
NEAR EAST UNIVERSITY

GRADUATE SCHOOL OF APPLIED AND
SOCIAL SCIENCES

COMPARISON OF SELECTION SCHEMES OF
GENETIC ALGORITHM IN NUMERICAL

OPTIMIZATION

BSc. Ozan Akkoca

MASTER THESIS

Department of Computer Engineering

Nicosia-2007

 1

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor Assoc. Professor Dr. Adil

Amircanov for his constant guidance and continuous support. He followed the whole

process of this thesis very closely and suggested useful ideas and insights all the way

long. The frequent and stimulating discussions we had at our regular meetings made it all

happen. Many thank to him.

I am very grateful to Assoc. Professor Dr. Rahib Abiyev for his help and

answering any question I asked him.

I would like to thank my best friends Yusuf Şen, Engin Çiloğlu, Özgür Pehlivan,

Hüseyin Mısır and Hayrettin Tektunalı for their support, also expressing my apology to

all my friends that I could not mention here personally one by one.

Especially, I would like to express my apologies to my friend Begüm Gül. I did

not want to hurt and disappoint her while preparing this thesis. Really, I am so sorry.

Finally, I could never have prepared this thesis without encouragement,

unconditional support and love of my family. Many thank to them.

 2

ABSTRACT

Genetic Algorithms are a common probabilistic optimization methods based on the

model of natural evolution. A genetic algorithm mainly composed of three genetic

operations, which are selection, crossover and mutation operation. Selection operation

uses some schemes such as proportionate-based selection scheme and ordinal-based

selection scheme to select “good” individuals from the population to insert into mating

pool. Then selected individuals from the mating pool are used by a recombination

operator “crossover and mutation” to generate new fitness offspring for next generation.

This thesis presents the comparison of selection schemes of genetic algorithm in

numerical optimization with various selection schemes. The simulation results are studied

by using various test cases. The quantitative analysis of the selection strategies is

depicted and the numerical experiments show that genetic algorithm with ordinal-based

selection strategy converges faster than with proportionate-based selection, schemes. But

for the some multimodal test functions the quality of the solution obtained is better for

proportionate-based selection schemes than for ordinal-based one.

 3

CONTENTS

ACKNOWLEDGEMENTS ... i

ABSTRACT .. ii

CONTENTS ... iii

LIST of TABLES ..v

LIST of FIGURES .. vi

INTRODUCTION ...1

CHAPTER ONE GENETIC ALGORITHM ...4

1.1- Genetic Algorithm ...4

1.1.1- Termination Conditions of Genetic Algorithm ..6

1.1.2- Pseudo Code of Genetic Algorithm ..7

1.2- Working Principle of Genetic Algorithm ..8

1.3- Steps of Genetic Algorithm ...9

1.4- Parameters of Genetic Algorithm ..12

1.5- Representation of a Chromosome in Search Space ...14

1.5.1- Encoding and Decoding of Parameters in Genetic Algorithm15

1.5.2- Parameter Mapping ...15

1.5.3- Encoding Multi Parameters ..17

1.5.4- Decoding Multi Parameters ..17

CHAPTER 2 SELECTION OPERATORS ..18

2.1- Selection Schemes ...18

2.1.1- Basic Selection Schemes ..19

2.2- Proportionate-Base Selection ..19

2.2.1- Proportionate (Roulette-Wheel) Selection ..19

2.2.2- Stochastic Universal Sampling Selection ...23

2.3- Ordinal-Base Selection ..25

2.3.1- Tournament Selection ...25

2.3.2- Truncation Selection ...28

 4

2.3.3- Linear Ranking Selection ...30

2.3- Comparison of Selection Schemes ..30

2.3.1- Selection Probability ...30

2.3.1.1- Selection Probability for Tournament Selection30

2.3.1.2- Selection Probability for Linear Ranking Selection30

2.3.1.3- Selection Probability for Roulette-Wheel Selection31

2.3.1.4- Selection Probability for S.U.S Selection31

2.3.1.5- Comparison of Selections Probability ...32

2.3.2- Selection Intensity ..32

2.3.2.1- Selection Intensity for Tournament Selection33

2.3.2.2- Selection Intensity for Linear Ranking Selection33

2.3.2.3- Selection Probability for Proportionate-Base Selections33

2.3.2.4- Comparison of Selections Intensity ...34

CHAPTER 3 RECOMBINATION OPERATORS ...35

3.1- Crossover Operators ..35

3.1.1- K-Point Crossover ..36

3.1.2- Uniform Crossover ...38

3.1.3- Uniform Order Based Crossover ..40

3.1.4- Order Based Crossover ...41

3.1.5- Partially Matched Crossoer (PMX) ..42

3.1.6- Cycle Crossover (CX) ..43

3.2- Mutation Operators ..44

3.2.1- Flip Bit Mutation ..45

3.2.2- Boundary Mutation ...45

3.2.3- Uniform Mutation ...45

3.2.4- Non-Uniform Mutation ...46

3.2.5- Gaussian Mutation ..46

CHAPTER 4 BENCHMARK TEST FUNCTIONS ..47

4.1- F1- Rosenbrock’s Function ...47

 5

4.2- F2- De Jong’s Test Function 1 ..49

4.3- F3- Griewangk’s Function ...50

4.4- F4- Michalewicz’s Function ..53

4.5- F5- Shekel’s Function ..56

CHAPTER 5 IMPLEMENTATION of GENETIC ALGORITHM58

5.1- Implementation of Genetic Algorithm ...58

5.1.1- Parameter Selection for a Genetic Algorithm Program59

5.2- C Codes of Genetic Algorithm’s for Program Design ..60

5.2.1- Genetic Algorithm Program Files ...60

5.2.2- Genetic Algorithm Program Functions ...61

CHAPTER 6 ANALYSIS of COMPUTATIONAL RESULTS69

6.1- Computational Test Results ...69

6.1.1- Roulette-Wheel Selection Test Results ..70

6.1.2- Tournament Selection Test Results ..80

6.1.3- Comparison of Computational Test Results ...90

6.2- Revision ...92

CONCLUSION ...94

REFERENCES ..95

APPENDIX A.. A-1

APPENDIX B ...B-1

List of Tables

Table 2.1- Individuals fitness values for roulette-wheel selection.22

Table 2.2- Individuals fitness values of tournament selection. ...27

Table 2.3- Comparison of selection schemes according to selection intensity.34

 6

Table 5.1- Comparison of empirically determined GA parameter settings [25].59

Table 6.1- List of five test functions. ..69

Table 6.2- Test results of roulette-wheel selection for F1. ...70

Table 6.3- Test results of roulette-wheel selection for F2. ...72

Table 6.4- Test results of roulette-wheel selection for F3. ...74

Table 6.5- Test results of roulette-wheel selection for F4. ...76

Table 6.6- Test results of roulette-wheel selection for F5. ...78

Table 6.7- Test results of tournament selection for F1. ..80

Table 6.8- Test results of tournament selection for F2. ..82

Table 6.9- Test results of tournament selection for F3. ..84

Table 6.10- Test results of tournament selection for F4. ..86

Table 6.11- Test results of tournament selection for F5. ..88

Table 6.12- Convergence speed statistics for roulette-wheel selection.90

Table 6.13- Convergence speed statistics for tournament selection.90

Table 6.14- Comparison of convergence speed. ...90

Table 6.15- Roulette-wheel selection fitness statistics. ..91

Table 6.16- Tournament selection fitness statistics. ...91

Table 6.17- Comparison of comparison of quality of global optimum.92

Table A.1- Test results of stochastic universal sampling selection for F1. A-1

Table A.2- Test results of stochastic universal sampling selection for F2. A-3

Table A.3- Test results of stochastic universal sampling selection for F3. A-5

Table A.4- Test results of stochastic universal sampling selection for F4. A-7

Table A.5- Test results of stochastic universal sampling selection for F5. A-9

Table A.6- Convergence speed statistics for stochastic universal sampling selection. A-11

Table A.7- Stochastic universal sampling selection fitness statistics. A-11

List of Figures

Figure 1.1- Flowchart of genetic algorithm. ...5

 7

Figure 1.2- This flowchart illustrates the basic steps in a genetic algorithm.....................12

Figure 1.3- Chromosome and gene representation in a population.23

Figure 1.4- Decoding and encoding process. ..15

Figure 2.1- Pseudo code of proportionate selection. ...20

Figure 2.2- Flowchart of roulette-wheel selection. ...21

Figure 2.3- Proportions of individuals in a population. ...23

Figure 2.4- Pseudo code of stochastic universal sampling selection.24

Figure 2.5- Stochastic universal sampling selection example. ..24

Figure 2.6- Pseudo code of tournament selection. ..25

Figure 2.7- Flowchart of tournament selection. ..26

Figure 2.8- Pseudo code of truncation selection. ..28

Figure 2.9- Pseudo code of linear ranking selection. ..29

Figure 3.1- One point crossover. ...37

Figure 3.2- Two point crossover. ..38

Figure 3.3- Uniform crossover. ...39

Figure 3.4- Uniform order based crossover. ...41

Figure 3.5- Order based crossover. ...42

Figure 3.6- Partially matched crossover. ..43

Figure 3.7- Cycle crossover. ...44

Figure 3.8- Flip bit mutation. ..45

Figure 4.1- Full definition range of the function. ...48

Figure 4.2- Focus around the area of the global optimum at [1, 1].48

Figure 4.3- Surf plot of the function in a very large area from -500 to 500 for each of both

variables. ...49

Figure 4.4- The function at a smaller area from -10 to 10. ...50

Figure 4.5- Full definition area from -500 to 500. ..51

Figure 4.6- Inner area of the function from -50 to 50. ..52

Figure 4.7- Area from -8 to 8 around the optimum at [0, 0]. ..53

 8

Figure 4.8- Surf plot in an area from 0 to 3 for the first and second variable.54

Figure 4.9- Area around the optimum. ..54

Figure 4.10- Same as Figure 4.8 for the third and forth var., var. 1 and 2 are set 0.55

Figure 4.11- Graphics of Shekel's function. ...56

Figure 5.1- C code of roulette-wheel selection. ..61

Figure 5.2- C code of tournament selection. ...62

Figure 5.3- C code of flip bit mutation. ..63

Figure 5.4- C code of one point crossover with flip bit mutation.64

Figure 5.5- C code of decoding a parameter. ..64

Figure 5.6- C code of mapping a parameter. ..65

Figure 5.7- C code of extracting a parameter from a full string.65

Figure 5.8- C code of parameter decoding. ...66

Figure 5.9- C code of flipping a biased coin. ..67

Figure 5.10- C code of main function. ..68

Figure 6.1- Roulette-wheel selection graphic for F1. ...71

Figure 6.2- Roulette-wheel selection graphic for F2. ...73

Figure 6.3- Roulette-wheel selection graphic for F3. ...75

Figure 6.4- Roulette-wheel selection graphic for F4. ...77

Figure 6.5- Roulette-wheel selection graphic for F5. ...79

Figure 6.6- Tournament selection graphic for F1. ..81

Figure 6.7- Tournament selection graphic for F2. ..83

Figure 6.8- Tournament selection graphic for F3. ..85

Figure 6.9- Tournament selection graphic for F4. ..87

Figure 6.10- Tournament selection graphic for F5. ..89

Figure A.1- Stochastic universal sampling selection graphic for F1. A-2

Figure A.2- Stochastic universal sampling selection graphic for F2. A-4

Figure A.3- Stochastic universal sampling selection graphic for F3. A-6

Figure A.4- Stochastic universal sampling selection graphic for F4. A-8

 9

Figure A.5- Stochastic universal sampling selection graphic for F5. A-10

 10

INTRODUCTION

Genetic algorithms are robust and adaptive methods for solving a wide range of the

global numerical optimization problems [14].

By using the genetic algorithm to solve a problem, first present the candidate solutions as

a sequence of values, and define an evaluation function to evaluate the candidate

solutions. One population consists of a certain number of individuals which serve as

candidate solutions. New generation of population is created by genetic operations such

as selection, crossover and mutation in iteration.

According to the Darwinian principles of survival, which is called “the survival of the

fittest”, the excellent individuals have far more chances to adapt themselves to the

environment and survive, while the inferior ones die out [8]. The survivals reproduce

new individuals with better genes which make the new generation more endurable to the

nature. The genetic algorithm uses this process of reproduction as a basic genetic

operation for the algorithms.

The genetic algorithm uses a selection scheme to select individuals from the population

to insert into a mating pool. Individuals from the mating pool are used by a

recombination operator to generate new offspring, with the resulting offspring forming

the basis of the next generation. Since the individuals in the mating pool pass their genes

on to the next generation, it is desirable that the mating pool comprise “good” individuals.

A selection scheme in the genetic algorithm is simply a process that favors the selection

of better individuals in the population for the mating pool. The selection operator is

intended to improve the average quality of the population by giving individuals of higher

quality a higher probability to be copied in to the next generation. So selection schemes

are very important for the genetic algorithm to reach the better solutions.

 11

There are two basic types of selection schemes commonly used today: proportionate-base

selection and ordinal-based selection [2].

Proportionate-based selection selects individuals on the basis of their fitness values

relative to the fitness of the other individuals in the population. Some common

proportionate-based schemes are proportionate selection (roulette-wheel) [4] and

stochastic universal selection [12, 6].

Ordinal-based selection schemes select individuals not according to their fitness, but on

the basis of their rank within the population. The individuals are ranked according to their

fitness. Some common ordinal-based selection schemes are tournament selection [9, 10],

linear ranking selection and truncation selection [11].

The aim of this thesis is comparison of selection schemes of genetic algorithm in

numerical optimization with various selection schemes such as proportionate-based

scheme and ordinal-based scheme. For proportionate-based scheme roulette-wheel

selection, and for ordinal-based scheme binary tournament selection is taken as

representative because for each group, chosen selection methods has less selection

intensity for its group. Also for proportionate selection scheme, stochastic universal

sampling selection method simulated but not considered for the thesis purpose but also its

simulated test result are given in Appendix A. The simulation results are studied by using

various test cases such as speed of convergence to the global optimum, and the quality of

optimal solution.

The first chapter gives brief information about idea of a genetic algorithm and working

principle step by step. In addition to this, discusses of chromosome representation in

search space and encoding, decoding, mapping techniques of the parameters in a search

space.

The second chapter discusses briefly the proportionate-base selection and ordinal-based

selection schemes. The subsequent titles deal with the selection methods such as,

 12

proportionate selection, stochastic universal sampling selection, linear ranking selection,

tournament selection and truncation selection algorithms and gives selection algorithms

pseudo codes. Also mentions the comparisons of selection schemes according to selection

intensity and selection probability.

The third chapter shows the recombination operators “crossover and mutation”.

Crossover techniques such as k point crossover, uniform crossover and order based

crossover and mutation techniques as flip bit mutation, uniform mutation are given.

The forth chapter describes the test functions “Rosenbrock Function, De Jong’s Function

1 (Sphere Model), Griewank’s Function, Michalewicz’s Function, Shekel’s Function”.

The test functions properties and their design are mentions.

The fifth chapter gives information about the designing a computer program for genetic

algorithm, the genetic algorithm program is written with C programming language and

discusses program files and program functions. Subtitles give information about

implementation of genetic algorithm operators and parameter selection for recombination

operators.

The last chapter gives the computational test results of tournament selection and roulette-

wheel selection. Also comparison of the selection schemes given according to test results

and analyze.

 13

CHAPTER ONE

GENETIC ALGORITHM

1.1- Genetic Algorithm

The genetic algorithm is a model of machine learning which derives its behavior from a

metaphor of the processes of evolution in nature. This is done by the creation within a

machine of a population of individuals represented by chromosomes, in essence a set of

character strings that are analogous to the base-4 chromosomes that seen in humans DNA.

The individuals in the population then go through a process of evolution.

In nature, the encoding of genetic information (genome) is done in a way that admits

asexual reproduction (such as by budding) typically results in offspring that are

genetically identical to the parent. Sexual reproduction allows the creation of genetically

radically different offspring that are still of the same general flavor (species).

At the molecular level what occurs is that a pair of chromosomes bump into one another,

exchange chunks of genetic information and drift apart. This is the recombination

operation, which genetic algorithm generally refers to as crossover because of the way

that genetic material crosses over from one chromosome to another.

The crossover operation happens in an environment where the selection of who gets to

mate is a function of the fitness of the individual, i.e. How good the individual is at

competing in its environment. Some genetic algorithms use a simple function of the

fitness measure to select individuals (probabilistically) to undergo genetic operations

such as crossover or asexual reproduction [4]. This is fitness-proportionate selection.

