

NEAR EAST UNIVERSITY

INSTITUTE OF GRADUATE STUDIES

DEPARTMENT OF COMPUTER ENGINEERING

Behaviour Tree Based Control of Omnidirectional Robots

M.Sc. THESIS

Nurullah Akkaya

Nicosia

September, 2021

1

NEAR EAST UNIVERSITY

INSTITUTE OF GRADUATE STUDIES

DEPARTMENT OF COMPUTER ENGINEERING

Behaviour Tree Based Control of Omnidirectional Robots

M.Sc. THESIS

Nurullah Akkaya

Supervisor

Prof. Dr. Rahib Abiyev

Nicosia

September, 2021

2

Approval

We certify that we have read the thesis submitted by Nurullah Akkaya titled “Behaviour

Tree Based Control of Omnidirectional Robots” and that in our combined opinion it is

fully adequate, in scope and in quality, as a thesis for the degree of Master of Educational

Sciences.

Examining Committee Name-Surname Signature

Head of the Committee: Assoc. Prof. Dr. Boran Sekeroglu

Committee Member*: Asist. Prof. Dr. Elbus Imanov

Supervisor: Prof. Dr. Rahib Abiyev

Approved by the Head of the Department

5/1/2022

 Prof. Dr. Rahib Abiyev

Head of Department

Approved by the Institute of Graduate Studies

…../…../20…

Prof. Dr. Kemal Hüsnü Can Başer

Head of the Institute

3

Declaration

I hereby declare that all information, documents, analysis and results in this thesis

have been collected and presented according to the academic rules and ethical

guidelines of Institute of Graduate Studies, Near East University. I also declare that

as required by these rules and conduct, I have fully cited and referenced information

and data that are not original to this study.

Nurullah Akkaya

05/01/2022

4

Acknowledgments

I would like to emit my appreciation to my supervisor Prof. Dr. Rahib ABIYEV for wisdom
and guidance. His aids were critical for my thesis.

I would like to thank my love, my family and my friends to give me personal support, and for
their patience and kindness. Without them, everything would be harder.

A special thanks to my colleagues at the Near East University Robotics Laboratory for their

support and motivation.

 Nurullah Akkaya

5

Abstract

Behaviour Tree Based Control of Omnidirectional Robots

Akkaya, Nurullah

MA, Department of Computer Engineering

01, 2022, 65 pages

This thesis presents novel behaviour tree based control and improved path
finding algorithm for efficient navigation of holonomic robots used in a soccer team.
The hierarchical behaviour tree based control algorithm is proposed for decision
making of robot to reach navigation goals. Behaviour tree (BT) has high and low
level behaviours and its nodes are operating using certain behaviour rules given in
the paper. High level behaviours are implemented using low level behaviours. The
new behaviours of soccer robots are designed using tree structure. The use of BT ap-
proach allows to model complicated situations easily that show advantages of this
technique over finite state machines and Petri set widely used in robot control. After
decision makings using BTs, a path finding module is used to determine the path of
robot. The next propose of the paper is, the design of an improved path finding algo-
rithm.The widely used path finding methods are basically based on artificial potential
field method, vector field histogram and A star methods that needs certain time for
finding feasible path and sometimes do not complete in reasonable short time for
real-time operation. Another commonly used algorithm to solve this problem is the
Rapidly Exploring Random Tree (RRT) algorithm that quickly finds a feasible solu-
tion. However, frequently the RRT algorithm alone does not return better results in
path length. Here, the integration of RRT with path smoothing techniques is devel-
oped. The obtained simulation and experimental results show that the constructed
navigation system of soccer robots efficiently finds desirable and feasible solutions
in short amount of time.

Key Words: behaviour trees, fuzzy logic, path finding, obstacle avoidance

Table of Contents

Approval . 1

Declaration . 2

Acknowledgements . 3

Abstract . 4

Summary . 5

Table of Contents . 6

List of Figures . 9

List of Tables . 10

CHAPTER I

Introduction 11

CHAPTER II

State of Art of Control System Mobile Robots 14

Decision Making . 14

Motion Planning and Collision Avoidance 16

Problem Statement . 19

CHAPTER III

Structure of Control System of The Omnidirectional Robots 21

Vision System . 21

Control System . 22

Hardware . 26

CHAPTER IV

Behaviour Tree Based Control 31

Behaviour tree . 31

Interface . 33

Sequence . 33

Selector . 34

6

Decorator . 34

Fuzzy Selector . 36

Hierarchical Behaviours . 37

CHAPTER V

Robot Navigation 43

Path Planning . 43

Collision Avoidance . 46

Experimental Results . 50

CHAPTER VI

Conclusions 58

References 59

Appendices 65

7

List of Figures

1 A FSM modelling a car gearbox. 15

2 SSL Vision Architecture . 23

3 NEUIslanders Module Structure 24

4 Data �ow through NeuIslanders control system 26

5 NEUIslanders Robot Speci�cations 27

6 Main Processor Schematic . 28

7 Control Structure of the Robot 28

8 Latest Generation of NeuIslanders Robots 29

9 Various Node Types: (a) Sequence, (b) Selector, (c) Decorator 32

10 Fuzzy Selector Rule Base . 36

11 Selector BTs. (a) Move, (b) Shoot 37

12 Plays & Skills . 38

13 Pass behaviour tree . 39

14 Defensive Play Behaviour . 41

15 Play Selection Behaviour . 41

16 Move To via Path Behaviour 42

17 RRT Path Finding Algorithm 45

18 RRT path when P(Goal)=0 47

19 Optimized path after path optimization. 47

20 Path Optimization Algorithm 47

21 collision avoidance . 48

22 Fragment of Rule Base . 49

23 RRT execution results for various values (/ P(Goal)), a)

50/0.3, b)15/0.3 . 52

8

24 E�ects of and P(Goal) with respect to time. a) P(Goal)

vs Time, solid line =15, dotted line =50, dashed line =30

b) with respect to Time, dashed line P(Goal)=0.2, solid line

P(Goal)=0.1, dotted line P(Goal)=0.4, dotted dash line P(Goal)=0.3,

dotted 'o' line with P(Goal)=0.5. 53

25 RRT-Plan and Path optimization algorithm results for varoius

/P(Goal) pairs (Black line RRT-Plan path, red line smoothed

rrt-plan path), 50,0.3 (a), 5,0.1 (b) and 5,0.3 (c). 54

9

List of Tables

1 Experiment results for RRT-Plan 52

2 A* and APF results . 53

3 Path �nding and Path optimization experiment results 56

4 Simulation results for A* and APF algorithm 57

10

CHAPTER I

Introduction

Holonomic robots are increasingly utilized in industrial and academic set-

tings. Mobile robots of this type can move independently in multiple degrees

of freedom. The ability to move in multiple degrees of freedom makes the

holonomic robots suited to applications in dynamically changing environ-

ments [1, 2]. One example of such application is mobile robots used by the

small sized league (SSL) teams that compete in annual RoboCup competi-

tion.

Because of this, holonomic robots are actively researched for di�erent

academic and industrial applications [3]. Holonomic robot control is a chal-

lenging and important problem that deals with the designing systems that

controls the movement of mobile robots.

The primary aim of mobile robot motion planning is to steer a robot

towards a direction, towards a goal position while avoiding collision with

obstacles in the environment while tracking its exact location in the envi-

ronment. Mobile robots operates in environments which may contain �xed

areas containing non moving obstacles to dynamically changing areas due to

moving obstacles.

Various control algorithms have been implemented in the past that en-

ables navigation of mobile robots in dynamically changing environments.

One frequently used solution for this problem is the forming of a world model

of the environment the robot is in using the information gathered from the

sensors, make choices about the new goal positions for the robots, and apply

navigation algorithms that moves the robots to their new designated posi-

tions while avoiding collision with the obstacles [4, 5].

