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ABSTRACT 

 

The most useful and popular object identification method is SSD (single shot multi-box detection). 

At present, object detection using convolutional neural networks occupies a dominant position. 

However, the structure of the competent neural network faces hereditary difficulties: high-level 

networks have large receptive areas and meaning information has high capacity to illustrate, but the 

solution is diminished, the calculations are weak. In grassroots networks there are relatively small 

acceptable areas, and it has strong geometric detail information representation capability. 

However, the higher the resolution, the more information the capacity would have been so weak. 

SSD object prediction the multi-level feature uses mAP, predicting things with large fields of 

reception and small fields of prediction of things, It also uses high-level facilities to do. It makes 

difficulties: When using information about lower-level network functions to predict small things, due 

to the lack of standard high-level functions, the identification of small SSD objects is seriously 

compromised. 

Based on the analysis and introduction of classic SSD algorithms, in this thesis, we aim to detect 

small objects at a fast speed, through present an approach which adapts the single socket multi-box 

(SSD) detector in relation to trading with precision and speed. An MSSD procedure of 

multistage components combination is offered to supply old knowledge in SSD, in order to improve 

the accuracy for small objects. In detail, the merge operation consists of two resource merge 

modules, a concatenation module and a sum of elements module, different in the way of 

adding contextual information. The VGGl6 and deep residual networks are used by the MSSD 

training to optimize candidate box regression and classification task input feature mAPs to improve 

detection accuracy and detection speed. With Residual network, this thesis uses the FPN-based 

network architecture to integrate high and low layers and improves the traditionally sampled 

structure. The high-level semantic information is integrated into the low-level network feature 

information, and the multi-scale feature mAPs for predicting the regression location box and the 

classification task input are enriched to improve the detection accuracy. Experiments are performed 

on the logo and VOC2007/2012 datasets  
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which contains a large amount of small objects (objects of 50 pixels or less). Experimental results 

show that these two fusion modules obtain better mAP on PASCAL VOC2007 and Logo datasets than 

base line SSD, especially on some small objects categories. 

 

KEY WORDS: Small object detection, single shot multi-box detector, MSSD feature fusion, Feature 

Pyramid Networks, real-time. 
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ÖZET 
 

En kullanışlı ve popüler nesne tanımlama yöntemi SSD'dir (tek seferde çoklu kutu 

algılama). Şu anda, evrişimli sinir ağlarını kullanan nesne algılama baskın bir konumdadır. 

Bununla birlikte, yetkin sinir ağının yapısı kalıtsal zorluklarla karşı karşıyadır: yüksek 

seviyeli ağların geniş alıcı alanları vardır ve bu, bilginin gösterme kapasitesinin yüksek 

olduğu anlamına gelir, ancak çözüm azalmıştır, hesaplamalar zayıftır. Taban ağlarında 

nispeten küçük kabul edilebilir alanlar vardır ve güçlü geometrik ayrıntı bilgi gösterimi 

kapasitesine sahiptir. Bununla birlikte, çözünürlük ne kadar yüksek olursa, kapasite o kadar 

zayıf olurdu. SSD nesne tahmini, çok seviyeli özellik mAP kullanır, geniş alım alanları ve 

küçük tahmin alanları olan şeyleri tahmin eder, ayrıca yapmak için üst düzey olanaklar 

kullanır. Zorluklar yaratır: Küçük şeyleri tahmin etmek için alt düzey ağ işlevleri 

hakkındaki bilgileri kullanırken, standart üst düzey işlevlerin bulunmaması nedeniyle, 

küçük SSD nesnelerinin tanımlanması ciddi şekilde tehlikeye girer. 

Klasik SSD algoritmalarının analizine ve tanıtımına dayanarak, bu tezde, tek soketli çoklu 

kutu (SSD) dedektörünü hassas ve hızlı ticarete göre uyarlayan bir yaklaşım sunarak, 

küçük nesneleri hızlı bir hızda tespit etmeyi hedefliyoruz. . Küçük nesnelerin doğruluğunu 

artırmak için SSD'deki eski bilgileri sağlamak için çok aşamalı bileşen kombinasyonunun 

bir MSSD prosedürü sunulmaktadır. Ayrıntılı olarak, birleştirme işlemi, bağlamsal bilgi 

ekleme şeklinde farklı olan iki kaynak birleştirme modülünden, bir birleştirme modülünden 

ve bir öğe toplamı modülünden oluşur. VGGl6 ve derin artık ağlar, MSSD eğitimi 

tarafından, algılama doğruluğunu ve algılama hızını iyileştirmek için aday kutu 

regresyonunu ve sınıflandırma görevi girdi özelliği haritalarını optimize etmek için 

kullanılır. Artık ağ ile bu makale, yüksek ve düşük katmanları entegre etmek için FPN 

tabanlı ağ mimarisini kullanır ve geleneksel olarak örneklenen yapıyı iyileştirir. Yüksek 

seviyeli anlamsal bilgi, düşük seviyeli ağ özelliği bilgisine entegre edilmiştir ve regresyon 

konum kutusunu tahmin etmek için çok ölçekli özellik mAP'leri ve sınıflandırma görevi 

girdisi, algılama doğruluğunu iyileştirmek için zenginleştirilmiştir. Logo ve büyük 

miktarda küçük nesneler (50 piksel veya daha küçük nesneler) içeren VOC2007 / 2012 veri 

kümeleri üzerinde deneyler yapılır. Deneysel sonuçlar, bu iki füzyon modülünün, özellikle 
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bazı küçük nesne kategorilerinde, PASCAL VOC2007 ve Logo veri setlerinde temel 

SSD'ye göre daha iyi haritalama elde ettiğini göstermektedir. 

 

ANAHTAR KELİMELER: Küçük nesne algılama, tek atışlı çoklu kutu dedektörü, MSSD 

özellik füzyonu, Özellikli Piramit Ağları, gerçek zamanlı. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1   Introduction  

Fast growing also years with computer hardware and software from artificial intelligence, 

unmanned driving, intelligent transportation, travel, with identification and reuse of many 

other applications there is no doubt a need to include the goods. Computers should be used 

to detect and identify Real-time tracking, rapid tracking which makes it important as a 

fundamental, long-standing and difficult subject in computer vision, the discovery of object 

has always been for decades, athough it dominates an important and active area of research 

has been. Detecting and locating whether or not there is instance of object in a given image 

from given categories is the objective of object detection and return with the spatial 

position through a bounding box.  

Recently, the techniques of deep learning [26, 27] have emerged as efficient and powerful 

methods for automatically learning features representation from data. Specifically, these 

techniques had already provided significant improvement as never before for object detec-

tion, which is a question that has mobilized large number of attention recently. Although 

difficulties of objects detection has seen a qualitative leap in scientific through a lot of 

research in natural scenes, it is yet far from being solved, especially for small objects. This 

problem is extremely relevant in many of today’s challenging research applications like 

detecting traffic signs, pedestrians and cars on roads and a so on. Although CNNs have 

been proved efficient and effective on object detection, the reliable and accurate detection 

for small objects, due to their limited information and resolution in images deemed a quite 

challenging task [36],[35]which the small object activations become forwardly smaller 

with each pooling layer, as passing an image throughout a standard CNN architecture like 

ResNet or VGG16, and Current methods often cannot detect small size objects effectively 

as well as they have done for the large objects [10]. The challenges involved in the 

detection of small objects are multiple fold, but the biggest challenge stems from the 

comparatively small size of an object compared to its background in an image, e.g. the 



2 
 

small object of interest occupies only 1 to 5 percent of pixels in an image. In addition, the 

input size for all these networks is indicated by in the place of storage over GPUs due to 

the enormous network running memory requirements. For instance, an SSD detection 

model [34] based on VGG16 [25] needs more than 10 gigabytes to handle only a single 

image with a 2048 R 2048 input size. Simplifying the network, e.g. using a shallow one, 

with a tradeoff of performance degradation is the only way to overcome the above 

mentioned problem. A second alternative solution in order to suits the memory is by down-

sample the original image. However, It will be even more difficult to detect small objects.  

This research work is based on existing SSD methods, on additional research and 

references, using resource maps at various scales of different layers to predict or anticipate 

objects, large predicted objects using more receptive large fields with high level resource 

information, though smaller. Receptive fields and low-level information about the 

characteristics used to predict small objects. When a person is at the spiritual level smaller 

than SSD detection if it is deficient may have adverse effects on objects. Solve this 

problem with top level iconic detail and little features facts must be combined. This 

research is high-level and low-level uses an FNF-Based network structure for feature 

fusion and expands the traditional ultra-sample structure First class with this faculty 

network information combines grammatical facts and predictive position of different field 

scales enriches the map on view and classification functions enter. To improve detection 

accuracy after extracting the resource maps at various scales, this thesis provides a forecast 

module consisting of residual units, extracts the deepest resources further and finally 

inserts them into the cash regression task and the classification task. Specialized 

information from this faculty network integrates with first-class grammatical fact and 

strengthens the outline map. Solved object detection problems accuracy and increased 

speed classification works. It has important practicability in artificial intelligence, 

unmanned driving, intelligent transportation, face recognition and other fields. 

1.2  Evolution of Image Recognition 

In 2012, object method ranked resources adopted the perception of maximization. First, 

someone item categories it is necessary to specify a particular feature so that it can be 

display correctly. The object can be completely represented by resource vectors after 

extracting sufficient resources from the training data, which will be used during the 
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training time to be used during the test time to perform detection tasks and also to train a 

classifier. Drawback stand out, as the clarity of the function is very tricky also difficult get 

expand the model by adding an additional object to the detection list. In addition, the 

detection accuracy is not satisfactory In 2012, during the mass visual recognition challenge 

(ILSVRC,2012), Krysovsky’s CNN model to classify images with extend training images 

in addition to GPU-CNN beat the high potential self-learning capabilities taking advantage 

of, CNN models are more appropriate and adaptable so that if appropriate training data is 

available, it will be used in other categories too many can be done. From that day on, CNN 

has become the primary tool for classifying objects. From 2012 to 2015, Research 

subsequently wrote regression heads for all CNNs currently in circulation, including VGG-

Net [25], Overfeat-Net [24] and ResNet [14], thereby lowering the rate. 34% to 9% of 

individual object location error. Obviously, in the role of location and classification, CNN-

based approaches performed very well. 

The researchers also started working on various object detection tasks. In late 2014, several 

proposals for the CNN-based region and classification methods were developed [6] [7] [8] 

[21]. Essential i mean workplace proposition approaches create applicant zone which are 

likely to include objects and then classify all those regions later in practical terms, these 

regional proposition and classification methods could achieve very precise precision. High 

[24] [25] [14]. However, the part of the region's proposal really takes a long time, slowing 

down the entire system. 

1.3 Motivation 

Although the natural landscape as objects research has long been the subject of research 

and it is a computer big challenge has been made in sight, small the question of finding 

objects has been neglected for a long time of course, the object detector is large and will 

work well on medium sized objects, but images due to the “low resolution” size of little 

objects, these detectors are the objects perform poorly for the general function of 

identification and detection identification to exhibit. At present, the main factors restricting 

the development of object detection include the following aspects: 

• Image half-and-half analysis of a comprehensive iterative neural network: the 

multi-function function of the context function, the virtual neural network is vulnerable to 
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structural problems. High-level networks have enormous acceptable fields and powerful 

ability to present meaningful information, but low resolution is weak  

• geometric detail information representation capabilities. Yielding area for    low-

rate network is comparatively low, and Strength to represent geometric details is strong. 

Despite the high resolution, the capacity to represent semantic information is low. Multi-

scale object positioning, objects are predicted by multi-scale feature maps, large objects are 

predicted by feature information of high-level and small objects are predicted by feature 

information of low-level with larger receptive fields. This raises concerns when 

information from the purpose of poor system network is used portend small ones, the 

absence of next level voice functions indicates poor ones. 

• Hard to imagine real-time generation of high-resolution images or videos: A object 

with a simple background, sufficient light, no obstruction, and a shooting angle of front is 

relatively easy to detect, because this kind of image is the easiest type in object detection. 

Many methods can achieve 100% accuracy for this kind of image. The detection rate is 

greatly reduced when the background is mixed with the object, there are occludes near the 

object, the light intensity is too weak, and the object pose changes. Considering the real 

time detection, detecting and recognizing small objects accurately in a fast way is hardly 

achieved by these studies. A large improvement ion speed has presented by The Single

 Shot Multi box Detector (SSD [10]) fast detector. Thus, currently, the precision 

/ speed compromise is still difficult to balance simultaneously and remains a major 

problem for future research to be solved. We are inspired here by 

• Developed a latest idea "MSSD technique for the sake of related information to  

SSD libraries". Thus, today, the compromise between precision and speed is also still 

difficult to balance simultaneously; it remains largely a vital problem for future research 

sorted out. 

1.4 Contribution 

 The main purpose of the current topic is to quickly detect small things. Our 

partnership includes the following parts to be included documents. Data set up pre-

processing for 8 classes to identify training, verification and data needed to identify 

something 
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• We check if the object detector is SSD because the speed and speed trade-off 

original architecture for normal small object is good example in term of accuracy. Various 

datasets, namely PASCAL VOC[15], and logo datasets possible to detected on line. 

After analysis and introduction from that SDD model, a new algorithm MSSD model 

verification (modified single shot multi-box detector) aimed to increase both the accuracy 

and reliability of detecting small objects disappeared. Include in information about low-

level network facilities for advanced rationality information, and multi-level features maps 

of predictable regression location and classification task inputs have been added to 

improve the need to explore reinforce. The VGG16 and deep residual network used in a 

new algorithm, and the feature maps of candidate box regression and classification task 

input were optimized. 

• In detailed, we instantiate training our model with two backbone VGG16 and 

ResNet with two modules, element-sum and concat-sum modules. 