Other implementations use a model in which certain randomly selected individuals in a

subgroup competes and the fittest is selected [9]. This is called tournament selection. The

two processes that most contribute to evolution are crossover and fitness based

selection/reproduction.

 14

Mutation also plays a role in this process, although how important its role is continues to

be a matter of debate (some refer to it as a background operator, while others view it as

playing the dominant role in the evolutionary process) [13]. It cannot be stressed too

strongly that the genetic algorithm (as a simulation of a genetic process) is not a random

search for a solution to a problem (highly fit individual). The genetic algorithm uses

stochastic processes, but the result is distinctly non-random (better than random).

Generation of initial population

Evaluate of each individual

Figure 1.1- Flowchart of genetic algorithm.

Genetic algorithms are used for a number of different application areas [1]. An example

of this would be multidimensional optimization problems in which the character string of

the chromosome can be used to encode the values for the different parameters being

optimized.

Termination
criterion met?

Selection

Crossover

Mutation

Final solution

Yes

No

 15

In practice, therefore, the implementation of this genetic model of computation by having

arrays of bits or characters to represent the chromosomes. Simple bit manipulation

operations allow the implementation of crossover, mutation and other operations.

Although a substantial amount of research has been performed on variable- length

strings and other structures, the majority of work with genetic algorithm is focused on

fixed-length character strings.

When the genetic algorithm is implemented it is usually done in a manner that involves

the following cycle: Evaluate the fitness of all of the individuals in the population. Create

a new population by performing operations such as crossover, fitness-proportionate

reproduction and mutation on the individuals whose fitness has just been measured.

Discard the old population and iterate using the new population.

An iteration of this loop is referred to as a generation. There is no theoretical reason for

this as an implementation model. Indeed, do not see this punctuated behavior in

populations in nature as a whole, but it is a convenient implementation model.

The first generation (generation 0) of this process operates on a population of randomly

generated individuals. From there on, the genetic operations, in concert with the fitness

measure, operate to improve the population.

1.1.1- Termination Conditions of Genetic Algorithm

The above generational process is repeated until a termination condition has been reached.

Common terminating conditions are;

A solution is found that satisfies minimum or maximum criteria.

Fixed number of generations reached.

Allocated budget (computation time/money) reached.

The highest ranking solution's fitness is reaching or has reached a plateau such that

successive iterations no longer produce better results.

Combinations of the above conditions.

 16

1.1.2- Pseudo Code of Genetic Algorithm

BEGIN GA

 // start with an initial time

 t := 0;

 // initialize a usually random population of individuals

 initpopulation P (t);

 // evaluate fitness of all initial individuals of population

 evaluate P (t);

 // test for termination criterion (time, fitness, etc.)

 while not done do

 // increase the time counter

 t := t + 1;

 // select a sub-population for offspring production

 P' := selectparents P (t);

 // recombine the "genes" of selected parents

 recombine P' (t);

 // perturb the mated population stochastically

 mutate P' (t);

 // evaluate it's new fitness

 evaluate P' (t);

 // select the survivors from actual fitness

 P := survive P, P' (t);

 Od

 END GA.

 17

1.2- Working Principle of Genetic Algorithm

Genetic algorithm encodes the decision variables of a search problem into finite-length

strings of alphabets of certain cardinality. The strings which are candidate solutions to the

search problem are referred to as chromosomes, the alphabets are referred to as genes and

the values of genes are called alleles. For example, in contrast to traditional optimization

techniques, Genetic algorithm works with coding of parameters, rather than the

parameters themselves [13].

To evolve good solutions and to implement natural selection needed a measure for

distinguishing good solutions from bad solutions. The measure could be an objective

function that is a mathematical model or a computer simulation, or it can be a subjective

function where humans choose better solutions over worse ones. In essence, the fitness

measure must determine a candidate solution’s relative fitness, which will subsequently

be used by the genetic algorithm to guide the evolution of good solutions.

Another important concept of genetic algorithm is the notion of population. Unlike

traditional search methods, genetic algorithm relies on a population of candidate solutions.

The population size, which is usually a user-specified parameter, is one of the important

factors affecting the scalability and performance of genetic algorithms. For example,

small population sizes might lead to premature convergence and yield substandard

solutions [14]. On the other hand, large population sizes lead to unnecessary expenditure

of valuable computational time.

Once the problem is encoded in a chromosomal manner and starts with a set of solutions

(represented by chromosomes) called population. Solutions from one population are

taken and used to form a new population. This is motivated by a hope, that the new

population will be better than the old one. Solutions which are selected to form new

solutions (offspring) are selected according to their fitness - the more suitable they are the

more chances they have to reproduce.

 18

The genetic algorithm is composed of three genetic operations: selection, crossover and

mutation .The genetic algorithm uses the steps as below:

Step1. Generate initial random population with n chromosomes.

Step2. Evaluate the fitness value of each individual in the population.

Step3. Perform sub-steps as follows to create new population. Repeat until the new

population is completed.

3.1. According to the fitness value, individuals are chosen with a probability.

Replicate the selected ones to form a new population (Selection).

3.2. Create two new individuals by two parents who are selected probabilistically

from the population and recombine them at the crossover point (Crossover).

3.3. Create a new individual by mutating an existing individual with the

probabilistically selected (Mutation).

3.4. Place new offspring in a new population (Replacement).

Step4. Use new generated population for next generation.

Step5. If the end condition is satisfied, stop, and return the best solution in current

population. Else go to step2.

1.3- Steps of Genetic Algorithm

Step1. Initialization

The initial population of candidate solutions is usually generated randomly across the

search space. However, domain specific knowledge or other information can be easily

incorporated.

Step2. Evaluation

Once the population is initialized or an offspring population is created, the fitness values

of the candidate solutions are evaluated.

 19

Step3. Perform sub-steps as follows to create new population. Repeat until the new

population is completed.

Step3.1. Selection

Selection allocates more copies of those solutions with higher fitness values and thus

imposes the “survival of the fittest” mechanism on the candidate solutions.

The main idea of selection is to prefer better solutions to worse ones, and many selection

procedures have been proposed to accomplish this idea, including roulette-wheel

selection, stochastic universal selection, linear ranking selection and tournament selection

(some of the selection methods discussed in chapter 2).

Step3.2. Crossover

Crossover combines parts of two or more parental solutions to create new, possibly better

offspring. There are many ways of accomplishing this (some of which are discussed in

chapter 3), and competent performance depends on a properly designed recombination

mechanism. The offspring under recombination will not be identical to any particular

parent and will instead combine parental traits in a novel manner.

Step3.3. Mutation

While recombination operates on two or more parental chromosomes, mutation locally

but randomly modifies a solution. Again, there are many variations of mutation, but it

usually involves one or more changes being made to an individual’s trait or traits. In

other words, mutation performs a random walk in the vicinity of a candidate solution

(some of the mutation techniques are discussed in chapter 3).

 20

Step3.4. Replacement Techniques

Once the new offspring solutions are created using crossover and mutation then need to

introduce them into the parental population. There are many ways to approach this. Bear

in mind that the parent chromosomes have already been selected according to their fitness,

so hoping that the children (which include parents which did not undergo crossover) are

among the fittest in the population and so hope that the population will gradually, on

average, increase its fitness. Some of the most common replacement techniques are

outlined below.

3.4.1- Delete All

This technique deletes all the members of the current population and replaces them with

the same number of chromosomes that have just been created. This is probably the most

common technique and will be the technique of choice for most people due to its relative

ease of implementation. It is also parameter-free, which is not the case for some other

methods.

3.4.2- Steady State

This technique deletes n old members and replaces them with n new members. The

number to delete and replace, n, at any one time is a parameter to this deletion technique.

Another consideration for this technique is deciding which members to delete from the

current population. Delete the worst individuals, pick them at random or delete the

chromosomes that used as parents. Again, this is a parameter to this technique.

3.4.3- Steady State No Duplicates

This is the same as the steady state technique but the algorithm checks that no duplicate

chromosomes are added to the population. This adds to the computational overhead but

can mean that more of the search space is explored.

 21

Step4. Use new generated population for next generation.

Step5. Repeat steps 2–6 until a terminating condition is met.

Initialize
population

 Calculate

fitnesses
Population

Transfer

 Solution
found? Offspring

Figure 1.2- This flowchart illustrates the basic steps in a genetic algorithm .

1.4- Parameters of Genetic Algorithm

Number of Generation: indicates, how many times the genetic algorithm will be

repeated.

Select
operation

Stop
iteration

Crossover
operation

Mutation
operation

Yes No

 22

Population Size: indicates, number of chromosomes are in a population. If there are too

few chromosomes, Genetic Algorithm has a few possibilities to perform crossover and

only a small part of search space is explored. On the other hand, if there are too many

chromosomes, Genetic Algorithm slows down. Also if the population size is too small,

the genetic algorithm may not explore enough of the solution space to consistently find

good solutions [17]. Figure 1.3 indicates a population which has 3 chromosomes and

each chromosome has 5 genes.

Figure 1.3- Chromosome and gene representation in a population.

Chromosome Length: Each chromosome represents a point in the search space and is

composed of a string of genes. The binary alphabet {0, 1} is often used to represent these

genes but sometimes, depending on the application, integers or real numbers are used. In

fact, almost any representation can be used that enables a point to be encoded as finite

length string. Figure 1.3 indicates chromosomes length as 5 (genes).

* m bit string parameters each of length bit n

Example: 5*10 bits

[[0001010101]p1[0101010101]p2[1110010101]p3[0101100001]p4[1111110000]]p5

0 1 0 0 0 1 01 1 1 1 0 0 0 1 1 0 0

Gene
Chromosome

Population

 23

* Single parameter bits of length bit n

Example: 50 bits

[00010101010101010101111001010101011000011111110000]p1

Crossover probability: indicates, how often the crossover will be performed. If there is

no crossover, offspring is exact copy of parents. If there is a crossover, offspring is made

from parts of parents “chromosome”. If crossover probability is equal to 1, then all

offspring is made by crossover. If it is equal to 0, whole new generation is made from

exact copies of chromosomes from old population (but this does not mean that the new

generation is the same).

Crossover is made in hope that new chromosomes will have good parts of old

chromosomes and maybe the new chromosomes will be better. However it is good to

leave some parts of population survive to next generation.

Mutation probability: indicates, how often the parts of the chromosome will be mutated.

If there is no mutation, offspring is taken after crossover (or copy) without any change. If

mutation is performed, part of chromosome is changed. If mutation probability is equal to

1, whole chromosome is changed, if it is equal to 0, nothing is changed.

Mutation is made to prevent falling genetic algorithm into local extreme, but it should not

occur very often, because then genetic algorithm will in fact change to random search.

1.5- Representation of a Chromosome in Search Space

While solving some problem, usually looking for some solution, which will be the best

among others. The space of all feasible solutions is called search space. Each point in the

search space represents one feasible solution. Each feasible solution can be "marked" by

its value or fitness for the problem. Looking for solution which is the one point (or more)

 24

among feasible solutions - that is one point in the search space. And the looking for a

solution is then equal to a looking for some extreme (minimum or maximum) in the

search space.

Each individual in a genetic algorithm population is represented by a chromosome. In

nature this chromosome contains genetic information relating to each individual

characteristic. For simple genetic algorithms the chromosome is often represented as a

binary string. But representation is depends on the problem.

1.5.1- Encoding and Decoding of Parameters in Genetic Algorithm

The mapping from phenotype to the genotype space is encoding process. The inverse

mapping from genotypes to phenotypes is usually called decoding.

Phenotype space Genotype space={
 L}1,0

 Figure 1.4- Decoding and encoding process.

1.5.2- Parameter Mapping

z ∈ [x,y] ⊆ ℜ represented by ∈ },...,{ 1 Laa L}1,0{

L = number of binary bits in each individual.

Encoding
(representation)

Decoding (inverse
representation)

100111

100101

100101

010101

 25

[x,y] → must be invertible (one phenotype per genotype). L}1,0{

Γ: → [x,y] defines the representation. L}1,0{

() []yxaxyxaa j
L

j
jLLL ,2..

12
,...,

1

0
1 ε⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−
−

+=Γ ∑
−

=
−

Only values out of infinite are represented. L determines possible maximum precision

of solution. High precision requires long chromosomes (but makes slow evolution).

L2

Let’s look at a specific example, and see how the analogy would apply to finding the

minimum of the function. The polynomial to be minimized is:

124209 234 −+−+= xxxxy

This is the objective function, and has a single parameter x. When using a genetic

algorithm, the parameters are represented as bit strings, and so the length of the string as

well as the possible bounds on the parameter must be specified. A length of 10 bits will

be assumed, and x will be allowed to range between -10 and +10. This means, for

example, that the bit string “0000000000” will correspond to the value -10. Some

function to perform the mapping between integer and bit string must exist: it will be

called encode.

The encode function assigns parameter values to bit strings in an obvious way. If the

parameter is an integer, its value is simple the bit string interpreted as such. If the

parameter is real, a fixed point representation is used, wherein each increment to the bit

string corresponds to a real increment in the parameter. In this case, as an example, the

range is 20.0, which is to be stored in 10 bits. The number of different bit strings of 10

bits is 210, or 1024; thus, the increment is 20.0/1024, or 0.01953125. The space of real

values allowed by this representation is:

 26

0000000000 - 10.0

0000000001 - 9.980469

0000000010 - 9.960938

. . .

1000000000 - 0.00

1000000001 - 0.019531

. . .

1111111111 - 9.980469

Note that 10.0 is not a represent able value. Parameters cannot have a value between two

consecutive increments, because the representation does not permit it. Therefore the

choice of chromosome size limits the accuracy of the final result.

The next step is the creation of a population. Initially, a population consisting of

randomly generated bit strings is used. The size of the population, which is the number of

randomly generated bit strings, is also a parameter to the algorithm. Now each bit string

parameter (gene) is passed as a parameter to the objective function, and the result is a

measure of the gene’s fitness; in this case, large values correspond to poor fitness, and

vice versa. The best P percent of the parameters can reproduce, where a value for P must

also be specified to the genetic algorithm, and the remainder of the parameters will not be

propagated into the next generation (iteration).

1.5.3- Encoding Multi Parameters

Suppose n parameters: ;),...,,(21 nxxxf

Encode each parameter from full binary string then concatenate encoded parameters to

form a chromosome.

1.5.4- Decoding Multi Parameters

Decode each parameter and then calculate function value

 27

CHAPTER 2

SELECTION OPERATORS

2.1- Selection Schemes

Genetic algorithms use a selection scheme to select individuals from the population to

insert into a mating pool. Individuals from the mating pool are used by a recombination

operator to generate new offspring, with the resulting offspring forming the basis of the

next generation.

Since the individuals in the mating pool pass their genes on to the next generation, it is

desirable that the mating pool comprise “good” individuals. A selection scheme in

genetic algorithms a simply a process that favors the selection of better individuals in the

population for the mating pool. The selection pressure is the degree to which the better

individuals are favored: the higher the selection pressure, the more the better individuals

are favored. This selection pressure drives the genetic algorithm to improve the

population fitness over succeeding generations [30].

The convergence rate of a genetic algorithm is largely determined by the magnitude of

the selection pressure, with higher selection pressures resulting in higher convergence

rates. Genetic algorithms are able to identify optimal or near-optimal solutions under a

wide range of selection pressure values [30]. However, if the selection pressure is too low,

the convergence rate will be slow, and the genetic algorithm will unnecessarily take

longer to find the optimal solution. If the selection pressure is too high, there is an

increased chance of the genetic algorithm prematurely converting to a suboptimal

solution. In addition to providing selection pressure, selection schemes should also

preserve population diversity because this held to avoid premature convergence.

 28

2.1.1- Basic Selection Schemes

There are two basic types of selection schemes commonly used today: proportionate-base

selection and ordinal-base selection [18].

Proportionate-based selection scheme selects individuals on the basis of their fitness

values relative to the fitness of the other individuals in the population. Some common

proportionate-based selection schemes are proportionate selection [4, 7], stochastic

universal sampling selection [5, 6].

Ordinal-based selection scheme selects individuals not according to their fitness, but on

the basis of theirs rank within the population. The individuals are ranked according to

their fitness. This entails that the selection pressure is independent of the fitness

distribution of the population and is solely based on the relative ordering (ranking) of the

population. Some common ordinal-based selection schemes are tournament selection [9,

10, and 27], truncation selection [11] and linear ranking selection [18].

2.2- Proportionate-Base Selection

Proportionate-based selection selects individuals according to their fitness values relative

to the fitness of the other individuals in the population.