As shown in Fig.3 Control and navigation system for soccer robots is

made up of modules. System is made up of various subsystems, vision sub-

11

system, decision making subsystem, path planning and collision avoidance

subsystem, and various control algorithms. The vision module uses SSL vi-

sion system which is the shared vision system of RoboCup Small Size League

(SSL). Decision making module implements the arti�cial intelligence system

for mobile robots. This module is responsible for analysing the current state

of the environment and make strategic decisions that moves the robots to new

locations and plans a collision free path for the mobile robots. In the litera-

ture various approaches have been implemented in order to develop decision

making system for soccer robots. Some of these are, �nite state machines

(FSM) [5, 6, 7], Petri nets [8, 9], behaviour based control [10, 11, 12] and

topological graph map [13].

In this thesis our �rst motivation is to design a hierarchical decision mak-

ing system based on Behaviour Trees (BT). BT based approach simpli�es

the decision making process that involves complex and parallel logic by us-

ing higher level abstraction nodes that are composed of lower level nodes for

decision making for mobile robots. Higher level nodes are composed of inter-

mediate/lower level nodes. Each non-leaf node in the behaviour tree has a

prede�ned role for performing control on their child nodes. Leaf nodes in the

tree are called action nodes that perform various operations on the robots.

Depending on the problem at hand the proposed BT based decision making

system can easily be extended and adapted.

In mobile robot control an important problem motion planning which is

the process of �nding a collision free path to target. Given a map of the

world and a target location to navigate to, motion planning is used to search

for a path from the robots current location to another target location via a

set of intermediate waypoints. Often times, the world/environment where

robot operates in is not �xed, i.e., during motion of the robot, it has to

deal with other dynamic obstacles or robots, consequently execution is often

associated with unpredictability. For collision free navigation to target, the

path planning algorithm has to be used in conjunction with an obstacle

12

detection and collision avoidance algorithm.

Various techniques for mobile robot navigation using motion planning

combined with collision avoidance have been developed. Frequently used

techniques are, Vector Field Histogram (VFH) Technique [14], Arti�cial Po-

tential Fields (APF) [15], fuzzy navigation techniques, local navigation, Rule

Based Methods [16] and Rules Learning Techniques [17], Dynamic Window

Approach (DWA) [18], VFH+ Technique [19], Agoraphilic Algorithm [20],

Search Trees [21, 22, 23, 24, 25], A star (A*) [26] etc.

In the thesis our next motivation is to design an e�cient algorithm that

�nds a feasible close to optimal navigation route in a short amount of time.

For implementing an e�cient and fast path �nding system the use of a path

optimization algorithm is implemented that shortens the path of the robot

using the environment information.

Organization of this thesis is as follows. In Section 4, decision making

based on BTs and the design of BT based control system for mobile soccer

robots is explained. In Section 5, the implementation of an e�cient and fast

path �nding algorithm is presented.

13

CHAPTER II

State of Art of Control System Mobile Robots

Decision Making

Decision making (DM) module implements the arti�cial intelligence system

for mobile robots. This module is responsible for analysing the current state

of the enviroment and make strategic decisions that navigates the robots to

new locations using a collision free path. Various di�erent approaches have

been considered in the literature in order to develop decision making system

for mobile robots.

Finite state machines (FSM) is a commonly used approach for mobile

robot control [5, 6, 7, 27]. FSM approach makes use of input or event infor-

mation to determine the state of the FSM model.

In a �nite state machine each robot occupies a state. Behaviors and

actions are associated with each state. So, while the robot remains in a par-

ticular state, it will continue executing the same action. FSMs goes through

their states by using transitions Each transition makes the FSM switch from

one state to another based on a set of associated conditions. When the FSM

determines that the conditions of a transition are met, then the FSM switches

state to the transitions target state. A FSM is said to be triggered when a

transitions conditions are met, a FSM is said to be �red when the transition

is followed to a new state.

Modelling complex behaviours with hierarchical FSMs has expressiveness

but representing complex logic increases the number of states and transitions

between states needed to represent that logic. Modelling these situations

becomes a complex and error prone process when using �nite state machines.

Petri nets are favoured over FSMs because of their larger modelling ability

and compared to FSM same state space can be modelled using a smaller

14

Figure 1: A FSM modelling a car gearbox.

graph [8, 9].

However when Petri nets are composed it leads to to an exponential

growth in the state space. Petri nets allows modularity in behaviour logic, as

each behaviour can be implemented independently and later combined with

other behaviours. But for some situations Petri nets can become too large

to represent all of the states of the system which makes the analysis of the

system di�cult.

In this thesis our �rst motivation is to design a hierarchical decision mak-

ing system based on Behaviour Trees (BT). BT based approach simpli�es

the decision making process that involves complex and parallel logic by us-

ing higher level abstraction nodes that are composed of lower level nodes

for decision making for mobile robots. Higher level nodes are made up of

intermediate/or low level layers. Each non leaf node in the tree has a pre-

de�ned role for performing control on their child nodes. Leaf nodes in the

tree are called action nodes they perform operations such as kicking motor

15

controller etc. on the robots. Depending on the situation the described BT

based algorithm can easily be extended and adapted to various situations.

Motion Planning and Collision Avoidance

In robot navigation motion planning is an important task. Given a repre-

sentation of the environment and a target location to navigate to, the path

planning or motion planning is used in order to �nd a set of waypoints that

takes the robot from the robots current coordinate location to a target loca-

tion. Frequently, the world which robot navigates in is not �xed, while the

robot navigates it has to deal with with other moving obstacles or robots

so execution is often associated with unpredictability. For a collision free

navigation to the goal, the motion planning algorithm has to be used in con-

junction with an obstacle detection and collision avoidance algorithm. Vari-

ous methodologies have been developed and used for mobile robot navigation

using motion planning and collision avoidance. Some methods that are fre-

quently used are, Vector Field Histogram (VFH) Technique [14], Rule Based

Methods [16], Agoraphilic Algorithm [20], Arti�cial Potential Fields (APF)

[15], Dynamic Window Approach (DWA) [18], fuzzy navigation techniques,

local navigation, VFH+ Technique [19] and Rules Learning Techniques [17],

A star (A*) [26], Search Trees [21, 22, 23, 24, 25] etc.

The Arti�cial Potential Fields (APF) is another commonly employed

method in mobile robot navigation that it makes use of attractive and re-

pulsive �elds [5] for target locations and obstacles respectively, these �elds

generates forces on the mobile robot. These forces when combined pushes

the robot towards a target location and away from the obstacles.

This algorithm can be used e�ectively in simple environments however in

complex environments potential �eld algorithm has several disadvantages,

� the generated �eld may contain a local minima which can cause the

mobile robot to get stuck, this is especially a problem when operating

16

in an environment with a lot of obstacles.

� the mobile robot may be pushed away from the target by a moving

obstacles.

� the generated �eld may cause oscillations in mobile robot motion.

� the mobile robot unable to pass through small gaps

Vector Field Histogram (VFH) [14, 19] is another method used for motion

planning it makes use of a two dimensional Cartesian histogram grid as the

environment and combines it with the concept of potential �elds. The VFH

algorithm is able to produce a detailed spatial representation of the robot's

environment su�cient for navigating among densely populated environments.

[14, 19, 28, 29].

DWA developed by Fox [18] is used to navigate the mobile robot using

a model of valid actuations achievable by the robot. By considering all the

possible actuations achievable by the mobile robot, selecting and applying

those that steers the robot away from other obstacles, the robot is able to

navigate through the environment.

In case of Agoraphilic Algorithm [20], a force called an attraction is gen-

erated by the free space and this force keeps the robot moving towards the

target.

In Rule-based algorithms [16] simple rules of some form are used. Rule

based systems are easy to use, but they are often designed for speci�c envi-

roment they are used in thus has limited to no use outside this enviroment.

A* algorithm is another widely used method. A* is built upon Edsger

Dijkstra's algorithm [30]. A* uses breadth-�st search to �nd a optimal path

from start node to end node by using various heuristics depending on the

environment. [26]. The computational complexity of A* depends on the cost

function being used.

