

MULTI-LAYERS FEATURE FUSION IN SSD

FOR SMALL OBJECTS DETECTION

 A THESIS SUBMITTED TO THE GRADUATE

SCHOOL OF APPLIED SCIENCES

OF

NEAR EAST UNIVERSITY

By

ZUBAIR SHAH

In Partial Fulfillment of the Requirements for

the Degree of Master of Science

in

Computer Engineering

NICOSIA,2020

 Z
U

B
A

IR
 SH

A
H

 M
U

L
T

I-L
A

Y
E

R
S FE

A
T

U
R

E
 FU

SIO
N

 IN
 SSD

 FO
R

 SM
A

L
L

 N
E

U

 O
B

JE
C

T
S D

E
T

E
C

T
IO

N
 2020

MULTI-LAYERS FEATURE FUSION IN SSD

FOR SMALL OBJECTS DETECTION

 A THESIS SUBMITTED TO THE GRADUATE

SCHOOL OF APPLIED SCIENCES

OF

NEAR EAST UNIVERSITY

By

ZUBAIR SHAH

In Partial Fulfillment of the Requirements for

the Degree of Master of Science

in

Computer Engineering

NICOSIA,2020

ZUBAIR SHAH : MULTI-LAYERS FEATURE FUSION IN SSD FOR SMALL
OBJECTS DETECTION

Approval of Director of Graduate School of

 Applied Sciences

Prof.Dr.Nadire CAVUS

We certify this thesis is satifactory for the awarded of degree of Master of Sciences in
Computer Engineering

Committe Chairman, DepartmentofComputer

Engineering,NEU

Automotive Engineer, Department of Computer

Engineering, NEU

Assi st.Prof.Dr. Elbrus IMANOV Supervisor, Department of Computer

Engineering,NEU

I certify that this research work entitled “Multi-layers Feature fusion in SSD for Small

Objects Detection” is my own work. No portion of the work presented in this research

report has been submitted in support of another award or qualification either at this

institution or elsewhere. Where material has been used from other sources it has been

properly acknowledged / referred. If any part of this project is proved to be copied or

found to be a report of some other, I will stand by the consequences.

Name, Last Name: Zubair Shah

Signature:

Date: 28/12/2020

i

ACKNOWLEDGMENTS

I am deeply grateful to my supervisor Asst. Prof. Dr. ELBRUS IMANOV, for his

guidance, support and patience. He has been invaluable source of knowledge and has

certainly helped inspire many of the ideas expressed in this Thesis.

I would wish to express my sincere regards to the Chairman Department of Computer

Engineering Prof. Dr. Rahib ABIYEV for his open hearted encouragement and good

wishes

Our words will fail to express our deepest heartfelt thanks to our families, especially my

parents, and my dear elder’s Brother all what they did, and still doing to help me be at this

position and for their continuous support and encouragement.

ii

ABSTRACT

The most useful and popular object identification method is SSD (single shot multi-box detection).

At present, object detection using convolutional neural networks occupies a dominant position.

However, the structure of the competent neural network faces hereditary difficulties: high-level

networks have large receptive areas and meaning information has high capacity to illustrate, but the

solution is diminished, the calculations are weak. In grassroots networks there are relatively small

acceptable areas, and it has strong geometric detail information representation capability.

However, the higher the resolution, the more information the capacity would have been so weak.

SSD object prediction the multi-level feature uses mAP, predicting things with large fields of

reception and small fields of prediction of things, It also uses high-level facilities to do. It makes

difficulties: When using information about lower-level network functions to predict small things, due

to the lack of standard high-level functions, the identification of small SSD objects is seriously

compromised.

Based on the analysis and introduction of classic SSD algorithms, in this thesis, we aim to detect

small objects at a fast speed, through present an approach which adapts the single socket multi-box

(SSD) detector in relation to trading with precision and speed. An MSSD procedure of

multistage components combination is offered to supply old knowledge in SSD, in order to improve

the accuracy for small objects. In detail, the merge operation consists of two resource merge

modules, a concatenation module and a sum of elements module, different in the way of

adding contextual information. The VGGl6 and deep residual networks are used by the MSSD

training to optimize candidate box regression and classification task input feature mAPs to improve

detection accuracy and detection speed. With Residual network, this thesis uses the FPN-based

network architecture to integrate high and low layers and improves the traditionally sampled

structure. The high-level semantic information is integrated into the low-level network feature

information, and the multi-scale feature mAPs for predicting the regression location box and the

classification task input are enriched to improve the detection accuracy. Experiments are performed

on the logo and VOC2007/2012 datasets

iii

which contains a large amount of small objects (objects of 50 pixels or less). Experimental results

show that these two fusion modules obtain better mAP on PASCAL VOC2007 and Logo datasets than

base line SSD, especially on some small objects categories.

KEY WORDS: Small object detection, single shot multi-box detector, MSSD feature fusion, Feature

Pyramid Networks, real-time.

iv

ÖZET

En kullanışlı ve popüler nesne tanımlama yöntemi SSD'dir (tek seferde çoklu kutu

algılama). Şu anda, evrişimli sinir ağlarını kullanan nesne algılama baskın bir konumdadır.

Bununla birlikte, yetkin sinir ağının yapısı kalıtsal zorluklarla karşı karşıyadır: yüksek

seviyeli ağların geniş alıcı alanları vardır ve bu, bilginin gösterme kapasitesinin yüksek

olduğu anlamına gelir, ancak çözüm azalmıştır, hesaplamalar zayıftır. Taban ağlarında

nispeten küçük kabul edilebilir alanlar vardır ve güçlü geometrik ayrıntı bilgi gösterimi

kapasitesine sahiptir. Bununla birlikte, çözünürlük ne kadar yüksek olursa, kapasite o kadar

zayıf olurdu. SSD nesne tahmini, çok seviyeli özellik mAP kullanır, geniş alım alanları ve

küçük tahmin alanları olan şeyleri tahmin eder, ayrıca yapmak için üst düzey olanaklar

kullanır. Zorluklar yaratır: Küçük şeyleri tahmin etmek için alt düzey ağ işlevleri

hakkındaki bilgileri kullanırken, standart üst düzey işlevlerin bulunmaması nedeniyle,

küçük SSD nesnelerinin tanımlanması ciddi şekilde tehlikeye girer.

Klasik SSD algoritmalarının analizine ve tanıtımına dayanarak, bu tezde, tek soketli çoklu

kutu (SSD) dedektörünü hassas ve hızlı ticarete göre uyarlayan bir yaklaşım sunarak,

küçük nesneleri hızlı bir hızda tespit etmeyi hedefliyoruz. . Küçük nesnelerin doğruluğunu

artırmak için SSD'deki eski bilgileri sağlamak için çok aşamalı bileşen kombinasyonunun

bir MSSD prosedürü sunulmaktadır. Ayrıntılı olarak, birleştirme işlemi, bağlamsal bilgi

ekleme şeklinde farklı olan iki kaynak birleştirme modülünden, bir birleştirme modülünden

ve bir öğe toplamı modülünden oluşur. VGGl6 ve derin artık ağlar, MSSD eğitimi

tarafından, algılama doğruluğunu ve algılama hızını iyileştirmek için aday kutu

regresyonunu ve sınıflandırma görevi girdi özelliği haritalarını optimize etmek için

kullanılır. Artık ağ ile bu makale, yüksek ve düşük katmanları entegre etmek için FPN

tabanlı ağ mimarisini kullanır ve geleneksel olarak örneklenen yapıyı iyileştirir. Yüksek

seviyeli anlamsal bilgi, düşük seviyeli ağ özelliği bilgisine entegre edilmiştir ve regresyon

konum kutusunu tahmin etmek için çok ölçekli özellik mAP'leri ve sınıflandırma görevi

girdisi, algılama doğruluğunu iyileştirmek için zenginleştirilmiştir. Logo ve büyük

miktarda küçük nesneler (50 piksel veya daha küçük nesneler) içeren VOC2007 / 2012 veri

kümeleri üzerinde deneyler yapılır. Deneysel sonuçlar, bu iki füzyon modülünün, özellikle

v

bazı küçük nesne kategorilerinde, PASCAL VOC2007 ve Logo veri setlerinde temel

SSD'ye göre daha iyi haritalama elde ettiğini göstermektedir.

ANAHTAR KELİMELER: Küçük nesne algılama, tek atışlı çoklu kutu dedektörü, MSSD

özellik füzyonu, Özellikli Piramit Ağları, gerçek zamanlı.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENT ... i

ABSTRACT ... ii

ÖZET ... iv

TABLE OF CONTENTS ... vi

LIST OF FIGURES .. ix

LIST OF TABLES .. xi

LIST OF ABBREVIATIONS ... xii

CHAPTER 1: INTRODUCTION .. 1

1.1 Introduction ... 1

1.2 Evolution of Image Recognition ... 2

1.3 Motivation .. 3

1.4 Contribution .. 4

1.5 Structural Design of the thesis .. 5

CHAPTER 2 : BACKGROUND AND RELATED WORKS .. 7

2.1 Convolutional Neural Network (CNN) .. 7

2.1.1 Convolutional Layers .. 8
2.1.2 Pooling Layers and Dropout Layer ... 10
2.1.3 Fully Conn vected Layers ... 12
2.1.4 Common CNN Activation Function ... 13
2.1.5 Batch Normalization Layers .. 15
2.1.6 Deconvolution .. 16
2.1.7 Development ... 16

2.2 Advanced Convolutional Object Detection .. 17

2.2.2 Fast R-CNN ... 18
2.2.3 Faster R-CNN .. 19
2.2.4 Single Shot MultiBox Detector(SSD) ... 20
2.2.5 Non-maxima suppression .. 20
2.2.6 Region Proposal Network ... 21
2.2.7 Compare the Methods ... 22
2.2.8 Speed Accuracy Trade-off ... 23

vii

2.3 Open Source Framework For Object Detection ... 23

2.3.1 TensorFlow Object Detection API ... 23
2.4 Summary of This Chapter ... 25

CHAPTER 3: SYSTEM DESIGN AND METHODOLOGY 26

3.1 Single Shot Multi-box Detector Network ... 26

3.1.1 Base Network .. 26
3.1.2 SSD Layers .. 27
3.1.3 Prediction Layers ... 27
3.1.4 Default Bounded Boxes .. 29
3.1.5 Deep Residual Network (ResNet) ... 30
3.1.6 Very Deep Convolutional Network VGG16 ... 32

3.2 Modified Single Shot Multi-Box Detector (MSSD) Model 33

3.2.1 Network Structure Based an Deep VGG16 Network 34
3.2.2 Network structure based on deep Residual Network ... 37
3.2.3 Model training ... 39

3.3 Function Loss ... 40

3.3.1 Localization Loss .. 40
3.3.2 Confidence loss ... 42

3.4 Summary of this Chapter .. 43

CHAPTER 4: EXPERIMENT RESULT AND DISCUSSIONS 44

4.1 Datasets ... 44
4.1.1 Pascal VOC 2007/2012 datasets ... 44
4.1.2 Logo datasets ... 45

4.2 System software and hardware construction .. 47

4.3 Evaluation matrics .. 48

4.3.1 Detection result ... 48
4.3.2 PR curve explanation .. 49

4.4 Experimental result and analysis .. 50

4.4.1 Test results under VOC2007/2012 and logo dataset 50
4.5 Result Evaluation .. 53

4.5.1 Result Analysis on PASCAL VOC2007 datasets ... 53
4.5.2 Result Analysis on logo dataset .. 54

4.6 Running Time ... 55

4.7 Performance comparison of MSSD Modules ... 56

4.7.1 Performance of MSSD modules based on VGG16 Network 56
4.7.2 Performance of SDD Modules based on Residual Network 59

4.8 Summary of this Chapter .. 59

viii

CHAPTER 5: CONCLUSION ... 61

5.1 Summary of work ... 61

5.2 Future work ... 62

REFERENCES .. 63

APPENDICES .. 68

Appendix A: SSD Architecture Based on vgg16 Model …………….…………..……… 69

Appendix B: Modified Single Shot Multi-box Detector ... … 71

Appendix C: Modified Single Shot Multi-box Detector Based on Residual Network
…………………………………………………………………………………………... 76

Appendix D: Conclusion From the above techniques …….……….…………………… 78

Appendix E: Ethical Approval letter …………………………………………………. .. 79

Appendix F: Turnitin Report ……………………………………….………………….... 80

ix

LIST OF FIGURES

Figure2.1: A CNN which the red input layer consists of an image that converted into a 3D
structure ... 8

Figure 2.2: A CNN architecture uses to classifying an image as belonging to one of the
categories ... 9

Figure2.3: Max pooling takes from each window the largest value 10

Figure 2.4: Dropout Neural Net Model .. 11

Figure 2.5: layers in a convolution network .. 13

Figure 2.6: Function curves of sigmoid, Tanh and ReLU .. 15

Figure 2.7: The R-CNN (Region with CNN feature) system ... 18

Figure 2.8: The Fast R-CNN forward computation .. 19

Figure 2.9: Process of Non-maxima suppression ... 21

Figure 2.10: Convolutional implementation of an RPN architecture 22

Figure 2.11: The RPN generates proposals over the image ... 22

Figure 2.12: mAP vs. GPU time for different meta-architectures 24

Figure3. 2: SSD network architecture .. 27

Figure3. 3: SSD network architecture .. 30

Figure3. 4: Residual locks, Viewed as suggested by [HZRS15]. 31

Figure3. 5: VGG-16 architecture for Classification and Detection 33

Figure3. 6: Feature-fused SSD architecture ... 34

Figure3. 7: Layers show the useful receptive fields in SSD architecture 35

Figure3. 8: Illustration of the smart concat-sum model ... 36

Figure3. 9: Illustration of the smart element module ... 36

Figure3. 10: The framework of classification and regression of SSD and ResNet 38

Figure3. 11: Smart Feature Pyramid Network Module. ... 39

Figure3. 12: The L1, L2 and the L1s loss functions. .. 41

Figure4. 1: Examples of Pascal VOC ”person” dataset ... 45

Figure4. 2: Eight different samples of Logo dataset .. 45

Figure4. 3: LabelImg saves a .xml file ... 46

Figure4. 4: The IoU overlap graphically displayed by www.pyimagesearch.com 48

Figure4. 5: The precision-recall curves of SSD and MSSD models. 53

Figure4. 6: Decline of total loss when concate-sum on PASCAL VOC2007 dataset 54

Figure4. 7: Development of overall mAP when concate-sum on PASCAL VOC2007
dataset. ... 54

Figure4. 8: Decline of total loss when Eltsum-ResNet-101 on PASCAL VOC2007 dataset.
 ... 55

x

Figure4. 9: Development of overall mAP when Eltsum-ResNet-101 on PASCAL
VOC2007 dataset. .. 55

Figure4. 10: Show the detection results original SSD and MSSD model with concat-sum
and element-sum module, respectively on Pascal VOC 2007 dataset. 57

Figure4. 11. Right: The results of concat-sum model detection. Left: The results of
element-sum model detection. Concat-sum fusion model could weaken the noise of
background interference while element- sum fusion model can’t weaken. When looking
into the difference of these MSSD methods, we carefully analyze the fusion methods and the
results of their detection. In Fig 4.11, which does not include im- portant contextual information.
Although the concat-sum module utilizes learned weights to merge object feature with context
feature, it can then choose useful contextual informa- tion and diminishes background noise
interference. Unfortunately, the element-sum method marge both object features and context in an
equivalent way, therefore it cannot adapt the beneficial contextual information. Conversely, in Fig
4.12, The cars in the scene are blurred, so the context is important for identification. In this
situation, the element-sum fusion ap- proach performs better than the concat-sum fusion approach,
since the latter seems to have more choice that perhaps the bond between object and context might not
be well learned. .. 57

Figure4. 12. Right: The effects of element-sum fusion model detection. Left: The results
of concat- sum fusion model detection. The children in this picture are small and blurred,
so that the contextual information is required to identify them. This context is exploited
well enough by the element-sum fusion model, whereas the concat-sum fusion model
cannot. .. 58

Figure4. 13: Show the detection results original SSD and MSSD model with concat-sum
and element-sum module, respectively on logo dataset. ... 58

Figure4. 14: The results of traditional SSD model and MSSD model. 59

xi

LIST OF TABLES

Table 3. 1: SSD network parameters. ... 28

Table 3. 2: SSD regression box prediction loc network ... 29

Table 3. 3: SSD confidence prediction Conf network ... 29

Table 4. 1: detection results of different fusion layers. .. 51

Table 4. 2: Results of MSSD based on VGG16 network with IOU=0.5 on PASCAL
VOC2007 test set ... 51

Table 4. 3: Results of MSSD based with IOU=0.5 on deep VGG16 network on Logo test
set. .. 52

Table 4. 4: Results of MSSD based on deep residual network with IOU=0.5 on Logo test
set ... 52

Table 4. 5: The running time illustration of different models. ... 56

xii

LIST OF ABBREVIATIONS

CNN CONVOLUTIONAL NEURAL NETWORK

SSD SINGLE SHORT MULTI-BOX DETECTOR

MSSD MODIFIED SINGLE SHORT MULTI-BOX DETECTOR

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Fast growing also years with computer hardware and software from artificial intelligence,

unmanned driving, intelligent transportation, travel, with identification and reuse of many

other applications there is no doubt a need to include the goods. Computers should be used

to detect and identify Real-time tracking, rapid tracking which makes it important as a

fundamental, long-standing and difficult subject in computer vision, the discovery of object

has always been for decades, athough it dominates an important and active area of research

has been. Detecting and locating whether or not there is instance of object in a given image

from given categories is the objective of object detection and return with the spatial

position through a bounding box.

