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ABSTRACT 

The fundamental function of adaptive channel equalization is to compensate, eliminate or 

minimize distortion in a communication channel between a transmitter and a receiver. In this 

thesis, a Nonlinear Neuro Fuzzy Equalizer (NNFE) is proposed for the equalization of 

Quadrature Amplitude Modulation (QAM) signals in communication channels by improving 

the quality of complex signal transmission which eventually leads to more efficient 

communication. The presence of noise, intersymbol interference (ISI) and the time-varying 

characteristics of the communication channel necessitate the use of adaptive equalizers. A 

fuzzy adaptive filter is constructed from a set of fuzzy If-Then rules that change adaptively to 

minimize some criterion functions as new information becomes available. The fuzzy adaptive 

filter with the combination of neural networks is a significant type of adaptive equalizer 

which allows short training time of the equalizer, yields better results in terms of bit error rate 

(BER) and convergence rate with its efficient structure and design algorithms. The use of 

neuro-fuzzy equalizer in digital signal transmission allows decreasing the training time of the 

equalizer’s parameters and decreasing the complexity of the network. Normalization method 

applied at the transmitter side of the communications system is utilized and nonlinear neuro-

fuzzy equalizer (NNFE) is employed for the equalization of QAM signals. 

The purpose of this thesis is to successfully equalize QAM signals that are distorted by noise 

and channel conditions when transmitted through a communications channel before being 

received by an equalizer at the end of the system. It’s possible to reach fast and accurate 

equalizer output results with the aid of normalization technique in relatively small number of 

iterations. Convergence rate and BER performance comparisons have been carried out for 4-

QAM and 16-QAM signals. The simulation results have revealed that the proposed nonlinear 

neuro-fuzzy equalizer (NNFE) can successfully minimize the errors and equalize both linear 

and nonlinear channels in addition to providing better convergence rate and improved BER 

performance for linear channel in severely noisy channel conditions.  

Key words: Equalization, Quadrature Amplitude Modulation (QAM), bit error rate, nonlinear 

neuro-fuzzy equalizer, communications system, normalization. 
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CHAPTER 1 

REVIEW ON CHANNEL EQUALIZATION 

1.1 INTRODUCTION 

Communication systems comprise three fundamental elements: transmitter, channel and 

receiver.  When signals are transmitted through a communications system, they are obstructed 

by some distortions which are mainly intersymbol interference (ISI) and noise. The 

transmitted signal is distorted by ISI which is caused by multipath effect in band limited 

(frequency selective) time dispersive channels and is the cause of bit errors on the receiver 

side. ISI is considered the main factor negatively affecting fast transmission of data over 

wireless channels. In order to eliminate or minimize these distortions, equalizers are 

employed in these systems.  Equalization is the method of compensating for, eliminating or 

reducing the amplitude and phase distortion introduced by the transmission medium in 

communications systems. In a general meaning, the term equalization refers to any signal 

processing operation which minimizes ISI. An equalizing filter overcomes the ISI caused by 

individual received symbols of a transmitted data stream, as well as the crosstalk that for 

example occurs due to coupling of a transmitted pulse or that results from the capacitive 

coupling of the transmitted pulse on an outgoing pair interfering with the received pulse on an 

incoming pair. The task of equalizers is to provide efficient and error free communications by 

ensuring that signals transmitted through the channel are recovered as original at the end of 

the receiver that communications system has.  

Distortions may be linear or nonlinear depending on the channel characteristics of channel. 

When transmitting information through a physical channel, various mechanisms distort the 

transmitted signal significantly, causing degradation or even failure in the communications. 

These mechanisms can be classified as additive thermal noise, man-made noise and 

atmospheric noise. In practice, many of the physical channels are characterized by various 

channel models. The most frequently encountered channel of communications is that with 

additive noise. An additive random noise process is involved in this channel model. The 

factors causing the additive noise process are amplifiers and electronic components on the 
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receiver side of the communications system the transmission’s interference as radio signal 

transmission, for example. Thermal noise is the category of noise that electronic components 

and amplifiers cause. Statistically, that sort of noise gets classified as a random Gaussian 

noise process and modeling the channel in terms of mathematics is named the additive 

Gaussian noise channel. The mathematical model becomes an additive white Gaussian noise 

(AWGN) channel in the case of the random process being a white-noise process. The random 

process is a white-noise process when the power spectral density (PSD) is flat (constant) over 

all frequencies [1,2]. 

When compared with AWGN channels, mobile radio channel deficiencies make the signal on 

the receiver side greatly distorted or cause its significant fading. This fading is classified as a 

non-additive signal disturbance and appears as time variation in the signal amplitude. Some 

techniques are utilized to compensate for fading channel deficiencies. The main techniques 

used in compensating for fading channel impairments can be classified as equalization, 

channel coding and diversity that are employed to compensate for the signal distortions and 

improve the received signal quality [3]. This thesis concentrates on equalization technique. 

Equalization techniques can be categorized into linear or nonlinear techniques depending on 

the way the output of an adaptive equalizer is used for subsequent control of the equalizer. 

The decision making device of the receiver processes the equalizer’s output and determines 

the value of the digital data bit being received before applying a slicing or thresholding 

operation (a nonlinear operation) to determine the value of the reconstructed message data. If 

this data is not used in the feedback path for the adapting of the equalizer, it’s a linear type of 

equalization, but on the other hand, if the decision making device feeds the reconstructed data 

back in order to alter the equalizer’s subsequent outputs, the equalization is nonlinear [3]. If 

the used channels are nonlinear, linear equalizers cannot reconstruct the transmitted signal. 

There are various equalizer structures among which linear transversal equalizer (LTE) is the 

most common. The simplest LTE, whose transfer function is a polynomial, uses only feed 

forward taps and has many zeros but poles only at ݖ = 0. This filter is called a finite impulse 

response (FIR) filter or simply a transversal filter. In this type of equalizer, the filter 
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coefficient linearly weights the received signal’s current and past values before summing 

them to produce the output of the equalizer. 

Besides, some applications employ nonlinear equalizers since linear equalizers cannot deal 

with high amount of channel distortion. The performance of linear equalizers on channels 

involving deep spectral nulls in the passband is not good and hence, linear equalizers enhance 

the noise present in the frequencies in which they place too much gain in attempting to 

compensate for the distortion. Nonlinear equalizers are superior in performance to linear 

equalizers because of these reasons. Three quite effective nonlinear methods which possess 

improvements over linear equalization methods and that are used in 2G and 3G systems are: 

1. Decision Feedback Equalization (DFE) 

2. Maximum Likelihood Symbol Detection (MLSD) 

3. Maximum Likelihood Sequence Estimation (MLSE) [4]  

There have been large amount of studies aimed at channel equalization using various 

methods, techniques and algorithms. Recently, neural network based fuzzy technology has 

been widely used as a powerful and significant tool in channel equalization of various types of 

signals. Experts have determined the fuzzy rules by utilizing the channel’s input-output data 

pairs in this type of equalizers. Adaptive channel equalization based on neural networks and 

employing multilayer perceptron (MLP) has been developed as part of this thesis which has 

enabled the equalization of Quadrature Amplitude Modulation (QAM) type signals of various 

levels. This has been achieved for both linear and nonlinear channels using a Nonlinear 

Neuro-Fuzzy Equalizer (NNFE) at a relatively high adaptation speed and accurate equalizer 

output results which has proven to be quite effective and practical.  

The changeable fuzzy IF-THEN rules which configure the fuzzy adaptive filter are formed by 

either human experts or the input-output pairs that are matched throughout a procedure of 

adaptation. In this study, neural networks and fuzzy technology are used for the development 

of a neuro-fuzzy equalizer for channel distortion of Quadrature Amplitude Modulation 

(QAM) signals. Even though the QAM signal has a complex form which is composed of real 

(in-phase) and imaginary (quadrature) parts, the complex signal is not directly applied to the 
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channel and equalizer since the used neuro-fuzzy filter is based on real values and best suits 

the signal processing that takes place in real multidimensional space. The modulation and 

demodulation of M-ary QAM (where M=4 & M=16 ) is accomplished by splitting the stream 

of data bit into the in-phase (I) and quadrature (Q) components. Gray coding is employed to 

map the I and Q components together. The significant feature of this thesis study is the 

application of ‘normalization’ method by which the modulated in-phase and quadrature QAM 

signal is normalized to a maximum of one. Consequently, each component of the complex 

signal attains values between 0 and 1 by first shifting the values such that the minimum value 

is zero and then scaling them such that the maximum value is 1. Each component then is input 

to the channel and equalizer separately and denormalized separately at the equalizer’s output 

where they are recombined to form the final desired complex QAM scheme at the end. The 

normalization method provides better BER and convergence performance since it is stable in 

addition to more accurate equalizer output results with relatively small number of iterations 

before the minimum error is attained. 

This thesis consists of five chapters where:  

Chapter 1 presents an overview on channel equalization. The state of application of neuro-

fuzzy system and fuzzy logic as well as their properties and features are explained. 

Chapter 2 explains the channel equalization, the distortions and noise in the channel. 

Mathematical models and formulas representing the channels and nonlinear neuro-fuzzy 

equalizer used in the thesis together with its characteristics are described.  

Chapter 3 outlines the architecture and operation principles of the nonlinear neuro-fuzzy 

network (NNFN). The used learning algorithm, the linguistic data about the target system and 

numerical input-output relationships of NNFN are explained in detail. Fuzzy rule-based fuzzy 

sets, the parameters and error calculations are analyzed. 

Chapter 4 describes in detail the quadrature amplitude modulation (QAM) and its properties. 

The application of QAM on NNFN and the features of the thesis design are explained. The 

specific technique of normalization used in equalizing QAM signals and its mathematical 

implementation are described. 
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Chapter 5 illustrates the simulation results of the equalization system demonstrating 

graphically and statistically the performance of the equalization system. Bit error rate (BER) 

versus signal-to-noise ratio (SNR) analysis is made in tabulated and graphical forms proving 

the accuracy of the system. Comparisons between the channels and between the two 

constellations of QAM are made to illustrate the performance of the equalizer, as well. 

Conclusions are discussed at the end. 

1.2 Overview 

In order to accurately transmit the input signals from the transmitter to the receiver, 

minimization and thus equalization of distortions in the channel is critical. This can be 

successfully done by employing efficient equalization algorithms and techniques during the 

transmission of the signals from the transmitter to the receiver. This chapter considers 

methods used in channel equalization. Neural networks, fuzzy and neuro-fuzzy technologies 

which form the basis of the adaptive channel equalization are analyzed and discussed.  

1.3 The State of Application of Channel Equalization 

Linear and nonlinear distortions are the main obstacles in transmitting the input signals to the 

receiver of a communications system in their original state. These distortions, namely ISI and 

noise, are caused in the channel and channel equalization is needed in order to transmit the 

signals as accurately as possible. Even though both linear and nonlinear equalizers can be 

used for this purpose, nonlinear equalizers are more preferably used because they are capable 

of compensating both linear and nonlinear channel distortions effectively.   

Two types of equalization are used which are sequence estimation and symbol detection.   In 

this thesis, symbol detection technique is used to realize the adaptive channel equalization. 

This technique maps the input baseband signal of the input on top of a feature space that the 

representation of a learnt property of the transmitted signal determined. The symbols are 

separated by the usage of decision regions which function to classify the distorted signal. 

The ISI problem which affects all digital communication systems is mainly caused by 

restricted bandwidth. The restricted bandwidth is caused by rectangular multilevel pulses 
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when they are filtered improperly as they pass through a communication system spreading in 

time, being smeared into adjacent time slots, causing ISI [2]. This ISI in turn causes errors 

when transmitting data over the channel. Additionally, channel characteristics have a 

significant role in causing distortions and the response of channel is time-variant meaning that 

channel characteristics are not known in advance. The time-variant channel response and the 

unknown channel characteristics obligates the equalizers to be designed to adjust themselves 

to the channel response and to adapt themselves to the variations of time in the response of 

channel so as to compensate for the channel characteristics’ variations. Such equalizers are 

called adaptive equalizers and they have been receiving great attention because of their 

superior features. In practice, as an example, there are situations when the channel consists of 

dial-up telephone lines and the channel transfer function changes from call to call.  In such a 

case, the equalizer should be an adaptive filter. 

Adaptive equalizers are categorized as supervised and unsupervised equalizers. When it is 

necessary to use a training sequence because of the unpredictable channel characteristics in a 

communications system, supervised equalizers are employed. This is done in order for the 

channel response to be compared with the input to be able to update the parameters of the 

equalizer. On the other hand, some communications systems do not allow the use of training 

signals because the methods used to accomplish the equalization of channel do not allow the 

training sequence to be transmitted. This is when unsupervised equalization is employed. This 

equalization that involves a self-recovery method is also referred to as blind equalization [5]. 

Supervised equalization can be brought about by either sequence estimation or symbol 

detection. Sequence estimator’s duty is to test the possible sequences of data instead of 

decoding every one of the received symbols on its own and then selecting the sequence of 

data that is most likely to be the output [4]. This sequence estimator is also referred to as 

maximum likelihood sequence estimator (MLSE).   

Unsupervised or blind equalization is used when the signal has no memory i.e. the signals 

transmitted in successive symbol intervals are interdependent. In this case, each transmitted 

symbol is detected separately. The constant modulus algorithm (CMA), discovered by Godard 

[6] and Treichler [7] serves to be a highly significant algorithm for blind equalization. Its 
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robustness and capability of converging before phase recovery made this algorithm very 

successful [5]. Another algorithm called the multimodulus algorithm (MMA) [8,9] has 

improved performance over CMA since it provides low steady-state mean-squared error 

(MSE) in addition to cancelling the necessity for phase recovery in steady-state operation [9]. 

Additionally, hybrid blind equalization algorithms are different types of blind equalization 

algorithms known for combining or augmenting existing cost functions to attain improved 

performance [5]. 

Nonlinear equalizers are considered significant among signal processing techniques due to 

their both superior performance and improved features compared with linear equalizers, in 

addition to the wide variety they offer. One of those features is the ability to form nonlinear 

decision boundaries where the Bayesian equalizer determines the performance of these 

equalizers.  Decision Feedback Equalizers (DFEs) are one class of nonlinear equalizers with 

relatively improved performance. Estimating and cancelling the ISI that an information 

symbol induces on future symbols after it has been detected and decided upon forms the basis 

of decision feedback equalization [4]. The DFE can possess two structures which are either 

direct transversal or lattice structures. The direct form is made up of a feed forward filter 

(FFF) and a feedback filter (FBF). The output of a detector located in between the FFF and 

FBF determines the decisions that will be input to the FBF, eventually adjusting the 

coefficients of the FBF to eliminate the current symbol’s ISI caused by past detected symbols. 

The remarkable feature of the DFE is its superiority over linear transversal equalizer (LTE) 

which is the most common equalizer structure. This superiority is due to its smaller minimum 

mean square error (MMSE) than that of the LTE. This is caused by the severely distorted 

channel of the LTE or when it exhibits nulls in the spectrum causing the performance of an 

LTE to degrade and the minimum mean squared error (MMSE), which is the basic 

performance criterion of the DFE, to be quite better than that of the LTE.    

The goal in designing a communications system is to transmit information to the receiver with 

as little deterioration as possible and at the meantime to satisfy design constraints of allowed 

signal bandwidth, transmitted energy and cost. In digital communications systems, the 

probability of bit error (Pe), which is named bit error rate (BER) is generally taken to be the 
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measure of degradation and performance. In analog communications systems, the signal-to-

noise ratio (SNR) that is related with the end of the receiver is generally the performance 

criterion. It’s important to attain a low mean square error (MSE) and high convergence rate 

beside a low BER in nonlinear channel equalization. Training sequences are also an important 

factor that determines the efficiency of a communications system. They are intended to be as 

short as possible which requires the adaptation process to end in as few iterations as possible.        

