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Abstract 

Brain Tumor Segmentation using Non-Parametric Localization and 

Enhancement Methods with U-Net 

İlhan, Ahmet 

Ph.D., Department of Computer Engineering 

February, 2022, 54 pages 

Segmentation is one of the most critical steps in analyzing medical images 

since it provides meaningful information for diagnosing, monitoring, and treating 

brain tumors. Several artificial intelligence-based systems have been developed to 

perform this task accurately in recent years. However, some tumors’ unobtrusive or 

low-contrast occurrence and similarities to healthy brain tissues make the 

segmentation task challenging. These yielded researchers to develop new methods 

for preprocessing the images and improving their segmentation abilities. This study 

proposes an efficient system for the segmentation of the complete brain tumors from 

MRI images based on non-parametric tumor localization and enhancement methods 

with a deep learning architecture named U-Net. Initially, the histogram-based tumor 

localization method is applied to localize the tumorous regions. Then the tumor 

enhancement method is used to modify the localized regions to increase the visual 

appearance of indistinct or low-contrast tumorous regions. The resultant images are 

fed to the traditional U-Net architecture to segment the complete brain tumors. The 

performance of the proposed system is tested on benchmark datasets, BRATS 2012 

(HGG-LGG), BRATS 2019, and BRATS 2020, and achieved superior results as 

0.94, 0.85, 0.87, 0.88 dice scores, respectively. The results achieved by the proposed 

system and comparisons showed that the proposed tumor localization and 

enhancement methods improve the segmentation ability of the deep learning 

architectures and provide high-accuracy and low-cost segmentation of complete 

brain tumors in MRI images. 

 

Keywords: Brain tumor, localization, enhancement, segmentation, U-Net 
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Özet 

U-Net ile Parametrik Olmayan Lokalizasyon ve İyileştirme Yöntemleri 

Kullanılarak Beyin Tümörü Segmentasyonu 

İlhan, Ahmet 

Doktora, Bilgisayar Mühendisliği Bölümü 

Şubat, 2022, 54 sayfa 

Segmentasyon, beyin tümörlerinin teşhisi, takibi ve tedavisi için anlamlı 

bilgiler sağladığı için tıbbi görüntülerin analizinde en kritik adımlardan biridir. Son 

yıllarda bu görevi doğru bir şekilde yerine getirmek için çeşitli yapay zeka tabanlı 

sistemler geliştirilmiştir. Bununla birlikte, bazı tümörlerin göze batmayan veya düşük 

kontrastlı oluşumu ve sağlıklı beyin dokularına benzerlikleri, segmentasyon görevini 

zorlaştırır. Bunlar, araştırmacıların görüntüleri önceden işlemek ve segmentasyon 

yeteneklerini geliştirmek için yeni yöntemler geliştirmesini sağladı. Bu çalışma, U-

Net adlı bir derin öğrenme mimarisi ile parametrik olmayan tümör lokalizasyon ve 

iyileştirme yöntemlerine dayanan MRI görüntülerinden tam beyin tümörlerinin 

segmentasyonu için verimli bir sistem önermektedir. İlk olarak, tümörlü bölgelerin 

lokalize edilmesi için histogram tabanlı tümör lokalizasyon yöntemi uygulanır. Daha 

sonra, belirgin olmayan veya düşük kontrastlı tümörlü bölgelerin görsel görünümünü 

artırmak için lokalize bölgeleri modifiye etmek için tümör iyileştirme yöntemi 

kullanılır. Ortaya çıkan görüntüler, tam beyin tümörlerini segmentlere ayırmak için 

geleneksel U-Net mimarisine beslenir. Önerilen sistemin performansı, BRATS 2012 

(HGG-LGG), BRATS 2019 ve BRATS 2020 karşılaştırmalı veri setleri üzerinde test 

edilmiş ve sırasıyla 0.94, 0.85, 0.87, 0.88 zar puanları gibi üstün sonuçlar elde 

edilmiştir. Önerilen sistem ve karşılaştırmalar tarafından elde edilen sonuçlar, 

önerilen tümör lokalizasyon ve iyileştirme yöntemlerinin derin öğrenme 

mimarilerinin segmentasyon yeteneğini geliştirdiğini ve MRI görüntülerinde tam 

beyin tümörlerinin yüksek doğrulukta ve düşük maliyetli segmentasyonunu 

sağladığını gösterdi. 

 

Anahtar Kelimeler: Beyin tümörü, lokalizasyon, iyileştirme, segmentasyon, U-Net 

 

 

 

 



vi 
 

 Table of Contents 

  

Approval .......................................................................................................................  i 

Declaration ..................................................................................................................  ii 

Acknowledgments  .....................................................................................................  iii 

Abstract ......................................................................................................................  iv 

Özet .............................................................................................................................  v 

Table of Contents .......................................................................................................  vi 

List of Tables..............................................................................................................  ix 

List of Figures .............................................................................................................  x 

List of Abbreviations..................................................................................................  xi 

 

CHAPTER I 

Introduction .................................................................................................................  1 

Background .....................................................................................................  1 

Thesis Layout ..................................................................................................  3 

 

CHAPTER II 

Literature Review ........................................................................................................  4 

Systems Based on Traditional Methods ..........................................................  4 

Combined Systems ..........................................................................................  6 

CNN-Based Systems .......................................................................................  7 

 

CHAPTER III 

Digital Image Processing ..........................................................................................  11 

Image Acquisition .........................................................................................  11 

Digital Image .....................................................................................  12 

Image Compression .......................................................................................  14 

Inter-Pixel Redundancy .....................................................................  14 

Coding Redundancy ..........................................................................  14 

Psychovisual Redundancy .................................................................  14 

Compression Methods .......................................................................  15 

Lossy Compression Technique .............................................  15 

Lossless Compression Technique .........................................  15 



vii 
 

Image Enhancement ......................................................................................  15 

Spatial Domain ..................................................................................  15 

Frequency Domain ............................................................................  16 

Image Segmentation ......................................................................................  16 

 

CHAPTER IV 

Deep Learning and Convolutional Neural Networks ................................................  18 

Deep Learning ...............................................................................................  18 

Convolutional Neural Networks ...................................................................  18 

Convolution Operation ......................................................................  19 

Convolutional Layer..........................................................................  19 

Sparse Connectivity ..............................................................  20 

Parameter Sharing .................................................................  20 

Pooling Layer ....................................................................................  21 

Fully Connected Layer ......................................................................  21 

CNN Architectures for Image Segmentation  ...............................................  21 

SegNet ...............................................................................................  21 

U-Net .................................................................................................  22 

 

CHAPTER V 

Methodology .............................................................................................................  24 

Proposed System ...........................................................................................  24 

Dataset ...............................................................................................  25 

Mean Filter ........................................................................................  26 

Proposed Tumor Localization and Enhancement Methods ..............  27 

Evaluation Metrics ........................................................................................  32 

 

CHAPTER VI 

Results and Discussions ............................................................................................  34 

Experimental Design .....................................................................................  34 

Results ...............................................................................................  35 

Comparisons ......................................................................................  38 

Discussions ....................................................................................................  41 

 



viii 
 

CHAPTER VII 

Conclusion ................................................................................................................  43 

 

REFERENCES ..........................................................................................................  44 

APPENDICES ..........................................................................................................  49 

Appendix A: Ethical Approval Document ....................................................  49 

Appendix B: Curriculum Vitae .....................................................................  50 

Appendix C: Similarity Report .....................................................................  53 

 Appendix D: Dataset Description .................................................................. 54 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

List of Tables 
 

Table 1. Evaluation Results of the BRATS 2012 HGG Images...............................  35 

Table 2. Evaluation Results of the BRATS 2012 LGG Images ...............................  35 

Table 3. Evaluation Results of the BRATS 2019 Dataset ........................................  36 

Table 4. Evaluation Results of the BRATS 2020 Dataset ........................................  37 

Table 5. Comparison Results of the Proposed System on BRATS 2012 Dataset ....  38 

Table 6. Comparison Results of the Proposed System on BRATS 2019 Dataset ....  39 

Table 7. Comparison Results of the Proposed System on BRATS 2020 Dataset ....  39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

List of Figures 

 

Figure 1. The Sampling and Quantization of Digital Images ..................................  11 

Figure 2. Basic Structure of Digital Images .............................................................  12 

Figure 3. Sample Images for Each Digital Image Group .........................................  13 

Figure 4. Pixelation on Digital Images ....................................................................  13 

Figure 5. The Process for How a Segmentation Technique Works .........................  17 

Figure 6. Sample CNN Architecture ........................................................................  19 

Figure 7. SegNet Architecture ..................................................................................  22 

Figure 8. U-Net Architecture ...................................................................................  23 

Figure 9. The Block Diagram of the Proposed System ............................................  24 

Figure 10. Sample Images for Modalities ................................................................  25 

Figure 11. Samples for Distinct and Indistinct Tumorous Images ...........................  26 

Figure 12. Graphical Representation of the Mean Filter Operation .........................  27 

Figure 13. The Results of the Pre-processing Methods on Sample Images .............  31 

Figure 14. Visualization of the Proposed Tumor Localization Method ...................  32 

Figure 15. Sample Segmentation Results of the Proposed System ..........................  38 