Recently, the techniques of deep learning [26, 27] have emerged as efficient and powerful

methods for automatically learning features representation from data. Specifically, these

techniques had already provided significant improvement as never before for object detec-

tion, which is a question that has mobilized large number of attention recently. Although

difficulties of objects detection has seen a qualitative leap in scientific through a lot of

research in natural scenes, it is yet far from being solved, especially for small objects. This

problem is extremely relevant in many of today’s challenging research applications like

detecting traffic signs, pedestrians and cars on roads and a so on. Although CNNs have

been proved efficient and effective on object detection, the reliable and accurate detection

for small objects, due to their limited information and resolution in images deemed a quite

challenging task [36],[35]which the small object activations become forwardly smaller

with each pooling layer, as passing an image throughout a standard CNN architecture like

ResNet or VGG16, and Current methods often cannot detect small size objects effectively

as well as they have done for the large objects [10]. The challenges involved in the

detection of small objects are multiple fold, but the biggest challenge stems from the

comparatively small size of an object compared to its background in an image, e.g. the

2

small object of interest occupies only 1 to 5 percent of pixels in an image. In addition, the

input size for all these networks is indicated by in the place of storage over GPUs due to

the enormous network running memory requirements. For instance, an SSD detection

model [34] based on VGG16 [25] needs more than 10 gigabytes to handle only a single

image with a 2048 R 2048 input size. Simplifying the network, e.g. using a shallow one,

with a tradeoff of performance degradation is the only way to overcome the above

mentioned problem. A second alternative solution in order to suits the memory is by down-

sample the original image. However, It will be even more difficult to detect small objects.

This research work is based on existing SSD methods, on additional research and

references, using resource maps at various scales of different layers to predict or anticipate

objects, large predicted objects using more receptive large fields with high level resource

information, though smaller. Receptive fields and low-level information about the

characteristics used to predict small objects. When a person is at the spiritual level smaller

than SSD detection if it is deficient may have adverse effects on objects. Solve this

problem with top level iconic detail and little features facts must be combined. This

research is high-level and low-level uses an FNF-Based network structure for feature

fusion and expands the traditional ultra-sample structure First class with this faculty

network information combines grammatical facts and predictive position of different field

scales enriches the map on view and classification functions enter. To improve detection

accuracy after extracting the resource maps at various scales, this thesis provides a forecast

module consisting of residual units, extracts the deepest resources further and finally

inserts them into the cash regression task and the classification task. Specialized

information from this faculty network integrates with first-class grammatical fact and

strengthens the outline map. Solved object detection problems accuracy and increased

speed classification works. It has important practicability in artificial intelligence,

unmanned driving, intelligent transportation, face recognition and other fields.

1.2 Evolution of Image Recognition

In 2012, object method ranked resources adopted the perception of maximization. First,

someone item categories it is necessary to specify a particular feature so that it can be

display correctly. The object can be completely represented by resource vectors after

extracting sufficient resources from the training data, which will be used during the

3

training time to be used during the test time to perform detection tasks and also to train a

classifier. Drawback stand out, as the clarity of the function is very tricky also difficult get

expand the model by adding an additional object to the detection list. In addition, the

detection accuracy is not satisfactory In 2012, during the mass visual recognition challenge

(ILSVRC,2012), Krysovsky’s CNN model to classify images with extend training images

in addition to GPU-CNN beat the high potential self-learning capabilities taking advantage

of, CNN models are more appropriate and adaptable so that if appropriate training data is

available, it will be used in other categories too many can be done. From that day on, CNN

has become the primary tool for classifying objects. From 2012 to 2015, Research

subsequently wrote regression heads for all CNNs currently in circulation, including VGG-

Net [25], Overfeat-Net [24] and ResNet [14], thereby lowering the rate. 34% to 9% of

individual object location error. Obviously, in the role of location and classification, CNN-

based approaches performed very well.

The researchers also started working on various object detection tasks. In late 2014, several

proposals for the CNN-based region and classification methods were developed [6] [7] [8]

[21]. Essential i mean workplace proposition approaches create applicant zone which are

likely to include objects and then classify all those regions later in practical terms, these

regional proposition and classification methods could achieve very precise precision. High

[24] [25] [14]. However, the part of the region's proposal really takes a long time, slowing

down the entire system.

1.3 Motivation

Although the natural landscape as objects research has long been the subject of research

and it is a computer big challenge has been made in sight, small the question of finding

objects has been neglected for a long time of course, the object detector is large and will

work well on medium sized objects, but images due to the “low resolution” size of little

objects, these detectors are the objects perform poorly for the general function of

identification and detection identification to exhibit. At present, the main factors restricting

the development of object detection include the following aspects:

• Image half-and-half analysis of a comprehensive iterative neural network: the

multi-function function of the context function, the virtual neural network is vulnerable to

4

structural problems. High-level networks have enormous acceptable fields and powerful

ability to present meaningful information, but low resolution is weak

• geometric detail information representation capabilities. Yielding area for low-

rate network is comparatively low, and Strength to represent geometric details is strong.

Despite the high resolution, the capacity to represent semantic information is low. Multi-

scale object positioning, objects are predicted by multi-scale feature maps, large objects are

predicted by feature information of high-level and small objects are predicted by feature

information of low-level with larger receptive fields. This raises concerns when

information from the purpose of poor system network is used portend small ones, the

absence of next level voice functions indicates poor ones.

• Hard to imagine real-time generation of high-resolution images or videos: A object

with a simple background, sufficient light, no obstruction, and a shooting angle of front is

relatively easy to detect, because this kind of image is the easiest type in object detection.

Many methods can achieve 100% accuracy for this kind of image. The detection rate is

greatly reduced when the background is mixed with the object, there are occludes near the

object, the light intensity is too weak, and the object pose changes. Considering the real

time detection, detecting and recognizing small objects accurately in a fast way is hardly

achieved by these studies. A large improvement ion speed has presented by The Single

 Shot Multi box Detector (SSD [10]) fast detector. Thus, currently, the precision

/ speed compromise is still difficult to balance simultaneously and remains a major

problem for future research to be solved. We are inspired here by

• Developed a latest idea "MSSD technique for the sake of related information to

SSD libraries". Thus, today, the compromise between precision and speed is also still

difficult to balance simultaneously; it remains largely a vital problem for future research

sorted out.

1.4 Contribution

 The main purpose of the current topic is to quickly detect small things. Our

partnership includes the following parts to be included documents. Data set up pre-

processing for 8 classes to identify training, verification and data needed to identify

something

5

• We check if the object detector is SSD because the speed and speed trade-off

original architecture for normal small object is good example in term of accuracy. Various

datasets, namely PASCAL VOC[15], and logo datasets possible to detected on line.

After analysis and introduction from that SDD model, a new algorithm MSSD model

verification (modified single shot multi-box detector) aimed to increase both the accuracy

and reliability of detecting small objects disappeared. Include in information about low-

level network facilities for advanced rationality information, and multi-level features maps

of predictable regression location and classification task inputs have been added to

improve the need to explore reinforce. The VGG16 and deep residual network used in a

new algorithm, and the feature maps of candidate box regression and classification task

input were optimized.

• In detailed, we instantiate training our model with two backbone VGG16 and

ResNet with two modules, element-sum and concat-sum modules.

This study will enhance the accuracy of target recognition by solving the problems of SSD

method in target detection. It has important practicability in artificial intelligence,

driverless, intelligent transportation, face recognition and other fields.

1.5 Structural Design of the thesis

This thesis report is structured into five chapters. Beginning with two (chapter 1, chapter 2)

theoretical chapters. Since the convolutional object detection is a collection and

combination of several fields in machine learning, discussing several related theoretical

topics which seem desperate at first definitely is needed. proceeding from chapter 2, we

will start with a short introduction to convolutional neural networks as a combination of

computer vision and machine learning. Next, we introduce a short evolution of image

recognition, we end the chapter by discuss how convolutional object detection used for the

problem of detecting objects and review the popular recognizing an object methods. In

chapter 3, we discuss detailed explanation with SSD method and our adaptations. In

chapter 4, we will take a look at the datasets we’ve been working with, which are

VOC2007 and Logo dataset, for image classification, also we shift to the experimental part

beside discussing the details of the datasets and how will evaluated and shown the results

we got during the implementation steps.

6

Ultimately, we provided the conclusion of our project in Chapter 5 and addressed,

discussed in the future the recommendations and improvements on the project

7

CHAPTER 2

BACKGROUND AND RELATED WORKS

Since 1980, Artificial Neural Network (NN) has become a popular direction in the field of

artificial intelligence research. First, the method abstracts the neural network of living objects from

the direction of information analysis and processing, and then builds some simple models. Finally,

these models are combined according to different connected methods to form different network

structures. WSMcCulloch and W. Pitts established the MP model in the early 1940s [18]. Based on

the MP model, a method for describing the mathematical concepts of neurons and describing the

structure of neural networks was proposed, verifying that a single neuron also Being able to

perform logical functions has opened up a new era of artificial neural network research, and

artificial neural networks have experienced a long history of development since then. Until the

early 1960s, the concept structure of the ”perceptron” was established by F. Rosenblatt. The

structure is a neural network composed of multiple layers. Its design and production put the

theoretical research of artificial neural networks into practical engineering. Subsequent years of

investigation and development, the theoretical structure of artificial neural networks has achieved

excellent results in a wide range of research areas. At the same time, a large number of neural

network structural models are proposed, such as perceptrons, feedforward neural networks, BP

neural networks [19], Boltzmann machines [20], convolutional neural networks, and so on.

2.1 Convolutional Neural Network (CNN)

Today, convolutional neural networks are presently among of the most outstanding algorithms

of deep learning techniques utilizing the images datasets. Whilst relevant feature has to be

manually extracted for traditional machine learning, which in deep learning certain features

are learned by using raw images as input. A CNNs working on a layer of sends and receives

also several hidden layers, convolutional, pooling and entirely linked films are examples like

invisible layers. The CNN architecture differs in type and numeral of layers which had been

implemented and introduced for its particular application. Classified responds, the procedure

shall contain a group of operation layer, whereas the network should include a regression layer at

the end of the network for continuous responses. Purposefully, each layer of CNN neurons is

shaped and organized in a 3D structure, aiming to obtain a three- dimensional output through

passing three-dimensional input throughout the CNN layer. Fig- ure 2.1 shows that the images are

8

held by the input layer as 3D (width, height and depth- RGB as dimensions) inputs. Below,

regions of the picture bind together to nerve cell within winding layer plus converted into such a

three-dimensional output, look at figure 2.1.

Figure2.1: A CNN which the red input layer consists of an image that converted into a 3D structure

Source: http://cs231n.github.io/convolutional-networks

CNN structure involves of many hidden layers. In each layer, nodes are involved while

activation volumes are changed using of different functions. To create CNN configurations, there

are four principle types of layers that are used, the example is shown in figure 2.2.

• Convolutional-Layer (CONV).

• Rectified-Linear-Unit-Layer (ReLU).

• Pooling-Layer (POOL.

• Fully-Connected Layer (FC).

2.1.1 Convolutional Layers

In CNN, convolution has been often familiar with output a characteristic design upon data, which

can be the original image or other feature map. The main purpose of using convolution is to take

advantage of the special structure of the input and learn how to transform it to the most informative

form. In practice, convolutional layer’s conduct is monitored in a series of hyper variables, which

brings flexibility to the design of neural networks and allows to adapt them to various problems:

http://cs231n.github.io/convolutional-networks

9

Figure 2.2: A CNN architecture uses to classifying an image as belonging to one of the categories

Source:http://cs231n.github.io/convolutional-networks

• Kernel size defines the attributes of complication core. Controls the input area where

neurons are sensitive. It chose the right value for this parameter almost always according to

a set of data. One way is to capture important detail by determining the smart size of the

first row according to the scale of the images. Edges however, there is no rings for deep

players theory is not end the maximum size of intellect is experimentally determined. In

the case when the input contains multichannel images or any three-dimensional data kernel

itself is often three-dimensional.

• Core number output dimension maintainers controls the number, because each core will

produce a different main map. Increasing number of particles in the architecture can be

frozen in the reduction of information less where the map size decreases with each layer. It

also controls the capacity of the model under growing amount with kernels overall figure of

trainable parameters grows up.

• Padding: convolution is unclear bordering inputs, because several segment of the grains

does disproportioned few intake value it can consume. Addresses issue like angle

cases to apply convention, the input possibly prepared under zero input value. Figure

for which is determination directly influenced by the volume result, so wadding could

used to control it.

• Sliding convention control pass the ascending price of two shall tell that after

confusing several point, are skipped during dimension tour by manipulating, we

overlap and decrease the output size of various accepted fields you can manage. Let

http://cs231n.github.io/convolutional-networks

10

nin, nout, k, p, s be the total number of the inputs and outputs, total kernel size, padding

size and the stride, resp. Then the following relationship holds true [16]:

 𝒏𝒐𝒖𝒕 = 𝒏𝒊𝒏 + 𝟐𝒑 − 𝒌
𝟐� + 𝟏 (2-1)

2.1.2 Pooling Layers and Dropout Layer

pooling operations always follow each convolution operation in order to control over fitting,

minimize training time, and to further simplify the information. Receiving and compresses the

input from previous feature in order to extract and condensed output feature map which feed

forward to the next process is the core of the function of the pooling process. There are, as you

know, two common pooling technique, maximum and average.

• Average pooling means calculating average between the field pooling values (every period

from quality design).

• max pooling consider majority widely utilized form of pooling which select the greatest

value between each patch of the feature map.

As shown, Figure 2.3, in a max-pooling operation, a 2 x 2 max-pooling filter induces future

map reduction from 4 x 4 to 2 x 2.

Figure2.3: Max pooling takes from each window the largest value

 Source: http://cs231n.github.io/convolutional-networks

Dropout [37-39] was proposed by Hinton in 2012. Complex convolutional neural networks

are very prone to over-fitting immediately instruct with tiny number set of information. For the

purpose of to prevent with over-fitting phenomenon, people can enhance the comprehensive

http://cs231n.github.io/convolutional-networks

11

capacity of the series of neural networks by discarding some feature data, as shown in Figure 2.4.

Assuming such an intake and result are x and y, accordingly, x is forward-propagated through the

neural network, followed by the inverse reproduction formula is used to update parameters so that

the error value approaches y. After adding the Dropout policy, the calculation process is as follows:

• Temporarily and randomly discarding one-half of the hidden neural units in the net-

work layer, and the number of input and output neural units remains unchanged.

• Input x The forward propagation calculation is performed in the neural network with the

Dropout policy added, and then the previously calculated error value is back-

propagated in the modified neural network. After a small batch of training data samples

have been performed, the weight w and offset b are updated using a stochastic gradient

descent method in the neural unit that has not been discarded.