This study will enhance the accuracy of target recognition by solving the problems of SSD 

method in target detection. It has important practicability in artificial intelligence, 

driverless, intelligent transportation, face recognition and other fields. 

1.5 Structural Design of the thesis 

This thesis report is structured into five chapters. Beginning with two (chapter 1, chapter 2) 

theoretical chapters. Since the convolutional object detection is a collection and 

combination of several fields in machine learning, discussing several related theoretical 

topics which seem desperate at first definitely is needed. proceeding from chapter 2, we 

will start with a short introduction to convolutional neural networks as a combination of 

computer vision and machine learning. Next, we introduce a short evolution of image 

recognition, we end the chapter by discuss how convolutional object detection used for the 

problem of detecting objects and review the popular recognizing an object methods. In 

chapter 3, we discuss detailed explanation with SSD method and our adaptations. In 

chapter 4, we will take a look at the datasets we’ve been working with, which are 

VOC2007 and Logo dataset, for image classification, also we shift to the experimental part 

beside discussing the details of the datasets and how will evaluated and shown the results 

we got during the implementation steps. 
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Ultimately, we provided the conclusion of our project in Chapter 5 and addressed, 

discussed in the future the recommendations and improvements on the project 
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CHAPTER 2 

BACKGROUND AND RELATED WORKS 

 

Since 1980, Artificial Neural Network (NN) has become a popular direction in the field of 

artificial intelligence research. First, the method abstracts the neural network of living objects from 

the direction of information analysis and processing, and then builds some simple models. Finally, 

these models are combined according to different connected methods to form different network 

structures. WSMcCulloch and W. Pitts established the MP model in the early 1940s [18]. Based on 

the MP model, a method for describing the mathematical concepts of neurons and describing the 

structure of neural networks was proposed, verifying that a single neuron also Being able to 

perform logical functions has opened up a new era of artificial neural network research, and 

artificial neural networks have experienced a long history of development since then. Until the 

early 1960s, the concept structure of the ”perceptron” was established by F. Rosenblatt. The 

structure is a neural network composed of multiple layers. Its design and production put the 

theoretical research of artificial neural networks into practical engineering. Subsequent years of 

investigation and development, the theoretical structure of artificial neural networks has achieved 

excellent results in a wide range of research areas. At the same time, a large number of neural 

network structural models are proposed, such as perceptrons, feedforward neural networks, BP 

neural networks [19], Boltzmann machines [20], convolutional neural networks, and so on. 

2.1 Convolutional Neural Network ( CNN ) 

Today, convolutional neural networks are presently among of the most outstanding algorithms 

of deep learning techniques utilizing the images datasets. Whilst relevant feature has to be 

manually extracted for traditional machine learning, which in deep learning certain features 

are learned by using raw images as input. A CNNs working on a layer of sends and receives 

also several hidden layers, convolutional, pooling and entirely linked films are examples like 

invisible layers. The CNN architecture differs in type and numeral of layers which had been 

implemented and introduced for its particular application. Classified responds, the procedure 

shall contain a group of operation layer, whereas the network should include a regression layer at 

the end of the network for continuous responses. Purposefully, each layer of CNN neurons is 

shaped and organized in a 3D structure, aiming to obtain a three- dimensional output through 

passing three-dimensional input throughout the CNN layer. Fig- ure 2.1 shows that the images are 



8 
 

held by the input layer as 3D (width, height and depth- RGB as dimensions) inputs. Below, 

regions of the picture bind together to nerve cell within winding layer plus converted into such a 

three-dimensional output, look at figure 2.1. 

 

 
Figure2.1: A CNN which the red input layer consists of an image that converted into a 3D structure 

Source:  http://cs231n.github.io/convolutional-networks 

 

CNN structure involves of many hidden layers. In each layer, nodes are involved while 

activation volumes are changed using of different functions. To create CNN configurations, there 

are four principle types of layers that are used, the example is shown in figure 2.2. 

• Convolutional-Layer (CONV). 

• Rectified-Linear-Unit-Layer (ReLU). 

• Pooling-Layer (POOL. 

• Fully-Connected Layer (FC). 

2.1.1 Convolutional Layers 

In CNN, convolution has been often familiar with output a characteristic design upon data, which 

can be the original image or other feature map. The main purpose of using convolution is to take 

advantage of the special structure of the input and learn how to transform it to the most informative 

form. In practice, convolutional layer’s conduct is monitored in a series of hyper variables, which 

brings flexibility to the design of neural networks and allows to adapt them to various problems: 

http://cs231n.github.io/convolutional-networks
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Figure 2.2: A CNN architecture uses to classifying an image as belonging to one of the categories 

Source:http://cs231n.github.io/convolutional-networks 

• Kernel size defines the attributes of complication core. Controls the input area where 

neurons are sensitive. It chose the right value for this parameter almost always according to 

a set of data. One way is to capture important detail by determining the smart size of the 

first row according to the scale of the images. Edges however, there is no rings for deep 

players theory is not end the maximum size of intellect is experimentally determined. In 

the case when the input contains multichannel images or any three-dimensional data kernel 

itself is often three-dimensional. 

• Core number output dimension maintainers controls the number, because each core will 

produce a different main map. Increasing number of particles in the architecture can be 

frozen in the reduction of information less where the map size decreases with each layer. It 

also controls the capacity of the model under growing amount with kernels overall figure of 

trainable parameters grows up. 

• Padding: convolution is unclear bordering inputs, because several segment of the grains 

does disproportioned few intake value it can consume. Addresses issue like angle 

cases to apply convention, the input possibly prepared under zero input value. Figure 

for which is determination directly influenced by the volume result, so wadding could 

used to control it.  

• Sliding convention control pass the ascending price of two shall tell that after 

confusing several point, are skipped during dimension tour by manipulating, we 

overlap and decrease the output size of various accepted fields you can manage.  Let 

http://cs231n.github.io/convolutional-networks
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nin, nout, k, p, s be the total number of the inputs and outputs, total kernel size, padding 

size and the stride, resp.  Then the following relationship holds true [16]: 

  𝒏𝒐𝒖𝒕 = 𝒏𝒊𝒏 + 𝟐𝒑 − 𝒌
𝟐� + 𝟏     (2-1) 

2.1.2 Pooling Layers and Dropout Layer 

pooling operations always follow each convolution operation in order to control over fitting, 

minimize training time, and to further simplify the information. Receiving and compresses the 

input from previous feature in order to extract and condensed output feature map which feed 

forward to the next process is the core of the function of the pooling process. There are, as you 

know, two common pooling technique, maximum and average. 

• Average pooling means calculating average between the field pooling values (every period 

from quality design). 

• max pooling consider majority widely utilized form of pooling which select the greatest 

value between each patch of the feature map. 

As shown, Figure 2.3, in a max-pooling operation, a 2 x 2 max-pooling filter induces future 

map reduction from 4 x 4 to 2 x 2. 

 
Figure2.3: Max pooling takes from each window the largest value 

                 Source:  http://cs231n.github.io/convolutional-networks 

 

Dropout [37-39] was proposed by Hinton in 2012. Complex convolutional neural networks 

are very prone to over-fitting immediately instruct with tiny number set of information. For the 

purpose of to prevent with over-fitting phenomenon, people can enhance the comprehensive 

http://cs231n.github.io/convolutional-networks
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capacity of the series of neural networks by discarding some feature data, as shown in Figure 2.4. 

Assuming such an intake and result are x and y, accordingly, x is forward-propagated through the 

neural network, followed by the inverse reproduction formula is used to update parameters so that 

the error value approaches y. After adding the Dropout policy, the calculation process is as follows: 

• Temporarily and randomly discarding one-half of the hidden neural units in the net- 

work layer, and the number of input and output neural units remains unchanged. 

• Input x The forward propagation calculation is performed in the neural network with the 

Dropout policy added, and then the previously calculated error value is back- 

propagated in the modified neural network. After a small batch of training data samples 

have been performed, the weight w and offset b are updated using a stochastic gradient 

descent method in the neural unit that has not been discarded. 

• Continue to repeat this process:  recover the discarded neural unit, randomly select one-

half of the hidden layer neural unit from the temporary and delete it, for a small batch of 

training data samples, use before Calculate the propagation, then use back- propagation to 

calculate the error loss value, and finally update the weight w and the offset b by the 

stochastic gradient descent method. 

   yi
l+1=f(wi

l+1(rl * yl)+bi
l+1)      (2-2) 

The role of the Bernoulli function is to generate a probability r vector, which is a vector that 

randomly generates a ”0” and a ”1”. 

  

 
Figure 2.4: Dropout Neural Net Model 



12 
 

Source:   http://laid.delanover.com/dropout-explained-and-implementation-in-tensorflow/ 

 

Summarize the advantages of the Dropout layer. First, for all the neural units of a 

hidden layer, set a probability value r during the training process, and delete some of the 

neurons temporarily and randomly. During the test, the weights are used (1-r) the probability value 

ensures that the same expected value can be used for each weight in the training and testing 

process. The other is that this layer strategy reduces the dependence of neural units on each other 

and makes some contribution to prevent over-fitting. 

2.1.3 Fully Connected Layers 

Completely linked sheets are a primary component of Convolutional Neural Networks (CNNs), 

which recently have proven noticeable success in recognizing and classifying objects in com- puter 

vision. The Fully Connected structure in a neural network is a set of layers which each one take the 

output of the prior layer (The output of CNN process)as input, turns them into a vector through 

”flattens” them, each representing the probability that a particular feature belongs to a label 

which will be an input for the following stage. The objective and role of adding fully connected 

layer comprising sort the photo in one label by utilizing the output of convolution/pooling 

process. In order to determine and boost the most accurate weights that belong to a label, the fully 

connected layers must go throughout a process named ”back propagation”. Each neuron in (FC) 

layers receives(forward - backward) weights and gives priority to the most appropriate label. 

Finally, the neurons mathematically ”vote” on labels, and the classification decision is voting 

winner. An example is showing below the structure (layers and type of layers ) needed to process 

an image. The more images are complex the more convolutional/pooling layers would be 

required. 

 

http://laid.delanover.com/dropout-explained-and-implementation-in-tensorflow/
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Figure 2.5:  layers in a convolution network 

Source: https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d 

2.1.4 Common CNN Activation Function 

The activation function is an important and indispensable part of the convolutional neural 

network. It can use linear and non-linear functions to enhance the expressive power of 

convolutional neural networks. Here are some common types of activation functions. 

Sigmoid function: the Sigmoid [42] function is a non-linear activation function that is used more in 

the binary classification of things, and its definition expression: 

   σ(x)=  1/1+e-x                (2-3) 

And its derivative : 

           σ(x)=  {   x; x > 0      (2-4) 

                                           σx; x < 0 

 

The function graph is shown in Figure 2.6. As you can see from the figure above, the Sigmoid 

activation function is monotonically continuously increasing, and the value range is (0,1). Where 

x = 0, the function curve intersects the y-axis at 0.5. Analysis of the graph shows that the function 

easily reaches soft saturation, that is, the partial derivative at the limit value is zero, so it will cause 

the network model to easily cause the gradient to disappear when training the data. 

• Tanh function: the Tanh function expression is as follows: 
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  σ(x) = 2 sigmoid(2x) – 1              (2-5) 

                      Its derivative expression is :  

  σ1(x) = 1 − (σ(x))2                  (2-6) 

 

The graphic image of this function is shown in Figure2.6. It can be known that the tanh 

activation function is monotonically continuously increasing, and the value range is (-1,1). Where x 

= 0, the function curve intersects the y-axis at 0. Analysis of the graph shows that the function 

easily reaches soft saturation, that is, the partial derivative at the limit is zero. Although this 

function can converge faster than the Sigmoid activation function, it does not solve the problems 

existing in the Sigmoid activation function, which will also cause the gradient disappearance 

phenomenon when the network model is training data. 

ReLU function: ReLU function [43] is the most widely used activation function at the moment and 

its function definition is: 

  σ(x) = max(0, x)                (2-7) 

 

The function image is shown in Figure 2.6. The ReLU function converges faster than the tanh 

function when training data, and provides sparse expression capabilities for convolutional neural 

networks. In terms of operation speed, the calculation of the ReLU function is simpler and 

cheaper than the exponential calculation of the logistic curve and the hyperbolic tangent function. 

Identify ReLU function is negative, its derivatives are all 1, when x is positive, its derivatives are zero, 

which can play a one-way suppression function, thereby effectively mitigating the disappearance of 

the gradient. Although the ReLU function has the above advantages, after all, it is not a big deal, 

and it also has some obvious disadvantages. For example, when the neural network model is 

trained when x is negative, the possibility of neurons disappearing is very high, so the dead neurons 

cannot update and calculate the weights and biases. 
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 Figure 2.6: Function curves of sigmoid, Tanh and ReLU 

 

2.1.5 Batch Normalization Layers 

To make training much easily in a very deep network we use Batch-normalization [17] to 

normalizes the output (activation of last Convolution or Fully Connected layers ). What batch-

norm is about? It is a learnable or adaptive pre-processing that applying norm process on the output to 

normalize the mean and variance in order to achieve a list of advantages like regularization, permit 

higher learning rates, minimize dependency on initialization and improves gradient flow. Let X ⊆ 

D be a batch of inputs, then Algorithm 2.1 Compute the output y of the batch normalization layer. 

   𝜇 ← 1
𝑥

 ∑𝑥 ∈ 𝑥𝑥 

 

            𝜎2  ← 1
𝑥

 ∑ 𝑥𝑥𝜖 (𝑥 − 𝜇)2 

 

   𝑥� ←  𝑥𝑖−𝜇
�𝜎2+𝑓

 

 

   𝑦 = 𝛾𝑥� + 𝛽      Scale and bais 

 

By centering and scaling the feature maps batch normalization makes the gradient com- putation more 

robust because the main goal of the layer is to discard the change in the distri- bution of hidden layers 

output, which can happen in the process of training. This simplifies learning and provides faster 



16 
 

convergence toward the minimum. The values of γ ∈ R and β ∈ R are determined in the process of 

learning. 

