 
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1.2- Working Principle of Genetic Algorithm 
 

Genetic algorithm encodes the decision variables of a search problem into finite-length 

strings of alphabets of certain cardinality. The strings which are candidate solutions to the 

search problem are referred to as chromosomes, the alphabets are referred to as genes and 

the values of genes are called alleles. For example, in contrast to traditional optimization 

techniques, Genetic algorithm works with coding of parameters, rather than the 

parameters themselves [13]. 

 

To evolve good solutions and to implement natural selection needed a measure for 

distinguishing good solutions from bad solutions. The measure could be an objective 

function that is a mathematical model or a computer simulation, or it can be a subjective 

function where humans choose better solutions over worse ones. In essence, the fitness 

measure must determine a candidate solution’s relative fitness, which will subsequently 

be used by the genetic algorithm to guide the evolution of good solutions. 

 

Another important concept of genetic algorithm is the notion of population. Unlike 

traditional search methods, genetic algorithm relies on a population of candidate solutions. 

The population size, which is usually a user-specified parameter, is one of the important 

factors affecting the scalability and performance of genetic algorithms. For example, 

small population sizes might lead to premature convergence and yield substandard 

solutions [14]. On the other hand, large population sizes lead to unnecessary expenditure 

of valuable computational time.  

 

Once the problem is encoded in a chromosomal manner and starts with a set of solutions 

(represented by chromosomes) called population. Solutions from one population are 

taken and used to form a new population. This is motivated by a hope, that the new 

population will be better than the old one. Solutions which are selected to form new 

solutions (offspring) are selected according to their fitness - the more suitable they are the 

more chances they have to reproduce. 
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The genetic algorithm is composed of three genetic operations: selection, crossover and 

mutation .The genetic algorithm uses the steps as below: 

 

Step1. Generate initial random population with n chromosomes. 

Step2. Evaluate the fitness value of each individual in the population. 

Step3. Perform sub-steps as follows to create new population. Repeat until the new 

population is completed. 

3.1. According to the fitness value, individuals are chosen with a probability. 

Replicate the selected ones to form a new population (Selection). 

3.2. Create two new individuals by two parents who are selected probabilistically 

from the population and recombine them at the crossover point (Crossover). 

3.3. Create a new individual by mutating an existing individual with the 

probabilistically selected (Mutation). 

3.4. Place new offspring in a new population (Replacement). 

Step4.  Use new generated population for next generation. 

Step5. If the end condition is satisfied, stop, and return the best solution in current 

population. Else go to step2. 

 

 

1.3- Steps of Genetic Algorithm 
 

Step1. Initialization 

 

The initial population of candidate solutions is usually generated randomly across the 

search space. However, domain specific knowledge or other information can be easily 

incorporated. 

 

Step2. Evaluation  

 

Once the population is initialized or an offspring population is created, the fitness values 

of the candidate solutions are evaluated. 
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Step3. Perform sub-steps as follows to create new population. Repeat until the new 

population is completed. 

 

Step3.1. Selection 

 

Selection allocates more copies of those solutions with higher fitness values and thus 

imposes the “survival of the fittest” mechanism on the candidate solutions.  

 

The main idea of selection is to prefer better solutions to worse ones, and many selection 

procedures have been proposed to accomplish this idea, including roulette-wheel 

selection, stochastic universal selection, linear ranking selection and tournament selection 

(some of the selection methods discussed in chapter 2). 

 

Step3.2. Crossover 

 

Crossover combines parts of two or more parental solutions to create new, possibly better 

offspring. There are many ways of accomplishing this (some of which are discussed in 

chapter 3), and competent performance depends on a properly designed recombination 

mechanism. The offspring under recombination will not be identical to any particular 

parent and will instead combine parental traits in a novel manner. 

 

Step3.3. Mutation 

 

While recombination operates on two or more parental chromosomes, mutation locally 

but randomly modifies a solution. Again, there are many variations of mutation, but it 

usually involves one or more changes being made to an individual’s trait or traits. In 

other words, mutation performs a random walk in the vicinity of a candidate solution 

(some of the mutation techniques are discussed in chapter 3). 
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Step3.4. Replacement Techniques 

 

Once the new offspring solutions are created using crossover and mutation then need to 

introduce them into the parental population. There are many ways to approach this. Bear 

in mind that the parent chromosomes have already been selected according to their fitness, 

so hoping that the children (which include parents which did not undergo crossover) are 

among the fittest in the population and so hope that the population will gradually, on 

average, increase its fitness. Some of the most common replacement techniques are 

outlined below. 

 

3.4.1- Delete All  

 

This technique deletes all the members of the current population and replaces them with 

the same number of chromosomes that have just been created. This is probably the most 

common technique and will be the technique of choice for most people due to its relative 

ease of implementation. It is also parameter-free, which is not the case for some other 

methods. 

 

3.4.2- Steady State  

 

This technique deletes n old members and replaces them with n new members. The 

number to delete and replace, n, at any one time is a parameter to this deletion technique. 

Another consideration for this technique is deciding which members to delete from the 

current population. Delete the worst individuals, pick them at random or delete the 

chromosomes that used as parents. Again, this is a parameter to this technique. 

 

3.4.3- Steady State No Duplicates  

 

This is the same as the steady state technique but the algorithm checks that no duplicate 

chromosomes are added to the population. This adds to the computational overhead but 

can mean that more of the search space is explored. 
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Step4. Use new generated population for next generation. 

 

Step5. Repeat steps 2–6 until a terminating condition is met. 

 

Initialize 
population 

 
 Calculate 

fitnesses 
Population 

Transfer 

 Solution 
found? Offspring 

 
Figure 1.2- This flowchart illustrates the basic steps in a genetic algorithm . 

 

 

1.4- Parameters of Genetic Algorithm 
 

Number of Generation: indicates, how many times the genetic algorithm will be 

repeated. 

Select 
operation 

Stop 
iteration 

Crossover 
operation 

Mutation 
operation 

Yes   No 
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Population Size: indicates, number of chromosomes are in a population. If there are too 

few chromosomes, Genetic Algorithm has a few possibilities to perform crossover and 

only a small part of search space is explored. On the other hand, if there are too many 

chromosomes, Genetic Algorithm slows down. Also if the population size is too small, 

the genetic algorithm may not explore enough of the solution space to consistently find 

good solutions [17]. Figure 1.3 indicates a population which has 3 chromosomes and 

each chromosome has 5 genes. 

 
Figure 1.3- Chromosome and gene representation in a population. 

 

Chromosome Length: Each chromosome represents a point in the search space and is 

composed of a string of genes. The binary alphabet {0, 1} is often used to represent these 

genes but sometimes, depending on the application, integers or real numbers are used. In 

fact, almost any representation can be used that enables a point to be encoded as finite 

length string. Figure 1.3 indicates chromosomes length as 5 (genes). 

 

* m  bit string parameters each of length bit n

 

Example: 5*10 bits 

 

[[0001010101]p1[0101010101]p2[1110010101]p3[0101100001]p4[1111110000]]p5 

 

 

 

 

0 1 0 0 0 1 01 1 1 1 0 0 0 1 1 0 0 

Gene
Chromosome 

Population 
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* Single parameter bits of length bit n

 

Example: 50 bits 

 

[00010101010101010101111001010101011000011111110000]p1 

 

Crossover probability: indicates, how often the crossover will be performed. If there is 

no crossover, offspring is exact copy of parents. If there is a crossover, offspring is made 

from parts of parents “chromosome”. If crossover probability is equal to 1, then all 

offspring is made by crossover. If it is equal to 0, whole new generation is made from 

exact copies of chromosomes from old population (but this does not mean that the new 

generation is the same). 

 

Crossover is made in hope that new chromosomes will have good parts of old 

chromosomes and maybe the new chromosomes will be better. However it is good to 

leave some parts of population survive to next generation. 

 

Mutation probability: indicates, how often the parts of the chromosome will be mutated. 

If there is no mutation, offspring is taken after crossover (or copy) without any change. If 

mutation is performed, part of chromosome is changed. If mutation probability is equal to 

1, whole chromosome is changed, if it is equal to 0, nothing is changed. 

Mutation is made to prevent falling genetic algorithm into local extreme, but it should not 

occur very often, because then genetic algorithm will in fact change to random search. 

 

 

1.5- Representation of a Chromosome in Search Space 
 

While solving some problem, usually looking for some solution, which will be the best 

among others. The space of all feasible solutions is called search space. Each point in the 

search space represents one feasible solution. Each feasible solution can be "marked" by 

its value or fitness for the problem. Looking for solution which is the one point (or more) 
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among feasible solutions - that is one point in the search space. And the looking for a 

solution is then equal to a looking for some extreme (minimum or maximum) in the 

search space.  

 

Each individual in a genetic algorithm population is represented by a chromosome. In 

nature this chromosome contains genetic information relating to each individual 

characteristic. For simple genetic algorithms the chromosome is often represented as a 

binary string. But representation is depends on the problem.  

 

1.5.1- Encoding and Decoding of Parameters in Genetic Algorithm 

 

The mapping from phenotype to the genotype space is encoding process. The inverse 

mapping from genotypes to phenotypes is usually called decoding. 

 

Phenotype space Genotype space={
 L}1,0

 
   Figure 1.4- Decoding and encoding process. 

 

1.5.2- Parameter Mapping  

 

z ∈ [x,y] ⊆ ℜ represented by ∈  },...,{ 1 Laa L}1,0{  

 

L = number of binary bits in each individual. 

Encoding 
(representation) 

Decoding (inverse 
representation) 

100111 

100101 

100101 

010101 
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[x,y] →  must be invertible (one phenotype per genotype). L}1,0{

 

Γ: → [x,y] defines the representation. L}1,0{

 

( ) [ ]yxaxyxaa j
L

j
jLLL ,2..

12
,...,

1

0
1 ε⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−
−

+=Γ ∑
−

=
−  

 

Only  values out of infinite are represented. L determines possible maximum precision 

of solution. High precision requires long chromosomes (but makes slow evolution). 

L2

 

Let’s look at a specific example, and see how the analogy would apply to finding the 

minimum of the function. The polynomial to be minimized is: 

 

124209 234 −+−+= xxxxy  

 

This is the objective function, and has a single parameter x. When using a genetic 

algorithm, the parameters are represented as bit strings, and so the length of the string as 

well as the possible bounds on the parameter must be specified. A length of 10 bits will 

be assumed, and x will be allowed to range between -10 and +10. This means, for 

example, that the bit string “0000000000” will correspond to the value -10. Some 

function to perform the mapping between integer and bit string must exist: it will be 

called encode.  

 

The encode function assigns parameter values to bit strings in an obvious way. If the 

parameter is an integer, its value is simple the bit string interpreted as such. If the 

parameter is real, a fixed point representation is used, wherein each increment to the bit 

string corresponds to a real increment in the parameter. In this case, as an example, the 

range is 20.0, which is to be stored in 10 bits. The number of different bit strings of 10 

bits is 210, or 1024; thus, the increment is 20.0/1024, or 0.01953125. The space of real 

values allowed by this representation is: 
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0000000000 - 10.0 

0000000001 - 9.980469 

0000000010 - 9.960938 

. . . 

1000000000 - 0.00 

1000000001 - 0.019531 

. . . 

1111111111 - 9.980469 

 

Note that 10.0 is not a represent able value. Parameters cannot have a value between two 

consecutive increments, because the representation does not permit it. Therefore the 

choice of chromosome size limits the accuracy of the final result.  

 

The next step is the creation of a population. Initially, a population consisting of 

randomly generated bit strings is used. The size of the population, which is the number of 

randomly generated bit strings, is also a parameter to the algorithm. Now each bit string 

parameter (gene) is passed as a parameter to the objective function, and the result is a 

measure of the gene’s fitness; in this case, large values correspond to poor fitness, and 

vice versa. The best P percent of the parameters can reproduce, where a value for P must 

also be specified to the genetic algorithm, and the remainder of the parameters will not be 

propagated into the next generation (iteration). 

 

1.5.3- Encoding Multi Parameters 

 

Suppose n parameters: ; ),...,,( 21 nxxxf

Encode each parameter from full binary string then concatenate encoded parameters to 

form a chromosome. 

 

1.5.4- Decoding Multi Parameters 

Decode each parameter and then calculate function value 
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CHAPTER 2 

SELECTION OPERATORS 

 

2.1- Selection Schemes 
 

Genetic algorithms use a selection scheme to select individuals from the population to 

insert into a mating pool. Individuals from the mating pool are used by a recombination 

operator to generate new offspring, with the resulting offspring forming the basis of the 

next generation. 

 

Since the individuals in the mating pool pass their genes on to the next generation, it is 

desirable that the mating pool comprise “good” individuals. A selection scheme in 

genetic algorithms a simply a process that favors the selection of better individuals in the 

population for the mating pool. The selection pressure is the degree to which the better 

individuals are favored: the higher the selection pressure, the more the better individuals 

are favored. This selection pressure drives the genetic algorithm to improve the 

population fitness over succeeding generations [30]. 

 

The convergence rate of a genetic algorithm is largely determined by the magnitude of 

the selection pressure, with higher selection pressures resulting in higher convergence 

rates. Genetic algorithms are able to identify optimal or near-optimal solutions under a 

wide range of selection pressure values [30]. However, if the selection pressure is too low, 

the convergence rate will be slow, and the genetic algorithm will unnecessarily take 

longer to find the optimal solution. If the selection pressure is too high, there is an 

increased chance of the genetic algorithm prematurely converting to a suboptimal 

solution. In addition to providing selection pressure, selection schemes should also 

preserve population diversity because this held to avoid premature convergence. 
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2.1.1- Basic Selection Schemes 

  

There are two basic types of selection schemes commonly used today: proportionate-base 

selection and ordinal-base selection [18].  