2.2.1- Proportionate (Roulette-Wheel) Selection

Proportionate selection is also known as roulette-wheel selection which is the original

selection method proposed for genetic algorithms by Holland [4]. This method can be

represented as a game of roulette-wheel. According to game of roulette-wheel, wheel is

partitioned into several sectors in different area corresponding to different amount of

money. When spun of the roulette-wheel stops, the sector which the pointer points at is

chosen and the player gets the amount of money corresponding to the sector. Although

 29

can't estimated which sector the pointer will point to but known sectors are proportional

to the magnitude of the central angle of the sectors. The bigger central angle of the sector

is the higher probability the pointer will point at the sector.

Similarly, in the roulette-wheel selection method, the whole population is partitioned by

the individuals, each sector representing an individual. The proportion of the individual's

fitness value to the total fitness values of the whole population decides the area of the

sector corresponding to the individual and decides the probability of the individual to be

selected for the next generation.

Input: The population)(τP

Output: The population after selection ')(τP

Proportional (): NJJ ,...,1

 00 ←s

 for to do 1←i N

M
f

ss i
ii +← −1

od

for to do 1←i N

 []Nsrandomr ,0←

 such that li JJ ←'
ll srs ≤≤−1

return },...,{ ''
1 NJJ

Figure 2.1- Pseudo code of proportionate selection.

 30

START

j=0

j++

Calculate sum of fitness
sumfitness+=pop[j].fitness

j<popsize

Spin Roulete-Wheel
rand=sumfitness*random(0,1)

partsum=0
i=0

Figure 2.2- Flowchart of roulette-wheel Selection

partsum<rand
&&

i++<popsize

partsum=partsum+pop[i].fitness

i++

select (i-1)

STOP

 31

The selection performs following the steps as below:

Step 1 : Calculate sum of the fitness value of every individual in the population.

Step 2 : Calculate the proportion of each individual’s fitness value to the sum of fitness

value of all individuals in the population. The proportions of individuals represent the

probability of the individuals to be selected.

Step 3 : Spin the roulette-wheel n times where n is the number of individuals of the

population. When the spun roulette stops, the sector where pointer pointing at represents

the corresponding individual being selected.

As an example;

Step1: Calculate sum of the fitness value of every individual in the population.

Table 2.1- Individuals fitness values for roulette-wheel selection.

Individuals Chromosome Value X1 Fitness % of Total

1 1111100001 543 0.307918 0.478978 0.426898

2 0001010100 168 -3.357771 18.990170 16.92534

3 1100011100 227 -2.781036 14.296234 12.74178

4 0101101011 858 3.387097 5.698232 5.078654

5 0001001110 456 -0.542522 2.379374 2.120661

6 1011110101 701 1.852395 0.726577 0.647575

7 1100100000 19 -4.814272 33.805759 30.13

8 0111000000 14 -4.863148 34.376503 30.63869

9 1110101001 599 0.855327 0.020930 0.018654

10 0000011101 736 2.194526 1.426892 1.271744

SUM of
Fitness

SUM of
individuals
percentage

112.1996 100

 32

Step 2: Calculate the proportion of each individual’s fitness value to the sum of fitness

value of all individuals in the population. The proportions of individuals represent the

probability of the individuals to be selected.

Figure 2.3- Proportions of individuals in a population.

Weakest individual “9” has smallest area on the wheel. Fittest individual “8” has largest

area on the wheel.

Step 3: Spin the roulette-wheel n times where n is the number of individuals of the

population. When the spun roulette stops, the sector where pointer pointing at represents

the corresponding individual being selected.

2.2.2- Stochastic Universal Sampling Selection

Stochastic universal sampling selection [12] provides zero bias and minimum spread. The

individuals are mapped to contiguous segments of a line, such that each individual's

segment is equal in size to its fitness exactly as in roulette-wheel selection.

Here equally spaced pointers are placed over the line as many as there are individuals to

be selected. Consider NPointer the number of individuals to be selected, then the distance

between the pointers are 1/NPointer and the position of the first pointer is given by a

randomly generated number in the range [0, 1/NPointer].

 33

Input: The population)(τP and the reproduction rate for each fitness value []NRi ,0ε .

Output: The population after selection ')(τP

SUS : ()NN JJRR ,...,,,..., 11

 0←sum

 1←j

 [)1,0randomptr ←

 for to do 1←i N

 where is the reproduction rate of individual iRsumsum +← iR iJ

 while do)(ptrsum >

 ij JJ ←'

 1+← jj

 1+← ptrptr

 od

 od

return },...,{ ''
1 NJJ

Figure 2.4- Pseudo code of stochastic universal sampling selection.

For 6 individuals to be selected, the distance between the pointers is 1/6=0.167. Figure

2.5 shows the selection for the above example in section 2.2.1. Sample of 1 random

number in the range [0, 0.167]: 0.1

Figure 2.5- Stochastic universal sampling selection example.

 34

After selection the mating population consists of the individuals: 1, 2, 3, 4, 6, and 8.

Stochastic universal sampling selection ensures a selection of offspring which is closer to

what is deserved then roulette-wheel selection.

2.3- Ordinal-Base Selection

Ordinal-based selection schemes select individuals not according to their fitness, but on

the basis of their rank within the population. The individuals are ranked according to their

fitness. This entails that the selection pressure is independent of the fitness distribution of

the population and is solely based on the relative ordering (ranking) of the population.

2.3.1- Tournament Selection

The basic idea of this strategy is to select the individual with the highest fitness value

from a certain number of individuals in the population. In the tournament selection, there

is only comparison between individuals by fitness value [9]. The number of the

individuals taking part in the tournament is called tournament size for binary tournament

selection tournament size is 2.

Input: The population)(τP the tournament size T },...,2,1{ Nε

Output: The population after selection ')(τP

Tournament : ()NJJt ,...,, 1

 for to do 1←i N

←'
iJ best fit individual out of t randomly picked individuals from },...,{ 1 NJJ

od

return },...,{ ''
1 NJJ

Figure 2.6- Pseudo code of tournament selection.

 35

Figure 2.7- Flowchart of binary tournament selection.

START Current population
to “pot”

Select individuals
randomly and 1x 2x

Select individuals
randomly and 3x 4x

Select individuals
randomly and 12 −nx nx2

1x 2x 3x 4x 12 −nx nx 2

1x < 2x

“Pot”
Empty?

12 −nx < nx2

3x < 4x

STOP

Survivor to parent
“pool”

no yes no yes no yes

“Pool” full?

yes

no

no

 36

The selection performs following the steps as below:

Step 1: Randomly select several individuals “tournament size=2” from the population to

take part in the tournament. Choose the individual that has the highest fitness value from

the individuals selected above by comparing the fitness value of each individual. Then

the chosen one is copied for the next generation of the population.

Step 2: Repeat step1 n time where n is the number of individuals of the population.

As an example;

Step 1: Randomly select 2 (tournament size) individuals from the population.

Table 2.2- Individuals fitness values of tournament selection.

Individuals Chromosome Value X1 Fitness

1 1111100001 543 0.307918 0.478978

2 0001010100 168 -3.357771 18.990170

3 1100011100 227 -2.781036 14.296234

4 0101101011 858 3.387097 5.698232

5 0001001110 456 -0.542522 2.379374

6 1011110101 701 1.852395 0.726577

7 1100100000 19 -4.814272 33.805759

8 0111000000 14 -4.863148 34.376503

9 1110101001 599 0.855327 0.020930

10 0000011101 736 2.194526 1.426892

1st individual = 1.426892 and 2nd individual = 5.698232

Compare first and second and choose highest fitness.

Step 2: Repeat step 1 up to population size.

 37

2.3.2- Truncation Selection

In truncation selection [11] individuals are sorted according to their fitness. Only the best

individuals are selected for parents. These selected parents produce uniform at random

offspring. The parameter for truncation selection is the truncation threshold Trunc.

Trunc indicates the proportion of the population to be selected as parents and takes values

ranging from 50%-10%. Individuals below the truncation threshold do not produce

offspring [11].

Input: The population)(τP the truncation threshold T },...,2,1{ Nε

Output: The population after selection ')(τP

Truncation () : NJJT ,...,, 1

←J Sorted population J according fitness with worst individual at the

first position.

 for to do 1←i N

 ()[]},...,1{ NTrandomr −←

←'
iJ rJ

od

return },...,{ ''
1 NJJ

Figure 2.8- Pseudo code of truncation selection.

2.3.3- Linear Ranking Selection

For rank selection the individuals in the population are sorted to the objective values and

the rank N is assigned to the best individual and the rank 1 to the worst individual.

Consider N is the number of individuals in the population and the selection probability is

linearly assigned to the individuals according to their rank:

 38

() ⎟
⎠
⎞

⎜
⎝
⎛

−
−

−−=
1

1*min_max_max_*1)(
N
inununu

N
ip

where 2max_1 ≤≤ nu ;

. max_2min_ nunu −=

max_nu = rank factor (maximum 2).

Input: The population)(τP and the reproduction rate of the worst individual []1,0εη −

Output: The population after selection ')(τP

Linear Ranking ()NJJ ,...,, 1
−η

 ←J Sorted population J according fitness with worst individual at the position

 00 ←s

 for to do 1←i N

 iii pss +← −1

 od

 for to do 1←i N

 [[Nsrandomr ,0←

 li JJ ←' such that ll srs <≤−1

 od

return }{ ''
1 ,..., NJJ

Figure 2.9- Pseudo code of linear ranking selection.

 39

2.3- Comparison of Selection Schemes

This section, analyses the comparative performance of the genetic algorithm on ordinal-

based selection and proportionate-based selection, according to selection probability and

selection intensity.

2.3.1- Selection Probability

2.3.1.1- Selection Probability for Tournament Selection

Tournament selection computes selection probabilities based only on a random subset of

the whole population. The size of the subset is often referred to as the tournament size.

The selection probability can be determined by one or more tournaments. That is, more

than one tournament can be held in order to determine the selection probability of an

individual. Different tournaments are independent of each other and can be held in

parallel [28, 30, and 3].

2.3.1.2- Selection Probability for Linear Ranking Selection

In ranking selection at each generation, the individuals in the population are sorted

according to their fitness and each individual is assigned a rank in the sorted population.

The worst individual gets the rank 1 while the best receives the rank N (N = population

size). The selection probabilities of the individuals (k=1,…,N) are given by some

function(most commonly, linear) of their rank.

kx

Let () () () }{ t
N

tt xxx ,...,, 21 denote the population at generation t. Then in linear ranking

selection the probabilities of selecting individual),...,2,1(Nkxk = is given by

()()
()

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
+=

)1)(min)((max
min1 t

kt
k

xrank
N

xp

 40

Where and 2minmax =+ 2max1 ≤≤ .The ()(){ }t
kxp is a proper probability distribution

(for each t), and sampling N individuals according to this probability

distribution yields the next generation.

()() 1
1

=∑ =

N

k
t

kxp

2.3.1.3- Selection Probability for Roulette-Wheel Selection

Roulette-wheel selection calculates the selection probability of an individual using the

individual’s fitness directly. Let ,if ni ≤≤1 , be the fitness of n individuals in a

population. Then the probability of selecting individual i as a parent is :

∑ =

= n

j j

i
i

f

f
p

1

2.3.1.4- Selection Probability for Stochastic Universal Sampling Selection

Suppose the population size is N. The selection probability of an individual uses the

individual’s fitness. In stochastic universal sampling selection the wheel is first divided

into N sections according to selection probability of individual i
∑ =

= N

j j

i
i

favg

f
p

1

so the

central angle of that sector is ipπ2 .Then one random number rand within the interval (0,

1) is generated and the pointers begin to rotate a certain angle from the base one by

one. Pointer i should rotate the angle of

o0

()),...,1(,/2* N1*2 Niirand =−+ ππ . If the

sector i contains one pointer after rotation, the individual i will be selected twice in the

selection operation. Under this principle exactly N individuals will be selected but only

one random number is needed.

 41

2.3.1.5- Comparison of Selections Probability

Although roulette wheel selection and stochastic universal sampling selection is simple, it

suffers from problems of super individuals and slow convergence. In a population where

a few individuals (super individuals) have a substantially higher fitness than others, these

super individuals will quickly dominate the whole population due to their extremely high

selection probabilities. Such dominance prevents the population from exploring other

regions of the search space. If a super individual is a global optimum, this is good news.

Or else it is a disaster. On the other hand, if the fitter individuals in a population have

very similar fitness, they will have very similar selection probabilities. Hence it will be

very slow for the population to converge to the best one. In general, the selection pressure

induced by roulette wheel selection fluctuates too much as the fitness distribution in a

population changes. It is very difficult to make a suitable trade-off between achieving

faster global convergence and avoiding premature convergence [28, 30].

2.3.2- Selection Intensity

The selection intensity I measures the magnitude of the selection pressure provided by a

selection scheme [30]. The selection intensity of genetic algorithm, as defined by

Mühlenbein and Schierkamp-Voosen [11], is expected average fitness of a population

after selection is performed on a population whose fitness is distributed according to the

unit normal distribution .)1,0(N

If the selection intensity I of a selection scheme is known, and the population fitness at

generation is distributed , the expected mean fitness of a population after

selection can be determined:

t),(2
ttN σμ

ttt σμμ Ι+=+1

an important assumption of this model is that population fitness is normally distributed

before selection. In practice, this is true or approximately true for many domains because

 42

recombination and mutation operators have a normalizing effect on the population fitness

distribution.

2.3.2.1- Selection Intensity for Tournament Selection

Bäck (1995) [27] and Miller and Goldberg (1996) [18] independently applied order

statistics to derive the selection intensity for tournament selection. The order statistics are

for the unit normal distribution ; thus,)1,0(N ji,μ represents the expected value of the

th biggest sample from a sample of size i j drawn from the unit normal distribution. The

maximal order statistics ss:μ determines the selection pressure of a tournament of size s.

2.3.2.2- Selection Intensity for Linear Ranking Selection

The study by Bäck (1995) also derives the selection intensity for ()λμ, selection [18]. In

()λμ, selection, the best μ individuals are selected from a random sample sizeλ . The

selection pressure is simply the mean of the top μ th-order statistics of sample sizeλ .

The selection intensity of linear ranking is given by Blickle and Thiele (1995), where

denotes the number of desired copies of the best individual. Linear ranking selects each

individual in the population with a probability linearly proportional to the rank of the

individual. Implicit in the selection intensity value for linear ranking is that ,

and , where is the number of desired copies of the worst individual.

+n

21 ≤≤ +n

2=+ −+ nn −n

2.3.2.3- Selection Intensity for Proportionate-Based Selections

Mühlenbein and Schlierkamp-Voosen [11] derived the selection intensity for

proportionate-based schemes, which directly depends on the current mean tμ and

standard deviation tσ of the population in generation . Proportionate selection selects

individuals for the mating pool with a probability directly proportional to the individuals’

fitness. The selection intensity equation for proportionate selection is used to predict the

t

 43

performance of stochastic universal sampling selection, one of a handful of different

proportionate selection schemes. The selection intensity of proportionate selection is

unique in that it is the only one that is sensitive to the current population distribution.

2.3.2.4- Comparison of Selections Intensity

According to Table 2.3 the selection intensity in proportional selection decreases with the

inverse of the average fitness and proportionately to the standard deviation. The closer

the population comes to the optimum, the less severe is the selection. Proportionate

selection is afraid of reaching the goal. The selection intensity in tournament selection is

proportional with the average fitness of tournament size and in linear ranking selection

each individual in the population with a probability linearly proportional to the rank of

the individual. This result explains why proportionate-base selections are not a good

strategy for optimization purposes.

Table 2.3 gives the selection intensity for tournament, linear ranking and proportionate

selection schemes.

Table 2.3- Comparison of selection schemes according to selection intensity.

Selection Scheme Parameters Selection Intensity I

Tournament selection s ss:μ

Linear ranking selection +n ()
π
11−+n

Proportionate-base

selections
tt μσ , tt μσ /

 44

CHAPTER 3

RECOMBINATION OPERATORS

The next step is to generate a second generation population of solutions from those

selected through genetic operators: crossover (also called recombination) and/or mutation.

For each new solution to be produced, a pair of "parent" solutions is selected for breeding

from the pool selected previously. By producing a "child" solution using the below

methods of crossover and mutation, a new solution is created which typically shares

many of the characteristics of its "parents". New parents are selected for each child, and

the process continues until a new population of solutions of appropriate size is generated.

These processes ultimately result in the next generation population of chromosomes that

is different from the initial generation. Generally the average fitness will have increased

by this procedure for the population, since only the best organisms from the first

generation are selected for breeding, along with a small proportion of less fit solutions,

for reasons already mentioned above [17].

3.1- Crossover Operators

After selection, the crossover process is used to breed a pair of children “offspring” from

a pair of parents. The idea behind crossover operation is that, the new offspring may be

better than both of the parents if it takes the best characteristics from each of the parents.