17

Fuzzy logic, genetic algorithms (GA) and Neural networks (NN) are

widely used in motion planning [29, 31, 32, 33, 34, 35] . Fuzzy navigation is

based on the construction of fuzzy rule base by a domain expert or obtained

after trial-and-error experiments. Approaches based on GA and NN requires

time for learning the parameters for the controllers.

Most of the environment where robots navigate is identi�ed with uncer-

tainty, moving obstacles and fast-changing dynamic areas. Soccer playing

robots are operating in an environment where there are moving obstacles in

the form of other soccer playing robots.

Control system for soccer playing robots must solve above mentioned

following set of problems.

� Computer Vision

� Decision Making

� Motion Planning

� Velocity Control

The control system for soccer robots must overcome all these problems in

fraction of a second, usually 33 ms. Using the above mentioned algorithms

soccer playing robot motion planning can not be handled in acceptable time

frame for real-time operation of soccer playing robots. In this case instead

of �nding an optimal path, �nding a close to optimal robust path in short

time becomes feasible.

Rapidly-exploring Random Trees (RRTs) is an motion planning algorithm

developed by Ku�ner and LaValle and can be used to �nd a suboptimal path

in very short amount of time. Which makes it ideal to be used for robot

motion planning in dynamic environments [22, 23, 24].

RRT Connect is an improvement over RRT, compared to RRT algorithms

single tree RRT Connect uses two trees one at the start and another at the

18

goal states and grows them towards each other. [22]. RRT e�ciently solves

the motion planning problem, it is more e�cient than search based before

mentioned algorithms even in high dimensional problems. [22, 23, 24, 25, 36,

37].

But RRT algorithm does not guarantee to �nd a optimal motion plan,

and at times the plan generated can be very suboptimal. Various algorithms

have been designed in order to improve RRT.

In [38] authors optimize the length of path by increasing sample size. The

authors proposed RRT* an extension to the rapidly-exploring random graph

(RRG) and RRT algorithm. Using results from random geometric graph

theory, these methods keep the asymptotic computation complexity of RRTs

under certain conditions. The algorithm does large number of iterations in

order to achieve optimal path, which results in more computation time.

In [39] authors proposed an algorithm, that reduces the state space ex-

plored by adding edges to the current roadmap in order to enable �nding

higher quality paths. This algorithm reduces the number of collision checks

while still keeping the optimality guarantees.

In the thesis our next aim is to design an e�cient navigation algorithm

that is able �nd a feasible non-optimal path in short amount of time. To

implement an e�cient navigation system a path smoothing algorithm is im-

plemented that allows us to optimize the given calculated motion plan of

robot using the local environment state.

Problem Statement

BT based decision making system along with motion planning using RRT-

Plan and path optimization motion planning algorithms are used for the

control of the holonomic soccer playing robots used for RoboCup Small Size

League by the NEUIslanders robotic football team. The robots are manu-

factured and assembled by NEU robotics laboratory. Here the problem is

making strategic planning using the current state of the game and the cur-

19

rent locations of robots and decide for each robot new goal positions and

navigate each robot to its new destination location.

20

CHAPTER III

Structure of Control System of The Omnidirectional

Robots

NEUIslanders is a RoboCup Small Size League team that lunched at the

applied arti�cial intelligence laboratory of the Near East University. The

team has been an active member of RoboCup Small Size League since 2012.

The team has various achievements through out its lifetime such as,

� 3rd place in 2016 European Championship

� 1st place in Division B RoboCup Championship in Canada,2018.

Vision System

Perception system of soccer robots relies on a centralized, shared vision sys-

tem, called SSL-Vision [40]. The vision system depicted in Fig.2 is designed

for four cameras that are placed at the top of the soccer �eld. SSL-Vision

software is used for tracking the ball and the robots on the �eld. Detection

results are broadcasted to the teams using UDP protocol. Google Protocol

Bu�ers is used to encode Data packets. SSL-Vision uses multiple overhead

cameras however it does not carry out any sort of sensor fusion, fusing the

detection results coming from multiple cameras are left to individual teams.

SSL-Vision also does not carry out any sort of motion tracking or smooth-

ing, individual teams are responsible for implementing their own tracking

and smoothing algorithms. In the case of NeuIslanders besides what vision

server sends us, system also keep track of certain other things such as,

� Robot speeds.

21

� Robot headings.

� Ball speeds.

� Ball headings.

For simulation we rely on grSim. Receiving data from grSim is exactly

like receiving from SSL-Vision using Google Protobuf library. Sending data

to Simulator is also possible using Google Protobuf.

Detection results arriving from SSL-Vision use a standardized coordinate

system (Cartesian). The x and y axes corresponds to horizontal and vertical

axes respectively. Detection results sent from SSL-Vision to team computers

contains the locations robots on the soccer �eld, dimensions of the �eld and

the location of the ball. Each team is responsible for their analysis of the

data received from the SSL-Vision system for their decision making.

Both SSL-Vision and grSim use a standard cartesian coordinate system

in meters and radians. Pretend you are looking down on a robot: +x goes

out to your right (East), +y goes up (North). The center of the soccer �eld

is (0,0). When the robot is initialized, it is facing in the direction of the

opponents goal. Headings are given in radians, with East = 0, North = /2,

South = -/2 and so on.

Control System

The RoboCup Small Size League (SSL) is a fast-moving, dynamic environ-

ment suited for cooperative multi-robot research. In the Small Size League,

robots are able to travel on the game �eld in less two seconds, which requires

algorithms that are capable of coordination, decision making and motion

planning in fractionsof a second, most teams usually operate at 30 Hz.

As depicted in Fig.3 control system is made up of following modules.

� World

22

Figure 2: SSL Vision Architecture

23

Figure 3: NEUIslanders Module Structure

24

� Keeps track of the state of the world.

� Handles communication with SSL-Vision, grSim and the Referee

system.

� Motion - Responsible all low level robot movement.

� Controller - Provides a common interface that supports various types

of controllers. Currently supports PID and Fuzzy Logic Controllers.

� Control - Low level commands are sent to the robots via the `control` in-

terface, AI doesn't know if it is controlling virtual robots in a simulation

or real-life robots on the �eld, it just sends commands, this interface

dispatches them to correct underlying implementation depending on

the situation.

� DM - Main Playbook.

� UI - User Interface.

Once a decision is made by the central decision making system, the com-

mands are dispatched to the robots via a wireless connection to the micro-

controllers on the mobile robots. Depending on the command received robots

are capable of executing various actions. i.e kick the ball by discharging a ca-

pacitor or move the a destination position by regulating the rotational speeds

of its four omni-wheels.

Fig.4 shows how the data �ows through the NeuIslanders AI system. SSL-

Vision software is used to track the robots on the �eld along with the ball.

This detection data is received by the tracker module which handles motion

tracking of objects on the �eld. Tracker module is responsible for keeping

the world model updated with locations of home and away team robots DM

system uses this world model to �nd new locations for soccer robots to move

to. A path is calculated that will navigate the robots without collision to

25

their destination. Once motor velocities are calculated they are sent to the

robots via wireless link.

Figure 4: Data �ow through NeuIslanders control system

Hardware

The robots has diameter of 175 mm with a height of 145 mm. Designed robots

uses holonomic wheels which gives them 3 degrees of freedom. Robots are

able move in both X, Y axes and rotate simultaneously. Fig.8 depicts the

latest generation of our robots. In order to let the robot move in any direction

without turning robot is equipped with four holonomic wheels each has a

diameter of 61mm. Wheel orientation drastically e�ects the performance of

both the speed and acceleration of the robot. 3mm thick 7075 aluminium

is used for the chassis. The wheel orientation for the current generation of

robots robot is 33 degrees for the front wheels and 45 degrees for the rear

wheels. Holonomic wheels are driven by brushless DC motors and brushless

DC motor drivers. Brushless motors of the robot are connected to the wheels

via gear mechanisms and controlled by Electronic speed controllers which are

driven by a onboard microcontroller. Each robot has a microcontroller board

is responsible for controlling various control circuits on board such as motors

and kicking mechanism circuit. The main processor for the robot is a The

26

Teensy 3.6 (Fig. 6) Microcontroller communicates with the computer using

wireless link based on XBee Radios. Fig.7 depicts the soccer robot control

structure.