 

Proportionate-based selection scheme selects individuals on the basis of their fitness 

values relative to the fitness of the other individuals in the population. Some common 

proportionate-based selection schemes are proportionate selection [4, 7], stochastic 

universal sampling selection [5, 6].  

 

Ordinal-based selection scheme selects individuals not according to their fitness, but on 

the basis of theirs rank within the population. The individuals are ranked according to 

their fitness. This entails that the selection pressure is independent of the fitness 

distribution of the population and is solely based on the relative ordering (ranking) of the 

population. Some common ordinal-based selection schemes are tournament selection [9, 

10, and 27], truncation selection [11] and linear ranking selection [18].  

 

 

2.2- Proportionate-Base Selection 
 

Proportionate-based selection selects individuals according to their fitness values relative 

to the fitness of the other individuals in the population. 

 

2.2.1- Proportionate (Roulette-Wheel) Selection  

 

Proportionate selection is also known as roulette-wheel selection which is the original 

selection method proposed for genetic algorithms by Holland [4]. This method can be 

represented as a game of roulette-wheel. According to game of roulette-wheel, wheel is 

partitioned into several sectors in different area corresponding to different amount of 

money. When spun of the roulette-wheel stops, the sector which the pointer points at is 

chosen and the player gets the amount of money corresponding to the sector. Although 
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can't estimated which sector the pointer will point to but known sectors are proportional 

to the magnitude of the central angle of the sectors. The bigger central angle of the sector 

is the higher probability the pointer will point at the sector.  

 

Similarly, in the roulette-wheel selection method, the whole population is partitioned by 

the individuals, each sector representing an individual. The proportion of the individual's 

fitness value to the total fitness values of the whole population decides the area of the 

sector corresponding to the individual and decides the probability of the individual to be 

selected for the next generation. 

 

Input: The population )(τP   

Output: The population after selection  ')(τP

Proportional ( ): NJJ ,...,1

  00 ←s

 for  to  do 1←i N

  
M
f

ss i
ii +← −1  

od 

for  to do 1←i N

  [ ]Nsrandomr ,0←

  such that li JJ ←'
ll srs ≤≤−1  

return  },...,{ ''
1 NJJ

 

Figure 2.1- Pseudo code of proportionate selection. 
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START

j=0 

j++ 

Calculate sum of fitness 
sumfitness+=pop[j].fitness 

 
j<popsize 

Spin Roulete-Wheel 
rand=sumfitness*random(0,1) 

partsum=0 
i=0 

 
Figure 2.2- Flowchart of roulette-wheel Selection 

 

partsum<rand 
&& 

i++<popsize 

partsum=partsum+pop[i].fitness 

i++ 

select (i-1) 

STOP
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The selection performs following the steps as below: 

 

Step 1 : Calculate sum of the fitness value of every individual in the population. 

Step 2 : Calculate the proportion of each individual’s fitness value to the sum of fitness 

value of all individuals in the population. The proportions of individuals represent the 

probability of the individuals to be selected.  

 

Step 3 : Spin the roulette-wheel n times where n is the number of individuals of the 

population. When the spun roulette stops, the sector where pointer pointing at represents 

the corresponding individual being selected. 

 

As an example;  

 

Step1: Calculate sum of the fitness value of every individual in the population. 

 

Table 2.1- Individuals fitness values for roulette-wheel selection. 

 

Individuals Chromosome Value X1 Fitness % of Total 

1 1111100001 543 0.307918 0.478978 0.426898 

2 0001010100 168 -3.357771 18.990170 16.92534 

3 1100011100 227 -2.781036 14.296234 12.74178 

4 0101101011 858 3.387097 5.698232 5.078654 

5 0001001110 456 -0.542522 2.379374 2.120661 

6 1011110101 701 1.852395 0.726577 0.647575 

7 1100100000 19 -4.814272 33.805759 30.13 

8 0111000000 14 -4.863148 34.376503 30.63869 

9 1110101001 599 0.855327 0.020930 0.018654 

10 0000011101 736 2.194526 1.426892 1.271744 

SUM of 
Fitness 

SUM of 
individuals 
percentage 

 

112.1996 100 
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Step 2: Calculate the proportion of each individual’s fitness value to the sum of fitness 

value of all individuals in the population. The proportions of individuals represent the 

probability of the individuals to be selected.  

 
 

Figure 2.3- Proportions of individuals in a population. 

 

Weakest individual “9” has smallest area on the wheel. Fittest individual “8” has largest 

area on the wheel. 

 

Step 3: Spin the roulette-wheel n times where n is the number of individuals of the 

population. When the spun roulette stops, the sector where pointer pointing at represents 

the corresponding individual being selected. 

 

2.2.2- Stochastic Universal Sampling Selection 

 

Stochastic universal sampling selection [12] provides zero bias and minimum spread. The 

individuals are mapped to contiguous segments of a line, such that each individual's 

segment is equal in size to its fitness exactly as in roulette-wheel selection.  

 

Here equally spaced pointers are placed over the line as many as there are individuals to 

be selected. Consider NPointer the number of individuals to be selected, then the distance 

between the pointers are 1/NPointer and the position of the first pointer is given by a 

randomly generated number in the range [0, 1/NPointer]. 
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Input: The population )(τP  and the reproduction rate for each fitness value [ ]NRi ,0ε . 

Output: The population after selection  ')(τP

SUS : ( )NN JJRR ,...,,,..., 11

  0←sum

  1←j

  [ )1,0randomptr ←

 for  to  do 1←i N

   where is the reproduction rate of individual  iRsumsum +← iR iJ

  while do )( ptrsum >

    ij JJ ←'

    1+← jj

   1+← ptrptr  

  od 

            od 

return  },...,{ ''
1 NJJ

 

Figure 2.4- Pseudo code of stochastic universal sampling selection. 

 

For 6 individuals to be selected, the distance between the pointers is 1/6=0.167. Figure 

2.5 shows the selection for the above example in section 2.2.1. Sample of 1 random 

number in the range [0, 0.167]:  0.1 

 

 
 

Figure 2.5- Stochastic universal sampling selection example. 
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After selection the mating population consists of the individuals: 1, 2, 3, 4, 6, and 8. 

Stochastic universal sampling selection ensures a selection of offspring which is closer to 

what is deserved then roulette-wheel selection. 

 

 

2.3- Ordinal-Base Selection 
 

Ordinal-based selection schemes select individuals not according to their fitness, but on 

the basis of their rank within the population. The individuals are ranked according to their 

fitness. This entails that the selection pressure is independent of the fitness distribution of 

the population and is solely based on the relative ordering (ranking) of the population. 

 

2.3.1- Tournament Selection 

 

The basic idea of this strategy is to select the individual with the highest fitness value 

from a certain number of individuals in the population. In the tournament selection, there 

is only comparison between individuals by fitness value [9]. The number of the 

individuals taking part in the tournament is called tournament size for binary tournament 

selection tournament size is 2. 

 

Input: The population )(τP  the tournament size T },...,2,1{ Nε  

Output: The population after selection  ')(τP

Tournament : ( )NJJt ,...,, 1

 for  to  do 1←i N

←'
iJ best fit individual out of t  randomly picked individuals from  },...,{ 1 NJJ

od 

return  },...,{ ''
1 NJJ

 

Figure 2.6- Pseudo code of tournament selection. 
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Figure 2.7- Flowchart of binary tournament selection. 

 

 

START Current population 
to “pot” 

Select individuals 
randomly  and  1x 2x

Select individuals 
randomly  and  3x 4x

Select individuals 
randomly  and  12 −nx nx2

1x 2x 3x 4x 12 −nx nx 2

 
1x <  2x

 

“Pot” 
Empty? 

 
12 −nx <  nx2

 

 
3x <  4x

 

STOP 

Survivor to parent 
“pool” 

no yes no yes no yes

 
“Pool” full? 

 

yes

no

no 
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The selection performs following the steps as below:  

 

Step 1: Randomly select several individuals “tournament size=2” from the population to 

take part in the tournament. Choose the individual that has the highest fitness value from 

the individuals selected above by comparing the fitness value of each individual. Then 

the chosen one is copied for the next generation of the population.  

 

Step 2: Repeat step1 n time where n is the number of individuals of the population. 

  

As an example; 

 

Step 1: Randomly select 2 (tournament size) individuals from the population. 

 

Table 2.2- Individuals fitness values of tournament selection. 

 

Individuals Chromosome Value X1 Fitness 

1 1111100001 543 0.307918 0.478978 

2 0001010100 168 -3.357771 18.990170 

3 1100011100 227 -2.781036 14.296234 

4 0101101011 858 3.387097 5.698232 

5 0001001110 456 -0.542522 2.379374 

6 1011110101 701 1.852395 0.726577 

7 1100100000 19 -4.814272 33.805759 

8 0111000000 14 -4.863148 34.376503 

9 1110101001 599 0.855327 0.020930 

10 0000011101 736 2.194526 1.426892 

 

1st individual = 1.426892 and 2nd individual = 5.698232 

Compare first and second and choose highest fitness. 

 

Step 2: Repeat step 1 up to population size. 
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2.3.2- Truncation Selection 

 

In truncation selection [11] individuals are sorted according to their fitness. Only the best 

individuals are selected for parents. These selected parents produce uniform at random 

offspring. The parameter for truncation selection is the truncation threshold Trunc.  

 

Trunc indicates the proportion of the population to be selected as parents and takes values 

ranging from 50%-10%. Individuals below the truncation threshold do not produce 

offspring [11].  

 

Input: The population )(τP  the truncation threshold T },...,2,1{ Nε  

Output: The population after selection  ')(τP

Truncation ( ) : NJJT ,...,, 1

←J Sorted population J according fitness with worst individual at the 

first position. 

 for  to  do 1←i N

  ( )[ ]},...,1{ NTrandomr −←

←'
iJ rJ  

od 

return  },...,{ ''
1 NJJ

 

Figure 2.8- Pseudo code of truncation selection. 

 

2.3.3- Linear Ranking Selection 

 

For rank selection the individuals in the population are sorted to the objective values and 

the rank N is assigned to the best individual and the rank 1 to the worst individual. 

Consider N is the number of individuals in the population and the selection probability is 

linearly assigned to the individuals according to their rank: 
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( ) ⎟
⎠
⎞

⎜
⎝
⎛

−
−

−−=
1

1*min_max_max_*1)(
N
inununu

N
ip   

 

where 2max_1 ≤≤ nu ; 

.  max_2min_ nunu −=

max_nu = rank factor (maximum 2). 

 

Input: The population )(τP  and the reproduction rate of the worst individual  [ ]1,0εη −

Output: The population after selection  ')(τP

Linear Ranking ( )NJJ ,...,, 1
−η  

 ←J Sorted population J according fitness with worst individual at the position 

  00 ←s

 for  to  do 1←i N

   iii pss +← −1

 od 

 for  to  do 1←i N

  [ [Nsrandomr ,0←  

  li JJ ←'  such that ll srs <≤−1  

 od 

return }{ ''
1 ,..., NJJ  

 

Figure 2.9- Pseudo code of linear ranking selection. 
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2.3- Comparison of Selection Schemes 
 

This section, analyses the comparative performance of the genetic algorithm on ordinal-

based selection and proportionate-based selection, according to selection probability and 

selection intensity. 

 

2.3.1- Selection Probability 

 

2.3.1.1- Selection Probability for Tournament Selection 

 

Tournament selection computes selection probabilities based only on a random subset of 

the whole population. The size of the subset is often referred to as the tournament size. 

The selection probability can be determined by one or more tournaments. That is, more 

than one tournament can be held in order to determine the selection probability of an 

individual. Different tournaments are independent of each other and can be held in 

parallel [28, 30, and 3]. 

 

2.3.1.2- Selection Probability for Linear Ranking Selection 

 

In ranking selection at each generation, the individuals in the population are sorted 

according to their fitness and each individual is assigned a rank in the sorted population. 

The worst individual gets the rank 1 while the best receives the rank N (N = population 

size). The selection probabilities of the individuals (k=1,…,N) are given by some 

function(most commonly, linear) of their rank. 

kx

Let ( ) ( ) ( ) }{ t
N

tt xxx ,...,, 21 denote the population at generation t.  Then in linear ranking 

selection the probabilities of selecting individual ),...,2,1( Nkxk = is given by 

 

( )( )
( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
+=

)1)(min)((max
min1 t

kt
k

xrank
N

xp  
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Where and 2minmax =+ 2max1 ≤≤ .The ( )( ){ }t
kxp is a proper probability distribution 

(  for each t), and sampling N individuals according to this probability 

distribution yields the next generation. 

( )( ) 1
1

=∑ =

N

k
t

kxp

 

 

2.3.1.3- Selection Probability for Roulette-Wheel Selection 

 

Roulette-wheel selection calculates the selection probability of an individual using the 

individual’s fitness directly. Let ,if ni ≤≤1 , be the fitness of n individuals in a 

population. Then the probability of selecting individual i as a parent is : 

∑ =

= n

j j

i
i

f

f
p

1

  

 

 

2.3.1.4- Selection Probability for Stochastic Universal Sampling Selection 

 

Suppose the population size is N. The selection probability of an individual uses the 

individual’s fitness. In stochastic universal sampling selection the wheel is first divided 

into N sections according to selection probability of individual i 
∑ =

= N

j j

i
i

favg

f
p

1

so the 

central angle of that sector is ipπ2 .Then one random number rand within the interval (0, 

1) is generated and the pointers begin to rotate a certain angle from the base  one by 

one. Pointer i should rotate the angle of

o0

( ) ),...,1(,/2* N1*2 Niirand =−+ ππ . If the 

sector i contains one pointer after rotation, the individual i will be selected twice in the 

selection operation. Under this principle exactly N individuals will be selected but only 

one random number is needed. 
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2.3.1.5- Comparison of Selections Probability 

 

Although roulette wheel selection and stochastic universal sampling selection is simple, it 

suffers from problems of super individuals and slow convergence. In a population where 

a few individuals (super individuals) have a substantially higher fitness than others, these 

super individuals will quickly dominate the whole population due to their extremely high 

selection probabilities. Such dominance prevents the population from exploring other 

regions of the search space. If a super individual is a global optimum, this is good news. 