Crossover operation is a probabilistic operation, flipping a coin according to user defined

crossover probability is determined if the operation will be performed or not. If the result

is true new chromosomes are generated otherwise copies of the parents are retuned as

children and also crossover probability defines how often will be crossover performed.

 45

3.1.1- K-Point Crossover

One Point and Two Point Crossover

One-point and two-point crossovers are the simplest and most widely applied crossover

methods.

In one-point crossover, as illustrated in Figure 3.1, a crossover point is selected at random

over the string length, and the alleles on one side of the site are exchanged between the

individuals.

The one point crossover takes two vectors;

()naaaindividual ,....,,1 21=

()nbbbindividual ,...,,2 21=

Then generate a random number k where 11 −≤≤ nk , this means that both vectors are

split at the same point and assembled with swapped second parts.

()nkk bbaaoffspring ,...,,,...,1 11 +=

()nkk aabboffspring ,...,,,...,2 11 +=

Consider the following two individual with 6 binary variables each:

0001001 =individual

1011112 =individual

The chosen crossover position is:

Cross position (m=1) = 2

After crossover the new individuals are created:

 46

0011111 =offspring

1001002 =offspring

Figure 3.1- One point crossover.

In two-point crossover, two crossover points are randomly selected, as in one point

crossover. The alleles between the two sites are exchanged between the two randomly

paired individuals. Two-point crossover is as illustrated in Figure 3.2.

Two points crossover takes two vectors:

()naaindividual ,...,1 1=

()nbbindividual ,...,2 1=

-Then generate two random number i and j where 11 −≤<≤ nji , this means that both

vectors are split at the same two points and assembled with swapped middle parts.

()njjii aabbaaoffspring ,...,,,...,,,...,1 111 ++=

()njjii bbaabboffspring ,...,,,...,,,...,2 111 ++=

Consider the following two individual with 6 binary variables each:

0001001 =individual

1011112 =individual

 47

The chosen crossover position is:

Cross position (m=2) = 2 & 6

After crossover the new individuals are created:

0011101 =offspring

1001012 =offspring

Figure 3.2- Two point crossover.

The concept of one-point crossover can be extended to k-point crossover, where k

crossover points are used, rather than just one or two.

The idea behind multi-point, and indeed many of the variations on the crossover operator,

is that parts of the chromosome representation that contribute most to the performance of

a particular individual may not necessarily be contained in adjacent substrings.

Further, the disruptive nature of multi-point crossover appears to encourage the

exploration of the search space, rather than favoring the convergence to highly fit

individuals early in the search, thus making the search more robust.

3.1.2- Uniform Crossover

Single and multi-point crossover defines cross points as places between loci where an

individual can be split. Uniform crossover generalizes this scheme to make every locus a

 48

potential crossover point. A crossover mask, the same length as the individual structure is

created at random and the parity of the bits in the mask indicate which parent will supply

the offspring with which bits [19, 20].

Consider the following two individuals with 6 binary variables each:

0001001 =individual

1011112 =individual

For each variable the parent who contributes its variable to the offspring is chosen

randomly with equal probability. Here, the offspring 1 is produced by taking the bit from

parent 1 if the corresponding mask bit is 1 or the bit from parent 2 if the corresponding

mask bit is 0. Offspring 2 is created using the inverse of the mask, usually.

100001=mask

After crossover the new individuals are created:

1001011 =offspring

0011102 =offspring

Figure 3.3- Uniform crossover.

Uniform crossover, like multi-point crossover, has been claimed to reduce the bias

associated with the length of the binary representation used and the particular coding for

a given parameter set. This helps to overcome the bias in single-point crossover towards

 49

short substrings without requiring precise understanding of the significance of the

individual bits in the individual representation.

Demonstrated how uniform crossover may be parameterized by applying a probability to

the swapping of bits. This extra parameter can be used to control the amount of disruption

during recombination without introducing a bias towards the length of the representation

used.

3.1.3- Uniform Order Based Crossover

The k-point and uniform crossover methods described above are not well suited for

search problems with permutation codes such as the ones used in the traveling salesman

problem. They often create offspring that represent invalid solutions for the search

problem. Therefore, when solving search problems with permutation codes, a problem-

specific repair mechanism is often required (and used) in conjunction with the above

recombination methods to always create valid candidate solutions.

Another alternative is to use recombination methods developed specifically for

permutation codes, which always generate valid candidate solutions. Several such

crossover techniques are described in the following paragraphs starting with the uniform

order-based crossover. In uniform order-based crossover, two parents (say P1 and P2) are

randomly selected and a random binary template is generated (see Figure 3.4).

Some of the genes for offspring C1 are filled by taking the genes from parent P1 where

there is a one in the template. At this point C1 partially filled, but it has some “gaps”. The

genes of parent P1 in the positions corresponding to zeros in the template are taken and

sorted in the same order as they appear in parent P2. The sorted list is used to fill the gaps

in C1. Offspring C2 is created by using a similar process (see Figure 3.4).

 50

Figure 3.4- Uniform order based crossover.

3.1.4- Order Based Crossover

The order-based crossover operator [21] is a variation of the uniform order-based

crossover in which two parents are randomly selected and two random crossover sites are

generated (see Figure 3.5). The genes between the cut points are copied to the children.

Starting from the second crossover site copy the genes that are not already present in the

offspring from the alternative parent (the parent other than the one whose genes are

copied by the offspring in the initial phase) in the order they appear.

For example, as shown in Figure 3.5, for offspring C1, since alleles C, D, and E are

copied from the parent P1, get alleles B, G, F, and A from the parent P2. Starting from

the second crossover site, which is the sixth gene, copy alleles B and G as the sixth and

seventh genes respectively. Then wrap around and copy alleles F and A as the first and

second genes.

 51

Figure 3.5- Order based crossover.

3.1.5- Partially Matched Crossover (PMX)

Apart from always generating valid offspring, the PMX operator [29] also preserves

orderings within the chromosome. In PMX, two parents are randomly selected and two

random crossover sites are generated. Alleles within the two crossover sites of a parent

are exchanged with the alleles corresponding to those mapped by the other parent.

For example, as illustrated in Figure 3.6 (reproduced from Goldberg [14] with

permission), looking at parent P1, the first gene within the two crossover sites, 5, maps to

2 in P2. Therefore, genes 5 and 2 are swapped in P1. Similarly swap 6 and 3, and 10 and

7 to create the offspring C1. After all exchanges it can be seen that have achieved a

duplication of the ordering of one of the genes in between the crossover point within the

opposite chromosome, and vice versa.

 52

Figure 3.6- Partially matched crossover.

3.1.6- Cycle Crossover (CX)

To describing cycle crossover [15] with help of a simple illustration reproduced from

Goldberg [14] with permission). Consider two randomly selected parents P1 and P2 as

shown in Figure 3.7 that are solutions to a traveling salesman problem. The offspring C1

receives the first variable (representing city 9) from P1. Then choose the variable that

map onto the same position in P2. Since city 9 is chosen from P1 which maps to city 1 in

P2, choose city 1 and place it into C1 in the same position as it appears in P1 (fourth

gene), as shown in Figure 3.7. City 1 in P1 now maps to city 4 in P2, so place city 4 in

C1 in the same position it occupies in P1 (sixth gene). Continue this process once more

and copy city 6 to the ninth gene of C1 from P1. At this point, since city 6 in P1 maps to

city 9 in P2, take city 9 and place it in C1, but this has already been done, so completed a

cycle; which is where this operator gets its name. The missing cities in offspring C1 is

filled from P2. Offspring C2 is created in the same way by starting with the first city of

parent P2 (see Figure 3.7).

 53

Figure 3.7- Cycle crossover.

3.2- Mutation Operators

Mutation is a genetic operator that alters one ore more gene values in a chromosome from

its initial state. This can result in entirely new gene values being added to the gene pool.

With these new gene values, the genetic algorithm may be able to arrive at better solution

than was previously possible.

Mutation is an important part of the genetic search as help helps to prevent the population

from stagnating at any local optima. Mutation occurs during evolution according to a

user-definable mutation probability. This probability should usually be set fairly low. If it

is set to high, the search will turn into a primitive random search.

 54

3.2.1- Flip Bit Mutation

A mutation operator that simply inverts the value of the chosen gene (0 goes to 1 and 1

goes to 0). This mutation operator can only be used for binary genes.

For binary valued individuals mutation means the flipping of variable values, because

every variable has only two states. Thus, the size of the mutation step is always 1. For

every individual the variable value to change is chosen (mostly uniform at random).

Figure 3.8 shows an example of a binary mutation for an individual with 11 variables,

where variable 4 is mutated.

Figure 3.8- Flip bit mutation.

3.2.2- Boundary Mutation

A mutation operator that replaces the value of the chosen gene with either the upper or

lower bound for that gene (chosen randomly).

At random choose Niε . Set either ii xX = or ii xX = , with probability ½ of using each

value.

3.2.3- Uniform Mutation

Uniform mutation changes the value of the element to a value chosen from the uniform

distribution on the interval between the lower and upper bounds specified for the element

 55

At random choose Niε . Select a value ~ix ()ii xxU , . Set ii xX =

3.2.4- Non-Uniform Mutation

A mutation operator that increases the probability that the amount of the mutation will be

close to 0 as the generation number increases. This mutation operator keeps the

population from stagnating in the early stages of the evolution then allows the genetic

algorithm to fine tune the solution in the later stages of evolution. This mutation operator

can only be used for integer and float genes.

At random choose i Є N. Compute p = (1-t/T) u, where t is the current generation

number, T is the maximum number of generations, B>0 is a tuning parameter

and . Set either

B

)1,0(~ Uu iii xpxpX +−=)1(or iii xpxpX +−=)1(, with probability ½

of using each value.

3.2.5- Gaussian Mutation

A mutation operator that adds a unit Gaussian distributed random value to the chosen

gene. The new gene value is clipped if it falls outside of the user-specified lower or upper

bounds for that gene. This mutation operator can only be used for integer and float genes.

 56

CHAPTER 4

BENCHMARK TEST FUNCTIONS

4.1- F1- Rosenbrock’s Function

2
1

2
2

2
11)1()(*100)(xxxxf −+−=

It is a standard test function in the optimization literature, first proposed by Rosenbrock.

It is a continuous, non-convex, uni-modal, low-dimensional quartic function with a

minimum of zero at . [22].)1,1(

It is a difficult minimization problem because it has a deep parabolic valley along the

curve . For testing purposed, it was restricted to the space as2
12 xx = 048.2048.2 ≤≤− ix ,

 with resolution factor of = 0.001 along each axis. 21 , xx ixΔ

Range of and =1x 2x 048.2048.2 ≤≤− ix .

Global minimum of function = 0)(min =xf at 11 =x 12 =x

A common multidimensional extension is:

() () ()[]∑
−

=
+ −+−=

1

1

22
1

2 1001
N

i
iii xxxxf NRxε∀

Visualization of Rosenbrock's function;

 57

Figure 4.1- Full definition range of the function.

Figure 4.2- Focus around the area of the global optimum at [1,1].

C Codes of Rosenbrock Function

float objfunc(float x[], int n){

 double result;

 result=100*pow(x[0]*x[0]-x[1],2)+pow(1-x[0],2);

 return(result);

}

 58

4.2- F2- De Jong’s Test Function 1

 ∑
=

=
N

i
ixxf

1

2
2)()(

It is a simple 5 dimensional parabola with. It is a continuous, convex, uni-modal, low-

dimensional quadratic function with a minimum of zero at the origin [22]. Because of its

simplicity and symmetry, provides an easily analyzable test for an adaptive plan. For

testing purposes it was restricted to the space as 12.512.5 ≤≤− ix . with a

resolution factor =0.01 on each axis.

5:1=i

ixΔ

5=N

Range of = ix 12.512.5 ≤≤− ix 0)(=ix Ni :1=

Global minimum of function = 0)(min =xf at 0)(=ix Ni :1=

Visualization of De Jong's function 1 using different domains of the variables:

Figure 4.3- Surf plot of the function in a very large area from -500 to 500 for each of

both variables.

 59

Figure 4.4- The function at a smaller area from -10 to 10.

C Codes of De Jong’s Function 1

float objfunc(float x[], int n){

double result;

int i;

result=0.0;

for (i=0;i<n;i++){

result+=x[i]*x[i];

}

return(result);

}

4.3- F3- Griewangk’s Function

1cos)100(
4000

1)(
11

2
3 +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−= ∏∑

== i
x

xxf i
N

i

N

i
i

 60

It is a 5 dimensional function multi modal test function. It has many widespread local

minima. However, the locations of the minima are regularly distributed. For testing

purpose it was restricted to the space as 600600 ≤≤− ix , 5:1=i with a resolution factor

= 0.01 on each axis. ixΔ

5=N

Range of = ix 600600 ≤≤− ix 0)(=ix Ni :1=

Global minimum of function = 0)(min =xf at 0)(=ix Ni :1=

The graphics in depict Griewangk's function using three different resolutions. Each of the

graphics represents different properties of the function. The Figure 4.5 shows the full

definition range of the function. Here, the function looks very similar to De Jong’s

function 1. When approaching the inner area, the function looks different. Many small

peaks and valleys are visible in the Figure 4.6. When zooming in on the area of the

optimum, Figure 4.7, the peaks and valleys look smooth.

Visualization of Griwangk’s function:

Figure 4.5- Full definition area from -500 to 500.

 61

Figure 4.6- Inner area of the function from -50 to 50.

Figure 4.7- Area from -8 to 8 around the optimum at [0, 0].

C Codes of Griewangk’s Function

float objfunc(float x[], int n){

const int D=4000.0;

int i;

 62

double Val1,Val2,Sum;

for (Val1 = 0.0, Val2 = 1.0, i = 0; i < n; i++) {

 Val1 += (x[i]-100.0) * (x[i]-100.0);

 Val2 *= cos((x[i]-100.0) / sqrt((float) (i + 1)));

 }

Sum = Val1 / D - Val2 + 1.0;

return (Sum);

}

4.4- F4- Michalewicz’s Function

m

i
N

i
i

xi
xxf

*22

1
4

*
sin*)sin()(⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

= π

It is a 5 dimensional function. It has many widespread local minima. However, the

locations of the minima are regularly distributed. For testing purpose it was restricted to

the space as , with a resolution factor 600600 ≤≤− ix 5:1=i ixΔ = 0.01 on each axis.

The Michalewicz function [16] is a multimodal test function. The parameter m defines

the "steepness" of the valleys or edges. Larger m leads to more difficult search. For very

large m the function behaves like a needle in the haystack (the function values for points

in the space outside the narrow peaks give very little information on the location of the

global optimum). For testing purpose it was restricted to the space as π≤≤ ix0 , 5:1=i

with a resolution factor = 0.01 on each axis. ixΔ

5=N

Range of =ix π≤≤ ix0 0)(=ix Ni :1=

Global minimum of function = 687.4)(min −=xf ?)(=ix Ni :1=

 63

The first two graphics below represent a global and a local view to Michalewicz's

function, both for the first two variables. The third graphic displays the function using the

third and fourth variable; the first two variables were set to 0. By comparing the figure

4.8 and the figure 4.9 the increasing difficulty of the function can be seen. As higher the

dimension as more valleys are introduced into the function.

Visualizations of Michalewicz's function:

Figure 4.8- Surf plot in an area from 0 to 3 for the first and second variable.

Figure 4.9- Area around the optimum.

 64

Figure 4.10- Same as Figure 4.8 for the third and forth variable, variable 1 and 2 are set 0.

C Codes of Michalewicz’s Function

float objfunc(float x[], int n){

const int m=10.0;

double u;

int i;

u=0;

for (i=0;i<n;i++) {

 u = u + sin(x[i])* pow(sin((i+1)*x[i]*x[i]/PI),2*m);

 }

return(-u);

}

 65

4.5- F5- Shekel’s Function

()∑
∑=

=
+−

−=
30

1
1

25
1)(

i
N

j iiji cax
xf

Shekel’s function is an interesting multimodal function synthesized as suggested by

Shekel (1971). It is a continuous, non convex, non quadratic, 5 dimensionally function

with 30 local minima approximately at the points () }{ 30
154321 ,,,,
=jjjjjj aaaaa . For testing

purposes, ()ja1 were defined in shekel.h file. It was restricted to the space Δ defined

by , with a resolution factor of 100 ≤≤ ix 5:1=i iΔ = 0.01 on each axis.

5=N

Range of = ix 100 ≤≤ ix 0)(=ix Ni :1=

Global minimum of function = 40561.10)(−=xf

0249.81 =x 1517.92 =x 1139.53 =x 6208.74 =x 5640.45 =x

Visualizations of Shekel’s function:

Figure 4.11- Graphics of Shekel's function.