Figure 5: NEUIslanders Robot Speci�cations

Robots have 3 degrees of freedom, robots move by varying the angular

velocity of the each wheel. This allows control of rotation and velocity of

the robot. With the help of holonomic wheels robots can at any angle, move

in any direction. Robots are able to change their orientation and velocity

separately. This gives the robots the ability such as turning in place, moving

in any direction regardless of the initial orientation. For an holomonic robot

to move at a certain velocity, each wheel needs to rotate at a particular speed

in comparison to the other motors. The intended direction of travel of the

robot is calculated by AI system in terms of Vx, Vy and Rw. Multiplying

velocity coupling matrix with our intended velocity results in a sequence of

motor speeds. The formula used to calculate the angular speeds for each

wheel for a robot that has n=4 wheels, is given below,

27

Figure 6: Main Processor Schematic

Figure 7: Control Structure of the Robot

28

Figure 8: Latest Generation of NeuIslanders Robots

[
v1 v2 v3 v4

]T
=


−sinθ1 cosθ1 1

−sinθ2 cosθ2 1

..

−sinθn cosθn 1

×
[
vx vy RW

]T

� v1, v2, v3, v4 - represents individual motor speeds.

� vx and vy - robot velocity in horizontal and vertical direction.

� RW - angular speed.

Motion module calculates required velocity in meters/sec, a conversion

to radians/sec is required,

W =
2× v

d
(1)

� W - Speed - Angular (rad
sec

)

� v - Speed - Linear (meter
sec

)

29

� d - Wheel Diameter (meter)

30

CHAPTER IV

Behaviour Tree Based Control

Desicion making system used for NeuIslanders is implemented using the con-

cept of behavior trees. BTs are a method of arranging collections of robot

behavior and the decision processes of how to move between them. BTs

shares a lot of similarities to FSMs but unlike a FSM they are very easy to

compose, fast to execute, lets the programmer see and maintain the logic eas-

ily, which makes them ideal for implementing complex and parallel decision

making process.

Behaviour tree

Behaviour trees combines a number of decision making techniques that have

been used in arti�cial intelligence,

� Hierarchical State Machines

� Planning

� Scheduling

� Action Execution.

Behaviour trees power comes from it's ability to interleave the logic in a

way that is easy to create and maintain. Behavior trees have commonalities

with hierarchical FSMs which uses, states as the main building block, BTs use

nodes as the main building block. Nodes are combined and composed into

trees in order to represent progressively complex behaviour. Later, these

behaviours can also be composed together into more complex hierarchical

trees. This composability is what gives behavior trees their power since all

31

nodes share a common execution interface and mostly self-contained, this

allows BTs to be easily composed into hierarchies of trees without having to

worry about implementation details of how each subtree in the hierarchy is

works.

Figure 9: Various Node Types: (a) Sequence, (b) Selector, (c) Decorator

Modularity in a Bt is enabled by making behaviours composed within each

other turning them into a tree structure and only allowing transitions only

to these child nodes. The root node is traversed until leaf nodes are reached.

These leaf nodes are where side e�ects are handled such as interacting the

world model, controlling actuators on the robots etc.

BTs have three primary node types, action, decorator, composite as de-

picted in Fig.9. Decorator and composite nodes are primary means of control

�ow within the tree. Leaf nodes are used for side e�ects such as motion plan-

ning or motor control. Composite nodes are made up of selectors, sequences,

32

and their parallel and random versions.

Interface

All nodes of a BT implements a common interface. This allows arbitrary

nodes to be composed with each other without any of nodes needing to know

what else the tree is made up of.

(defmulti exec

"Given a node dispatch to its exec implementation."

(fn [node & [terminate?]]

(node :type)))

Sequence

Sequential logic is de�ned using sequence nodes. Sequence nodes represents

sequence of behaviours that needs to be completed. Sequence nodes traverses

its children from left to right. In order for the sequence to succeed all of its

children must succeed. If any one of the children fails to execute, sequence

will stop without running rest of its children and return failure (Fig.9(a)).

Following is an example of how a sequence node may be implemented.

(defn- seq-run [children terminate?]

(if (exec-action? terminate?)

(if-let [s (seq children)]

(if (exec (�rst s) terminate?)

(recur (rest s) terminate?)

false)

true)

false))

Fig.9(a) depicts what a pass sequence might look like, �rst we check if

the receiving robot is at the determined assist position and ready to receive

33

a pass, then we check whether a pass can be executed safely. When both of

these conditions are satis�ed, tree will execute the pass, depending on the

results of pass tree will return success or failure up the tree.

Selector

Primary selection mechanism within the tree is the selector node. Selector

node tries to execute its children in order and as soon as one of its children re-

turns success (true) selector itself will return success, otherwise if no children

returns success selector will return failure(false). (Fig.9 (b)). This property

is used to decide how the tree is iterated and which behaviour is choosen to

run next. The example tree in Fig.9 (b) is used by the DM to select between

executing a pass or shooting at the goal directly. Selector node tries to exe-

cute its child nodes from left to right starting with the Shoot Goal sequence.

If the sequence containing Can Shoot to goal? and Shoot returns success,

the selector node will succeed. If the Shoot Goal sequence fails, we try to

executing a Pass sequence. If one of the two sequences succeeds selector will

succeed if both sequences fail selector will fail.

(defn- select [children terminate?]

(if (exec-action? terminate?)

(if-let[s (seq children)]

(if-not (exec (�rst s) terminate?)

(recur (rest s) terminate?)

true)

false)

false))

Decorator

Decorator nodes are named after the software design pattern. Fig.9(c). Un-

like other node types decorators have only one child. Decorator nodes is

34

used to change how the branch behaves in various ways. Fig.9(c) depicts the

same Pass sequence composed with a decorator as its root. In this case a

limit decorator. When Pass is decorated with a limit decorator, it will try

to execute a pass. If the pass succeeds tree will return success, when the

tree fails, it will retry at most n more times (1 times for this tree) to execute

the pass. If the pass does not succeed within n tries then tree will return

failure. Following is an example of how various di�erent decorator nodes may

be implemented.

(defmethod exec :inverter [{children :children} & [terminate?]]

(not (exec children terminate?)))

(defmethod exec :forever [{children :children} & [terminate?]]

(loop []

(if (exec-action? terminate?)

(do (exec children terminate?)

(recur))

false)))

(defmethod exec :until-success [{children :children} & [terminate?]]

(loop []

(if (and (exec-action? terminate?)

(not (exec children terminate?)))

(recur)

true)))

(defmethod exec :limit [{children :children times :times} & [terminate?]]

(loop [i times]

(if (and (pos? i)

(exec-action? terminate?))

(if (not (exec children terminate?))

35

(recur (dec i))

true)

false)))

Simplest decorator node is the interter node which just reverses the return

value. If the child returns true it makes it false and vice versa. Another

usefull node is the forever node it will execute the child in an in�nite loop

without checking the return value. until-success on the other hand executes

its children while it keeps failing and will return success when it succeeds.

Fuzzy Selector

Soccer robots are operating in dynamic, uncertain and unpredictable envi-

ronments. Making decisions in this environment requires accurate evaluation.

For cases such as this, fuzzy sets provides powerful tools for the representa-

tion of uncertain and vague data. A fuzzy inference system makes a decision

by applying approximate reasoning.

In soccer playing robot control, fuzzy logic includes a range of degrees

for decisions. These degrees are represented using membership functions.

This node acts as a Selector node however it uses fuzzy inference for node

selection. Each children of the node has a membership function associated.