• Continue to repeat this process: recover the discarded neural unit, randomly select one-

half of the hidden layer neural unit from the temporary and delete it, for a small batch of

training data samples, use before Calculate the propagation, then use back- propagation to

calculate the error loss value, and finally update the weight w and the offset b by the

stochastic gradient descent method.

 yi
l+1=f(wi

l+1(rl * yl)+bi
l+1) (2-2)

The role of the Bernoulli function is to generate a probability r vector, which is a vector that

randomly generates a ”0” and a ”1”.

Figure 2.4: Dropout Neural Net Model

12

Source: http://laid.delanover.com/dropout-explained-and-implementation-in-tensorflow/

Summarize the advantages of the Dropout layer. First, for all the neural units of a

hidden layer, set a probability value r during the training process, and delete some of the

neurons temporarily and randomly. During the test, the weights are used (1-r) the probability value

ensures that the same expected value can be used for each weight in the training and testing

process. The other is that this layer strategy reduces the dependence of neural units on each other

and makes some contribution to prevent over-fitting.

2.1.3 Fully Connected Layers

Completely linked sheets are a primary component of Convolutional Neural Networks (CNNs),

which recently have proven noticeable success in recognizing and classifying objects in com- puter

vision. The Fully Connected structure in a neural network is a set of layers which each one take the

output of the prior layer (The output of CNN process)as input, turns them into a vector through

”flattens” them, each representing the probability that a particular feature belongs to a label

which will be an input for the following stage. The objective and role of adding fully connected

layer comprising sort the photo in one label by utilizing the output of convolution/pooling

process. In order to determine and boost the most accurate weights that belong to a label, the fully

connected layers must go throughout a process named ”back propagation”. Each neuron in (FC)

layers receives(forward - backward) weights and gives priority to the most appropriate label.

Finally, the neurons mathematically ”vote” on labels, and the classification decision is voting

winner. An example is showing below the structure (layers and type of layers) needed to process

an image. The more images are complex the more convolutional/pooling layers would be

required.

http://laid.delanover.com/dropout-explained-and-implementation-in-tensorflow/

13

Figure 2.5: layers in a convolution network

Source: https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d

2.1.4 Common CNN Activation Function

The activation function is an important and indispensable part of the convolutional neural

network. It can use linear and non-linear functions to enhance the expressive power of

convolutional neural networks. Here are some common types of activation functions.

Sigmoid function: the Sigmoid [42] function is a non-linear activation function that is used more in

the binary classification of things, and its definition expression:

 σ(x)= 1/1+e-x (2-3)

And its derivative :

 σ(x)= { x; x > 0 (2-4)

 σx; x < 0

The function graph is shown in Figure 2.6. As you can see from the figure above, the Sigmoid

activation function is monotonically continuously increasing, and the value range is (0,1). Where

x = 0, the function curve intersects the y-axis at 0.5. Analysis of the graph shows that the function

easily reaches soft saturation, that is, the partial derivative at the limit value is zero, so it will cause

the network model to easily cause the gradient to disappear when training the data.

• Tanh function: the Tanh function expression is as follows:

14

 σ(x) = 2 sigmoid(2x) – 1 (2-5)

 Its derivative expression is :

 σ1(x) = 1 − (σ(x))2 (2-6)

The graphic image of this function is shown in Figure2.6. It can be known that the tanh

activation function is monotonically continuously increasing, and the value range is (-1,1). Where x

= 0, the function curve intersects the y-axis at 0. Analysis of the graph shows that the function

easily reaches soft saturation, that is, the partial derivative at the limit is zero. Although this

function can converge faster than the Sigmoid activation function, it does not solve the problems

existing in the Sigmoid activation function, which will also cause the gradient disappearance

phenomenon when the network model is training data.

ReLU function: ReLU function [43] is the most widely used activation function at the moment and

its function definition is:

 σ(x) = max(0, x) (2-7)

The function image is shown in Figure 2.6. The ReLU function converges faster than the tanh

function when training data, and provides sparse expression capabilities for convolutional neural

networks. In terms of operation speed, the calculation of the ReLU function is simpler and

cheaper than the exponential calculation of the logistic curve and the hyperbolic tangent function.

Identify ReLU function is negative, its derivatives are all 1, when x is positive, its derivatives are zero,

which can play a one-way suppression function, thereby effectively mitigating the disappearance of

the gradient. Although the ReLU function has the above advantages, after all, it is not a big deal,

and it also has some obvious disadvantages. For example, when the neural network model is

trained when x is negative, the possibility of neurons disappearing is very high, so the dead neurons

cannot update and calculate the weights and biases.

15

 Figure 2.6: Function curves of sigmoid, Tanh and ReLU

2.1.5 Batch Normalization Layers

To make training much easily in a very deep network we use Batch-normalization [17] to

normalizes the output (activation of last Convolution or Fully Connected layers). What batch-

norm is about? It is a learnable or adaptive pre-processing that applying norm process on the output to

normalize the mean and variance in order to achieve a list of advantages like regularization, permit

higher learning rates, minimize dependency on initialization and improves gradient flow. Let X ⊆

D be a batch of inputs, then Algorithm 2.1 Compute the output y of the batch normalization layer.

 𝜇 ← 1
𝑥

 ∑𝑥 ∈ 𝑥𝑥

 𝜎2 ← 1
𝑥

 ∑ 𝑥𝑥𝜖 (𝑥 − 𝜇)2

 𝑥� ← 𝑥𝑖−𝜇
�𝜎2+𝑓

 𝑦 = 𝛾𝑥� + 𝛽 Scale and bais

By centering and scaling the feature maps batch normalization makes the gradient com- putation more

robust because the main goal of the layer is to discard the change in the distri- bution of hidden layers

output, which can happen in the process of training. This simplifies learning and provides faster

16

convergence toward the minimum. The values of γ ∈ R and β ∈ R are determined in the process of

learning.

2.1.6 Deconvolution

Deconvolution has introduced recently by [”ZKTF10”], which basically orders to increase

dimensionality from one input data. Perform , the process of convolution is basically

transposed. Originally, deconvolution produces patches of 𝜌(𝑘 − 1)
(𝑖, 𝑗) ∈ 𝑅1∗1∗𝑚(𝑘−1)

accordance input, and applicable a mass matrix of 𝑤𝑘𝜀𝑅(𝑘−1) ∗ 𝐾 ∗ 𝐾 ∗ 𝑚(𝑘−1) simply

put it creates 𝑘 ∗ 𝑘 ∗ 𝑚𝑘 resulting every 1 ∗ 1 ∗ 𝑚(𝑘−1) patch and extends dimension

(height and weight) of the input

2.1.7 Development

Among the first effective and successful deep neural networks was convolutional neural net- works.

Built up in the 1980s by Fukushima, the Neocognitron biologically inspired[29] have provided A

new model of translation-invariant object recognition in the neural network. Le Cun et al. merged

a learning algorithm with that kind of method, i.e. back-propagation[33]. Almost all of these early

approaches were used for handwritten recognition of character. The neural network methods

disappeared prominently after attempting to deliver any promising results and entirely were

substituted by support-vector-machines[47]. Then, Krizhevskky et al.[22] in 2012, accomplished

fantastic outcome on the dataset of the ImageNet-Large- Scale-Visual-Recognition Challenge

(ILSVRC) by incorporating Le Cun’s approach with previous approaches of deep learning fine

tuning. These findings have popularized CNN networks, made it successful and led to discovery

and development of new powerful meth- ods described later to detect objects. Simonyan and

Zisserman[25] discussed and addressed the impact on position and clas- sification accuracy for the

2014 ImageNet challenge of expanding the depth of a CNN. Through the use of 16 and 19-layer

deep convolution networks The team has accomplished outcomes that have made the state-of - the-art

highly enhanced. The architecture of 16 layers involves 13 convolution layers, 5 max pooling layers

and 3 FC layers, using rectified (ReLu) activations in All hidden layers. FC layers minimize 4096

channels to 1000 softmax outputs that regularized by dropout technique. The latest (2016) winner[2]

in the ImageNet compe- tition of the category of object detection Is also CNN-based. The approach

17

uses a mixture of production of CRAFT region proposal [45], clustering, Bi-directional gated

CNN[46], ensembling and landmark generation.

2.2 Advanced Convolutional Object Detection

here, discussing and comparing different methods of object detection that utilize convo- lutional

neural networks will be done. In particular, we will consider those methods that combine

convolutional neural networks(CNN) with regional proposal.

2.2.1 R-CNN

In 2012, Krizhevskky et al.[22] had achieved favorable and promised results utilize CNNs the task

of general image classification (look at section 2.1.5.). In 2013, a new method[6] called R-CNN

(”CNN with area proposals”) had just been published by Girshicck et al. which these results are

generalized to object detection. R-CNN is a basic algorithm would propose a number of regions to

bounding box objects detected using a selective[44] search algorithm and classify them one at the

time. For each label it will output the label’s name and the bounding box. As shown in figure 2.7, R-

CNN algorithm has several stages. The first stage is extracting regions proposals which we use a

region extraction algorithm (selective search[44] or other region generation algorithm) to propose or

extract those regions. Next, the CNN features are extracted by convolutional network from each

region proposed inde- pendently for classification, following by warping the ” proposed bounding

box” to a size fitted for CNN and then fed into the network. After the features has extracted,

classifying what is the object is in this region through inputting the features to support vector

machines (SVM) giving the final classification. The R-CNN is trained in several stages starting

with the convolutional network(CNN) [8] and ending with classification algorithm SVMs to train

the generating area proposition. Although R-CNN is considered very important process, because

that is first practical solution to detect objects using CNNs. But it still suffering from many

drawbacks Like expensive training, training consists of multiple stages and slow and etc. Slowness is

one of the worst its drawbacks being needs to be processed by repeat

18

Figure 2.7: The R-CNN (Region with CNN feature) system

 Source: https://towardsdatascience.com/r-cnn-3a9beddfd55a

the convolutional network 2000 times to extract feature for each image. And this is what are later methods

have been improved .

2.2.2 Fast R-CNN

In 2015,Fast R-CNN [8] published by Girshicck, what this approach do is obtaining CNN features from

each area proposal over the entire image and collating them within one CNN features matrix, The feature

matrix is then forwarding and branched out to be used in next classification and bounding box regression

phase. Figure 2.8 is illustrating the generic struc- ture of Fast R-CNN. An image with its computed

regions of interest (ROI) is received as input in Fast R-CNN method. As the same with R-CNN,

external algorithms are used to generate RoI like selective search [44]. The CNNs which include several

pooling ,convolu- tional layers is used to process images.

The feature map generated from CNN after several convolutions and pooling layers is entered

to a RoI layer. The output of ROI is a fixed-length feature vector for each region proposal from

the feature map. The vectors are then feed forward to the FC layers which are connected to output

layers:

• A softmax classifier of (k+1) classes producing discrete probability distribution per ROI

or probability estimates for the object classes.

• A bounding-box regression which estimates offsets for K classes comparatively to the ROI.

Comparable to R-CNN, Fast R-CNN is faster being needs much shorter classification time per

image up to a second on a state-of-the-art GPU [8]. This is primarily because the con- volution

operation is done per image only once rather than fed 2000 region proposals to

https://towardsdatascience.com/r-cnn-3a9beddfd55a

19

 Figure 2.8: The Fast R-CNN forward computation

Source: https://towardsdatascience.com/r-cnn-3a9beddfd55a

CNN once at the time per image. As the decrease of detection time, the total calculation time begins to

rely significantly performance of the method of generating the region pro- posal. So generating ROI

form is the cornerstone or bottleneck[8] of the computational. In addition, when there are many RoIs , the

time spent on assessing fully connected layers can takes control the time of convolutional layers.

Accelerating the Classification time can be done by about 30% by compress the fully-connected layers

utilizing the truncated singular value decomposition [8],This leads to a slight decrease in accuracy,

however. According to [8], during training Fast R-CNN approach is much more effective than regular

R-CNN up to nine-fold drop in training time. The whole network including (RoI pooling and FC

layers) can be trained with the back-propagation and stochastic gradient descent algorithm. Typically, as a

starting point we use a pre-trained network to facilitate training and then fine-tuned. Mini-batches

approach of m images is used to train the network.

2.2.3 Faster R-CNN

The fundamental idea of Ren et al.’s, Faster R-CNN [21] is to utilize the shared convolutional layers for

detection and for generating region proposal. The researchers found that feature maps that produced by

backbone networks also could be used to collect the region proposals. Region proposal (RPN) is a fully-

convolutional component of the Faster R-CNN network which produces the feature proposals. The authors

announce the Fast R-CNN architecture as a successful end-to-end convolution network for the detection

functions. Faster R-CNN network has already been trained by switching between generating and

detecting RoI training. First, there are two different networks being trained. Such networks are then

integrated and fine-tuned. During fine-tuning, some layers have been trained and some layers have been

kept fixed in turn. A single image received by the trained network as input while the fully convolutional

shared layers produce the feature map from the input image. While the feature maps feed to the RPN,

regional proposals will be output of RPN that are input to the final detection layers include a (RoI pooling

layer) with the said feature maps to- gether outputting the final classifications. Regional proposals have

20

become almost cost-free computationally using shared convolutional layers. The advantage of being

realizable on a GPU was added by generating region proposals by RPN. Traditional methods for generat-

ing RoI, including Selective Search, are implemented using CPU. The method uses special anchor boxes

rather than a pyramid of scaled photos or a pyramid of varying filter sizes to handle different sizes and

shapes of the detection window. Because of RPN faster R-CNN can propose regions with different size

and the anchor boxes used as reference points to several region proposals which centered by the same

pixel.

2.2.4 Single Shot Multi-Box Detector(SSD)

The Single-Shot-Multi-Box Detector(SSD)[10] goes even further with integrated detection. There is no

need for the method to produce proposals, nor does it require any re-sampling of image segments. It uses a

single pass of a convolutionary network to make object detection. The method begins with a default

collection of bounding boxes, which very similar to a sliding window system. These absolutely include

different scales and aspect ratios. The object predictions computed for these boxes involve offset

parameters that predict how different from the default box are correct bounding box around the object.

By using feature maps from various different layers of convolution (i.e. smaller and larger feature maps)

as input to the classifier stage, the algorithm works with various scales. While the method produces a

dense collection of bounding boxes, non-maximum suppression algorithm is following the classifier, which

excludes most boxes under a certain confidence threshold. Although SSD method is less suited for small

objects, it is one of the most efficient method and therefore being used as a method for object detection.

2.2.5 Non-maxima suppression

Non-maximum suppression (NMS) has already been used in several aspects of Computer vision. Its

necessity comes from the imperfect of detection algorithms to localize the region of interest, resulting in

groups of many detection near to the real location. So it’s a way to make sure that your algorithm

detects each object only once. To implement (non-maxima suppression) follow the following :

• Discard all boxes with pc ≤ 0.6.

• While (loop) :

o Pick the box with large pc,output this as a production.

o Calculate the IOU between remaining box and output prediction pc in the previous step and if IOU=

{(𝑖𝑜𝑢 ≥ 0.5 𝑜𝑡ℎ𝑒𝑟)

21

Figure 2.9: Process of Non-maxima suppression

2.2.6 Region Proposal Network

Taking the drawbacks of using selective search to extract regions of interesting in account, regions

suggestion structure (RPN) created and used rapidly R-CNN method for minimize and mitigate problem

of computational requirements of the overall inference process through determine where to look. The

RPN efficiently and quickly takes all the anchors from every location and assess whether extra processing

should be performed in a particular region by outputting K good bounding box proposals, each anchor has

two different output(2 scores) represent the probability of existing an object or not at each location. The

First one (classification) is the probability of whether or not the predicted box contains an object

(background). An “object-ness score”, if you will RPN uses the object-ness score to filter predictions in

order to deliver good predictions for the next stage. Notice that the RPN ignore labeling object to which

class, it only care about anchors which contain something looks like an object and not background. The

second output is the bounding box regression to determine a predicted bounding box Pxcenter , Pycenter , Pwidth,

Pheight. Far away from selective search RPN completely implemented in a fully convolutionar manner

efficiently, utilizing from the base network output(feature map) as input. First, In Faster R-CNN they

used a 3x3 kernel size with 512 channels that slides over a high-level conv feature map. We use a 1x1

kernel with k channels (k depends on the number of anchors) to get two parallel convolutional layers.