 66

C Codes of Shekel’s Function

float objfunc(float x[],int n){

int i, j;

double sp, h, result = 0.0;

for (i = 0; i < 30; i++) {

sp = 0.0;

for (j = 0; j < n; j++) {

 h = x[j] - Shekel_a[i][j];

 sp += h * h;

 }

result += 1.0 / (sp + Shekel_c[i]);

 }

return(-result);

}

 67

CHAPTER 5

IMPLEMENTATION of GENETIC ALGORITHM

5.1- Implementation of Genetic Algorithm

This section, discusses the design of genetic algorithm. When using a different selection

strategy “binary tournament, linear ranking, stochastic universal and roulette-wheel

selection” for performing the test functions, genetic algorithm use the same crossover

“one point crossover” and mutation operation ” flip bit mutation”. The genetic algorithm

implementation as below:

BEGIN

 WHILE (Times<30) Do

 BEGIN GA

 Initialization;

 Evaluation;

 Keep the best fitness value;

 generate:=0;

 WHILE (generation<MAXGENS) Do

 BEGIN

 generation++;

 if selection:= tour_sel tournament_sel()

 else rouelette_wheel_sel()

 crossover;

 mutation;

 evaluation;

 END;

 END GA;

 Keep the best fitness value for each test (times).

END;

In the main algorithm above, Times<30 is the termination condition, which indicates the

times for executing genetic algorithm. Because genetic algorithms are stochastic

 68

computational techniques, performing of genetic algorithm many times for one problem

so that gives a statistically good result. The genetic algorithm program popsize represents

the number of individuals of the population. Maxgens is the maximum number of the

generations in the evolutionary process. Pcross is the probability of the individuals

selected to crossover and Pmutation is the probability of the individual selected to mutate.

5.1.1- Parameter Selection for a Genetic Algorithm Program

The first intensive study of genetic algorithm parameters was done by De Jong [22] and

is nicely summarized in Goldberg [14]. De Jong found that a small population size

improved initial performance while large population size improved long-term

performance and a high mutation rate was good for off-line performance while low

mutation rate was good for on-line performance. Grefenstette [24] used a genetic

algorithm. He found the best genetic algorithm had a population size of 30 and mutation

rate of 0.01. Schaffer found a population size = 20 to 30 and a mutation rate = 0.005 to

0.01 are best. In [23] both binary and continuous parameter of genetic algorithm, a small

population size allowed to evolve for many generations produced the best results. Similar

sensitivity studies with mutation rate suggested that mutation rates in the range of 0.05 to

0.35 found the best minima. Table 5.1 lists the parameters suggested by Schaffer and

those proposed earlier by De Jong [22] and Greffenstette [24].

Table 5.1- Comparison of empirically determined genetic algorithm parameter settings

[25].

Author Population Size Crossover Rate Mutation Rate

Schaffer 20-30 0.75-0.95 0.005-0.01

De Jong 50-100 0.60 0.001

Grefenstette 30 0.95 0.01

 69

According to [22, 24, 26] for each test functions with using genetic algorithm maxgens is

taken 1000 times, set the value of population size as 50, the value of crossover

probability as 0.8 and the value of mutation probability as 0.05. And the algorithm

executed 30 times.

The algorithm uses roulette-wheel and binary tournament selection for the operation of

selection. Specially, the number of the individuals taking part in the tournament is 2 for

the binary tournament selection strategy and flip bit mutation is used.

5.2- C Codes of Genetic Algorithm’s for Program Design

5.2.1- Genetic Algorithm Program Files

Definition.h : contains type definitions of data types.

Generate.h : contains new population generation routine.

Initialize.h : contains initdata(), initpop(), initreport() routines.

Kernel.h : contains three operators Reproduction (selection), Crossover (crossover),

Mutation (mutation).

ObjectFunction.h : contains objectfunction() and decode() routines.

Parameters.h : cotains extract_parm(), map_parm(), decode_parms() routines.

Random.h : contains random number utility programs.

Reports.h : contains routines used to print a report from each cycle of genetic

algorithm’s operation.

Statistics.h : contains the routine statistics(), which calculates population statistics for

each generation.

Main.cpp : contains the main GA program loop, main().

 70

5.2.2- Genetic Algorithm Program Functions

Initialize.h

void initdata(): is a routine to prompt the user for genetic algorithm parameters.

void initreport(): is a routine that prints a report after initialization and before the first

genetic algorithm cycle.

void initpop(): is routine that generates a random population.

void initialize(): is the central initialization routine called by main().

Kernel.h

int select_rws(): contains routines for roulette-wheel selection.

int select_rws(int popsize, float sumfitness, population pop){

 float rand, partsum; // Random point on wheel, partial sum

 int j; // population index

 partsum=0.0; j=0; // Zero out counter and accumulator

 rand=sumfitness*random(); // Wheel point calc. uses random number [0,1]

 do{ // Find wheel slot

 partsum=partsum+pop[j].fitness;

 j++;

 }while(partsum>rand&&j<popsize);

 return (j-1); // Return individual number

}

Figure 5.1- C code of roulette-wheel selection.

 71

void reset(): shuffles the tournament selection tourneylist at random.

int select_ts(): contains the routines for tournament selection. Tournaments of any

size up to the population size can be held with this implementation. But for experiments

tournament size is taken 2.

int select_ts(int popsize,population pop){

 int pick, winner, i;

 tourneysize=2;

// If remaining members not enough for a tournament, then reset list

 if((popsize – tourneypos) < tourneysize){

 reset();

 tourneypos = 0;

 }

// Select tourneysize structures at random and conduct a tournament

 winner=tourneylist[tourneypos];

 for(i=1; i<tourneysize; i++){

 pick=tourneylist[i+tourneypos];

 if(pop[pick].fitness < pop[winner].fitness)

winner=pick;

}

// Update tourneypos

 tourneypos += tourneysize;

 return(winner);

}

Figure 5.2- C code of tournament selection.

allele mutation(): performs a flip bit mutation.

 72

allele mutation(allele alleleval, float pmutation, int &nmutation){

bool mutate;

mutate=flip(pmutation); // Flip the biased coin

if(mutate){

nmutation++;

 return !alleleval; // Change bit value

 }

 else return alleleval; // No change

}

Figure 5.3- C code of flip bit mutation.

void crossover(): performs single point crossover on two mates, producing two children.

void crossover(chromosome parent1, chromosome parent2, chromosome child1,

 chromosome child2,int &lchrom,int &ncross,int &nmutation,int &jcross,

 float &pcross,float &pmutation){

int j;

//Do crossover with probability crossover

if(flip(pcross)){

 jcross=rnd(1,lchrom-1); //Cross between 1 and lchrom-1

 ncross++; // Increment crossover counter

 }

 else jcross=lchrom;

 // first exchange, 1 to 1 and 2 to 2

 for(j=0;j<jcross;j++){

 child1[j]=mutation(parent1[j],pmutation,nmutation);

 child2[j]=mutation(parent2[j],pmutation,nmutation);

 }

 // second exchange, 1 to 2 and 2 to 1

 73

 if(jcross!=lchrom)

 for(j=jcross;j<lchrom;j++){

 child1[j]=mutation(parent2[j],pmutation,nmutation);

 child2[j]=mutation(parent1[j],pmutation,nmutation);

 }

}

Figure 5.4- C code of one point crossover with flip bit mutation.

ObjectFunction.h

float objfunc(): The objective function for the specific application. This routine is called

by generation().

float decode(): decodes chromosomes strings as unsigned binary number. True=1,

False=0.

float decode(chromosome chrom,int lbits){

int j;

float accum=0.0;

powerof2=1.0;

for(j=0;j<lbits;j++){

if(chrom[j])

 accum=accum+powerof2;

powerof2=powerof2*2;

 }

return accum;

}

Figure 5.5- C code of decoding a parameter.

 74

Parameters.h

float map_parm(): an unsigned binary integer to range [minparm, maxparm]

float map_parm(float x,float maxparm,float minparm,float fullscale){

 return (minparm+(maxparm-minparm)/fullscale*x);

}

Figure 5.6- C code of mapping a parameter.

void extract_parm(): extracting a substring from a full string.

void extract_parm(chromosome chromfrom,chromosome chromto,int &jposition,int

&lchrom,int &lparm){

int j,jtarget;

j=0;

jtarget=jposition+lparm;

if(jtarget>lchrom)

jtarget=lchrom;

// Clamp if excessive

 while(jposition<jtarget){

 chromto[j]=chromfrom[jposition];

 jposition++;

 j++;

 }

}

Figure 5.7- C code of extracting a parameter from a full string.

 75

void decode_parms(): decode parameters.

void decode_parms(int &nparms,int &lchrom,chromosome chrom,parmspecs parms){

int j,jposition;

chromosome chromtemp;

// Temporary string buffer

j=0;

// Parameter counter

jposition=0;

// String position counter

do{

if(parms[j].lparm>0){

 extract_parm(chrom,chromtemp,jposition,lchrom,parms[j].lparm);

 parms[j].parameter=map_parm(decode(chromtemp,parms[j].lparm),

parms[j].maxparm,parms[j].minparm,pow(2.0,parms[j].lparm)-1);

 }

 else

parms[j].parameter=0.0;

j++;

}while(j<nparms);

}

Figure 5.8- C code of parameter decoding.

Random.h

void advance_random(): generates a new batch of 55 random numbers.

void warmup_random(): primes the random number generator.

 76

float random(): returns a single, uniformly-distributed, real, pseudo-random number

between 0 and 1.

bool flip(): flips a biased coin,returning 1 with probability p,and 0 with probability 1-p.

Bool flip(float probability){

 if(probability==1.0)

return true;

 else return (random()<=probability);

}

Figure 5.9- C code of flipping a biased coin.

int rnd(low,high): returns an uniformly-distributed integer number between low and

high.

void randomize(): srand() function changes the number seed.

Reports.h

void writechrom(): writes out the chromosomes as a string of ones and zeros.

void report(): controls overall reporting.

Statistics.h

void statistic(): which calculates population statistics for each generation.

Generate.h

void generation(): is a routine which generates and evaluates a new genetic algorithm

population.

 77

Main.cpp

void main(): GA program loop.

Void main(){

 gen=0; // Set things up

 initialize();

 do{

 gen++;

 generation();

 statistics(popsize,max,avg,min,sumfitness,newpop);

 report(gen);

 for(int i=0;i<popsize;i++)

 oldpop[i]=newpop[i]; // advance the generation

 }while(gen<maxgen);

}

Figure 5.10- C code of main function.

Susandlrnk.h

int select_sus(): contains the routines for stochastic universal sampling selection.

 78

CHAPTER 6

ANALYSIS of COMPUTATIONAL RESULTS

6.1- Computational Test Results

Five test functions are taken for experiments using genetic algorithm. Each function has a

prescribed search domain given in range column of the Table 6.1. Problem column

indicates the solution wanted to obtain, minimization or maximization. The optimal

solution of each function is known beforehand. The resolution factor value is shown in

the Precision column.

Table 6.1- List of five test functions.

Test Function Range Problem Precision Dim

2
1

2
2

2
11)1()(*100)(xxxxf −+−= [-2.048,

2.048]

Min 0.001 2

∑
=

=
N

i
ixxf

1

2
2)()(

[-5.12,5.12] Min 0.01 5

1cos)100(
4000

1)(
11

2
3 +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−= ∏∑

== i
x

xxf i
N

i

N

i
i

[-600,600] Min 0.01 5

m

i
N

i
i

xi
xxf

*22

1
4

*
sin*)sin()(⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

= π

[0,π] Min 0.01 5

()∑
∑=

=
+−

−=
30

1
1

25
1)(

i
N

j iiji cax
xf

[0,10] Min 0.01 5

For a given function, each time of the 1000 times for executing genetic algorithm, keep

the value of generation when the process of genetic algorithm terminates. The value of

generation is in integer ranged from 0 to 1000. Each value of generation has a

corresponding counter preserving the times for genetic algorithm obtaining this

generation.

 79

6.1.1- Roulette-Wheel Selection Test Results

F1 = . 2
1

2
2

2
11)1()(*100)(xxxxf −+−=

Range of and =1x 2x 048.2048.2 ≤≤− ix .

21 , xx with resolution factor of = 0.001. ixΔ

Global minimum of function = 0)(min =xf at 11 =x 12 =x .

Table 6.2- Test results of roulette-wheel selection for F1.

#TEST #Generation Best_min Fitness

1 36 0.021625

2 689 0.012379

3 107 0.003115

4 380 0.010103

5 133 0.013182

6 725 0.006524

7 381 0.006387

8 779 0.003378

9 144 0.007762

10 337 0.003148

11 96 0.002099

12 40 0.002759

13 872 0.011802

14 834 0.007192

15 97 0.008316

16 963 0.000392

17 836 0.003000

18 49 0.025836

19 30 0.006666

20 63 0.000305

 80

21 268 0.062003

22 65 0.000501

23 295 0.003207

24 412 0.000534

25 226 0.044440

26 980 0.015776

27 752 0.031173

28 899 0.018574

29 201 0.012611

30 658 0.009197

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 5 10 15 20 25 30 35

tests
mean
mean+std
mean-std

Figure 6.1- Roulette-wheel selection graphic for F1.

 81

F2 = . ∑
=

=
N

i
ixxf

1

2
2)()(

5=N .

Range of = ix 12.512.5 ≤≤− ix 0)(=ix Ni :1= .

5:1=i with a resolution factor ixΔ = 0.01 on each axis.

Global minimum of function: 0)(min =xf at 0)(=ix Ni :1= .

Table 6.3- Test results of roulette-wheel selection for F2.

#TEST #Generation Best_min Fitness

1 502 2.407425

2 313 0.622540

3 43 1.143557

4 538 0.689070

5 301 1.616681

6 403 1.991413

7 903 1.328118

8 123 1.801241

9 368 1.230728

10 440 0.539178

11 187 1.294252

12 75 1.592233

13 4 1.307477

14 464 0.572843

15 534 1.368196

16 259 0.522345

17 368 0.481465

18 638 3.219810

19 90 2.071168

20 798 0.528156

 82

21 103 2.026481

22 870 0.810908

23 857 1.994218

24 519 0.831548

25 769 0.226367

26 763 0.988855

27 445 1.462179

28 118 1.331725

29 293 0.277867

30 860 4.204733

0

0.5

1

1.5

2
2.5

3

3.5

4

4.5

0 5 10 15 20 25 30 35

tests
mean
mean+std
mean-std

Figure 6.2- Roulette-wheel selection graphic for F2.

 83

F3 = 1cos)100(
4000

1)(
11

2
3 +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−= ∏∑

== i
x

xxf i
N

i

N

i
i .

5=N .

Range of = ix 600600 ≤≤− ix 0)(=ix Ni :1= .

5:1=i with a resolution factor ixΔ = 0.01 on each axis.

Global minimum of function: 0)(min =xf at 0)(=ix Ni :1= .

Table 6.4- Test results of roulette-wheel selection for F3.

#TEST #Generation Best_min Fitness

1 15 4.221037

2 197 2.760204

3 226 5.355815

4 106 4.124454

5 437 6.183483

6 916 7.642037

7 342 11.04009

8 777 7.214392

9 234 6.127833

10 503 7.639765

11 11 6.283434

12 638 2.684016

13 711 7.221925

14 318 9.988311

15 721 6.668437

16 919 9.444723

17 219 10.404618

18 47 7.199335

19 755 2.507251

20 642 6.858248

 84

21 190 6.036229

22 849 11.730000

23 774 5.069771

24 730 9.595348

25 863 8.863648

26 277 7.621606

27 683 6.180864

28 222 4.278033

29 672 8.173793

30 220 10.038148

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35

tests

mean

mean+std

mean-std

Figure 6.3- Roulette-wheel selection graphic for F3.

 85

F4 =
m

i
N

i
i

xi
xxf

*22

1
4

*
sin*)sin()(⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

= π
.

5=N .

Range of =ix π≤≤ ix0 0)(=ix Ni :1= .

5:1=i with a resolution factor ixΔ = 0.01 on each axis.

Global minimum of function = 687.4)(min −=xf ?)(=ix Ni :1= .

Table 6.5- Test results of roulette-wheel selection for F4.