2.1.6 Deconvolution 

Deconvolution has introduced recently by [”ZKTF10”], which basically orders to increase 

dimensionality from one input data. Perform , the process of convolution is basically 

transposed. Originally, deconvolution produces patches of 𝜌(𝑘 − 1)
(𝑖, 𝑗) ∈ 𝑅1∗1∗𝑚(𝑘−1) 

accordance input, and applicable a mass matrix of  𝑤𝑘𝜀𝑅(𝑘−1) ∗ 𝐾 ∗ 𝐾 ∗ 𝑚(𝑘−1)    simply 

put it creates 𝑘 ∗ 𝑘 ∗ 𝑚𝑘  resulting every 1 ∗ 1 ∗ 𝑚(𝑘−1) patch and extends dimension 

(height and weight) of the input  

2.1.7 Development  

Among the first effective and successful deep neural networks was convolutional neural net- works. 

Built up in the 1980s by Fukushima, the Neocognitron biologically inspired[29] have provided A 

new model of translation-invariant object recognition in the neural network. Le Cun et al. merged 

a learning algorithm with that kind of method, i.e. back-propagation[33]. Almost all of these early 

approaches were used for handwritten recognition of character. The neural network methods 

disappeared prominently after attempting to deliver any promising results and entirely were 

substituted by support-vector-machines[47]. Then, Krizhevskky et al.[22] in 2012, accomplished 

fantastic outcome on the dataset of the ImageNet-Large- Scale-Visual-Recognition Challenge 

(ILSVRC) by incorporating Le Cun’s approach with previous approaches of deep learning fine 

tuning. These findings have popularized CNN networks, made it successful and led to discovery 

and development of new powerful meth- ods described later to detect objects. Simonyan and 

Zisserman[25] discussed and addressed the impact on position and clas- sification accuracy for the 

2014 ImageNet challenge of expanding the depth of a CNN. Through the use of 16 and 19-layer 

deep convolution networks The team has accomplished outcomes that have made the state-of - the-art 

highly enhanced. The architecture of 16 layers involves 13 convolution layers, 5 max pooling layers 

and 3 FC layers, using rectified (ReLu) activations in All hidden layers. FC layers minimize 4096 

channels to 1000 softmax outputs that regularized by dropout technique. The latest (2016) winner[2] 

in the ImageNet compe- tition of the category of object detection Is also CNN-based. The approach 
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uses a mixture of production of CRAFT region proposal [45],  clustering, Bi-directional gated 

CNN[46], ensembling and landmark generation. 

2.2 Advanced Convolutional Object Detection  

here, discussing and comparing different methods of object detection that utilize convo- lutional 

neural networks will be done. In particular, we will consider those methods that combine 

convolutional neural networks(CNN) with regional proposal. 

2.2.1 R-CNN 

In 2012, Krizhevskky et al.[22] had achieved favorable and promised results utilize CNNs the task 

of general image classification ( look at section 2.1.5.). In 2013, a new method[6] called R-CNN 

(”CNN with area proposals”) had just been published by Girshicck et al. which these results are 

generalized to object detection. R-CNN is a basic algorithm would propose a number of regions to 

bounding box objects detected using a selective[44] search algorithm and classify them one at the 

time. For each label it will output the label’s name and the bounding box. As shown in figure 2.7, R-

CNN algorithm has several stages. The first stage is extracting regions proposals which we use a 

region extraction algorithm (selective search[44] or other region generation algorithm) to propose or 

extract those regions. Next, the CNN features are extracted by convolutional network from each 

region proposed inde- pendently for classification, following by warping the ” proposed bounding 

box” to a size fitted for CNN and then fed into the network. After the features has extracted, 

classifying what is the object is in this region through inputting the features to support vector 

machines (SVM) giving the final classification. The R-CNN is trained in several stages starting 

with the convolutional network(CNN) [8] and ending with classification algorithm SVMs to train 

the generating area proposition. Although R-CNN is considered very important process, because 

that is first practical solution to detect objects using CNNs. But it still suffering from many 

drawbacks Like expensive training, training consists of multiple stages and slow and etc. Slowness is 

one of the worst its drawbacks being needs to be processed by repeat 
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Figure 2.7: The R-CNN (Region with CNN feature) system 

    Source: https://towardsdatascience.com/r-cnn-3a9beddfd55a 

the convolutional network 2000 times to extract feature for each image. And this is what are later methods 

have been improved . 

2.2.2 Fast R-CNN 

In 2015,Fast R-CNN [8] published by Girshicck, what this approach do is obtaining CNN features from 

each area proposal over the entire image and collating them within one CNN features matrix, The feature 

matrix is then forwarding and branched out to be used in next classification and bounding box regression 

phase. Figure 2.8 is illustrating the generic struc- ture of Fast R-CNN. An image with its computed 

regions of interest (ROI) is received as input in Fast R-CNN method. As the same with R-CNN, 

external algorithms are used to generate RoI like selective search [44]. The CNNs which include several 

pooling ,convolu- tional layers is used to process images. 

The feature map generated from CNN after several convolutions and pooling layers is entered 

to a RoI layer. The output of ROI is a fixed-length feature vector for each region proposal from 

the feature map. The vectors are then feed forward to the FC layers which are connected to output 

layers: 

• A softmax classifier of (k+1) classes producing discrete probability distribution per ROI 

or probability estimates for the object classes. 

• A bounding-box regression which estimates offsets for K classes comparatively to the ROI. 

Comparable to R-CNN, Fast R-CNN is faster being needs much shorter classification time per 

image up to a second on a state-of-the-art GPU [8]. This is primarily because the con- volution 

operation is done per image only once rather than fed 2000 region proposals to 

https://towardsdatascience.com/r-cnn-3a9beddfd55a
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  Figure 2.8: The Fast R-CNN forward computation 

Source: https://towardsdatascience.com/r-cnn-3a9beddfd55a 

CNN once at the time per image. As the decrease of detection time, the total calculation time begins to 

rely significantly performance of the method of generating the region pro- posal. So generating ROI 

form is the cornerstone or bottleneck[8] of the computational. In addition, when there are many RoIs , the 

time spent on assessing fully connected layers can takes control the time of convolutional layers. 

Accelerating the Classification time can be done by about 30% by compress the fully-connected layers 

utilizing the truncated singular value decomposition [8],This leads to a slight decrease in accuracy, 

however. According to [8], during training Fast R-CNN approach is much more effective than regular 

R-CNN up to nine-fold drop in training time. The whole network including (RoI pooling and FC 

layers) can be trained with the back-propagation and stochastic gradient descent algorithm. Typically, as a 

starting point we use a pre-trained network to facilitate training and then fine-tuned. Mini-batches 

approach of m images is used to train the network. 

2.2.3 Faster R-CNN 

The fundamental idea of Ren et al.’s, Faster R-CNN [21] is to utilize the shared convolutional layers for 

detection and for generating region proposal. The researchers found that feature maps that produced by 

backbone networks also could be used to collect the region proposals. Region proposal (RPN) is a fully-

convolutional component of the Faster R-CNN network which produces the feature proposals. The authors 

announce the Fast R-CNN architecture as a successful end-to-end convolution network for the detection 

functions. Faster R-CNN network has already been trained by switching between generating and 

detecting RoI training. First, there are two different networks being trained. Such networks are then 

integrated and fine-tuned. During fine-tuning, some layers have been trained and some layers have been 

kept fixed in turn. A single image received by the trained network as input while the fully convolutional 

shared layers produce the feature map from the input image. While the feature maps feed to the RPN, 

regional proposals will be output of RPN that are input to the final detection layers include a (RoI pooling 

layer) with the said feature maps to- gether outputting the final classifications. Regional proposals have 
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become almost cost-free computationally using shared convolutional layers. The advantage of being 

realizable on a GPU was added by generating region proposals by RPN. Traditional methods for generat- 

ing RoI, including Selective Search, are implemented using CPU. The method uses special anchor boxes 

rather than a pyramid of scaled photos or a pyramid of varying filter sizes to handle different sizes and 

shapes of the detection window. Because of RPN faster R-CNN can propose regions with different size 

and the anchor boxes used as reference points to several region proposals which centered by the same 

pixel. 

2.2.4 Single Shot Multi-Box Detector(SSD)  

The Single-Shot-Multi-Box Detector(SSD)[10] goes even further with integrated detection. There is no 

need for the method to produce proposals, nor does it require any re-sampling of image segments. It uses a 

single pass of a convolutionary network to make object detection. The method begins with a default 

collection of bounding boxes, which very similar to a sliding window system. These absolutely include 

different scales and aspect ratios. The object predictions computed for these boxes involve offset 

parameters that predict how different from the default box are correct bounding box around the object. 

By using feature maps from various different layers of convolution (i.e. smaller and larger feature maps) 

as input to the classifier stage, the algorithm works with various scales. While the method produces a 

dense collection of bounding boxes, non-maximum suppression algorithm is following the classifier, which 

excludes most boxes under a certain confidence threshold. Although SSD method is less suited for small 

objects, it is one of the most efficient method and therefore being used as a method for object detection. 

2.2.5 Non-maxima suppression 

Non-maximum suppression (NMS) has already been used in several aspects of Computer vision. Its 

necessity comes from the imperfect of detection algorithms to localize the region of interest, resulting in 

groups of many detection near to the real location. So it’s a way to make sure that your algorithm 

detects each object only once. To implement (non-maxima suppression) follow the following : 

• Discard all boxes with pc ≤ 0.6. 

• While (loop) : 

o Pick the box with large pc,output this as a production. 

o Calculate the IOU between remaining box and output prediction pc in the previous step and if IOU= 

{(𝑖𝑜𝑢 ≥ 0.5     𝑜𝑡ℎ𝑒𝑟) 
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Figure 2.9: Process of Non-maxima suppression 

 

2.2.6 Region Proposal Network 

Taking the drawbacks of using selective search to extract regions of interesting in account, regions 

suggestion structure (RPN) created and used rapidly R-CNN method for minimize and mitigate problem 

of computational requirements of the overall inference process through determine where to look. The 

RPN efficiently and quickly takes all the anchors from every location and assess whether extra processing 

should be performed in a particular region by outputting K good bounding box proposals, each anchor has 

two different output(2 scores) represent the probability of existing an object or not at each location. The 

First one (classification) is the probability of whether or not the predicted box contains an object 

(background). An “object-ness score”, if you will RPN uses the object-ness score to filter predictions in 

order to deliver good predictions for the next stage. Notice that the RPN ignore labeling object to which 

class, it only care about anchors which contain something looks like an object and not background. The 

second output is the bounding box regression to determine a predicted bounding box Pxcenter , Pycenter , Pwidth, 

Pheight. Far away from selective search RPN completely implemented in a fully convolutionar manner 

efficiently, utilizing from the base network output(feature map) as input. First, In Faster R-CNN they 

used a 3x3 kernel size with 512 channels that slides over a high-level conv feature map. We use a 1x1 

kernel with k channels (k depends on the number of anchors) to get two parallel convolutional layers. 
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Figure 2.10: Convolutional implementation of an RPN architecture 

Source:   https://tryolabs.com/blog/2018/01/18/faster-r-cnn-down-the-rabbit-hole-of-modern-object-detection/ 

 

 

 
Figure 2.11: The RPN generates proposals over the image 

Source:   https://tryolabs.com/blog/2018/01/18/faster-r-cnn-down-the-rabbit-hole-of-modern-object-detection/ 

 

The confidence scores in classification layer(cls), each anchor has two predictions as output : the score of 

containing an actual object or not(background). For the regression layer (reg) that computes the box offsets, 

there are 4 predictions as output:∆xcenter  , ∆ycenter  , ∆width , ∆height 

That gonna be implemented particular offer presenter in order to get the final proposals. The final 

good set of proposals that will be further processed are those anchors with a corresponding high ”object-

ness” score. 

2.2.7 Compare the Methods 

Above in section (2.2), we have mentioned the qualitative leap of speed and accuracy between regular 

R-CNN and Fast R-CNN. How about their performance by Fast R-CNN com- pared with advanced 

methods (SSD, Faster R-CNN)? Comparing the performance of advanced methods(Faster R-CNN, SSD) 

https://tryolabs.com/blog/2018/01/18/faster-r-cnn-down-the-rabbit-hole-of-modern-object-detection/
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and Fast R-CNN on standard dataset PASCAL-VOC-2007 test set has done by Liu et al[10]. On 

PASCAL-VOC-2007 training data, Faster R- CNN performance slightly improving than Fast R-CNN 

which achieves 69.9, to 66.9, mean average precision respectively. Also SSD had achieved 68.0 mAP with 

300 x 300 input size and 71.6 mAP with 512 x 512 input size. Faster R-CNN and Fast R-CNN standard 

implementations are resizing the length of the input picture some smaller size of 600 pixels. It seems that 

SSD achieves better performance with images of similar size. However, to achieve such result [36], SSD 

needs or requires an extensive utilize of data augmentation to expand the precision with accuracy of 

recognizing for things. Fast R-CNN and Faster RCNN utilize only horizontal flipping technique while 

SSD benefit from the variety of the data augmentation techniques. Currently it is unknown, whether 

Faster RCNN and Fast R-CNN would utilize and benefit from additional augmentation. Undoubtedly, 

advanced methods (SSD, Faster R-CNN) are considerably more precise and correct than Fast R-CNN but 

the surprise improvement is the speed. After eliminating most of the low probability detection through 

the non-maximum suppression, SSD512 frame rate drops to 22 FPS while SSD300 frame rate drops to 59 

FPS. Meanwhile, Faster R-CNN based on a VGG-16 backbone can run at 7 FPS [10]. The running time of 

Faster R-CNN [21] has reported 5 FPS i.e. by the premier authors 0.2s per image. In case of evaluation 

speed, Fast R-CNN and Faster R-CNN both have approximately the same speed but Fast R-CNN requires 

extra time for generating region proposals. Generating regions using Selective Search in Fast R-CNN 

require 2 seconds per image as mentioned by the authors. 