22

Figure 2.10: Convolutional implementation of an RPN architecture

Source: https://tryolabs.com/blog/2018/01/18/faster-r-cnn-down-the-rabbit-hole-of-modern-object-detection/

Figure 2.11: The RPN generates proposals over the image

Source: https://tryolabs.com/blog/2018/01/18/faster-r-cnn-down-the-rabbit-hole-of-modern-object-detection/

The confidence scores in classification layer(cls), each anchor has two predictions as output : the score of

containing an actual object or not(background). For the regression layer (reg) that computes the box offsets,

there are 4 predictions as output:∆xcenter , ∆ycenter , ∆width , ∆height

That gonna be implemented particular offer presenter in order to get the final proposals. The final

good set of proposals that will be further processed are those anchors with a corresponding high ”object-

ness” score.

2.2.7 Compare the Methods

Above in section (2.2), we have mentioned the qualitative leap of speed and accuracy between regular

R-CNN and Fast R-CNN. How about their performance by Fast R-CNN com- pared with advanced

methods (SSD, Faster R-CNN)? Comparing the performance of advanced methods(Faster R-CNN, SSD)

https://tryolabs.com/blog/2018/01/18/faster-r-cnn-down-the-rabbit-hole-of-modern-object-detection/

23

and Fast R-CNN on standard dataset PASCAL-VOC-2007 test set has done by Liu et al[10]. On

PASCAL-VOC-2007 training data, Faster R- CNN performance slightly improving than Fast R-CNN

which achieves 69.9, to 66.9, mean average precision respectively. Also SSD had achieved 68.0 mAP with

300 x 300 input size and 71.6 mAP with 512 x 512 input size. Faster R-CNN and Fast R-CNN standard

implementations are resizing the length of the input picture some smaller size of 600 pixels. It seems that

SSD achieves better performance with images of similar size. However, to achieve such result [36], SSD

needs or requires an extensive utilize of data augmentation to expand the precision with accuracy of

recognizing for things. Fast R-CNN and Faster RCNN utilize only horizontal flipping technique while

SSD benefit from the variety of the data augmentation techniques. Currently it is unknown, whether

Faster RCNN and Fast R-CNN would utilize and benefit from additional augmentation. Undoubtedly,

advanced methods (SSD, Faster R-CNN) are considerably more precise and correct than Fast R-CNN but

the surprise improvement is the speed. After eliminating most of the low probability detection through

the non-maximum suppression, SSD512 frame rate drops to 22 FPS while SSD300 frame rate drops to 59

FPS. Meanwhile, Faster R-CNN based on a VGG-16 backbone can run at 7 FPS [10]. The running time of

Faster R-CNN [21] has reported 5 FPS i.e. by the premier authors 0.2s per image. In case of evaluation

speed, Fast R-CNN and Faster R-CNN both have approximately the same speed but Fast R-CNN requires

extra time for generating region proposals. Generating regions using Selective Search in Fast R-CNN

require 2 seconds per image as mentioned by the authors.

2.2.8 Speed Accuracy Trade-off

With the brief overview of the most widely used object detectors, selecting an object detection method

to experiment with can be challenging. However, “Huang et al” has made a comprehensive study of all

the above mentioned object detectors and compared them in multiple aspects such as, speed, accuracy and

memory. This paper has been a foundation for this work in selecting the network architecture. The study

concludes that SSD has one of the better trade-offs between speed and accuracy.

2.3 Open Source Framework For Object Detection

Open source framework for object detection, such as google Tensor Flow Object Detection API, OpenCV's

DNN library and Microsoft Cognitive Toolkit (CNTK), we are going to develop object detectors related to

our application grant. Open source frameworks provide a pre-trained object detection method that can

easily correct our data sets.

2.3.1 TensorFlow Object Detection API

The Google Tensor Stream Object Detection API is an open source object detection framework.

It is based on tensor flow and for the user to define, train and use the Permite object detection

24

model. Developed by Google Brain Team, TensorFlow Open Source Software Library Uses data

flow charts for digital computers.[1]. Two key components, nodes and edges in the data flow

diagram are. The nodes represent the mathematical calculation (operations) and the edges

represent tens of (multidimensional) that flow between nodes .Two key components, nodes and

edges in the data flow diagram are. The nodes represent the mathematical calculation

(operations) and the edges represent tens of (multidimensional) that flow between nodes How

Parameters and Output Change during Tensor Board Comographic Viewing and Model Building

Provides a web interface to understand. As mentioned earlier, the Tensorflow Object Detection API

provides multiple pre-trained models such as Mobile Net’s SSD model, ResNet’s Faster R-CNN model, and

ResNet’s R-FCN model on different datasets. To fine-tune our individual object detectors, we can choose

to initialize our training from among the pre-trained models. The choice of the pre-trained model

depends on the intention of our application it gives API ideas for the speed and accuracy of

various item tracking models. Acceleration is the most important requirement in real-time

modern object identification applications Models trained with SSD and RFCN networks are

pretty good, but low cost accuracy. Conversely, fast R-CNN is more reliable but more expensive

over time from trained models. Figure 2.12 shows the balances for speed accuracy for different

object detection models.

Figure 2.12: mAP vs. GPU time for different meta-architectures

Figure 2.12 shows that the most reliable of all is the Faster-RCNN model with Inception ResNet with 300

propositions but also the most expensive. The models equipped with SSD and R-FCN are however faster

25

but less accurate. In addition, Faster R-CNN can be fast enough if the regions of interest with ResNet

are small as is evident for Faster R-CNN with 50 proposals

2.4 Summary of This Chapter

This chapter analyzes and introduces in detail the origin of neural network and its development

process. The paper focuses on the principle of convolutional neural networks in deep learning, and

details the network layer, inter-layer relationships and parameters, built- in functions, and algorithms in the

architecture. Then the open source frameworks for object detection and speed-precision trade-off for

different object detection models have defined.

26

CHAPTER 3

SYSTEM DESIGN AND METHODOLOGY

In this section we first give and present an overview for the used and proposed model of detecting small

objects from an input image, introduce the SSD briefly which is a commonly uses object detection

framework and then demonstrate in detail MSSD modules, which take advantage of the useful local context

for late classification and regression layers. The loss function used for this task will be discussed

separately. We will conclude this chapter by describing the image pyramid structure used by Hu and

Ramanan (2017), how it fits in the SSD framework and why we expect it to be beneficial object detection.

3.1 Single Shot Multi-box Detector Network

The SSD network by Liu et al. is one of the architectures used most commonly for detecting objects. The

network is Fully Convolutional and can therefore be used for images with any resolution. Two

architectures are proposed in the original paper: 300x300, input resolution architecture and 512 x 512

pixel input resolution architecture. Our baseline model is SSD300 because its default model and original

document is described by Liu et al. (2016). Furthermore, other papers also use this network as a baseline

Zhang et al. (2017b). One property of the SSD network found by Huang et al. is that it’s more

efficient than other detectors and an efficient network was one of the constraints for the Sightcorp

application. The SSD network is called Single-shot since both Localization and classification of objects

was carried out through the network within a single feed-forward. This is contrast to, for example, the

Faster-RCNN network Ren et al. (2015), from which it differs since it does not have a separate regional

proposal network. Furthermore, the SSD network combines multiple feature maps with different sizes to

generate predictions, similar to Hariharan et al. (2015), to be more scale invariant to objects. These

combined predictions from the multiple feature maps produce two output, a bounding box offset and class

confidence. The network consists out of three parts, a base network, SSD layers and prediction layers

attached to multiple feature maps in the network.

3.1.1 Base Network

These first layers are called the base network and the base network consists of stacked convolutions to

decreasing size. The purpose of this base network is to provide response maps that enable detection

different sizes. The base network can be seen in figure 3.1 and is represented the convolutions conv1

till conv5. To be consistent with the original paper we use a truncated (fc6 and fc7 removed) VGG16

27

base network and initialize those layers with image-net weights. However, as mentioned by the authors

one could replace the base net- work by any standard or non-standard architecture, e.g inception (Szagedy

et al., 2015) or resnet (He et al., 2016).

3.1.2 SSD Layers

Subsequently to the base network, additional convolutional layers are added: conv6, conv7, conv8, conv9,

conv10 and conv11, which are initialized with a truncated normal distribution. These additional

convolutions are highlighted as SSD layers in figure 3.1. Similarly to the base network, the decreasing

size of the feature helps with generating response maps for various object sizes. These layers however

have bigger receptive fields and this helps to detect larger objects.

Figure3. 1: SSD network architecture

3.1.3 Prediction Layers

The prediction layers are attached to the convolutional base network and SSD layers (Figure 3.1). For the

feature layer of size m x m x c, while m is volume of feature map and c is channels range.

Convolutional layer is attached with a 3 x 3 x r x(classes + off-set coordinates) kernel, where r is the

default bounding boxes number and the classes number is 2(classes and background). This kernel produces

both a classes confidence, background confidence and also the offset of bounding box pertain to a

default bounding box, which we will touch upon shortly. These prediction layers are attached to

multiple points in the convolutional base network and SSD layers, namely conv4-3, conv7-2, conv8-2,

conv9-2, conv10-2, conv11-2. More fine details are captured by lower layers and are able to capture

smaller objects, while higher layers capture more semantically meaningful information and capture larger

objects. Therefore, attaching multiple feature layers should help to capture the differently sized objects.

All the prediction layers are concatenated at the network end, which will result a single output layer

with a fixed number of predictions of the bounding box. The network parameters are shown in Table

3.1. As shown in Table 3.2, it is the

28

Table 3. 1: SSD network parameters.

Layers Name Convolution Input(w,h,c) Output(w,h,c)

VGG Network Convolution Layer part(SSD is also prediction from Conv_4)

Conv6(VGG FC6)

Conv7(VGG FC7)

Conv8_1

Conv8_2

Conv9_1

Conv9_2

Conv10_1

Conv10_2

Conv11_1

Conv1_1

1024,3x3,1,6,dil=6

1024,1x1,1

256,1x1,1

512,3x3,2,1

128,1x1,1

256,3x3,2,1

128,1x1,1

256,3x3,1

128,1x1,1

256,3x3,1

19x19x512

19x19x1024

19x19x1024

19x19x256

10x10x512

10x10x128

5x5x256

5x5x128

3x3x256

3x3x128

19x19x1024

19x19x1024

19x19x256

10x10x512

10x10x128

5x5x256

5x5128\

3x3x256

3x3x128

1x1x256

parameters of the loc network. The loc network is the network used to calculate the regression box. In the

loc network, 4x4 and 4x6 are due to the prediction frame used by the loc network to predict the target.

The prediction frame consists of (cx, cy, w, h), Representing the focal points and height of focal

points and forecast frames. Multiply by 4, 6 because in this feature map, each feature point is divided

into 4, 6 detection frames, respectively. Finally, the output dimension of the loc network is transformed

into (Batch-size,-1, 4) to obtain the prediction frames of the 8732 targets in the detection frame.

Figure 3.3 shows the conf network parameters. The conf network is the network used to calculate

confidence. In the conf network, 21 is a classified category, because the VOC dataset is classified into 20

categories. When doing a target detection task, a background category is added, so it is 21 categories. 4

and 6 are the number of detection frames divided by every feature s p o t of feature map. The output

dimension concerning conf network is

29

Table 3. 2: SSD regression box prediction loc network

Serial Number Convolution Operation Input(w,h,c) Output(w,h,c)

1

2

3

4

5

6

4x4,3x3,1,1

4x6,3x3,1,1

4x6,3x3,1,1

4x6,3x3,1,1

4x4,3x3,1,1

4x4,4x4,1,1

38x38x512

19x19x1024

10x10x512

5x5x256

3x3x256

1x1x256

28x28x16

19x19x24

10x10x24

5x5x24

3x3x16

1x1x16

 (Batch-size, -1, 21) to obtain the classification score corresponding to the targets in the 8732

detection frames. Small objectives through SSD to improve identity, the

Table 3. 3: SSD confidence prediction Conf network

Serial Number Convolution Operation Input(w,h,c) Output(w,h,c)

1

2

3

4

5

6

21x4,3x3,1,1

21x6,3x3,1,1

21x6,3x3,1,1

21x6,3x3,1,1

21x4,3x3,1,1

21x4,3x3,1,1

38x38x512

19x19x1024

10x10x512

5x5x256

3x3x256

1x1x256

38x38x84

19x19x126

10x10x126

5x5x126

3x3x84

1x1x84

parameters of the Pool5 layer of the VGG network were changed from 2x2,2 to 3x3,1. This can make the

feature map after pool5 maintain a high resolution, Which is suitable for detecting small targets. Fully

connected layers FC6 and FC7 are converted into convolutional layers, and the Atrous operation is added

to Conv6. The Atrous operation is also known as hole convolution. This entity is presented from a large

acquisition area without shaping the map.

3.1.4 Default Bounded Boxes

The selective-search algorithm by Uiijlings et al. has been a vital component in object detection methods

in order to obtain region proposals. However, the SSD network has another method for this purpose. The

30

SSD network regresses a grid of default bounding boxes to fit the objects in the dataset. This grid of

default bounding boxes is constructed as follows. For each feature map that has a prediction layer

attached, the bounding boxes is tiled on each feature map cell, which means that every cell of the

feature map will have a default bounding box that is centered in the feature cell. The center can be

computed as follows,

 𝑥𝑖 = 𝑖+0.5
𝑓𝑘

 𝑦𝑖 = 𝑖+0.5
𝑓𝑘

where fk is the length of the size of the feature map square and i and j range from 0 till fk . The original

model uses different ratios for their default bounding boxes, as could be seen in figure 3.2.

Figure3. 2: SSD network architecture

Source: https://towardsdatascience.com/ssd-single-shot-detector-for-object-detection-using-multibox-

1818603644ca

3.1.5 Deep Residual Network (ResNet)

As the number of layers in the network increases, the problem of practice becomes more prominent. A

more significant problem is the vanishing / explosion of the gradient, which affects convergence in the

beginning. On the basis that as network awareness increases, the more depth network can change, the

accuracy rate starts to decrease, which decreases the network the problem is called. Increasing the

number of layers on a given network will increase the training error. Consider a shallow network

architecture and a deep network built on it. Under extreme conditions, if all the layers added are a direct

copy of the previous layer, this situation the training error of the lower deep network should be equal to

31

the shallow network. Therefore, the root cause of network degradation is still the optimization problem.

In order to solve the optimization problem, a residual network is proposed. The residual network is to

add some shortcut connections to the forward network. These connections will skip some layers and pass

the original data directly to the subsequent layers and will not increase the parameters and complexity of

the model. In theory, the network is always in an optimal state, and the performance of the network will not

decrease with increasing depth.

Figure3. 3: Residual locks, Viewed as suggested by [HZRS15].

 For simplicity, BN, ReLU non-linearity, and identity mappings have hidden

[HZRS15] had introduced two forms of residual blocks and the whole structure is generally referred to

basic components. The first is named a residual block (Figure 3.3, left), containing of two operations

of convolution, a residual connection has been made between entry and exit blocks. The alternate call is

residual bottleneck block (Figure 3.2, right), containing of three operations of convolution. Starting by a

1*1kernel to reduce the channels number and a 3*3 kernel, ending by applying the third 1*1 kernel to

enhance the amount of volume. Residual blocks be required to instruct deep s t r u c t u r e until 34

layers. For the deep networks which have over 50 layers, residual bottleneck block have resorted. In

case of achievement these residually blocks on Image-Net dataset, 50-layers network achieves 22.85% top-

1 error rate using residual bottleneck and 34-layers network achieves 25.3% top-1 error rate using

residual blocks. For our part MSSD with ResNet model,

we opted using the residual blocks because of the Extremely expensive of using 1 �1 con-

32

volutions in residual bottleneck blocks and we cannot cut down their cost through the use of an

substitute process. In addition, residual bottleneck blocks are practically not just a perfect proper less

layered correlate reason they do not extend the receptive field as strongly as residual blocks.