#TEST #Generation Best_min Fitness

1 612 -4.586186

2 692 -4.570916

3 430 -4.625953

4 174 -4.626780

5 481 -4.626883

6 131 -4.630258

7 125 -4.619846

8 932 -4.606482

9 292 -4.612538

10 313 -4.613001

11 536 -4.573160

12 895 -4.620372

13 165 -4.669135

14 156 -4.651917

15 641 -4.594432

16 803 -4.612193

17 187 -4.627946

18 894 -4.617115

19 108 -4.667325

 86

20 284 -4.603973

21 281 -4.634270

22 348 -4.608518

23 326 -4.654795

24 573 -4.628489

25 327 -4.631560

26 901 -4.618083

27 414 -4.622041

28 704 -4.665676

29 209 -4.670503

30 201 -4.621484

-4.68

-4.66

-4.64

-4.62

-4.6

-4.58

-4.56
0 5 10 15 20 25 30 35

tests

mean

mean+std

mean-std

Figure 6.4- Roulette-wheel selection graphic for F4.

 87

F5 =
()∑

∑=
=

+−
−=

30

1
1

25
1)(

i
N

j iiji cax
xf .

5=N .

Range of = ix 100 ≤≤ ix 0)(=ix Ni :1= .

5:1=i with a resolution factor of iΔ = 0.01 on each axis.

Global minimum of function = 40561.10)(−=xf

0249.81 =x 1517.92 =x 1139.53 =x 6208.74 =x 5640.45 =x

Table 6.6- Test results of roulette-wheel selection for F5.

#TEST #Generation Best_min Fitness

1 880 -3.403414

2 143 -2.504386

3 845 -2.528651

4 556 -2.194961

5 465 -2.532915

6 638 -2.544109

7 936 -2.197939

8 661 -3.106445

9 118 -2.855063

10 176 -2.656415

11 848 -9.141911

12 840 -2.652430

13 833 -2.543444

14 847 -2.655011

15 725 -3.170594

16 977 -2.642898

17 997 -2.537261

18 560 -2.529057

 88

19 756 -2.661852

20 505 -2.186500

21 565 -3.235952

22 321 -2.195720

23 674 -9.165722

24 784 -2.538344

25 469 -9.059353

26 515 -2.657397

27 233 -2.533310

28 897 -2.639995

29 466 -1.827188

30 873 -2.536064

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0
0 5 10 15 20 25 30 35

tests

mean

mean+std

mean-std

Figure 6.5- Roulette-wheel selection graphic for F5.

 89

6.1.2- Tournament Selection Test Results

F1 = . 2
1

2
2

2
11)1()(*100)(xxxxf −+−=

Range of and =1x 2x 048.2048.2 ≤≤− ix .

21 , xx with resolution factor of = 0.001. ixΔ

Global minimum of function = 0)(min =xf at 11 =x 12 =x .

Table 6.7- Test results of tournament selection for F1.

#TEST #Generation Best_min Fitness

1 942 0.000020

2 9 0.136140

3 716 0.000072

4 7 0.008419

5 80 0.080672

6 0 0.045002

7 25 0.006413

8 12 0.002652

9 258 0.026434

10 69 0.061288

11 6 0.123862

12 13 0.238514

13 108 0.026434

14 834 0.061068

15 75 0.000007

16 637 0.055184

17 574 0.069519

18 878 0.002302

19 860 0.002133

20 8 0.009033

 90

21 10 0.002764

22 13 0.067792

23 80 0.017201

24 14 0.006000

25 0 0.079174

26 601 0.037760

27 7 0.947822

28 209 0.000794

29 0 0.015277

30 15 0.012311

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35

tests

mean

mean+std

mean-std

Figure 6.6- Tournament selection graphic for F1.

 91

F2 = ∑
=

=
N

i
ixxf

1

2
2)()(.

5=N .

Range of = ix 12.512.5 ≤≤− ix 0)(=ix Ni :1= .

5:1=i with a resolution factor ixΔ = 0.01 on each axis.

Global minimum of function: 0)(min =xf at 0)(=ix Ni :1= .

Table 6.8- Test results of tournament selection for F2.

#TEST #Generation Best_min Fitness

1 328 0.001929

2 997 0.003933

3 822 0.004534

4 792 0.005536

5 698 0.005335

6 416 0.006337

7 850 0.006137

8 637 0.003131

9 689 0.009143

10 753 0.005135

11 577 0.001127

12 821 0.000326

13 76 0.003131

14 584 0.004133

15 265 0.003532

16 789 0.000726

17 689 0.006337

18 302 0.005937

19 234 0.006337

20 104 0.004734

 92

21 312 0.003332

22 606 0.005335

23 711 0.010145

24 206 0.003532

25 415 0.004935

26 499 0.007139

27 642 0.004734

28 379 0.005335

29 435 0.009343

30 921 0.004935

0

0.002

0.004

0.006

0.008

0.01

0.012

0 5 10 15 20 25 30 35

tests

mean

mean+std

mean-std

Figure 6.7- Tournament selection graphic for F2.

 93

F3 = 1cos)100(
4000

1)(
11

2
3 +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−= ∏∑

== i
x

xxf i
N

i

N

i
i .

5=N .

Range of = ix 600600 ≤≤− ix 0)(=ix Ni :1= .

5:1=i with a resolution factor ixΔ = 0.01 on each axis.

Global minimum of function: 0)(min =xf at 0)(=ix Ni :1= .

Table 6.9- Test results of tournament selection for F3.

#TEST #Generation Best_min Fitness

1 754 0.250106

2 210 0.229570

3 244 0.176016

4 599 0.306603

5 323 0.189994

6 276 0.294754

7 485 0.438590

8 559 0.276699

9 276 0.277848

10 786 0.362579

11 479 0.329012

12 670 0.334033

13 594 0.253912

14 281 0.225611

15 434 0.390381

16 364 0.255767

17 250 0.143045

18 725 0.260716

19 652 0.281300

20 429 0.356857

 94

21 107 0.344653

22 478 0.351318

23 996 1.027333

24 482 0.190134

25 182 0.279729

26 670 0.362408

27 433 0.205664

28 464 0.310888

29 397 0.297143

30 165 0.195263

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35

tests
mean
mean+std
mean-std

Figure 6.8- Tournament selection graphic for F3.

 95

F4 =
m

i
N

i
i

xi
xxf

*22

1
4

*
sin*)sin()(⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

= π
.

5=N .

Range of =ix π≤≤ ix0 0)(=ix Ni :1= .

5:1=i with a resolution factor ixΔ = 0.01 on each axis.

Global minimum of function = 687.4)(min −=xf ?)(=ix Ni :1= .

Table 6.10- Test results of tournament selection for F4.

#TEST #Generation Best_min Fitness

1 738 -4.673854

2 182 -4.636954

3 657 -4.555921

4 741 -4.640059

5 833 -4.680653

6 476 -4.674481

7 912 -4.682179

8 904 -4.670561

9 893 -4.677593

10 526 -4.675248

11 339 -4.673780

12 358 -4.655159

13 968 -4.593417

14 320 -4.685186

15 358 -4.685059

16 753 -4.677592

17 785 -4.663129

18 391 -4.676722

19 96 -4.652464

 96

20 525 -4.640640

21 238 -4.684059

22 608 -4.525021

23 66 -4.676359

24 588 -4.670075

25 124 -4.665690

26 322 -4.504623

27 204 -4.533488

28 250 -4.681997

29 337 -4.673471

30 48 -4.525344

-4.75

-4.7

-4.65

-4.6

-4.55

-4.5

-4.45
0 5 10 15 20 25 30 35

tests
mean
mean+std
mean-std

Figure 6.9- Tournament selection graphic for F4.

 97

F5 =
()∑

∑=
=

+−
−=

30

1
1

25
1)(

i
N

j iiji cax
xf .

5=N .

Range of = ix 100 ≤≤ ix 0)(=ix Ni :1= .

5:1=i with a resolution factor of iΔ = 0.01 on each axis.

Global minimum of function = 40561.10)(−=xf

0249.81 =x 1517.92 =x 1139.53 =x 6208.74 =x 5640.45 =x

Table 6.11- Test results of tournament selection for F5.

#TEST #Generation Best_min Fitness

1 933 -1.826693

2 88 -1.775673

3 161 -1.826196

4 707 -1.599929

5 597 -2.539828

6 503 -2.202337

7 232 -2.199739

8 908 -1.826442

9 651 -2.549974

10 828 -1.823142

11 193 -1.290021

12 840 -1.826787

13 6 -2.124148

14 645 -2.233962

15 668 -2.200686

16 871 -1.827369

17 566 -1.824457

18 977 -2.663647

 98

19 82 -2.550678

20 231 -1.827475

21 39 -4.849190

22 410 -1.828194

23 547 -1.824628

24 509 -1.888075

25 816 -2.201939

26 32 -2.131688

27 683 -2.204327

28 890 -1.824691

29 344 -2.667527

30 399 -2.198164

-6

-5

-4

-3

-2

-1

0
0 5 10 15 20 25 30 35

tests
mean
mean+std
mean-std

Figure 6.10- Tournament selection graphic for F5.

 99

6.1.3- Comparison of Computational Test Results

Table 6.12- Convergence speed statistics for roulette-wheel selection.

ROULETTE-WHEEL SELECTION CONVERGENCE SPEED

 Min Max Mean Std.Dev.

F1 30 980 412 336

F2 4 903 432 248

F3 11 919 474 297

F4 108 932 438 267

F5 118 997 637 256

Table 6.13- Convergence speed statistics for tournament selection.

TOURNAMENT SELECTION CONVERGENCE SPEED

 Min Max Mean Std.Dev.

F1 1 943 236 332

F2 76 997 552 250

F3 107 996 459 212

F4 48 968 485 282

F5 6 977 512 309

Table 6.14- Comparison of convergence speed.

COMPRARISON of CONVERGENCE SPEED

 ROULETTE-WHEEL TOURNAMENT

F1 BETTER

F2 BETTER

F3 BETTER

F4 BETTER

F5 BETTER

 100

For convergence speed;

Rosenbrock function (F1) tournament selection gave the better result than roulette-wheel

selection.

De Jong 1 (F2) roulette-wheel selection gave the better result than tournament selection.

For Griewank’s Function (F3) tournament selection gave the better result than roulette-

wheel selection.

Michalewicz’s Function (F4) roulette-wheel selection gave the better result than

tournament selection.

Shekel’s function (F5) tournament selection gave the better result than roulette-wheel

selection.

Table 6.15- Roulette-wheel selection fitness statistics.

 ROULETTE-WHEEL SELECTION FITNESS

 Optimal Best

Value

Worst

Value

Mean σ Std

deviation

Max

= Mean+σ

Min

= Mean-σ

F1 0 0.000305 0.062003 0.0118 0.013806 0.025606 -0.00201

F2 0 0.226367 4.204733 1.349426 0.879282 2.228708 0.470144

F3 0 2.507257 11.730000 6.971895 2.474827 9.446722 4.497068

F4 -4.687 -4.670503 -4.570916 -4.62373 0.025573 -4.598157 -4.6493

F5 -10.40561 -9.165722 -1.827188 -3.25448 2.015446 -1.239034 -5.26993

Table 6.16- Tournament selection fitness statistics.

 TOURNAMENT SELECTION FITNESS

 Optimal Best

Value

Worst

Value

Mean σ Std

deviation

Max

=Mean+σ

Min

=Mean-σ

F1 0 0.000007 0.947822 0.071402 0.173673 0.2450751 -0.10227

F2 0 0.000326 0.010145 0.004875 0.002317 0.007192 0.002558

F3 0 0.143045 1.027333 0.306598 0.152835 0.459433 0.153763

F4 -4.687 -4.68519 -4.504623 -4.64369 0.055968 -4.587722 -4.69966

F5 -10.40561 -4.84919 -1.290021 -2.13859 0.607858 -1.530732 -2.74645

 101

Table 6.17- Comparison of quality of global optimum.

COMPRARISON of Quality of Global Optimum

 ROULETTE-WHEEL TOURNAMENT

F1 BETTER

F2 BETTER

F3 BETTER

F4 BETTER

F5 BETTER

For quality of global optimum;

Rosenbrock function (F1) tournament selection gave the better result than roulette-wheel

selection.

De Jong 1 (F2) tournament selection gave the better result than roulette-wheel selection.

Griewank’s Function (F3) tournament selection gave the better result than roulette-wheel

selection.

Michalewicz’s Function (F4) tournament selection gave the better result than roulette-

wheel selection.

Shekel’s function (F5) roulette-wheel gave the better result than tournament selection.

The below section analyzes why the tournament selection gave better results than roulette

wheel according to selection intensity and selection probability.

6.2- Revision

Experiments were performed using genetic algorithm for five function optimization

problems shown in Table 6.1. Each function has a prescribed search domain given in

constraint column of the Table 6.1. The first function is Rosenbrock’ function, which

takes global minimum of function = 0)(min =xf at 11 =x 12 =x . The second function

is De Jong’s sphere, which takes a global minimum of function = at 0)(min =xf

 102

0)(=ix =5. The third function is Griewank’s function, which takes a global

minimum of function =

Ni :1=

0)(min =xf at 0)(=ix Ni :1= =5. The forth function is

Michalewicz’s function, which takes a global minimum of function =

 =5. The fifth function is Shekel’s foxholes functions,

which takes a global minimum of function =

687.4)(min −=xf ?)(=ix Ni :1=

40561.10)(−=xf 0249.81 =x 1517.92 =x

. 1139.53 =x 6208.74 =x 5640.45 =x

For the each experiment, the population size is fixed with 50 individuals, for selection

operation tournament and roulette-wheel selection is used, for crossover operation one

point crossover technique (crossover probability = 0.8) and for mutation operation flip bit

mutation (mutation probability = 0.05) is used.

Considering the tests results in Table 6.12 and Table 6.13, for first, third and fifth

function, the tournament selection convergence faster to the global optimum solution than

roulette-wheel selection. But for second and forth functions roulette-wheel selection

convergence much faster to the optimal solution than tournament selection.

Also considering the test results in Table 6.15 and Table 6.16, for the first, second, third

and forth function, the tournament selection’s quality of optimal solution obtained is

better than roulette-wheel selection. But for the fifth function the quality of solution

obtained is better for the roulette-wheel selection than tournament selection.

 103

CONCLUSION

Genetic Algorithms (GAs) are a popular class of iterative search techniques used to find

good solutions to hard problems. GA evolves the population of individuals (solutions) to

the global optimum by engaging the evolutionary operators: selection, mutation and

crossover. The selection operator influences significantly on the speed of convergence to

the global optimum and the quality of obtaining optimal solution.

The thesis investigated the two groups of selection schemes: proportionate-based

selection strategy and ordinal-based selection strategy with the representative that is the

roulette wheel selection and stochastic universal sampling selection operator

(proportionate-based selection strategy) and binary tournament selection and linear

ranking selection operator (ordinal-based selection strategy).

The various test cases were used to demonstrate the performance of GA with two

selection operators described above.

Analysis of performance the selection schemes compared was done by using two criteria:

the speed of convergence to the global optimum, and the quality of optimal solution

obtained.

Quantitative analysis of the selection strategies showed that genetic algorithm with

ordinal-based selection strategy converges faster than with proportionate-based selection

schemes with comparative quality of optimal solution obtained. However, for some

multimodal test functions the quality of the solution obtained is better for proportionate-

based selection schemes than for ordinal-based one. It is because for multimodal

functions the high level of selection intensity of ordinal-based selection strategy drives

the GA to the local optimum which can be avoided by low level of selection intensity of

proportionate-based selection schemes.

 104

REFERENCES

[1]. N. Chaiyaratana and A. M. S. Zalzala (1997). Recent developments in evolutionary

and genetic algorithms: Theory and applications, genetic algorithms in engineering

systems. Innovations and applications, Conference publication no: 446.

[2]. Tobias Blickle and Lothar Thiele (1995). A comparison of selection schemes used in

genetic algorithms. Computer engineering and communication laboratory Swish Federal

Institute of Technology. Zurich Switzerland.

 [3]. Goldberg D.E., Deb K. and Theirens (1993). Toward a better understanding of

mixing in genetic algorithms. Journal of the Society of Instrument and Control Engineers.

[4]. Holland J.H. (1975). Adaptation in natural and artificial Systems. University of

Michigan Press.

[5]. Baker J.E. (1985). Adaptive selection methods for genetic algorithms. Processing of

an International Conference on Genetic Algorithms and Their Applications (pp.101-101).

Hillsdale, NJ: Lawrence Erlbaum.

[6]. Grefenstette J.J. and Baker J.E. (1989). How genetic algorithms work: A critical look

at implicit parallelism. Processing of the 3rd International Conference on Genetic

Algorithms (pp.20-27). San Mateo, CA: Morgan Kaufmann.

[7]. D.S. Huang, Horace H.S.Ip, Zheru Chi and H.S. Wong (2003). Dilation method for

finding close roots of polynomials based on constrained learning neural networks.

Physics letters a, Vol.309, No.5-6 (pp.443-451).