2.2.8  Speed Accuracy Trade-off 

With the brief overview of the most widely used object detectors, selecting an object detection method 

to experiment with can be challenging. However, “Huang et al” has made a comprehensive study of all 

the above mentioned object detectors and compared them in multiple aspects such as, speed, accuracy and 

memory. This paper has been a foundation for this work in selecting the network architecture. The study 

concludes that SSD has one of the better trade-offs between speed and accuracy. 

2.3 Open Source Framework For Object Detection 

Open source framework for object detection, such as google Tensor Flow Object Detection API, OpenCV's 

DNN library and Microsoft Cognitive Toolkit (CNTK), we are going to develop object detectors related to 

our application grant. Open source frameworks provide a pre-trained object detection method that can 

easily correct our data sets. 

2.3.1 TensorFlow Object Detection API 

The Google Tensor Stream Object Detection API is an open source object detection framework. 

It is based on tensor flow and for the user to define, train and use the Permite object detection 
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model. Developed by Google Brain Team, TensorFlow Open Source Software Library Uses data 

flow charts for digital computers.[1]. Two key components, nodes and edges in the data flow 

diagram are. The nodes represent the mathematical calculation (operations) and the edges 

represent tens of (multidimensional) that flow between nodes .Two key components, nodes and 

edges in the data flow diagram are. The nodes represent the mathematical calculation 

(operations) and the edges represent tens of (multidimensional) that flow between nodes How 

Parameters and Output Change during Tensor Board Comographic Viewing and Model Building 

Provides a web interface to understand. As mentioned earlier, the Tensorflow Object Detection API 

provides multiple pre-trained models such as Mobile Net’s SSD model, ResNet’s Faster R-CNN model, and 

ResNet’s R-FCN model on different datasets. To fine-tune our individual object detectors, we can choose 

to initialize our training from among the pre-trained models. The choice of the pre-trained model 

depends on the intention of our application it gives API ideas for the speed and accuracy of 

various item tracking models. Acceleration is the most important requirement in real-time 

modern object identification applications Models trained with SSD and RFCN networks are 

pretty good, but low cost accuracy. Conversely, fast R-CNN is more reliable but more expensive 

over time from trained models. Figure 2.12 shows the balances for speed accuracy for different 

object detection models. 

 

 

 
Figure 2.12: mAP vs. GPU time for different meta-architectures 

Figure 2.12 shows that the most reliable of all is the Faster-RCNN model with Inception ResNet with 300 

propositions but also the most expensive. The models equipped with SSD and R-FCN are however faster 
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but less accurate. In addition, Faster R-CNN can be fast enough if the regions of interest with ResNet 

are small as is evident for Faster R-CNN with 50 proposals 

2.4 Summary of This Chapter 

This chapter analyzes and introduces in detail the origin of neural network and its development 

process. The paper focuses on the principle of convolutional neural networks in deep learning, and 

details the network layer, inter-layer relationships and parameters, built- in functions, and algorithms in the 

architecture. Then the open source frameworks for object detection and speed-precision trade-off for 

different object detection models have defined. 
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CHAPTER 3 

SYSTEM DESIGN AND METHODOLOGY 

 

 

In this section we first give and present an overview for the used and proposed model of detecting small 

objects from an input image, introduce the SSD briefly which is a commonly uses object detection 

framework and then demonstrate in detail MSSD modules, which take advantage of the useful local context 

for late classification and regression layers. The loss function used for this task will be discussed 

separately. We will conclude this chapter by describing the image pyramid structure used by Hu and 

Ramanan (2017), how it fits in the SSD framework and why we expect it to be beneficial object detection. 

3.1 Single Shot Multi-box Detector Network  

The SSD network by Liu et al. is one of the architectures used most commonly for detecting objects. The 

network is Fully Convolutional and can therefore be used for images with any resolution. Two 

architectures are proposed in the original paper: 300x300, input resolution architecture and 512 x 512 

pixel input resolution architecture. Our baseline model is SSD300 because its default model and original 

document is described by Liu et al. (2016). Furthermore, other papers also use this network as a baseline 

Zhang et al. (2017b). One property of the SSD network found by Huang et al. is that it’s more 

efficient than other detectors and an efficient network was one of the constraints for the Sightcorp 

application. The SSD network is called Single-shot since both Localization and classification of objects 

was carried out through the network within a single feed-forward. This is contrast to, for example, the 

Faster-RCNN network Ren et al. (2015), from which it differs since it does not have a separate regional 

proposal network. Furthermore, the SSD network combines multiple feature maps with different sizes to 

generate predictions, similar to Hariharan et al. (2015), to be more scale invariant to objects. These 

combined predictions from the multiple feature maps produce two output, a bounding box offset and class 

confidence. The network consists out of three parts, a base network, SSD layers and prediction layers 

attached to multiple feature maps in the network. 

3.1.1 Base Network 

These first layers are called the base network and the base network consists of stacked convolutions to 

decreasing size. The purpose of this base network is to provide response maps that enable detection 

different sizes. The base network can be seen in figure 3.1 and is represented the convolutions conv1 

till conv5. To be consistent with the original paper we use a truncated (fc6 and fc7 removed) VGG16 
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base network and initialize those layers with image-net weights. However, as mentioned by the authors 

one could replace the base net- work by any standard or non-standard architecture, e.g inception (Szagedy 

et al., 2015) or resnet (He et al., 2016). 

3.1.2 SSD Layers 

Subsequently to the base network, additional convolutional layers are added: conv6, conv7, conv8, conv9, 

conv10 and conv11, which are initialized with a truncated normal distribution. These additional 

convolutions are highlighted as SSD layers in figure 3.1. Similarly to the base network, the decreasing 

size of the feature helps with generating response maps for various object sizes. These layers however 

have bigger receptive fields and this helps to detect larger objects. 

 

    

Figure3. 1: SSD network architecture 

3.1.3 Prediction Layers 

The prediction layers are attached to the convolutional base network and SSD layers (Figure 3.1). For the 

feature layer of size m x m x c, while m is volume of feature map and c is channels range. 

Convolutional layer is attached with a 3 x 3 x r x(classes + off-set coordinates) kernel, where r is the 

default bounding boxes number and the classes number is 2(classes and background). This kernel produces 

both a classes confidence, background confidence and also the offset of bounding box pertain to a 

default bounding box, which we will touch upon shortly. These prediction layers are attached to 

multiple points in the convolutional base network and SSD layers, namely conv4-3, conv7-2, conv8-2, 

conv9-2, conv10-2, conv11-2. More fine details are captured by lower layers and are able to capture 

smaller objects, while higher layers capture more semantically meaningful information and capture larger 

objects.  Therefore, attaching multiple feature layers should help to capture the differently sized objects. 

All the prediction layers are concatenated at the network end, which will result a single output layer 

with a fixed number of predictions of the bounding box. The network parameters are shown in Table 

3.1. As shown in Table 3.2, it is the                                         
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Table 3. 1: SSD network parameters. 

Layers Name                    Convolution                     Input(w,h,c)                Output(w,h,c) 

 

VGG Network Convolution Layer part(SSD is also prediction from Conv_4) 

Conv6(VGG FC6) 

Conv7(VGG FC7) 

Conv8_1 

Conv8_2 

Conv9_1 

Conv9_2 

Conv10_1 

Conv10_2 

Conv11_1 

Conv1_1 

1024,3x3,1,6,dil=6 

1024,1x1,1 

256,1x1,1 

512,3x3,2,1 

128,1x1,1 

256,3x3,2,1 

128,1x1,1 

256,3x3,1 

128,1x1,1 

256,3x3,1 

19x19x512                                              

19x19x1024 

19x19x1024 

19x19x256 

10x10x512 

10x10x128 

5x5x256 

5x5x128 

3x3x256 

3x3x128 

 

19x19x1024                       

19x19x1024 

19x19x256 

10x10x512 

10x10x128 

5x5x256 

5x5128\ 

3x3x256 

3x3x128 

1x1x256 

 

 

 

parameters of the loc network. The loc network is the network used to calculate the regression box. In the 

loc network, 4x4 and 4x6 are due to the prediction frame used by the loc network to predict the target. 

The prediction frame consists of (cx, cy, w, h), Representing the focal points and height of focal 

points and forecast frames. Multiply by 4, 6 because in this feature map, each feature point is divided 

into 4, 6 detection frames, respectively. Finally, the output dimension of the loc network is transformed 

into (Batch-size,-1, 4) to obtain the prediction frames of the 8732 targets in the detection frame. 

Figure 3.3 shows the conf network parameters. The conf network is the network used to calculate 

confidence. In the conf network, 21 is a classified category, because the VOC dataset is classified into 20 

categories. When doing a target detection task, a background category is added, so it is 21 categories. 4 

and 6 are the number of detection frames divided by every feature s p o t  of feature map.   The output 

dimension concerning conf network is 
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Table 3. 2: SSD regression box prediction loc network 

Serial Number          Convolution Operation        Input(w,h,c)            Output(w,h,c) 

1 

2 

3 

4 

5 

6 

4x4,3x3,1,1 

4x6,3x3,1,1 

4x6,3x3,1,1 

4x6,3x3,1,1 

4x4,3x3,1,1 

4x4,4x4,1,1 

38x38x512 

19x19x1024 

10x10x512 

5x5x256 

3x3x256 

1x1x256 

28x28x16 

19x19x24 

10x10x24 

5x5x24 

3x3x16 

1x1x16 

 

 (Batch-size, -1, 21) to obtain the classification score corresponding to the targets in the 8732 

detection frames.  Small objectives through SSD to improve identity, the 

 

Table 3. 3:  SSD confidence prediction Conf network 

Serial Number      Convolution Operation            Input(w,h,c)                 Output(w,h,c) 

1 

2 

3 

4 

5 

6 

21x4,3x3,1,1 

21x6,3x3,1,1 

21x6,3x3,1,1 

21x6,3x3,1,1 

21x4,3x3,1,1 

21x4,3x3,1,1 

38x38x512 

19x19x1024 

10x10x512 

5x5x256 

3x3x256 

1x1x256 

38x38x84 

19x19x126 

10x10x126 

5x5x126 

3x3x84 

1x1x84 

 

parameters of the Pool5 layer of the VGG network were changed from 2x2,2 to 3x3,1. This can make the 

feature map after pool5 maintain a high resolution, Which is suitable for detecting small targets. Fully 

connected layers FC6 and FC7 are converted into convolutional layers, and the Atrous operation is added 

to Conv6. The Atrous operation is also known as hole convolution. This entity is presented from a large 

acquisition area without shaping the map. 

3.1.4 Default Bounded Boxes 

The selective-search algorithm by Uiijlings et al. has been a vital component in object detection methods 

in order to obtain region proposals. However, the SSD network has another method for this purpose.  The 
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SSD network regresses a grid of default bounding boxes to fit the objects in the dataset. This grid of 

default bounding boxes is constructed as follows. For each feature map that has a prediction layer 

attached, the bounding boxes is tiled on each feature map cell, which means that every cell of the 

feature map will have a default bounding box that is centered in the feature cell. The center can be 

computed as follows, 

                                      𝑥𝑖 = 𝑖+0.5
𝑓𝑘

 

 

                                                    𝑦𝑖 = 𝑖+0.5
𝑓𝑘

 

 

where fk is the length of the size of the feature map square and i and j range from 0 till fk . The original 

model uses different ratios for their default bounding boxes, as could be seen in figure 3.2. 

 

Figure3. 2: SSD network architecture 

Source: https://towardsdatascience.com/ssd-single-shot-detector-for-object-detection-using-multibox-

1818603644ca 

3.1.5 Deep Residual Network (ResNet) 

As the number of layers in the network increases, the problem of practice becomes more prominent. A 

more significant problem is the vanishing / explosion of the gradient, which affects convergence in the 

beginning. On the basis that as network awareness increases, the more depth network can change, the 

accuracy rate starts to decrease, which decreases the network the problem is called. Increasing the 

number of layers on a given network will increase the training error. Consider a shallow network 

architecture and a deep network built on it. Under extreme conditions, if all the layers added are a direct 

copy of the previous layer, this situation the training error of the lower deep network should be equal to 
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the shallow network. Therefore, the root cause of network degradation is still the optimization problem. 

In order to solve the optimization problem, a residual network is proposed. The residual network is to 

add some shortcut connections to the forward network. These connections will skip some layers and pass 

the original data directly to the subsequent layers and will not increase the parameters and complexity of 

the model. In theory, the network is always in an optimal state, and the performance of the network will not 

decrease with increasing depth. 

 

 

Figure3. 3: Residual locks, Viewed as suggested by [HZRS15]. 

                          For simplicity, BN, ReLU non-linearity, and identity mappings have hidden 

[HZRS15] had introduced two forms of residual blocks and the whole structure is generally referred to 

basic components. The first is named a residual block (Figure 3.3, left), containing of two operations 

of convolution, a residual connection has been made between entry and exit blocks. The alternate call is 

residual bottleneck block (Figure 3.2, right), containing of three operations of convolution. Starting by a 

1*1kernel to reduce the channels number and a 3*3 kernel, ending by applying the third 1*1 kernel to 

enhance the amount of volume. Residual blocks be required to instruct deep s t r u c t u r e  until 34 

layers. For the deep networks which have over 50 layers, residual bottleneck block have resorted. In 

case of achievement these residually blocks on Image-Net dataset, 50-layers network achieves 22.85% top-

1 error rate using residual bottleneck and 34-layers network achieves 25.3% top-1 error rate using 

residual blocks. For our part MSSD with ResNet model, 

we opted using the residual blocks because of the Extremely expensive of using 1 �1 con- 
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volutions in residual bottleneck blocks and we cannot cut down their cost through the use of an 

substitute process.  In addition, residual bottleneck blocks are practically not just a perfect proper less 

layered correlate reason they do not extend the receptive field as strongly as residual blocks. 