The application of linear equalizers to nonlinear channels does not yield the desired BER 

performance since they are based on linear system theory and are used for equalization of 

linear channels. Recently, neural networks and fuzzy technology have evolved into a powerful 

tool in the equalization of nonlinear channel distortions.       

1.4 State of Application of Neural Networks and Fuzzy Technologies for Channel             

Equalization 

1.4.1 Design of neural network based equalizers 

Nonlinear equalizers are capable of compensating for both nonlinear and linear channel 

distortion. Adaptive nonlinear equalizers that implemented neural network models were used 

extensively primarily for noise-cancellation in various applications. A multilayer perceptron 

(MLP) is one of the neural network structures which is used in neural network based 

equalizers. MLP networks consist of feedforward neural networks having one or more layers 

of neurons, known as hidden neurons that are between the input and output neurons.   

Filtering is the process of changing the relative amplitudes of the frequency components in a 

signal or eliminating some frequency components completely in a variety of applications [10].  

Assigning k information bits to the ܯ = 2௞ possible signal amplitudes which can be carried 

out in a number of ways is called mapping or transformation. Generally, the nonlinear 

equalization includes a channel estimator since the channel information is not available at the 

receiver end [12]. Filtering comprise two estimation procedures, one of them being the 

mapping from the available samples and the other one being the estimation of the output of 

the filter from the input by the realization of this mapping [11]. The mapping is more difficult 
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for a nonlinear filter than for a linear filter but research still goes on to effectively realize the 

mapping of nonlinear filters.   

1.4.2 Channel equalization by using fuzzy logic  

Adaptive equalizers for nonlinear channels can be developed by a variety of effective ways.   

Baye’s probability theory [13] is capable of bringing about the optimal solution for a symbol 

equalizer and is referred to as the Bayesian equalizer. Symbol decision equalizers are 

particularly simple and less complex in terms of computationality compared with the MLSE. 

A channel estimate is not always necessary for them. They function as inverse filters [14] and 

such algorithms as recursive least square (RLS) or least mean square (LMS) are employed to 

base an adaptive filter. The channel inverse is found by the adaptive filter where noise 

provides a linear decision boundary. In general, an optimal equalizer requires decision 

function that is naturally nonlinear. This equalization is usually thought to be a nonlinear 

problem of classification with this perspective and because of this reason, linear equalizers’ 

performance is not good enough to be optimal. This is the reason search for nonlinear 

equalizes providing a nonlinear decision function has been undertaken. Nonlinear equalizers 

employing artificial neural networks (ANNs) [15], [16], [17] and radial basis function (RBF) 

networks [15], [18], [19] were successfully developed. Nonlinear equalizers using ANN and 

RBF networks were shown to provide superior performance to linear equalizers for channels 

corrupted with ISI and AWGN [20]. The ANN equalizers had some discrepancies due to poor 

convergence and RBF equalizers provided functional behavior which is localized and required 

by the optimal equalizer where it was difficult to train the centers. This, however, caused the 

examinations to find different nonlinear equalization techniques. A fuzzy adaptive filter forms 

the basis of a fuzzy equalizer and this fuzzy equalizer has been suggested in [21] as the result 

of examinations to find alternative nonlinear equalization techniques and a fuzzy system 

related equalizer is offered by [22]. It was found that these equalizers had good performance 

but the Bayesian equalizer decision function could not be found, in addition to the difficulty 

of demand by fuzzy adaptive filter based equalizer, for high computational complexity.  

The fuzzy logic is based on fuzzy rules that use input-output data pairs of the channel. This 

type of adaptive equalizers operates by processing numerical data and linguistic information.  



10 
  

Fuzzy equalizer depends on fuzzy IF-THEN rules which are determined by human experts.  

These rules use the channel’s input-output data pairs and carries out the construction of the 

filter for nonlinear channel. The bit error rate (BER) and adaptation speed can be improved by 

the linguistic and numerical information. 

Digital communications involving quadrature amplitude modulation (QAM) can apply the 

fuzzy filter with both linear and nonlinear channel characteristics as has been achieved in this 

thesis. The present study proposes a complex fuzzy adaptive filter with changeable fuzzy IF-

THEN rules, which is an extension of the real fuzzy filter. The filter inputs and outputs are all 

complex valued. However, the inputs of the channels are real reciprocals of the modulated 

complex transmitted inputs and the equalizer outputs are real reciprocal estimates of the 

reciprocal channel input signals. Afterwards, the reciprocal normalized equalizer outputs are 

denormalized to form the final complex-valued, equalized estimate outputs of the receiver. 

This technique which is primarily based on normalization and directly applied on the 

transmitter, on the whole presents a new method to successfully equalize complex-valued 

QAM signals which are severely distorted in both linear and hostile time-varying nonlinear 

channel environments, by using real-valued reciprocals of the signals in question. In addition 

to the methodology, the membership functions derived from the training data set and the 

gradient-descent learning algorithm which trains the data set, represent a significant element 

of the nonlinear neuro-fuzzy equalizer that is capable of this adaptive channel equalization. Its 

superiority relies not only on its high equalization performance but also on its capability of 

minimizing or eliminating the non-linear channel distortions that in general, linear equalizers 

are not capable of doing. In turn, the fuzzy logic based neuro-fuzzy equalization is proven to 

be an efficient equalizer on a complex scheme such as QAM with high approximation ability 

in nonlinear problems in addition to the linear ones.  

A fuzzy adaptive filter is based on a set of fuzzy IF-THEN rules whose function is to change 

adaptively in order to minimize some criterion function as new information is available [35].   

A recursive least squares (RLS) adaptation algorithm is used by a fuzzy adaptive filter.   

The construction of RLS fuzzy adaptive filter is accomplished by the following four steps: 
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1) Defining fuzzy sets in the filter input space UєRn which has membership functions 

covering U. 

2) Constructing a set of fuzzy IF-THEN rules that either human experts determine or the 

adaptation procedure determines by matching input-output data pairs; 

3) Constructing a filter that is based on the set of rules; and, 

4) Updating the filter’s free parameters by utilizing the RLS algorithm. 

The fuzzy adaptive filter’s main advantage is the possibility of integrating linguistic 

information (in the shape of fuzzy IF-THEN rules) and numerical information (in the shape of 

input-output pairs) into the filter uniformly. At the end, when it’s time to apply the fuzzy 

adaptive filter to equalization problems related with nonlinear communication channel, the 

following fundamental differences between RLS and LMS are reached: 

1) The RLS algorithm is faster than that of the LMS algorithm. 

2) Having, in fuzzy terms, incorporated some linguistic description about the channel 

into the fuzzy adaptive filter will extensively enhance the adaptation speed of RLS. 

3) The fuzzy equalizer’s bit error rate is quite approximate to the bit error rate of the 

optimal equalizer.  

4) The excess mean-square error of the RLS algorithm is inclined towards zero as the 

number of iterations comes nearer to infinity. 

Development of neuro-fuzzy system in order to equalize channel distortion includes the 

following steps: 

-First, the methodologies utilized to equalize channel distortions are analyzed and state of 

application problems of neural and fuzzy technologies for the development of an equalizer is 

considered. 

-Second, the data transmission structure is explained and the operation structure of adaptive 

channel equalization utilizing neuro-fuzzy network is presented. 
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-Third, the mathematical model of the neuro-fuzzy network for the development of 

equalization system for channel distortion is presented.  The learning algorithm of neuro-

fuzzy system is considered. 

-Fourth, the development of the neuro-fuzzy equalizer for channel distortion is presented.   

-Fifth, the QAM signaling is explained and its application on nonlinear neuro-fuzzy network 

is presented.  The simulation results of the equalizer using QAM signals and analytical tables 

demonstrating the performance of the equalizer are presented.  Additionally, tables comparing 

the different QAM constellations are presented.  

1.5 Summary 

In this chapter, the application of channel equalization is explained. The types of distortions in 

channels and the types of equalizers used to minimize them are explained with their 

classifications and properties. Performance criteria of equalizers, namely bit error rate (BER),  

signal-to-noise ratio (SNR) and convergence rate with their ideal indications are stated. 

Neural networks and fuzzy logic are particularly discussed and explained with their structures 

and features. The methods of equalization using neural networks, specifically filtering is 

described. Different types of algorithms, networks and equalizers used especially for difficult 

nonlinear channels are defined. 

Fuzzy IF-THEN rules which constitute the basis of fuzzy logic are described to point out their 

significance in channel equalization. The steps of constructing a fuzzy adaptive filter using 

these rules are defined. The methods used in equalizing QAM signals applied on neuro-fuzzy 

network and the gradient-descent learning algorithm as part of the equalization system are 

described as well. 
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CHAPTER 2 

STRUCTURE OF CHANNEL EQUALIZATION 

2.1 Overview 

All communications systems are composed of three fundamental subsystems which are 

transmitter, channel and receiver (Fig. 2.1). A transmitter’s task is to transmit information 

signal through physical channel or transmission medium after converting it into a form which 

is convenient for transmission. The receiver’s task, on the other hand, is to produce an 

accurate replica of the transmitted symbol sequence by recovering the message signal that the 

received signal contains. The communications channel acts as a connector between the 

transmitter and the receiver sending the electrical signal from the transmitter to the receiver.  

The unknown channel characteristics cause distortions to the transmitted signal before it 

reaches the receiver. 

                        

        

                              Figure 2.1 Basic components of a communications system 

Digital communications systems are preferred more compared with the analog ones due to 

increasing demand for data communication and because digital transmission provides data 

processing options and flexibilities that analog transmission cannot offer. The distinguishing 

feature of a digital communications system is that it sends a waveform from a finite set of 

possible waveforms during a finite interval of time as opposed to an analog communication 

system that transmits a waveform from unlimited number of various waveforms which have 

theoretically infinite resolution. The message from the source which is represented by an 

information waveform is encoded before transmission so that transmission error can be 

detected and corrected by the receiver. At the receiver end, the message signal must be 

decoded before being used. The distortions preventing the correct transmission of signals are 

mainly intersymbol interference (ISI) and noise. Noise is meant to be unwanted electrical 

signals which exist in electrical systems. The equalization of channel is an efficient technique 

Transmitter      Channel        Receiver 
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employed to reduce or eliminate the obscuring effect of distortion caused in the channel. This 

chapter outlines the structure of data transmission system and the functions of its main 

components as well as the equalization of channel distortion. 

2.2 Architecture of Data Transmission Systems 

A communications channel is an electrical medium which connects the transmitter and the 

receiver, providing the data transmission from a source which generates the information to 

one or more destinations. In the analysis and design of communication systems, the 

characteristics of the physical channels through which the information is transmitted, are of 

particular importance. Wire lines or free space may be used in the communications path from 

the transmitter to the receiver. The examples for wire lines are coaxial cables, wire pairs and 

optical fibers. These are widely used in terrestrial telephone networks, even though infrared 

and optical free space links such as video, remote controls for TV and hi-fi equipment as well 

as some security systems may be used in different situations, as well. This point of 

transmission medium is where most of the attenuation and noise is observed [23].  

The receiver functions to reverse the signal processing steps performed by the transmitter 

recovering the original message signal by compensating for any signal deteriorations caused 

by the channel. This involves amplification, filtering, demodulation and decoding and in 

general is a more complex task than the transmitting process.   

There are many reasons as to why digital communication systems are preferred over analog 

systems. Digital communication systems (DCSs) represent an increase in complexity over the 

equivalent analog systems. The principal advantages and reasons of DCS’s being the 

preferred option instead of analog communication systems can be listed as: 

1. The ease with which digital signals, compared with analog signals, are regenerated. 

2. Digital systems are not as prone to distortion and interference as analog systems. 

3. Increased demand for data transmission. 

4. Increased scale of integration, sophistication and reliability of digital electronics for 

signal processing, combined with decreased cost. 

5. Facility to source code for data compression. 
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6. Possibility of channel coding (line and error control coding) to minimize the effects of 

noise and interference. 

7. Ease with which bandwidth, power and time can be traded off in order to optimize the 

use of these limited resources. 

8. Standardization of signals, irrespective of their type, origin or the services they 

support, leading to an integrated services digital network (ISDN) 

9. Digital hardware can be implemented more flexibly than analog hardware. 

10. Various types of digital signals such as data, telephone, TV and telegraph can be 

considered identical signals in transmission and switching [24].  

Modulation, which is part of the transmission and equalization process, involves encoding 

information from a message source in a way that is convenient for transmission. It is 

accomplished by translating a baseband message signal to a bandpass signal at frequencies 

which are quite high when compared with the frequency of baseband. It is also referred to as 

the mapping of the baseband input information waveform into the bandpass signal. The 

bandpass signal is referred to as the modulated signal and the baseband message signal is 

referred to as the modulating signal. Modulation can be accomplished by varying the 

frequency, phase or amplitude of a high frequency carrier in conformity with the amplitude of 

the message signal. Demodulation, on the other hand, is the process of extracting the 

baseband message from the carrier in order to enable the aimed receiver (also known as the 

sink) to process and interpret it. In digital wireless communication systems, it’s possible to 

represent the modulating signal as a time sequence of pulses or symbols, where each symbol 

has m finite states. The representation of n bits of information where n = log2 m bits/symbol, 

is done by each symbol [4]. 

The block diagram illustrated in Fig. 2.2 can describe communications systems. The source of 

data is the signal generator that produces the information to be transmitted and modulated.  

This information is in the form of a message symbol that can consist of a single bit or a 

grouping of bits.  

In order to make the transmission more efficient in terms of the time it takes and/or bandwidth 

it requires, encoder is employed as a signal processor that converts the sources of digital 
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information into binary form, i.e. each symbol is encoded as a binary word. Encoding is 

performed so as to enable the signal processor in the receiver to detect and correct errors 

which will provide the minimization and/or elimination of bit errors caused by noise in the 

channel.   

The procedure used for detecting and correcting errors is called coding. Coding includes 

adding redundant (extra) bits to the stream of data. The redundant bits like parity bits are 

employed by the decoder and serve to correct errors at the receiver output even though a high 

degree of redundancy may increase the bandwidth of the encoded signal. Codes can be 

classified into two broad categories as block codes and convolutional codes. The main 

difference is that block coder is a memoryless device whereas a coder having a memory 

produces a convolutional coder. Hamming Codes, Golay Codes, Hadamard Codes, Cyclic 

Codes, BCH (Bose-Chaudhuri-Hocquenghem) Codes and Reed-Solomon Codes are some 

examples of block codes. In addition to block codes and convolutional codes, a new family of 

codes, called turbo codes is used recently and is being incorporated in 3G wireless standards. 

Turbo codes combine the capabilities of convolutional codes with channel estimation theory 

and can be thought of as nested or parallel convolutional codes. When implemented properly, 

turbo codes allow coding gains which are far superior to all previous error correcting codes 

and permit a link of wireless communications to come surprisingly near to realizing the 

Shannon capacity bound [4]. 

Each digital word has n binary digits and there are ܯ = 2௡ unique code words which are 

possible where each code word corresponds to a certain amplitude level. However, each 

sample value from the analog signal could be any one of an infinitely high number of levels 

for the digital word which represents the amplitude closest to the actual sampled value to be 

utilized. That is known as quantizing [2]. Gray coding was used as the mapping of bits along 

the in-phase and quadrature axes of the QAM constellation as part of this thesis study. The 

Gray code has been selected since it has change of only one bit for each change of step in the 

quantized level. Multisymbol signaling can be thought of as a coding or bit mapping process  
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Figure 2.2 Architecture of a digital communications system [39] 

in which n binary symbols (bits) are mapped into a single M-ary symbol. A detection error in 

a single symbol can therefore translate into several errors in the corresponding decoded bit 

sequence. The bit error rate (BER), therefore relies not only on the probability of symbol error 

and the symbol entropy but on the code or bit mapping used and the types of error which 

occur as well.  If a Gray code is used to map binary symbols to phasor states, this type of error 

results in only a single decoded bit error [23]. Consequently, single errors in the receiver will 

cause minimal errors in the recovered level.        