[8]. Wael Mustafa (2003). Optimization of production systems using genetic algorithms.

International Journal of Computational Intelligence and Applications, Vol. 3 (pp.233-

248).

 105

[9]. Brindle A. (1981). Genetic algorithms for function optimization. Unpublished

doctoral dissertation. University of Alberta, Edmonton. Canada.

[10]. Zen and the art of genetic algorithms (1989). In J.D. Schaffer (Ed.). Proceedings of

the 3rd International Conference on Genetic Algorithms (pp.80-85). San Mateo, CA:

Morgan Kaufmann (Also TCGA Report 88003).

[11]. Mühlenbein H. & Schlierkamp-Voosen, D. (1993). Predictive models for the

breeder genetic algorithm. 1st Continuous Parameter Optimization. Evolutionary

computation 1 (pp.25-49).

[12]. Baker, J.E. (1987). Reducing bias and inefficiency in the selection algorithm. In

J.J.Grefenstette(Ed.). Proceedings of the 2nd International Conference on Genetic

Algorithms (pp.14-21). Hillsdale, NJ: Lawrance Erlbaum.

[13]. Davis L. (1991). Handbook of genetic algorithms, Van Nonstrand Reinhold.

New York.

[14]. Goldberg, D.E. (1989). Genetic algorithms in search optimization and machine

learning. Addison Wesley, Reading, MA.

[15]. Oliver, J. M., Smith, D. J. and Holland, J. R. C. (1987). A study of permutation

crossover operators on the traveling salesman problem. 2nd International Conference on

Genetic Algorithms (pp. 224-230).

[16]. Michalewicz Z. (1992). Genetic algorithm + Data structures = Evolution programs,

Springer Verlag.

[17]. J. Arabas, Z. Michalewicz and J. Mulawka Gavaps (1994). A genetic algorithm with

varying population size. 1st IEEE Conference on Evolutionary Computation (pp.73-78).

IEEE Press, Piscataway.

 106

[18]. Brad L. Miller & David E. Goldberg (1996). Genetic algorithms, selection schemes

and the varying effects of noise. International Conference on Evolutionary Computation.

[19]. Sywerda, G. (1989). Uniform crossover in genetic algorithms. 3rd International

Conference on Genetic Algorithms (pp.2-9).

[20]. Spears W.M and De Jong K.A. (1994). On the virtues of parameterized uniform

crossover. 4th International Conference on Genetic Algorithms.

[21]. Davis L. (1985). Applying algorithms to epistatic domains. International Joint

Conference on Artificial Intelligence (pp.162-164).

[22]. K. A. De Jong. (1975). Analysis of the behavior of a class of genetic adaptive

systems. Ph.D. dissertation. The University Of Michigan.

[23]. R.L. Haupt and S.E. Haupt (1998). Practical genetic algorithms. New York: John

Wiley & Sons.

[24]. J. J. Grefenstette (1986). Optimization of control parameters for genetic algorithms.

IEEE Transactions on Systems, Man, and Cybernetics (pp.128).

[25]. George H. Gates Jr., Laurance D.Merkle, Gary B.Lamont (1995). Simple genetic

algorithm parameter selection for protein structure prediction. Department of Electric and

Computer Engineering Graduate School of Engineering Air Force Institute of

Technology.

[26]. Schaffer J.David. (1989). A study of control parameters affecting online

performance of genetic algorithms for function optimization. 3rd International Conference

on Genetic Algorithms

 107

[27]. Bäck K. (1995). Genratized convergence models for tournament selection and

()λμ, selection. 6th International Conference on Genetic Algorithms (pp.2-8).

SanFrancisco, CA: Morgan Kaufmann.

[28]. Xin Yao (1997). Global optimization by evolutionary algorithms. Computational

Intelligence Group, School of Computational Science University Collage, The University

of New South Wales Australian Defence Force Academy, Canberra, ACT, Australia 2600.

IEEE Computer Society Press.

[29]. Goldberg D.E. and Lingle R. (1985). Alleles, loci, and the TSP. 1st International

Conference on Genetic Algorithms (pp.54-159).

[30]. Goldberg D. and Deb K. (1991). A comparative analysis of selection schemes used

in genetic algorithms. In G. Rawlins, editor, Foundations of Genetic Algorithms, pp. 69-

93, Sam Mateo, Morgan Kaufmann.

 108

APPENDIX A

STOCHASTIC UNIVERSAL SAMPLING SELECTION TEST

RESULTS

For F1 = . 2
1

2
2

2
11)1()(*100)(xxxxf −+−=

Range of and =1x 2x 048.2048.2 ≤≤− ix .

21 , xx with resolution factor of = 0.001. ixΔ

Global minimum of function = 0)(min =xf at 11 =x 12 =x .

Table A.1- Test results of stochastic universal sampling selection for F1.

#TEST #Generation Best_min Fitness

1 483 0.000413

2 290 0.006787

3 368 0.008196

4 578 0.014895

5 660 0.063488

6 979 0.011768

7 185 0.029804

8 559 0.01305

9 759 0.052128

10 75 0.002095

11 242 0.050462

12 518 0.000056

13 408 0.000899

14 247 0.013412

15 0 0.006471

16 11 0.012307

 109

17 183 0.04091

18 576 0.000434

19 82 0.004121

20 837 0.004846

21 267 0.009367

22 428 0.000766

23 75 0.001824

24 160 0.04602

25 424 0.021923

26 760 0.023113

27 929 0.001495

28 106 0.000735

29 546 0.000517

39 571 0.002949

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

tests

mean

mean+std

mean-std

Figure A.1- Stochastic universal sampling selection graphic for F1.

 110

For F2 = ∑
=

=
N

i
ixxf

1

2
2)()(.

5=N .

Range of = ix 12.512.5 ≤≤− ix 0)(=ix Ni :1= .

5:1=i with a resolution factor ixΔ = 0.01 on each axis.

Global minimum of function: 0)(min =xf at 0)(=ix Ni :1= .

Table A.2- Test results of stochastic universal sampling selection for F2.

#TEST #Generation Best_min Fitness

1 333 3.545847

2 470 0.706504

3 651 1.430992

4 634 1.593636

5 178 2.395201

6 996 0.340189

7 628 1.400806

8 506 0.757804

9 391 0.652599

10 835 2.640279

11 120 1.676197

12 916 1.601005

13 778 0.682658

14 410 1.090454

 111

15 916 2.503011

16 684 0.676045

17 372 0.153224

18 682 1.573396

19 522 1.640127

20 0 2.565533

21 110 0.802692

22 754 2.202425

23 470 0.510121

24 849 0.660615

25 910 2.175372

26 743 2.367947

27 484 0.968015

28 218 1.446148

29 891 1.115503

30 139 0.68366

0

0.5

1

1.5

2

2.5

3

3.5

4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

tests

mean

mean+std

mean-std

 112

Figure A.2- Stochastic universal sampling selection graphic for F2.

For F3 = 1cos)100(
4000

1)(
11

2
3 +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−= ∏∑

== i
x

xxf i
N

i

N

i
i .

5=N .

Range of = ix 600600 ≤≤− ix 0)(=ix Ni :1= .

5:1=i with a resolution factor ixΔ = 0.01 on each axis.

Global minimum of function: 0)(min =xf at 0)(=ix Ni :1= .

Table A.3- Test results of stochastic universal sampling selection for F3.

#TEST #Generation Best_min Fitness

1 56 3.172907

2 19 3.389672

3 314 7.666584

4 432 4.384844

5 254 8.340647

6 117 9.293668

7 120 6.304651

8 39 5.554811

9 469 7.503999

10 929 9.360593

11 827 9.971512

 113

12 781 5.495712

13 583 10.154668

14 796 10.171372

15 516 7.35035

16 940 8.082796

17 393 17.447573

18 824 10.38502

19 486 11.311725

20 650 5.324049

21 592 6.872097

22 432 10.882447

23 822 12.615409

24 56 5.466848

25 823 8.507217

26 319 5.449208

27 361 11.246358

28 965 7.981456

29 175 8.924101

30 156 9.577565

 114

0

2

4

6

8

10

12

14

16

18

20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

tests

mean

mean+std

mean-std

Figure A.3- Stochastic universal selection sampling graphic for F3.

For F4 =
m

i
N

i
i

xi
xxf

*22

1
4

*
sin*)sin()(⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

= π
.

5=N .

Range of =ix π≤≤ ix0 0)(=ix Ni :1= .

5:1=i with a resolution factor ixΔ = 0.01 on each axis.

Global minimum of function = 687.4)(min −=xf ?)(=ix Ni :1= .

Table A.4- Test results of stochastic universal sampling selection for F4.

 115

#TEST #Generation Best_min Fitness

1 461 -4.63001

2 866 -4.6223

3 608 -4.68107

4 942 -4.657022

5 630 -4.665945

6 539 -4.63699

7 728 -4.642744

8 763 -4.639535

9 805 -4.661801

10 593 -4.653302

11 822 -4.635121

12 79 -4.654263

13 873 -4.66182

14 544 -4.611335

15 691 -4.622484

16 374 -4.623354

17 262 -4.647264

18 233 -4.629636

19 820 -4.627598

20 493 -4.639965

21 641 -4.626991

22 589 -4.622513

23 839 -4.645216

24 744 -4.583519

25 348 -4.625952

26 982 -4.635473

27 987 -4.643882

28 239 -4.616704

29 784 -4.632202

 116

30 148 -4.546722

-4.7

-4.65

-4.6

-4.55

-4.5

-4.45
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

tests

mean

mean+std

mean-std

Figure A.4- Stochastic universal sampling selection graphic for F4.

For F5 =
()∑

∑=
=

+−
−=

30

1
1

25
1)(

i
N

j iiji cax
xf .

5=N .

Range of = ix 100 ≤≤ ix 0)(=ix Ni :1= .

5:1=i with a resolution factor of iΔ = 0.01 on each axis.

 117

Global minimum of function = 40561.10)(−=xf

0249.81 =x 1517.92 =x 1139.53 =x 6208.74 =x 5640.45 =x

Table A.5- Test results of stochastic universal sampling selection for F5.

#TEST #Generation Best_min Fitness

1 293 -2.033499

2 779 -2.535636

3 39 -3.027679

4 748 -1.888267

5 606 -10.318615

6 823 -2.548636

7 361 -1.869241

8 120 -1.941765

9 985 -3.396333

10 736 -9.125092

11 266 -1.955783

12 313 -2.654759

13 67 -2.871051

14 404 -2.537512

15 800 -3.273476

16 275 -2.192412

17 213 -2.383385

18 571 -2.537207

19 942 -2.251596

20 264 -2.648869

21 259 -2.655948

22 663 -9.096451

23 522 -1.811075

24 66 -2.178304

 118

25 105 -2.980146

26 234 -3.459007

27 892 -2.199427

28 44 -2.050634

29 565 -2.652656

30 776 -9.114754

-12

-10

-8

-6

-4

-2

0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

tests

mean

mean+std

mean-std

Figure A.5- Stochastic universal sampling selection graphic for F5.

 119

Table A.6- Convergence speed statistics for stochastic universal sampling selection.

Function Best Worst Mean Std.Dev.

F1 518 660 410 277

F2 17 333 553 283

F3 56 393 475 306

F4 608 148 614 254

F5 606 522 458 301

Table A.7- Stochastic universal sampling selection fitness statistics.

 STOCHASTIC UNIVERSAL SAMPLING SELECTION

Fnc. Optimal Best

Value

Worst

Value

Mean Stdσ

deviation

Max

= Mean+σ

Min

= Mean-σ

F1 0 0.000056 0.063488 0.014842 0.018144 0.032986 -0.003302

F2 0 0.153224 3.545876 1.4186 0.827653 2.246253 0.590947

F3 0 3.172907 17.44757 8.272995 2.989659 11.26265 5.283336

F4 -4.687 -4.68107 -4.54672 -4.63409 0.025146 -4.60894 -4.65924

F5 -10.40561 -10.31861 -1.81108 -3.40631 2.444945 -0.96137 -5.85126

 120

APPENDIX B

GENETIC ALGORITHM SOURCE CODES

Definition.h : contains type definitions of data types.

#include <stdio.h>

#include <math.h>

#include <conio.h>

#include <stdlib.h>

#include <time.h>//for srand() function

const int MAXPOP=200;

const int MAXSTRING=100;

const int MAXPARMS=10;

const float PI=3.1415927;

const int MAXGEN=10000;

typedef bool allele; // Allele=bit position

typedef allele chromosome[MAXSTRING]; // String of bits

typedef struct ind_tag{

 chromosome chrom; // Genotype=bit string

 float x[MAXPARMS];// Phenotype = unsigned integer

 float fitness; // Objective function value

 int parent1,parent2,xsite; // Parents and cross pt

}individual;

typedef individual population[MAXPOP];

typedef struct parmparm_tag{ //parameters of parameter

 int lparm; //length of parameter

 float parameter,maxparm,minparm; //parameter & range

}parmparm;

 121

typedef parmparm parmspecs[MAXPARMS];

population oldpop, newpop; // Two non-overlapping populations

int pop_b,pop_w,popsize, lchrom, gen, maxgen; // Integer global variables

float pcross, pmutation, sumfitness; // Real global variables

int nmutation, ncross;// Integer statistics

float avg, max, min;// Real statisticzs

//double stddev;/* std. deviation of population fitness */

//double sum_square;/* sum of square for std. calc */

//double square_sum;/* square of sum for std. calc */

parmspecs parms;

int nparms;

FILE *infile,*logfile;

int cur_best,cur_worst,cur_genb,cur_genw,currentWorst;

float best,worst,currentWorstFitness;

float minsarray[MAXGEN],ia;

float maxsarray[MAXGEN],aa;

float maxmax,maxmin;

float minmax,minmin;

int gen_maxmax,gen_maxmin,gen_minmax,gen_minmin;

int tourneylist[MAXPOP],tourneypos,tourneysize;

int choices[MAXPOP],nremain;

int ranklist[MAXPOP];

float ranklist_probabilities[MAXPOP];

 122

Generate.h : contains new population generation routine.

/* create a new generation through select, crossover and

mutation. Note: generation assumes an even-numbered popsize */

void generation(){

int j, mate1, mate2, jcross,i,k;

j=0;

 do{// select , crossover and mutation until newpop is filled

 mate1=select_ts(); //pick pair of mates

 mate2=select_ts();

 //Crossover and mutation-mutation embedded within crossover

 crossover(oldpop[mate1].chrom,oldpop[mate2].chrom,

 newpop[j].chrom,newpop[j+1].chrom,lchrom,ncross,nmutation,jcross,pcross,pmut

ation);

 //Decode string, evaluate fitness,&record parentage date on both children

 decode_parms(nparms,lchrom,newpop[j].chrom,parms);

 for(i=0;i<nparms;i++)

 newpop[j].x[i]=parms[i].parameter;

 newpop[j].fitness=objfunc(newpop[j].x,nparms);

 newpop[j].parent1=mate1;

 newpop[j].parent2=mate2;

 newpop[j].xsite=jcross;

 for(k=0;k<nparms;k++)

 newpop[j+1].x[k]=parms[k].parameter;

 newpop[j+1].fitness=objfunc(newpop[j+1].x,nparms);

 newpop[j+1].parent1=mate1;

 newpop[j+1].parent2=mate2;

 newpop[j+1]=jcross;

 j=j+2; // Increment population index

 }while(j<popsize);

}

 123

Initialize.h : contains initdata(), initpop(), initreport() routines.

void initdata(); //Interactive data inquiry and setup

void initreport(); //Initial report

void initpop(); // Initialize population at random

void initialize(); //Initialization coordinator

void initdata(){

 int i;

 lchrom=0;

 if((infile=fopen("gaparameters.txt","r"))== NULL)

 {

 fprintf(logfile,"\n Cannot open gaparameters.txt file!\n");

 exit(1);

 }

 for(i=0;i<1;i++){

 fscanf(infile,"%d",&nparms);

 fscanf(infile,"%d",&popsize);

 fscanf(infile,"%d",&maxgen);

 fscanf(infile,"%f",&pcross);

 fscanf(infile,"%f",&pmutation);

 }

 if((infile=fopen("parameters.txt","r"))== NULL)

 {

 fprintf(logfile,"\n Cannot open parameters.txt file!\n");

 exit(1);

 }

 for(i=0;i<nparms;i++){

 fscanf(infile,"%d",&parms[i].lparm);

 fscanf(infile,"%f",&parms[i].minparm);

 fscanf(infile,"%f",&parms[i].maxparm);

 lchrom=lchrom+parms[i].lparm;

 124

 }

 // Initialize random number generator

 randomize();

 // Initialize counters

 nmutation=0;

 ncross=0;