For example, classical Move behaviour can be implemented using Run,

Walk and Turn nodes (Fig.11(a)). Selection of these nodes are dependent

on a set of conditions. Depending on the state of the environment the mem-

bership degree is determined for the each of the children. A fragment of the

membership rules are given below.

Figure 10: Fuzzy Selector Rule Base

36

The inputs and outputs of the fuzzy rule base (RB) are determined using

performance characteristics of small size soccer robots using expert knowl-

edge and experimental data. The implementation of the fuzzy-selector node

is done using the formulas given below.

Figure 11: Selector BTs. (a) Move, (b) Shoot

Output of the behaviour tree is determined using the fuzzy rule base. A

fuzzy inference engine is used to select the output of the tree. The inference

engine used in the BT node is implemented using max-min composition.

The current values of input signals coming from the world model are

entered in to the fuzzy rule base, after fuzzi�cation, each input signals degree

of membership to the current fuzzy term in rule base is calculated.

After calculating the degree of membership of the input signals for each

active rules in the fuzzy rule base, fuzzy logic inference is performed using

max-min composition of Zade. Centre of average method is used in the

defuzzi�cation process of fuzzy output signal.

Hierarchical Behaviours

Using above described architecture, complicated behaviours can be described

by composing BTs. Soccer robots are controlled by combining lower level

behaviours which handles simple tasks such as kick or intercept the ball or

37

moving to a location, into more complex higher level behaviours such as

passing, defending.

In order to keep the as modular as possible, high level strategies are split

into three categories these are, Skills, Tactics, and Plays.

� Skills - These are trees that control a single robot. They may include

trees like intercepting the ball, moving to a target position or executing

a pass.

� Tactics - These trees coordinate a single or many robot and represent

more complex behavior than before mentioned skills. These may im-

plement things such as passing or defensive behaviours.

� Plays - These trees handles coordination of the whole team of robots.

Contains trees such as kick o� behaviour, defensive games and o�ensive

games.

As shown in Fig.12 when combined, skills, tactics, and plays implement

a tree with the Play at the root and other behaviors as its child.

Figure 12: Plays & Skills

Each low-level skill implements a speci�c low-level goal:

� Move - moves robots around the �eld

� Pass - uses two robots to execute a pass

38

� Intercept ball - moves robot to a position to intercept the ball

� Defend Goal - goal keeper behaviour

� Shoot - shoots towards a target location

� Dribble ball - moves the robot while dribbling the ball

� Penalty taker - shooting that is specialized for penalties

� Penalty keeper - goal keeper specialized for penalties

Fig.13 shows the Pass tree. Pass tree controls two robots in parallel using

a parallel version of sequence node which behaves exactly like a sequence

node but runs its child nodes in parallel, tree aligns the passing robot and

the receiving robot for a pass, then the tree checks if a pass can be executed

safely, if a pass is safe passing robot shoots the ball and wait for the ball to

start rolling, once that succeeds, tree waits until one of two conditions are

met, ball gets within a robot diameter of the receiving robot or ball stops

rolling at which point receiving robot moves to intercept the ball.

Figure 13: Pass behaviour tree

Skills and tactics are composed to form plays. Some plays include,

39

� Formations - moves the robots to various hard coded locations on the

�eld.

� O�ensive Game - A play that focuses on attacking the opponent team.

� Defensive Game - A play that focuses on defending against opponent

team.

� Game Selection - Selects main play to execute depending on the game

state. Fig.16

Fig.14 shows the three robot "Defensive Game" play. This tree uses

a decorator node called =interrupter=. Interrupter node has three child

nodes, one children waits for an interruption event, one child executes the

primary tree and last child is responsible for cleanup in case the primary

tree is interrupted. Interrupter run the main tree normally, if the main tree

returns success it is passed up the tree. But if the main tree is executing and

interruption event occurs primary tree will be terminated result of cleanup

is sent up the tree. This decorator node is used to allow a BT to react to

events happening during the game. At the top level shown tree waits for an

Ball Out of Play? event, while the ball is in the �eld of game defensive game

keeps executing but as soon as ball goes out of �eld, all robots are stopped.

Inner subtree uses another interrupter node to handle switching from a

defensive tactic to an o�ensive tactic. The tree waits for a Home Controls

Ball? event until home team takes possession of the ball, tree controls three

robots and tries to take possession of the ball interposing the ball. When the

ball is intercepted Home Controls Ball? event interrupts defensive play and

executes Put Ball Back in Play tree and we can safely switch to o�ensive

game play.

Fig.16 depics how main plays are selected within the tree. Fig.16 uses an

interrupter node to wait for referee events.

40

Figure 14: Defensive Play Behaviour

Figure 15: Play Selection Behaviour

41

Interrupter node runs in parallel, two subtrees Game Selection tree and

Watch Referee tree, Game Selection is run as long as there is no referee

event received. When a referee event occurs Watch Referee will succeed and

interrupt Game Selection this behaviour lets the tree to start with a tactic

that suited to the last referee event received.

Figure 16: Move To via Path Behaviour

42

CHAPTER V

Robot Navigation

Path Planning

In mobile robot navigation one challenging task is to design a path �nd-

ing algorithm that works e�ectively in dynamic fast changing environments.

A commonly used algorithm for path �nding in dynamic environments is

Rapidly exploring random tree (RRT) algorithm [22, 23, 24, 41, 42, 43, 44]

. RRT algorithm can be used to e�ciently search high-dimensional, noncon-

vex search environments. RRT is used to search for a route from the start

location to the target location by expanding a tree structure. RRT algorithm

works as follows,

� The tree is initialized with start location as root node.

� A random location is picked within the valid search enviroment.

� A vertex in the tree which is closest to the random location chosen in

the previous step is searched.

� Create there a new leaf by moving a some distance from this vertex

towards the chosen point direction.

� Loop over step 2. to 4. Until a branch of the tree gets to the goal

location

The main idea behind RRT-Plan is to guide the search to unexplored

regions of the search space by picking regions in the state space and guiding

the tree search towards these regions. The algorithm is implemented using

a tree structure and works by growing the tree from the initial con�guration

43

until one of the branches runs into the target state. RRT-Plan algorithm tries

to expand the tree by adding new vertexes that are biased using a randomly

selected state.

Fig.17 depicts motion planning algorithm RRT-Plan. As depicted, the

inputs for RRT-Plan algorithm are representation of the world, start and

target locations, RRT tree structure and exploration factor for each step.

During the execution of the algorithm, we begin by choosing where to

explore the search space using chooseTarget. It randomly selects a point in

the search space biased towards the target location.

That causes tree to expand towards the goal by minimizing the objective

function which in the case of motion planning is distance to goal location.

Next we continue by �nding the closest node in the tree to the point returned

from chooseTarget by using a function called nearest. In order to pick where

to explore next, algorithm checks if the distance between the node and target

location is less than the distance between generated point and target location

At iteration when a new node is calculated, the distance between this nearest

node and target location is checked. If this distance is shorted than epsilon

it is assumed goal location is reached and the tree is returned as result of

RRT algorithm, otherwise tree is extended and explored. During extension

phase of the tree the collision with obstacles are tested. If there is collision

with an obstacle the tree is not extended towards that direction, otherwise

the tree will be extended towards the chosen location and RRT algorithm

will be iterated once more until goal location is reached.

The RRT-Plan is a very simple algorithm, it is very cheap to calculate

however the path returned is not guaranteed to be optimal. RRT algorithm

has some disadvantages such as the path found by the RRT is not guaran-

teed to be the shortest or each search will result in a di�erent path. Fig.18

shows result of path �nding operation. Due to its tree structure RRT-Plan

algorithm �nds multiple paths in the world in short time, then selects a path

that gets to the target.