3.1.6 Very Deep Convolutional Network VGG16 

The VGGNet model structure [31] consists of a base layer, an activation function ReLU, a pooling 

layer, a full link layer, and a softmax function. It has a total of 5 convolutional segments. Each 

convolution consists of from 2 to 3 convolutional layers followed by a maximum pooling. The 

number of convolution kernels also increases with the number of layers. Moreover, VGGNet uses a 

data augmentation method to prevent overfitting of the model. Its biggest feature is to use a small size 

Filter instead of a large size Filter. Its structure is shown in Figure 3.4. The input image is 224 ∗ 224 ∗ 

3, which becomes 224 ∗ 224*64 through two convolutional layers, and 112 ∗ 112 ∗ 128 through one 

pooling layer and two volume base layers. 56 ∗ 56 ∗ 256 through one pooling layer and three 

convolutional layers, 28 * 28 * 512 through one pooling layer and three convolutional layers, and 

one pooling layer and three convolutional layers The base layer becomes 14 * 14 * 512, and it 

becomes 7 * 7 * 512 through one pooling layer. It becomes 1 * 1 * 4096 through two full-connected 

layers. It becomes 1 * through a full-connected layer and soft-max output layer 1 * 1000. In this thesis, 

VGG-16 is used as the base neural network(backbone) architecture, as described in [Parkhi et al., 2015]. 

As you can see from the Figure 3.4 The network has 13 convolution layers and 3 FC layers. VGG-16 

has already been used as the backbone because of its strong, reliable performance in the tasks of 

classification, meanwhile for its popularity for issues where learning transfer helps highly to improve 

results. Figure 3.4 illustrate different layer types correspond to different colors, the name and output 

size for each layer in the network is listed. In VGG-16 convolutional layers share the same kernel width 

and height mf   = nf   = 3 the same stride sw   = sh  = 1 and the same zero padding pw = ph = 1 Even 

pooling layers do the same through share the same format, with 2 * 2 grid size, and a stride of sw = sh = 2 

ReLU function used as an activation function in VGG-16 as shown in Equation 3.3 and softmax loss as 

the loss function . 

 

     𝑓𝑎(𝑥) = max (0, 𝑥)            (3-3) 
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Figure3. 4: VGG-16 architecture for Classification and Detection 

3.2 Modified Single Shot Multi-Box Detector (MSSD) Model  

From the SSD model introduced and the knowledge of the deep residual network, the re- searcher found 

that with the deepening of the depth convolution network level, the detection of objects on the training set 

will appear to decrease in accuracy. So in order to correct about defects from SSD model, the new 

algorithm proposed is better than the traditional SSD model in terms of detection accuracy. In view of the 

two defects of the SSD model above, the methods are introducing the two improves modules (Concat-sum 

module , Element-Sum module) using the deep VGG16 and the deep residual network with the feature 

pyramid net- work module are adopted, so the MSSD model is more accurate than the traditional detection 

accuracy. In image classification functions, outstanding networks have proven to be better than VGGS 

because it provides escape links between criminal blocks, thus gradually putting an end to hits and reducing 

the way the network is moving deeper. In fact, ResNets typically can go up to 101 layers whereas VGG 

networks can only go up to 16. Because deep nets are often better for sorting images, ResNets are 

generally more accurate than VGG. Here we will apply our idea on both of the VGG and ResNet 

networks showing the result that we got in our experiment later. The shallower layers (conv-3) suffering 

from lacking of sematic information, so in order to compensate that lack we inject contextual 

information from other layer and come out with new design model named element-sum and concat-sum 

model . Although replacing the VGG-based feature extractor in SSD with ResNet-101 does not lead to 

greater performance. Hence, a custom-made prediction module is needed. 
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Figure3. 5: Feature-fused SSD architecture 

3.2.1 Network Structure Based an Deep VGG16 Network 

The author of SSD architecture choose VGG16 as a base network to obtain feature maps in order to feed 

them forward into next detection layers. In MSSD proposed model, instead of classify the normal 

ConvNet feature map, we exploit the pyramidal feature hierarchy in convolution layers before feeding to 

the detection layers. The proposed model is shown in Fig. 3.5. Deeper layers are used to predict larger 

objects, while shallower layers are used to predict smaller objects, thus reducing the entire model’s 

predictive burden. Shallower layers, moreover, often lack receptive files which is an essential supplement 

for detecting small objects. Therefore, passing back the receptive files (semantic information) to the earlier 

layers captured in convolutionary forward computation will improve and enhance the performance of 

detection especially for small objects Which layers should be combined? We take advantage of the 

appropriate Conv-layers to provide helpful contextual information as extra-large receptive field often 

would absolutely introduce useless, large noise in the background. For large objects in deeper layers we 

don’t use the feature fusion module in order to keep up speed as long as SSD uses their shallower layers, 

as in the case of conv4 3, to predict small objects. Suitable characteristics of different layers to select 

fusion layers specialized receiving areas use the mallet development method to search. 

In a bid to inject the contextual information into shallower layers (such as conv4-3) 
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Figure3. 6: Layers show the useful receptive fields in SSD architecture 

 

which lacks to the information about the semiconductor, MSSD model with two different feature 

fusion has designed named element-sum and concat-sum modules. 

Concat-sum Module: 

The MSSD with concat-sum module is shown in Fig. 3.7 A new technique named deconvolution is 

actually layers which used to render the feature maps of two layers, in our case conv5-3 and conv4-3, have 

the same size. As it’s clear in fig 3.7, two 3x3 convolutional layers are used after conv- layers for learn to 

fuse the better features. Then layers of normalization follow with different scales before they are 

concatenated around their channel axis. The final fusion-feature-maps are generated as well as feature 

recombination by a 1*1 range convolution layer for dimension reduction. 
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Figure3. 7: Illustration of the smart concat-sum model 

Element-Sum Module Except for the form of fusion, it is the same as the concat- sum module. Two 

different feature maps layers containing different level features are summed up to equivalent weights 

point to point in this module. This process works perfectly in practice because of the two previously 

used convolution layers, which learn features adaptively from the two layers, conv4-3 and conv5-3, for 

better fuse results. This module takes inspiration from residual-101-based DSSD[32] which exploit the 

learned layer of de-convolution and elementary operation.  concat-sum module 

 

 
Figure3. 8: Illustration of the smart element module 

incorporates multi-level functionality with the learned weights implemented by 1*1 convolution layer, 

while element-sum module uses manually set equivalent weights. With this distinction, element-sum 

module can improve contextual information’s importance and the concatenation module can decrease the 

interference that caused by unnecessary background noises. 
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3.2.2 Network structure based on deep Residual Network 

The literature shows that as the number of VGG network layers increases, the problem of training 

becomes apparent. The more significant problem is gradient vanishing/explosion, which affects 

convergence at the outset. Under the premise that the deep network can converge, with the increase of 

network depth, the correct rate begins to saturate or even decrease, which is called the degradation of the 

network. Increasing the number of layers on a given network increases the training error. The root cause 

of network degradation is still an optimization problem. To solve the optimization challenge, we use the 

residual network. Residual networks can be interpreted as making a kind of shortcut connections to the 

for- ward network layers. These connections skip certain layers and directly pass the raw data to the later 

layer. This research uses the ResNet101 network which is taking advantage of the residual network in the 

forward network to add some quick connections. The new shortcut connections don’t increase the 

complexity and parameters of the model to improve the speed beside accuracy of detection objects. 

Element-Sum Module same with concat-sum and element-Sum Module fusion module above we try to 

implement it with ResNet network with additional improvement on FPN (Fig 3.10 ) and predection 

layer. To achieve better accuracy, deconvolutional layers are used to increase the resolution of feature 

maps. The detection is then done using the ”super-resolved” feature maps. In addition, to integrate 

information from earlier feature maps, deconvolutional modules are used. Technically, deconvolutional 

layers need not be used at all. Up-sampling followed by a convolutional layer can also achieve the 

desired effect. However, since up-sampling layers do not have any learnable parameters, it may not lead 

to the optimum results. Hence, de-convolutional layers are used. 

• Prediction Module 

The prediction model structure is shown in Figure 3.10 which is the method used by SSD, and 

the multi-scale prototyping of the system is extracted directly to make the prediction of classification and 

box regression. Figure 3.9 is the network structure of the Res-net residual unit, during the training phase. 



38 
 

 
Figure3. 9: The framework of classification and regression of SSD and ResNet 

For the forecasting phase, this research uses the (right-Figure3.9) approach to the work of the featuremap. 

This module is added to this research because multi-scale CNN indicates that improving the 

performance of each subtask can improve accuracy. 

 

• Feature Pyramid Network Module 

The feature pyramid network module refers to the fusion module of the upper and lower features in the 

MSSD, and the basic structure is as shown in Figure 3.10. This research builds the network in the form 

of FPN, followed by three BN (Batch Normalization) and three 3x3convolution, here convolution also 

acts as a buffer to prevent the gradient from affecting the backbone network too severely and to ensure the 

stability of the network. After feature fusion, each feature layer channel dimension responsible for 

prediction changes to 512. BN operations are placed between the convolution layer and the activation 

layer, and the top sampling of some of the previous methods is achieved by two-wire interpolation. 

MSSD is a top sample feature map learned by the feature pyramid network module. Low-level feature 

maps require increased regularization of operational processing because their feature maps are different in 

size and other layers and can be difficult to train in practice if they are mixed together. And it is important 

to note that the data size of different layers is also different, so it is not possible to directly merge. 

Therefore,L2 regularization is used. The lower-level feature needs to be positive when MSSD is used 

for high and low layer feature fusion. 
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Figure3. 10: Smart Feature Pyramid Network Module. 

To include more advanced context in the detection, transfer the prediction to the layers of the series of 

feature pyramid networks after the original SSD setting. Add an additional feature pyramid network 

layer to continuously increase the resolution of the feature layer. 

3.2.3 Model training  

• MSSD based on deep VGG16 training Method: 

We train the proposed MSSD fusion models, concat-sum and element-sum, on the both 

logo and PASCAL VOC2007/2012, that contain 20 class in 9,963 and 22,531 images, 

respectively. For further 10K iterations both of the two function fusion models are fine-tuned 

to the well-trained SSD baseline. The learning rate has chosen to be 1 ∗ e3 for the first 60K 

iterations and then decreases to 1 ∗ e4 at the 60K and 1 ∗ e5  at the 70K iterations. 

 

• MSSD based on deep ResNet training Method 

In the framework of caffe[38], the basic network of SSD is changed to ResNetl01 and then a 

new SSD model is retrained. Collect data set of VOC2007[39] as an sample. The data used in the training 

set is the VOC2007 data set. The test set of 07 is used, and a total of 7k iterations are used during training, 

and the learning rate is 1 ∗ e3. In the first 4k iterations, then adjust the learning rate to 1 ∗ e4, 1 ∗ e5 and 

then train 2k times and 1k times of iterations respectively. The trained SSD model is then used to 

initialize the DSSD network. The process of training MSSD is split into three steps. The first steps 

trains a primitive SSD model. The second stage: under such conditions, only the feature pyramid network 

module is trained, and the network parameters are not frozen, and the prediction model is added. Set the 
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learning rate to 1 ∗ e3, 1 ∗ e4 to iterate 2k times and lk times respectively, in the third stage, the model is 

overall tuned. 

3.3 Function Loss 

To optimize the network for both class and bounding box localization, we are using the 

multi-task loss function. Let 𝑥𝑖𝑗
𝑝 = {1,0} be an indicator ground-truth variable for matching 

the i-th default box with the j-th ground truth box with p category. In our case the 

category of p can be a object or a background class. The matching variable 𝑥𝑖𝑗
𝑝  is 1 when 

the IoU(equation 4.1) between the default bounding box and ground-truth is higher than 0.5. 

Furthermore, for each ground-truth bounding box, we also match the default-box with the 

highest IoU overlap. The value of  𝑥𝑖𝑗
𝑝  is thus defined by: 

  𝑥𝑗
𝑝 = � 𝑗   𝑖𝑓  10𝑈 ≥ 0.5 𝑜𝑟max 10𝑈

    0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                  
�                 (3-4) 

Additionally, because of the amount of default bounding boxes, the possibility also exist that more than one 

bounding box matches the ground truth. The matching of multiple bounding boxes strategy and the 

selecting bounding box with highest IoU overlap, are used to help the learning process with more 

positive samples to learn on the multi-task loss-function is defined as 

  L(x,c,l,g) = 𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) + 𝐿𝑙𝑜𝑐(𝑥, 𝑙,𝑔)    (3-5)  

where the loss consists out of two task losses, the = Lconf (x, c), which is the confidence and the leaping 

box regression loss = Lconf (x, l, c). Where c is the class confidence, l the localization offset prediction, and 

g is the localization ground truth. 

3.3.1 Localization Loss 

In the localization loss, Lloc, a Huber loss is used, 

 

  𝐿𝛿(𝑑) = �
1
2 𝑑

2  𝐹𝑜𝑟 |𝑑|  ≤ 𝛿

𝛿 �|𝑑| − 1
2
𝛿� , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

�         (3-6) 
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Where d is representing the distance between the predicted localization and the ground-truth 

localization. If we set 𝛿 = 1, we get the loss function which is known as the smooth L1-loss. 

 

  𝐿1𝛿(𝑑) = � 0.5𝑑2 𝑓𝑜𝑟 |𝑑| ≤ 𝛿
|𝑑| − 0.5     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�       (3-7) 

 

 

Figure3. 11: The L1, L2 and the L1s loss functions. 

           

There are multiple reasons for using the L1g loss function graphically displayed in figure 3.11. 