Or else it is a disaster. On the other hand, if the fitter individuals in a population have 

very similar fitness, they will have very similar selection probabilities. Hence it will be 

very slow for the population to converge to the best one. In general, the selection pressure 

induced by roulette wheel selection fluctuates too much as the fitness distribution in a 

population changes. It is very difficult to make a suitable trade-off between achieving 

faster global convergence and avoiding premature convergence [28, 30].  

 

 

2.3.2- Selection Intensity 

 

The selection intensity I  measures the magnitude of the selection pressure provided by a 

selection scheme [30]. The selection intensity of genetic algorithm, as defined by 

Mühlenbein and Schierkamp-Voosen [11], is expected average fitness of a population 

after selection is performed on a population whose fitness is distributed according to the 

unit normal distribution . )1,0(N

 

If the selection intensity I of a selection scheme is known, and the population fitness at 

generation  is distributed  , the expected mean fitness of a population after 

selection can be determined: 

t ),( 2
ttN σμ

ttt σμμ Ι+=+1  

an important assumption of this model is that population fitness is normally distributed 

before selection. In practice, this is true or approximately true for many domains because 
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recombination and mutation operators have a normalizing effect on the population fitness 

distribution. 

 

2.3.2.1- Selection Intensity for Tournament Selection 

 

Bäck (1995) [27] and Miller and Goldberg (1996) [18] independently applied order 

statistics to derive the selection intensity for tournament selection. The order statistics are 

for the unit normal distribution  ; thus,)1,0(N ji,μ  represents the expected value of the 

th biggest sample from a sample of size i j drawn from the unit normal distribution. The 

maximal order statistics ss:μ  determines the selection pressure of a tournament of size s.  

 

2.3.2.2- Selection Intensity for Linear Ranking Selection 

 

The study by Bäck (1995) also derives the selection intensity for ( )λμ,  selection [18]. In 

( )λμ,  selection, the best μ  individuals are selected from a random sample sizeλ . The 

selection pressure is simply the mean of the top μ th-order statistics of sample sizeλ . 

The selection intensity of linear ranking is given by Blickle and Thiele (1995), where  

denotes the number of desired copies of the best individual. Linear ranking selects each 

individual in the population with a probability linearly proportional to the rank of the 

individual. Implicit in the selection intensity value for linear ranking is that , 

and , where  is the number of desired copies of the worst individual. 

+n

21 ≤≤ +n

2=+ −+ nn −n

 

2.3.2.3- Selection Intensity for Proportionate-Based Selections 

 

Mühlenbein and Schlierkamp-Voosen [11] derived the selection intensity for 

proportionate-based schemes, which directly depends on the current mean tμ  and 

standard deviation tσ of the population in generation . Proportionate selection selects 

individuals for the mating pool with a probability directly proportional to the individuals’ 

fitness. The selection intensity equation for proportionate selection is used to predict the 

t
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performance of stochastic universal sampling selection, one of a handful of different 

proportionate selection schemes. The selection intensity of proportionate selection is 

unique in that it is the only one that is sensitive to the current population distribution.  

 

2.3.2.4- Comparison of Selections Intensity 

 

According to Table 2.3 the selection intensity in proportional selection decreases with the 

inverse of the average fitness and proportionately to the standard deviation. The closer 

the population comes to the optimum, the less severe is the selection. Proportionate 

selection is afraid of reaching the goal. The selection intensity in tournament selection is 

proportional with the average fitness of tournament size and in linear ranking selection 

each individual in the population with a probability linearly proportional to the rank of 

the individual. This result explains why proportionate-base selections are not a good 

strategy for optimization purposes. 

 

Table 2.3 gives the selection intensity for tournament, linear ranking and proportionate 

selection schemes.  

 

Table 2.3- Comparison of selection schemes according to selection intensity. 

 

Selection Scheme Parameters Selection Intensity I  

Tournament selection s  ss:μ  

Linear ranking selection +n  ( )
π
11−+n  

Proportionate-base 

selections 
tt μσ ,  tt μσ /  
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CHAPTER 3 

RECOMBINATION OPERATORS 

 
The next step is to generate a second generation population of solutions from those 

selected through genetic operators: crossover (also called recombination) and/or mutation. 

 

For each new solution to be produced, a pair of "parent" solutions is selected for breeding 

from the pool selected previously. By producing a "child" solution using the below 

methods of crossover and mutation, a new solution is created which typically shares 

many of the characteristics of its "parents". New parents are selected for each child, and 

the process continues until a new population of solutions of appropriate size is generated. 

These processes ultimately result in the next generation population of chromosomes that 

is different from the initial generation. Generally the average fitness will have increased 

by this procedure for the population, since only the best organisms from the first 

generation are selected for breeding, along with a small proportion of less fit solutions, 

for reasons already mentioned above [17]. 

 

3.1- Crossover Operators 
 

After selection, the crossover process is used to breed a pair of children “offspring” from 

a pair of parents. The idea behind crossover operation is that, the new offspring may be 

better than both of the parents if it takes the best characteristics from each of the parents.  

 

Crossover operation is a probabilistic operation, flipping a coin according to user defined 

crossover probability is determined if the operation will be performed or not. If the result 

is true new chromosomes are generated otherwise copies of the parents are retuned as 

children and also crossover probability defines how often will be crossover performed.  
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3.1.1- K-Point Crossover 

 

One Point and Two Point Crossover 

 

One-point and two-point crossovers are the simplest and most widely applied crossover 

methods.  

 

In one-point crossover, as illustrated in Figure 3.1, a crossover point is selected at random 

over the string length, and the alleles on one side of the site are exchanged between the 

individuals.  

 

The one point crossover takes two vectors; 

 

( )naaaindividual ,....,,1 21=  

( )nbbbindividual ,...,,2 21=  

Then generate a random number k where 11 −≤≤ nk , this means that both vectors are 

split at the same point and assembled with swapped second parts. 

 

( )nkk bbaaoffspring ,...,,,...,1 11 +=  

( )nkk aabboffspring ,...,,,...,2 11 +=  

 

Consider the following two individual with 6 binary variables each: 

 

0001001 =individual  

1011112 =individual  

 

The chosen crossover position is: 

Cross position (m=1) = 2 

After crossover the new individuals are created: 
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0011111 =offspring  

1001002 =offspring  

 

 
 

Figure 3.1- One point crossover. 

 

In two-point crossover, two crossover points are randomly selected, as in one point 

crossover. The alleles between the two sites are exchanged between the two randomly 

paired individuals. Two-point crossover is as illustrated in Figure 3.2.  

 

Two points crossover takes two vectors: 

 

( )naaindividual ,...,1 1=  

( )nbbindividual ,...,2 1=  

 

-Then generate two random number i and j where 11 −≤<≤ nji , this means that both 

vectors are split at the same two points and assembled with swapped middle parts. 

 

( )njjii aabbaaoffspring ,...,,,...,,,...,1 111 ++=  

( )njjii bbaabboffspring ,...,,,...,,,...,2 111 ++=  

 

Consider the following two individual with 6 binary variables each: 

 

0001001 =individual  

1011112 =individual  
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The chosen crossover position is: 

Cross position (m=2) = 2 & 6 

 

After crossover the new individuals are created: 

 

0011101 =offspring  

1001012 =offspring  

 

 
 

Figure 3.2- Two point crossover. 

 

The concept of one-point crossover can be extended to k-point crossover, where k 

crossover points are used, rather than just one or two.  

 

The idea behind multi-point, and indeed many of the variations on the crossover operator, 

is that parts of the chromosome representation that contribute most to the performance of 

a particular individual may not necessarily be contained in adjacent substrings.  

 

Further, the disruptive nature of multi-point crossover appears to encourage the 

exploration of the search space, rather than favoring the convergence to highly fit 

individuals early in the search, thus making the search more robust. 

 

3.1.2- Uniform Crossover 

 

Single and multi-point crossover defines cross points as places between loci where an 

individual can be split. Uniform crossover generalizes this scheme to make every locus a 
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potential crossover point. A crossover mask, the same length as the individual structure is 

created at random and the parity of the bits in the mask indicate which parent will supply 

the offspring with which bits [19, 20]. 

 

Consider the following two individuals with 6 binary variables each: 

 

0001001 =individual  

1011112 =individual  

 

For each variable the parent who contributes its variable to the offspring is chosen 

randomly with equal probability. Here, the offspring 1 is produced by taking the bit from 

parent 1 if the corresponding mask bit is 1 or the bit from parent 2 if the corresponding 

mask bit is 0. Offspring 2 is created using the inverse of the mask, usually. 

 

100001=mask  

 

After crossover the new individuals are created: 

 

1001011 =offspring  

0011102 =offspring  

 

 
Figure 3.3- Uniform crossover. 

 

Uniform crossover, like multi-point crossover, has been claimed to reduce the bias 

associated with the length of the binary representation used and the particular coding for 

a given parameter set. This helps to overcome the bias in single-point crossover towards 
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short substrings without requiring precise understanding of the significance of the 

individual bits in the individual representation.  

 

Demonstrated how uniform crossover may be parameterized by applying a probability to 

the swapping of bits. This extra parameter can be used to control the amount of disruption 

during recombination without introducing a bias towards the length of the representation 

used. 

  

3.1.3- Uniform Order Based Crossover 

 

The k-point and uniform crossover methods described above are not well suited for 

search problems with permutation codes such as the ones used in the traveling salesman 

problem. They often create offspring that represent invalid solutions for the search 

problem. Therefore, when solving search problems with permutation codes, a problem- 

specific repair mechanism is often required (and used) in conjunction with the above 

recombination methods to always create valid candidate solutions.  

 

Another alternative is to use recombination methods developed specifically for 

permutation codes, which always generate valid candidate solutions. Several such 

crossover techniques are described in the following paragraphs starting with the uniform 

order-based crossover. In uniform order-based crossover, two parents (say P1 and P2) are 

randomly selected and a random binary template is generated (see Figure 3.4).  

 

Some of the genes for offspring C1 are filled by taking the genes from parent P1 where 

there is a one in the template. At this point C1 partially filled, but it has some “gaps”. The 

genes of parent P1 in the positions corresponding to zeros in the template are taken and 

sorted in the same order as they appear in parent P2. The sorted list is used to fill the gaps 

in C1. Offspring C2 is created by using a similar process (see Figure 3.4). 
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Figure 3.4- Uniform order based crossover. 

 

3.1.4- Order Based Crossover 

 

The order-based crossover operator [21] is a variation of the uniform order-based 

crossover in which two parents are randomly selected and two random crossover sites are 

generated (see Figure 3.5). The genes between the cut points are copied to the children. 

Starting from the second crossover site copy the genes that are not already present in the 

offspring from the alternative parent (the parent other than the one whose genes are 

copied by the offspring in the initial phase) in the order they appear.  

 

For example, as shown in Figure 3.5,  for offspring C1, since alleles C, D, and E are 

copied from the parent P1, get alleles B, G, F,  and A from the parent P2. Starting from 

the second crossover site, which is the sixth gene, copy alleles B and G as the sixth and 

seventh genes respectively. Then wrap around and copy alleles F and A as the first and 

second genes.  
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Figure 3.5- Order based crossover. 

 

3.1.5- Partially Matched Crossover (PMX) 

 

Apart from always generating valid offspring, the PMX operator [29] also preserves 

orderings within the chromosome. In PMX, two parents are randomly selected and two 

random crossover sites are generated. Alleles within the two crossover sites of a parent 

are exchanged with the alleles corresponding to those mapped by the other parent.  

 

For example, as illustrated in Figure 3.6 (reproduced from Goldberg [14] with 

permission), looking at parent P1, the first gene within the two crossover sites, 5, maps to 

2 in P2. Therefore, genes 5 and 2 are swapped in P1. Similarly swap 6 and 3, and 10 and 

7 to create the offspring C1. After all exchanges it can be seen that have achieved a 

duplication of the ordering of one of the genes in between the crossover point within the 

opposite chromosome, and vice versa. 
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Figure 3.6- Partially matched crossover. 

 

3.1.6- Cycle Crossover (CX) 

 

To describing cycle crossover [15] with help of a simple illustration reproduced from 

Goldberg [14] with permission). Consider two randomly selected parents P1 and P2 as 

shown in Figure 3.7 that are solutions to a traveling salesman problem. The offspring C1 

receives the first variable (representing city 9) from P1. Then choose the variable that 

map onto the same position in P2. Since city 9 is chosen from P1 which maps to city 1 in 

P2, choose city 1 and place it into C1 in the same position as it appears in P1 (fourth 

gene), as shown in Figure 3.7. City 1 in P1 now maps  to city 4 in P2, so place city 4 in 

C1 in the same position it occupies in P1 (sixth gene). Continue this process once more 

and copy city 6 to the ninth gene of C1 from P1. At this point, since city 6 in P1 maps to 

city 9 in P2, take city 9 and place it in C1, but this has already been done, so completed a 

cycle; which is where this operator gets its name. The missing cities in offspring C1 is 

filled from P2. Offspring C2 is created in the same way by starting with the first city of 

parent P2 (see Figure 3.7).  
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Figure 3.7- Cycle crossover. 

 

 

3.2- Mutation Operators 
 

Mutation is a genetic operator that alters one ore more gene values in a chromosome from 

its initial state. This can result in entirely new gene values being added to the gene pool. 

With these new gene values, the genetic algorithm may be able to arrive at better solution 

than was previously possible.  

 

Mutation is an important part of the genetic search as help helps to prevent the population 

from stagnating at any local optima. Mutation occurs during evolution according to a 

user-definable mutation probability. This probability should usually be set fairly low. If it 

is set to high, the search will turn into a primitive random search. 
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3.2.1- Flip Bit Mutation 

 

A mutation operator that simply inverts the value of the chosen gene (0 goes to 1 and 1 

goes to 0). This mutation operator can only be used for binary genes. 