3.1.6 Very Deep Convolutional Network VGG16

The VGGNet model structure [31] consists of a base layer, an activation function ReLU, a pooling

layer, a full link layer, and a softmax function. It has a total of 5 convolutional segments. Each

convolution consists of from 2 to 3 convolutional layers followed by a maximum pooling. The

number of convolution kernels also increases with the number of layers. Moreover, VGGNet uses a

data augmentation method to prevent overfitting of the model. Its biggest feature is to use a small size

Filter instead of a large size Filter. Its structure is shown in Figure 3.4. The input image is 224 ∗ 224 ∗

3, which becomes 224 ∗ 224*64 through two convolutional layers, and 112 ∗ 112 ∗ 128 through one

pooling layer and two volume base layers. 56 ∗ 56 ∗ 256 through one pooling layer and three

convolutional layers, 28 * 28 * 512 through one pooling layer and three convolutional layers, and

one pooling layer and three convolutional layers The base layer becomes 14 * 14 * 512, and it

becomes 7 * 7 * 512 through one pooling layer. It becomes 1 * 1 * 4096 through two full-connected

layers. It becomes 1 * through a full-connected layer and soft-max output layer 1 * 1000. In this thesis,

VGG-16 is used as the base neural network(backbone) architecture, as described in [Parkhi et al., 2015].

As you can see from the Figure 3.4 The network has 13 convolution layers and 3 FC layers. VGG-16

has already been used as the backbone because of its strong, reliable performance in the tasks of

classification, meanwhile for its popularity for issues where learning transfer helps highly to improve

results. Figure 3.4 illustrate different layer types correspond to different colors, the name and output

size for each layer in the network is listed. In VGG-16 convolutional layers share the same kernel width

and height mf = nf = 3 the same stride sw = sh = 1 and the same zero padding pw = ph = 1 Even

pooling layers do the same through share the same format, with 2 * 2 grid size, and a stride of sw = sh = 2

ReLU function used as an activation function in VGG-16 as shown in Equation 3.3 and softmax loss as

the loss function .

 𝑓𝑎(𝑥) = max (0, 𝑥) (3-3)

33

Figure3. 4: VGG-16 architecture for Classification and Detection

3.2 Modified Single Shot Multi-Box Detector (MSSD) Model

From the SSD model introduced and the knowledge of the deep residual network, the re- searcher found

that with the deepening of the depth convolution network level, the detection of objects on the training set

will appear to decrease in accuracy. So in order to correct about defects from SSD model, the new

algorithm proposed is better than the traditional SSD model in terms of detection accuracy. In view of the

two defects of the SSD model above, the methods are introducing the two improves modules (Concat-sum

module , Element-Sum module) using the deep VGG16 and the deep residual network with the feature

pyramid net- work module are adopted, so the MSSD model is more accurate than the traditional detection

accuracy. In image classification functions, outstanding networks have proven to be better than VGGS

because it provides escape links between criminal blocks, thus gradually putting an end to hits and reducing

the way the network is moving deeper. In fact, ResNets typically can go up to 101 layers whereas VGG

networks can only go up to 16. Because deep nets are often better for sorting images, ResNets are

generally more accurate than VGG. Here we will apply our idea on both of the VGG and ResNet

networks showing the result that we got in our experiment later. The shallower layers (conv-3) suffering

from lacking of sematic information, so in order to compensate that lack we inject contextual

information from other layer and come out with new design model named element-sum and concat-sum

model . Although replacing the VGG-based feature extractor in SSD with ResNet-101 does not lead to

greater performance. Hence, a custom-made prediction module is needed.

34

Figure3. 5: Feature-fused SSD architecture

3.2.1 Network Structure Based an Deep VGG16 Network

The author of SSD architecture choose VGG16 as a base network to obtain feature maps in order to feed

them forward into next detection layers. In MSSD proposed model, instead of classify the normal

ConvNet feature map, we exploit the pyramidal feature hierarchy in convolution layers before feeding to

the detection layers. The proposed model is shown in Fig. 3.5. Deeper layers are used to predict larger

objects, while shallower layers are used to predict smaller objects, thus reducing the entire model’s

predictive burden. Shallower layers, moreover, often lack receptive files which is an essential supplement

for detecting small objects. Therefore, passing back the receptive files (semantic information) to the earlier

layers captured in convolutionary forward computation will improve and enhance the performance of

detection especially for small objects Which layers should be combined? We take advantage of the

appropriate Conv-layers to provide helpful contextual information as extra-large receptive field often

would absolutely introduce useless, large noise in the background. For large objects in deeper layers we

don’t use the feature fusion module in order to keep up speed as long as SSD uses their shallower layers,

as in the case of conv4 3, to predict small objects. Suitable characteristics of different layers to select

fusion layers specialized receiving areas use the mallet development method to search.

In a bid to inject the contextual information into shallower layers (such as conv4-3)

35

Figure3. 6: Layers show the useful receptive fields in SSD architecture

which lacks to the information about the semiconductor, MSSD model with two different feature

fusion has designed named element-sum and concat-sum modules.

Concat-sum Module:

The MSSD with concat-sum module is shown in Fig. 3.7 A new technique named deconvolution is

actually layers which used to render the feature maps of two layers, in our case conv5-3 and conv4-3, have

the same size. As it’s clear in fig 3.7, two 3x3 convolutional layers are used after conv- layers for learn to

fuse the better features. Then layers of normalization follow with different scales before they are

concatenated around their channel axis. The final fusion-feature-maps are generated as well as feature

recombination by a 1*1 range convolution layer for dimension reduction.

36

Figure3. 7: Illustration of the smart concat-sum model

Element-Sum Module Except for the form of fusion, it is the same as the concat- sum module. Two

different feature maps layers containing different level features are summed up to equivalent weights

point to point in this module. This process works perfectly in practice because of the two previously

used convolution layers, which learn features adaptively from the two layers, conv4-3 and conv5-3, for

better fuse results. This module takes inspiration from residual-101-based DSSD[32] which exploit the

learned layer of de-convolution and elementary operation. concat-sum module

Figure3. 8: Illustration of the smart element module

incorporates multi-level functionality with the learned weights implemented by 1*1 convolution layer,

while element-sum module uses manually set equivalent weights. With this distinction, element-sum

module can improve contextual information’s importance and the concatenation module can decrease the

interference that caused by unnecessary background noises.

37

3.2.2 Network structure based on deep Residual Network

The literature shows that as the number of VGG network layers increases, the problem of training

becomes apparent. The more significant problem is gradient vanishing/explosion, which affects

convergence at the outset. Under the premise that the deep network can converge, with the increase of

network depth, the correct rate begins to saturate or even decrease, which is called the degradation of the

network. Increasing the number of layers on a given network increases the training error. The root cause

of network degradation is still an optimization problem. To solve the optimization challenge, we use the

residual network. Residual networks can be interpreted as making a kind of shortcut connections to the

for- ward network layers. These connections skip certain layers and directly pass the raw data to the later

layer. This research uses the ResNet101 network which is taking advantage of the residual network in the

forward network to add some quick connections. The new shortcut connections don’t increase the

complexity and parameters of the model to improve the speed beside accuracy of detection objects.

Element-Sum Module same with concat-sum and element-Sum Module fusion module above we try to

implement it with ResNet network with additional improvement on FPN (Fig 3.10) and predection

layer. To achieve better accuracy, deconvolutional layers are used to increase the resolution of feature

maps. The detection is then done using the ”super-resolved” feature maps. In addition, to integrate

information from earlier feature maps, deconvolutional modules are used. Technically, deconvolutional

layers need not be used at all. Up-sampling followed by a convolutional layer can also achieve the

desired effect. However, since up-sampling layers do not have any learnable parameters, it may not lead

to the optimum results. Hence, de-convolutional layers are used.

• Prediction Module

The prediction model structure is shown in Figure 3.10 which is the method used by SSD, and

the multi-scale prototyping of the system is extracted directly to make the prediction of classification and

box regression. Figure 3.9 is the network structure of the Res-net residual unit, during the training phase.

38

Figure3. 9: The framework of classification and regression of SSD and ResNet

For the forecasting phase, this research uses the (right-Figure3.9) approach to the work of the featuremap.

This module is added to this research because multi-scale CNN indicates that improving the

performance of each subtask can improve accuracy.

• Feature Pyramid Network Module

The feature pyramid network module refers to the fusion module of the upper and lower features in the

MSSD, and the basic structure is as shown in Figure 3.10. This research builds the network in the form

of FPN, followed by three BN (Batch Normalization) and three 3x3convolution, here convolution also

acts as a buffer to prevent the gradient from affecting the backbone network too severely and to ensure the

stability of the network. After feature fusion, each feature layer channel dimension responsible for

prediction changes to 512. BN operations are placed between the convolution layer and the activation

layer, and the top sampling of some of the previous methods is achieved by two-wire interpolation.

MSSD is a top sample feature map learned by the feature pyramid network module. Low-level feature

maps require increased regularization of operational processing because their feature maps are different in

size and other layers and can be difficult to train in practice if they are mixed together. And it is important

to note that the data size of different layers is also different, so it is not possible to directly merge.

Therefore,L2 regularization is used. The lower-level feature needs to be positive when MSSD is used

for high and low layer feature fusion.

39

Figure3. 10: Smart Feature Pyramid Network Module.

To include more advanced context in the detection, transfer the prediction to the layers of the series of

feature pyramid networks after the original SSD setting. Add an additional feature pyramid network

layer to continuously increase the resolution of the feature layer.

3.2.3 Model training

• MSSD based on deep VGG16 training Method:

We train the proposed MSSD fusion models, concat-sum and element-sum, on the both

logo and PASCAL VOC2007/2012, that contain 20 class in 9,963 and 22,531 images,

respectively. For further 10K iterations both of the two function fusion models are fine-tuned

to the well-trained SSD baseline. The learning rate has chosen to be 1 ∗ e3 for the first 60K

iterations and then decreases to 1 ∗ e4 at the 60K and 1 ∗ e5 at the 70K iterations.

• MSSD based on deep ResNet training Method

In the framework of caffe[38], the basic network of SSD is changed to ResNetl01 and then a

new SSD model is retrained. Collect data set of VOC2007[39] as an sample. The data used in the training

set is the VOC2007 data set. The test set of 07 is used, and a total of 7k iterations are used during training,

and the learning rate is 1 ∗ e3. In the first 4k iterations, then adjust the learning rate to 1 ∗ e4, 1 ∗ e5 and

then train 2k times and 1k times of iterations respectively. The trained SSD model is then used to

initialize the DSSD network. The process of training MSSD is split into three steps. The first steps

trains a primitive SSD model. The second stage: under such conditions, only the feature pyramid network

module is trained, and the network parameters are not frozen, and the prediction model is added. Set the

40

learning rate to 1 ∗ e3, 1 ∗ e4 to iterate 2k times and lk times respectively, in the third stage, the model is

overall tuned.

3.3 Function Loss

To optimize the network for both class and bounding box localization, we are using the

multi-task loss function. Let 𝑥𝑖𝑗
𝑝 = {1,0} be an indicator ground-truth variable for matching

the i-th default box with the j-th ground truth box with p category. In our case the

category of p can be a object or a background class. The matching variable 𝑥𝑖𝑗
𝑝 is 1 when

the IoU(equation 4.1) between the default bounding box and ground-truth is higher than 0.5.

Furthermore, for each ground-truth bounding box, we also match the default-box with the

highest IoU overlap. The value of 𝑥𝑖𝑗
𝑝 is thus defined by:

 𝑥𝑗
𝑝 = � 𝑗 𝑖𝑓 10𝑈 ≥ 0.5 𝑜𝑟max 10𝑈

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
� (3-4)

Additionally, because of the amount of default bounding boxes, the possibility also exist that more than one

bounding box matches the ground truth. The matching of multiple bounding boxes strategy and the

selecting bounding box with highest IoU overlap, are used to help the learning process with more

positive samples to learn on the multi-task loss-function is defined as

 L(x,c,l,g) = 𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) + 𝐿𝑙𝑜𝑐(𝑥, 𝑙,𝑔) (3-5)

where the loss consists out of two task losses, the = Lconf (x, c), which is the confidence and the leaping

box regression loss = Lconf (x, l, c). Where c is the class confidence, l the localization offset prediction, and

g is the localization ground truth.

3.3.1 Localization Loss

In the localization loss, Lloc, a Huber loss is used,

 𝐿𝛿(𝑑) = �
1
2 𝑑

2 𝐹𝑜𝑟 |𝑑| ≤ 𝛿

𝛿 �|𝑑| − 1
2
𝛿� , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� (3-6)

41

Where d is representing the distance between the predicted localization and the ground-truth

localization. If we set 𝛿 = 1, we get the loss function which is known as the smooth L1-loss.

 𝐿1𝛿(𝑑) = � 0.5𝑑2 𝑓𝑜𝑟 |𝑑| ≤ 𝛿
|𝑑| − 0.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� (3-7)

Figure3. 11: The L1, L2 and the L1s loss functions.

There are multiple reasons for using the L1g loss function graphically displayed in figure 3.11.

Firstly, the loss function of the L1 is not differentiable at 0. Secondly, when

—d— ¡ 1 the loss function has a less steep gradient to better optimize towards the smaller distances.

Thirdly, the gradient of the L2 becomes too large when the distance is large causing an unstable

learning process, whereas the L1 loss function has a less hard constraint for points further away from the

optimal position. The loss function between the predicted box Ll,o,c is defined as followed,

𝐿𝑙𝑜𝑐�𝑥, 𝑐𝑝, 𝑙𝑗 ,𝑔𝑗� = 1
𝑁′
∑𝑁′
𝑖𝜖𝑝𝑜𝑠𝑚𝑒𝑐𝑥,𝑐𝑦,𝑤,ℎ ∑𝑥𝑖𝑗

𝑝𝐿1𝑠(𝑙𝑖𝑚 − 𝑔′𝑗𝑚) (3-8)

Where 𝑁+ = ∑ 𝑥𝑖𝑗
𝑝=1,𝑖𝑗 which is a scalar for the amount of positive matches and 𝑙𝑖 is

the localization prediction defined as the center off-set and the height and width off-set. In

the equation 3.8 d is replaced by 𝑙𝑖𝑚 − 𝑔𝑗𝑛𝑚 for 𝑔𝑖𝑛𝑚 a regression of the prediction center is

42

made relative to its matched default bounding box and defined as followed,

 𝑔𝑗′𝛼 = (𝑔𝑗𝛼𝑥 − 𝑏𝑖𝜖𝑥)/𝑏𝑖∨ (3-9)

 𝑔𝑗
𝑟𝑐𝑦 = (𝑔𝑗

𝑐𝑦 − 𝑏𝑖
𝑐𝑦)/𝑏𝑖ℎ (3-10)

 𝑔𝑗𝑛𝑤 = log (𝑔𝑗𝑤/𝑏𝑖𝑤) (3-11)

 𝑔𝑗∧ℎ = log (𝑔𝑗ℎ/𝑏𝑖ℎ) (3-12)

The four coordinates of the ground truth are 𝑔𝑐𝑥 ,𝑔𝑐𝑦 for the center and 𝑔𝑤 ,𝑔ℎ height and

width. The 𝑏𝑖𝑤, 𝑏𝑖ℎ, 𝑏𝑖𝑐𝑥, 𝑏𝑖
𝑐𝑦 respective coordinates of the matched default bounding box. Division of

the height and width is used to normalize the width and the height. The log scale is used to balance the

differences in scale, this makes the differences in small scale bounding boxes larger and larger differences for

large bounding boxes smaller. The same is operations are done on the 𝑙𝑖𝑚

3.3.2 Confidence loss

The confidence loss, 𝐿𝑐,𝑜,𝑛,𝑓 is a softmax function over the face class and background class denoted

with P. Because of the large amount of default boxes the negative boxes greatly outnumber the positive

bounding boxes. This creates a large class imbalance between back- ground (negative bounding boxes) and

faces (positive bounding boxes), which makes the optimization process hard. To counter this issue, hard

negative mining is used. Instead of summing over all the negative bounding boxes, the negative

bounding boxes are sorted on class confidence and the top M negative bounding boxes are selected.