Firstly, the loss function of the L1 is not differentiable at 0. Secondly, when 

—d— ¡ 1 the loss function has a less steep gradient to better optimize towards the smaller distances. 

Thirdly, the gradient of the L2 becomes too large when the distance is large causing an unstable 

learning process, whereas the L1 loss function has a less hard constraint for points further away from the 

optimal position. The loss function between the predicted box Ll,o,c  is defined as followed, 

 

𝐿𝑙𝑜𝑐�𝑥, 𝑐𝑝, 𝑙𝑗 ,𝑔𝑗� = 1
𝑁′
∑𝑁′
𝑖𝜖𝑝𝑜𝑠𝑚𝑒𝑐𝑥,𝑐𝑦,𝑤,ℎ  ∑𝑥𝑖𝑗

𝑝𝐿1𝑠(𝑙𝑖𝑚 − 𝑔′𝑗𝑚)               (3-8) 

Where 𝑁+ = ∑ 𝑥𝑖𝑗
𝑝=1,𝑖𝑗  which is a scalar for the amount of positive matches and 𝑙𝑖 is 

the localization prediction defined as the center off-set and the height and width off-set. In 

the equation 3.8 d is replaced by 𝑙𝑖𝑚 − 𝑔𝑗𝑛𝑚 for 𝑔𝑖𝑛𝑚  a regression of the prediction center is 
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made relative to its matched default bounding box and defined as followed, 

 

  𝑔𝑗′𝛼 = (𝑔𝑗𝛼𝑥 − 𝑏𝑖𝜖𝑥)/𝑏𝑖∨      (3-9) 

 

  𝑔𝑗
𝑟𝑐𝑦 = (𝑔𝑗

𝑐𝑦 − 𝑏𝑖
𝑐𝑦)/𝑏𝑖ℎ     (3-10) 

 

  𝑔𝑗𝑛𝑤 = log (𝑔𝑗𝑤/𝑏𝑖𝑤)                                                     (3-11) 

 

  𝑔𝑗∧ℎ = log (𝑔𝑗ℎ/𝑏𝑖ℎ)                                                    (3-12) 

 

The four coordinates of the ground truth are 𝑔𝑐𝑥 ,𝑔𝑐𝑦 for the center and 𝑔𝑤 ,𝑔ℎ  height and 

width. The  𝑏𝑖𝑤, 𝑏𝑖ℎ, 𝑏𝑖𝑐𝑥, 𝑏𝑖
𝑐𝑦 respective coordinates of the matched default bounding box. Division of 

the height and width is used to normalize the width and the height. The log scale is used to balance the 

differences in scale, this makes the differences in small scale bounding boxes larger and larger differences for 

large bounding boxes smaller. The same is operations are done on the 𝑙𝑖𝑚 

3.3.2 Confidence loss 

The confidence loss, 𝐿𝑐,𝑜,𝑛,𝑓 is a softmax function over the face class and background class denoted 

with P. Because of the large amount of default boxes the negative boxes greatly outnumber the positive 

bounding boxes. This creates a large class imbalance between back- ground (negative bounding boxes) and 

faces (positive bounding boxes), which makes the optimization process hard. To counter this issue, hard 

negative mining is used. Instead of summing over all the negative bounding boxes, the negative 

bounding boxes are sorted on class confidence and the top M negative bounding boxes are selected. 

Where the ratio between M and the positive bounding boxes is 3 : 1. The confidence loss is defined as 

followed, 

𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) = − 1
𝑁+
∑ 𝑥𝑖𝑗

𝑝𝑁′
𝑖𝜖𝑝𝑜𝑟𝑡𝑖𝑣𝑒 log(�̂�𝑖𝑝) − 1

𝑁′
∑ log (�̂�𝑖0)𝑖𝜖𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒         (3-13) 

 

𝑤ℎ𝑒𝑟𝑒                        𝑐𝑖
∧𝑝 = exp (𝑐𝑖

𝑝)
∑𝑝𝑒𝑥𝑝(𝑐𝑖

𝑝)
              and         𝑁− = 𝑀 
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3.4 Summary of this Chapter   

This chapter first introduces the SSD model, and analyzes the characteristics and defects of the model. 

Then, based on the defects of the SSD model, a new model, MSSD model has proposed. After 

theoretical analysis and experiments, the MSSD model are still in the exposure correctness. The 

detection time is better than the traditional SSD model. However, since the number of prediction layer 

channels of the MSSD model based on ResNetl01 is too large, the network training speed is reduced. To 

avoid this situation, we should optimize the prediction layer channel. Moreover, we replace the up-

sampling with the feature pyramid network in the MSSD text fusion. In order to improve the detection 

accuracy, we improved the feature pyramid network module, and borrowed the up-sampling method used in 

another context structure, namely TDM (Top-Down Modulation). Finally, we discussed the loss 

function used during training. The following chapter discusses the evaluation of the proposed object 

detection model based on the clinical measurements documented in this chapter. 
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CHAPTER 4 

EXPERIMENT RESULT AND DISCUSSIONS 

 

From the MSSD model introduced in the previous chapter, the research found that the main purpose of this 

chapter is to describe the experiments we perform to evaluate our models as well as discuss evaluation 

metrics that are used in evaluation. Moreover, we describe the data sets that are used for training and 

evaluation and any further implementation details 

4.1 Datasets 

The effect of traditional methods for object detection and recognition depends strongly on the 

characteristics of artificial selection of features. The effect of deep learning models on object detection 

and recognition has a great breakthrough compared with traditional technology, but it has a great effect on 

training the size of the data set that has larger requirements. Deep CNN's biggest challenge usually, the 

label of the image classification training is to collect examples. After all thousands of interpreted trainings 

to learn under supervision, in this part we will take a look at the datasets we’ve been working with. 

Since we focus mostly on deep convolutional neural networks, we will look at two datasets, which are 

VOC2007 and Logo dataset, for image classification. 

4.1.1 Pascal VOC 2007/2012 datasets  

Considering that there are many datasets available for training and validation, choosing the one that best 

serves our purposes is necessary and we selected the Pascal VOC dataset be- cause each class in contains 

many images along with bounding box data. Pascal VOC[40] was an annual challenge and workshop 

from 2005 to 2012, which has helped, promoted the development of image localization, classification 

and object detection. Five challenges were included: classification, detection, segmentation, action 

classification and person layout. One of the dataset used in this thesis is Pascal VOC 2007 / 2012 Challenge, 

that has 20 categories and includes 9,963 and 11,125 images respectively. The annotations of images 

rescue as XML files. In each of the files, the root nodes include folder, filename, source, size, object, and 

for each object, nodes include the name of its class, pose, truncated sign, difficulty and bounding box. 

Here the bounding boxes are annotated by the top-left and bottom-right corner of the objects, denoted 

as [Xmax,Xmin,Ymax,Xmin]. 
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Figure4. 1: Examples of Pascal VOC ”person” dataset 

 

4.1.2 Logo datasets 

According to the investigation of the available datasets in the field of Logo detection and 

identification, it is found that the datasets involved in the current field are roughly BelgaL- ogos29, 

FlickrLogos-2730, FlickrLogos-32 / FlickrLogos-4731, and LOGO-NET [45]. In terms the size of 

data information, the LOGO-NET data collection is the most suitable data set for logo detection and 

recognition training, but its data set has not yet been open sourced. The open source data sets available in 

the field of logo detection and identification are relatively small in terms of the type of logo and the 

number of logos. Among them, the LOGO-NET data set proposed by Ali baba Group is the largest 

known data set in the field of logo detection and identification, but it is not yet open source, so the 

research in this field cannot use the LOGO-NET data set. Due to the limited means, we choose only eight 

classes from the 

 

 
Figure4. 2: Eight different samples of Logo dataset 
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FlickrLogos-32 dataset namely, Adidas, Apple, Becks, BMW, Coca cola, Dhl, Erdinger and Ups, and 

increase the number of images from 70 to 220 in each class. To train and evaluate the MSSD object detection model, 

first the image and bounding box data sets were extracted for eight sections. One of the problems we’ve found with the 

derived datasets is that, the collected dataset consists of small sized images. We want to ensure, however, 

that the images was using to train and evaluate aren’t tiny (i.e. at least 300 pixels). 

• Gather Pictures: Object detection model requires hundreds of images to achieve a perfect 

classifier for detection. The training images should have random objects in the image along 

with the object objects, and should have a range of backgrounds and lighting conditions, in order 

to train a robust classifier. Some images must contain the desired object is partially 

ambiguous, overlaps with something else, or only half of the image opens. We have eight 

different objects which I want to identify for my Logo detection classifier (Adidas, Apple, 

Becks, BMW, Coca cola, Dhl, Erdinger and Ups). I got the images of my own dataset by 

download it from Google Image Search and pictures were carefully chosen with multiple 

objects overlapped in many images. The larger the pictures, the longer it takes for the classifier to 

train. So i made sure the images don’t get too big and they should be under 200 KB. After 

gathering the images of dataset, i divided the data to 20% for testing and 80% for training from 

each class. 

 

 
Figure4. 3: LabelIing saves a .xml file 
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• Label Pictures: Here’s the exciting part! It’s time to label the needed objects in each  

image with all the images collected. LabelImg is a great image labeling tool, and its GitHub 

page offers very simple instructions on how to download and use it 

https://github.com/tzutalin/labelImg. After downloading and installing LabelImg, draw a box 

around each object in each image and repeat the process for all the images. 

LabelImg saves a file with a .xml extension for each image, containing the label data. Once each 

image has been labeled and saved, one.xml file will appear for each image. 

4.2 System software and hardware construction  

This section mainly introduces the construction of caffe framework related to deep learning experiments 

and the development of systems. 

4.2.1 Construction of caffe framework  

This paper chooses the caffe framework [41] for deep learning research and experiments although its 

building process is very cumbersome. The following briefly records the construction process. 

• Ubuntu 16.04 installation: Ubuntu is one of the many versions of Linux. It is characterized by 

a friendly UI and a powerful package management mechanism. Ubuntu installation is relatively 

easy, download the corresponding one, burn the USB drive, restart the PC, enter the interface 

installation, and restart after the installation. 

• Configure caffe: 

– Caffe relies on various library files, as well as python software. 

– Obtain caffe from github : git clone https://github.com/BVLC/caffe. 

– installation preparation, dependency installation : To installing, have a glance through 

this guide in https://caffe.berkeleyvision.org/installation.html 

• install nvidia graphics driver : First go to Nvidia’s official website (Fun Shark: Tour Diken: 

Man Q-type Dan Q base type i pendant: base object Saint 21 pad g three fortress: falling 

ink) to view the appropriate version, this experiment uses GTXl060 6G version graphics card. 

Corresponding graphics card, system type download corre- sponding driver. 

• Install CUDA : CUDA (Compute Unified Device Architecture) is a computing platform 

launched by NVIDIA Graphics Corporation. CUDATM is a common purpose parallel 

computing architecture introduced by NVIDIA that has complex computing problems. You 

can use GPU to solve. In it CUDA is a parallel computing engine within the instruction set 

architecture (ISA) and GPU. In the scientific research community, CUDA is good the way 
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was made, and in 2009, deeply education ushers in the era of the GPU. 

4.3 Evaluation matrics 

In this section, we describe the evaluation metrics used to evaluate our models. The evaluation metrics used 

are precision recall curve and average precision. 

4.3.1 Detection result 

The evaluation of detection results requires a metric that determines whether a prediction is correct or 

not. The Intersection over Union(IoU) is a value used in object detection to measure the relevant 

predictions. To determine the IoU we need to have the bounding box ground truth Bgt  and the bounding 

box prediction Bp. The IoU is defined as followed, 

 

 
Figure4. 4: The IoU overlap graphically displayed by www.pyimagesearch.com 

 

             𝐼𝑂𝑈 = 𝑎𝑟𝑒𝑎(𝐵𝑔𝑡∩𝐵𝑝)
𝑎𝑟𝑒𝑎(𝐵𝑔𝑡∪𝑏𝑝)

            (4-1) 

 

Since multiple detections on a single face will be counted as false positives, post-processing of the 

detections is required. The greedy non-maxima suppression as discussed previ- ously(chapter 3) 

reduces false positives prediction. All the remaining positive predictions are sorted by confidence. The 

highest positive prediction is considered a true positive (TP), the other predictions that an IoU ≤ 0.5 with 

the ground truth and have less scoreless are considered false positives (FP). The ground truth boxes that 

have no predictions assigned are considered false negatives (FN). True negatives (TN) are left out of 

consideration be- cause true negatives have no influence on the precision and recall. 
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4.3.2 PR curve explanation 

With the definition of the relevant predictions described we can define the metric used to evaluate our 

models. Precision (P) is defined by how much of the prediction are correct, while recall (R) is defined 

by how many predictions are retrieved. Both P and R are defined as followed,  

 

  P = 𝑇𝑃
𝑇𝑃+𝐹𝑃

       (4-2) 

 

  𝑅 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

       (4-3) 

 

The precision and recall both show an important aspect of the retrieval performance of the model. Because 

precision and recall are inversely related, the trade-off between them is important. Moreover, the precision 

is usually computed at a certain cut-off. The cut-off both influences precision and recall, when the cut-off 

is higher it increases recall but decreases precision. Precision and recall with cut-off is defined by P(k) 

and R(k), where k is the cut-off at k bounding boxes. The trade-off between precision and recall can be 

combined into the precision-recall curve. The curve represents the precision and recall at different 

threshold values e.g., [0.1, 0.2 .... 0.9, 1]. At these threshold values the precision and recall is measured. To 

construct a smooth line the remaining points are interpolated. 