 

For binary valued individuals mutation means the flipping of variable values, because 

every variable has only two states. Thus, the size of the mutation step is always 1. For 

every individual the variable value to change is chosen (mostly uniform at random). 

Figure 3.8 shows an example of a binary mutation for an individual with 11 variables, 

where variable 4 is mutated. 

 

 
 

Figure 3.8- Flip bit mutation. 

 

3.2.2- Boundary Mutation 

 

A mutation operator that replaces the value of the chosen gene with either the upper or 

lower bound for that gene (chosen randomly).  

 

At random choose Niε . Set either ii xX =  or  ii xX =  , with probability ½ of using each 

value. 

 

3.2.3- Uniform Mutation 

 

Uniform mutation changes the value of the element to a value chosen from the uniform 

distribution on the interval between the lower and upper bounds specified for the element 
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At random choose Niε . Select a value ~ix ( )ii xxU , . Set ii xX =  

 

3.2.4- Non-Uniform Mutation 

 

A mutation operator that increases the probability that the amount of the mutation will be 

close to 0 as the generation number increases. This mutation operator keeps the 

population from stagnating in the early stages of the evolution then allows the genetic 

algorithm to fine tune the solution in the later stages of evolution. This mutation operator 

can only be used for integer and float genes. 

 

At random choose i Є N. Compute p = (1-t/T)  u, where t is the current generation 

number, T is the maximum number of generations, B>0 is a tuning parameter 

and . Set either 

B

)1,0(~ Uu iii xpxpX +−= )1(  or iii xpxpX +−= )1( , with probability ½ 

of using each value. 

 

3.2.5- Gaussian Mutation 

 

A mutation operator that adds a unit Gaussian distributed random value to the chosen 

gene. The new gene value is clipped if it falls outside of the user-specified lower or upper 

bounds for that gene. This mutation operator can only be used for integer and float genes. 
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CHAPTER 4 

BENCHMARK TEST FUNCTIONS 

 

4.1- F1- Rosenbrock’s Function 
 

2
1

2
2

2
11 )1()(*100)( xxxxf −+−=  

 

It is a standard test function in the optimization literature, first proposed by Rosenbrock. 

It is a continuous, non-convex, uni-modal, low-dimensional quartic function with a 

minimum of zero at . [22]. )1,1(

 

It is a difficult minimization problem because it has a deep parabolic valley along the 

curve . For testing purposed, it was restricted to the space as2
12 xx = 048.2048.2 ≤≤− ix , 

 with resolution factor of = 0.001 along each axis. 21 , xx ixΔ

 

Range of   and =1x 2x 048.2048.2 ≤≤− ix . 

Global minimum of function = 0)(min =xf  at 11 =x  12 =x  

 

A common multidimensional extension is: 

 

( ) ( ) ( )[ ]∑
−

=
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1

22
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N

i
iii xxxxf    NRxε∀

 

Visualization of Rosenbrock's function; 
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Figure 4.1- Full definition range of the function. 

 

 
 

Figure 4.2- Focus around the area of the global optimum at [1,1]. 

 

C Codes of Rosenbrock Function  

 

float objfunc(float x[], int n){   

 double result; 

 result=100*pow(x[0]*x[0]-x[1],2)+pow(1-x[0],2); 

 return(result); 

} 
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4.2- F2- De Jong’s Test Function 1  
 

 ∑
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1
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It is a simple 5 dimensional parabola with. It is a continuous, convex, uni-modal, low-

dimensional quadratic function with a minimum of zero at the origin [22]. Because of its 

simplicity and symmetry, provides an easily analyzable test for an adaptive plan. For 

testing purposes it was restricted to the space as 12.512.5 ≤≤− ix .  with a 

resolution factor =0.01 on each axis.  

5:1=i

ixΔ

 

5=N  

Range of   =   ix 12.512.5 ≤≤− ix 0)( =ix  Ni :1=  

Global minimum of function = 0)(min =xf  at 0)( =ix  Ni :1=  

 

Visualization of De Jong's function 1 using different domains of the variables: 

 

 
 

 

Figure 4.3- Surf plot of the function in a very large area from -500 to 500 for each of 

both variables. 
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Figure 4.4- The function at a smaller area from -10 to 10. 

 

C Codes of De Jong’s Function 1 

 

float objfunc(float x[], int n){ 

double result; 

int i; 

result=0.0; 

for (i=0;i<n;i++){ 

result+=x[i]*x[i]; 

} 

return(result); 

} 

 

 

4.3- F3- Griewangk’s Function 
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It is a 5 dimensional function multi modal test function. It has many widespread local 

minima. However, the locations of the minima are regularly distributed. For testing 

purpose it was restricted to the space as 600600 ≤≤− ix , 5:1=i  with a resolution factor 

= 0.01 on each axis. ixΔ

 

5=N  

Range of  =  ix 600600 ≤≤− ix 0)( =ix  Ni :1=  

Global minimum of function = 0)(min =xf  at 0)( =ix  Ni :1=  

 

The graphics in depict Griewangk's function using three different resolutions. Each of the 

graphics represents different properties of the function. The Figure 4.5 shows the full 

definition range of the function. Here, the function looks very similar to De Jong’s 

function 1. When approaching the inner area, the function looks different. Many small 

peaks and valleys are visible in the Figure 4.6. When zooming in on the area of the 

optimum, Figure 4.7, the peaks and valleys look smooth.  

 

Visualization of Griwangk’s function: 

 

 

 
 

Figure 4.5- Full definition area from -500 to 500. 
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Figure 4.6- Inner area of the function from -50 to 50. 

 

 
 

Figure 4.7- Area from -8 to 8 around the optimum at [0, 0]. 

 

C Codes of Griewangk’s Function  

 

float objfunc(float x[], int n){ 

const int D=4000.0; 

int i; 
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double Val1,Val2,Sum; 

for (Val1 = 0.0, Val2 = 1.0, i = 0; i < n; i++) { 

  Val1 += (x[i]-100.0) * (x[i]-100.0); 

  Val2 *= cos((x[i]-100.0) / sqrt((float) (i + 1)) ); 

  } 

Sum = Val1 / D - Val2 + 1.0; 

return (Sum); 

} 

 

 

4.4- F4- Michalewicz’s Function 
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It is a 5 dimensional function. It has many widespread local minima. However, the 

locations of the minima are regularly distributed. For testing purpose it was restricted to 

the space as ,  with a resolution factor 600600 ≤≤− ix 5:1=i ixΔ = 0.01 on each axis. 

 

The Michalewicz function [16] is a multimodal test function. The parameter m defines 

the "steepness" of the valleys or edges. Larger m leads to more difficult search. For very 

large m the function behaves like a needle in the haystack (the function values for points 

in the space outside the narrow peaks give very little information on the location of the 

global optimum). For testing purpose it was restricted to the space as π≤≤ ix0 , 5:1=i  

with a resolution factor = 0.01 on each axis. ixΔ

 

5=N  

Range of  =ix π≤≤ ix0  0)( =ix  Ni :1=  

Global minimum of function = 687.4)(min −=xf  ?)( =ix  Ni :1=  
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The first two graphics below represent a global and a local view to Michalewicz's 

function, both for the first two variables. The third graphic displays the function using the 

third and fourth variable; the first two variables were set to 0. By comparing the figure 

4.8 and the figure 4.9 the increasing difficulty of the function can be seen. As higher the 

dimension as more valleys are introduced into the function. 

 

Visualizations of Michalewicz's function: 

 

 
 

Figure 4.8- Surf plot in an area from 0 to 3 for the first and second variable. 

 

 
 

Figure 4.9- Area around the optimum. 
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Figure 4.10- Same as Figure 4.8 for the third and forth variable, variable 1 and 2 are set 0. 

 

C Codes of Michalewicz’s Function  

 

float objfunc(float x[], int n){ 

const int m=10.0; 

double   u; 

int     i; 

u=0;  

for (i=0;i<n;i++) { 

 u = u + sin(x[i])* pow(sin((i+1)*x[i]*x[i]/PI),2*m);  

 } 

return(-u);  

} 
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4.5- F5- Shekel’s Function 
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Shekel’s function is an interesting multimodal function synthesized as suggested by 

Shekel (1971). It is a continuous, non convex, non quadratic, 5 dimensionally function 

with 30 local minima approximately at the points ( ) }{ 30
154321 ,,,,
=jjjjjj aaaaa . For testing 

purposes, ( )ja1  were defined in shekel.h file. It was restricted to the space Δ  defined 

by  ,  with a resolution factor of 100 ≤≤ ix 5:1=i iΔ = 0.01 on each axis. 

 

5=N  

Range of  =  ix 100 ≤≤ ix 0)( =ix  Ni :1=   

Global minimum of function = 40561.10)( −=xf    

0249.81 =x    1517.92 =x 1139.53 =x 6208.74 =x  5640.45 =x   

 

Visualizations of Shekel’s function: 

 

 
Figure 4.11- Graphics of Shekel's function. 
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C Codes of Shekel’s Function  

 

float objfunc(float x[],int n){ 

int i, j; 

double sp, h, result = 0.0; 

for (i = 0; i < 30; i++) { 

sp = 0.0; 

for (j = 0; j < n; j++) { 

 h   = x[j] - Shekel_a[i][j]; 

 sp += h * h; 

  } 

result += 1.0 / (sp + Shekel_c[i]); 

 } 

return(-result); 

} 
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CHAPTER 5 

IMPLEMENTATION of GENETIC ALGORITHM 

 

5.1- Implementation of Genetic Algorithm 
 

This section, discusses the design of genetic algorithm. When using a different selection 

strategy “binary tournament, linear ranking, stochastic universal and roulette-wheel 

selection” for performing the test functions, genetic algorithm use the same crossover 

“one point crossover” and mutation operation ” flip bit mutation”. The genetic algorithm 

implementation as below: 

BEGIN  

 WHILE (Times<30) Do 

 BEGIN GA 

  Initialization; 

  Evaluation; 

  Keep the best fitness value; 

  generate:=0; 

  WHILE (generation<MAXGENS) Do 

   BEGIN   

    generation++; 

    if selection:= tour_sel tournament_sel() 

    else rouelette_wheel_sel() 

    crossover; 

    mutation; 

    evaluation; 

  END; 

 END GA; 

 Keep the best fitness value for each test (times). 

END; 

In the main algorithm above, Times<30 is the termination condition, which indicates the 

times for executing genetic algorithm. Because genetic algorithms are stochastic 
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computational techniques, performing of genetic algorithm many times for one problem 

so that gives a statistically good result. The genetic algorithm program popsize represents 

the number of individuals of the population. Maxgens is the maximum number of the 

generations in the evolutionary process. Pcross is the probability of the individuals 

selected to crossover and Pmutation is the probability of the individual selected to mutate.  

 

5.1.1- Parameter Selection for a Genetic Algorithm Program 

 

The first intensive study of genetic algorithm parameters was done by De Jong [22] and 

is nicely summarized in Goldberg [14]. De Jong found that a small population size 

improved initial performance while large population size improved long-term 

performance and a high mutation rate was good for off-line performance while low 

mutation rate was good for on-line performance. Grefenstette [24] used a genetic 

algorithm. He found the best genetic algorithm had a population size of 30 and mutation 

rate of 0.01. Schaffer found a population size = 20 to 30 and a mutation rate = 0.005 to 

0.01 are best. In [23] both binary and continuous parameter of genetic algorithm, a small 

population size allowed to evolve for many generations produced the best results. Similar 

sensitivity studies with mutation rate suggested that mutation rates in the range of 0.05 to 

0.35 found the best minima. Table 5.1 lists the parameters suggested by Schaffer and 

those proposed earlier by De Jong [22] and Greffenstette [24]. 

 

Table 5.1- Comparison of empirically determined genetic algorithm parameter settings 

[25]. 

 

Author Population Size Crossover Rate Mutation Rate 

Schaffer 20-30 0.75-0.95 0.005-0.01 

De Jong 50-100 0.60 0.001 

Grefenstette 30 0.95 0.01 
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According to [22, 24, 26] for each test functions with using genetic algorithm maxgens is 

taken 1000 times, set the value of population size as 50, the value of crossover 

probability as 0.8 and the value of mutation probability as 0.05. And the algorithm 

executed 30 times.  

 

The algorithm uses roulette-wheel and binary tournament selection for the operation of 

selection. Specially, the number of the individuals taking part in the tournament is 2 for 

the binary tournament selection strategy and flip bit mutation is used. 

 

 

5.2- C Codes of Genetic Algorithm’s for Program Design 
 

5.2.1- Genetic Algorithm Program Files 

 

Definition.h : contains type definitions of data types. 

Generate.h : contains new population generation routine. 

Initialize.h : contains initdata(), initpop(), initreport() routines. 

Kernel.h : contains three operators Reproduction (selection), Crossover (crossover),  

Mutation (mutation). 

ObjectFunction.h : contains objectfunction() and decode() routines. 

Parameters.h : cotains extract_parm(), map_parm(), decode_parms() routines. 

Random.h : contains random number utility programs. 

Reports.h : contains routines used to print a report from each cycle of genetic 

algorithm’s operation. 

Statistics.h : contains the routine statistics(), which calculates population statistics for 

each generation. 

Main.cpp : contains the main GA program loop, main(). 
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5.2.2- Genetic Algorithm Program Functions 

 

Initialize.h 

 

void initdata(): is a routine to prompt the user for genetic algorithm parameters.  

void initreport(): is a routine that prints a report after initialization and before the first 

genetic algorithm cycle.  

void initpop(): is routine that generates a random population.  

void initialize(): is the central initialization routine called by main(). 

 

Kernel.h 

 

int select_rws(): contains routines for roulette-wheel selection.  