There are many criteria used in the evaluation of the performance of a communications 

system. The optimum system that is considered close to being ideal or perfect for digital 

systems is the one that minimizes the bit error rate (BER) at the receiver output subject to 

constraints on channel bandwidth and transmitted energy. This raises the matter of inventing a 

system with no bit error at the output even when there is noise in the channel. Shannon 

demonstrated in 1948 that it was possible to calculate a channel capacity C (bits/s) in the way 

that if the rate of information was less than C, the probability of error would approach to zero. 

In this case, the maximum possible bandwidth efficiency maxB , which is defined as the 
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capability of a modulation scheme to accommodate data within a limited bandwidth, is 

restricted by the channel noise and is stated by the channel capacity formula in Eq.2.1. 

Shannon’s channel capacity formula is applicable to AWGN and is given by             







 

N
S

B
C

B 1log 2max  

                                                      or                                                                                      (2.1) 

                                                       





 

N
SBC 1log 2  

in which C is the channel capacity (bits per second), B is the transmission bandwidth, S is the 

average power of the transmitted signal and N is the power spectral density of the white 

Gaussian noise. S/N is called the signal-to-noise ratio. Shannon also showed that errors that a 

noisy channel induces, could be decreased to any desired level by encoding the information 

properly, without sacrificing the rate of information transfer.  

The physical medium or the channel that the message signal is transmitted through, induces 

distortions like intersymbol interference (ISI) and noise. The receiver, on the other hand is 

responsible for separating the source information from the received modulated signal which is 

distorted by noise that is usually random, additive white Gaussian noise (AWGN). The 

receiver’s duty is to take the corrupted signal at the output of the channel and to convert it to a 

baseband signal that the baseband processor could handle. The baseband processor eliminates 

or minimizes this signal and distributes an estimate of the source information to the output of 

the communications system [2]. Demodulation process is employed at the receiver to the 

signal in order to recover the transmitted signal in its baseband form and make it ready to be 

processed by the receiver filter. At the end, the decision device reconstructs the encoded 

message signal depending on the decisions of the equalizer and the decoder reconstructs the 

sequence of transmitted signals by bringing about the reverse operation of the encoder. 
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2.3 Channel Characteristics 

Channels must have appropriate frequency band for their transmission medium. The 

processed baseband signal is converted by the transmitter circuit into this frequency band. If 

the channel is a fiber-optic cable, the carrier circuits convert the baseband input to light 

frequencies and the transmitted signal is light.      

Channels are classified as wire and wireless channels. Some examples of wire channels can be 

counted as coaxial cables, fiber-optic cables, twisted-pair telephone lines and waveguides 

whereas air, vacuum and seawater are examples of wireless channels.  

The constraints channels may introduce are in favor of a particular type of signaling. 

Generally, the signal is attenuated by the channel so that the channel or the noise produced by 

an imperfect receiver deteriorates the delivered information from that of the source [2]. There 

are various sources that cause noise; those sources may be natural electrical disturbances such 

as lightning, artificial sources like ignition systems in cars, switching circuits in a digital 

computer or high voltage transmission lines. The channel is likely to involve amplifying 

devices such as satellite transponders in space communication systems or repeaters in 

telephone systems that help the signal to be above the noise level. In addition to noise, 

multiple paths that arise between the input and output of channel involve attenuation 

characteristics and time delays. The attenuation characteristics may vary with time, which 

makes the signal fade at the channel output. Fading of that type can be observed while 

listening to distant shortwave stations. 

Another significant characteristic of channels is bandwidth. In general terms, bandwidth is 

defined to be the width of a positive frequency band of waveforms whose magnitude spectra 

are even about the origin ݂ = 0. Bandwidth in a channel must be enough to accommodate the 

signal but reject the noise. High bandwidth allows more users to be assigned as well as more 

information to be transmitted. Some examples of band limited channels are telephone 

channels and digital microwave radio channels. When the channel is band limited to ܹHz, 

any frequency components above ܹ will not be passed by the channel. In turn, the bandwidth 

of the transmitted signal will be limited to ܹ Hz, as well. When the channel is not ideal (i.e. 
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|݂| ≤ ܹ), signal transmission at a symbol rate equivalent of or exceeding ܹ concludes as 

intersymbol interference (ISI) among a number of adjacent symbols. In addition to telephone 

channels, other physical channels which exhibit some form of time dispersion and thus 

introduce ISI, are also available. Radio channels like shortwave ionospheric propagation (HF) 

and tropospheric scatter are two examples of time-dispersive channels. In these channels, time 

dispersion and hence, ISI is the consequence of multiple propagation paths that have different 

path delays [1]. In addition to noise, multipath propagation and ISI, there are other 

impairments in the channels specifically nonlinear distortion, frequency offset and phase 

jitter. Channel impairments affect the transmission rate over the channel and the modulation 

technique to be used. Depending on the rates, bandwidth efficient modulation techniques are 

employed and some form of equalization is employed accordingly.   

2.4 Channel Distortions 

Channels which are used to transmit data distort signals in both amplitude and phase. In 

addition to the nature of the channel itself, other factors like linear distortion, nonlinear 

distortion and frequency offset are significant factors causing these distortions.   

Linear distortion occurs in linear time-invariant systems in which channels are characterized 

as band-limited linear filters. Those channels like telephone channels are part of digital 

communications systems where distortionless transmission is highly desired. A linear time-

invariant system will produce two types of linear distortion which are amplitude distortion 

and phase distortion. In order to have distortionless transmission with linear time-invariant 

systems, the first requirement is that the transfer function of the channel must be given by 

                                               dfTjAe
fX
fYfH 2

)(
)()(                                                     (2.2) 

which means that in order to have no distortion at the system output, the following 

requirements have to be met: 

1. Flat amplitude response.  That is, 

                                             AfH  constant)(                                                (2.3a) 
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2.  The phase response that is a linear function of frequency.  That is, 

                                                   dfTfHf  2)()(                                             (2.3b) 

When the first condition is satisfied, no amplitude distortion exists and when the second 

condition is satisfied, no phase distortion exists. The second requirement is related with the 

time delay of the system and it is defined as 
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and it is compulsory that  

                                                                constant)( fTd                                                    (2.5) 

for distortionless transmission. If )( fTd is not constant, there is phase distortion since the 

phase response, )( f , is not a linear function of frequency.  

Nonlinear distortion in telephone channels arises from nonlinearities in amplifiers and 

compandors used in the telephone system. This type of distortion is usually small and it is 

very difficult to correct [1]. There will be nonlinear distortion on the output signal if the 

voltage gain coefficients from the second order on, are not zero. There are three types of 

nonlinear distortions associated with the amplifiers which are harmonic distortion, 

intermodulation distortion (IMD) and cross-modulation distortion. Harmonic distortion 

occurs at the amplifier output and is caused by first and second order frequencies of the 

amplifier output. The intermodulation distortion is produced by cross-product term of the 

amplifier input-output equation whereas the cross-modulation distortion is caused by the third 

order distortion products of the amplifier output. 

In addition to linear and nonlinear distortions, signals transmitted through telephone channels 

are subject to the impairment of frequency offset. A small frequency offset which is mostly 

less than 5 Hz, results from the use of carrier equipment in the telephone channel. High-speed 

digital transmission systems that use synchronous phase-coherent demodulation cannot 
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tolerate this type of offset. This offset is compensated for by the carrier recovery loop in the 

demodulator. 

Phase jitter is basically a low-index frequency modulation of the transmitted signal with the 

low frequency harmonics of the power line frequency. Phase jitter poses a serious problem in 

digital transmission of high rates. Yet, it can be tracked and compensated for, to some extent, 

at the demodulator.            

Distortion can occur within the transmitter, the receiver and the channel. As opposed to noise 

and interference, distortion appears when the signal is turned off. 

2.4.1 Multipath propagation 

Multipath fading occurs to varying extents in many different radio applications. It is caused 

whenever radio energy reaches the receiver by more than one path.  Multiple paths may also 

occur due to ground reflections, reflections from stable tropospheric layers and refraction by 

tropospheric layers with extreme refractive index gradients [23].  Scattering obstacles also 

cause multipath propagation to some other systems like urban cellular radio systems.   

There are two principal effects of multipath propagation on systems, their relative severity 

depending essentially on the relative bandwidth of the resulting channel compared with that of 

the signal being transmitted. The fading process is governed by changes in atmospheric 

conditions for fixed point systems such as the microwave radio relay network. The path delay 

spread often is adequately short for the channel frequency response to be essentially constant 

over its operating bandwidth. If that happens, fading is considered flat because all signal 

frequency components become prone to the same fade at any given instant. In the case of path 

delay spread being longer, the channel frequency response is likely to change rapidly on a 

frequency scale that can be compared with signal bandwidth. If that happens, the fading is 

considered frequency selective and the received signal is subject to severe amplitude and 

phase distortion. Adaptive equalizers may then be required to flatten and linearize the overall 

characteristics of channel. The flat fading effects can be combated by increasing transmitter 

power whilst the effects of frequency selective channel cannot. A fade margin is usually 

designed into the link budget to offset the expected multipath fades for microwave links 
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which are subject to flat fading. The magnitude of this margin depends on the required 

availability of the link.  

Paths of multiple propagation that have different path delays cause time dispersion and ISI in 

time-dispersive channels. The reason for calling these channels time-variant multipath 

channels is that the relative time delays among the paths and the number of paths vary with 

time. Various frequency response characteristics are caused by the time-variant multipath 

conditions resulting in inappropriate frequency response characterization for time-variant 

multipath channels, which is used for telephone channels. Instead, scattering function 

statistically characterizes these radio channels.  The scattering function is a two-dimensional 

representation of the average received signal power which depends on Doppler frequency and 

relative time delay.  

2.4.2 Intersymbol interference 

Rectangular pulse signaling, in principle, has a spectral efficiency of 0 bits/s/Hz since each 

rectangular pulse has infinite absolute bandwidth. In practice, of course, rectangular pulses 

can be transmitted over channels with finite bandwidth if a degree of distortion can be 

tolerated.   

In digital communications, it might appear that distortion is unimportant since a receiver must 

only distinguish between pulses which have been distorted in the same way. If the pulses are 

filtered improperly as they pass through a communications system i.e. if the distortion is 

severe enough, they will spread in time. The decision instant voltage might then arise not only 

from the current symbol but also from one or more preceding pulses. Intersymbol interference 

(ISI) is caused when smearing the pulse for each symbol into adjacent time slots occurs. The 

pulses would have rounded tops instead of flat ones with a restricted bandwidth. What’s 

important about ISI is the decision instant. The decision instant can be defined as the 

sampling instant (or sampling point) at which each time slot of the transmitted or received 

waveform begins. It is at this point that ISI occurs due to the smearing effect of the pulse. 

This smearing will cause unwanted contributions from the adjacent pulses that are likely to 

degrade bit error rate (BER) performance. The decision instant shows an important point: The 
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performance of digital communications systems is only related with decision instant ISI. If ISI 

occurs at times that are not decision instants, it does not matter [23]. 

If the signal pulses could be persuaded to pass through zero crossing point (of the time axis) at 

every decision instant (except one), then ISI would no longer be a problem. This suggests a 

definition for an ISI-free signal, i.e.: If a signal passes through zero at all instants that are not 

one of the sampling instants, it’s an ISI-free signal [23].               

While transmitting information with pulses over an analog channel, the original signal is a 

discrete time sequence (or an acceptable approximation); the received signal is a continuous 

time signal. The channel can be considered a low-pass analog filter, by that means, smearing 

or spreading the shape of the impulse train into a continuous signal with peaks that are related 

with the original pulses’ amplitudes. Convolution of the pulse sequence by a continuous time 

channel response could describe the operation in terms of mathematics. The convolution 

integral is the beginning of the operation: 

 

                         (2.6)   

 

where x(k) denotes the received signal, h(k) denotes the channel impulse response and s(k) 

denotes the input signal. The second half on the right side of the above equation illustrates the 

commutativity property of the convolution operation. 

Component s(k) is the input pulse train that is comprised of periodically transmitted impulses 

of varying amplitudes, for that reason; 

                                                         s(k) = 0        for k≠nT                                                   (2.7) 
s(k) = Sn      for k=nT         

 

where T is the symbol period. Here, it is meant that the only significant values of the variable 

of integration in the integral of equation (2.6), are those for which ݇ = ݊ܶ. A different value 

of k amounts to multiplication by 0 and for that reason, x(k) can be stated as 
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



  dkhsdkshkskhkx )()()()()()()(
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                                                     (2.8) 

The above equation that represents x(k) is more similar to the convolution sum, however, it 

nevertheless is the description of a continuous time system. It illustrates that the received 

signal is comprised of the addition of a large number of shifted and scaled impulse responses 

of continuous time system. The amplitudes of the transmitted pulses of x(k) scale the impulse 

responses.   

The first term in Eq. 2.8 is the component of x(k) because of the Nth symbol. The centre tap of 

the channel impulse response multiplies it. ISI terms are the other product terms in the 

summation. The appropriate samples in the tails of the channel impulse response scale the 

input pulses in the neighborhood of the Nth symbol. 

2.4.3 Noise 

In communications systems, the received waveform is usually classified as the desired part 

which contains the information and the extraneous or unwanted part. The desired part is the 

signal and the unwanted part is the noise. Noise limits our ability to communicate and causes 

more power consumption during the transmission of information. Minimizing the noise 

effects is achieved after enhancing the power amount in the transmitted signal. Yet, factors 

like equipment and various practical limitations restrict the level of power in the signal which 

is transmitted.   

The most frequently encountered problem in the transmission of signals through any channel 

is additive noise that is generally generated internally at the receiver end by components like 

solid-state devices of a subsystem and resistors employed in the implementation of the 

communications system. That is at times referred to as thermal noise. Thermal noise is 

produced by the random motion of free charge carriers (usually electrons) in a resistive 

medium. Additive noise generated by the electronic components is usually found in a storage 

system’s readback signal, as in the case of a radio or telephone communication system. When 

such noise occupies the same frequency band that the desired signal occupies, suitable design 

of the transmitted signal and its demodulator at the receiver can minimize its effect [23].   
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Another problem in transmission is the non-thermal noise, also known as the shot noise.  

Although the time averaged current flowing in a device may be constant, statistical 

fluctuations will be present if individual charge carriers have to pass through a potential 

barrier. The potential barrier may, for example, be the junction of a PN junction diode, the 

cathode of a vacuum tube or the emitter bus junction of a bipolar transistor. Such statistical 

fluctuations constitute shot noise.    

Noise that arises from external sources can be coupled into a communication system by the 

receiving antenna. Antenna noise which is dominated by the broadband radiation produced in 

lightning discharges associated with thunderstorms, below 30 MHz originates from several 

different sources. This radiation is trapped by the ionosphere and propagates worldwide.  

Such noise is sometimes referred to as atmospheric noise. 