Figure 16. Comparative Segmentation Results ........................................................  40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

List of Abbreviations 

 

BRATS: 

HGG: 

LGG: 

MRI: 

T1: 

T1C: 

T2: 

FLAIR: 

CNN: 

TCIA: 

PF: 

PR2G: 

IFS: 

GLCM: 

SVM: 

WBA: 

PPV: 

CH: 

FBB: 

DA: 

MRMR: 

ERT: 

LOOCV: 

RF: 

MIPAV: 

MI:  

MVP: 

SE: 

LUT: 

JPEG: 

PNG: 

Brain Tumor Segmentation 

High-Grade Glioma 

Low-Grade Glioma 

Magnetic Resonance Imaging 

T1-Weighted 

T1-Weighted with Contrast Enhancement  

T2-Weighted 

Fluid-Attenuated Inversion Recovery 

Convolutional Neural Network 

The Cancer Imaging Archive 

Potential Field 

Patch-Based Updated Run Length Region Growing Technique  

Infinite Feature Selection 

Gray Level Co-Occurrence Matrix 

Support Vector Machine 

Whole Brain Atlas 

Positive Predictive Value  

Calinski-Harabsz 

Fast Bounding Box 

Dragonfly Algorithm 

Minimum Redundancy Maximum Relevance 

Extremely Randomized Trees 

Leave-One-Out Cross-Validation 

Random Forest 

Medical Image Processing and Visualization  

Mutual Information 

Multi-View Pointwise 

Squeeze-and-Excitation 

Lookup Table 

Joint Photographic Experts Group 

Portable Network Graphics 



xii 
 

GIF: 

DCT: 

MLP: 

ReLU: 

TP: 

TN: 

FP: 

FN: 

 

Graphics Interchange Format 

Discrete Cosine Transform 

Multilayer Perceptron 

Rectified Linear Unit 

True Positive 

True Negative 

False Positive 

False Negative 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

CHAPTER I 

 

Introduction 

 

This chapter presents a brief background that includes medical information 

about brain tumors, the role of the MRI technology in brain tumor diagnosis, the 

evolution of the brain tumor segmentation systems, and an overview of the proposed 

system. 

 

Background 

A brain tumor is the mass of abnormal cells that grows uncontrollably in the 

brain. The accurate segmentation of the tumors is essential for diagnosis and 

treatment. Tumors characterized by cancerous and non-cancerous brain cells are 

classified as malignant and benign. Contrary to the benign tumors’ inactive cells 

content and uniform structure, malignant tumors occur in a non-uniform structure 

containing active cells. Radiologists frequently predicted gliomas in the glial cells or 

the spinal cord in recent years. According to the prevalences and high mortality rates, 

glioma tumors are categorized as HGG and LGG. (Pereira, et al., 2016). 

MRI is common for obtaining multimodal images and showing detailed brain 

structures. Brain MRI images contain four modalities named T1, T1C, T2, and 

FLAIR, and all of these modalities are available in the sagittal, coronal, and axial 

planes (Menze, et al., 2015). Healthy brain tissues are analyzed using T1 images 

when contrast enhancement with the intravenous application of gadolinium is not 

used. T1C images are used similarly; however, tumor borders are highlighted in 

these images. The images with the highest intensities are obtained in the T2 images 

because of the fluids, including tumor edema. FLAIR images attenuate the cerebral 

fluid and determine the abnormality (Currie, et al., 2013). Even though each 

modality has a unique representation and process, FLAIR is the most suitable and 

common one for the segmentation of tumorous regions because of provided 

abnormality area. 

Segmenting brain tumors using MRI images is challenging and time-

consuming because of the complex structure of the tumors, which differs in size, 

shape, location, and appearance (Anitha & Murugavalli, 2016). Therefore, the 

segmentation of brain tumors is of great importance. Various segmentation methods, 
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such as thresholding (Amin, et al., 2019; Ilhan & Ilhan, 2017), region growing 

(Kalaiselvi, et al., 2020), clustering (Eltayeb, et al., 2019), level set (Kermi, et al., 

2018; Khalil, et al., 2020) etc., were proposed and implemented for this task. 

However, these traditional methods are generally proposed as parametric, and the 

success rates might increase or decrease depending on the values of the selected 

parameters. 

The efficiency of artificial intelligence in producing reasonable human-like 

decisions and results made machine learning algorithms and deep learning 

architectures more common on brain tumor segmentation implementations. 

The use of machine learning algorithms for the segmentation of brain tumors 

requires several steps such as further image preprocessing, feature extraction, feature 

selection, etc. Therefore, the determination of the proper methods and the 

implementation sequence of these methods have a vital effect on the efficiency of 

complete brain tumor segmentation (Rehman, et al., 2020; Rehman, et al., 2019; 

Soltaninejad, et al., 2017). 

The efficiency of the CNN in segmentation tasks has gained significant 

importance with the development of deep learning architectures. CNN has its feature 

extraction, representation, and learning processes that improve the rates obtained by 

traditional machine learning algorithms. For that reason, several kinds of studies 

were performed based on CNN for segmenting complete brain tumors (Ballestar & 

Vilaplana, 2021; Chithra & Dheepa, 2020; Sohail, et al., 2021; Wu, et al., 2020; 

Zeineldin, et al., 2020; Zhao, et al., 2021). 

The segmentation of the complete brain tumors is considered an essential step 

in differentiating sub-classes (core and enhancing tumor), and this increases the 

importance of the achievements and ensures that the studies also continue in this 

direction. 

This study proposes a brain tumor segmentation system based on non-

parametric tumor localization and enhancement methods and U-Net architecture. The 

proposed system segments the brain tumors using the 2D axial images obtained from 

the patients’ FLAIR modalities. The proposed tumor localization and enhancement 

methods are performed to improve the ability of deep learning architectures in 

feature extraction, particularly for indistinct tumors. The resultant images obtained 

from the pre-processing methods are fed to the traditional U-Net architecture, and 

complete brain tumors are segmented with a high success rate. 
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Based on the information mentioned above, this study aims: 

• to localize and enhance the tumorous regions with proposed non-

parametric methods, 

• to achieve optimal success rates for the segmentation of the complete 

brain tumors in three BRATS datasets, and, 

• to improve the segmentation abilities of deep learning architectures by 

providing more distinguishable input tumorous regions. 

 

Thesis Layout 

In this thesis, chapter 1 includes a brief background and thesis layout. 

Chapter 2 is organized as the literature review. Chapter 3 presents the fundamentals 

of digital image processing. Chapter 4 presents an overview of deep learning and 

convolutional neural networks basics. Chapter 5 describes the methodology of the 

study. Chapter 6 presents the results and discussions. Chapter 7 includes the 

conclusion. 
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CHAPTER II 

 

Literature Review 

 

This chapter analyses recent studies on complete brain tumor segmentation 

tasks in the literature. These studies are divided into three sections. The first section 

presents studies that are proposed and implemented in traditional methods. The 

second section presents studies that include combined systems. The last section 

presents studies based on CNN architectures. 

 

Systems Based on Traditional Methods 

Ilhan and Ilhan (2017) proposed a system based on a novel thresholding 

method for brain tumor segmentation in MRI images. The system was divided into 

three stages. Initially, the skull was extracted from the image applying morphological 

and a set of image subtraction operations. The thresholding method was used to 

segment the tumors in the second stage. The threshold value was calculated as the 

mean of the unique pixel values in the image, excluding zero. Finally, the noise 

representing non-tumorous components was removed using a 5x5 median filter. The 

system was tested on a TCIA dataset named Rembrandt. The overall success rate of 

the system is 96%. 

Amin et al. (2019) proposed a system for brain tumor segmentation in MRI 

images. The system was divided into three stages. Initially, the Wiener filter was 

used to remove noise. In the second stage, PF clustering was used to detect the 

tumorous regions. Finally, the tumorous regions were isolated using global 

thresholding and morphological operations. The system was tested on T2 and FLAIR 

images of the BRATS 2013 dataset and evaluated using quality (94%), PPV (96%), 

sensitivity (97%), specificity (92%), and dice score (0.88) metrics. 

Kalaiselvi et al. (2020) proposed a method named PR2G to segment the brain 

tumors in MRI images. The method was divided into three phases. Initially, the 

method has classified slices as normal or tumorous using the most significant 

(determined by the IFS) GLCM features and SVM classifier. In the second phase, the 

run-length region growing technique was used to segment the tumors from the slices 

obtained from the previous phase. Lastly, tumor volume construction and estimation 

were performed using Carelieri’s estimator. The method was tested on T2 and 
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FLAIR slices of the BRATS 2013 dataset and evaluated using dice score (0.80), PPV 

(82%), sensitivity (98%), and accuracy (84%) metrics. 

Eltayeb et al. (2019) proposed a system for brain tumor segmentation in MRI 

images. The system was divided into three stages. Initially, the slices were classified 

as non-tumorous or tumorous at the end of several steps. In the first step, the center 

of the brain region was determined using the center-mass algorithm and its 

borderline. The slices were divided into two hemispheres using the bounding box and 

calculated the mean pixel value for both in the second step. In the last step, the 

tumorous region was localized due to the area under curve calculation. In the second 

stage, the anisotropic diffusion filter was used to smooth the slices and then the data 

type of the slices were converted from the grayscale to the CIELAB. In the last stage, 

k-means clustering was used to segment the tumors, where the k value was 

determined using the CH cluster validity index. The system was tested on FLAIR 

slices of the BRATS 2012 (HGG-LGG) dataset and achieved 0.89 and 0.84 dice 

scores, respectively. 