 

 

 

int select_rws(int popsize, float sumfitness, population pop){ 

 float rand, partsum; // Random point on wheel, partial sum 

 int j; // population index 

 

 partsum=0.0; j=0; // Zero out counter and accumulator 

 rand=sumfitness*random(); // Wheel point calc. uses random number [0,1] 

 do{      // Find wheel slot 

  partsum=partsum+pop[j].fitness; 

  j++; 

  }while(partsum>rand&&j<popsize); 

 return (j-1);  // Return individual number 

} 

Figure 5.1- C code of roulette-wheel selection. 
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void reset(): shuffles the tournament selection tourneylist at random. 

int select_ts():  contains the routines for tournament selection. Tournaments of any 

size up to the population size can be held with this implementation. But for experiments 

tournament size is taken 2. 

 

int select_ts(int popsize,population pop){ 

 int pick, winner, i; 

 tourneysize=2; 

// If remaining members not enough for a tournament, then reset list  

    if((popsize – tourneypos) < tourneysize){   

  reset(); 

  tourneypos = 0; 

    } 

// Select tourneysize structures at random and conduct a tournament  

 winner=tourneylist[tourneypos]; 

 for(i=1; i<tourneysize; i++){ 

  pick=tourneylist[i+tourneypos]; 

  if(pop[pick].fitness < pop[winner].fitness) 

winner=pick;   

} 

// Update tourneypos 

    tourneypos += tourneysize; 

    return(winner); 

} 

 

Figure 5.2- C code of tournament selection. 

 

 

 

allele mutation(): performs a flip bit mutation. 
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allele mutation(allele alleleval, float pmutation, int &nmutation){ 

bool mutate; 

mutate=flip(pmutation); // Flip the biased coin 

if(mutate){ 

nmutation++; 

       return !alleleval; // Change bit value 

    } 

  else  return alleleval; // No change 

} 

 

Figure 5.3- C code of flip bit mutation. 

 

 

void crossover(): performs single point crossover on two mates, producing two children. 

 

void crossover(chromosome parent1, chromosome parent2, chromosome child1, 

   chromosome child2,int &lchrom,int &ncross,int &nmutation,int &jcross, 

   float &pcross,float &pmutation){ 

int j; 

//Do crossover with probability crossover 

if(flip(pcross)){  

 jcross=rnd(1,lchrom-1);  //Cross between 1 and lchrom-1 

       ncross++;     // Increment crossover counter    

    } 

  else jcross=lchrom; 

  // first exchange, 1 to 1 and 2 to 2 

  for(j=0;j<jcross;j++){ 

      child1[j]=mutation(parent1[j],pmutation,nmutation); 

      child2[j]=mutation(parent2[j],pmutation,nmutation); 

    } 

  // second exchange, 1 to 2 and 2 to 1 
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  if(jcross!=lchrom) 

    for(j=jcross;j<lchrom;j++){ 

        child1[j]=mutation(parent2[j],pmutation,nmutation); 

        child2[j]=mutation(parent1[j],pmutation,nmutation); 

      } 

} 

 

Figure 5.4- C code of one point crossover with flip bit mutation. 

 

 

ObjectFunction.h 

 

float objfunc(): The objective function for the specific application. This routine is called 

by generation().  

float decode(): decodes chromosomes strings as unsigned binary number. True=1, 

False=0.  

 

float decode(chromosome chrom,int lbits){ 

int j; 

float accum=0.0; 

powerof2=1.0; 

for(j=0;j<lbits;j++){ 

if(chrom[j])  

 accum=accum+powerof2; 

powerof2=powerof2*2; 

    } 

return accum; 

} 

 

Figure 5.5- C code of decoding a parameter. 
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Parameters.h 

 

float map_parm(): an unsigned binary integer to range [minparm, maxparm] 

 

 

float map_parm(float x,float maxparm,float minparm,float fullscale){ 

 return (minparm+(maxparm-minparm)/fullscale*x); 

} 

 

Figure 5.6- C code of mapping a parameter. 

 

void extract_parm(): extracting a substring from a full string. 

 

void extract_parm(chromosome chromfrom,chromosome chromto,int &jposition,int 

&lchrom,int &lparm){ 

int j,jtarget; 

j=0; 

jtarget=jposition+lparm; 

if(jtarget>lchrom)  

jtarget=lchrom;  

// Clamp if excessive 

 while(jposition<jtarget){ 

  chromto[j]=chromfrom[jposition]; 

  jposition++; 

  j++; 

    }   

} 

 

Figure 5.7- C code of extracting a parameter from a full string. 
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void decode_parms(): decode parameters. 

 

void decode_parms(int &nparms,int &lchrom,chromosome chrom,parmspecs parms){ 

int j,jposition; 

chromosome chromtemp;  

// Temporary string buffer 

j=0;  

// Parameter counter 

jposition=0;  

// String position counter 

do{ 

if(parms[j].lparm>0){ 

 extract_parm(chrom,chromtemp,jposition,lchrom,parms[j].lparm); 

 parms[j].parameter=map_parm(decode(chromtemp,parms[j].lparm), 

parms[j].maxparm,parms[j].minparm,pow(2.0,parms[j].lparm)-1); 

 } 

       else  

parms[j].parameter=0.0; 

j++; 

}while(j<nparms); 

} 

 

Figure 5.8- C code of parameter decoding. 

 

 

 

Random.h 

 

void advance_random(): generates a new batch of 55 random numbers.  

void warmup_random(): primes the random number generator.  
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float random(): returns a single, uniformly-distributed, real, pseudo-random number 

between 0 and 1.   

bool flip(): flips a biased coin,returning 1 with probability p,and 0 with probability 1-p. 

 

Bool flip(float probability){ 

 if(probability==1.0)  

return true; 

   else return (random()<=probability); 

} 

 

Figure 5.9- C code of flipping a biased coin. 

 

int rnd(low,high): returns an uniformly-distributed integer number between low and 

high.  

void randomize(): srand() function changes the number seed.  

 

Reports.h 

 

void writechrom(): writes out the chromosomes as a string of ones and zeros. 

void report(): controls overall reporting. 

 

Statistics.h 

 

void statistic(): which calculates population statistics for each generation. 

 

Generate.h 

 

void generation(): is a routine which generates and evaluates a new genetic algorithm 

population. 
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Main.cpp 

 

void main(): GA program loop. 

 

Void main(){ 

 gen=0;  // Set things up 

 initialize(); 

 do{ 

       gen++; 

 generation(); 

       statistics(popsize,max,avg,min,sumfitness,newpop); 

       report(gen); 

       for(int i=0;i<popsize;i++) 

          oldpop[i]=newpop[i]; // advance the generation 

 }while(gen<maxgen);    

} 

 

Figure 5.10- C code of main function. 

 

Susandlrnk.h 

int select_sus(): contains the routines for stochastic universal sampling selection. 
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CHAPTER 6 

ANALYSIS of COMPUTATIONAL RESULTS 

 

6.1- Computational Test Results  
 

Five test functions are taken for experiments using genetic algorithm. Each function has a 

prescribed search domain given in range column of the Table 6.1. Problem column 

indicates the solution wanted to obtain, minimization or maximization. The optimal 

solution of each function is known beforehand. The resolution factor value is shown in 

the Precision column. 

 

Table 6.1- List of five test functions. 

 
Test Function Range Problem Precision Dim 
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For a given function, each time of the 1000 times for executing genetic algorithm, keep 

the value of generation when the process of genetic algorithm terminates. The value of 

generation is in integer ranged from 0 to 1000. Each value of generation has a 

corresponding counter preserving the times for genetic algorithm obtaining this 

generation. 
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6.1.1- Roulette-Wheel Selection Test Results 

 

F1 = . 2
1

2
2

2
11 )1()(*100)( xxxxf −+−=

Range of   and =1x 2x 048.2048.2 ≤≤− ix . 

21 , xx  with resolution factor of = 0.001. ixΔ

Global minimum of function = 0)(min =xf  at 11 =x  12 =x . 

 

Table 6.2- Test results of roulette-wheel selection for F1. 

 

#TEST #Generation Best_min Fitness 

1 36 0.021625 

2 689 0.012379 

3 107 0.003115 

4 380 0.010103 

5 133 0.013182 

6 725 0.006524 

7 381 0.006387 

8 779 0.003378 

9 144 0.007762 

10 337 0.003148 

11 96 0.002099 

12 40 0.002759 

13 872 0.011802 

14 834 0.007192 

15 97 0.008316 

16 963 0.000392 

17 836 0.003000 

18 49 0.025836 

19 30 0.006666 

20 63 0.000305 
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21 268 0.062003 

22 65 0.000501 

23 295 0.003207 

24 412 0.000534 

25 226 0.044440 

26 980 0.015776 

27 752 0.031173 

28 899 0.018574 

29 201 0.012611 

30 658 0.009197 
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Figure 6.1- Roulette-wheel selection graphic for F1. 
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Range of   =   ix 12.512.5 ≤≤− ix 0)( =ix  Ni :1= . 

5:1=i  with a resolution factor ixΔ = 0.01 on each axis. 

Global minimum of function: 0)(min =xf  at 0)( =ix  Ni :1= . 

 

Table 6.3- Test results of roulette-wheel selection for F2. 

 

#TEST #Generation Best_min Fitness 

1 502 2.407425 

2 313 0.622540 

3 43 1.143557 

4 538 0.689070 

5 301 1.616681 

6 403 1.991413 

7 903 1.328118 

8 123 1.801241 

9 368 1.230728 

10 440 0.539178 

11 187 1.294252 

12 75 1.592233 

13 4 1.307477 

14 464 0.572843 

15 534 1.368196 

16 259 0.522345 

17 368 0.481465 

18 638 3.219810 

19 90 2.071168 

20 798 0.528156 
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21 103 2.026481 

22 870 0.810908 

23 857 1.994218 

24 519 0.831548 

25 769 0.226367 

26 763 0.988855 

27 445 1.462179 

28 118 1.331725 

29 293 0.277867 

30 860 4.204733 
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Figure 6.2- Roulette-wheel selection graphic for F2. 
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Table 6.4- Test results of roulette-wheel selection for F3. 

 

#TEST #Generation Best_min Fitness 

1 15 4.221037 

2 197 2.760204 

3 226 5.355815 

4 106 4.124454 

5 437 6.183483 

6 916 7.642037 

7 342 11.04009 

8 777 7.214392 

9 234 6.127833 

10 503 7.639765 

11 11 6.283434 

12 638 2.684016 

13 711 7.221925 

14 318 9.988311 

15 721 6.668437 

16 919 9.444723 

17 219 10.404618 

18 47 7.199335 

19 755 2.507251 

20 642 6.858248 
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21 190 6.036229 

22 849 11.730000 

23 774 5.069771 

24 730 9.595348 

25 863 8.863648 

26 277 7.621606 

27 683 6.180864 

28 222 4.278033 

29 672 8.173793 

30 220 10.038148 
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Figure 6.3- Roulette-wheel selection graphic for F3. 
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Table 6.5- Test results of roulette-wheel selection for F4. 

 

#TEST #Generation Best_min Fitness 

1 612 -4.586186 

2 692 -4.570916 

3 430 -4.625953 

4 174 -4.626780 

5 481 -4.626883 

6 131 -4.630258 

7 125 -4.619846 

8 932 -4.606482 

9 292 -4.612538 

10 313 -4.613001 

11 536 -4.573160 

12 895 -4.620372 

13 165 -4.669135 

14 156 -4.651917 

15 641 -4.594432 

16 803 -4.612193 

17 187 -4.627946 

18 894 -4.617115 

19 108 -4.667325 
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20 284 -4.603973 

21 281 -4.634270 

22 348 -4.608518 

23 326 -4.654795 

24 573 -4.628489 

25 327 -4.631560 

26 901 -4.618083 

27 414 -4.622041 

28 704 -4.665676 

29 209 -4.670503 

30 201 -4.621484 
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Figure 6.4- Roulette-wheel selection graphic for F4. 
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Table 6.6- Test results of roulette-wheel selection for F5. 

 

#TEST #Generation Best_min Fitness 

1 880 -3.403414 

2 143 -2.504386 

3 845 -2.528651 

4 556 -2.194961 

5 465 -2.532915 

6 638 -2.544109 

7 936 -2.197939 

8 661 -3.106445 

9 118 -2.855063 

10 176 -2.656415 

11 848 -9.141911 

12 840 -2.652430 

13 833 -2.543444 

14 847 -2.655011 

15 725 -3.170594 

16 977 -2.642898 

17 997 -2.537261 

18 560 -2.529057 
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19 756 -2.661852 

20 505 -2.186500 

21 565 -3.235952 

22 321 -2.195720 

23 674 -9.165722 

24 784 -2.538344 

25 469 -9.059353 

26 515 -2.657397 

27 233 -2.533310 

28 897 -2.639995 

29 466 -1.827188 

30 873 -2.536064 
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Figure 6.5- Roulette-wheel selection graphic for F5. 
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6.1.2- Tournament Selection Test Results 

 

F1 = . 2
1

2
2

2
11 )1()(*100)( xxxxf −+−=

Range of   and =1x 2x 048.2048.2 ≤≤− ix . 

21 , xx  with resolution factor of = 0.001. ixΔ

Global minimum of function = 0)(min =xf  at 11 =x  12 =x . 

 

Table 6.7- Test results of tournament selection for F1. 

 

#TEST #Generation Best_min Fitness 

1 942 0.000020 

2 9 0.136140 

3 716 0.000072 

4 7 0.008419 

5 80 0.080672 

6 0 0.045002 

7 25 0.006413 

8 12 0.002652 

9 258 0.026434 

10 69 0.061288 

11 6 0.123862 

12 13 0.238514 

13 108 0.026434 

14 834 0.061068 

15 75 0.000007 

16 637 0.055184 

17 574 0.069519 

18 878 0.002302 

19 860 0.002133 

20 8 0.009033 
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21 10 0.002764 

22 13 0.067792 

23 80 0.017201 

24 14 0.006000 

25 0 0.079174 

26 601 0.037760 

27 7 0.947822 

28 209 0.000794 

29 0 0.015277 

30 15 0.012311 
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Figure 6.6- Tournament selection graphic for F1. 
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Table 6.8- Test results of tournament selection for F2. 