Noise can be classified into categories as: 

a. White noise: A stochastic process which has a flat power spectral density over the 

entirety of frequency range. It’s not possible to express that sort of noise using 

quadrature components because of its wideband character. When problems tackling 

the narrowband signal demodulation in noise are in question, modeling the additive 

noise process as white and representing the noise using quadrature components is 

mathematically convenient. It’s possible to accomplish this after putting forward that 

the signals and noise at the receiver managed to pass through an ideal bandpass filter, 

which has a passband including the spectrum of the signals but is a lot wider. The 

noise that is the result of passing the white noise process through a spectrally flat 

bandpass filter is referred to as bandpass white noise.   

b. Electromagnetic Noise: Usually found in electrical devices like television and radio 

transmitters and receivers. They can be present at all frequencies. 

c. Impulse Noise: An additive disturbance which arises primarily from the switching 

equipment in the telephone system. It is made up of short-duration pulses having 

random duration and amplitude. 

d. Acoustic Noise: Present in almost all conversations and limit telecommunications 

environments such as telephone circuits and hands-free telephones. It may be 
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unnoticeable or distinct, depending on the time delay involved. If the delay between 

the speech and its echo (noise) is short, the noise is unnoticeable, but perceived as a 

form of spectral distortion referred to as reverberation. If, however, the delay exceeds 

a few tens of milliseconds, the noise is distinctly noticeable [25]. Background noise 

generated in a car cabin, air conditioners and computer fans represent some types of 

acoustic noise. 

e. Processing Noise: Modeled as a zero-mean, white-noise process in data 

communication systems. It is the result of digital analog processing of signals, e.g. lost 

data packets in digital data communications systems or quantization noise in digital 

coding of image or speech. 

f. Colored Noise: It’s a Gaussian type noise which is part of wideband signal processes 

with non-constant spectrum. Autoregressive noise and brown noise are some examples 

of the non-white, colored noise. 

Gaussian noise and specifically the additive white Gaussian noise (AWGN) is the most 

frequently encountered type of noise in communication systems. It represents the simplest 

mathematical model for a communication channel. Below are given a list of channel models 

in which the effects of noise on electrical communication and the most important 

characteristics of the transmission channels are investigated. 

2.4.3.1 The additive noise channel    

Contaminating noise in signal transmission usually has an additive effect in the sense that 

noise often adds to the information bearing signal at various points between the source and the 

destination. Random additive noise process n(k) whose channel has a mathematical model  as 

shown in Fig. 2.3, corrupts the transmitted signal x(k). The additive noise becomes white 

when the random process has a power spectral density (PSD) which is constant over all 

frequencies and becomes the most often assumed model of additive white Gaussian noise 

(AWGN), when the noise has a Gaussian distribution. AWGN contains a uniform continuous 

frequency spectrum over a particular frequency band and the majority of physical 

communication channels implements this model since it is mathematically tractable. 
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                                 s(k)                                                           x(k)=s(k)+n(k)      

 

                              

                            Figure 2.3 The additive Gaussian noise channel [39] 

 

2.4.3.2 The linear filter channel 

Filtering is an operation which includes extracting information about a quantity of interest 

from data with noise at time ݐ by using measured data that includes ݐ. A filter is considered 

linear when filtering, smoothing or predicting the amount at the filter output is done and this 

amount linearly depends on the observations applied to the filter input [25]. 

Linear filter channels are those that enable the transmitted signals to remain in specified 

bandwidth limitations without interfering with each other. The mathematical model including 

the additive noise is illustrated in Fig. 2.4 in which s(k) is the channel input and the channel 

output is represented as   

                           




 )()()()()()()( kndkshknkhkskx                                    (2.9) 

in which h(τ) is the linear filter impulse response and * denotes convolution.         

      

  

                           s(k)                                                                              x(k)=s(k)∗h(k)+n(k) 

    

Figure 2.4 Linear filter channel with additive noise [39] 
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When attenuation is applied to the signal while being transmitted, the received signal becomes 

                                                          x(k)=αs(k)+n(k)                                                         (2.10) 

where α is the attenuation factor. 

2.4.3.3 The linear time-variant filter channel 

Mobile systems such as a moving vehicle and wireless channels such as radio channels cause 

multipath propagation resulting in time-varying fading signals because their frequency 

response characteristics are time-variant. The time-varying mobile channel characteristics 

necessitate using a channel equalizer which continuously adapts to these characteristics, 

effectively implementing a filter which is matched to these characteristics. A time-variant 

channel impulse response  h(τ;k) is a characteristic of such time-variant linear filters. The 

channel response h(τ;k) contains an impulse applied at time k-τ where τ stands for the elapsed-

time variable. The linear time-variant filter channel containing additive noise and the signal of 

channel output when s(k) is the input, becomes 

                       




 )()();()();()()( tndkskhknkhkskx                                (2.11) 

in which the time-variant impulse response has the following representation  

                                           )()();(
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                                                      (2.12) 

where the {an(k)} denotes the possibly time-variant attenuation factors for the L multipath 

propagation paths. Substituting Eq. 2.12 into Eq. 2.11 makes the received signal 

                                               )()()()(
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knkkakx k

L

n
n 



                                           (2.13) 

where each of the L multipath components is attenuated by {an(k)} and delayed by {߬(݊)}. 
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A large majority of physical channels are formed by the three defined mathematical models 

and the communication systems are analyzed and designed based on these three channel 

models. 

2.5 Summary 

This chapter outlines the structure of channel equalization system. The factors causing 

distortions in the channel and their properties are explained and discussed in detail. The noise 

types and interferences are described in detail in addition to their effects on the channel and 

the ways of removing them from the channel. 

The types of channels used within the data transmission system have been discussed. 

Mathematical models representing various types of channels have been outlined and 

described. Mathematical formulas representing the input, impulse response and the output of 

the channel have been explained beside the channel characteristics of each type.  
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CHAPTER 3  

MATHEMATICAL BACKGROUND OF A NEURO-FUZZY EQUALIZER 

3.1 Overview 

When the channel distortion in communications applications is extreme and linear equalizers 

are not able to deal with them, nonlinear equalizers are employed instead. A linear equalizer 

doesn’t have good performance on channels that have amplitude characteristics containing 

deep spectral nulls or on channels containing nonlinear distortions. In an effort to compensate 

for the channel distortion, the linear equalizer puts a vast gain in the vicinity of the spectral 

null for the channel distortion compensation and consequently increases the amount of 

additive noise the received signal has got. 

Neural networks can be considered mathematical models of brain and mind activities. The 

main purpose of neural networks is to form the organization of numerous simple processing 

elements into layers for achieving tasks with higher level sophistication. High computation 

rates, high capability for nonlinear problems, massive parallelism and continuous adaptation 

are among the properties of neural networks. Those features turn neural networks into desired 

tools for different sorts of applications [28]. Neural networks have been put forward for 

equalization problems because of these attractive properties and their nonlinear capability. 

On the other hand, neural networks have some weaknesses related with their individual 

models. Their computational power is low and learning capability is limited. At this point, the 

fuzzy systems have been considered to compensate these weaknesses with their capabilities of 

logically reaching conclusions on a more advanced  (linguistic or semantic) level.  

This chapter describes the synthesizing of fuzzy logic with neural networks, the operation and 

structure algorithms of neuro-fuzzy system as the channel equalization basis of QAM signals. 

3.2 Neuro-Fuzzy System 

Intelligent control is largely rule based, whereas classical control is rooted in the theory of 

linear differential equations, because the dependencies involved in its deployment are much 
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too complex to permit an analytical representation. In tackling such dependencies, it is 

expedient to use the mathematics of fuzzy systems and neural networks. The power of fuzzy 

systems lies in their ability to measure the quantity of linguistic inputs and to quickly provide 

a working approximation of complex and frequently unknown input-output rules of system. 

The power of neural networks is in their ability to learn from data. It’s possible to combine 

neural networks and fuzzy logic in a number of ways and both have advantages that provide 

flexibility and effectiveness when combined. Fuzzy adaptive filters are effective because of 

their data approximation ability in nonlinear problems and therefore are widely used in signal 

processing problems. Fuzzy logic equalizers usually require fewer training samples than 

conventional equalizers, especially for linear channels. They are capable of yielding better 

error performance and also perform better in the presence of channel nonlinearities [29].  

Neural networks supply algorithms for numeric classification, optimization and associative 

storage. When fuzzy logic and neural networks are integrated, the emerging neuro-fuzzy 

system becomes capable of training the network in a shorter time as a result of decreased 

number of nodes of the network. There is a natural synergy between neural networks and 

fuzzy systems that makes their hybridization a powerful tool for intelligent control and other 

applications. 

3.3 Fuzzy Inference Systems 

3.3.1 Architecture of fuzzy inference systems 

Fuzzy Inference Systems (FIS) are one of the well known applications of fuzzy sets theory 

and fuzzy logic. They are used in achieving classification tasks, process control, offline 

process simulation and diagnosis and online decision support tools. The power of FIS depends 

on the twofold identity of both being capable of managing linguistic concepts and being 

universal approximators which are capable of performing nonlinear mappings between inputs 

and outputs. 

FIS is often utilized for process simulation or control. Either expert knowledge or data can 

design them. Knowledge based FIS solely may suffer from a loss of accuracy, for complex 
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systems which is the most important motivation to use fuzzy rules concluded from data [30]. 

The functional blocks as explained below, comprise a fuzzy inference system (Figure 3.1). 

- Determining a set of fuzzy IF-THEN rules. Fuzzy rules are composed of linguistic 

statements which describe the way the FIS makes a decision about the classification of 

an input or the controlling of an output. 

- Fuzzifying the inputs, which involves transforming the crisp inputs into degrees to 

match with linguistic values, using the input membership functions defined by a data 

base. 

- Combining the fuzzified inputs in accordance with the fuzzy rules to set up a rule 

strength (also called weight or fire strength). 

- Determining the rule’s consequence by putting together the rule strength and the 

membership function of the output. 

- Combining the consequences so as to obtain an output distribution. 

- Defuzzification of the output distribution which involves transforming the fuzzy rules 

of the inference into crisp output. 

The operations upon fuzzy IF-THEN rules are explained in the steps below: 

1. Mapping the inputs to membership values of each linguistic label, utilizing a set of 

input membership functions on the premise part (fuzzification process). 

2. Computation of the rule strength by combining the fuzzified inputs (combining the 

membership values), by utilizing the process of the fuzzy combination. (the fuzzy 

combinations are also referred to as T-norms which are used in making a fuzzy rule 

and involve the operators of ”and”, “or” and sometimes “not”) 

3. Generating the qualified fuzzy or crisp consequent of each rule according to the rule 

strength. 

4. Combining the entirety of the fuzzy rule outputs to attain one fuzzy output distribution 

and then aggregating the qualified consequent to produce a single crisp output 

(Defuzzification of output distribution). 
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Figure 3.1 Structure of fuzzy inference system [39] 

 

3.3.2 Rule base fuzzy if-then rule 

The fuzzy knowledge base that includes a set of fuzzy IF-THEN rules forms one of the basic 

blocks of a fuzzy system. The following is the form of expression that represents fuzzy IF-

THEN rules or fuzzy conditional statements [37]. 

                    If u is A Then y is B                                                             (3.1) 

where u and y represent the input and output linguistic variables,  A and B represent the labels 

of the fuzzy sets characterized by appropriate membership functions.  A denotes the premise 

and B denotes the consequent part of the rule. 

There are many forms representing IF-THEN rules among which Single Input Single Output 

(SISO), given by statement (3.1) is the simplest. Multi-Input Single Output (MISO) of the 

below given statements (3.2) and (3.3), are the other forms. 

If u1 is jA1 and u2 is jA2 and ,…., and un is l
nA  Then yq is p

qB                                                 (3.2) 

Input Output 
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Decision-making 

Fuzzification 

Interface 

Defuzzification 

Interface 
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If u1 is jA1 and u2 is jA2 and ,…., and un is l
nA  Then y1 is rB1  and y2 is sB2                            (3.3) 

The membership functions describe the fuzzy values A and B and Figure 3.2 demonstrates the 

most widely used types of membership functions with their shapes. 

               

   1                                                       1                                                     1                             

0.5                                                    0.5                                                  0.5 

   0              
(a)     

                               0              
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                                   0              
(c)  

Figure 3.2 Examples of membership functions (a) bell, (b) triangular, (c) trapezoidal 

The following exponential function is one representation of a decision function that produces 

a bell curve.
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where x is the independent variable on the universe, x0 denotes the position of the peak 

relative to the universe and σ denotes the standard deviation.  

The expressions (3.5) and (3.6) represent triangle and trapezoidal membership functions, 

respectively. 
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The following representation is the form of the types of rules, called Takagi and Sugeno fuzzy 

rules because the consequent part of the fuzzy rules is a mathematical function of the input 

variables. 

                        If ݊ܣ ,  ……  ,(2ݔ)2ܣ ,(1ݔ)1ܣ(ݔ௡) then  Y=݂(ݔଵ, ,ଶݔ … . ,  ௡)                        (3.7)ݔ

where the premise part is fuzzy and the function ݂ in the consequent part is usually a linear or 

quadratic mathematical function.
            

                                          ݂ =  ܽ଴ + ܽଵx ݔଵ+ ܽଶx ݔଶ+ … + ܽ௡x ݔ௡                                     (3.8) 

Fuzzy IF-THEN rules are widely used in modeling. They are considered the local description 

of the system being designed and form the basics of the fuzzy inference system (FIS).
 

Fuzzification: The aim of fuzzification is mapping the crisp input into a fuzzy set. This input 

can be from a set of sensors or features of those sensors like amplitude or frequency, and is 

mapped into fuzzy numbers of values from 0 to 1, using a set of input membership functions. 

The numeric inputs, ui߳Ui are converted into fuzzy sets by the fuzzification process for the 

fuzzy system to use. 

When ௜ܷ
∗ represents the set of all possible fuzzy sets which can be defined on ܷ௜∗ (given 

ui߳Ui), ui is transformed to a fuzzy set denoted by ܣ௜
௙௨௭௭  that is defined on the universe of 

discourse ௜ܷ
∗. The fuzzification operator F that produces this transformation is defined by 

          F: Ui => ௜ܷ
∗ 

where 

         F(ui) = ܣ௜
௙௨௭௭, 

Frequently, “singleton fuzzification” is used. It produces a fuzzy set ܣ௜
௙௨௭௭߳ ௜ܷ

∗ with a 

membership function given by 
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஺೔೑ೠ೥೥ߤ                                                  
(ݔ) = ቄ1     ݔ =                      ௜ݑ

              ݁ݏ݅ݓݎℎ݁ݐ݋     0

Any fuzzy set with this form of membership function is termed “singleton”. Singleton 

fuzzification is the type for which the input fuzzy set has only a single point of nonzero 

membership and the number ui is represented by the singleton fuzzy set. In implementations 

where singleton fuzzification is used, ui only takes on its measured values without any noise 

involved. “Gaussian fuzzification” that uses bell type membership functions about input 

points, and triangular fuzzification using triangle shapes, are common examples [38].    

3.3.3 Fuzzy inference mechanism 

Designing a fuzzy inference system (FIS) from data can be separated into two principal 

stages: (1) automatic rule generation and (2) system optimization [30]. Rule generation is the 

guide to a fundamental system that has a given space partitioning and the set of rules that 

corresponds to it. System optimization is realized at different sorts of levels. Variable 

selection could be a comprehensive selection or is possibly handled rule by rule. The goal of 

rule base optimization is to choose the most efficient rules and to use rule conclusions in the 

best way. It’s possible to enhance space partitioning by adding or removing fuzzy sets and by 

tuning the parameters of membership function. Structure optimization has great significance: 

choosing variables, lessening the rule base and optimizing the number of fuzzy sets.  

There are two main tasks associated with fuzzy inference mechanism: 

1. Matching task which involves determining the degree of each rule’s being relevant to 

the current situation as marked by the inputs ݑ௜, ݅ = 1,2, … . , ݊. 

2. Inference step which involves reaching the conclusions from the current inputs ui and 

the information in the rule-base. 

When the fuzzy set representing the premise of the ith rule is denoted by ܣଵ
௝ × ଶ௞ܣ × … × ௡௟ܣ , 

there will be two steps for matching: 
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Step 1: Combining inputs with rule premises: This step is about finding fuzzy sets ܣଵ
௝
, 

ଶܣ
௞

, ௡ܣ,  …
௟

, with membership functions.  