Kermi et al. (2018) proposed a system for brain tumor segmentation in MRI 

images. The system was divided into two phases. The first phase is pre-processing 

includes the skull extraction process and filtering operations. The skull was extracted 

using the FMRIB software library, and the slices were filtered to remove noise using 

anisotropic diffusion, gradient, and threshold filters. The second phase consists of 

three steps. In the first step, the slices were divided into two halves as right and left, 

using the ellipse fitting technique and Otsu’s thresholding method. FBB algorithm 

was applied to detect the tumorous region in the second step. The last step is 

selecting the slice interest that determines the largest part of the tumorous region. 

Finally, a combined model forms the region growing and a geodesic level set method 

was used to segment the tumors. The contour seed point was determined as the 

centroid of the largest part selected in the previous phase. The system was tested on 

T2 and FLAIR slices of the BRATS 2017 dataset and evaluated using sensitivity 

(82% - 89%), fallout (15% - 12%), and kappa (77% - 83%) metrics. 

Khalil et al. (2020) proposed a model to segment brain tumors in MRI 

images. The model was divided into three stages. The first stage is pre-processing 

includes skull extraction, anisotropic diffusion filter, and contrast enhancement. The 

skull extraction operation was performed in three steps. Otsu’s thresholding method 

was applied to binarize the slices in the first step. Secondly, morphological 
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operations were performed to preserve the minute features of the brain region. In the 

last step, a hole filling operator was applied to obtain a complete-connected brain 

region. The anisotropic diffusion filter was used to eliminate the noise and increase 

the homogeneity of the similar regions by preserving their edges. The contrast 

enhancement was applied using the histogram equalization method to improve the 

visual appearance of the tumorous region. The second stage is the extraction of the 

contour seed points using a combined method that includes DA and k-means 

clustering. In the last stage, contour seed points obtained from the previous stage 

were initialized to the level set method for segmentation. The model was tested on 

the BRATS 2017 dataset and evaluated using accuracy (98%), recall (95%), and 

precision (93%) metrics. 

 

Combined Systems 

Soltaninejad et al. (2017) proposed a system that segments the brain tumors 

in MRI images. The system was divided into four stages. In the first stage, the 

images were divided into patches with approximately similar size and intensity 

values using the superpixel method. Statistical, texton and shape features were 

extracted for each superpixel patch in the second stage. In the third stage, the most 

significant features were selected using MRMR. Each superpixel patch was classified 

as tumorous and non-tumorous using SVM and ERT classifiers in the last stage. The 

system was tested on the FLAIR image of the BRATS 2012 dataset and evaluated 

using precision, sensitivity, balanced error rate, and dice score metrics. The ERT’s 

performance was reported as superior to the SVM and achieved 89%, 88%, 0.06, and 

0.88 precision, sensitivity, balanced error rate, and dice score, respectively. 

Rehman et al. (2020) proposed a system to segment the brain tumors in MRI 

images. The system was divided into three stages. The first stage is pre-processing 

contains bilateral and Gabor filters. The bilateral filter was used to remove noise, and 

then the Gabor filter was applied to create the texton map. In the second stage, the 

images were segmented into superpixel patches. Then, the low-level features were 

extracted using intensity features and histogram level of texton-map at each patch. A 

LOOCV was applied at the final stage to classify the image pixels as tumorous and 

non-tumorous using the classifiers named RF, AdaBoost, RusBoost, and SVM. The 

system was tested on FLAIR images of the BRATS 2012 (HGG-LGG) dataset and 

evaluated using accuracy, sensitivity, specificity, precision, and dice score metrics. 
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The performance of the RF was reported as superior to the others and achieved 98%, 

92%, 95%, 88%, and 0.88 accuracy, sensitivity, specificity, precision, and dice score 

for the HGG images and 96%, 90%, 95%, 86%, and 0.81 for the LGG images. 

Rehman et al. (2019) proposed a system to segment brain tumors in MRI 

images. The system was divided into five stages. The first stage is pre-processing 

contains skull extraction and noise removal. The skull was extracted using MIPAV. 

The combination of the bilateral filter and noise threshold using wavelets was 

applied to remove noise. Secondly, the images were segmented out into superpixel 

patches and then the intensity, texton map, and fractal features were extracted at each 

patch. In the third stage, the features were normalized and then the most significant 

ones were selected using the MI-based feature selection method. In the fourth stage, 

in order not to adversely affect the performance of the classifiers, the imbalance in 

the feature matrix that forms due to a close or the unequal number of observations in 

each class was prevented by a class balancing operation. In the last stage, the image 

pixels were classified as tumorous and non-tumorous using SVM, AdaBoost, and RF 

classifiers. The system was tested on FLAIR images of the BRATS 2012 dataset and 

evaluated using precision, sensitivity, specificity, balance error rate, and dice score 

metrics. The performance of the RF was reported as superior to the others and 

achieved 89%, 93%, 97%, 0.1, and 0.91 precision, sensitivity, specificity, balance 

error rate, and dice score, respectively. 

 

CNN Based Systems 

Wu et al. (2020) proposed an architecture named DCNN-F-SVM to segment 

the brain tumors in MRI images. The model was divided into three phases. In the 

first phase, a DCNN was trained to map from the image domain to the tumor marker 

domain. The predicted labels from the DCNN training were fed to the integrated 

SVM classifier at the second phase and test images. Finally, a DCNN and an 

integrated SVM were connected in series to train a deep classifier. The DCNN-F-

SVM architecture was tested on the BRATS 2018 and the self-made datasets and 

evaluated using dice score, sensitivity, and specificity metrics. The performance of 

the architecture was reported as superior to the DCNN and integrated SVM and 

achieved 0.90, 91%, and 99.8% dice score, sensitivity, and specificity for the 

BRATS 2018 dataset and 0.90, 92%, and 98.8% for the self-made dataset. 
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Chithra et al. (2020) proposed a system that includes a CNN architecture 

based on Di-phase midway for brain tumor segmentation in MRI images. The system 

was divided into two phases. The first phase is pre-processing contains N4ITK bias 

field correction and noise removal. The N4ITK bias field correction method was 

applied to correct the intensity variations of the images, and then the noise was 

removed using the median filter. The enhanced images were fed to the Di-phase 

midway based CNN architecture to segment the tumors in the second phase. The 

system was tested on the BRATS 2012, BRATS 2013, and BRATS 2018 datasets 

(HGG-LGG) and evaluated using accuracy, sensitivity, and dice score metrics. The 

accuracy, sensitivity, and dice score obtained from the BRATS 2012 dataset were 

94%, 89%, and 0.84 for the HGG images and 95%, 86%, and 0.85 for the LGG 

images. The system achieved 97%, 88%, and 0.91 accuracy, sensitivity, and dice 

score for the HGG images of the BRATS 2013 dataset and 92%, 87%, and  0.87 for 

the LGG images. Finally, the accuracy, sensitivity, and dice score for the BRATS 

2018 dataset were reported as 95%, 89%, and 0.90 for the HGG images and 93%, 

94%, and 0.89 for the LGG images. 

Zeineldin et al. (2020) proposed an architecture named DeepSeg to segment 

the brain tumors in MRI images. The architecture design can be analyzed in two 

phases. The U-Net architecture was modified in the first phase by rearranging the 

layers. In the second phase, the encoder part of the modified U-Net was replaced 

using the CNN architectures named VGGNet, ResNet, DenseNet, Xception, 

MobileNet, NASNet, and MobileNetV2. The architecture was trained using the k-

fold cross-validation, where the k value was determined as two. Before the training 

process, the count of the training samples was increased using various data 

augmentation techniques such as flip, rotate, elastic transformation, etc., to prevent 

the overfitting problem. The architecture was tested on the BRATS 2019 dataset and 

evaluated using sensitivity, specificity, Hausdorff distance, and dice score metrics. 

The performance of the Xception/modified U-Net combination was reported as 

superior to the others and achieved 0.86%, 99.8%, 11.337, and 0.84 sensitivity, 

specificity, Hausdorff distance, and dice score, respectively. 

Sohail et al. (2021) proposed a system based on a 3D U-Net for brain tumor 

segmentation in MRI images. The system was divided into two stages. The first stage 

is pre-processing includes crop, data normalization and splitting, random patch 

extraction, and data augmentation operations. The brain regions of the input images 
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were cropped to reduce the input data size and just keep only the useful information. 

The cropped images were enhanced by using a normalization method to make them 

more suitable for the segmentation. The split operation was applied to determine the 

number of data in training (82%), validation (6%), and testing (12%) sets. To avoid 

any hardware problem while training with large volumetric data, random patches 

were extracted from the input data. The augmentation techniques, such as rotating 

and mirroring, were applied to prevent the overfitting problem. Finally, a 3D U-Net 

architecture was used to segment the tumors. The system was tested on the BRATS 

2019 and BRATS 2020 datasets and achieved 0.78 and 0.72 dice scores, 

respectively. 