44

Figure 17: RRT Path Finding Algorithm

45

For navigating mobile robots in highly dynamic environments, determina-

tion of shortest route in a small amount of runtime is important. As depicted

in Fig.18 the route found by the RRT-Plan algorithm is suboptimal. It may

contain many unnecessary or redundant waypoints which makes it longer. In

order to deal with this problem and further optimize the path a simple and

e�cient smoothing algorithm [45, 46] is applied to the calculated path which

reduces the number of waypoints on the path.

smooth-path is a recursive algorithm that removes waypoints that are

reachable from a given waypoint. Fig.19 demonstrates the motion plan after

smoothing. Given two waypoints that are reachable from each other A and

B. Fig.19 Path smoothing algorithm deletes any waypoints in between A

and B since B can be reached from A directly without going through any

intermediary waypoints.

Proposed algorithm for smoothing the path shown in Fig.20. Path smooth-

ing algorithm begins with �rst waypoint in the path, then drop-while-walkable

function is called to �nd a waypoint that is farthest from the current way-

point that is reachable without colliding with any obstacles. This farthest

waypoint is added to a new smoothed path. Same operations are repeated

again using farthest waypoint. This is repeated until there are no more way-

points left on the path. As shown Fig.19 a dashed line represents the RRT

path solid line represents the smoothed path. As a result of smoothing the

path is optimized.

Combination of RRT and path optimization algorithms allows fast path

�nding in highly dynamic environments.

Collision Avoidance

Even though RRT motion planning is fast to calculate it still can't be run at

high enough frequencies for tight maneuvers, where primary aim is not to go

from A to B but to maneuver around obstacles without hitting. Navigation

system for NeuIslanders works in two stages stage one uses RRT path �nding

46

Figure 18: RRT path when P(Goal)=0

Figure 19: Optimized path after path

optimization.

Figure 20: Path Optimization Algorithm

47

algorithm that has been described. Stage two takes over when we get close

to our target location, system switches from path �nding mode to collision

avoidance mode. the fuzzy logic system designed here focuses on reaching the

target, while avoid hitting the obstacles. An example scenario that shows

avoidance of obstacles is depicted in Fig.21. In this example, the soccer

playing robot uses the distance to check if there is an obstacle or not. After

the obstacle is detected, boundaries for the obstacle is calculated (left and

right). During collision avoidance these obstacle boundries are enlarged to

make ensure there is enough safety margin for the soccer robot. This newly

calculated boundary is called the =safety boundary=. This enables safe

navigation of the robot around obstacles. Thus each obstacle on the �eld has

two boundaries, a tight boundary and a larger safety boundary, as depicted

in Fig.21.

Figure 21: collision avoidance

A knowledge base is used to implement the collision avoidance algorithm.

This knowledge base is made up of If-Then rules which describes the logic of

how the mobile robot should avoid the obstacles. There are multiple strate-

48

gies to use depending on the state of the robot and dimensions of the obstacle.

The goal of the designed avoidance system is to avoid the obstacles while ar-

riving at the goal location using shortest path. Three di�erent strategies

are shown in Fig.21 that demonstrates the required turn angle of the mobile

robot for avoidance. Each strategy can be described using a If-Then rule base

which is built by combining di�erent strategies. Input variables for the rule

base are the left and right angles and distance to obstacle, output variable

is the turn rate for the robot. The side angles, left (al) and right (ar) are

calculated using the line between robot, goal and the line between robot, real

boundaries of the soccer robot. The distances, left and right are calculated

using the distance between robot and left/right boundary locations. Fig.22

depicts the portion of the fuzzy If-Then rule base used for collision avoidance

of robots. linguistic terms in the rule base are used to represent the values

of input and output parameters.

Figure 22: Fragment of Rule Base

In the rule base, VL, L, M, S, VS, Z are linguistic terms and represent very

large, large, medium, very small, and zero, PVL, PL, PM, PS, Z, NS, NM,

NL, NVL are positive very large, positive large, positive medium, positive

49

small, zero, negative small, negative medium, negative large, negative very

large. These linguistic terms describes the values of the input and output

variables of the system. Target angle (ta) of the mobile robot is computed

using the fuzzy inference system. A safety margin is combined with the

target angle in order to �nd a safer target angle for the mobile robot. The

primary strategy for collision avoidance is to choose a target angle that has

the smallest distance from the mobile robot to the target location.

ta(k)=F(l,r,dl,dr)

� l - left angle

� r - right angle

� dl - distance left

� dr - distance right

In the fuzzy rule base the values of input and output vaiables are im-

plemented with type-2 fuzzy sets. The type-2 fuzzy inference is used for

calculating target turn angle.

Experimental Results

Experimental studies are done for RRT-Plan and path optimization algo-

rithms in order to demonstrate the both algorithm's feasibility in controlling

mobile soccer robots. For the �rst experiment the implementation of RRT-

Plan for mobile robot motion planning has been used. For this experiment

a map of a world containing obstacles is simulated. The obstacles are rep-

resented using colored circles. (Fig.23). Mobile robot uses the map of world

and plans a route in real time in order to move to the target position.

The RRT-Plan algorithm has been experimented with di�erent values of

(is the distance that the tree is extended at each iteration of the algorithm.)

50

and P(Goal) (probability to expand the tree towards the goal). Fig.23 shows

the simulation results for RRT-Plan algorithm using = 50, P(Goal) = 0.3

and = 15, P(Goal) = 0.3. As shown from the �gure we can conclude that the

increase of P(Goal) will result in the reduction of search space of RRT-Plan

and pushes the tree faster towards the target. on the other hand e�ects

probability of the exploration done in each iteration (Fig.23. Table 1 shows

the average time it takes to calculate RRT-Plan to reach target location.

Fig.23.)

Fig.24 shows the e�ects of P(Goal) and values on average length and

time for Fig.23. As shown in Fig.24 changing P(Goal) e�ects the runtime

of RRT-Plan algorithm. The experiment is also done for di�erent constant

values of . For small values of P(Goal) RRT-Plan takes longer to run because

of large sections of map needs to be explored by the algorithm. For large

values of P(Goal) the algorithm moves the search towards the goal which

results in shorter runtime. But this gives too much bias towards the target

which results in increased running time because of mobile robot getting stuck

around the obstacles. As shown in Fig.24 experiments shoed that the optimal

values of P(Goal) and is 0.4, 15. Next two dashed and dotted lines in Fig.24

are obtained when = 30 and = 50. The conclusion reached above can be

also said for these cases. Fig.24 shows time versus when using di�erent

values of P(Goal). As can be said from Fig.24 the increasing decreases the

runtime of RRT-Plane because of faster exploration.

The same motion planning experiment was also done using two other

before mentioned algorithms namely A* and arti�cial potential �eld (APF)

for the same map shown in Fig.23. A* algorithm uses grids for calculating

the path, search times for di�erent grid sizes is given in Table 2.It also should

be noted that the path length of A* using a good metric is close to the path

length of APF. Runtime of APF is more than A* algorithm.

As shown in the tables 1 and 2, runtime of RRT-Plan algorithm is con-

siderably smaller than the runtime of A* or APF. This shows that using

51

Figure 23: RRT execution results for various values (/ P(Goal)), a) 50/0.3,

b)15/0.3

Table 1: Experiment results for RRT-Plan

P(Goal) Runtime Distance

15 0.1 28.41 818.04

15 0.2 21.78 798.63

15 0.3 20.02 786.71

15 0.4 18.95 777.91

15 0.5 19.67 774.13

30 0.1 9.09 823.58

30 0.2 7.68 803.41

30 0.3 7.20 789.43

30 0.4 6.90 779.35

30 0.5 7.29 770.83

50 0.1 4.46 828.83

50 0.2 3.74 807.84

50 0.3 3.43 796.03

50 0.4 3.42 785.86

50 0.5 3.50 779.29

52

Figure 24: E�ects of and P(Goal) with respect to time. a) P(Goal) vs Time,

solid line =15, dotted line =50, dashed line =30 b) with respect to Time,

dashed line P(Goal)=0.2, solid line P(Goal)=0.1, dotted line P(Goal)=0.4,

dotted dash line P(Goal)=0.3, dotted 'o' line with P(Goal)=0.5.