Where the ratio between M and the positive bounding boxes is 3 : 1. The confidence loss is defined as

followed,

𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) = − 1
𝑁+
∑ 𝑥𝑖𝑗

𝑝𝑁′
𝑖𝜖𝑝𝑜𝑟𝑡𝑖𝑣𝑒 log(�̂�𝑖𝑝) − 1

𝑁′
∑ log (�̂�𝑖0)𝑖𝜖𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (3-13)

𝑤ℎ𝑒𝑟𝑒 𝑐𝑖
∧𝑝 = exp (𝑐𝑖

𝑝)
∑𝑝𝑒𝑥𝑝(𝑐𝑖

𝑝)
 and 𝑁− = 𝑀

43

3.4 Summary of this Chapter

This chapter first introduces the SSD model, and analyzes the characteristics and defects of the model.

Then, based on the defects of the SSD model, a new model, MSSD model has proposed. After

theoretical analysis and experiments, the MSSD model are still in the exposure correctness. The

detection time is better than the traditional SSD model. However, since the number of prediction layer

channels of the MSSD model based on ResNetl01 is too large, the network training speed is reduced. To

avoid this situation, we should optimize the prediction layer channel. Moreover, we replace the up-

sampling with the feature pyramid network in the MSSD text fusion. In order to improve the detection

accuracy, we improved the feature pyramid network module, and borrowed the up-sampling method used in

another context structure, namely TDM (Top-Down Modulation). Finally, we discussed the loss

function used during training. The following chapter discusses the evaluation of the proposed object

detection model based on the clinical measurements documented in this chapter.

44

CHAPTER 4

EXPERIMENT RESULT AND DISCUSSIONS

From the MSSD model introduced in the previous chapter, the research found that the main purpose of this

chapter is to describe the experiments we perform to evaluate our models as well as discuss evaluation

metrics that are used in evaluation. Moreover, we describe the data sets that are used for training and

evaluation and any further implementation details

4.1 Datasets

The effect of traditional methods for object detection and recognition depends strongly on the

characteristics of artificial selection of features. The effect of deep learning models on object detection

and recognition has a great breakthrough compared with traditional technology, but it has a great effect on

training the size of the data set that has larger requirements. Deep CNN's biggest challenge usually, the

label of the image classification training is to collect examples. After all thousands of interpreted trainings

to learn under supervision, in this part we will take a look at the datasets we’ve been working with.

Since we focus mostly on deep convolutional neural networks, we will look at two datasets, which are

VOC2007 and Logo dataset, for image classification.

4.1.1 Pascal VOC 2007/2012 datasets

Considering that there are many datasets available for training and validation, choosing the one that best

serves our purposes is necessary and we selected the Pascal VOC dataset be- cause each class in contains

many images along with bounding box data. Pascal VOC[40] was an annual challenge and workshop

from 2005 to 2012, which has helped, promoted the development of image localization, classification

and object detection. Five challenges were included: classification, detection, segmentation, action

classification and person layout. One of the dataset used in this thesis is Pascal VOC 2007 / 2012 Challenge,

that has 20 categories and includes 9,963 and 11,125 images respectively. The annotations of images

rescue as XML files. In each of the files, the root nodes include folder, filename, source, size, object, and

for each object, nodes include the name of its class, pose, truncated sign, difficulty and bounding box.

Here the bounding boxes are annotated by the top-left and bottom-right corner of the objects, denoted

as [Xmax,Xmin,Ymax,Xmin].

45

Figure4. 1: Examples of Pascal VOC ”person” dataset

4.1.2 Logo datasets

According to the investigation of the available datasets in the field of Logo detection and

identification, it is found that the datasets involved in the current field are roughly BelgaL- ogos29,

FlickrLogos-2730, FlickrLogos-32 / FlickrLogos-4731, and LOGO-NET [45]. In terms the size of

data information, the LOGO-NET data collection is the most suitable data set for logo detection and

recognition training, but its data set has not yet been open sourced. The open source data sets available in

the field of logo detection and identification are relatively small in terms of the type of logo and the

number of logos. Among them, the LOGO-NET data set proposed by Ali baba Group is the largest

known data set in the field of logo detection and identification, but it is not yet open source, so the

research in this field cannot use the LOGO-NET data set. Due to the limited means, we choose only eight

classes from the

Figure4. 2: Eight different samples of Logo dataset

46

FlickrLogos-32 dataset namely, Adidas, Apple, Becks, BMW, Coca cola, Dhl, Erdinger and Ups, and

increase the number of images from 70 to 220 in each class. To train and evaluate the MSSD object detection model,

first the image and bounding box data sets were extracted for eight sections. One of the problems we’ve found with the

derived datasets is that, the collected dataset consists of small sized images. We want to ensure, however,

that the images was using to train and evaluate aren’t tiny (i.e. at least 300 pixels).

• Gather Pictures: Object detection model requires hundreds of images to achieve a perfect

classifier for detection. The training images should have random objects in the image along

with the object objects, and should have a range of backgrounds and lighting conditions, in order

to train a robust classifier. Some images must contain the desired object is partially

ambiguous, overlaps with something else, or only half of the image opens. We have eight

different objects which I want to identify for my Logo detection classifier (Adidas, Apple,

Becks, BMW, Coca cola, Dhl, Erdinger and Ups). I got the images of my own dataset by

download it from Google Image Search and pictures were carefully chosen with multiple

objects overlapped in many images. The larger the pictures, the longer it takes for the classifier to

train. So i made sure the images don’t get too big and they should be under 200 KB. After

gathering the images of dataset, i divided the data to 20% for testing and 80% for training from

each class.

Figure4. 3: LabelIing saves a .xml file

47

• Label Pictures: Here’s the exciting part! It’s time to label the needed objects in each

image with all the images collected. LabelImg is a great image labeling tool, and its GitHub

page offers very simple instructions on how to download and use it

https://github.com/tzutalin/labelImg. After downloading and installing LabelImg, draw a box

around each object in each image and repeat the process for all the images.

LabelImg saves a file with a .xml extension for each image, containing the label data. Once each

image has been labeled and saved, one.xml file will appear for each image.

4.2 System software and hardware construction

This section mainly introduces the construction of caffe framework related to deep learning experiments

and the development of systems.

4.2.1 Construction of caffe framework

This paper chooses the caffe framework [41] for deep learning research and experiments although its

building process is very cumbersome. The following briefly records the construction process.

• Ubuntu 16.04 installation: Ubuntu is one of the many versions of Linux. It is characterized by

a friendly UI and a powerful package management mechanism. Ubuntu installation is relatively

easy, download the corresponding one, burn the USB drive, restart the PC, enter the interface

installation, and restart after the installation.

• Configure caffe:

– Caffe relies on various library files, as well as python software.

– Obtain caffe from github : git clone https://github.com/BVLC/caffe.

– installation preparation, dependency installation : To installing, have a glance through

this guide in https://caffe.berkeleyvision.org/installation.html

• install nvidia graphics driver : First go to Nvidia’s official website (Fun Shark: Tour Diken:

Man Q-type Dan Q base type i pendant: base object Saint 21 pad g three fortress: falling

ink) to view the appropriate version, this experiment uses GTXl060 6G version graphics card.

Corresponding graphics card, system type download corre- sponding driver.

• Install CUDA : CUDA (Compute Unified Device Architecture) is a computing platform

launched by NVIDIA Graphics Corporation. CUDATM is a common purpose parallel

computing architecture introduced by NVIDIA that has complex computing problems. You

can use GPU to solve. In it CUDA is a parallel computing engine within the instruction set

architecture (ISA) and GPU. In the scientific research community, CUDA is good the way

48

was made, and in 2009, deeply education ushers in the era of the GPU.

4.3 Evaluation matrics

In this section, we describe the evaluation metrics used to evaluate our models. The evaluation metrics used

are precision recall curve and average precision.

4.3.1 Detection result

The evaluation of detection results requires a metric that determines whether a prediction is correct or

not. The Intersection over Union(IoU) is a value used in object detection to measure the relevant

predictions. To determine the IoU we need to have the bounding box ground truth Bgt and the bounding

box prediction Bp. The IoU is defined as followed,

Figure4. 4: The IoU overlap graphically displayed by www.pyimagesearch.com

 𝐼𝑂𝑈 = 𝑎𝑟𝑒𝑎(𝐵𝑔𝑡∩𝐵𝑝)
𝑎𝑟𝑒𝑎(𝐵𝑔𝑡∪𝑏𝑝)

 (4-1)

Since multiple detections on a single face will be counted as false positives, post-processing of the

detections is required. The greedy non-maxima suppression as discussed previ- ously(chapter 3)

reduces false positives prediction. All the remaining positive predictions are sorted by confidence. The

highest positive prediction is considered a true positive (TP), the other predictions that an IoU ≤ 0.5 with

the ground truth and have less scoreless are considered false positives (FP). The ground truth boxes that

have no predictions assigned are considered false negatives (FN). True negatives (TN) are left out of

consideration be- cause true negatives have no influence on the precision and recall.

49

4.3.2 PR curve explanation

With the definition of the relevant predictions described we can define the metric used to evaluate our

models. Precision (P) is defined by how much of the prediction are correct, while recall (R) is defined

by how many predictions are retrieved. Both P and R are defined as followed,

 P = 𝑇𝑃
𝑇𝑃+𝐹𝑃

 (4-2)

 𝑅 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

 (4-3)

The precision and recall both show an important aspect of the retrieval performance of the model. Because

precision and recall are inversely related, the trade-off between them is important. Moreover, the precision

is usually computed at a certain cut-off. The cut-off both influences precision and recall, when the cut-off

is higher it increases recall but decreases precision. Precision and recall with cut-off is defined by P(k)

and R(k), where k is the cut-off at k bounding boxes. The trade-off between precision and recall can be

combined into the precision-recall curve. The curve represents the precision and recall at different

threshold values e.g., [0.1, 0.2 0.9, 1]. At these threshold values the precision and recall is measured. To

construct a smooth line the remaining points are interpolated.

4.3.3 Average precision

To further summarize the PR-curve into one metric, the area under the curve(AuC) can be computed. The

AuC is the same as the average 28 precision and can be computed by taking the precision overall values of

recall between 0 and 1,

 ∫ 𝑝(𝑘)𝑑𝑘1
0 (4-4)

The integral is an approximation and computed by the sum over precision at all different threshold

values multiplied by the change in recall,

 1
𝑃
∑ 𝑃(𝑘)𝑁
𝑛=1 ∆𝑅𝑊 (4-5)

where N is the total number of images in the dataset, k is the cut-off at k images and delta r is the change

between R(k-1) and r(k). Instead of the average precision we use the interpolated average precision. The

50

interpolated average precision replaces the precision at cut-off k by the maximum precision observed at all

cut-offs with higher recall and is defined as followed,

 1
𝑃
∑ 𝑚𝑎𝑥

𝑘� > 𝑘𝑝(𝑘�) △ 𝑅(𝑘)𝑁
ℎ=1 (4-6)

4.4 Experimental result and analysis

The purpose of this thesis is to train the network and to accurately classify and locate the objects. The

confidence of the prediction box is used to measure the correctness of the classification, while the

coordinate information of the prediction frame measures the accuracy of the positioning. While the better

object detection algorithm should have higher detection accuracy and detection speed, the detection

accuracy is measured by mean Average Precision(mAP) and the detection speed is measured by FPS

(Frames Per Second). In this part, this thesis will verify the accuracy of the object detection and the

detection speed of the object detection. The MSSD model proposed in this thesis has better performance

than the traditional SSD model on both datasets. In order to verify the effect of the feature pyramid

network layer module and prediction model on detection performance, this thesis trained a VGG16 model

with an input image 300*300 and a ResNetl01-SSD model with an input image of 321*321 for both Elt-

sum and concat-sum models which lead to a slightly improve in accuracy at the expense of speed as you

will see later. The source of the experimental data, i,e the source of the object detection image, is the

VOC2007/2012 dataset and logo dataset.

4.4.1 Test results under VOC2007/2012 and logo dataset

Models have trained on the union of PASCAL VOC2007/2012 and Logo datasets which includes 20

categories and 8 classes respectively. The proposed MSSD model is implemented on the basis of the

original SSD network built on the foundation of VGG16 and ResNet architectures and Caffe[41], all of

which are available on the website. The baseline SSD has trained with a 300 x 300 input size and batch

size of 16. Both of the two MSSD feature fusion models, concat-sum and Elt-sum, are fine-tuned on the

well-trained SSD baseline for another 10K iterations. Learning rate is the amount of weights updated

during training, so it is necessary to find a good value during training dataset. In our case changing the

learning rate is a must and we gave 10−3 for the first 60K iterations and then reduce it to 10−4 and 10−5 at

70K iterations.

• Experiment of MSSD based on deep VGG16 network.

51

the appropriate layers are explored which will be the best to fuse with results of experimental, which had

theoretically discussed in table 4.1. Yet we choose the two appropriate layers, conv4-3 and conv5-3, to fuse,

because fc6 has a greater receptive field than conv5-3 for tiny objects that could add much more noise in the

background. As it clear in table 4.1, the mAP of PASCAL VOC 2007 on general objects is taken into

account. Additionally, when design- ing the modules we try different kernel numbers.

Table 4. 1: detection results of different fusion layers.

Layers Conv4-3 Conv4-3+Conv5-3 Conv4-3+fc6 Conv3-3+Conv4-3+Conv5-3

Cocat

Eltsum

77.27

77.27

77.26

77.4

77.47

77.39

77.52

77.31

The two MSSD, concat-sum and Element-Sum, methods are both enhanced with regard to overall object

detection compared to their SSD baseline. The MSSD with concat-sum module gets 77.6 mAP, while

the element-sum module gets 77.4 mAP, which are 0.3 and 0.1 higher than the current SSD baseline.

Table 4. 2: Results of MSSD based on VGG16 network with IOU=0.5 on PASCAL VOC2007 test set

Method Network mAP aero bike bird boat bottle bus car cat chair cow

SSC300
DSSD321
Concat
Elt_sum

VGG16
ResNet-101
VGG16
VGG16

77.3
78.6
77.6
77.4

78.8
81.9
79.1
79.4

85.3
84.9
84.5
85.2

75.7
80.5
76.2
77.8

71.5
68.4
71.7
71.6

49.1
53.9
49.7
49.3

85.7
85.6
85.6
85.8

86.4
86.2
86.9
87.6

87.8
88.9
88.3
87.6

60.6
61.1
61.1
60.7

82.7
83.5
82.6
82.1

Method Network mAP aero bike bird boat bottle bus car cat chair cow

SSC300
DSSD321
Concat
 Elt_sum

VGG16
ResNet-101
VGG16
VGG16

77.3
78.6
77.6
 77.4

76.5
78.7
76.8
76.6

84.9
86.7
85.1
84.1

86.7
88.7
86.5
86.2

84
86.7
84.5
84.6

79.2
79.7
80.4
79.3

51.3
51.7
51.9
51.7

77.5
78
78.6
77.1

78.7
80.9
77.5
78.1

86.7
87.2
88.2
86.3

76.3
79.4
76.6
78

52

We test MSSD models on the logo dataset which contain 8 classes. The MSSD is implemented count on

original SSD built on the VGG16 architectures and caffe framework. The MSSD with concat-sum

module gets 77.0 mAP, while the element-sum module gets 76.7 mAP, which are 0.6 and 0.3 higher

than the current SSD baseline. Since VOC2007

 Table 4. 3: Results of MSSD based with IOU=0.5 on deep VGG16 network on Logo test set.

Method Network mAP
Average Precision in % for each class

Adidas Apple Becks BMW Coca-Cola DHL Erdinger Ups

SSD300

Concat

Elt-sum

VGG16

VGG16

VGG16

76.4

77.0

76.7

79.21

81.4

81.1

81.11

81.3

79.6

89.18

89.9

89.1

62.47

63

61.9

74.35

75.4

74.9

79.67

79.2

79.8

72.36

72.6

73.12

72.7

73

74.3

dataset includes 20 classes and each class might have small objects, we choose 181 images,

Table 4. 4: Results of MSSD based on deep residual network with IOU=0.5 on Logo test set

Method Network mAP
Average Precision in % for each class

Adidas Apple Becks BMW Coca-Cola DHL Erdinger Ups

SSD300

Elt-sum
VGG16

ResNet-101
76.7

76.9

78.1

79.6

82.4

82.1

88.7

89.1

68.7

69.4

73.9

72.9

78.18

78.8

72.63

73.12

71.14

71.5

As can be seen from table 4.5, the MSSD achieved improvement compared with the traditional SSD model.