ߤ                                          
஺భ
ೕ (ଵݑ) = ஺భೕߤ

(ଵݑ) ∗ ߤ
஺భ
೑ೠ೥೥(ݑଵ) 

ߤ                                          
஺మ
ೖ(ݑଶ) = (ଶݑ)஺మೖߤ ∗ ߤ

஺మ
೑ೠ೥೥(ݑଶ) 

                                                      . 

                                                      . 

ߤ                                        
஺೙
ೕ (௡ݑ) = ஺೙ೕߤ (௡ݑ) ∗ ߤ

஺೙
೑ೠ೥೥(ݑ௡) 

(for all j, k, … ,l) combining the fuzzy sets from fuzzification with the fuzzy sets used in each 

of the terms in the rules’ premises. When the singleton fuzzification is used, each of the input 

fuzzy sets has only a single point of nonzero membership function. 

                  (e.g.   ߤ
஺೙
ೕ (௡ݑ) = ஺೙ೕߤ ଵݑ for  (௡ݑ) = ߤ  ଵ  andݑ

஺೙
ೕ (௡ݑ) = 0 for ݑଵ ≠  (ଵݑ

To put it in another way,  ߤ
஺೙
೑ೠ೥೥(ݑ௜) = 1, with singleton fuzzification, for all ݅ = 1,2, … ,݊ for 

the given ݑ௜ inputs resulting in 

ߤ
஺భ
ೕ (ଵݑ) = ஺భೕߤ

 (ଵݑ)

ߤ
஺మ
ೖ(ݑଶ) =  (ଶݑ)஺మೖߤ
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ߤ
஺೙
ೕ (௡ݑ) = ஺೙ೕߤ  (௡ݑ)

Step 2: Determining those rules that are on: In this step, membership values ߤ௜(ݑଵ,ݑଶ, …  (௡ݑ,

are determined for the premise of ݅௧௛  rule which represents the certainty that each rule 

premise is consistent with the given inputs. Defining 

ଶݑ,ଵݑ)௜ߤ                              , … (௡ݑ, = ߤ
஺೔
ೕ(ݑଵ)ߤ

஺మ
ೖ(ݑଶ) … ߤ

஺೙
೗  
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that is a function of the inputs ݑ௜,  represents the certainty that the (௡ݑ, … ,ଶݑ,ଵݑ)௜ߤ 

antecedent of rule ݅ matches the information in the case of singleton fuzzification use.  The 

 is a multidimensional certainty surface. It stands for the certainty of a (௡ݑ, … ,ଶݑ,ଵݑ)௜ߤ

premise of a rule and for the level to which a particular rule is consistent for a given set of 

inputs. The implied fuzzy set is determined by the inference step which is then taken by 

calculating the “implied fuzzy set” ܤ௤ ,, for the ݅௧௛  rule, with the membership function 

ߤ                                
஻೜
೔ ൫ݕ௤൯ = ,ଶݑ,ଵݑ)௟ߤ … , (௡ݑ ∗  (3.9)                                         (௤ݕ)஻೜೛ߤ

The certainty level of the output’s being a specific crisp output ݕ௤ within the universe of 

discourse ݕ௤ is specified by the implied fuzzy set ܤ௤
௟

 on considering simply rule I. The 

defuzzification that comes after the inference step is employed to aggregate the conclusions of 

all the rules which the implied fuzzy sets represent.   

Defuzzification Methods: It is frequently important to find out a single crisp output from a 

FIS. For instance, in the case of one attempting to classify a letter drawn by hand on a 

drawing tablet, the FIS would be obliged to find out a crisp number to determine the letter that 

was drawn. A process called defuzzification is used to attain this crisp number. In other 

words, defuzzification means the way of extracting a crisp value from a fuzzy set as a 

representative value. 

Two known methods can be used for defuzzifying: 

Center of Gravity (COG): The method picks the output distribution and works to find its 

center of mass to produce one crisp number. 
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where the crisp output value ݑ is the abscissa (center of mass) under the center of gravity of 

the fuzzy set, ߤ(ݔ௜) is the membership value in the membership function, ݔ௜ is a running point 
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in a discrete universe. This expression is also considered the weighted average of the elements 

in the support set. 

The COG method for singletons attains the following expression 
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where ݏ௜ is the position of singleton ݅ in the universe and ߤ(ݏ௜) represents the rule strength ߙ௜  

of rule ݅.  This technique has a good computational complexity and ݑ is differentiable with 

respect to the singletons ݏ௜, that is practical in neuro-fuzzy systems. 

Center of Average (COA): In this widely used method, a crisp output ݕ௤
஼௥௜௦௣ is selected 

employing the centers of every one of the output membership functions and the highest 

certainty of every one of the conclusions the implied fuzzy sets represent, and is described as 
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here “sup” is the “supermum” (i.e., the least upper bound that is frequently regarded as 

maximum value).  Therefore, ݌ݑݏ௫{(ݔ)ߤ} can simply be considered the highest value of (ݔ)ߤ. 

Fig. 3.3 outlines the inference mechanisms on different types of fuzzy systems graphically. 

Most fuzzy inference systems can be categorized into three types depending on the types of 

fuzzy reasoning. 

In Type 1 fuzzy systems, the defuzzifier puts together the output sets that correspond to the 

whole of the fired rules in a way to attain a single output set and afterwards comes up with a 

crisp number which represents this output set that is put together, e.g., the centroid defuzzifier 

comes up with the unity of the whole of the output sets and utilizes the centroid of the unity as 

the crisp output [31]. The weighted average of each rule’s crisp output introduced by rule’s 

weight and the output membership functions is the overall output.  
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                       Premise                                                            Consequent 

                                                                                   

                                                                      Type1                    Type2                      Type3     

       A1                         B1                   w1       C1                w1         C1  

                                                                                                                                  z1=ax+by+c 

                  
                                             ݖ                                                                ݕ                                    ݔ

ݖ
                                             

       A2                         B2                   w2       C2                w2          C2     

                                                                                                                                  z2=px+qy+r 

                  
         ݖ                            ݖ                                   ݕ                           ݔ

                                                                                              max       

 Multiplication 

                                               or min.        

                                       z = [w1z1+ w2z2]/ w1+ w2                                 z = [w1z1+ w2z2]/ w1+ w2    

 

Figure 3.3 Types of fuzzy reasoning mechanisms [11] 

In Type 2 fuzzy systems, fuzzy sets are quite helpful in conditions that make the 

determination of an exact membership function for a fuzzy set hard; for this reason, they are 

quite helpful in the incorporation of uncertainties. These uncertainties are caused by the 

knowledge employed in the construction of rules in a fuzzy logic system and lead to rules that 

have uncertain antecedents and/or consequents that are transformed in succession into 

uncertain antecedent and/or consequent membership functions [31]. The overall fuzzy output 

is attained after the application of 'max' operation to the fuzzy outputs that qualify. Every one 

of these outputs equals the minimum rule strength and each rule’s membership function. 

 z 
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Type 3 is Takagi and Sugeno’s fuzzy IF-THEN rules. The output is a crisp number computed 

by the multiplication of every one of the inputs by a constant and summing the result 

afterwards. The weighted average of each rule’s output is the output. 

In  Fig. 3.3, a fuzzy inference system with two rules and two inputs is used to demonstrate the 

different types of fuzzy rules and fuzzy reasoning described above. 

3.4 Artificial Neural Networks 

Recognizing that computing in the human brain takes place in a totally different manner from 

the traditional digital computer, has been the incentive for research into artificial neural 

networks, also known as “neural networks”. The brain is extremely complex, nonlinear and 

parallel computing (information-processing system). It is capable of organizing its structural 

constituents, called neurons, in order to carry out some necessary computations (e.g. pattern 

recognition, perception and motor control) a lot more quickly than the highest speed digital 

computer of the present time [29]. 
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Figure 3.4 Artificial neuron 
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A neuron is a unit that processes information and is significant in a neural network’s 

operation. The model of an artificial neuron that is fundamental in the design of artificial 

neural networks is demonstrated in the block diagram of Fig. 3.4. 

A set of synapses, also called connecting links, are the foundation elements of the neuronal 

model. A weight or strength of its own characterizes each of these synapses. Specifically, a 

signal ݔ௜ for ݅ = 1,2, … ,݊, at the input of synapse, connected to neuron ݇, is multiplied by the 

synaptic connection weight ݓ௜, for ݅ = 1,2, … ,݊. A result is generated by summing these 

products, feeding them through a transfer function and then outputting them. 

The output of the artificial neuron displayed in Fig. 3.4 is calculated from             

                                                       )(
1




n

j
ijiji xwfy                                                     (3.13) 

where ݔ௜ is the input, ݕ௝ is the output signal of the neuron, ݓ௜௝  are the synaptic weight  

coefficients, ߠ௜ denotes the bias and ݂ is the activation function. 

The activation function can be linear or nonlinear but a nonlinear sigmoid function is 

frequently utilized as the activation function (eq. 3.14). 
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Neural networks are formed by a set of neurons in layer(s). The neurons are interconnected by 

weighted connections at certain connection points which are called nodes. The way of 

organization in a layered neural network is the layer formation. The least complicated 

formation of a network with layers uses an input layer of source nodes which projects onto an 

output layer of neurons (computation nodes) but not the other way round. This network is a 

feedforward or acyclic type of network. Neurons in the network act as processing elements 

which multiply an input by a set of weights and nonlinearly transform the result into an output 

value. 
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On the whole, three basically different architectural network classes can be defined which are 

single-layer feedforward (non-recurrent), multilayer feedforward and recurrent networks. The 

feedforward neural network structures are shown in Fig. 3.5.  
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Figure 3.5 (a) A single layer network, (b) A simple multilayer network [11] 

3.4.1 Neural network’s learning  

The most important specialty of a neural network is its capability of learning from its 

environment and improving its performance through learning. An interactive adjustment 

process applied to its synaptic weights and bias levels enables a neural network to learn about 

its environment. Every one of the iterations of the learning process makes the network well-

informed of its environment. Learning in the circumstances of neural networks can be clearly 

stated to be a process by which the neural network’s free parameters are adapted through a 

stimulation process by the environment where the network is embedded. The way that the 

parameter changes occur determines the type of learning [29]. 

A set of rules that are well determined and defined for the solution of a learning process is 

referred to as a learning algorithm. No learning algorithm that is the only one of its sort exists 

in the neural network design, as expected. The manner that the adjustment to a neuron’s 

synaptic weight is clearly and exactly expressed, fundamentally cause the learning algorithms 

to differ from each other. Another factor that should be taken into consideration is the way 
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that a neural network (learning machine) which is comprised of a set of interconnected 

neurons, is related to its environment. In this latter context, a term is spoken as a learning 

paradigm that refers to a model of the environment in which the neural network operates [29]. 

There are two fundamental learning paradigms associated with neural networks: (1) Learning 

with a teacher (known as supervised learning) and (2) Learning without a teacher which is 

divided into two subdivisions that are unsupervised learning and reinforcement learning. 

Supervised learning involves training with a teacher. The teacher can be thought of as a set of 

input-output examples representing the knowledge of the environment. Neural network, on 

the other hand, does not know the environment. Considering that a training vector drawn from 

the environment is applied to both the teacher and the neural network, the teacher is capable 

of supplying the neural network with a desired response for the training vector. The network 

parameters, i.e. the connection weights, are adjusted under the combined influence of the 

training vector and the error signal. The error signal is what makes the desired response differ 

from the actual response of the network. This adjustment is brought about in an iterative and 

step-by-step way aiming at eventually causing the neural network to emulate the teacher; this 

emulation is supposedly optimum in a statistical sense. This manner transfers the 

environment’s knowledge that can be obtained by the teacher, to the neural network through 

learning as fully as possible. On reaching this condition, the teacher may be removed and the 

neural network copes with the environment entirely on its own. 

The form of supervised learning just described, is the error correction learning which involves 

a closed-loop feedback system but the loop does not contain the unknown environment. The 

mean-square error or the sum of squared errors over the training samples that are in terms of 

the free parameters of the system constitutes the performance criterion for the system. This 

criterion may be visualized as a multidimensional error performance or simply error surface, 

with the parameters as coordinates. The true error surface is averaged over all possible input-

output examples. It’s a point on the error surface which represents any one of the system’s 

operations that the teacher supervises. The operating point has to move down one after 
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another toward a minimum point of the error surface so that the system improves performance 

over time and thus learns from the teacher; it’s possible for the minimum point to be a local 

minimum or a global minimum. A supervised learning system is capable of doing this using 

the helpful information it has about the gradient of the error surface that corresponds to the 

system’s current behavior. The gradient of an error surface at any point is a vector which 

points in the direction of steepest descent. On providing an algorithm designed to minimize 

the cost function, a sufficient set of input-output examples and sufficient time allowed to carry 

out the training, a supervised learning system is generally capable of performing tasks like 

pattern classification and function approximation [29]. 

3.4.2 Multilayer perceptrons & backpropagation algorithm 

Multilayer feedforward networks form a significant classification of neural networks. The 

network is characteristically comprised of a set of sensory units (source nodes) which 

establish the input layer, one or more hidden layers of computation nodes, and an output layer 

of computation nodes. The input signal propagates through the network in a forward direction, 

on a layer-by-layer basis. These neural networks are called multilayer perceptrons (MLP) that 

represent a generalization of a single-layer perceptron. 

A widely used algorithm which is named the error back-propagation algorithm, trains the 

multilayer perceptrons in applications in order to successfully solve some challenging and 

diverse problems. Error correction learning rule forms the basis for this algorithm.  It may be 

considered a generalization of an equally popular adaptive filtering algorithm: the least mean 

square (LMS) algorithm for the special case of a single layer neuron [29]. 

Error back-propagation learning is comprised of two passes through the different layers of the 

network which are a forward pass and a backward pass. The forward pass contains an activity 

pattern (input vector) whose effect propagates through the network one layer after another and 

is applied to the network’s sensory nodes. Consequently, an output set is created as the real 

network response. In the duration of the forward pass, all of the synaptic weights of the 
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network are unchanging. In the duration of the backward pass, all the synaptic weights are 

adjusted according to an error correction rule. Particularly, the real network response is taken 

out of a desired (target) response to come up with an error signal. The error signal is 

propagated back through the network, in contrast to the direction of synaptic connections, thus 

the naming “error back-propagation”. The synaptic weights are adjusted such that the real 

network response moves nearer to the desired response statistically. The error back-

propagation algorithm is known in the literature as the back-propagation algorithm, or simply, 

back-prop, as well. The learning process carried out with the algorithm is referred to as the 

back-propagation learning. 

There are three distinguishing characteristics of a multilayer perceptron:  

1. There is a nonlinear function involved in the model of each neuron. The nonlinearity 

mentioned here is smooth, in other words, differentiable everywhere. A generally 

employed nonlinearity form which is sufficient for this requirement is a sigmoidal 

nonlinearity that the following logistic function defines: 
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

                                                (3.15) 

where ݒ௝ is the induced local field (i.e. the weighted sum of all synaptic inputs plus the                                 

bias) of neuron ݆, and ݕ௝ is the output of the neuron. 

2. One or more layers of hidden neurons which do not belong to the input or output of 

the network can be found in the network. The network is capable of learning complex 

duties by extracting increasingly significant specialties from the input patterns 

(vectors) due to these hidden neurons. 

3. The network performs a high connectivity degree which is decided by the network 

synapses. A change in the network’s connectivity obligates a change in the population 

of synaptic connections or their weights. 
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The multilayer perceptron derives its computational power when these characteristics are 

combined with the capability of learning from experience through training. The back-

propagation algorithm has great significance in neural networks since it supplies a 

computationally efficient method in order to train multilayer perceptrons. 