Zhao et al. (2021) proposed an architecture named MVP U-Net to segment 

the brain tumors in MRI images. The architecture has the same design as the 3D U-

Net architecture, except for the structural difference of the convolutional layers. The 

convolutional layers of the architecture were replaced with three 2D multi-view 

convolutions to learn spatial features and one pointwise convolution to learn channel 

features. Further, The SE block was modified to integrate it into the architecture after 

the concatenation operation. In this way, it was thought that the capabilities of the 

architecture could be increased, and the count of parameters could be reduced. 

Before the training process, various pre-processing techniques were applied to the 

images. Initially, the brain regions of the images were cropped and normalized to 

reduce the input size and just keep only the useful information. Further, the count of 

the training samples was increased using various augmentation techniques such as 

rotation, scaling, etc., to prevent the overfitting problem. The architecture was tested 

on the BRATS 2020 dataset and achieved 91%, 0.80, 99.7%, and 29.831 sensitivity, 

dice score, specificity, and Hausdorff95, respectively. 

Ballestar and Vilaplana (2021) proposed a system based on V-Net and the 

variations of 3D U-Net for brain tumor segmentation in MRI images. The system 

was divided into three stages. The first stage is pre-processing, which includes data 

normalization, and augmentation was applied to make the images more suitable for 

the segmentation and prevent the overfitting problem. To avoid any hardware 

problems in the training process due to the large volumetric data, a patch extraction 

operation was performed at the second stage using either binary or random tumor 

distribution approaches. In the last stage, the V-Net and variations of 3D U-Net 

architecture were used to segment the tumors. The system was tested on the BRATS 
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2020 dataset and evaluated using dice score and Hausdorff95 metrics. The 

performance of the V-Net architecture was reported as superior to the variations of 

3D U-Net architecture and achieved 0.87 and 10.19 dice score and Hausdorff95, 

respectively. 
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CHAPTER III 

 

Digital Image Processing 

 

This chapter presents an overview of digital image processing fundamentals 

including image acquisition, compression, enhancement, and segmentation. 

 

Image Acquisition 

The first stage of digital image processing is acquisition. Digital image 

processing is transferring the image from the sensors to the computer and 

transmitting it to the output after any operation is done on it. The hardware and 

software used for image acquisition may differ depending on the image source. 

Converting real-world 3-D objects into digital images; obtained from sources such as 

CCD and infrared cameras, ultrasound equipment, X-ray, MRI instruments, and 

satellites. The output of the sensor is a continuous voltage wave whose amplitude 

and spatial behavior change depending on the phenomenon being viewed. It is 

necessary to digitize this continuous data for digital image acquisition. Two 

processes are required for this, called sampling and quantization. The resulting image 

function f(x,y) can be continuous in its coordinates and amplitude. For a digital 

image, it is necessary to do both separately. If coordinate values are digitized, it is 

called sampling; if amplitude values are digitized, it is called quantization (Gonzalez 

& Woods, 2002). Figure 1 shows the sampling and quantization of digital images. 

 

Figure 1. 

The Sampling and Quantization of Digital Images. 
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Digital Image 

A digital image can be considered a matrix of elements whose row and 

column indices define any point in the image. Each element of this matrix contains 

information about the color of that point and is called a pixel (Gonzalez & Woods, 

2002). Figure 2 shows the basic structure of digital images. 

 

Figure 2. 

Basic Structure of Digital Images. 

 
 

Digital images are divided into three groups named gray-level, color, and 

multi-spectrum. Figure 3 demonstrates sample images that represent each digital 

image group. 
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• Gray-Level Images: These are monochrome images containing only 

intensity information.  

• Color Images: These are composed of overlapping three gray-level images 

coded as R(Red), G(Green), B(Blue). 

• Multi-Spectrum Images: These are images obtained from regions outside 

the visible spectrum, also called false-color images. 

 

Figure 3. 

Sample Images for Each Digital Image Group. 

 
 

 Where (a) gray-level image, (b) color image, and (c) multi-spectrum image 

 

Resolution is defined as the product of the number of rows and columns in an 

image (Gonzalez & Woods, 2002). The resolution does not include information 

about the size of the image since the size is not valid for pixels; however, as the 

resolution decreases (as the number of pixels in the image decreases), the pixelation 

increases, as shown in Figure 4. 

 

Figure 4. 

Pixelation on Digital Images. 
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Image Compression 

The major challenge of digital image processing is its large size and the 

lengthy time it takes to process them. In most cases, digital image processing 

software can’t be improved in terms of the speed of processing such large image 

files. Instead, the image sizes can be reduced to increase the processing speed of the 

software at runtime. By employing file compression methods, it is possible to reduce 

the image size to more manageable file size and speed up the processing power of the 

application software in execution (Hussain, et al., 2018). 

The file compression removes the redundant data bits representing pixels on 

the image so that the image size is minimized without losing its characteristics. As a 

result, the image size becomes more manageable, resulting in increased processing 

speed and reduced storage area in the system (Hussain, et al., 2018). There are three 

different ways of removing redundant data. 

 

Inter-Pixel Redundancy 

In this method, the algorithm assumes that each pixel’s neighbors have 

similar characteristics and are not very different; therefore, they are regarded as 

redundant pixels and can be represented with the same pixel value. This type of 

redundancy is named as Inter-Pixel redundancy. Among others, one popular way of 

detecting redundant pixels is to evaluate the characteristics of their neighboring 

pixels (Kapoor & Kaushik, 2018). 

 

Coding Redundancy 

The method builds a variable-length data code representing a pattern of pixels 

and runs a search routine to find the exact match in the original image file. A LUT is 

used, keeping such search codes and fed into the system, in turn, to locate their exact 

matches and remove them from the image file. The same (LUT) can also reverse the 

removal process of redundant code strings to avoid data loss. Two popular methods 

of detecting redundant formations of pixels are The Huffman codes and the 

arithmetic coding (Kapoor & Kaushik, 2018). 

 

Psychovisual Redundancy 

Because of the complexity in human vision characteristics from the point of 

view of psychophysics, not every visual signal sensed equally well comes because of 



15 
 

the eye. The human brain assesses and categorizes the signals as important and not so 

important classes. The not so important signals are considered redundant and 

removed from the image. The DCT is a popular representation of this type of 

approach and is the basis of the JPEG encoding standard (Kapoor & Kaushik, 2018). 

 

Compression Methods  

Depending on the requirements the image compression can be classified into 

two types named lossy and lossless (Hussain, et al., 2018). 

 

Lossy Compression Technique. This type of compression works on JPEG 

images. During compression, this technique causes some data loss. As a result, the 

compressed image does not have the same characteristics as the original one but 

looks very similar. The algorithm will produce a compressed image that resembles 

and loosely represent the original one. Although there is a broad application of this 

technique, it is not suitable in digital image processing for medical use (Kapoor & 

Kaushik, 2018). 

  

Lossless Compression Technique. In this compression type, an exact copy 

of the original image is produced with reduced file size by encoding technique. File 

types such as GIF and PNG are the popular representation of lossless compression 

techniques (Kapoor & Kaushik, 2018). 

 

Image Enhancement 

Image enhancement is used to improve the image quality where there are 

blurred areas that make it difficult to process properly. The characteristics of the 

image become more visible thru the improved contrast and hence more suitable for 

processing activities. 

There are two different methods used named spatial and frequency domain. 

These methods are not very objective due to the various operators’ different 

interpretations of the images (Gonzalez & Woods, 2002). 

 

Spatial Domain 

With Equation 1, the image is directly transformed by manipulating the pixels 

and those around it (Gonzalez & Woods, 2002). 
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𝑔 (𝑥, 𝑦) =  𝑇 [𝑓 (𝑥, 𝑦)] (1) 

 

The input image is represented by f(x,y), the transformation operator T works 

on the input image neighborhood. As a result, an output image g(x,y) is produced. In 

most cases, the spatial domain type of work uses this method. 

 

Frequency Domain  

This method is used to minimize the noise. The noise reduction helps to 

identify the domain. The Fourier transformation is used as the first step. Then, the 

image’s brightness and contrast are improved by using an image enhancement 

operation. This operation also distributes the grey levels (Gonzalez & Woods, 2002). 

Equation 2 is established as a result. 

 

𝐺(𝑢, 𝑣) =  𝐻(𝑢, 𝑣) 𝐹(𝑢, 𝑣) (2) 

 

In this method, F represents the initial image, H represents the transformation 

function, and G represents the resultant image. F(u,v) represents the Fourier 

transformed image. As a result, different frequency values of F(u,v) are obtained. 

The low frequencies represent the smooth or blurred areas in the image, and the 

details of the image are represented by the high frequencies, edges, and noise. 

(Gonzalez & Woods, 2008). 

 

Image Segmentation 

Image segmentation is carried out to distinguish the object of interest from 

the rest of the image. The extraction of the part representing the object then becomes 

more visible and perhaps becomes a better-defined area to be offered for 

investigation. This process is very successful and hence is quıte popular for locating 

the objects in an image by identifying its boundaries (Gonzalez & Woods, 2008). 