Since our logo dataset contains multiple overlapped objects and small objects in many images, you may

find an enhancement compared to the current SSD model in terms of the concat-sum and element-sum

modules. Results for the detection are shown in Fig 4.5. We found that small objects, with particular

background, detection performance slightly improved. And more accurately detected the objects that

often appear along with relative objects.

53

4.5 Result Evaluation

All experiments will be on top of PASCAL VOC2007 dataset and Logo dataset. All experiments will be

on top of PASCAL VOC2007 dataset and Logo dataset. The results of the system’s evaluation in terms

of its ability to detect and recognize the images contained in the test set will then be presented, these

results being presented using a plot of precision / recall curve and average precision metric. In 4.3, we

implement how to measure the recall and precision.

4.5.1 Result Analysis on PASCAL VOC2007 datasets

We addressed the datasets we use for experiments in 4.1, and it is also clear that video stream data show

differences in aspect ratio, resolution, motion blur, lighting etc. In this section, we evaluate the

generalization ability on PASCAL VOC2007 dataset. Figure 4.5 shows the evaluation results of 3 models-

SSD300, MSSD with concate-sum and concate-sum methods.

Figure4. 5: The precision-recall curves of SSD and MSSD models.

The results on Pascal VOC 2007 differ slightly from the precision reported in the original papers. It may

be induced by various ways of implementation.

As shown in Figure 4.6, because we began our training from a pre-trained checkpoint instead of starting

from scratch, the total loss value decreases rapidly. The total loss values ‘uctuate but exhibit reducing

behavior overall.

Figure 4.7 demonstrates overall mAP development for 80,000 steps at 0.5 IoU. The mAP values are

evaluated for the validation dataset at 0.5 IoU. As is evident from Figure 4.7, in around 6,800 measures,

mAP is witnessing a tremendous increase to 67.8 percent. The mAP then increases slightly more and in

19,000 steps reaches closer to 77.6 per cent. The mAP value remains relatively constant with minor

fluctuations after 19,000 moves.

54

Figure4. 6: Decline of total loss when concate-sum on PASCAL VOC2007 dataset

Figure4. 7: Development of overall mAP when concate-sum on PASCAL VOC2007 dataset.

Because the mAP values leveled out after 19,000 moves, the model is exported at various training stages

and checked on the test dataset.

4.5.2 Result Analysis on logo dataset

The MSSD model is fine-tuned for 100,000 steps as shown in Figures 4.8 and 4.9. Figure

4.9 demonstrates the downward trend in total loss during the entire training phase. For each iteration the

total loss can differ slightly from the previous iteration. The key point, however, is that overall loss values

decreased during the training course.

Figure 4.9 shows overall mAP development at 0.5 IoU per 100,000 steps. For the validation dataset

the mAP values are evaluated at 0.5 IoU. As is evident from Figure 4.9, in around 9000 stages, mAP is

55

experiencing a tremendous increase up to 53% percent. The mAP then increases slightly more and in

33,000 steps reaches nearer to 73%. The mAP

Figure4. 8: Decline of total loss when Eltsum-ResNet-101 on PASCAL VOC2007 dataset.

Figure4. 9: Development of overall mAP when Eltsum-ResNet-101 on PASCAL VOC2007 dataset.

value increased little after 19,000 measures and settled down with minor fluctuations of 77.4 percent.

4.6 Running Time

On PASCAL VOC 2007 and Logo test datasets, running time for those both fusion methods has

evaluated, as can be seen in Table 4.6. The two fusion methods, concat-sum and element-sum modules,

have detection speed 40 FPS and 43 FPS respectively in PASCAL VOC 2007 test dataset, while it is 13.12

FPS in Logo test dataset. Unfortunately because of the additional feature fusion layers, both became slower

than original SSD model. Nevertheless MSSD fusion methods are also still achieving a real-time

detection. The element-sum

56

Table 4. 5: The running time illustration of different models.

Dataset Method Network mAP FPS

PA
SC

A
L

V
O

C
 2

00
7

T
es

t

SSD300

DSSD321

MSSD Concat Model

MSSD Eltsum Model

MSSD Eltsum Model

VGG16

Residual-101[11]

VGG16

VGG16

Residual-101[11]

77.3

78.6

77.6

77.4

77.4

50

13.6

40

43

13.12

L
og

o
T

es
t

SSD300

MSSD Concat Model

MSSD Eltsum Model

MSSD Eltsum Model

VGG16

VGG16

VGG16

Residual-101[11]

76.4

77

76.7

76.9

50

40

43

13.12

module has used 2 convolution layers in each layer, with 384 kernels. and the concat-sum model used 3

convolution layers in each layer with 512 kernels. Which is why the model with the element-sum

approach is faster than the model with the concat-sum approach by 3 FPS. The decreasing of number of

frame per second due to the extra operations taken by MSSD model, this decreasing beside improving

the slight increasing of accuracy will be solved in my future studying.

4.7 Performance comparison of MSSD Modules

4.7.1 Performance of MSSD modules based on VGG16 Network

Here we show a comparison in performance of the pre-trained SSD300 model and the fine- tuned MSSD

models on both datasets, the experimental results are demonstrate that helpful contextual information proves

the existence of small objects.

57

Figure4. 10: Show the detection results original SSD and MSSD model with concat-sum and element-sum module,

respectively on Pascal VOC 2007 dataset.

Figure4. 11. Right: The results of concat-sum model detection. Left: The results of element-sum model detection.

Concat-sum fusion model could weaken the noise of background interference while element- sum fusion model

can’t weaken. When looking into the difference of these MSSD methods, we carefully analyze the fusion methods and

the results of their detection. In Fig 4.11, which does not include im- portant contextual information. Although the concat-

sum module utilizes learned weights to merge object feature with context feature, it can then choose useful contextual

informa- tion and diminishes background noise interference. Unfortunately, the element-sum method marge both object features

and context in an equivalent way, therefore it cannot adapt the beneficial contextual information. Conversely, in Fig 4.12, The

cars in the scene are blurred, so the context is important for identification. In this situation, the element-sum fusion ap- proach

performs better than the concat-sum fusion approach, since the latter seems to have more choice that perhaps the bond between

object and context might not be well learned.

58

Figure4. 12. Right: The effects of element-sum fusion model detection. Left: The results of concat- sum fusion

model detection. The children in this picture are small and blurred, so that the contextual information is required to

identify them. This context is exploited well enough by the element-sum fusion model, whereas the concat-sum

fusion model cannot.

Figure4. 13: Show the detection results original SSD and MSSD model with concat-sum and element-sum module,

respectively on logo dataset.

In fig 4.13 we show results of detection of the MSSD models on Logo dataset, the experimental

results are demonstrate that helpful contextual information proves the existence of small objects.

59

4.7.2 Performance of SDD Modules based on Residual Network

The reason why the better detection result cannot be obtained is that the SSD model itself is based on a

deep convolutional neural network, and the high-level feature information with a large receptive field is

used to predict a large object, and the low-level feature information with a small receptive field is

used to predict a small object. When the object is lacking, the SSD is less effective for detecting

small objects due to the lack of high-level semantic features. The MSSD model uses a context-based

fusion method. The experimental results are shown in Fig.4.14 below.

Figure4. 14: The results of traditional SSD model and MSSD model.

The left side of the figure shows the detection results of the original SSD model, and the right

side is the final result of the MSSD model object detection. It can be clearly seen from Fig 4.13 and

Fig 4.14 that the traditional SSD model cannot detect the object in the image more accurately, and the

MSSD can detect more objects. For the objects with similar categories, the detection result of the MSSD

is accurate.

4.8 Summary of this Chapter

In this chapter, we discussed how we collect the Logo dataset beside Pascal VOC 2007/2012 dataset. We

discussed the evaluation of the MAP-based object detection model. We have pre-trained SSD Discuss the performance difference

60

between the model and the fine MSDS model in the test data set. We have MSSD based on speed and accuracy the fine tune model is

comparable and analyzed. To concluded, theoretical analysis and experiments have proved that the MSSD model

is better than the MSSD model in terms of detection accuracy but not detection time

61

CHAPTER 5

CONCLUSION

This chapter summarizes this thesis, discusses the findings and ends with the recommendations on future

work to enhance the detection of small objects.

5.1 Summary of work

This thesis mainly studies the method of object detection based on SSD model. An improved SSD

object detection algorithm MSSD is proposed. In this thesis, the context-based network structure is used

to fuse the upper and lower layers and the traditional up-sampling structure is improved. The high-level

semantic information is embedded in the low-level network’s feature information, and the multi-scale

feature map of the prediction regression position box and the classification task input is enriched to

improve the detection accuracy. The VGG16 network used for SSD training was used with a deep

residual network to optimize the feature maps of candidate box regression and classification task

input, while showing the experimental results and corresponding advantages and disadvantages. In order to

solve the problem of SSD model, an improved SSD model, namely MSSD model, is introduced in

detail, and the problems existing in SSD model are mainly analyzed. This thesis uses the FPN-based

network structure to fuse the upper and lower layers and improves the traditional up-sampling structure.

The high-level semantic information is embedded in the low-level network’s feature information, and

the multi-scale feature map of the prediction regression position box and the classification task input is

enriched to improve the detection accuracy. Compared to the state of the art Small Object Detector,

experiments show that the MSSD model is better than the traditional SSD model in detection accuracy but

not detection speed.

In conclusion we observe that although the SSD framework is scale-invariant it can still benefit from

the feature fusion architecture to detect objects of different sizes. The SSD method together with the

feature fusion architecture can be adapted to work for the object detection task.

62

5.2 Future work

There are many problems in object detection, (1) multi-feature fusion of context features, multi-scale

object localization, high-level feature information with wider receptive fields and multi-scale maps

for object prediction for predicting large objects. Low-level receptive field information predicts small

objects. (2) It is difficult to meet real-time performance for high-resolution images or videos. A object

with a simple background, sufficient lighting, no obstruction, and a shooting angle of front is relatively

easy to detect. When the background is mixed with the object, there are obstructions near the object,

the light intensity is too weak, and the object pose changes The rate is greatly reduced. Although the two

algorithms proposed in this thesis have achieved a better improvement in detection accuracy than the

previous algorithms, there are still some problems to be solved. There are other ways for high-level

and low-level feature fusion, so the model should continue to be optimized to find more effective

methods with contextual features to enable it to obtain higher accuracy. Because of the above

difficulties, finding an ideal object detection algorithm still needs continuous research and

improvement. Object detection has important practicability in artificial intelligence, autonomous

driving, smart transport, face recognition and other fields but it also has great prospects and that will

be the further work to study.

63

REFERENCES

OUYANG W, WANG X (2013). Joint deep learning for pedestrian detection. In proceeding of IEEE

International Conference on Computer Vision, 2056 – 2063.

STENROOS O, OTHERS (2017). Object detection from images using convolutional neural

networks.

VIOLA P, JONES M(2001).Rapid object detection using a boosted cascade of simple features. In

Proceeding of IEEE computer society conference on computer vision and pattern recognition, CVPR

Vol1,I – I.

HASTIE T, ROSSET S, ZHU J,(Lea et al 2013).Multi-class adaboost. Volume 349–360.

RUSSAKOVSKY O, DENG J, SU H, (et al. 2015). Image-net large scale visual recognition

challenge In 2015 International journal of computer vision 115(3). 211 – 252.

GIRSHICK R, DONAHUE J, DARRELL T, (et al. 2014). Rich feature hierarchies for accurate object

detection and semantic segmentation .In Proceeding of IEEE conference on computer vision and pattern

recognition. 580 – 587

HE K, ZHANG X, REN S, (Lea et al. 2015). Spatial pyramid pooling in deep convolutional networks

for visual recognition. In proceeding of IEEE transactions on pattern analysis and machine intelligence,

37(9), 1904 – 1916

GIRSHICK R (2015). Fast R-CNN. In proceeding o f IEEE international conference on computer

vision, 1440 – 1448

WU J, REHG J M. Centrist (2010). A visual descriptor for scene categorization[J]. In proceeding

of IEEE transactions on pattern analysis and machine intelligence, 33(8), 1489 – 1501

LIU W, ANGUELOV D, ERHAN D, (Lea et al. 2016). SSD Single shot multi-box detector. In 2016

European conference on computer vision. 21 – 37.

64

CAO G, XIE X, YANG W,(L e a et al. 2017). Feature-fused SSD: Fast detection for small objects. In

2017 Ninth International Conference on Graphic and Image Processing (ICGIP). Vol 10615 2018

106151E.

EGGERT C, ZECHA D, BREHM S, (L e a et al. 2017). Improving small object proposals for

company logo detection. In 2017 ACM on International Conference on Multimedia Retrieval. 167 – 174

WILMS C, FRINTROP S.(2018). Attention Mask, Attentive, Efficient Object Proposal Generation

Focusing on Small Objects. In 2018 Asian Conference on Computer Vision. 678 – 694.

HE K, ZHANG X, REN S, (Lea et al.(2016). Deep residual learning for image recognition. In proceeding

of IEEE conference on computer vision and pattern recognition. 770 – 778

EVERINGHAM M, WINN J.(2012). The PASCAL visual object classes challenge 2012 (VOC2012)

development kit. Pattern Analysis, Statistical Modelling and Computational Learning, Tech, Rep.

GOODFELLOW I, BENGIO Y, COURVILLE A(2016). Deep learning, [M]. [S.l.] MIT press.

IOFFE S, SZEGEDY C(2015). Batch normalization Accelerating deep network training by

reducing internal covariate shift[J]. arXiv preprint arXiv:1502.03167.

EGGERT C, BREHM S, WINSCHEL A, (Lea et al.2017). A closer look: Small object detection in

faster R- CNN[. In proceeding of IEEE international conference on multimedia and expo(ICME). 421 –

426.

KRISHNA H, JAWAHAR C(2017). Improving small object detection, In 2017 4th IAPR Asian

Conference on Pattern Recognition(ACPR). 340 – 345.

REDMON J, DIVVALA S, GIRSHICK R, (Lea et al.2016). You only look once: Unified, real-

time object detection. In proceeding of IEEE conference on computer vision and pattern

recognition, 779 – 788

65

REN S, HE K, GIRSHICK R, (Lea et al.2015). Faster R-CNN: Towards real-time object detection

with region proposal networks. Advances in neural information processing systems: 91 – 99.

KRIZHEVSKY A, SUTSKEVER I, HINTON G E (2012). Image-net classification with deep

convolutional neural networks, Advances in neural information processing systems: 1097 – 1105.

LIU L, OUYANG W, WANG X, (Lea et al.2018) Deep learning for generic object detection: A

survey. In 2018 International Journal of Computer Vision, 1809: 1 – 58

SERMANET P, EIGEN D, ZHANG X, (et al.2013). Over feat: Integrated recognition,

localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229.

SIMONYAN K, ZISSERMAN A (2014). Very deep convolutional networks for large-scale image

recognition[J]. arXiv preprint arXiv:1409.1556,

HINTON G E, SALAKHUTDINOV R R (2006). Reducing the dimensionality of data with

neural networks science, 313(5786): 504 – 507.

LECUN Y, BENGIO Y, HINTON G (2015). Deep learning nature, 521(7553): 436 – 444.

LAW H, DENG J(2018). Corner-net: Detecting objects as paired key-points. In 2018 European

Conference on Computer Vision (ECCV): 734 – 750.

FUKUSHIMA K (1988). Neocognitron: A hierarchical neural network capable of visual pattern

recognition. Neural networks, 1(2): 119 – 130.

HERNÁ NDEZ D C, FILONENKO A, SHAHBAZ A, (et al.2017). Lane marking detection using

image features and line fitting model. In 2017 10th International Conference on Human System

Interactions (HSI): 234 – 238.

ZHAO Q, SHENG T, WANG Y, (et al.2018). Cfenet: An accurate and efficient single-shot object

detector for autonomous driving. arXiv preprint arXiv:1806.09790.

66

FU C-Y, LIU W, RANGA A, (et al.2017) DSSD: Deconvolutional single shot detector[J]. arXiv

preprint arXiv:1701.06659.