Table 2: A* and APF results
Methods Grid Size Time Length

A* 50 15.30 824.26

30 15.81 699.42

15 45.56 676.69

APF 53.93 663.96

53

Figure 25: RRT-Plan and Path optimization algorithm results for varoius

/P(Goal) pairs (Black line RRT-Plan path, red line smoothed rrt-plan path),

50,0.3 (a), 5,0.1 (b) and 5,0.3 (c).

54

RRT-Plan in fast changing environments requires much shorter time to plan

a trajectory for the robot compared A* and APF. But one de�ciency of this

approach is that unlike A* algorithm which guarantees shortest path the re-

sulting path calculated using RRT-Plan is not necessarily the shortest, which

makes the planed motion to be longer than motion calculated by A* and APF.

This mentioned de�ciency can also concluded from comparing tables 1 and

2. To �x this de�ciency, the path calculated using RRT-Plan is optimized by

pruning the route using the proposed path optimization algorithm.

An example experiment of the before mentioned RRT-Plan and path op-

timization algorithm for motion planning problem is shown below. Fig.25

shows the result of experiment for RRT-Plan and path optimization algo-

rithms, used for mobile robot motion planning problem for following values

of, = 50, P(Goal) = 0.3 (a), = 5, P(Goal) = 0.1 (b) and = 5, P(Goal) = 0.3

(c). Dashed lines are RRT-Plan results and solid lines are path optimization

results for both �gures. In this experiment start location was (40,40) and

the target location was (400,400). In Fig.25 (a) two di�erent experiments are

given for RRT-plan and path-smoothing algorithms, when = 50, P(Goal) =

0.3.

Table 3 shows the experiment for RRT-Plan and path optimization algo-

rithm depicted in Fig.25 for various values of P(Goal) and .

Experiment results shows that the runtime and path length with (columns

3 / 4) and without (columns 5 / 6) path optimization applied. When com-

pared, the results in columns 4 / 6, it is clear that using path optimization

algorithm results in shorter path length [47]. When we compare columns 3

/ 7 it is shown that the runtime of motion planning algorithm is got bigger

after running path optimization algorithm. Fig.25 is also simulated using A*

algorithm using same experiment conditions. As demonstrated runtime is

increased greatly, but average path length is roughly same as in RRT-Plan.

As depicted in before mentioned tables application of path smoothing

algorithm to the result of RRT-Plan algorithm allows optimization of the

55

path calculated by RRT-Plan and results in shorter path length.

The results of experiment for A* and APF algorithms in Fig.25 using

various di�erent grid sizes are shown in table 4. When compared these results

combined with the results of table 3 it can be concluded that the runtime

of RRT combined with path optimization algorithm is considerably smaller

than the runtime of A* algorithm. Because of these optimizations, the path

length calculated using the combination of RRT-Plan combined with path

optimization algorithm is close to optimal path calculated by A* algorithm.

From it can be concluded that the use of RRT-Plan combined with path

optimization algorithms allows e�cient control of mobile robots in dynamic

fast changing environments cluttered with dynamic moving obstacles.

Table 3: Path �nding and Path optimization experiment results

Epsilon P(Goal) Runtime Distance Runtime Smooth Smoothed Distance

15 0.1 561.65 925.47 548.68 733.46

15 0.2 544.61 921.41 567.76 737.38

15 0.3 622.17 893.16 594.67 740.40

15 0.4 729.54 896.71 708.25 730.44

15 0.5 713.72 895.69 890.50 729.78

30 0.1 225.79 916.93 228.99 750.96

30 0.2 240.77 907.69 259.99 746.44

30 0.3 264.90 916.60 289.25 758.92

30 0.4 297.12 900.24 311.54 748.40

30 0.5 353.72 907.56 372.44 760.26

50 0.1 130.46 906.57 140.69 771.21

50 0.2 137.22 924.29 150.81 764.18

50 0.3 162.26 899.44 172.08 756.15

50 0.4 166.26 918.19 203.53 760.81

50 0.5 192.88 905.12 215.66 765.42

56

Table 4: Simulation results for A* and APF algorithm

Method Grid Size Runtime Distance

A* 1 28833.62 883.89

2.5 4834.85 870.28

5 1332.35 819.32

APF 676.49 679.76

57

CHAPTER VI

Conclusions

In this thesis decision making, motion planning and collision avoidance al-

gorithms have been designed for soccer playing robots robots. The decision

making system is based on the concept using behavior trees that allows orga-

nization of collections of states and the decision process of moving between

them allowing very complex behaviour to be modelled easily Modular archi-

tecture of BTs allows extending the DM for complicated states. Path �nding

algorithm based on RRT-Plan algorithm has been implemented. That dras-

tically shortens the path calculated by RRT-Plan. Implemented collision

avoidance algorithm is based on the type-2 fuzzy system. The algorithm

uses the estimation of left and right angles and distances and their relations

in fuzzy rule base. The results obtained shows that the applicability of the

designed decision making, path �nding and collision avoidance algorithms.

The results from the real-life implementation demonstrate the e�ectiveness of

the proposed algorithms for control of soccer playing robots in dynamically

changing environments.

58

References

[1] Y. Liu, J. J. Zhu, R. L. Williams II, and J. Wu, �Omni-directional

mobile robot controller based on trajectory linearization,� Robotics and

autonomous systems, vol. 56, no. 5, pp. 461�479, 2008.

[2] K. Watanabe, Y. Shiraishi, S. G. Tzafestas, J. Tang, and T. Fukuda,

�Feedback control of an omnidirectional autonomous platform for mobile

service robots,� Journal of Intelligent and Robotic Systems, vol. 22,

no. 3-4, pp. 315�330, 1998.

[3] R. H. Abiyev, N. Akkaya, E. Aytac, and D. Ibrahim, �Behaviour tree

based control for e�cient navigation of holonomic robots,� International

Journal of Robotics and Automation, vol. 29, no. 1, pp. 44�57, 2014.

[4] J. Borenstein, H. R. Everett, and L. Feng, Navigating Mobile Robots:

Systems and Techniques. Natick, MA, USA: A. K. Peters, Ltd., 1996.

[5] B. Damas, P. Lima, and E. S. D. Tecnologia, �Stochastic discrete event

model of a multi-robot team playing an adversarial game,� in Proc. of

5th IFAC/EURON Symposium on Intelligent Autonomous Vehicles -

IAV2004, 2004.

[6] A. C. Domínguez-Brito, M. Andersson, and H. I. Christensen, �A soft-

ware architecture for programming robotic systems based on the discrete

event system paradigm,� tech. rep., Centre for Autonomous Systems,

KTH, 2000.

[7] E. P. Dadios and S. H. Park, �Real time robot soccer game event de-

tection using �nite state machines with multiple fuzzy logic probability

evaluators,� Int. Journal of Computer Games Technology, vol. 2009,

pp. 5:1�5:12, Jan. 2009.

59

[8] H. Costelha and P. Lima, �Modelling, analysis and execution of robotic

tasks using petri nets,� in Intelligent Robots and Systems, 2007. IROS

2007. IEEE/RSJ Int. Conference on, pp. 1449 �1454, 29 November 2007.

[9] P. L. D. Milutinovic, �Petri net models of robotic tasks,� in Procedings

of the IEEE Int. Conference on Robotics and Automation, 2002.

[10] M. J. Mataric, �Behavior-based control: Examples from navigation,

learning, and group behavior,� Journal of Experimental and Theoret-

ical Arti�cial Intelligence, vol. 9, pp. 323�336, 1997.

[11] M. Mataric, �Behavior-based control: Main properties and implications,�

in In Proceedings, IEEE Int. Conference on Robotics and Automation,

Workshop on Architectures for Intelligent Control Systems, pp. 46�54,

1992.