Fig. 3.6 demonstrates the architectural graph of a multilayer perceptron with one hidden layer 

and an output layer. The illustrated network is fully connected meaning that a neuron in one 

layer of the network is connected to all the nodes/neurons in the previous layer. Signal flow 

through the network progresses in a forward direction, from left to right and on a layer-by-

layer basis. The value of each neuron is computed by first summing the weighted sums and 

the bias and then applying ݂(sum) (the sigmoid function) to calculate the neuron’s activation. 
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                Figure 3.6 Multilayer feedforward network [11] 

 

Next, the training processes of the three layer feedforward network will be analyzed. Firstly, 

three stages describing the feedforward phase in the network are: input (I),  hidden (H) and 

output (O) layers. 

 Input Layer (I): The input of the hidden layer is equal to the output of the input layer. 

 

HI InputOutput 
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 Hidden Layer (H): Summing the multiplication of all the input layer outputs by the 

corresponding weights connecting the two layers will be equal to the input of the 

hidden layer. 

I
i

IHiH outputweightInput 
 

The output of the hidden layer equals the result of the sigmoid transfer function of the 

hidden layer input. 

HInputH e
Output 


1

1
 

 Output Layer (O):  Summing the multiplication of all the hidden layer outputs by the 

corresponding weights connecting the two layers will be equal to the inputs of the 

output layer. 

H
j

HOjO outputweightInput 
 

The output of the output layer equals the result of the sigmoid transfer function of the output 

layer input. 

OInputO e
Output 


1

1
 

At the end of the feedforward phase, the network error (ErrorO) is found when the output of 

the output layer (OutputO) is compared with the target value of the neural network (Target). 

OO OutputetgTarError 
 

The aim of the back-propagation training is to minimize the error of all training patterns by 

adjusting the parameter weight values that involves updating the new value of the hidden-

output layer weight in accordance with the following equation: 
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HOOOHOHO OutputOutputOutputerrorOweightNweight  ))1((
 

in which NweightHO is the new hidden-output layer weight and OweightHO is the old hidden-

output layer weight, η is the rate of learning. The following equation updates the new weight 

of the hidden-input layer weight. 

IHHHIHIH OutputOutputOutputerrorOweightNweight  ))1((
 

in which NweightIH is the new hidden-input layer weight and OweightIH is the old hidden-

input layer weight. 

The back-propagation training algorithm can be summarized as: 

1. Performing the forward-propagation phase for an input pattern and calculating the 

output error. 

2. Changing all weight values of each weight matrix by using the following formula: 

)ineuron(output))ineuron(output()ineuron(outputerroroutputrateglearnin)old(Weight 11 

 

3. Going to step 1. 

4. Ending the algorithm if all output patterns match their target pattern. 

 

3.5 Neuro-Fuzzy Network Models 

There are a lot of studies going on in the field of combining fuzzy systems and neural 

networks which are aimed at optimizing fuzzy systems. Fuzzy systems are capable of data 

approximation, handling rule uncertainties as well as performing high in the presence of 

channel nonlinearities. Beside associative storage and optimization, neural networks, on the 

other hand, have high learning capability and numerical accuracy.  

It’s obvious that instead of seeking solutions based on separate fuzzy logic or neural 

networks, it would be more useful to construct structural connectionist models or hybrid 
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systems which integrate them together. On doing so, the desirable features of robustness, 

uniformity and adaptivity inherent to neural networks can be combined with the inference, 

universality and representation features of fuzzy logic. Sequential hybrid systems and 

incorporated hybrid systems are the mostly used hybrid systems. A neuro-fuzzy system is an 

incorporated hybrid system that implements fuzzy inference system by using neural networks. 

Neural networks are utilized to make changes in the linguistic terms’ membership functions or 

to generate the linguistic rules themselves. Neuro-fuzzy networks are totally fuzzified 

multilayer feedforward networks. Fuzzy arithmetic is employed for the computation of the 

network output, therefore, addition, multiplication and the sigmoid function are fuzzified for 

this purpose [32]. 

In this thesis, a hybrid neuro-fuzzy system which implements a fuzzy inference system in 

neural network structure including nonlinear function for channel equalization is presented. 

3.5.1 Nonlinear neuro-fuzzy network 

3.5.1.1 Structure of the nonlinear neuro-fuzzy network  

A fuzzy inference system (FIS) is designed from either expert knowledge or data. This study 

is concentrated on FIS that is based on automatic learning from data in which supervised 

learning is utilized and observed outputs belong to the training data. This type of FIS is 

constructed first by incorporating human expertise, which is also referred to as domain 

knowledge or linguistic data, about the target system. Secondly, fuzzy modeling is developed 

by interpreting the input-output data, also called the numerical data, of the target system. 

Takagi-Sugeno-Kang (TSK) type or Mamdani type fuzzy reasoning mechanisms are mostly 

implemented by neuro-fuzzy system structures. The purpose of the reasoning mechanisms is 

to be capable of expressing and solving a broad range of problems and problem types. 

Additionally, the mechanism has to be capable of determining those operations to be applied 

to a specific problem, when a problem’s solution has been attained or when further work on 

the problem should be ended [29]. An adaptive neuro-fuzzy inference system (ANFIS) is a 

generic model of neuro-fuzzy network which is used in the implementation of TSK type fuzzy 
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system. ANFIS involves consequent parts which include linear functions enabling the TSK 

type neuro-fuzzy system to define the tackled problem using the combinations of linear 

functions. These systems may require extra rules in the course of modeling complex nonlinear 

processes for attaining the requested accuracy which eventually causes the quantity of 

neurons in the hidden layer to be increased. 

In order to enhance the calculational power of the neuro-fuzzy system, the consequent section 

of every one of the rules employ nonlinear functions. The structure of the nonlinear neuro-

fuzzy equalizer (NNFE) is based on these rules. NNFE network has enhanced computational 

power and is capable of describing nonlinear processes by using these nonlinear functions. In 

this thesis, NNFE is developed to successfully equalize both linear and nonlinear channel 

distortions, meanwhile, NNFE network is proven to yield better convergence rate and better 

BER results.  

The fuzzy rules which have IF-THEN form and are composed by using nonlinear quadratic 

functions have been employed. These rules are in the following form:           
 

If  ݔଵ is ܣ௝ଵ  and 
௝ଶܣ ଶ isݔ  

 and … and  ݔ௠ is ܣ௝௠then 

                                               jiij
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2                                              (3.16) 

where ݔଵ, ,ଶݔ … , ݆) ௝ݕ ,௠ denote input variablesݔ = 1, … ,݊) denote output variables that are 

nonlinear quadratic functions, ܣ௝௜  is a membership function for i-th rule of the j-th input 

defined as a Gaussian membership function.  1ݓ௜௝ ݅) 2௜௝ and ௝ܾݓ, = 1, … ,݉, ݆ = 1, … ,݊) are 

network parameters. 

The fuzzy model which is defined by IF-THEN rules could be attained after altering the 

conclusion parameters and antecedent section of the rules. This research work utilizes a 

gradient-descent method for the training of the parameters of the rules in the structure of the 

nonlinear neuro-fuzzy network. The nonlinear neuro-fuzzy network (NNFN) structure as 

demonstrated in Fig. 3.7 is proposed by using the fuzzy rules in equation 3.16. 
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The first layer of Fig. 3.7 demonstrates the nodes whose number is the equivalent of the 

number of input signals. The nodes are employed to distribute input signals. 
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Figure 3.7 The NNFN architecture [39] 

 

In the second layer, each node corresponds to one linguistic term. The membership degree, to 

which the input value belongs to in a fuzzy set, is calculated for each input signal that enters 

to the system. The following Gaussian membership function is used to describe the linguistic 

terms. 

 

(௜ݔ)1௝ߤ                                    = ݁
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, ݅ = 1, … ,݉,     ݆ = 1,…,J                             (3.17) 
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where, ݉ is the number of input signals, J  is the number of linguistic terms that are assigned 

for external input signals ݔ௜ , ܿ௜௝ and ߪ௜௝ are center and width of the Gaussian membership 

functions of the ݆-th term of ݅-th input variable, respectively. 1ߤ௝(ݔ௜) denotes the membership 

function of ݅-th input variable for the ݆ -th term. 

In the third layer, the number of nodes is the corresponding of the number of the rules (R1, 

R2,….,Rn). One fuzzy rule is represented by each rule.  The AND (min) operation is utilized 

when calculating the values of output signals.  In formula (3.18),  is the min operation. 

                                           )(1)( i
j

jl xx   ,   ݈ = 1, … , ݊,    ݆ = 1, … .,J                      (3.18) 

The fourth layer represents the consequent layer which contains Nonlinear Functions (NF) 

that are denoted by NF1, NF2,…, NFn.  The following equation is employed to calculate the 

output of each nonlinear function in Fig.3.7.  
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In the fifth layer, the output signals of third layer ߤ௟(ݔ) are multiplied by the output signals of 

the nonlinear functions. 

In the sixth and the seventh layers, the following output of the entire network is calculated by 

performing defuzzification. 
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where ݕ௟  denote the outputs of the fourth layer which are nonlinear quadratic functions and ݑ 

denotes the output of the entire network. The training process starts after calculating the 

output signal of the NNFN. 
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3.5.1.2 Learning of the nonlinear neuro-fuzzy network 

The network parameter values which are ܿ௜௝ and ߪ௜௝ (݅ = 1, … ,݉,   ݆ = 1, … , ݊) in the second 

layer (antecedent part) and the parameter values of the nonlinear quadratic functions 

1௜௝ݓ 2௜௝ݓ, , ௝ܾ (݅ = 1, … . ,݉, ݆ = 1, … ,݊) of the consequent part (fourth layer) are adjusted 

during the training process. The error value on the output of the network is calculated firstly. 
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where ܱ denotes the number of output signals of the network (ܱ = 1 for the given case), 

௜ௗݑ  and ݑ୧ are the desired (target) and current output values of the network, respectively.  The 

following formulas are used for adjusting the parameters 1ݓ௜௝ 2௜௝ݓ, , ௝ܾ (݅ = 1, … ,݉, ݆ =

1, … ,݊) and c୧୨ and ߪ௜௝ (݅ = 1, … ,݉, ݆ = 1, … , ݊): 

 
ݐ)1௜௝ݓ                   + 1) = (ݐ)1௜௝ݓ + ߛ డா

డ௪ଵ೔ೕ
+ −(ݐ)1௜௝ݓ)ߣ ݐ)1௜௝ݓ − 1))                      (3.22) 

ݐ)2௜௝ݓ                   + 1) = (ݐ)2௜௝ݓ + ߛ డா
డ௪ଶ೔ೕ

+ −(ݐ)2௜௝ݓ)ߣ ݐ)2௜௝ݓ − 1))                      (3.23) 

                  ௝ܾ(ݐ + 1) = ௝ܾ(ݐ) + ߛ డா
డ௕ೕ

+ )ߣ ௝ܾ(ݐ) − ௝ܾ(ݐ − 1))                                           (3.24) 

                  ܿ௜௝(ݐ + 1) = ܿ௜௝(ݐ) + ߛ డா
డ௖೔ೕ

                                                                             (3.25a) 

ݐ)௜௝ߪ                   + 1) = (ݐ)௜௝ߪ + ߛ డா
డఙ೔ೕ

                                                                            (3.25b) 

where ߛ is the learning rate, λ is the momentum, m is the number of input signals (input 

neurons) of the network and n denotes the number of rules (hidden neurons), ݅ =

1, … ,݉,   ݆ = 1, … , ݊. 

The derivative values involved in formulas (3.22-3.24) are calculated as follows: 
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The derivatives in Eq.(3.25) are calculated by the following formulas: 
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  ,   ݅ = 1, … ,݉, ݆ = 1, … ,݊, ݈ = 1, …݊      (3.28)                                                                                                                             
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 ݆ node is connected to rule node ݈                       (3.29) 

 

           
డఓ೗(௫ೕ)

డఙೕ೔
= ൝ߤ௟(ݔ௝)

ଶ(௫ೕି௖ೕ೔)మ

ఙೕ೔
య

0,      otherwise
    if

 ݆ node is connected to rule node ݈                        (3.30) 

 

Substituting the values found in formulas (3.28) through (3.30) into (3.27) and the values in 

(3.27) into (3.25), the learning of the NNFN parameters is brought about. 

 



57 
  

3.6 Summary 

Neural networks and fuzzy logic are two effective systems, where neural networks have high 

learning capability, numerical accuracy in addition to robustness and adaptivity properties and 

fuzzy logic offers data approximation capability and high performance in the presence of 

channel nonlinearities and rule uncertainties. These desirable features of neural network and 

fuzzy logic are combined into neuro-fuzzy systems that yield fast and accurate results, by 

building connectionist hybrid systems. Fuzzy systems are designed from either expert 

knowledge or data, whereas the fuzzy inference system (FIS) is based on automatic learning 

from data through fuzzy rule-based fuzzy sets. The linguistic data about the target system and 

numerical input-output data are in FIS. Supervised learning which involves training with a set 

of input-output examples, is the model used in developing the NNFN which constitutes the 

basis of the equalizer in this study. This chapter outlines the architecture and operation 

principles of the nonlinear neuro-fuzzy system by describing the back-propagation learning 

algorithm which is used as part of the multilayer feedforward neural network employed to 

perform the adaptive channel equalization of quadrature amplitude modulation (QAM) 

signals. 
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CHAPTER 4  

QUADRATURE AMPLITUDE MODULATION (QAM) APPLIED TO NON-LINEAR 

NEURO-FUZZY EQUALIZER (NNFE) 

4.1 Analysis of QAM 

Quadrature carrier signaling, as shown in Fig.4.1, is named Quadrature Amplitude 

Modulation (QAM). Generally, there is no restriction of having permitted signaling points 

only on a circle for QAM signal constellations. The general QAM signal is expressed as 

(݊)௠ݏ             = Reൣ(ܣ௠௖ + ݉   ,௠௦)݃(݊)݁௝ଶగ௙೎௡൧ܣ݆ = 1,2, … 0   ,ܯ, ≤ ݊ ≤ ܶ                 (4.1) 

where  ܣ௠௖  and ܣ௠௦ are the quadrature carrier signal amplitudes that bear information and 

݃(݊) is the signal pulse. 

The QAM signal waveforms may also be expressed as 

(݊)௠ݏ = Reൣ ௠ܸ݁௝ఏ೘݃(݊)݁௝ଶగ௙೎௡൧ 

                                                           = ௠ܸ݃(݊)cos (2πfୡn + θ୫)                                       (4.2) 

where ௠ܸ = ඥܣ௠௖
ଶ + ௠௦ܣ

ଶ   and ߠ௠ = tanିଵ(ܣ௠௦ ⁄.(௠௖ܣ  It is apparent, from this expression, 

that waveforms of QAM signal is also considered the combination of amplitude and phase 

modulation [1]. In this thesis, only the amplitude modulation is considered. 