4.3.3 Average precision  

To further summarize the PR-curve into one metric, the area under the curve(AuC) can be computed. The 

AuC is the same as the average 28 precision and can be computed by taking the precision overall values of 

recall between 0 and 1, 

  ∫ 𝑝(𝑘)𝑑𝑘1
0                   (4-4) 

 

The integral is an approximation and computed by the sum over precision at all different threshold 

values multiplied by the change in recall, 

                      1
𝑃
∑ 𝑃(𝑘)𝑁
𝑛=1 ∆𝑅𝑊                                  (4-5) 

 

where N is the total number of images in the dataset, k is the cut-off at k images and delta r is the change 

between R(k-1) and r(k). Instead of the average precision we use the interpolated average precision. The 
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interpolated average precision replaces the precision at cut-off k by the maximum precision observed at all 

cut-offs with higher recall and is defined as followed, 

 

  1
𝑃
∑ 𝑚𝑎𝑥

𝑘� > 𝑘𝑝(𝑘�) △ 𝑅(𝑘)𝑁
ℎ=1               (4-6) 

 

4.4 Experimental result and analysis  

The purpose of this thesis is to train the network and to accurately classify and locate the objects. The 

confidence of the prediction box is used to measure the correctness of the classification, while the 

coordinate information of the prediction frame measures the accuracy of the positioning. While the better 

object detection algorithm should have higher detection accuracy and detection speed, the detection 

accuracy is measured by mean Average Precision(mAP) and the detection speed is measured by FPS 

(Frames Per Second). In this part, this thesis will verify the accuracy of the object detection and the 

detection speed of the object detection. The MSSD model proposed in this thesis has better performance 

than the traditional SSD model on both datasets. In order to verify the effect of the feature pyramid 

network layer module and prediction model on detection performance, this thesis trained a VGG16 model 

with an input image 300*300 and a ResNetl01-SSD model with an input image of 321*321 for both Elt-

sum and concat-sum models which lead to a slightly improve in accuracy at the expense of speed as you 

will see later. The source of the experimental data, i,e the source of the object detection image, is the 

VOC2007/2012 dataset and logo dataset. 

4.4.1 Test results under VOC2007/2012 and logo dataset  

Models have trained on the union of PASCAL VOC2007/2012 and Logo datasets which includes 20 

categories and 8 classes respectively. The proposed MSSD model is implemented on the basis of the 

original SSD network built on the foundation of VGG16 and ResNet architectures and Caffe[41], all of 

which are available on the website. The baseline SSD has trained with a 300 x 300 input size and batch 

size of 16. Both of the two MSSD feature fusion models, concat-sum and Elt-sum, are fine-tuned on the 

well-trained SSD baseline for another 10K iterations. Learning rate is the amount of weights updated 

during training, so it is necessary to find a good value during training dataset. In our case changing the 

learning rate is a must and we gave 10−3 for the first 60K iterations and then reduce it to 10−4 and 10−5  at 

70K iterations. 

• Experiment of MSSD based on deep VGG16 network. 
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the appropriate layers are explored which will be the best to fuse with results of experimental, which had 

theoretically discussed in table 4.1. Yet we choose the two appropriate layers, conv4-3 and conv5-3, to fuse, 

because fc6 has a greater receptive field than conv5-3 for tiny objects that could add much more noise in the 

background. As it clear in table 4.1, the mAP of PASCAL VOC 2007 on general objects is taken into 

account. Additionally, when design- ing the modules we try different kernel numbers. 

 
Table 4. 1: detection results of different fusion layers. 

 

Layers     Conv4-3    Conv4-3+Conv5-3     Conv4-3+fc6       Conv3-3+Conv4-3+Conv5-3 

Cocat 

Eltsum 

77.27 

77.27 

77.26 

77.4 

77.47 

77.39 

77.52 

77.31 

 

The two MSSD, concat-sum and Element-Sum, methods are both enhanced with regard to overall object 

detection compared to their SSD baseline. The MSSD with concat-sum module gets 77.6 mAP, while 

the element-sum module gets 77.4 mAP, which are 0.3 and 0.1 higher than the current SSD baseline. 

 
Table 4. 2: Results of MSSD based on VGG16 network with IOU=0.5 on PASCAL VOC2007 test set 

Method                  Network            mAP     aero     bike     bird      boat     bottle     bus       car         cat        chair        cow 

SSC300 
DSSD321 
Concat 
Elt_sum 

 
VGG16 
ResNet-101 
VGG16 
VGG16 
 

77.3 
78.6 
77.6 
77.4 

78.8 
81.9 
79.1 
79.4 

85.3 
84.9 
84.5 
85.2 

75.7 
80.5 
76.2 
77.8 

71.5 
68.4 
71.7 
71.6 

49.1 
53.9 
49.7 
49.3 

85.7 
85.6 
85.6 
85.8 

86.4 
86.2 
86.9 
87.6 

87.8 
88.9 
88.3 
87.6 

60.6 
61.1 
61.1 
60.7 

82.7 
83.5 
82.6 
82.1 

Method                  Network            mAP    aero     bike     bird      boat     bottle     bus       car         cat        chair       cow 

SSC300 
DSSD321 
Concat 
 Elt_sum 

 
VGG16 
ResNet-101 
VGG16 
VGG16 
 

77.3 
78.6 
77.6 
 77.4 

76.5 
78.7 
76.8 
76.6 

84.9 
86.7 
85.1 
84.1 

86.7 
88.7 
86.5 
86.2 

84 
86.7 
84.5 
84.6 

79.2 
79.7 
80.4 
79.3 

51.3 
51.7 
51.9 
51.7 

77.5 
78 
78.6 
77.1 

78.7 
80.9 
77.5 
78.1 

86.7 
87.2 
88.2 
86.3 

76.3 
79.4 
76.6 
78 
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We test MSSD models on the logo dataset which contain 8 classes. The MSSD is implemented count on 

original SSD built on the VGG16 architectures and caffe framework. The MSSD with concat-sum 

module gets 77.0 mAP, while the element-sum module gets 76.7 mAP, which are 0.6 and 0.3 higher 

than the current SSD baseline.  Since VOC2007 

 

              Table 4. 3: Results of MSSD based with IOU=0.5 on deep VGG16 network on Logo test set. 

Method Network mAP 
Average Precision in % for each class 

Adidas      Apple     Becks      BMW      Coca-Cola      DHL      Erdinger    Ups 

SSD300 

Concat 

Elt-sum 

VGG16 

VGG16 

VGG16 

76.4 

77.0 

76.7 

79.21 

81.4 

81.1 

81.11 

81.3 

79.6 

89.18 

89.9 

89.1 

62.47 

63 

61.9 

74.35 

75.4 

74.9 

79.67 

79.2 

79.8 

72.36 

72.6 

73.12 

72.7 

73 

74.3 

 

dataset includes 20 classes and each class might have small objects, we choose 181 images, 
 

 

Table 4. 4: Results of MSSD based on deep residual network with IOU=0.5 on Logo test set 

Method Network mAP 
Average Precision in % for each class 

Adidas      Apple     Becks      BMW      Coca-Cola   DHL      Erdinger    Ups 

SSD300 

Elt-sum 
VGG16 

ResNet-101 
76.7 

76.9 

78.1 

79.6 

82.4 

82.1 

88.7 

89.1 

68.7 

69.4 

73.9 

72.9 

78.18 

78.8 

72.63 

73.12 

71.14 

71.5 

 

As can be seen from table 4.5, the MSSD achieved improvement compared with the traditional SSD model. 

Since our logo dataset contains multiple overlapped objects and small objects in many images, you may 

find an enhancement compared to the current SSD model in terms of the concat-sum and element-sum 

modules. Results for the detection are shown in Fig 4.5. We found that small objects, with particular 

background, detection performance slightly improved. And more accurately detected the objects that 

often appear along with relative objects. 
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4.5 Result Evaluation  

All experiments will be on top of PASCAL VOC2007 dataset and Logo dataset. All experiments will be 

on top of PASCAL VOC2007 dataset and Logo dataset. The results of the system’s evaluation in terms 

of its ability to detect and recognize the images contained in the test set will then be presented, these 

results being presented using a plot of precision / recall curve and average precision metric. In 4.3, we 

implement how to measure the recall and precision. 

4.5.1 Result Analysis on PASCAL VOC2007 datasets 

We addressed the datasets we use for experiments in 4.1, and it is also clear that video stream data show 

differences in aspect ratio, resolution, motion blur, lighting etc. In this section, we evaluate the 

generalization ability on PASCAL VOC2007 dataset. Figure 4.5 shows the evaluation results of 3 models-

SSD300, MSSD with concate-sum and concate-sum methods. 

 

Figure4. 5: The precision-recall curves of SSD and MSSD models. 

The results on Pascal VOC 2007 differ slightly from the precision reported in the original papers. It may 

be induced by various ways of implementation. 

As shown in Figure 4.6, because we began our training from a pre-trained checkpoint instead of starting 

from scratch, the total loss value decreases rapidly. The total loss values ‘uctuate but exhibit reducing 

behavior overall. 

Figure 4.7 demonstrates overall mAP development for 80,000 steps at 0.5 IoU. The mAP values are 

evaluated for the validation dataset at 0.5 IoU. As is evident from Figure 4.7, in around 6,800 measures, 

mAP is witnessing a tremendous increase to 67.8 percent. The mAP then increases slightly more and in 

19,000 steps reaches closer to 77.6 per cent. The mAP value remains relatively constant with minor 

fluctuations after 19,000 moves. 
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Figure4. 6: Decline of total loss when concate-sum on PASCAL VOC2007 dataset 

 

 

Figure4. 7: Development of overall mAP when concate-sum on PASCAL VOC2007 dataset. 

Because the mAP values leveled out after 19,000 moves, the model is exported at various training stages 

and checked on the test dataset. 

4.5.2 Result Analysis on logo dataset 

The MSSD model is fine-tuned for 100,000 steps as shown in Figures 4.8 and 4.9. Figure 

4.9 demonstrates the downward trend in total loss during the entire training phase. For each iteration the 

total loss can differ slightly from the previous iteration. The key point, however, is that overall loss values 

decreased during the training course. 

Figure 4.9 shows overall mAP development at 0.5 IoU per 100,000 steps. For the validation dataset 

the mAP values are evaluated at 0.5 IoU. As is evident from Figure 4.9, in around 9000 stages, mAP is 
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experiencing a tremendous increase up to 53% percent. The mAP then increases slightly more and in 

33,000 steps reaches nearer to 73%.  The mAP 

 

Figure4. 8: Decline of total loss when Eltsum-ResNet-101 on PASCAL VOC2007 dataset. 

 

 

Figure4. 9: Development of overall mAP when Eltsum-ResNet-101 on PASCAL VOC2007 dataset. 

value increased little after 19,000 measures and settled down with minor fluctuations of 77.4 percent. 

4.6 Running Time  

On PASCAL VOC 2007 and Logo test datasets, running time for those both fusion methods has 

evaluated, as can be seen in Table 4.6. The two fusion methods, concat-sum and element-sum modules, 

have detection speed 40 FPS and 43 FPS respectively in PASCAL VOC 2007 test dataset, while it is 13.12 

FPS in Logo test dataset. Unfortunately because of the additional feature fusion layers, both became slower 

than original SSD model. Nevertheless MSSD fusion methods are also still achieving a real-time 

detection. The element-sum 
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Table 4. 5: The running time illustration of different models. 

Dataset Method Network mAP FPS 
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L 
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7 
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t 

SSD300 

DSSD321 

MSSD Concat Model 

MSSD Eltsum Model 

MSSD Eltsum Model 

VGG16 

Residual-101[11] 

VGG16 

VGG16 

Residual-101[11] 

77.3 

78.6 

77.6 

77.4 

77.4 

50 

13.6 

40 

43 

13.12 

L
og

o 
T
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t 

SSD300 

MSSD Concat Model 

MSSD Eltsum Model 

MSSD Eltsum Model 

VGG16 

VGG16 

VGG16 

Residual-101[11] 

76.4 

77 

76.7 

76.9 

50 

40 

43 

13.12 

 

module has used 2 convolution layers in each layer, with 384 kernels. and the concat-sum model used 3 

convolution layers in each layer with 512 kernels. Which is why the model with the element-sum 

approach is faster than the model with the concat-sum approach by 3 FPS. The decreasing of number of 

frame per second due to the extra operations taken by MSSD model, this decreasing beside improving 

the slight increasing of accuracy will be solved in my future studying. 

4.7 Performance comparison of MSSD Modules   

4.7.1 Performance of MSSD modules based on VGG16 Network  

Here we show a comparison in performance of the pre-trained SSD300 model and the fine- tuned MSSD 

models on both datasets, the experimental results are demonstrate that helpful contextual information proves 

the existence of small objects. 
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Figure4. 10: Show the detection results original SSD and MSSD model with concat-sum and element-sum module, 

respectively on Pascal VOC 2007 dataset. 

 

 

Figure4. 11. Right: The results of concat-sum model detection. Left: The results of element-sum model detection. 

Concat-sum fusion model could weaken the noise of background interference while element- sum fusion model 

can’t weaken. When looking into the difference of these MSSD methods, we carefully analyze the fusion methods and 

the results of their detection. In Fig 4.11, which does not include im- portant contextual information. Although the concat-

sum module utilizes learned weights to merge object feature with context feature, it can then choose useful contextual 

informa- tion and diminishes background noise interference. Unfortunately, the element-sum method marge both object features 

and context in an equivalent way, therefore it cannot adapt the beneficial contextual information. Conversely, in Fig 4.12, The 

cars in the scene are blurred, so the context is important for identification. In this situation, the element-sum fusion ap- proach 

performs better than the concat-sum fusion approach, since the latter seems to have more choice that perhaps the bond between 

object and context might not be well learned. 
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Figure4. 12. Right: The effects of element-sum fusion model detection. Left:  The results of concat- sum fusion 

model detection. The children in this picture are small and blurred, so that the contextual information is required to 

identify them. This context is exploited well enough by the element-sum fusion model, whereas the concat-sum 

fusion model cannot. 