 

#TEST #Generation Best_min Fitness 

1 328 0.001929 

2 997 0.003933 

3 822 0.004534 

4 792 0.005536 

5 698 0.005335 

6 416 0.006337 

7 850 0.006137 

8 637 0.003131 

9 689 0.009143 

10 753 0.005135 

11 577 0.001127 

12 821 0.000326 

13 76 0.003131 

14 584 0.004133 

15 265 0.003532 

16 789 0.000726 

17 689 0.006337 

18 302 0.005937 

19 234 0.006337 

20 104 0.004734 
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21 312 0.003332 

22 606 0.005335 

23 711 0.010145 

24 206 0.003532 

25 415 0.004935 

26 499 0.007139 

27 642 0.004734 

28 379 0.005335 

29 435 0.009343 

30 921 0.004935 
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Figure 6.7- Tournament selection graphic for F2. 
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Table 6.9- Test results of tournament selection for F3. 

 

#TEST #Generation Best_min Fitness 

1 754 0.250106 

2 210 0.229570 

3 244 0.176016 

4 599 0.306603 

5 323 0.189994 

6 276 0.294754 

7 485 0.438590 

8 559 0.276699 

9 276 0.277848 

10 786 0.362579 

11 479 0.329012 

12 670 0.334033 

13 594 0.253912 

14 281 0.225611 

15 434 0.390381 

16 364 0.255767 

17 250 0.143045 

18 725 0.260716 

19 652 0.281300 

20 429 0.356857 
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21 107 0.344653 

22 478 0.351318 

23 996 1.027333 

24 482 0.190134 

25 182 0.279729 

26 670 0.362408 

27 433 0.205664 

28 464 0.310888 

29 397 0.297143 

30 165 0.195263 
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Figure 6.8- Tournament selection graphic for F3. 
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Table 6.10- Test results of tournament selection for F4. 

 

#TEST #Generation Best_min Fitness 

1 738 -4.673854 

2 182 -4.636954 

3 657 -4.555921 

4 741 -4.640059 

5 833 -4.680653 

6 476 -4.674481 

7 912 -4.682179 

8 904 -4.670561 

9 893 -4.677593 

10 526 -4.675248 

11 339 -4.673780 

12 358 -4.655159 

13 968 -4.593417 

14 320 -4.685186 

15 358 -4.685059 

16 753 -4.677592 

17 785 -4.663129 

18 391 -4.676722 

19 96 -4.652464 
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20 525 -4.640640 

21 238 -4.684059 

22 608 -4.525021 

23 66 -4.676359 

24 588 -4.670075 

25 124 -4.665690 

26 322 -4.504623 

27 204 -4.533488 

28 250 -4.681997 

29 337 -4.673471 

30 48 -4.525344 
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Figure 6.9- Tournament selection graphic for F4. 
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Table 6.11- Test results of tournament selection for F5. 

 

#TEST #Generation Best_min Fitness 

1 933 -1.826693 

2 88 -1.775673 

3 161 -1.826196 

4 707 -1.599929 

5 597 -2.539828 

6 503 -2.202337 

7 232 -2.199739 

8 908 -1.826442 

9 651 -2.549974 

10 828 -1.823142 

11 193 -1.290021 

12 840 -1.826787 

13 6 -2.124148 

14 645 -2.233962 

15 668 -2.200686 

16 871 -1.827369 

17 566 -1.824457 

18 977 -2.663647 
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19 82 -2.550678 

20 231 -1.827475 

21 39 -4.849190 

22 410 -1.828194 

23 547 -1.824628 

24 509 -1.888075 

25 816 -2.201939 

26 32 -2.131688 

27 683 -2.204327 

28 890 -1.824691 

29 344 -2.667527 

30 399 -2.198164 
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Figure 6.10- Tournament selection graphic for F5. 
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6.1.3- Comparison of Computational Test Results 

 

Table 6.12- Convergence speed statistics for roulette-wheel selection. 
  

ROULETTE-WHEEL SELECTION CONVERGENCE SPEED 

 Min Max Mean Std.Dev. 

F1 30 980 412 336 

F2 4 903 432 248 

F3 11 919 474 297 

F4 108 932 438 267 

F5 118 997 637 256 

 

Table 6.13- Convergence speed statistics for tournament selection. 
 

TOURNAMENT SELECTION CONVERGENCE SPEED 

 Min Max Mean Std.Dev. 

F1 1 943 236 332 

F2 76 997 552 250 

F3 107 996 459 212 

F4 48 968 485 282 

F5 6 977 512 309 

 

Table 6.14- Comparison of convergence speed. 
 

COMPRARISON of CONVERGENCE SPEED 

 ROULETTE-WHEEL TOURNAMENT 

F1  BETTER 

F2 BETTER  

F3  BETTER 

F4 BETTER  

F5  BETTER 

 100



For convergence speed; 

Rosenbrock function (F1) tournament selection gave the better result than roulette-wheel 

selection. 

De Jong 1 (F2) roulette-wheel selection gave the better result than tournament selection.  

For Griewank’s Function (F3) tournament selection gave the better result than roulette-

wheel selection.  

Michalewicz’s Function (F4) roulette-wheel selection gave the better result than 

tournament selection.  

Shekel’s function (F5) tournament selection gave the better result than roulette-wheel 

selection.  

 

Table 6.15- Roulette-wheel selection fitness statistics. 

 
 ROULETTE-WHEEL SELECTION FITNESS 

 Optimal Best 

Value 

Worst 

Value 

Mean σ Std 

deviation 

Max  

= Mean+σ  

Min 

= Mean-σ  

F1 0 0.000305 0.062003 0.0118 0.013806 0.025606 -0.00201 

F2 0 0.226367 4.204733 1.349426 0.879282 2.228708 0.470144 

F3 0 2.507257 11.730000 6.971895 2.474827 9.446722 4.497068 

F4 -4.687 -4.670503 -4.570916 -4.62373 0.025573 -4.598157 -4.6493 

F5 -10.40561 -9.165722 -1.827188 -3.25448 2.015446 -1.239034 -5.26993 

 

 

Table 6.16- Tournament selection fitness statistics. 

 
 TOURNAMENT SELECTION FITNESS 

 Optimal Best 

Value 

Worst 

Value 

Mean σ Std 

deviation 

Max 

=Mean+σ  

Min 

=Mean-σ  

F1 0 0.000007 0.947822 0.071402 0.173673 0.2450751 -0.10227 

F2 0 0.000326 0.010145 0.004875 0.002317 0.007192 0.002558 

F3 0 0.143045 1.027333 0.306598 0.152835 0.459433 0.153763 

F4 -4.687 -4.68519 -4.504623 -4.64369 0.055968 -4.587722 -4.69966 

F5 -10.40561 -4.84919 -1.290021 -2.13859 0.607858 -1.530732 -2.74645 
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Table 6.17- Comparison of quality of global optimum. 

 

COMPRARISON of Quality of Global Optimum 

 ROULETTE-WHEEL TOURNAMENT 

F1  BETTER 

F2  BETTER 

F3  BETTER 

F4  BETTER 

F5 BETTER  

 

For quality of global optimum; 

Rosenbrock function (F1) tournament selection gave the better result than roulette-wheel 

selection.  

De Jong 1 (F2) tournament selection gave the better result than roulette-wheel selection.  

Griewank’s Function (F3) tournament selection gave the better result than roulette-wheel 

selection.  

Michalewicz’s Function (F4) tournament selection gave the better result than roulette-

wheel selection.  

Shekel’s function (F5) roulette-wheel gave the better result than tournament selection.  

 

The below section analyzes why the tournament selection gave better results than roulette 

wheel according to selection intensity and selection probability.   

 

 

6.2- Revision 
 

Experiments were performed using genetic algorithm for five function optimization 

problems shown in Table 6.1. Each function has a prescribed search domain given in 

constraint column of the Table 6.1. The first function is Rosenbrock’ function, which 

takes global minimum of function = 0)(min =xf  at 11 =x  12 =x . The second function 

is De Jong’s sphere, which takes a global minimum of function =  at 0)(min =xf
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0)( =ix  =5. The third function is Griewank’s function, which takes a global 

minimum of function = 

Ni :1=

0)(min =xf  at 0)( =ix  Ni :1= =5. The forth function is 

Michalewicz’s function, which takes a global minimum of function = 

 =5. The fifth function is Shekel’s foxholes functions, 

which takes a global minimum of function = 

687.4)(min −=xf ?)( =ix Ni :1=

40561.10)( −=xf  0249.81 =x 1517.92 =x  

.  1139.53 =x 6208.74 =x 5640.45 =x

 

For the each experiment, the population size is fixed with 50 individuals, for selection 

operation tournament and roulette-wheel selection is used, for crossover operation one 

point crossover technique (crossover probability = 0.8) and for mutation operation flip bit 

mutation (mutation probability = 0.05) is used. 

 

Considering the tests results in Table 6.12 and Table 6.13, for first, third and fifth 

function, the tournament selection convergence faster to the global optimum solution than 

roulette-wheel selection. But for second and forth functions roulette-wheel selection 

convergence much faster to the optimal solution than tournament selection. 

 

Also considering the test results in Table 6.15 and Table 6.16, for the first, second, third 

and forth function, the tournament selection’s quality of optimal solution obtained is 

better than roulette-wheel selection. But for the fifth function the quality of solution 

obtained is better for the roulette-wheel selection than tournament selection.  
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CONCLUSION 
 

Genetic Algorithms (GAs) are a popular class of iterative search techniques used to find 

good solutions to hard problems. GA evolves the population of individuals (solutions) to 

the global optimum by engaging the evolutionary operators: selection, mutation and 

crossover. The selection operator influences significantly on the speed of convergence to 

the global optimum and the quality of obtaining optimal solution. 

 

The thesis investigated the two groups of selection schemes: proportionate-based 

selection strategy and ordinal-based selection strategy with the representative that is the 

roulette wheel selection and stochastic universal sampling selection operator 

(proportionate-based selection strategy) and binary tournament selection and linear 

ranking selection operator (ordinal-based selection strategy). 

 

The various test cases were used to demonstrate the performance of GA with two 

selection operators described above.  

 

Analysis of performance the selection schemes compared was done by using two criteria: 

the speed of convergence to the global optimum, and the quality of optimal solution 

obtained. 

 

Quantitative analysis of the selection strategies showed that genetic algorithm with 

ordinal-based selection strategy converges faster than with proportionate-based selection 

schemes with comparative quality of optimal solution obtained. However, for some 

multimodal test functions the quality of the solution obtained is better for proportionate-

based selection schemes than for ordinal-based one. It is because for multimodal 

functions the high level of selection intensity of ordinal-based selection strategy drives 

the GA to the local optimum which can be avoided by low level of selection intensity of 

proportionate-based selection schemes.  
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APPENDIX A 
 

STOCHASTIC UNIVERSAL SAMPLING SELECTION TEST 

RESULTS 
 

For F1 = . 2
1

2
2

2
11 )1()(*100)( xxxxf −+−=

Range of   and =1x 2x 048.2048.2 ≤≤− ix . 

21 , xx  with resolution factor of = 0.001. ixΔ

Global minimum of function = 0)(min =xf  at 11 =x  12 =x . 

 

Table A.1- Test results of stochastic universal sampling selection for F1. 

 

#TEST #Generation Best_min Fitness 

1 483 0.000413 

2 290 0.006787 

3 368 0.008196 

4 578 0.014895 

5 660 0.063488 

6 979 0.011768 

7 185 0.029804 

8 559 0.01305 

9 759 0.052128 

10 75 0.002095 

11 242 0.050462 

12 518 0.000056 

13 408 0.000899 

14 247 0.013412 

15 0 0.006471 

16 11 0.012307 
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17 183 0.04091 

18 576 0.000434 

19 82 0.004121 

20 837 0.004846 

21 267 0.009367 

22 428 0.000766 

23 75 0.001824 

24 160 0.04602 

25 424 0.021923 

26 760 0.023113 

27 929 0.001495 

28 106 0.000735 

29 546 0.000517 

39 571 0.002949 
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Figure A.1- Stochastic universal sampling selection graphic for F1. 
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For F2 =   ∑
=

=
N

i
ixxf

1

2
2 )()( .

5=N . 

Range of   =   ix 12.512.5 ≤≤− ix 0)( =ix  Ni :1= . 

5:1=i  with a resolution factor ixΔ = 0.01 on each axis. 

Global minimum of function: 0)(min =xf  at 0)( =ix  Ni :1= . 

 

Table A.2- Test results of stochastic universal sampling selection for F2. 

 

#TEST #Generation Best_min Fitness 

1 333 3.545847 

2 470 0.706504 

3 651 1.430992 

4 634 1.593636 

5 178 2.395201 

6 996 0.340189 

7 628 1.400806 

8 506 0.757804 

9 391 0.652599 

10 835 2.640279 

11 120 1.676197 

12 916 1.601005 

13 778 0.682658 

14 410 1.090454 
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15 916 2.503011 

16 684 0.676045 

17 372 0.153224 

18 682 1.573396 

19 522 1.640127 

20 0 2.565533 

21 110 0.802692 

22 754 2.202425 

23 470 0.510121 

24 849 0.660615 

25 910 2.175372 

26 743 2.367947 

27 484 0.968015 

28 218 1.446148 

29 891 1.115503 

30 139 0.68366 
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Figure A.2- Stochastic universal sampling selection graphic for F2. 
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Table A.3- Test results of stochastic universal sampling selection for F3. 