It’s also possible that QAM signal waveforms are represented by a linear combination of two 

orthonormal signal waveforms, ଵ݂(݊) and ଶ݂(݊), i.e., 

(݊)௠ݏ                                                 = ௠ଵݏ ଵ݂(݊) + ௠ଶݏ ଶ݂(݊)                                            (4.3) 

where  

                                                   ଵ݂(݊) = ට
ଶ
ஞ೒
݃(݊)cos2πfୡn                                                

(4.4)
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ଶ݂(݊) = −ඨ
2
ξ௚
݃(݊)sin2πfୡn 

and 

௠ܛ = ௠ଵݏ] +  [௠ଶݏ

௠௖ටܣ] =                                                                   
ଵ
ଶ
ξ௚  ܣ௠௦ට

ଵ
ଶ
ξ௚]                                     (4.5) 

ξ௚ is the energy of the signal pulse g(n). The Euclidean distance between any pair of signal 

vectors, which is the determining factor of the probability of error, is 

                                    ݀௠௡
(௘) = ௠ܛ| −         |௡ܛ

                                             =ටଵ
ଶ
ξ௚[(ܣ௠௖ − ௡௖)ଶܣ + ௠௦ܣ) −  ௡௦)ଶ]                                  (4.6)ܣ

In the special case where the signal amplitudes take the set of discrete values {(2݉− 1−

,݀(ܯ ݉ = 1,2, … .  ,the signal constellation diagram is rectangular and M-symbol (M = 4 ,{ܯ,

16 and 64 levels) QAM constellation is illustrated in Fig.4.1. If that happens, the Euclidean 

distance between adjacent points, i.e. the minimum distance, is 

                                                                 ݀௠௜௡
(௘) = ݀ඥ2ξ௚                                                     (4.7) 

Quadrature amplitude modulation which is also called quadrature carrier signaling is 

illustrated in Fig. 4.1. In addition to equations (4.1) and (4.2), the following form which 

involves a hybrid combination of amplitude and phase modulations, is the equivalent 

representation of the general QAM signal; 

(݊)ݏ                                   = (݊)ݔ cos(߱௖݊)− (݊)ݕ sin(߱௖݊)                                           (4.8) 

where 

                           ݃(݊) = (݊)ݔ + (݊)ݕ݆ = |݃(݊)|݁௝∠௚(௡) ≡ ܴ(݊)݁௝ఏ(௡)                              (4.9) 
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Imaginary axis (Quadrature)
 

                                    
ܯ = 64 

           

                                 
= ܯ 16   

ܯ                                                                  = 4 

                                                                                                      Real axis (In Phase) 

 

 

 

 

Figure 4.1  M-symbol QAM constellation (√ܯ amplitude levels per dimension) [1] 

and ݔ(݊) = (݊)ݕ & {(݊)݃}ܴ݁ =  is referred to as the in-phase modulation (݊)ݔ .{(݊)݃}݉ܫ

related to ݏ(݊) and ݕ(݊) is referred to as the quadrature modulation related to ݏ(݊). ݃(݊) is 

called the complex envelope of ݏ(݊) and ௖݂  is the associated carrier frequency (in hertz) 

where ߱௖ = ߨ2 ௖݂.  

When a complex baseband model of the channel is under consideration, beside the above 

defined transmitted data sequence ݃(݊), the channel impulse response ℎ௡ and the received 

signal ݑ(݊) are complex valued and can be expressed as: 

                                                             ℎே = ℎூ,௡ + ݆ℎொ,௡                                                   (4.10) 

(݊)ݑ                                                           = (݊)ூݑ +    ொ(݊)                                            (4.11)ݑ݆

where the subscripts ܫ and ܳ refer to the in-phase (real) and quadrature (imaginary) 

components, respectively. 
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4.1.1 Significance of complex envelope and carrier frequency  

The carrier frequency ௖݂  associated with the QAM signal ݏ(݊) is a significant factor in 

communication problems. The bandpass waveform ݏ(݊) has nonzero spectrum for 

frequencies in a band situated near ݂ = ௖݂ where ௖݂ ≫ 0. The spectral magnitude (spectrum) 

can be neglected anywhere else. On the other hand, a baseband waveform (i.e. signal) 

contains a spectral magnitude which is nonzero for frequencies near the origin (i.e. ݂ = 0) and 

can be neglected anywhere else. In communication problems, the information source signal is 

usually a baseband signal and transferring this signal to the desired destination in a 

communication system necessitates the use of a bandpass signal that has a bandpass spectrum 

concentrated at ± ௖݂, and ௖݂ is selected so that the bandpass signal ݏ(݊) will propagate across a 

wire or a wireless communication channel. ௖݂ is the frequency to which the spectrum of the 

baseband signal ݃(݊) is translated (shifted), by the ݁௝ఠ೎௡ factor in Eq. 4.1. 

The baseband signal ݃(݊) is very significant because of its usefulness as the complex 

envelope representation for bandpass waveforms in modern communications systems. The 

complex envelope ݃(݊) is also employed as the modulating QAM baseband source in this 

thesis. It is the transmitted signal which is processed and equalized by the NNFE. The 

complex envelope ݃(݊) operates as the baseband equivalent of the bandpass signal ݏ(݊), 

instead of the bandpass signal itself. When carrying out computer simulations of bandpass 

signals, it’s possible to minimize the sampling rate of the simulation by using the complex 

envelope ݃(݊) rather than the bandpass signal ݏ(݊). 

4.1.2 Alternative implementations of QAM 

Large numbers of possible QAM signal constellations that result in the best error performance 

of an average certain signal-to-noise ratio (SNR) have been examined by researchers. Fig. 4.2 

illustrates some examples of symbol constellations that are also called signal space diagrams, 

representing alternative implementations of QAM signaling. The significance of a specific 

signal point constellation is in determining the probability of error and average power because 

the probability of error and average power are determined by the minimum distance between 
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pairs of signal points. Thus, the type of signal constellation is crucial since the probability of 

error and average power are the performance criteria of the system.  

 

               

                                            

    

 

   

In general, the constellation rule, known as the Campopiano-Glazer construction rule that 

yields optimum signal set performance can be summarized as follows: Select a closely packed 

subset of 2l (where ݈ = no. of bits) points as a signal constellation, from an infinite array of 

points closely packed in a regular array or lattice. In this case, “optimum” means minimum 

average power for a given probability. In a two-dimensional signal space, the optimum 

boundary surrounding an array of points tends toward a circle [24]. Therefore, better average 

power and error performance usually result from circular constellations. The signal 

constellation of Fig. 4.2(a) is recognized as the best eight-point QAM signal constellation 

since it requires the minimum average power for a given minimum distance )(
min

ed  between 

signal points [1]. An additional example is that of 16-QAM in Fig. 4.2(b), where a better bit 

error rate (BER) performance can be gained with half the number of points in the inner circle, 

compared with another constellation with two amplitude rings and eight phase states on each 

ring, namely 16-QAM (8,8) that has eight points in the inner circle. The reason for better 

performance of 16-QAM (4,12) over 16-QAM (8,8) is that the constellation points are more 

evenly spaced over 12 distinct phases.  

On the other hand, circular constellations do not always yield the best performance. The 

circular multiamplitude constellation for ܯ = 16 as demonstrated in Fig. 4.2(c), is a 

generalization of the optimum 8-QAM constellation where the signal points at a given 

 
                     

               (a)                                                   (b)                                                   (c) 

       Figure 4.2 Three possible circular QAM signal constellations (a) 8-QAM (4,4),  

                                    (b)16-QAM (4,12), (c) 16-QAM (4,4,4,4) [1] 

)e(
mind
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amplitude level are phase-rotated by ଵ
ସ
 relative to the signal points at adjacent amplitude ߨ

levels. However, the circular 16-QAM constellation is not the best 16-point QAM signal 

constellation for the AWGN channel. This constitutes another cause for employing 

rectangular constellation in this research work. 

4.2 Structure of Channel Equalization System 

There are various types of distortions contaminating channels in digital communications. 

Linear and nonlinear equalizers are two main equalizer types used to clean up the distortions 

in the channels. Even though linear equalizers are widely and commonly used for the 

equalization of linearly distorted channels, they have been found to be ineffective on channels 

with time-varying characteristics and nonlinear distortion. On the other hand, nonlinear 

equalizers have proven better performance on channels that have severe nonlinear distortions 

caused by factors such as crosstalk and the nature of the channel itself. Nonlinear equalizers 

are also capable of eliminating linear distortions like intersymbol interference (ISI), in 

addition to nonlinear distortions.  

Adaptive channel equalizers are used when the channel characteristics of the channel are not 

known in advance and most of the times the channel response is time-variant. These 

equalizers can adjust themselves to the channel response and for time-variant channels, can be 

adaptive to the time-variations in the channel response, due to their design. Adaptive 

equalizers are also capable of compensating for signal distortion coming from ISI that is a 

linear distortion which is the result of multipath inside time-dispersive channels [27,5]. 

A neural network is a parallel distributed processor built around a basic unit called a neuron. 

Neural networks’ capability of approximating an unknown nonlinear input-output mapping by 

using supervised training motivates interest in neural networks. This property is particularly 

useful when the basis-forming physical mechanism that causes an input signal production is 

nonlinear in essence [25]. Neural networks can be feedforward, fully connected or partially 

connected type of networks. The logic forming the basis of a feedforward network is that 

input signals produce a network output response by propagating solely in the forward 

direction. In other words, no feedback exists in the network. A multilayer perceptron (MLP) is 
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one type of feedforward neural network which is discussed in this thesis and comprises an 

input layer of source nodes, computational nodes (neurons) containing one or more hidden 

layers and an output layer comprising computational nodes, as well. Another type of 

feedforward neural network is the radial basis function (RBF) network which has a single 

hidden layer, is more complex than MLP in terms of computational complexity but simpler in 

structure, and requires less time for training. 

One widely used way for the development of adaptive equalizers for nonlinear channels is 

using fuzzy technology. The operation of fuzzy technology is based on processing numerical 

data and linguistic information in natural form. The fuzzy IF-THEN rules which are employed 

in the construction of the filter for the nonlinear channel are determined by human experts 

utilizing the channel’s input-output information pairs. The speed of adaptation and the bit 

error rate (BER) are improved by the incorporation of linguistic and numerical information. 

This thesis applies the structure of neuro-fuzzy network based equalization system 

implementing one of the two types of TSK or Mamdani fuzzy reasoning mechanisms. TSK 

stands for Takagi-Sugeno-Kang and fuzzy division of the input space forms the basis of this 

model’s structure. Accordingly, a set of fuzzy membership functions ܣ௞ଵ,ܣ௞ଶ , ,௞௃ܣ… (݇ =

1,2,3, …  number of inputs ܬ number of fuzzy rules, are designed for ܭ that correspond to (ܭ,

[36]. This system is a nonlinear adaptive equalizer. An adaptive equalizer is a filter which is 

self-designing in that the adaptive filter depends for its operation on a recursive algorithm 

enabling the filter to provide satisfactory performance in an environment where total 

knowledge of the relevant signal characteristics can not be obtained. The starting point of the 

algorithm is an already found set of initial conditions representing all the information 

regarding the environment. Yet, within a motionless environment, successively iterating the 

algorithm makes it converge to the most favorable solution statistically. In an active 

environment, the algorithm presents a tracking ability in that it is capable of tracking time 

variations in the input data statistics, ensuring that variations are adequately slow [25].  

Training and tracking are the common working manners of an adaptive equalizer. First, the 

transmitter sends a known, fixed-length training sequence to ensure that the receiver’s 

equalizer adapts to a correct setting to detect the minimum BER. The training sequence is 
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characteristically a pseudorandom binary signal or an unchanging, prescribed bit pattern. 

After this training sequence, the user data (which may or may not include coding bits) is sent 

and the adaptive equalizer at the receiver uses a recursive algorithm for evaluating the channel 

and approximately calculating the filter coefficients to compensate for the distortion that the  

multipath in the channel creates. The training sequence is designed to allow an equalizer at 

the receiver to gain the appropriate filter coefficients in the worst possible channel conditions 

(e.g. fastest velocity, longest time delay spread, deepest fades, etc.) in order to ensure that, the 

filter coefficients are close to the optimal values for reception of user data when the training 

sequence is finished. The adaptive algorithm of the equalizer tracks the changing channel as 

user data are received [3]. Consequently, the adaptive equalizer frequently changes its filter 

characteristics over time. When an equalizer has been properly trained, it is said to have 

converged. The time span over which an equalizer converges is a function of the equalizer 

algorithm, the equalizer structure and the time rate of change of the multipath radio channel. 

Periodic retraining is required by equalizers in order to continue effective ISI cancellation and 

are commonly used in digital communication systems where user data is segmented into short 

time blocks or time slots. A time division multiple access (TDMA) wireless system is 

especially suitable for an equalizer. TDMA systems send data in fixed-length time blocks and 

the training sequence is usually sent at the beginning of a block. When a new data block is 

received, the equalizer is retrained using the same training sequence.    

The adaptive equalizer processes three types of signals in order to determine the error signal 

which controls the adaptive algorithm. Comparison of the equalizer output with some signal 

sd(k) that is either a precise scaled replica of the transmitted signal s(k) or is the representative 

of a known transmitted signal property is carried out to derive the error signal. The 

transmitted (input) signal s(k) and the reference (desired) input signal sd(k) are required by the 

equalizer to determine the error signal. The desired signal is the synchronized version of the 

test signal that the receiver generates. The error signal is determined by first processing the 

input signal s(k) to determine the equalizer output and then subtracting the desired signal sd(k) 

from this equalizer output. The adaptive algorithm uses this estimation error for the 

minimization of a cost function and for the updating of the equalizer weights to their optimum 

values in an iterative manner which decreases the cost function. For instance, the least mean 
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squares (LMS) algorithm seeks to find the optimum or almost optimum filter weights by 

applying the iterative operation: 

  or)input vect(Current error) Previous((constant) weightsPrevious weightsNew       (4.12a) 

where 

output actual Previous-output desired Previouserror Previous                  (4.12b)                      

and the algorithm adjusts the constant for the controlling of the variation between filter 

weights on successive iterations. A programming loop repeats that series of operations 

quickly as the equalizer tries to converge and the error is minimized by numerous techniques 

like gradient or steepest descent algorithms. After reaching the convergence, the filter weights 

are frozen by the adaptive algorithm until an acceptable threshold is exceeded by the error 

signal or till another training sequence is started [3]. 

The channel equalization system structure is illustrated in Fig. 4.3 where s(k) are binary 

transmitted input signals. The channel noise n(k) is the additive Gaussian noise which distorts 

the input signals. The channel may be linear or nonlinear. In addition to noise, the intersymbol 

interference (ISI) that is caused by the spreading of symbol pulses into adjacent time slots of 

sampling signals, is the main reason for high SNR in such transmission systems. 

The adaptive equalizer on the receiving side is applied to compensate for channel distortion 

by minimizing the effects of noise and ISI. Nonlinear neuro-fuzzy networks (NNFN), as part 

of this research work, can be successfully applied to adaptively equalize nonlinear 

communication systems. They are proven to reveal improved performance when little 

information about the channel is available. 

4.3 Applications of QAM 

Quadrature Amplitude Modulation (QAM) utilizes carrier phase shifting and synchronous 

detection to permit two double-sideband (DSB) signals to occupy the same frequency band.  
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                               Figure 4.3 Structure of a neuro-fuzzy equalization system [11] 

The transmitted signal has the following form: 

(݊)௖ݔ                                   = (݊)ଵݔ]௖ܣ cos(߱௖݊) ±  ଶ(݊)sin(߱௖݊)]                              (4.13)ݔ

This technique is more properly characterized as frequency-domain rather than frequency-

division multiplexing, since the modulated spectra overlap each other [26]. QAM is limited to 

specialized applications, notably color television and digital data transmission. 

Most communications technology applications such as radio and data communications often 

employ QAM whose various forms including M=16, M=32, M=64, M=128 and M=256 QAM 

are available. Each figure refers to the number of constellation points that is also the number 

of possible distinct states. The varying QAM levels are likely to be utilized in the case of a 

communications system requiring data rates beyond what 8-PSK (phase shift keying) can 

offer. The reason for this is that QAM supplies a wider distance between neighboring points 

in the I-Q plane since constellation points are spaced more evenly and hence, these points 

become more distinct and data errors are decreased [40].    