Supposing that R is the whole of the area covered by some image. The 

segmentation process can then be regarded as a process that partitions this area into n 

sub-regions as R1, R2, R3, and so on, as in Figure 5. 
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Figure 5. 

The Process for How a Segmentation Technique Works. 

 
 

The steps in Figure 5 shows that Q(Rk) is a logical predicate on the points 

registered in the set Rk. Here the null set is represented by Ø. the sets union and 

intersection operations are represented by the ∪ and ∩ symbols respectively 

(Gonzalez & Woods, 2008). The resultant regions Ri and Rj become adjacent when 

their union makes a connected set. This is possible under some conditions indicated 

by (a) where every pixel is in the region so that the segmentation is complete and (b) 

where points in the region are connected in a predefined way. The following example 

shows how the method works. 

The points in the set should be 4- or 8- connected. Step (c) says that the 

regions should be disjoint, and step (d) points out that the properties which are to be 

satisfied by the pixels should be in the segmented area. In that case, Q(Ri) is TRUE 

only if all the pixels in Ri belong to the same level of identity. In the end, step (e) 

indicates that two adjacent regions, Ri and Rj, must differ so that they satisfy the 

predicate Q. A fundamental problem exists in the segmentation process to partition 

the images into regions that satisfy the initial conditions (Gonzalez & Woods, 2008). 
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CHAPTER IV 

 

Deep Learning and Convolutional Neural Networks 

 

This chapter presents the description of deep learning, the CNN basics and 

their architectures proposed for image segmentation tasks. 

 

Deep Learning 

Deep learning methods are used in many everyday applications ranging from 

speech and handwritten character recognition to diverse image and object 

identification tasks. They are representation-learning approaches, taking raw data as 

input and subject to a learning process to uncover valuable features instead of 

depending on hand-tuned feature extractors. Deep learning architectures consist of 

numerous layers composed of basic modules susceptible to learning and learn 

representations. Each layer provides a somewhat more abstract and “useful” 

representation (LeCun, et al., 2015). 

 

Convolutional Neural Networks 

CNNs are a kind of feedforward neural network built for image processing. It 

was initially described in 1989 by LeCun, who designed it for hand-written digit 

identification. CNN was also one of the first neural networks to be employed in 

commercial applications. AT&T used a convolutional network in a real-world bank 

system that recognizes hand-written numbers in cheques as early as 1990. CNNs are 

now engaged in most computer vision tasks to solve various object identification 

difficulties and more demanding tasks (LeCun, et al., 2015). 

CNN has the benefit of being able to be applied to structured data. The 

network’s input is a multidimensional array. A grayscale input image is represented 

by a 2D array, with each integer describing one pixel. A 3D array represents a color 

image where a vector of color values describes each pixel. A CNN may be trained on 

1D sequences such as printed text or sound signals. A convolutional network’s 

neurons are organized in a grid and consider the connection between neighboring 

data samples (LeCun, et al., 2015). Figure 6 shows a sample of CNN architectures. 
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Figure 6. 

Sample CNN Architecture. 

 
 

Convolution Operation 

CNNs get their name from the linear mathematical operation convolution. 

Convolution in image processing is a two-matrix operation (I x K), where I is an 

input vector and K is a kernel (convolutional matrix). This operation gives each 

matrix position’s weighted sum of the input matrix values in a local neighborhood. 

The kernel specifies the neighborhood’s weights and size (Yamashita, et al., 2018). 

The same operation is used to compute a neuron’s inner potential in the 

context of CNNs. The kernel is an odd-sized weight matrix. The most common 

kernel sizes range from 3x3 to 9x9 pixels. Compared to the convolutional matrix 

utilized in image processing, the CNN kernel is entirely learnable. It is capable of 

adapting to patterns in training data. The convolution is employed as a pattern 

detector. Distinct kernels define distinct patterns and are recognized on various 

levels. Each network layer indicates a different detection level. Early layers 

recognize simple patterns, such as edges in various orientations, colors, or gradients. 

Later layers recognize more complicated patterns as a composite of simple ones 

(Yamashita, et al., 2018). 

 

Convolutional Layer 

 The convolutional layer is the essential component of a CNN’s design. It is a 

layer of neurons that uses convolution to calculate their inner potential. A 

convolutional layer’s neurons have a fixed location in a grid. The grid of these 

neurons is referred to as a feature map. A kernel supplies weights of their 
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connectivity. There might be numerous feature maps inside one convolutional layer 

that perform simultaneously on the same data. Each feature map employs its kernel 

(Yamashita, et al., 2018). 

Several settings may be applied to the convolutional layer to alter the layer’s 

behavior and the size of the feature maps. The most common settings are stride and 

padding. The stride is a number that describes the distance between the two nearest 

kernel positions. Convolution will be calculated for each position if stride equals one. 

If stride equals two, the result is calculated only in every second position. As a result, 

a feature map is downsampled by two. The padding sets calculation in border 

positions. Convolution cannot be calculated for pixels with a neighborhood outside 

of the image domain. The addition of zero padding around the input image might be 

a solution (Yamashita, et al., 2018). 

It’s known as the same padding in CNN terminology. To avoid contaminating 

the computation with zeros, we can only calculate convolution at valid locations. The 

size of the feature map is then reduced by 2k-1 pixels, where the k is a kernel 

dimension. This is known as valid padding. There are two main reasons why CNNs 

outperform MLP on image data. (Pang, et al., 2017). 

 

Sparse Connectivity. The sparse connection is pertained to the kernel 

dimension being less than the image size. An input may contain millions of pixels, 

but a conventional kernel only has maximum hundred values. Using just a few 

weights, we can create a feature map with the same dimension as the input. If we 

want to produce an output the same size as the MLP input, the number of weights 

must equal the square of the input size. The convolutional layer significantly 

decreases memory requirements as well as learning runtime. It enables high-

resolution image processing without the need for downsampling (Pang, et al., 2017). 

 

Parameter Sharing. The term parameter sharing refers to a single kernel 

being utilized several times at distinct image positions. For example, if the kernel is 

trained to recognize a vertical edge, it will recognize it in every other location in the 

image. This also implies that each kernel is trained on more data than the number of 

training samples in all of these locations. It enhances the likelihood that the kernel 

will be well learned (Pang, et al., 2017). 
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Pooling Layer 

A pooling layer is a neural network layer that does not have learnable 

parameters. It downsamples the input by performing the specified statistics of the 

nearby units, e.g., maximum, mean. The pooling layer ensures that network 

performance is unaffected by tiny translations. For example, small disparities in 

facial motions may be eliminated in face detection. They are the basic components of 

CNNs, together with the convolutional layer (Yamashita, et al., 2018). 

 

Fully Connected Layer 

The output feature maps of the last convolutional layer are flattened, and a 

1D array of numbers are created. These layers are then get connected to at least one 

fully connected layer. Each input and output are connected using a learnable weight. 

When the required features by the convolutional layers are extracted and the pooling 

layers downsampled and generate them, they are sent to the network’s final outputs 

by a subset of fully connected layers. It is typical to find that the fully connected 

layers and the classes will have the same output nodes in the end. Each following 

fully connected layer, there is a ReLU nonlinear function (Yamashita, et al., 2018). 

 

CNN Architectures for Image Segmentation 

In recent years, various CNN architectures have been proposed to perform 

image segmentation tasks. The most common of these architectures are SegNet and 

U-Net. 

 

SegNet 

The SegNet architecture (Badrinarayanan, et al., 2017) comprises an encoder 

path, a decoder path that corresponds to it, and a pixel classification layer. In the 

VGG16 network, 13 convolutional layers occur in the encoder root, corresponding to 

the first 13 convolutional layers. Having every encoder layer correspond to each 

decoder layer means that the decoder network has 13 convolutional layers. In the 

end, the resultant decoder layer goes through a multi-class softmax classifier, 

generating class probabilities of each pixel.  

The encoder path contains five convolution blocks. A max-pooling operation 

follows every block with a 2x2 window and a stride 2 for downsampling. Every 

convolution block is made of a number of layers which are 3x3 convolution with 
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batch normalization and element-wise ReLU. Here initial two convolution blocks 

have two layers each, and three blocks have three layers each. The decoder path and 

the encoder path are symmetric; The only difference is that an upsampling process is 

used instead of the max-pooling process. The outputs of the preceding layer and the 

indices of the max-pooling of the corresponding encoding layer become inputs for 

the upsampling. The resultant decoder path, a high-dimensional feature 

representation, is fed into a soft-max classifier and classifies every pixel. The SegNet 

architecture is shown in Figure 7. 

 

Figure 7. 

SegNet Architecture. 

 
 

U-Net 

The U-Net architecture (Ronneberger, et al., 2015) was developed to provide 

a more efficient segmentation of biomedical images and has been widely used in 

studies that focused on this task. 

Wang et al. (2018) and Karthik et al. (2019) used traditional U-Net 

architecture to segment the rectal tumors and the ischemic lesion, respectively. Tong 

et al. (2018) modified the U-Net architecture to segment the pulmonary nodules. 