 

#TEST #Generation Best_min Fitness 

1 56 3.172907 

2 19 3.389672 

3 314 7.666584 

4 432 4.384844 

5 254 8.340647 

6 117 9.293668 

7 120 6.304651 

8 39 5.554811 

9 469 7.503999 

10 929 9.360593 

11 827 9.971512 
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12 781 5.495712 

13 583 10.154668 

14 796 10.171372 

15 516 7.35035 

16 940 8.082796 

17 393 17.447573 

18 824 10.38502 

19 486 11.311725 

20 650 5.324049 

21 592 6.872097 

22 432 10.882447 

23 822 12.615409 

24 56 5.466848 

25 823 8.507217 

26 319 5.449208 

27 361 11.246358 

28 965 7.981456 

29 175 8.924101 

30 156 9.577565 
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Figure A.3- Stochastic universal selection sampling graphic for F3. 
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Table A.4- Test results of stochastic universal sampling selection for F4. 

 

 115



#TEST #Generation Best_min Fitness 

1 461 -4.63001 

2 866 -4.6223 

3 608 -4.68107 

4 942 -4.657022 

5 630 -4.665945 

6 539 -4.63699 

7 728 -4.642744 

8 763 -4.639535 

9 805 -4.661801 

10 593 -4.653302 

11 822 -4.635121 

12 79 -4.654263 

13 873 -4.66182 

14 544 -4.611335 

15 691 -4.622484 

16 374 -4.623354 

17 262 -4.647264 

18 233 -4.629636 

19 820 -4.627598 

20 493 -4.639965 

21 641 -4.626991 

22 589 -4.622513 

23 839 -4.645216 

24 744 -4.583519 

25 348 -4.625952 

26 982 -4.635473 

27 987 -4.643882 

28 239 -4.616704 

29 784 -4.632202 
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30 148 -4.546722 
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Figure A.4- Stochastic universal sampling selection graphic for F4. 

 

 

 

 

 

 

 

 

For F5 =
( )∑

∑=
=

+−
−=

30

1
1

25
1)(

i
N

j iiji cax
xf . 

5=N . 

Range of  =  ix 100 ≤≤ ix 0)( =ix  Ni :1= . 

5:1=i  with a resolution factor of iΔ = 0.01 on each axis. 

 117



Global minimum of function = 40561.10)( −=xf    

0249.81 =x    1517.92 =x 1139.53 =x 6208.74 =x  5640.45 =x  

 

Table A.5- Test results of stochastic universal sampling selection for F5. 

 

#TEST #Generation Best_min Fitness 

1 293 -2.033499 

2 779 -2.535636 

3 39 -3.027679 

4 748 -1.888267 

5 606 -10.318615 

6 823 -2.548636 

7 361 -1.869241 

8 120 -1.941765 

9 985 -3.396333 

10 736 -9.125092 

11 266 -1.955783 

12 313 -2.654759 

13 67 -2.871051 

14 404 -2.537512 

15 800 -3.273476 

16 275 -2.192412 

17 213 -2.383385 

18 571 -2.537207 

19 942 -2.251596 

20 264 -2.648869 

21 259 -2.655948 

22 663 -9.096451 

23 522 -1.811075 

24 66 -2.178304 
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25 105 -2.980146 

26 234 -3.459007 

27 892 -2.199427 

28 44 -2.050634 

29 565 -2.652656 

30 776 -9.114754 
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Figure A.5- Stochastic universal sampling selection graphic for F5. 
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Table A.6- Convergence speed statistics for stochastic universal sampling selection. 

 
Function Best Worst Mean Std.Dev. 

F1 518 660 410 277 

F2 17 333 553 283 

F3 56 393 475 306 

F4 608 148 614 254 

F5 606 522 458 301 

 

Table A.7- Stochastic universal sampling selection fitness statistics. 

 
 STOCHASTIC UNIVERSAL SAMPLING SELECTION 

Fnc. Optimal Best 

Value 

Worst 

Value 

Mean Stdσ  

deviation 

Max  

= Mean+σ  

Min 

= Mean-σ  

F1 0 0.000056 0.063488 0.014842 0.018144 0.032986 -0.003302 

F2 0 0.153224 3.545876 1.4186 0.827653 2.246253 0.590947 

F3 0 3.172907 17.44757 8.272995 2.989659 11.26265 5.283336 

F4 -4.687 -4.68107 -4.54672 -4.63409 0.025146 -4.60894 -4.65924 

F5 -10.40561 -10.31861 -1.81108 -3.40631 2.444945 -0.96137 -5.85126 
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APPENDIX B 

 

GENETIC ALGORITHM SOURCE CODES 
 

Definition.h : contains type definitions of data types. 

#include <stdio.h> 

#include <math.h> 

#include <conio.h> 

#include <stdlib.h> 

#include <time.h>//for srand() function 

 

const int MAXPOP=200; 

const int MAXSTRING=100; 

const int MAXPARMS=10; 

const float PI=3.1415927; 

const int MAXGEN=10000; 

typedef bool allele; // Allele=bit position 

typedef allele chromosome[MAXSTRING]; // String of bits 

 

typedef struct ind_tag{ 

    chromosome chrom; // Genotype=bit string 

    float x[MAXPARMS];// Phenotype = unsigned integer 

    float fitness;    // Objective function value 

    int parent1,parent2,xsite;  // Parents and cross pt 

}individual; 

typedef individual population[MAXPOP]; 

 

typedef struct parmparm_tag{    //parameters of parameter 

    int lparm;  //length of parameter 

    float parameter,maxparm,minparm; //parameter & range 

}parmparm; 

 121



typedef parmparm parmspecs[MAXPARMS]; 

population oldpop, newpop; // Two non-overlapping populations 

int pop_b,pop_w,popsize, lchrom, gen, maxgen; // Integer global variables 

float pcross, pmutation, sumfitness;  // Real global variables 

int nmutation, ncross;// Integer statistics 

float avg, max, min;// Real statisticzs 

//double stddev;/* std. deviation of population fitness */ 

//double sum_square;/* sum of square for std. calc */ 

//double square_sum;/* square of sum for std. calc */ 

parmspecs parms; 

int nparms; 

FILE *infile,*logfile; 

int   cur_best,cur_worst,cur_genb,cur_genw,currentWorst; 

float best,worst,currentWorstFitness; 

float minsarray[MAXGEN],ia; 

float maxsarray[MAXGEN],aa; 

float maxmax,maxmin; 

float minmax,minmin; 

int gen_maxmax,gen_maxmin,gen_minmax,gen_minmin; 

int tourneylist[MAXPOP],tourneypos,tourneysize; 

int choices[MAXPOP],nremain; 

int ranklist[MAXPOP]; 

float ranklist_probabilities[MAXPOP]; 
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Generate.h : contains new population generation routine. 

/* create a new generation through select, crossover and 

mutation. Note: generation assumes an even-numbered popsize */ 

void generation(){ 

int j, mate1, mate2, jcross,i,k; 

j=0; 

 do{// select , crossover and mutation until newpop is filled 

      mate1=select_ts(); //pick pair of mates 

 mate2=select_ts(); 

  //Crossover and mutation-mutation embedded within crossover 

      crossover(oldpop[mate1].chrom,oldpop[mate2].chrom, 

 newpop[j].chrom,newpop[j+1].chrom,lchrom,ncross,nmutation,jcross,pcross,pmut

ation); 

     //Decode string, evaluate fitness,&record parentage date on both children  

 decode_parms(nparms,lchrom,newpop[j].chrom,parms); 

 for(i=0;i<nparms;i++) 

 newpop[j].x[i]=parms[i].parameter; 

         newpop[j].fitness=objfunc(newpop[j].x,nparms); 

         newpop[j].parent1=mate1; 

         newpop[j].parent2=mate2; 

         newpop[j].xsite=jcross;      

 for(k=0;k<nparms;k++) 

 newpop[j+1].x[k]=parms[k].parameter;      

 newpop[j+1].fitness=objfunc(newpop[j+1].x,nparms); 

        newpop[j+1].parent1=mate1; 

        newpop[j+1].parent2=mate2; 

        newpop[j+1]=jcross; 

        j=j+2; // Increment population index 

  }while(j<popsize); 

} 
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Initialize.h : contains initdata(), initpop(), initreport() routines. 

void initdata(); //Interactive data inquiry and setup 

void initreport(); //Initial report 

void initpop(); // Initialize population at random 

void initialize(); //Initialization coordinator 

 

void initdata(){  

 int i; 

 lchrom=0;  

  if((infile=fopen("gaparameters.txt","r"))== NULL) 

  { 

   fprintf(logfile,"\n Cannot open gaparameters.txt file!\n"); 

   exit(1); 

  } 

  for(i=0;i<1;i++){ 

   fscanf(infile,"%d",&nparms); 

   fscanf(infile,"%d",&popsize); 

   fscanf(infile,"%d",&maxgen); 

   fscanf(infile,"%f",&pcross); 

   fscanf(infile,"%f",&pmutation);    

  } 

  if((infile=fopen("parameters.txt","r"))== NULL) 

  { 

   fprintf(logfile,"\n Cannot open parameters.txt file!\n"); 

   exit(1); 

  } 

  for(i=0;i<nparms;i++){ 

   fscanf(infile,"%d",&parms[i].lparm); 

   fscanf(infile,"%f",&parms[i].minparm); 

   fscanf(infile,"%f",&parms[i].maxparm); 

   lchrom=lchrom+parms[i].lparm;   
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  } 

 // Initialize random number generator 

 randomize(); 

 // Initialize counters 

 nmutation=0; 

 ncross=0; 

} 

void initreport(){ 

  

 fprintf(logfile,"          SGA Parameters\n"); 

 fprintf(logfile,"          ---------------\n"); 

 fprintf(logfile,"  Number of Parameter(nparms)   =    %d\n",nparms); 

 fprintf(logfile,"  Population size (popsize)              =    %d\n",popsize); 

 fprintf(logfile,"  Chromosome length (lchrom)             =    %d\n",lchrom); 

 fprintf(logfile,"  Maximum # of generation (maxgen)       =    %d\n",maxgen); 

 fprintf(logfile,"  Crossover probability (pcross)         =    %6f\n",pcross); 

 fprintf(logfile,"  Mutation probability (pmutation)       =    %6f\n\n",pmutation); 

 for (int j=0;j<nparms;j++){ 

  //fprintf(logfile,"%d th parameter.  value > ",j); fprintf(logfile,"%f 

\n",parms[j].parameter); 

  fprintf(logfile,"%d th parm length > ",j); fprintf(logfile,"%d 

\n",parms[j].lparm); 

  fprintf(logfile,"%d th max.  value > ",j); fprintf(logfile,"%f 

\n",parms[j].maxparm); 

  fprintf(logfile,"%d th min.  value > ",j); fprintf(logfile,"%f 

\n",parms[j].minparm); 

 } 

 fprintf(logfile,"          Initial Generation Statistics\n"); 

 fprintf(logfile,"          -----------------------------\n"); 

 fprintf(logfile,"  Initial population maximum fitness     =    %6f\n",max); 

 fprintf(logfile,"  Initial population minimum fitness     =    %6f\n",min); 
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 fprintf(logfile,"  Initial population average fitness     =    %6f\n",avg); 

 fprintf(logfile,"  Initial population sum of fitness      =    %6f\n",sumfitness); 

} 

 

void initpop(){ 

 int j, j1,i; 

 for(j=0;j<popsize;j++){ 

   for(j1=0;j1<lchrom;j1++) 

    oldpop[j].chrom[j1]=flip(0.5); // a fair coin toss 

   decode_parms(nparms,lchrom,oldpop[j].chrom,parms); 

   for(i=0;i<nparms;i++) 

   oldpop[j].x[i+1]=parms[i].parameter;    

   //oldpop[j].x=decode(oldpop[j].chrom,lchrom); 

   //oldpop[j].fitness=objfunc1(oldpop[j].x); 

   oldpop[j].fitness=objfunc(oldpop[j].x,nparms); // Evaluate initial fitness 

   oldpop[j].parent1=0;  

   oldpop[j].parent2=0;  

   oldpop[j]=0; 

        /* Initialize printout vars */ 

    } 

} 

 

void initialize(){ 

  initdata(); 

  initpop(); 

  statistics(popsize,max,min,sumfitness,oldpop); 

  initreport(); 

} 
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Kernel.h : contains three operators Reproduction (selection), Crossover (crossover),  

Mutation (mutation). 

int select_rws(int popsize, float sumfitness, population pop);  

/* Select a singleindividual via roulette wheel selection */ 

void reset(); 

int select_ts(int popsize,population pop); 

int select_sus(int popsize,float avg,population pop); 

allele mutation(allele alleleval, float pmutation, int &nmutation);  

/* Mutate an allele w/ pmutation, count number of mutations */ 

void crossover(chromosome parent1, chromosome parent2, chromosome child1, 

   chromosome child2,int &lchrom,int &ncross,int &nmutation,int &jcross, 

   float &pcross,float &pmutation);  

/* Cross 2 parent strings, place in 2 child strings */ 

int select_sus(int popsize,float avg,population pop){ 

 int     j, k; 

 float   pointer, sum; 

  if (avg == 0) { 

    for (j = 0; j < popsize; j++) 

      choices[j] = j; 

  } 

  else { 

    k = 0; 

    pointer = random(); 

        // 

    sum = 0.0; 

    for (j = 0; j < popsize; j++) { 

  for (sum += (pop[j].fitness / avg); sum > pointer; pointer++) { 

    choices[k++] = j; 

  } 

      if(k >= popsize) 

        break; 
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    } 

  } 

  nremain = popsize - 1; 

 

  int     jpick, slect; 

  jpick = rnd(0, nremain);  

  slect = choices[jpick];  

  choices[nremain] = choices[nremain]; 

  nremain--; 

  return (slect); 

} 

int select_ts(int popsize,population pop){ 

 int pick, winner, i; 

 tourneysize=2; 