[12] C.-U. Lim, R. Baumgarten, and S. Colton, �Evolving behaviour trees

for the commercial game defcon,� in Proceedings of the Int. conference

on Applications of Evolutionary Computation - Volume Part I, EvoAp-

plicatons'10, (Berlin, Heidelberg), pp. 100�110, Springer-Verlag, 2010.

[13] G. Neto, H. Costelha, and P. Lima, �Topological navigation in con�gura-

tion space applied to soccer robots,� in Robocup 2003, LNAI, Springer-

Verlag Berlin Heidelberg, 2004.

[14] J. Borenstein, Y. Koren, and S. Member, �The vector �eld histogram

- fast obstacle avoidance for mobile robots,� IEEE Journal of Robotics

and Automation, vol. 7, pp. 278�288, 1991.

[15] J. Borenstein and Y. Koren, �Real-time obstacle avoidance for fast mo-

bile robots in cluttered environments,� in Proceedings of IEEE Int. Con-

ference on Robotics and Automation, pp. 572 �577 vol.1, may 1990.

60

[16] K. Fujimura, Motion Planning in Dynamic Environments. Secaucus,

NJ, USA: Springer-Verlag New York, Inc., 1992.

[17] A. F. M. Yousef Ibrahim, �Study on mobile robot navigation techniques,�

in IEEE Int. Conference on Industrial Technology, vol. 1, pp. 230�236,

2004.

[18] D. Fox, W. Burgard, and S. Thrun, �The dynamic window approach to

collision avoidance,� in IEEE Robotics Automation Magazine, vol. 4,

1997.

[19] I. Ulrich and J. Borenstein, �Vfh+: Reliable obstacle avoidance for fast

mobile robots,� in Proceedings of the IEEE Int. Conference on Robotics

and Automation, 1998.

[20] M. Y. Ibrahim, �Mobile robot navigation in a cluttered environment

using free space attraction agoraphilic algorithm.,� in Proceedings of

the 9th Int. Conference on Computers and Industrial Engineering, vol. 1,

pp. 377�382, 2002.

[21] A. Stentz and M. Hebert, �A complete navigation system for goal

acquisition in unknown environments,� Autonomous Robots, vol. 2,

pp. 127�145, 1995.

[22] J. Ku�ner, J.J. and S. LaValle, �Rrt-connect: An e�cient approach to

single-query path planning,� in Proceedings of the IEEE Int. Conference

on Robotics and Automation, vol. 2, pp. 995 �1001 vol.2, 2000.

[23] S. M. LaValle, J. J. Ku�ner, and Jr., �Randomized kinodynamic plan-

ning,� in Int. Journal of Robotics Research, vol. 20(5), pp. 378�400,

2001.

[24] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge Uni-

versity Press, 2006. Available at http://planning.cs.uiuc.edu/.

61

[25] M. v. d. P. Maciej Kalisiak, �Rrt-blossom: Rrt with a local �ood-�ll

behavior,� in IEEE Int. Conference on Robotics Automation, 2006.

[26] P. Hart, N. Nilsson, and B. Raphael, �A formal basis for the heuristic

determination of minimum cost paths,� IEEE Transactions on Systems

Science and Cybernetics, vol. 4, pp. 100 �107, july 1968.

[27] H. F. D. S. K. Y. Nobuyuki Kurihara, Ryotaku Hayashi, �Intelligent

control of autonomous mobile soccer robot adapting to dynamic envi-

ronment,� in RoboCup 2003, LNAI, Springer-Verlag Berlin Heidelberg,

2004.

[28] D. I. R.Abiyev and B. Erin, �Edurobot: An educational computer sim-

ulation programm for navigation of mobile robots in the presence of

obstacles,� in Int. Journal of Engineering Education, vol. 26, pp. 18�29.

[29] R. Abiyev, D. Ibrahim, and B. Erin, �Navigation of mobile robots in

the presence of obstacles,� Advanced Engineering Software, vol. 41,

pp. 1179�1186, Oct. 2010.

[30] E. Dijkstra, �A note on two problems in connexion with graphs,� Nu-

merische Mathematik, vol. 1, pp. 269�271, 1959.

[31] S. Tan, S. X. Yang, and A. Zhu, �A novel ga-based fuzzy controller for

mobile robots in dynamic environments with moving obstacles.,� Int.

Journal of Robotics and Automation, vol. 26, no. 2, 2011.

[32] K. A. S.H. Sadati and M. Behroozi., �A combination of neural network

and ritz method for robust motion planning of mobile robots along cal-

culated modular paths,� Int. Journal of Robotics Automation, vol. 23,

no. 3, 2008.

[33] K. H. Sedighi, T. W. Manikas, K. Ashenayi, and R. L. Wainwright, �A

genetic algorithm for autonomous navigation using variable-monotone

paths,� Int. Journal of Robotics and Automation, vol. 24, no. 4, 2009.

62

[34] C. Son, �Intelligent robotic path �nding methodologies with fuzzy/crisp

entropies and learning.,� Int. Journal of Robotics and Automation,

vol. 26, no. 3, 2011.

[35] B. S. V. M.Ganapathy, S. Parasuraman, �Behavior based mobile robot

navigation by ai techniques: behavior selection and resolving behavior

con�icts using alpha level fuzzy inference system,� Int. Journal of Au-

tomation, Robotics and Autonomous Systems, vol. 5, no. 1, 2006.

[36] J. A. Fernandez-Leon, G. G. Acosta, and M. A. Mayosky, �Behav-

ioral control through evolutionary neurocontrollers for autonomous mo-

bile robot navigation,� Robotics and Autonomous Systems, vol. 57,

pp. 411�419, Apr. 2009.

[37] J. Bruce and M. Veloso, �Real-time randomized path planning for robot

navigation,� in Int. Conference on Intelligent Robots and Systems, vol. 3,

pp. 2383�2388, 2002.

[38] S. Karaman and E. Frazzoli, �Incremental sampling-based algorithms

for optimal motion planning,� in Proceedings of Robotics: Science and

Systems, (Zaragoza, Spain), June 2010.

[39] R. Alterovitz, S. Patil, and A. Derbakova, �Rapidly-exploring roadmaps:

Weighing exploration vs. re�nement in optimal motion planning.,� IEEE

Int. Conf on Robotics and Automation, pp. 3706�3712, 2011.

[40] S. Zickler, T. Laue, O. Birbach, M. Wongphati, and M. Veloso, �Ssl-

vision: The shared vision system for the robocup small size league,� in

Robot Soccer World Cup, pp. 425�436, Springer, 2009.

[41] B. Browning, J. Bruce, M. Bowling, and M. Veloso, �STP: Skills, tactics

and plays for multi-robot control in adversarial environments,� Journal

of Systems and Control Engineering, vol. 219, no. 1, pp. 33�52, 2005.

63

[42] C. Fulgenzi, C. Tay, A. Spalanzani, and C. Laugier, �Probabilistic navi-

gation in dynamic environment using Rapidly-exploring Random Trees

and Gaussian Processes,� in IEEE/RSJ 2008, Int. Conference on Intel-

ligent Robots and Systems, (Nice, France), pp. 1056�1062, 2008.

[43] S. Sengupta, �A parallel randomized path planner for robot navigation,�

Int. Journal of Advanced Robotic Systems, vol. 3, no. 3, pp. 259�266,

2006.

[44] D. Ferguson and A. Stentz, �Anytime rrts,� in Proceedings of the IEEE

Int. Conference on Intelligent Robots and Systems IROS, 2006.

[45] M. Buckland, Programming game AI by example. Wordware Publishing,

2005.

[46] M. Waringo and D. Henrich, �E�cient smoothing of piecewise linear

paths with minimal deviation,� in IEEE/RSJ Int. Conference on Intel-

ligent Robots and Systems, pp. 3867�3872, 2006.

[47] R. Abiyev, N. Akkaya, and E. Aytac, �Navigation of mobile robot in

dynamic environments,� in IEEE Int. Conference on Computer Science

and Automation Engineering (CSAE), vol. 3, pp. 480 �484, may 2012.

64

Appendices

65