Rundo et al. (2019) proposed an architecture named USE-Net for zonal prostate 

segmentation. Song et al. (2020) proposed an architecture named BSU-Net to 

segment the liver tumors. Li et al. (2020) proposed an architecture named MRBSU-

Net for gastrointestinal stromal tumor segmentation. The U-Net architecture consists 

of two paths named contraction and expansion.  
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The contraction path, also known as the encoder, consists of a series of blocks 

and each block includes two 3x3 convolutional layers, each followed by a ReLU, and 

a 2x2 maximum pooling operation with stride 2. After each block, the number of 

feature maps is doubled, thus enabling the architecture to learn complex structures 

more effectively. 

The expansion path, also known as the decoder, has a similar design to the 

contraction path. Each block contains a 2x2 up-convolutional layer, and two 3x3 

convolutional layers, each followed by a ReLU. At the end of each block, the number 

of feature maps is halved to maintain symmetry. However, the feature map of each 

up-convolutional layer is concatenated with the cropped feature map of the 

corresponding contraction layer. This allows the features learned when contracting 

the image to be used to reconstruct itself. Cropping is required because of the loss of 

border pixels at each convolution operation. 

Finally, pass through a 1x1 convolutional layer with a number of feature 

maps equal to the desired number of classes, and then pixel-wise softmax activation 

and cross-entropy loss functions are applied to the resultant feature map. In this way, 

each pixel in the image is classified as belonging to a class. Figure 8 demonstrates 

the U-Net architecture. 

 

Figure 8. 

U-Net Architecture. 
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CHAPTER V 

 

Methodology 

 

This chapter presents the methodology of the study. The methodology is 

divided into two sections. The first section describes the proposed system in detail. In 

the second section, the evaluation metrics used to measure the performance of the 

proposed system are presented. 

 

Proposed System 

The proposed system is divided into three stages. Initially, all tumorous 

images are filtered using a 5x5 mean filter to remove noise. In the second stage, the 

proposed tumor localization and enhancement methods are applied to make the 

images more suitable for the segmentation process by increasing the visual 

appearance of the tumorous regions. Lastly, the traditional U-Net architecture is used 

to perform the segmentation of the tumors on resultant images obtained from the pre-

processing methods. Figure 9 shows the block diagram of the proposed system. 

 

Figure 9. 

The Block Diagram of the Proposed System. 
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Dataset 

This study considered three common and recent BRATS datasets named 

BRATS 2012, BRATS 2019, and BRATS 2020 to evaluate the proposed system 

(Bakas, et al., 2017; Bakas, et al., 2018; Menze, et al., 2015). 

Each image in the BRATS datasets consists of four modalities as T1, T1C, 

T2, and FLAIR. The images are skull stripped and the experienced radiologists 

annotated their ground truths. Figure 10 demonstrates the sample images of 

modalities. 

 

Figure 10. 

Sample Images for Modalities. 

 
 

Where (a) T1, (b) T1C, (c) T2, and (d) FLAIR. 

 

BRATS 2012 is the most commonly used dataset for the complete brain 

tumor segmentation task and consists of 30 patients. The number of 2D axial FLAIR 

images (tumorous and non-tumorous) of the patients is 5,633. One of the recent 

versions of the BRATS datasets is 2019 and includes 335 patients. The number of 2D 

axial FLAIR images (tumorous and non-tumorous) of the patients is 51,925. The 

final version of the BRATS dataset was released in 2020 and contains 369 patients. 

The number of 2D axial FLAIR images (tumorous and non-tumorous) of the patients 

is 57,195. A more detailed description of the considered datasets is presented in 

Appendix D. 
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Figure 11 demonstrates the challenge of the brain tumor segmentation for 

distinct and indistinct tumorous images and their corresponding complete tumor 

ground truths. 

 

Figure 11. 

Samples for Distinct and Indistinct Tumorous Images. 

 
 

Where (a) distinct tumorous region, (b) indistinct tumorous region, (c) 

complete tumor ground truth of the image (a), and (d) complete tumor ground truth 

of the image (b). 

 

Mean Filter 

One of the most common problems faced in digital image processing is noise. 

Image filtering methods are used as a pre-processing method to overcome this 

problem. The mean (average) filter is one of the most widely used image filtering 

methods. The mean filter works by manipulating each pixel value in the image with 

an average value that includes its neighbors and itself. This process removes pixel 

values from the images that do not represent the surroundings. The mean filter is one 

of the convolution filters and like the others, it is based on a kernel representing the 

neighborhood shape and size to be determined when computing the mean (Gonzalez 

& Woods, 2008). The mean filter operation is depicted in Figure 12. 
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Figure 12. 

Graphical Representation of the Mean Filter Operation. 

 
 

Proposed Tumor Localization and Enhancement Methods 

In the first step of the proposed tumor localization method, the background 

and tumorous regions are determined using the image histogram. A histogram 

provides the frequency distribution of the intensity values in the image (Burger & 

Burge, 2016). While the background and the frames of images that do not consist of 

any information regarding the brain MRI images are represented as black, the zero 

intensity values are excluded from the obtained image histogram. The frequency of 

each intensity value excluding zero is calculated using an image histogram and 

shown in Equation 3: 

 

𝑛𝑗 = � 𝐼𝑗

𝑘−1

𝑗=1

 (3) 

 

Where j is the range between 1 and k-1, nj is the histogram value of jth 

intensity value of the image, and Ij is defined as in Equation 4: 

 

𝐼(𝑥,𝑦) ∈ [0, 𝑘 − 1] (4) 
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Where x and y are the spatial coordinates of the image and k is the maximum 

intensity range within the image. 

The second step of the proposed method is to determine the initial non-

parametric threshold value Ɵfr using frequencies of the intensity values obtained by 

the image histogram in order to optimize the determination of background, irrelevant, 

and the most informative regions within the image while the most frequent intensity 

values in brain MRI images represent the healthy brain tissues and tumorous region. 

The Ɵfr, which can be described as the mean of intensity frequencies, is calculated as 

shown in Equation 5. 

 

𝜃𝑓𝑟 =
1

𝑘 − 1
� 𝑛𝑗

𝑘−1

𝑗=1

 (5) 

 

Since all tumors do not appear significantly in the MRI images, the following 

steps of the proposed method aim to determine the tumorous region in the image as a 

significant or low-contrast tumor to provide robust enhancement before the 

segmentation process. 

The Ɵfr is used to determine the Bmin and Tmin values that represent the 

minimum values for the background and tumorous regions using the Equations 6 and 

7: 

 

𝐵𝑚𝑖𝑛 = 𝑚𝑖𝑛 �𝐼𝜃𝑓𝑟�  (6) 

𝑇𝑚𝑖𝑛 = 𝑚𝑎𝑥 �𝐼𝜃𝑓𝑟�  (7) 

 

Where IƟfr is the intensity values where the frequencies are more than Ɵfr. 

The calculation of Bmin and Tmin provided us to initially localize the tumorous region, 

where Bmin<Tmin is the background and Tmin<k-1 is the tumorous region. 

Our hypothesis is that if the tumorous region’s standard deviation is higher 

than the standard deviation of the background region, the tumor could easily be 

distinguished and segmented. Otherwise, the localization of background and 

tumorous regions requires further processing since the low-contrast appearance of 

brain tumors that are not significantly distinguishable from the healthy brain tissues. 
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Therefore, we used a fundamental statistical approach, standard deviation (Allen, 

2017), to determine the distinguishability and contrast between the background and 

tumorous regions. The standard deviations of the background and tumorous regions 

are calculated using Equations 8 and 9: 

 

𝑆𝑡𝑑𝐵 = �
∑(𝐼𝑖𝐵 − 𝑚𝐵)2

𝑛𝐵
 (8) 

𝑆𝑡𝑑𝑇 = �
∑(𝐼𝑖𝑇 − 𝑚𝑇)2

𝑛𝑇
 (9) 

 

Where Ii, m, and n represent intensity value, mean value, and the number of 

pixels belonging to the background (B) and tumorous (T) regions. 

After localization and the determination of the contrast level of the tumor, we 

propose a tumor enhancement method that significantly increases the visual 

appearance of the tumorous region even it is low-contrast or not. 

Our enhancement method and final localization are based on the conditions 

after comparing the standard deviations obtained for both background and tumorous 

regions. Similar to our hypothesis mentioned above, the tumor is localized in the 

initial background region if the background region’s standard deviation is higher than 

the initial tumorous region. Otherwise, it is localized in the initial tumorous region. 

The formula of final localization is given in Equation 10: 

 

�𝐵  𝑖𝑓  𝑆𝑡𝑑𝐵 >  𝑆𝑡𝑑𝑇
𝑇  𝑖𝑓  𝑆𝑡𝑑𝐵 <  𝑆𝑡𝑑𝑇

 (10) 

 

Where B and T denote the background and tumorous regions, respectively. 

After the final localization, the proposed enhancement method is applied to 

the localized tumorous region and ignored the empty region to make the tumorous 

region more significant. Our enhancement method uses two stages for low-contrast 

and distinguishable tumors according to the localized regions. First, it considers the 

minimum value and the standard deviation of the tumorous region to make the 

intensity values of the tumor more significant if the tumor is localized in the T 

region, as shown in Equation 11. 
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𝑂𝑇 =
I𝑇(x,y) − 𝑇𝑚𝑖𝑛

𝑆𝑡𝑑𝑇
 (11) 

 

However, our proposed enhancement method considers the updated minimum 

value for the tumorous region and the updated standard deviation to make the low-

contrast tumor more significant if the tumor is localized in the B region. The formula 

of updated tumorous region TUmin and StdTU are shown in Equation 12 and 13. 