}

void initreport(){

 fprintf(logfile," SGA Parameters\n");

 fprintf(logfile," ---------------\n");

 fprintf(logfile," Number of Parameter(nparms) = %d\n",nparms);

 fprintf(logfile," Population size (popsize) = %d\n",popsize);

 fprintf(logfile," Chromosome length (lchrom) = %d\n",lchrom);

 fprintf(logfile," Maximum # of generation (maxgen) = %d\n",maxgen);

 fprintf(logfile," Crossover probability (pcross) = %6f\n",pcross);

 fprintf(logfile," Mutation probability (pmutation) = %6f\n\n",pmutation);

 for (int j=0;j<nparms;j++){

 //fprintf(logfile,"%d th parameter. value > ",j); fprintf(logfile,"%f

\n",parms[j].parameter);

 fprintf(logfile,"%d th parm length > ",j); fprintf(logfile,"%d

\n",parms[j].lparm);

 fprintf(logfile,"%d th max. value > ",j); fprintf(logfile,"%f

\n",parms[j].maxparm);

 fprintf(logfile,"%d th min. value > ",j); fprintf(logfile,"%f

\n",parms[j].minparm);

 }

 fprintf(logfile," Initial Generation Statistics\n");

 fprintf(logfile," -----------------------------\n");

 fprintf(logfile," Initial population maximum fitness = %6f\n",max);

 fprintf(logfile," Initial population minimum fitness = %6f\n",min);

 125

 fprintf(logfile," Initial population average fitness = %6f\n",avg);

 fprintf(logfile," Initial population sum of fitness = %6f\n",sumfitness);

}

void initpop(){

 int j, j1,i;

 for(j=0;j<popsize;j++){

 for(j1=0;j1<lchrom;j1++)

 oldpop[j].chrom[j1]=flip(0.5); // a fair coin toss

 decode_parms(nparms,lchrom,oldpop[j].chrom,parms);

 for(i=0;i<nparms;i++)

 oldpop[j].x[i+1]=parms[i].parameter;

 //oldpop[j].x=decode(oldpop[j].chrom,lchrom);

 //oldpop[j].fitness=objfunc1(oldpop[j].x);

 oldpop[j].fitness=objfunc(oldpop[j].x,nparms); // Evaluate initial fitness

 oldpop[j].parent1=0;

 oldpop[j].parent2=0;

 oldpop[j]=0;

 /* Initialize printout vars */

 }

}

void initialize(){

 initdata();

 initpop();

 statistics(popsize,max,min,sumfitness,oldpop);

 initreport();

}

 126

Kernel.h : contains three operators Reproduction (selection), Crossover (crossover),

Mutation (mutation).

int select_rws(int popsize, float sumfitness, population pop);

/* Select a singleindividual via roulette wheel selection */

void reset();

int select_ts(int popsize,population pop);

int select_sus(int popsize,float avg,population pop);

allele mutation(allele alleleval, float pmutation, int &nmutation);

/* Mutate an allele w/ pmutation, count number of mutations */

void crossover(chromosome parent1, chromosome parent2, chromosome child1,

 chromosome child2,int &lchrom,int &ncross,int &nmutation,int &jcross,

 float &pcross,float &pmutation);

/* Cross 2 parent strings, place in 2 child strings */

int select_sus(int popsize,float avg,population pop){

 int j, k;

 float pointer, sum;

 if (avg == 0) {

 for (j = 0; j < popsize; j++)

 choices[j] = j;

 }

 else {

 k = 0;

 pointer = random();

 //

 sum = 0.0;

 for (j = 0; j < popsize; j++) {

 for (sum += (pop[j].fitness / avg); sum > pointer; pointer++) {

 choices[k++] = j;

 }

 if(k >= popsize)

 break;

 127

 }

 }

 nremain = popsize - 1;

 int jpick, slect;

 jpick = rnd(0, nremain);

 slect = choices[jpick];

 choices[nremain] = choices[nremain];

 nremain--;

 return (slect);

}

int select_ts(int popsize,population pop){

 int pick, winner, i;

 tourneysize=2;

 /* If remaining members not enough for a tournament, then reset list */

 if((popsize - tourneypos) < tourneysize){

 reset();

 tourneypos = 0;

 }

 /* Select tourneysize structures at random and conduct a tournament */

 winner=tourneylist[tourneypos];

 for(i=1; i<tourneysize; i++){

 pick=tourneylist[tourneypos];

 if(pop[pick].fitness < pop[winner].fitness)

 }

 /* Update tourneypos */

 tourneypos += tourneysize;

 return(winner);

}

void reset(){/* Shuffles the tourneylist at random */

 128

 int i, rand1, rand2, temp;

 for(i=0; i<popsize; i++)

 tourneylist[i] = i;

 for(i=0; i < popsize; i++){

 rand1=rnd(i,popsize-1);

 rand2=rnd(i,popsize-1);

 temp = tourneylist[rand1];

 tourneylist[rand1]=tourneylist[rand2];

 }

}

int select_rws(int popsize, float sumfitness, population pop){

 float rand, partsum; //Random point on wheel, partial sum

 int j; //population index

 partsum=0.0; j=0; //Zero out counter and accumulator

 rand=sumfitness*random(); //Wheel point calc. uses random number [0,1]

 do{ // Find wheel slot

 partsum=partsum+pop[j].fitness;

 j++;

 }while(partsum>rand);

 return (j-1); // Return individual number

}

allele mutation(allele alleleval, float pmutation, int &nmutation){

 bool mutate;

 mutate=flip(pmutation); //Flip the biased coin

 if(mutate){

 nmutation++;

 return !alleleval; //Change bit value

 }

 else return alleleval; //No change

}

 129

void crossover(chromosome parent1, chromosome parent2, chromosome child1,

 chromosome child2,int &lchrom,int &ncross,int &nmutation,int &jcross,

 float &pcross,float &pmutation)

{

int j;

 if(flip(pcross)) //Do crossover with pcross

 {

jcross=rnd(1,lchrom-1);//Cross between 1 and lchrom-1

 ncross++; //Increment crossover counter

 }

 else jcross=lchrom;

 // first exchange, 1 to 1 and 2 to 2

 for(j=0;j<jcross;j++)

 {

child1[j]=mutation(parent1[j],pmutation,nmutation);

 child2[j]=mutation(parent2[j],pmutation,nmutation);

 }

 // second exchange, 1 to 2 and 2 to 1

 if(jcross!=lchrom)

 for(j=jcross;j<lchrom;j++)

 {

child1[j]=mutation(parent2[j],pmutation,nmutation);

 child2[j]=mutation(parent1[j],pmutation,nmutation);

 }

}

 130

ObjectFunction.h : contains objectfunction() and decode() routines.

float objfunc(float x[],int n); // fitness function-f(x)=...

float decode(chromosome chrom,int lbits);

/* Decode string as unsigned binary integer - true=1, false=0 */

float objfunc(float x[],int n){

 /* Put object function */

 }

float decode(chromosome chrom,int lbits){

 int j;

 float accum=0.0,powerof2=1.0;

 for(j=0;j<lbits;j++){

 if(chrom[j])

 accum=accum+powerof2;

 powerof2=powerof2*2;

 }

 return accum;

}

Parameters.h : cotains extract_parm(), map_parm(), decode_parms() routines.

void extract_parm(chromosome chromfrom,chromosome chromto,int &jposition, int

&lchrom,int &lparm); //Extract a substring from a full string

float map_parm(float x,float maxparm,float minparm,float fullscale); /* Map an unsigned

binary integer to range [minparm,maxparm] */

void decode_parms(int &nparms,int &lchrom,chromosome chrom,

 parmspecs parms); // Decode parameter

void writech(chromosome chrom,int l);

void extract_parm(chromosome chromfrom,chromosome chromto,int &jposition,

 int &lchrom,int &lparm)

{

 int j,jtarget;

 131

 j=0;

 if(jtarget>lchrom)

 jtarget=lchrom; // Clamp if excessive

 while(jposition<jtarget)

 {

chromto[j]=chromfrom[jposition];

 ++jposition;

 j++;

 }

}

float map_parm(float x,float maxparm,float minparm,float fullscale){

 return (minparm+(maxparm-minparm)/fullscale*x);

}

void writech(chromosome chrom,int l){

 int j;

 printf("\n");

 for(j=0;j<l;j++)

 if(chrom[j])

 printf("1");

 else printf("0");

}

void decode_parms(int &nparms,int &lchrom,chromosome chrom,parmspecs parms){

 int j,jposition;

 chromosome chromtemp; // Temporary string buffer

 j=0; //Parameter counter

 jposition=0; //String position counter

 do{

 if(parms[j].lparm>0){

 extract_parm(chrom,chromtemp,lchrom,parms[j].lparm);

 132

parms[j].parameter=map_parm(decode(chromtemp,parms[j].lparm),parms[j].maxparm,pa

rms[j].minparm,pow(2.0,parms[j].lparm)-1);

 //writech(chrom,parms[j].lparm);printf("-");

 //writech(chromtemp,parms[j].lparm);

 //printf("\n:%f :%f :%f :%f

 :%f\n",parms[j].parameter,decode(chromtemp,parms[j].lparm),parms[j].maxparm,

parms[j].minparm,pow(2.0,parms[j].lparm)-1);

 //printf("/%f /%f

 /%f\n",parms[j].parameter,decode(chromtemp,parms[j].lparm),pow(2.0,parms[j].l

parm)-1);

 }

 j++;

 }

while(j<nparms);

}

Random.h : contains random number utility programs.

float oldrand[55]; //array of 55 random number

int jrand; //current random

void advance_random(); // create next batch of 55 random numbers

void warmup_random(float random_seed); // get random off and runnin

float random(); /* fetch a single random number between 0.0 and 1.0 -

Subtractive Method (see Knuth D.(1969), v.2 for details) */

bool flip(float probability);//flip a biased coin-true if heads

int rnd(int low,int high); //pick a random integer between low and high

void randomize(); //get seed number for random and start it up

void advance_random()

{

 133

float new_random;

 for(int j1=0;j1<24;j1++)

 { new_random=oldrand[j1]-oldrand[j1+30];

 if(new_random<0.0) new_random=new_random+1.0;

 oldrand[j1]=new_random;

 }

 for(int j1=24;j1<55;j1++)

 {

 new_random=oldrand[j1]-oldrand[j1-23];

 if(new_random<0.0) new_random=new_random+1.0;

 oldrand[j1]=new_random;

 }

}

void warmup_random(float random_seed)

{ int ii;

 float new_random,prev_random;

 oldrand[54]=random_seed;

 new_random=1.0e-06;

 prev_random=random_seed;

 for(int j1=0;j1<54;j1++)

 { ii=21*j1%55;

 oldrand[ii]=new_random;

 new_random=prev_random-new_random;

 if(new_random<0.0) new_random=new_random+1.0;

 prev_random=oldrand[ii];

 }

 advance_random();

 advance_random();

 advance_random();

 jrand=0;

 134

}

float random()

{ jrand=jrand+1;

 if(jrand>55)

 { jrand=1;

 advance_random();

 }

 return oldrand[jrand];

}

bool flip(float probability)

{ if(probability==1.0) return true;

 else return (random()<=probability);

}

int rnd(int low,int high)

{ int i;

 if(low>=high) i=low;

 else{ i=(int)(random()*(high-low+1)+low);

 if(i>high) i=high;

 }

 return i;

}

void randomize(){

 srand((unsigned)time(NULL));

 double randomseed,high,low;

 high=1.0;low=0.0;

 double ra=(high-low);

 randomseed=low+double(ra*rand()/double(RAND_MAX+1.0));

 fprintf(logfile,"Auto random seed number:%f\n",randomseed);

 warmup_random(randomseed);

}

 135

Reports.h : contains routines used to print a report from each cycle of genetic

algorithm’s operation.

void writechrom(chromosome chrom,int lchrom); /* Write a chromosome

 as a string of 1's (true's) and 0's (false's) */

void report(int gen); // Write the population report

void writechrom(chromosome chrom,int lchrom)

{ int j;

 for(j=0;j<lchrom;j++)

 if(chrom[j]) fprintf(logfile,"1");

 else fprintf(logfile,"0");

}

void report(int gen)

{ int j;

 fprintf(logfile,"\n Population Report Generation %d\n",gen);

 for(j=0;j<popsize;j++){

 fprintf(logfile,"\n population %2d>>",j);

 //writechrom(newpop[j].chrom,lchrom);

 for (int i = 0; i < nparms; i++){

 fprintf (logfile," parm(%d) = %6f",i,newpop[j].x[i]);

 }

 fprintf(logfile,"fitness: %6f",newpop[j].fitness);

 }

 // Generation statistics and accumulated values

 fprintf(logfile,"\nNote: Generation %d & Accumulated Statistics:\n",gen);

 fprintf(logfile,"max=%6f min=%6f avg=%6f sum=%6f nmutation=%d

ncross=%d\n",max,min,avg,sumfitness,nmutation,ncross);

 136

 //printf("gen:%d max=%.3f min=%.3f avg=%.3f sum=%.3f

\n",gen,max,min,avg,sumfitness);

 for (int i = 0; i < nparms; i++){

 fprintf (logfile,"parameter ::%6f\n",newpop[popsize].x[i]);

 }

 fprintf(logfile,"gen:%d Best fitness::%f\n",cur_genb,best);

 //printf("gen:%d Best fitness::%f \n",cur_genb,best);

 //printf("gen:%d Best fitness max::%f \n",gen_maxmax,maxmax);

 //printf("gen:%d Best fitness min::%f \n",gen_maxmin,maxmin);

 //printf("gen:%d Worst fitness max::%f \n",gen_minmax,minmax);

 //printf("gen:%d Worst fitness min::%f \n\n",gen_minmin,minmin);

}

Statistics.h : contains the routine statistics(), which calculates population statistics for

each generation.

void statistics(int popsize,float &max, float &avg, float &min,float &sumfitness,

population pop)

//Calculate population statistics

{

int i,j,k,mem;

 //initialize

 sumfitness=pop[0].fitness;

 min=pop[0].fitness;

 max=pop[0].fitness;

 //Loop for max, min, sumfitness

 for(j=1;j<popsize;j++){

 sumfitness=sumfitness+pop[j].fitness; //Accumulate fitness sum

 //printf("%f %f\n",pop[j].fitness,avg);

 if(pop[j].fitness>max){

 137

 max=pop[j].fitness; //New max

 }

 if(pop[j].fitness<min){

 min=pop[j].fitness; //New min

 }

 /*

 if (pop[j].fitness > best){

 cur_genb=gen;//best fitness found generation

 cur_best = j;//best fitness found population

 //worst=min;//keep minimum fitness for best fistness

 pop[popsize].fitness = pop[j].fitness;

 best=pop[j].fitness;//keep best;

 for (i = 0; i < nparms; i++)

 pop[popsize].x[i] = pop[cur_best].x[i];//keep best fitness parameters

 }*/

 }

 //Calculate average

 avg=sumfitness/popsize;

 maxsarray[gen]=max;

 minsarray[gen]=min;

 if(maxsarray[gen]<maxmin){

 maxmin=maxsarray[gen];

 gen_maxmin=gen;

 }

 if(maxsarray[gen]>maxmax){

 maxmax=maxsarray[gen];

 gen_maxmax=gen;

 }

 if(minsarray[gen]>minmax){

 minmax=minsarray[gen];

 138

 gen_minmax=gen;

 }

 if(minsarray[gen]<minmin){

 minmin=minsarray[gen];

 gen_minmin=gen;

 }

}

Main.cpp : contains the main SGA program loop, main().

// Main program of Genetic Algorithm

#include "definitions.h"

#include "random.h"

#include "objectfunction.h"

#include "parameters.h"

#include "statistics.h"

#include "initialize.h"

#include "reports.h"

#include "kernel.h"

#include "generate.h"

void main(){

 if ((logfile = fopen("galog.txt","w"))==NULL){

 exit(1);

 }

 gen=0; // Set things up

 initialize();

 maxmax=maxsarray[0];

 maxmin=maxsarray[0];

 minmax=minsarray[0];

 minmin=minsarray[0];

 139

 do{

 gen++;

generation();

 statistics(popsize,max,avg,min,sumfitness,newpop);

 report(gen);

 for(int i=0;i<popsize;i++)

 oldpop[i]=newpop[i]; //advance the generation

 }while(gen<maxgen);

 printf("maxmax:%f gen_max:%d\n",maxmax,gen_maxmax);

 printf("maxmin:%f gen_min:%d\n",maxmin,gen_maxmin);

 printf("minmax:%f gen_max:%d\n",minmax,gen_minmax);

 printf("minmin:%f gen_min:%d\n",minmin,gen_minmin);

 getch();

}

 140