    /* If remaining members not enough for a tournament, then reset list */ 

    if((popsize - tourneypos) < tourneysize){   

  reset(); 

  tourneypos = 0; 

    } 

    /* Select tourneysize structures at random and conduct a tournament */ 

  

    winner=tourneylist[tourneypos]; 

 for(i=1; i<tourneysize; i++){ 

  pick=tourneylist[tourneypos]; 

  if(pop[pick].fitness < pop[winner].fitness)    

    } 

    /* Update tourneypos */ 

    tourneypos += tourneysize;  

    return(winner); 

} 

void reset(){/* Shuffles the tourneylist at random */ 
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    int i, rand1, rand2, temp; 

    for(i=0; i<popsize; i++)  

  tourneylist[i] = i;   

    for(i=0; i < popsize; i++){ 

        rand1=rnd(i,popsize-1); 

        rand2=rnd(i,popsize-1); 

        temp = tourneylist[rand1]; 

        tourneylist[rand1]=tourneylist[rand2]; 

        } 

} 

 

int select_rws(int popsize, float sumfitness, population pop){ 

 float rand, partsum; //Random point on wheel, partial sum 

 int j; //population index 

 partsum=0.0; j=0; //Zero out counter and accumulator 

 rand=sumfitness*random(); //Wheel point calc. uses random number [0,1] 

 do{      // Find wheel slot 

  partsum=partsum+pop[j].fitness; 

  j++; 

  }while(partsum>rand); 

 return (j-1);  // Return individual number 

} 

allele mutation(allele alleleval, float pmutation, int &nmutation){ 

 bool mutate; 

  mutate=flip(pmutation); //Flip the biased coin 

  if(mutate){ 

   nmutation++; 

      return !alleleval; //Change bit value 

    } 

  else  return alleleval; //No change 

} 
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void crossover(chromosome parent1, chromosome parent2, chromosome child1, 

   chromosome child2,int &lchrom,int &ncross,int &nmutation,int &jcross, 

   float &pcross,float &pmutation) 

{  

int j; 

  if(flip(pcross))     //Do crossover with pcross 

    {  

jcross=rnd(1,lchrom-1);//Cross between 1 and lchrom-1 

       ncross++;        //Increment crossover counter 

    } 

  else jcross=lchrom; 

  // first exchange, 1 to 1 and 2 to 2 

  for(j=0;j<jcross;j++) 

    {  

child1[j]=mutation(parent1[j],pmutation,nmutation); 

       child2[j]=mutation(parent2[j],pmutation,nmutation); 

    } 

  // second exchange, 1 to 2 and 2 to 1 

  if(jcross!=lchrom) 

    for(j=jcross;j<lchrom;j++) 

      {  

child1[j]=mutation(parent2[j],pmutation,nmutation); 

         child2[j]=mutation(parent1[j],pmutation,nmutation); 

      } 

} 
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ObjectFunction.h : contains objectfunction() and decode() routines. 

float objfunc(float x[],int n); // fitness function-f(x)=... 

float decode(chromosome chrom,int lbits);  

/* Decode string as unsigned binary integer - true=1, false=0 */ 

float objfunc(float x[],int n){ 

  /* Put object function */ 

 } 

float decode(chromosome chrom,int lbits){ 

 int j; 

 float accum=0.0,powerof2=1.0; 

 for(j=0;j<lbits;j++){ 

  if(chrom[j])  

   accum=accum+powerof2; 

  powerof2=powerof2*2; 

  } 

   return accum; 

} 

 

 

Parameters.h : cotains extract_parm(), map_parm(), decode_parms() routines. 

void extract_parm(chromosome chromfrom,chromosome chromto,int &jposition, int 

&lchrom,int &lparm); //Extract a substring from a full string 

float map_parm(float x,float maxparm,float minparm,float fullscale); /* Map an unsigned 

binary integer to range [minparm,maxparm] */ 

void decode_parms(int &nparms,int &lchrom,chromosome chrom, 

          parmspecs parms); // Decode parameter 

void writech(chromosome chrom,int l); 

void extract_parm(chromosome chromfrom,chromosome chromto,int &jposition, 

        int &lchrom,int &lparm) 

{ 

 int j,jtarget; 
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  j=0; 

  if(jtarget>lchrom)  

   jtarget=lchrom; // Clamp if excessive 

  while(jposition<jtarget) 

    {  

chromto[j]=chromfrom[jposition]; 

       ++jposition; 

       j++; 

    } 

} 

 

float map_parm(float x,float maxparm,float minparm,float fullscale){ 

 return (minparm+(maxparm-minparm)/fullscale*x); 

} 

 

void writech(chromosome chrom,int l){ 

 int j; 

 printf("\n"); 

 for(j=0;j<l;j++) 

    if(chrom[j])  

  printf("1"); 

    else printf("0"); 

} 

void decode_parms(int &nparms,int &lchrom,chromosome chrom,parmspecs parms){ 

 int j,jposition; 

 chromosome chromtemp; // Temporary string buffer 

 j=0; //Parameter counter 

 jposition=0; //String position counter 

 do{ 

      if(parms[j].lparm>0){ 

    extract_parm(chrom,chromtemp,lchrom,parms[j].lparm); 
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parms[j].parameter=map_parm(decode(chromtemp,parms[j].lparm),parms[j].maxparm,pa

rms[j].minparm,pow(2.0,parms[j].lparm)-1); 

    //writech(chrom,parms[j].lparm);printf("-"); 

    //writech(chromtemp,parms[j].lparm); 

    //printf("\n:%f :%f :%f :%f

 :%f\n",parms[j].parameter,decode(chromtemp,parms[j].lparm),parms[j].maxparm,

parms[j].minparm,pow(2.0,parms[j].lparm)-1); 

    //printf("/%f /%f

 /%f\n",parms[j].parameter,decode(chromtemp,parms[j].lparm),pow(2.0,parms[j].l

parm)-1);   

   } 

      j++; 

    } 

while(j<nparms); 

} 

 

 

Random.h : contains random number utility programs. 

float oldrand[55]; //array of 55 random number 

int jrand; //current random 

void advance_random(); // create next batch of 55 random numbers 

void warmup_random(float random_seed); // get random off and runnin 

float random(); /* fetch a single random number between 0.0 and 1.0 - 

Subtractive Method (see Knuth D.(1969), v.2 for details) */ 

bool flip(float probability);//flip a biased coin-true if heads 

int rnd(int low,int high); //pick a random integer between low and high 

void randomize(); //get seed number for random and start it up 

 

void advance_random() 

{ 
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float new_random; 

  for(int j1=0;j1<24;j1++) 

    { new_random=oldrand[j1]-oldrand[j1+30]; 

      if(new_random<0.0) new_random=new_random+1.0; 

      oldrand[j1]=new_random; 

    } 

  for(int j1=24;j1<55;j1++) 

    { 

 new_random=oldrand[j1]-oldrand[j1-23]; 

       if(new_random<0.0) new_random=new_random+1.0; 

        oldrand[j1]=new_random; 

    } 

} 

 

void warmup_random(float random_seed) 

{ int ii; 

  float new_random,prev_random; 

  oldrand[54]=random_seed; 

  new_random=1.0e-06; 

  prev_random=random_seed; 

  for(int j1=0;j1<54;j1++) 

    { ii=21*j1%55; 

      oldrand[ii]=new_random; 

      new_random=prev_random-new_random; 

      if(new_random<0.0) new_random=new_random+1.0; 

      prev_random=oldrand[ii]; 

    } 

  advance_random(); 

  advance_random(); 

  advance_random(); 

  jrand=0; 

 134



} 

float random() 

{ jrand=jrand+1; 

  if(jrand>55) 

    { jrand=1; 

      advance_random(); 

    } 

  return oldrand[jrand]; 

} 

 

bool flip(float probability) 

{ if(probability==1.0) return true; 

  else return (random()<=probability); 

} 

int rnd(int low,int high) 

{ int i; 

  if(low>=high) i=low; 

  else{ i=(int)(random()*(high-low+1)+low); 

        if(i>high) i=high; 

      } 

  return i; 

} 

void randomize(){ 

 srand((unsigned)time(NULL)); 

 double randomseed,high,low; 

 high=1.0;low=0.0; 

 double ra=(high-low); 

 randomseed=low+double(ra*rand()/double(RAND_MAX+1.0)); 

 fprintf(logfile,"Auto random seed number:%f\n",randomseed); 

    warmup_random(randomseed); 

} 
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Reports.h : contains routines used to print a report from each cycle of genetic 

algorithm’s operation. 

void writechrom(chromosome chrom,int lchrom); /* Write a chromosome 

       as a string of 1's (true's) and 0's (false's)   */ 

void report(int gen); // Write the population report 

 

void writechrom(chromosome chrom,int lchrom) 

{ int j; 

  for(j=0;j<lchrom;j++) 

    if(chrom[j]) fprintf(logfile,"1"); 

    else fprintf(logfile,"0"); 

} 

 

void report(int gen) 

{ int j; 

 

  fprintf(logfile,"\n         Population Report  Generation  %d\n",gen); 

  for(j=0;j<popsize;j++){ 

  fprintf(logfile,"\n population %2d>>",j); 

  //writechrom(newpop[j].chrom,lchrom); 

  for (int i = 0; i < nparms; i++){ 

    

   fprintf (logfile," parm(%d) = %6f",i,newpop[j].x[i]); 

   } 

  fprintf(logfile,"fitness: %6f",newpop[j].fitness); 

 } 

   

  // Generation statistics and accumulated values 

  fprintf(logfile,"\nNote: Generation  %d  & Accumulated Statistics:\n",gen); 

  fprintf(logfile,"max=%6f min=%6f avg=%6f  sum=%6f nmutation=%d 

ncross=%d\n",max,min,avg,sumfitness,nmutation,ncross); 
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  //printf("gen:%d max=%.3f min=%.3f avg=%.3f sum=%.3f 

\n",gen,max,min,avg,sumfitness); 

  for (int i = 0; i < nparms; i++){ 

 fprintf (logfile,"parameter  ::%6f\n",newpop[popsize].x[i]); 

 } 

   fprintf(logfile,"gen:%d Best fitness::%f\n",cur_genb,best); 

   //printf("gen:%d Best  fitness::%f \n",cur_genb,best); 

    

   //printf("gen:%d Best  fitness max::%f \n",gen_maxmax,maxmax); 

   //printf("gen:%d Best  fitness min::%f \n",gen_maxmin,maxmin); 

   //printf("gen:%d Worst fitness max::%f \n",gen_minmax,minmax); 

   //printf("gen:%d Worst fitness min::%f \n\n",gen_minmin,minmin); 

} 

 

 

Statistics.h : contains the routine statistics(), which calculates population statistics for 

each generation. 

void statistics(int popsize,float &max, float &avg, float &min,float &sumfitness, 

population pop) 

//Calculate population statistics 

{  

int i,j,k,mem; 

  //initialize 

  sumfitness=pop[0].fitness; 

  min=pop[0].fitness; 

  max=pop[0].fitness; 

  //Loop for max, min, sumfitness 

  for(j=1;j<popsize;j++){ 

    sumfitness=sumfitness+pop[j].fitness; //Accumulate fitness sum 

    //printf("%f %f\n",pop[j].fitness,avg); 

    if(pop[j].fitness>max){ 

 137



    max=pop[j].fitness; //New max 

    } 

 

    if(pop[j].fitness<min){  

    min=pop[j].fitness; //New min 

    } 

    /* 

   if (pop[j].fitness > best){ 

    cur_genb=gen;//best fitness found generation  

    cur_best = j;//best fitness found population 

    //worst=min;//keep minimum fitness for best fistness 

    pop[popsize].fitness = pop[j].fitness; 

    best=pop[j].fitness;//keep best; 

    for (i = 0; i < nparms; i++) 

  pop[popsize].x[i] = pop[cur_best].x[i];//keep best fitness parameters 

    }*/ 

  } 

  //Calculate average   

  avg=sumfitness/popsize; 

  maxsarray[gen]=max; 

  minsarray[gen]=min; 

   if(maxsarray[gen]<maxmin){ 

    maxmin=maxsarray[gen]; 

    gen_maxmin=gen; 

   } 

   if(maxsarray[gen]>maxmax){ 

    maxmax=maxsarray[gen]; 

    gen_maxmax=gen; 

   } 

   if(minsarray[gen]>minmax){ 

    minmax=minsarray[gen]; 
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    gen_minmax=gen; 

   } 

   if(minsarray[gen]<minmin){ 

    minmin=minsarray[gen]; 

    gen_minmin=gen; 

   } 

} 

 

 

Main.cpp : contains the main SGA program loop, main(). 

// Main program of  Genetic Algorithm 

#include "definitions.h" 

#include "random.h" 

#include "objectfunction.h" 

#include "parameters.h" 

#include "statistics.h" 

#include "initialize.h" 

#include "reports.h" 

#include "kernel.h" 

#include "generate.h" 

 

void main(){ 

 if ((logfile = fopen("galog.txt","w"))==NULL){ 

  exit(1); 

      }  

 gen=0;   // Set things up 

 initialize(); 

 maxmax=maxsarray[0]; 

 maxmin=maxsarray[0]; 

 minmax=minsarray[0]; 

 minmin=minsarray[0]; 

 139



 

 do{ 

       gen++; 

generation(); 

       statistics(popsize,max,avg,min,sumfitness,newpop); 

       report(gen); 

       for(int i=0;i<popsize;i++) 

         oldpop[i]=newpop[i]; //advance the generation 

 }while(gen<maxgen);      

 

 printf("maxmax:%f gen_max:%d\n",maxmax,gen_maxmax); 

 printf("maxmin:%f gen_min:%d\n",maxmin,gen_maxmin); 

 printf("minmax:%f gen_max:%d\n",minmax,gen_minmax); 

 printf("minmin:%f gen_min:%d\n",minmin,gen_minmin); 

 

 getch(); 

} 
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