 

𝑇𝑈𝑚𝑖𝑛 =
1
𝑥

� I𝑗

𝑘−1

𝑗=𝐵𝑚𝑖𝑛

 (12) 

 

Where TUmin is the updated minimum value of the tumorous region and is 

defined as the mean intensity values between Bmin and k-1, and x represents the pixel 

within the region. 

 

𝑆𝑡𝑑𝑇𝑈 = �
∑�𝐼𝑖𝑇𝑈 − 𝑚𝑇𝑈�

2

𝑛𝑇𝑈

 (13) 

 

Where IiTU , mTU , and nTU  represent intensity value, mean value, and the 

number of pixels belonging to the updated tumorous region (TUmin).  

Therefore, the final enhancement for the low-contrast and indistinct tumorous 

region is calculated as given below in Equation 14. 

 

𝑂𝐵 =
I𝑇(x,y) − 𝑇𝑈𝑚𝑖𝑛

𝑆𝑡𝑑𝑇𝑈

 (14) 

 

Finally, the enhanced image is added to the initially filtered one, and the 

resultant image OR is obtained to be fed to the traditional U-Net architecture, as 

shown in Equation 15. 

 

𝑂𝑅 = 𝐼𝑓 + 𝑂𝑖 (15) 
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Where If denotes the filtered image and Oi is defined as OT or OB according to 

Equation 10. Figure 13 demonstrates the results of the pre-processing methods on 

sample images. 

 

Figure 13. 

The Results of the Pre-processing Methods on Sample Images. 

 
 

Similarly, the 4th column of Figure 13 demonstrates the resultant images; 

however, it is clearly seen that in some images, similar components of the brain that 

have close intensity values with tumorous regions are also localized and enhanced, 

and this makes the use of supervised segmentation methods compulsory, such as the 

U-Net to avoid the segmentation of irrelevant regions. 

Figure 14 demonstrates the determined background and tumorous regions 

(with minimum values Bmin and Tmin) using the proposed tumor localization method 

and their corresponding standard deviations on the normalized histograms of the 

filtered images presented in Figure 13. 
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Figure 14. 

Visualization of the Proposed Tumor Localization Method. 

 
. 

Evaluation Metrics 

There are various metrics to evaluate the performance of the systems 

developed for the image segmentation tasks (Al-Antari, et al., 2018; Nai, et al., 

2021). In this study, six metrics are used: accuracy, sensitivity, specificity, precision, 

dice score, and Jaccard index to evaluate the performance of the proposed system. 

The accuracy represents the overall success rate of the system and is defined 

as in Equation 16. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
∗ 100 (16) 

 

The sensitivity (recall) measures the system’s ability to segment tumorous 

pixels and is defined in Equation 17. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∗ 100 (17) 

 

Contrary to the sensitivity, specificity shows the ability of the system to 

segment the non-tumorous pixels. The equation of specificity is given in Equation 

18. 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
∗ 100 (18) 

 

The precision represents the ratio of the correctly classified tumorous pixels 

over all pixels that are classified as tumorous by the system. This led researchers to 

analyze the success of the system in producing true positives over all pixels assigned 

as tumorous. It is defined in Equation 19. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∗ 100 (19) 

 

The dice score and Jaccard index are the most common evaluation metrics 

that are used to evaluate the segmentation results. They are the measurements of the 

common pixels between the segmented and ground truth images and are defined as in 

Equation 20 and 21. 

 

𝐷𝑖𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (20) 

 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝐼𝑛𝑑𝑒𝑥 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (21) 
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CHAPTER VI 

 

Results and Discussions 

 

This chapter presents the experiments and their results performed to evaluate 

the performance of the proposed system, comparison analyses, and discussions on 

the advantages and limitations of the study. 

 

Experimental Design 

In this study, five experiments are performed to evaluate the performance of 

the proposed system. The training is implemented using k-fold cross-validation 

(Wong, 2015), where the k value is determined as five, and Adam optimizer. Each 

fold is evaluated using the metrics mentioned in the evaluation metrics section of the 

methodology. The mean values of each metric are used as the final evaluation result. 

In the first experiment, the proposed system is tested on the resized 

(240x240) HGG images of the BRATS 2012 dataset. The training parameters are 

determined as 0.001, 50, and 8 for the learning rate, the number of epochs, and batch 

size, respectively. In the second experiment, the proposed system is tested on the 

resized (240x240) LGG images of the BRATS 2012 dataset using the trained 

network that achieved highest dice score and Jaccard index in the first experiment. In 

the third experiment, the proposed system is tested on the BRATS 2019 dataset 

without distinguishing HGG-LGG. The training parameters are determined as 0.001, 

10, and 8 for the learning rate, the number of epochs, and batch size, respectively. 

The only difference between the third and the fourth experiments is that the proposed 

system is tested on the BRATS 2020 dataset. In the last experiment, the traditional 

U-Net’s performance is tested on the original images of the BRATS 2012 HGG, 

BRATS 2012 LGG, and BRATS 2020 datasets without any training/testing strategy 

and parameter changes to prove the efficiency of the applied pre-processing methods. 

The reason why it is not tested on the BRATS 2019 dataset is that this experiment 

was performed in one of the comparative studies (Zeineldin, et al., 2020). 

All experiments are performed using a computer with 32 GB of RAM, 

NVIDIA GeForce RTX 2080 graphics processor, and i7-8th Generation CPU on 

Windows 10 OS. 
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Results 

In the first experiment, the close results are obtained in each fold when the 

accuracy, specificity, dice score, and Jaccard index metrics are considered. There are 

fluctuations in the fold results for the sensitivity since the minimum sensitivity is 

obtained in Fold 3, with approximately a 5% decrease (89.47% and 94.65%, 

respectively). The highest dice score and Jaccard Index are obtained in Fold 4 (0.95 

and 0.90, respectively). The proposed system achieved the mean accuracy, 

sensitivity, specificity, precision, dice score, and Jaccard index as 99.38%, 92.19%, 

99.75%, 95.04%, 0.94, and 0.88, respectively. Table 1 presents the obtained results 

for the BRATS 2012 HGG images in detail. 

 

Table 1. 

Evaluation Results of the BRATS 2012 HGG Images. 

Fold Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Precision 
(%) Dice Jaccard 

1 99.32% 92.10% 99.69% 93.70% 0.93 0.87 

2 99.27% 94.65% 99.50% 90.37% 0.92 0.86 

3 99.38% 89.47% 99.88% 97.41% 0.93 0.87 

4 99.47% 92.88% 99.82% 96.40% 0.95 0.90 

5 99.47% 91.86% 99.87% 97.30% 0.94 0.90 

Mean 99.38% 92.19% 99.75% 95.04% 0.94 0.88 

 

The second experiment is aimed to demonstrate the efficiency of the 

proposed system in segmenting the untrained images with different characteristics. 

Table 2 presents the obtained results for the BRATS 2012 LGG images. 

 

Table 2. 

Evaluation Results of the BRATS 2012 LGG Images. 

Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Precision 
(%) Dice Jaccard 

99.12% 83.27% 99.62% 87.18% 0.85 0.74 
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In the third experiment, consistent results are obtained when accuracy and 

specificity are considered. Even though a decrease is observed in the sensitivity 

result of Fold 2 (74.71%), stable results are obtained in general, and 83.01% mean 

sensitivity is achieved. Similarly, consistent precision results are obtained except for 

Fold 1 (87.79%), and the mean precision result of the proposed system is recorded as 

92.60%. The highest dice score and Jaccard index are obtained in Fold 3 and Fold 5 

with the same results (0.89 and 0.80, respectively). The proposed system achieved 

the mean accuracy, specificity, dice score, and Jaccard index as 99.38%, 99.82%, 

0.87, and 0.78, respectively. Table 3 presents the obtained results for the BRATS 

2019 dataset in detail. 

 

Table 3. 

Evaluation Results of the BRATS 2019 Dataset. 

Fold Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Precision 
(%) Dice Jaccard 

1 99.34% 87.21% 99.67% 87.79% 0.87 0.78 

2 99.27% 74.71% 99.92% 96.23% 0.84 0.73 

3 99.44% 85.34% 99.81% 92.42% 0.89 0.80 

4 99.42% 82.98% 99.86% 93.83% 0.88 0.79 

5 99.43% 84.82% 99.82% 92.72% 0.89 0.80 

Mean 99.38% 83.01% 99.82% 92.60% 0.87 0.78 

 

In the fourth experiment, the close results are obtained in each fold when the 

accuracy, specificity, dice score, and Jaccard index metrics are considered. There are 

fluctuations in the fold results for the sensitivity since the minimum sensitivity is 

obtained in Fold 5, with approximately a 7% decrease (80.61% and 87.89%, 

respectively). Similarly, consistent precision results are obtained except for Fold 4 

(90.66%). The highest dice score and Jaccard index are obtained as 0.89 (Fold 3 and 

Fold 4) and  0.81 (Fold 4), respectively. The proposed system achieved the mean 

accuracy, sensitivity, specificity, precision, dice score, and Jaccard index as 99.40%, 

83.62%, 99.83%, 92.94%, 0.88, and 0.79, respectively. Table 4 presents the obtained 

results for the BRATS 2020 dataset in detail. 