 

 

Figure4. 13: Show the detection results original SSD and MSSD model with concat-sum and element-sum module, 

respectively on logo dataset. 

In fig 4.13 we show results of detection of the MSSD models on Logo dataset, the experimental 

results are demonstrate that helpful contextual information proves the existence of small objects. 
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4.7.2 Performance of SDD Modules based on Residual Network  

The reason why the better detection result cannot be obtained is that the SSD model itself is based on a 

deep convolutional neural network, and the high-level feature information with a large receptive field is 

used to predict a large object, and the low-level feature information with a small receptive field is 

used to predict a small object. When the object is lacking, the SSD is less effective for detecting 

small objects due to the lack of high-level semantic features. The MSSD model uses a context-based 

fusion method. The experimental results are shown in Fig.4.14 below. 

 

 

Figure4. 14: The results of traditional SSD model and MSSD model. 

The left side of the figure shows the detection results of the original SSD model, and the right 

side is the final result of the MSSD model object detection. It can be clearly seen from Fig 4.13 and 

Fig 4.14 that the traditional SSD model cannot detect the object in the image more accurately, and the 

MSSD can detect more objects. For the objects with similar categories, the detection result of the MSSD 

is accurate. 

4.8 Summary of this Chapter   

In this chapter, we discussed how we collect the Logo dataset beside Pascal VOC 2007/2012 dataset. We 

discussed the evaluation of the MAP-based object detection model. We have pre-trained SSD Discuss the performance difference 
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between the model and the fine MSDS model in the test data set. We have MSSD based on speed and accuracy the fine tune model is 

comparable and analyzed. To concluded, theoretical analysis and experiments have proved that the MSSD model 

is better than the MSSD model in terms of detection accuracy but not detection time
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CHAPTER 5 

CONCLUSION 

 

 

This chapter summarizes this thesis, discusses the findings and ends with the recommendations on future 

work to enhance the detection of small objects. 

5.1 Summary of work  

This thesis mainly studies the method of object detection based on SSD model. An improved SSD 

object detection algorithm MSSD is proposed. In this thesis, the context-based network structure is used 

to fuse the upper and lower layers and the traditional up-sampling structure is improved. The high-level 

semantic information is embedded in the low-level network’s feature information, and the multi-scale 

feature map of the prediction regression position box and the classification task input is enriched to 

improve the detection accuracy. The VGG16 network used for SSD training was used with a deep 

residual network to optimize the feature maps of candidate box regression and classification task 

input, while showing the experimental results and corresponding advantages and disadvantages. In order to 

solve the problem of SSD model, an improved SSD model, namely MSSD model, is introduced in 

detail, and the problems existing in SSD model are mainly analyzed. This thesis uses the FPN-based 

network structure to fuse the upper and lower layers and improves the traditional up-sampling structure. 

The high-level semantic information is embedded in the low-level network’s feature information, and 

the multi-scale feature map of the prediction regression position box and the classification task input is 

enriched to improve the detection accuracy. Compared to the state of the art Small Object Detector, 

experiments show that the MSSD model is better than the traditional SSD model in detection accuracy but 

not detection speed. 

In conclusion we observe that although the SSD framework is scale-invariant it can still benefit from 

the feature fusion architecture to detect objects of different sizes. The SSD method together with the 

feature fusion architecture can be adapted to work for the object detection task. 
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5.2  Future work   

There are many problems in object detection, (1) multi-feature fusion of context features, multi-scale 

object localization, high-level feature information with wider receptive fields and multi-scale maps 

for object prediction for predicting large objects. Low-level receptive field information predicts small 

objects. (2) It is difficult to meet real-time performance for high-resolution images or videos. A object 

with a simple background, sufficient lighting, no obstruction, and a shooting angle of front is relatively 

easy to detect. When the background is mixed with the object, there are obstructions near the object, 

the light intensity is too weak, and the object pose changes The rate is greatly reduced. Although the two 

algorithms proposed in this thesis have achieved a better improvement in detection accuracy than the 

previous algorithms, there are still some problems to be solved. There are other ways for high-level 

and low-level feature fusion, so the model should continue to be optimized to find more effective 

methods with contextual features to enable it to obtain higher accuracy. Because of the above 

difficulties, finding an ideal object detection algorithm still needs continuous research and 

improvement. Object detection has important practicability in artificial intelligence, autonomous 

driving, smart transport, face recognition and other fields but it also has great prospects and that will 

be the further work to study. 
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Appendix A : SSD Architecture based on vgg16 Model 

def __init__(self, phase, size, base, extras, head, num_classes): 

        super(SSD, self).__init__() 

        self.phase = phase 

        self.num_classes = num_classes 

        self.cfg = (coco, voc)[num_classes == 21] 

        self.priorbox = PriorBox(self.cfg) 

        self.priors = Variable(self.priorbox.forward(), volatile=True) 

        self.size = size 

        # SSD network 

        self.vgg = nn.ModuleList(base) 

        # Layer learns to scale the l2 normalized features from conv4_3 

        self.L2Norm = L2Norm(512, 20) 

        self.extras = nn.ModuleList(extras) 

 

        self.loc = nn.ModuleList(head[0]) 

        self.conf = nn.ModuleList(head[1]) 

        if phase == 'test': 

            self.softmax = nn.Softmax(dim=-1) 

            self.detect = Detect(num_classes, 0, 200, 0.01, 0.45) 

    def forward(self, x): 

        """Applies network layers and ops on input image(s) x. 

        Args: 
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            x: input image or batch of images. Shape: [batch,3,300,300]. 

        Return: 

            Depending on phase: 

            test: 

                Variable(tensor) of output class label predictions, 

                confidence score, and corresponding location predictions for 

                each object detected. Shape: [batch,topk,7] 

            train: 

                list of concat outputs from: 

                    1: confidence layers, Shape: [batch*num_priors,num_classes] 

                    2: localization layers, Shape: [batch,num_priors*4] 

                    3: priorbox layers, Shape: [2,num_priors*4] 

        sources = list() 

        loc = list() 

        conf = list() 

        # apply vgg up to conv4_3 relu 

        for k in range(23): 

            x = self.vgg[k](x) 

        s = self.L2Norm(x) 

        sources.append(s) 

        # apply vgg up to fc7 

        for k in range(23, len(self.vgg)): 

            x = self.vgg[k](x) 
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        sources.append(x) 

 

Appendix B: Modified Single Shot Multi-box Detector  

        for k, v in enumerate(self.extras): 

            x = F.relu(v(x), inplace=True) 

            if k % 2 == 1: 

                sources.append(x) 

        # apply multibox head to source layers 

        for (x, l, c) in zip(sources, self.loc, self.conf): 

            loc.append(l(x).permute(0, 2, 3, 1).contiguous()) 

            conf.append(c(x).permute(0, 2, 3, 1).contiguous()) 

        loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1) 

        conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1) 

        if self.phase == "test": 

            output = self.detect( 

                loc.view(loc.size(0), -1, 4),                   # loc preds 

                self.softmax(conf.view(conf.size(0), -1, 

                                       self.num_classes)),                # conf preds 

                self.priors.type(type(x.data))                  # default boxes 

            ) 

        else: 

            output = ( 

                loc.view(loc.size(0), -1, 4), 
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                conf.view(conf.size(0), -1, self.num_classes), 

                self.priors 

            ) 

        return output 

    def load_weights(self, base_file): 

        other, ext = os.path.splitext(base_file) 

        if ext == '.pkl' or '.pth': 

            print('Loading weights into state dict...') 

            self.load_state_dict(torch.load(base_file, 

                                            map_location=lambda storage, loc: storage)) 

            print('Finished!') 

        else: 

            print('Sorry only .pth and .pkl files supported.') 

# This function is derived from torchvision VGG make_layers() 

def vgg(cfg, i, batch_norm=False): 

    layers = [] 

    in_channels = i 

    for v in cfg: 

        if v == 'M': 

            layers += [nn.MaxPool2d(kernel_size=2, stride=2)] 

        elif v == 'C': 

            layers += [nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)] 

        else: 
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            conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) 

            if batch_norm: 

                layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] 

            else: 

                layers += [conv2d, nn.ReLU(inplace=True)] 

            in_channels = v 

    pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1) 

    conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6) 

    conv7 = nn.Conv2d(1024, 1024, kernel_size=1) 

    layers += [pool5, conv6, 

               nn.ReLU(inplace=True), conv7, nn.ReLU(inplace=True)] 

    return layers 

def add_extras(cfg, i, batch_norm=False): 

    # Extra layers added to VGG for feature scaling 

    layers = [] 

    in_channels = i 

    flag = False 

    for k, v in enumerate(cfg): 

        if in_channels != 'S': 

            if v == 'S': 

                layers += [nn.Conv2d(in_channels, cfg[k + 1], 

                                     kernel_size=(1, 3)[flag], stride=2, padding=1)] 

            else: 
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                layers += [nn.Conv2d(in_channels, v, kernel_size=(1, 3)[flag])] 

            flag = not flag 

        in_channels = v 

    return layers 

def multibox(vgg, extra_layers, cfg, num_classes): 

    loc_layers = [] 

    conf_layers = [] 

    vgg_source = [21, -2] 

    for k, v in enumerate(vgg_source): 

        loc_layers += [nn.Conv2d(vgg[v].out_channels, 

                                 cfg[k] * 4, kernel_size=3, padding=1)] 

        conf_layers += [nn.Conv2d(vgg[v].out_channels, 

                                  cfg[k] * num_classes, kernel_size=3, padding=1)] 

    for k, v in enumerate(extra_layers[1::2], 2): 

        loc_layers += [nn.Conv2d(v.out_channels, cfg[k] 

                                 * 4, kernel_size=3, padding=1)] 

        conf_layers += [nn.Conv2d(v.out_channels, cfg[k] 

                                  * num_classes, kernel_size=3, padding=1)] 

    return vgg, extra_layers, (loc_layers, conf_layers) 

  

base = { 

    '300': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M', 

            512, 512, 512], 
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    '512': [], 

} 

extras = { 

    '300': [256, 'S', 512, 128, 'S', 256, 128, 256, 128, 256], 

    '512': [], 

} 

mbox = { 

    '300': [4, 6, 6, 6, 4, 4],  # number of boxes per feature map location 

    '512': [], 

} 

def build_ssd(phase, size=300, num_classes=21): 

    if phase != "test" and phase != "train": 

        print("ERROR: Phase: " + phase + " not recognized") 

        return 

    if size != 300: 

        print("ERROR: You specified size " + repr(size) + ". However, " + 

              "currently only SSD300 (size=300) is supported!") 

        return 

    base_, extras_, head_ = multibox(vgg(base[str(size)], 3), 
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Appendix C: Modified Single Shot Multi-box Detector based on Residual Network 

def resnet_v1_101(inputs, 

                  num_classes=None, 

                  is_training=True, 

                  global_pool=True, 

                  output_stride=None, 

                  spatial_squeeze=True, 

                  store_non_strided_activations=False, 

                  min_base_depth=8, 

                  depth_multiplier=1, 

                  reuse=None, 

                  scope='resnet_v1_101'): 

  """ResNet-101 model of [1]. See resnet_v1() for arg and return description.""" 

  depth_func = lambda d: max(int(d * depth_multiplier), min_base_depth) 

  blocks = [ 

      resnet_v1_block('block1', base_depth=depth_func(64), num_units=3, 

                      stride=2), 

      resnet_v1_block('block2', base_depth=depth_func(128), num_units=4, 

                      stride=2), 

      resnet_v1_block('block3', base_depth=depth_func(256), num_units=23, 
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                      stride=2), 

      resnet_v1_block('block4', base_depth=depth_func(512), num_units=3, 

                      stride=1), 

  ] 

  return resnet_v1(inputs, blocks, num_classes, is_training, 

                   global_pool=global_pool, output_stride=output_stride, 

                   include_root_block=True, spatial_squeeze=spatial_squeeze, 

                   store_non_strided_activations=store_non_strided_activations, 

                   reuse=reuse, scope=scope) 

resnet_v1_101.default_image_size = resnet_v1.default_image_size 

                      stride=2), 

      resnet_v1_block('block4', base_depth=depth_func(512), num_units=3, 

                      stride=1), 

  ] 

  return resnet_v1(inputs, blocks, num_classes, is_training, 

                   global_pool=global_pool, output_stride=output_stride, 

                   include_root_block=True, spatial_squeeze=spatial_squeeze, 

                   store_non_strided_activations=store_non_strided_activations, 

                   reuse=reuse, scope=scope) 
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Appendix D: Conclusion From the above techniques  

From the SSD model introduced and the knowledge of the deep residual network, the re- 

searcher found that with the deepening of the depth convolution network level, the detection of 

objects on the training set will appear to decrease in accuracy. So in order to correct about 

defects from SSD model, the new algorithm proposed is better than the traditional SSD model 

in terms of detection accuracy. In view of the two defects of the SSD model above, the 

methods are introducing the two improves modules (Concat-sum module , Element-Sum 

module) using the deep VGG16 and the deep residual network with the feature pyramid net- 

work module are adopted, so the MSSD model is more accurate than the traditional detection 

accuracy. In image classification functions, outstanding networks have proven to be better 

than VGGS because it provides escape links between criminal blocks, thus gradually putting 

an end to hits and reducing the way the network is moving deeper. In fact, ResNets typically 

can go up to 101 layers whereas VGG networks can only go up to 16. Because deep nets are 

often better for sorting images, ResNets are generally more accurate than VGG. Here we will 

apply our idea on both of the VGG and ResNet networks showing the result that we got in our 

experiment above. The shallower layers (conv-3) suffering from lacking of sematic 

information, so in order to compensate that lack we inject contextual information from other 

layer and come out with new design model named element-sum and concat-sum model . 

Although replacing the VGG-based feature extractor in SSD with ResNet-101 does not lead to 

greater performance. Hence, a custom-made prediction module is needed. 
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