LECUN Y, BOSER B, DENKER J S, (et al.1989) Back propagation applied to handwritten zip code

recognition. Neural computation, 1(4): 541 – 551.

LIU M, DONG J, DONG X, (et al.2018). Segmentation of lung nodule in CT images based on

mask R-CNN. In 2018 9th International Conference on Awareness Science and Technology (iCAST): 1

– 6.

LI J, LIANG X, WEI Y, (et al.2017). Perceptual generative adversarial networks for small object

detection. In proceeding of IEEE conference on computer vision and pattern recognition: 1222 –

1230.

BELL S, LAWRENCE ZITNICK C, BALA K, (et al.2016). Inside-outside net: Detecting objects in

context with skip pooling and recurrent neural networks. In proceeding of IEEE conference on computer

vision and pattern recognition: 2874 – 2883.

HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, (et al.2012). Improving neural networks by

preventing co-adaptation of feature detectors, arXiv preprint arXiv:1207.0580.

SRIVASTAVA N, HINTON G, KRIZHEVSKY A, (Lea et al.2014). Dropout: a simple way to

prevent neural networks from over fitting. The journal of machine learning research, 15(1): 1929 –

1958.

SRIVASTAVA N (2013). Improving neural networks with dropout, University of Toronto,

182(566): 7.

EVERINGHAM M, VAN GOOL L, WILLIAMS C K, (Lea et al.2010). The pascal visual object

classes (voc) challenge. In 2010 International journal of computer vision, 88(2): 303 – 338.

JIA Y, SHELHAMER E, DONAHUE J, (Lea et al.2014). Caffe: Convolutional architecture for fast

feature embedding, In 2014) 22nd ACM international conference on Multimedia: 675 – 678.

67

HAN J, MORAGA C (1995). The influence of the sigmoid function parameters on the speed of

backprop- agation learning, in 1995 International Workshop on Artificial Neural Networks: 195 – 201.

NAIR V, HINTON G E (2010). Rectified linear units improve restricted boltzmann machines, In

2010 27th international conference on machine learning (ICML-10): 807 – 814.

UIJLINGS J R, VAN DE SANDE K E, GEVERS T, (Lea et al.2013). Selective search for object

recognition, In 2013 International journal of computer vision 104(2): 154 – 171.

YANG B, YAN J, LEI Z, (Lea et al.2016). Craft objects from images, In 2016 IEEE Conference

on computer vision and pattern recognition: 6043 – 6051.

ZENG X, OUYANG W, YAN J, (L e a et al.2017). Crafting gbd-net for object detection, In

proceeding of IEEE transactions on pattern analysis and machine intelligence 40(9): 2109 – 2123.

HEARST M A, DUMAIS S T, OSUNA E, (Lea et al.1988). Support vector machines, In

proceeding IEEE Intelligent Systems and their applications, 13(4) : 18 – 28.

68

APPENDICES

69

Appendix A : SSD Architecture based on vgg16 Model

def __init__(self, phase, size, base, extras, head, num_classes):

 super(SSD, self).__init__()

 self.phase = phase

 self.num_classes = num_classes

 self.cfg = (coco, voc)[num_classes == 21]

 self.priorbox = PriorBox(self.cfg)

 self.priors = Variable(self.priorbox.forward(), volatile=True)

 self.size = size

 # SSD network

 self.vgg = nn.ModuleList(base)

 # Layer learns to scale the l2 normalized features from conv4_3

 self.L2Norm = L2Norm(512, 20)

 self.extras = nn.ModuleList(extras)

 self.loc = nn.ModuleList(head[0])

 self.conf = nn.ModuleList(head[1])

 if phase == 'test':

 self.softmax = nn.Softmax(dim=-1)

 self.detect = Detect(num_classes, 0, 200, 0.01, 0.45)

 def forward(self, x):

 """Applies network layers and ops on input image(s) x.

 Args:

70

 x: input image or batch of images. Shape: [batch,3,300,300].

 Return:

 Depending on phase:

 test:

 Variable(tensor) of output class label predictions,

 confidence score, and corresponding location predictions for

 each object detected. Shape: [batch,topk,7]

 train:

 list of concat outputs from:

 1: confidence layers, Shape: [batch*num_priors,num_classes]

 2: localization layers, Shape: [batch,num_priors*4]

 3: priorbox layers, Shape: [2,num_priors*4]

 sources = list()

 loc = list()

 conf = list()

 # apply vgg up to conv4_3 relu

 for k in range(23):

 x = self.vgg[k](x)

 s = self.L2Norm(x)

 sources.append(s)

 # apply vgg up to fc7

 for k in range(23, len(self.vgg)):

 x = self.vgg[k](x)

71

 sources.append(x)

Appendix B: Modified Single Shot Multi-box Detector

 for k, v in enumerate(self.extras):

 x = F.relu(v(x), inplace=True)

 if k % 2 == 1:

 sources.append(x)

 # apply multibox head to source layers

 for (x, l, c) in zip(sources, self.loc, self.conf):

 loc.append(l(x).permute(0, 2, 3, 1).contiguous())

 conf.append(c(x).permute(0, 2, 3, 1).contiguous())

 loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)

 conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)

 if self.phase == "test":

 output = self.detect(

 loc.view(loc.size(0), -1, 4), # loc preds

 self.softmax(conf.view(conf.size(0), -1,

 self.num_classes)), # conf preds

 self.priors.type(type(x.data)) # default boxes

)

 else:

 output = (

 loc.view(loc.size(0), -1, 4),

72

 conf.view(conf.size(0), -1, self.num_classes),

 self.priors

)

 return output

 def load_weights(self, base_file):

 other, ext = os.path.splitext(base_file)

 if ext == '.pkl' or '.pth':

 print('Loading weights into state dict...')

 self.load_state_dict(torch.load(base_file,

 map_location=lambda storage, loc: storage))

 print('Finished!')

 else:

 print('Sorry only .pth and .pkl files supported.')

This function is derived from torchvision VGG make_layers()

def vgg(cfg, i, batch_norm=False):

 layers = []

 in_channels = i

 for v in cfg:

 if v == 'M':

 layers += [nn.MaxPool2d(kernel_size=2, stride=2)]

 elif v == 'C':

 layers += [nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)]

 else:

73

 conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)

 if batch_norm:

 layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]

 else:

 layers += [conv2d, nn.ReLU(inplace=True)]

 in_channels = v

 pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)

 conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6)

 conv7 = nn.Conv2d(1024, 1024, kernel_size=1)

 layers += [pool5, conv6,

 nn.ReLU(inplace=True), conv7, nn.ReLU(inplace=True)]

 return layers

def add_extras(cfg, i, batch_norm=False):

 # Extra layers added to VGG for feature scaling

 layers = []

 in_channels = i

 flag = False

 for k, v in enumerate(cfg):

 if in_channels != 'S':

 if v == 'S':

 layers += [nn.Conv2d(in_channels, cfg[k + 1],

 kernel_size=(1, 3)[flag], stride=2, padding=1)]

 else:

74

 layers += [nn.Conv2d(in_channels, v, kernel_size=(1, 3)[flag])]

 flag = not flag

 in_channels = v

 return layers

def multibox(vgg, extra_layers, cfg, num_classes):

 loc_layers = []

 conf_layers = []

 vgg_source = [21, -2]

 for k, v in enumerate(vgg_source):

 loc_layers += [nn.Conv2d(vgg[v].out_channels,

 cfg[k] * 4, kernel_size=3, padding=1)]

 conf_layers += [nn.Conv2d(vgg[v].out_channels,

 cfg[k] * num_classes, kernel_size=3, padding=1)]

 for k, v in enumerate(extra_layers[1::2], 2):

 loc_layers += [nn.Conv2d(v.out_channels, cfg[k]

 * 4, kernel_size=3, padding=1)]

 conf_layers += [nn.Conv2d(v.out_channels, cfg[k]

 * num_classes, kernel_size=3, padding=1)]

 return vgg, extra_layers, (loc_layers, conf_layers)

base = {

 '300': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M',

 512, 512, 512],

75

 '512': [],

}

extras = {

 '300': [256, 'S', 512, 128, 'S', 256, 128, 256, 128, 256],

 '512': [],

}

mbox = {

 '300': [4, 6, 6, 6, 4, 4], # number of boxes per feature map location

 '512': [],

}

def build_ssd(phase, size=300, num_classes=21):

 if phase != "test" and phase != "train":

 print("ERROR: Phase: " + phase + " not recognized")

 return

 if size != 300:

 print("ERROR: You specified size " + repr(size) + ". However, " +

 "currently only SSD300 (size=300) is supported!")

 return

 base_, extras_, head_ = multibox(vgg(base[str(size)], 3),

76

Appendix C: Modified Single Shot Multi-box Detector based on Residual Network

def resnet_v1_101(inputs,

 num_classes=None,

 is_training=True,

 global_pool=True,

 output_stride=None,

 spatial_squeeze=True,

 store_non_strided_activations=False,

 min_base_depth=8,

 depth_multiplier=1,

 reuse=None,

 scope='resnet_v1_101'):

 """ResNet-101 model of [1]. See resnet_v1() for arg and return description."""

 depth_func = lambda d: max(int(d * depth_multiplier), min_base_depth)

 blocks = [

 resnet_v1_block('block1', base_depth=depth_func(64), num_units=3,

 stride=2),

 resnet_v1_block('block2', base_depth=depth_func(128), num_units=4,

 stride=2),

 resnet_v1_block('block3', base_depth=depth_func(256), num_units=23,

77

 stride=2),

 resnet_v1_block('block4', base_depth=depth_func(512), num_units=3,

 stride=1),

]

 return resnet_v1(inputs, blocks, num_classes, is_training,

 global_pool=global_pool, output_stride=output_stride,

 include_root_block=True, spatial_squeeze=spatial_squeeze,

 store_non_strided_activations=store_non_strided_activations,

 reuse=reuse, scope=scope)

resnet_v1_101.default_image_size = resnet_v1.default_image_size

 stride=2),

 resnet_v1_block('block4', base_depth=depth_func(512), num_units=3,

 stride=1),

]

 return resnet_v1(inputs, blocks, num_classes, is_training,

 global_pool=global_pool, output_stride=output_stride,

 include_root_block=True, spatial_squeeze=spatial_squeeze,

 store_non_strided_activations=store_non_strided_activations,

 reuse=reuse, scope=scope)

78

Appendix D: Conclusion From the above techniques

From the SSD model introduced and the knowledge of the deep residual network, the re-

searcher found that with the deepening of the depth convolution network level, the detection of

objects on the training set will appear to decrease in accuracy. So in order to correct about

defects from SSD model, the new algorithm proposed is better than the traditional SSD model

in terms of detection accuracy. In view of the two defects of the SSD model above, the

methods are introducing the two improves modules (Concat-sum module , Element-Sum

module) using the deep VGG16 and the deep residual network with the feature pyramid net-

work module are adopted, so the MSSD model is more accurate than the traditional detection

accuracy. In image classification functions, outstanding networks have proven to be better

than VGGS because it provides escape links between criminal blocks, thus gradually putting

an end to hits and reducing the way the network is moving deeper. In fact, ResNets typically

can go up to 101 layers whereas VGG networks can only go up to 16. Because deep nets are

often better for sorting images, ResNets are generally more accurate than VGG. Here we will

apply our idea on both of the VGG and ResNet networks showing the result that we got in our

experiment above. The shallower layers (conv-3) suffering from lacking of sematic

information, so in order to compensate that lack we inject contextual information from other

layer and come out with new design model named element-sum and concat-sum model .

Although replacing the VGG-based feature extractor in SSD with ResNet-101 does not lead to

greater performance. Hence, a custom-made prediction module is needed.

79

APPENDIX E: Ethical Approval letter

ETHICAL APPROVAL
DOCUMENT

Date: 20//11/2020

To the Graduate School of Applied Sciences

For the thesis project entitled as “ Multi-Layers Feature Fusion in SSD for Small Objects
Detection”, the researchers declare that they did not collect any data from human/animal or
any other subjects. Therefore, this project does not need to go through the ethics committee
evaluation.

Title: Assist. Prof. Dr

Name Surname: Elbrus Imanov

Signature:

Role in the Research Project: Supervisor

80

APPENDIX F: Turnitin Report

Title of Thesis: Multi-Layers Feature Fusion in SSD for Small Objects Detection

Assist. Prof. Dr. Elbrus Imanov

81

	ACKNOWLEDGMENTS
	ABSTRACT
	ÖZET
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTER 1
	INTRODUCTION
	1.1 Introduction
	1.2 Evolution of Image Recognition
	1.3 Motivation
	1.4 Contribution
	1.5 Structural Design of the thesis
	CHAPTER 2
	BACKGROUND AND RELATED WORKS
	2.1 Convolutional Neural Network (CNN)
	/
	2.1.1 Convolutional Layers
	/
	Source:http://cs231n.github.io/convolutional-networks

	,𝒏-𝒐𝒖𝒕.=,𝒏-𝒊𝒏.+,𝟐-𝒑.−,𝒌-𝟐.+𝟏 (2-1)
	2.1.2 Pooling Layers and Dropout Layer
	/
	Source: http://cs231n.github.io/convolutional-networks

	yil+1=f(wil+1(rl * yl)+bil+1) (2-2)
	/
	Source: http://laid.delanover.com/dropout-explained-and-implementation-in-tensorflow/

	2.1.3 Fully Connected Layers
	Source: https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d

	2.1.4 Common CNN Activation Function
	σ(x) = 2 sigmoid(2x) – 1 (2-5)
	Its derivative expression is :
	σ1(x) = 1 − (σ(x))2 (2-6)
	2.1.5 Batch Normalization Layers
	2.1.6 Deconvolution
	2.1.7 Development

	2.2 Advanced Convolutional Object Detection
	Source: https://towardsdatascience.com/r-cnn-3a9beddfd55a
	2.2.2 Fast R-CNN
	2.2.3 Faster R-CNN
	2.2.4 Single Shot Multi-Box Detector(SSD)
	2.2.5 Non-maxima suppression
	/

	2.2.6 Region Proposal Network
	Source: https://tryolabs.com/blog/2018/01/18/faster-r-cnn-down-the-rabbit-hole-of-modern-object-detection/
	Source: https://tryolabs.com/blog/2018/01/18/faster-r-cnn-down-the-rabbit-hole-of-modern-object-detection/

	2.2.7 Compare the Methods
	2.2.8 Speed Accuracy Trade-off

	2.3 Open Source Framework For Object Detection
	2.3.1 TensorFlow Object Detection API

	2.4 Summary of This Chapter
	CHAPTER 3
	SYSTEM DESIGN AND METHODOLOGY
	3.1 Single Shot Multi-box Detector Network
	3.1.1 Base Network
	3.1.2 SSD Layers
	3.1.3 Prediction Layers
	3.1.4 Default Bounded Boxes
	3.1.5 Deep Residual Network (ResNet)
	3.1.6 Very Deep Convolutional Network VGG16

	3.2 Modified Single Shot Multi-Box Detector (MSSD) Model
	3.2.1 Network Structure Based an Deep VGG16 Network
	3.2.2 Network structure based on deep Residual Network
	3.2.3 Model training

	3.3 Function Loss
	3.3.1 Localization Loss
	3.3.2 Confidence loss

	3.4 Summary of this Chapter
	CHAPTER 4
	EXPERIMENT RESULT AND DISCUSSIONS
	4.1 Datasets
	4.1.1 Pascal VOC 2007/2012 datasets
	4.1.2 Logo datasets

	4.2 System software and hardware construction
	4.3 Evaluation matrics
	4.3.1 Detection result
	4.3.2 PR curve explanation

	4.4 Experimental result and analysis
	4.4.1 Test results under VOC2007/2012 and logo dataset

	4.5 Result Evaluation
	4.5.1 Result Analysis on PASCAL VOC2007 datasets
	4.5.2 Result Analysis on logo dataset

	4.6 Running Time
	4.7 Performance comparison of MSSD Modules
	4.7.1 Performance of MSSD modules based on VGG16 Network
	4.7.2 Performance of SDD Modules based on Residual Network

	4.8 Summary of this Chapter
	CHAPTER 5
	CONCLUSION
	5.1 Summary of work
	5.2 Future work
	REFERENCES
	APPENDICES