37 
 

Table 4. 

Evaluation Results of the BRATS 2020 Dataset. 

Fold Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Precision 
(%) Dice Jaccard 

1 99.37% 80.96% 99.87% 94.17% 0.87 0.77 

2 99.40% 82.16% 99.85% 93.71% 0.88 0.78 

3 99.43% 86.51% 99.78% 91.17% 0.89 0.80 

4 99.45% 87.89% 99.76% 90.66% 0.89 0.81 

5 99.37% 80.61% 99.88% 95.01% 0.87 0.77 

Mean 99.40% 83.62% 99.83% 92.94% 0.88 0.79 

 

In the last experiment, the traditional U-Net architecture achieved 0.90, 0.82, 

0.81, 0.85 dice scores for the BRATS 2012 HGG, BRATS 2012 LGG, BRATS 2019, 

and BRATS 2020 datasets, respectively and lagged behind the proposed system. 

In addition to the last experiment, the proposed system and the traditional U-

Net architecture are tested on the BRATS 2020 validation set to justify the 

superiority of the proposed system using the BRATS online evaluation platform. The 

proposed system and the traditional U-Net architecture achieved 0.81 and 0.77 dice 

scores, respectively. 

At the end of the experiments, the average tumor volume is calculated for 

each dataset. The volumes are obtained using the number of tumor voxels multiplied 

by the voxel volume (Montelius, et al., 2012) and converted to cm3 after calculating 

the average of all slices. Then, the correctly segmented tumor volumes are calculated 

and compared to the actual values to observe the agreement. 

The agreement between the tumor volume extracted on the ground truth 

images and the outputs of the proposed system are calculated as 92.22%, 83.48%, 

83.01%, and 83.57% for the BRATS 2012 HGG, BRATS 2012 LGG, BRATS 2019, 

and BRATS 2020 datasets, respectively. 

Figure 15 demonstrates the segmentation results, including a sample for each 

considered dataset. 
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Figure 15. 

Sample Segmentation Results of the Proposed System. 

 
 

Where red and yellow regions in the overlaid images represent the ground 

truth and segmented tumor by the proposed system, respectively. 

 

Comparisons 

The proposed system is compared with the recent studies that focused on the 

complete brain tumor segmentation task. Tables 5, 6, and 7 show the comparison 

results of the proposed system for the BRATS 2012 (HGG-LGG), BRATS 2019, and 

BRATS 2020 datasets, respectively. 

 

Table 5. 

Comparison Results of the Proposed System on BRATS 2012 Dataset. 

Study Tumor Type Method Dice 
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Table 5 (Continued). 

- 
HGG 

 
LGG (untrained) 

Traditional U-Net 
0.90 

 
0.82 

(Eltayeb, et al., 
2019) 

HGG 
 

LGG 

K-means Clustering with CH 
cluster validity index 

0.89 
 

0.84 

(Rehman, et al., 
2020) 

HGG 
 

LGG 
LOOCV and RF 

0.88 
 

0.81 

(Chithra & 
Dheepa, 2020) 

HGG 
 

LGG 

CNN architecture based on  
Di-phase midway 

0.84 
 

0.85 

Proposed 
HGG 

 
LGG (untrained) 

Tumor localization and 
enhancement methods + 

traditional U-Net 

0.94 
 

0.85 

 

Table 6. 

Comparison Results of the Proposed System on BRATS 2019 Dataset. 

Study Tumor Type Method Dice 

(Zeineldin, et al., 
2020) 

Combined Traditional U-Net 0.81 

Combined Combination of modified U-Net 
and Xception architectures 0.84 

(Sohail, et al., 
2021) Combined 3D U-Net 0.78 

Proposed Combined 
Tumor localization and 
enhancement methods + 

traditional U-Net 
0.87 

 

Table 7. 

Comparison Results of the Proposed System on BRATS 2020 Dataset. 

Study Tumor Type Method Dice 

- Combined Traditional U-Net 0.85 

(Sohail, et al., 
2021) Combined 3D U-Net 0.72 
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Table 7 (Continued). 

(Zhao, et al., 
2021) Combined MVP U-Net 0.80 

(Ballestar & 
Vilaplana, 2021) Combined V-Net 0.87 

Proposed Combined 
Tumor localization and 
enhancement methods + 

traditional U-Net 
0.88 

 

Figure 16 shows the visualization of the comparative segmentation results. It 

is clear that the all of the proposed methods in the literature are capable of 

segmenting complete brain tumors; however, the details localized and enhanced by 

our proposed methods create differences within other methods and the produced 

results. 

 

Figure 16. 

Comparative Segmentation Results. 
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Where (a)-(d) original images for the BRATS 2012 HGG, BRATS 2012 

LGG, BRATS 2019, and BRATS 2020 datasets, respectively; (e)-(h) corresponding 

ground truth images, (i)-(l) overlaid outputs of the proposed system, (m)-(n) 

(Eltayeb, et al., 2019), (o) (Zeineldin, et al., 2020), and (p) (Ballestar & Vilaplana, 

2021). 

 

Discussions 

The lack of distinct tumors in MRI images requires enhancing these regions 

to provide more accurate segmentation. However, the enhancement of the tumor 

region initially requires effective localization to apply enhancement only to the 

region of interest. 

The localization of the tumors according to the basic characteristics of the 

images using a non-parametric localization method enabled us to apply the proposed 

enhancement method to increase the visual appearances of indistinct tumors. 

Similarly, the proposed localization and enhancement methods minimize 

segmentation errors for the distinct tumors that occurred in high-contrast images by 

adjusting the pixel values similar to the background within the tumorous region. 

Therefore, indistinct tumorous regions or pixels are clarified, and the background 

regions are preserved with low computation cost (average processing time / image = 

0.0028 sec.). 

Due to the non-parametric and automated procedure of the proposed methods, 

the computational cost is minimized by preventing the selection of any parameters 

for the images. This also provided more distinguishable tumorous regions and 

informative features to the traditional U-Net architecture to extract features more 

efficiently and perform segmentation with highly accurate results. The supervised 

learning and feature extraction nature of the deep learning architectures focuses on 

the regions provided in the ground truths to extract the relevant features and obtain 

the ability to segment untrained data.  

Applied pre-processing methods yielded the deep learning architecture to 

mainly focus on the enhanced and visually improved tumorous regions by 

eliminating and not considering irrelevant components. This increased the 

segmentation results of the traditional U-Net architecture by 0.04, 0.03, 0.06, and 

0.03 for the BRATS 2012 HGG, BRATS 2012 LGG, BRATS 2019, and BRATS 

2020 datasets, respectively. 
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In addition, the validation set results obtained from the BRATS online 

evaluation platform prove that the applied pre-processing methods increased the 

traditional U-Net’s segmentation ability by a 0.04 dice score. 

The obtained results showed that the low-cost pre-processing of images 

significantly increases the segmentation abilities of deep learning architectures 

without modifying the internal architecture. On the other hand, datasets are trained 

without any data augmentation technique and minimize the computational time for 

the U-Net architecture training. 

The limitation of the proposed system is determined on the images consist of 

multiple indistinct tumorous regions with a few pixels. This is based on the 

assumption that the tumor is a single region; however, the methods could be 

modified to detect multiple regions to avoid this limitation in the future. Another 

limitation of the study is the consideration of the FLAIR images only for complete 

tumor segmentation and not testing the proposed methods with other modalities for 

segmenting tumors as multi-class. Our future work will focus on this subject. 
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CHAPTER VII 

 

Conclusion 

 

In this study, the proposed non-parametric tumor localization and 

enhancement methods are combined with the traditional U-Net architecture and 

proposed as a complete brain tumor segmentation system. The proposed system is 

tested on three benchmark datasets named BRATS 2012 (HGG and untrained LGG), 

BRATS 2019, and BRATS 2020 and the superior segmentation performance is 

obtained in segmenting complete brain tumors by achieving 0.94, 0.85, 0.87, and 

0.88 dice scores, respectively. 

In addition, in the experiments performed to compare the performances of the 

proposed system and the traditional U-Net architecture, the proposed system is 

reported as superior. 

The results showed that the effective localization and enhancement of 

tumorous regions yield the deep learning architectures to learn features more 

effectively and segment the trained or untrained datasets accurately without requiring 

data augmentation techniques and modifications. 

The future work will include improving the proposed system to segment sub-

classes of brain tumors named core and enhancing tumors after performing complete 

tumor segmentation. 
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Appendix D 

 

Dataset Description 

 

Table D1. 

Dataset Description. 

Dataset Tumor Type # Patients 
# 2D Tumorous 
Axial FLAIR 

Images  

# 2D Non-
Tumorous Axial 
FLAIR Images 

BRATS 2012 
HGG 20 1,363 2,362 

LGG 10 485 1,423 

BRATS 2019 
HGG 259 17,224 22,921 

LGG 76 4,926 6,854 

BRATS 2020 Combined 369 24,422 32,773 

 