QAM may exist as either analog or digital information. The analog formats of QAM are 

characteristically utilized such that multiple analog signals are passed on one carrier. For 

instance, it is utilized in PAL and NTSC systems in which various channels supplied by QAM 

ensure that it carries the elements of chroma or color data. In radio applications, a system 

  Channel boundary  n(k) 

      +    (݇)ݔ̅                        
                          +  Channel Σ z-1 z-2 z-m 

Neuro-Fuzzy Equalizer 

Σ 
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referred to as C-QUAM is employed for AM stereo where various channels ensure that the 

two signals necessary for stereo are passed on a single carrier [40].  

Digital versions of QAM are frequently called “Quantized QAM” and are used more and 

more for data communications mostly inside radio communications systems applications. In 

case of being utilized for digital transmission for radio communications, QAM is capable of 

carrying higher data rates than ordinary amplitude and phase modulated schemes.  

Many radio communications and data distribution applications use QAM. Yet, particular 

applications and standards employ some specific variants of QAM. In native broadcasting 

systems, for instance, 64-state and 256-state QAM are employed in digital cable television 

and cable modem systems. United Kingdom uses 16-state and 64-state QAM for digital 

terrestrial television utilizing DVB (Digital Video Broadcasting). United States made 64-state 

and 256-state QAM the compulsory modulation schemes that the standards determined for 

digital cable. Additionally, various QAM schemes are employed for numerous wireless and 

cellular technology applications, as well [40].  

Multilevel QAM schemes are spectrum-efficient modulation schemes that are employed 

because of the growing request for high-speed multimedia services over the restricted radio 

spectrum [34]. 

4.4 Advantages and Disadvantages of QAM 

4.4.1 Advantages of QAM 

QAM is a modulation type that is frequently employed to modulate information signals upon 

a carrier utilized for radio communications. It is used frequently since it has got privileges 

compared with different types of data modulation like PSK, even though many forms of data 

modulation work side by side.  

One advantage of using QAM comes from its being a higher order modulation form and 

consequently it is capable of carrying more information bits per symbol. A link’s data rate can 

be increased by choosing a higher order format of QAM.   
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The QAM signal constellation is equal to two Pulse Amplitude Modulation (PAM) signals on 

quadrature carriers, for rectangular signal constellations in which ܯ = 2௟, where ݈ is even, the 

two PAM signals have √ܯ = 2௟ ଶ⁄  signal points. It’s simple to calculate the probability of 

error for QAM using the probability of error for PAM because excellently separating the in-

phase-quadrature signal components on the demodulating side is possible.  

A clear privilege of rectangular QAM signal constellations is that it is easy to generate them 

as two Pulse Amplitude Modulation (PAM) signals impressed on phase-quadrature carriers; 

moreover, demodulating them is also easy. Although they are not the best M-ary QAM signal 

constellations for M≥16, the average transmitted power needed for achieving a given 

minimum distance is just a little more than the average power necessary for the best M-ary 

QAM signal constellation. Rectangular QAM signal constellation is easier to implement and 

has a slightly better BER performance. Rectangular M-ary QAM signals are widely used in 

practice for these reasons [1]. 

High spectral efficiency of QAM schemes make them potentially suitable for higher data rate 

transmissions in communication channel [27]. QAM and related quadrature-carrier methods 

offer increased modulation speed and are the modulation types that best suit digital 

transmission on telephone lines and other bandwidth-limited channels. 

4.4.2 Disadvantages of QAM 

Even though it seems that QAM increases the transmission efficiency for radio 

communications systems by utilizing both amplitude and phase variations, it contains some 

disadvantages. Firstly, it is more sensitive to noise since the states are compactly nearer 

causing a lower noise level to be necessary to take the signal to a different decision point. 

Receivers used in phase or frequency modulation are both capable of using limiting amplifiers 

which can take out any amplitude noise and enhance the noise reliance. That doesn’t happen 

with QAM.  

The second restriction is related with the amplitude component of the signal, as well. In the 

case of amplifying a phase or frequency modulated signal in a radio transmitter, it is not 
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necessary for the linear amplifiers to be used, however, if QAM containing an amplitude 

component is used, linearity has to be maintained. Unluckily, because of being less efficient 

and consuming more power, linear amplifiers are less appealing to mobile applications.     

4.5 Design Features of M-QAM Applied to NNFE 

4.5.1 Normalization 

The most distinguishing feature of this thesis is normalization. Normalization is employed as 

the primary technique which enables the equalizer to process signals with values between 0 

and 1 to minimize the cost function and thus the error at the maximum level, at the output. 

The main reason for using this technique is that the modulated QAM signals (with input 

values of ±1, ±3 for  ܯ = 16 as an example) are not directly accessible to the channel. In 

other words, the channel will distort the unchanged modulated QAM signal such that the 

equalizer will be unable to reduce the errors at the end to produce the equalized output. 

Therefore, it is inevitable to come up with a method that the equalizer can process the signal 

with. The motivation behind normalization technique is to ensure that the transmitted data 

with as small values as possible, are entered into the channel so that the distortions will be 

minimal and the nonlinear neuro-fuzzy equalizer (NNFE) will be able to minimize the error to 

the greatest possible extent. 

Fig. 4.4 illustrates the block diagram of the system used in this thesis which involves the use 

of the normalizer. Normalizer shrinks the values of M-QAM modulated data values to values 

between 0 and 1 by:  

1. Shifting the modulated values such that the minimum value will be 0. This is 

achieved by subtracting the minimum bit from each bit value in order to attain zeros 

as the minimum value in the modulated set of values. 

2. Scaling the modulated values such that the maximum value will be 1. This is achieved 

by dividing each modulated value in the set (whose minimum is 0) by the maximum 

bit value in order to attain 1, as the maximum value in the set of values.  
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After normalization, the zeros in the transmitted set of values are replaced by -0.75 for M = 4 

and -1 for M = 16, since the equalizer cannot process the 0 digit to yield its equalized 

counterpart. This is because there will be local errors causing large amounts of deviations at 

the output, as the numerous simulation tests have revealed.  Consequently, normalization 

provides the channel with small valued numbers whose distortions are minimized as 

compared to those when not normalized. Additionally, the error will be further reduced and 

minimized by the Nonlinear Neuro-Fuzzy Equalizer (NNFE). 
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Figure 4.4 Block diagram of the normalizer-based M-QAM signal generating and            
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4.5.2 Reciprocity 

One of the significant features of the normalizer-based QAM equalizer is the reciprocity. The 

original transmitted symbol bits are not directly accessible to the receiver and this obligates 

the application of a different way of inputting the transmitted signal into the channel. On 

normalizing the modulated signal set, ܯ = 2௟ number of reciprocal (corresponding) input 

values is entered into the channel and the same amount of noisy channel output values are 

received by the equalizer. Each of these corresponding bits actually represents its 

corresponding modulated counterpart since the original bits are not accessible to the channel 

and cannot be processed by the algorithm and the equalizer to yield the equalized output at the 

receiver end. At the end of the equalization process, each of the equalized signal bits that 

represents its corresponding transmitted counterpart is denormalized to yield its actual 

reciprocal value as its processed and equalized value. The denormalized corresponding 

equalizer output is calculated by: 

(݇)ݔ                                    = ±ܽ௡(݇) ± (ݒ݁݀_ݐ݊݁ܿݎ݁݌) ∗ (±)ܽ௡(݇)                              (4.14) 

and 

ݒ݁݀_ݐ݊݁ܿݎ݁݌                                           = (݇)ݍ݁) − ܿ௡(݇))/ܿ௡(݇)                                 (4.15) 

where  ܽ௡(݇) denotes the original in-phase modulated input bit value, ݁ݍ(݇) is the equalizer 

output value, ܿ௡(݇) denotes the normalized transmitted bit value and ݒ݁݀_ݐ݊݁ܿݎ݁݌ denotes 

the percent deviation of the equalizer output value from the normalized transmitted bit value 

(channel input). The similar calculation is applied for the quadrature part of the QAM signal. 

Eventually, the in-phase and quadrature parts are combined by an adding device, to yield the 

equalized QAM symbol in complex form, at the end. 

4.5.3 Complex representations of M-QAM constellations  

The modulated transmitted symbols ݃(݊) and the normalized transmitted symbols ݃(݊)௡௢௥  

of M-QAM can be represented, depending on the level of constellation, by M possible 

complex forms, as illustrated in Table 4.1: 
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Table 4.1 M-QAM transmitted symbols ݃(݊) and normalized transmitted symbols ݃ (݊)௡௢௥  

 

4.5.4 Multifunctionality 

The normalizer-based QAM equalizer is capable of minimizing the error and producing 

accurate equalizer output results which are dependent on the signal-to-noise ratio (SNR), the 

minimum error and the number of iterations previously set. In other words, low SNR values 

will produce higher bit error rates (BER) since the AWGN added to the transmitted data is 

more dominant around low SNR values, especially around 0-4 dB, as shown in tabulations as 

a result of simulations applied on the system. Additionally, the equalizer output is calculated 

and corresponding equalizer outputs clearly demonstrate the relationship between SNR and 

the equalizer output for each constellation of the QAM modulation scheme (i.e. ܯ = 4 and 

ܯ = 16). The lower the SNRs, the more compact the equalizer output and the higher the 

SNRs, the more open the equalizer output is. In other words, at low SNRs, the equalized 

signal values are accumulated farther from the ideal (perfect) constellation points as opposed 

to more compact (closer) accumulation of the equalized signal values to the ideal constellation 

points, at high SNRs.   

The same relationship of dependency of equalizer output to SNR is successfully achieved for 

the minimum error value that the NNFE operates to reach each time a simulation is executed. 

That is, lower set minimum error will enable the equalizer to yield more accurate output 

M QAM ((࢔)ࢍ = ࢔ࢇ + ࢘࢕࢔(࢔)ࢍ) Normalized QAM (࢔࢈࢐ = ࢔ࢉ +  (࢔ࢊ࢐

4 
(1 + ݆), (1− ݆) (0.75 + ݆0.75), (0.75− ݆0.75) 

(−1 + ݆), (−1− ݆) (−0.75 + 0.75݆), (−0.75− ݆0.75) 

16 

(1 + ݆), (1− ݆) (1 3⁄ + ݆ (1 3)⁄ ), (1 3⁄ − ݆ (1 3⁄ )) 
(−1 + ݆), (−1− ݆) (−1 3⁄ + ݆(1 3)⁄ ), (−1 3⁄ − ݆ (1 3⁄ )) 
(1 + ݆3), (1− ݆3) (1 3⁄ + ݆), (1 3⁄ − ݆) 

(−1 + ݆3), (−1− ݆3) (−1 3⁄ + ݆), (−1 3⁄ − ݆) 
(3 + ݆), (3− ݆) (1 + ݆(1 3⁄ )), (1− ݆(1 3⁄ )) 

(−3 + ݆), (−3− ݆) (−1 + ݆(1 3)⁄ ), (−1− ݆(1 3⁄ )) 
(3 + ݆3), (3− ݆3) (1 + ݆), (1− ݆) 

(−3 + ݆3), (−3− ݆3) (−1 + ݆), (−1− ݆) 
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results in terms of both lower BERs and more compact signal accumulation whereas higher 

minimum error will cause less accurate output results in terms of both higher BERs and less 

compact signal accumulation. Less compact signal accumulation means more scattering of the 

output signal bits away from the constellation points. 

Lastly, normalizer-based QAM equalizer is also a function of the number of iterations as 

proven by the result of extensive computer simulations applied on the system. It is clearly 

observed and shown that equalization performance improves upon successive iterations. The 

less the number of iterations, the higher the BERs and the higher the number of iterations, the 

lower the BERs are, in addition to more open and clear equalizer output demonstrating highly 

accurate results.  

4.5.5 Gray coding 

Gray coding is the mapping technique used to map the transmitted data input that is in 

decimal form. In the case of M-QAM signaling, if, for example, a symbol (1010) in 16-QAM 

signaling is transmitted, it is clear that should an error occur, the transmitted signal will most 

likely be mistaken for one of its closest neighboring symbols, (1001) or (1011). The 

likelihood that (1010) would get mistaken for (1111) is relatively remote. If the assignment of 

bits to symbols follows the binary coding as illustrated by Fig. 4.5(a), some symbol errors will 

usually result in two or more bit errors, even with a large SNR, since two adjacent symbols in 

the complex field constellation, do not differ in only one bit. In the case of nonorthogonal 

schemes such as M-QAM signaling, one often uses a binary-to-M-ary code such that binary 

sequences that correspond to adjacent symbols differ in only one bit position as illustrated by 

Fig. 4.5(b); thus in the case of an M-ary symbol error occurring, it is more likely that only one 

of the l input bits will be in error. Gray code, as illustrated by Fig. 4.5(b), is a code that 

provides this desirable property [24].  

The advantage brought by this technique is related with the fact that if an error occurs in the 

signal detection, it is more likely that a symbol is confused with one of its neighbors than with 

one of the others. Thus, the amount of wrong bits in the received signal sequence is 

minimized. This advantage is the reason for using Gray codes as part of this thesis. 
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Figure 4.5 16-QAM constellation with (a) binary coding, (b) Gray coding   

4.6 Summary 

Quadrature amplitude modulation (QAM) and the way it is applied to nonlinear neuro-fuzzy 

equalizer (NNFE) are analyzed in this chapter. The complex envelope is used as the input 

QAM transmitted signal because it is the representative of bandpass waveforms and operates 

as the baseband equivalent of the actual bandpass signal.  

The most distinguishing feature of the design of thesis is the normalizer. It enables the 

channel and the receiver to process the transmitted signals as minimized values between 0 and 

1, thus minimizing the channel distortions and the estimation error (the difference between the 

desired response and the equalizer output). Other distinguishing features which are reciprocity 

and multifunctionality are also explained in detail enabling the comprehension of significant 

capabilities of the thesis design. Reciprocity basically points out the logic of the channel, 

algorithm and the NNFE processing the corresponding (representative) signals instead of the 

actual original transmitted signal since the original modulated transmitted symbol bits are not 

directly accessible to the channel and the receiver. Multifunctionality feature explains the 

  1010           1011            1111            1110 

 

                                 (a) 
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                                     Q 

     0110            0111            0011           0010 

  0101           0100            0000            0001 

 1111            1110            1010            1011 
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                                     Q     
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                                                                               I 
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capability of the equalizer to process and equalize the transmitted data correctly and 

proportionally as a function of SNR, minimum error and the number of iterations. 

Additionally, Gray coding property with its implementation and advantages are explained, as 

well. Applications of QAM in practice are presented and its main advantages and 

disadvantages are also stated.   

The structure of adaptive channel equalization and the type of equalizer which is mainly the 

nonlinear neuro-fuzzy equalizer are described. The operational properties of the nonlinear 

adaptive equalizer that involve basically the training and tracking properties are considered. 

The equalizer output is first computed from the transmitted test signal after a training process 

which involves the minimization of error to a level which enables the equalization of the 

channel. The tracking mode, through which the equalizer goes after the training enables the 

equalizer to track possible time variations which are typical characteristics of the nonlinear 

channel, by using a receiver estimate of the transmitted sequence as a desired response. 

Eventually, the compensation methods by using an adaptive nonlinear equalizer and the 

characteristics of the equalizer are understood. 
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CHAPTER 5 

SIMULATION RESULTS AND ANALYSIS 

5.1 Overview 

This chapter is reserved for the in-depth analysis of the QAM signaling on normalizer-based 

nonlinear neuro-fuzzy equalizer (NNFE). The simulation results of two different constellation 

levels (ܯ = 4  and ܯ = 16) will be presented in tabulated forms. Analysis of the results of 

the simulations of each constellation in terms of bit error rate (BER) and signal-to-noise ratio 

(SNR) will be presented in tabulated forms, in order to illustrate the performance of the 

normalizer-based QAM equalization system. Actual channel and equalizer output figures 

demonstrating the state of the channel and the equalizer will be presented in order to 

demonstrate the accuracy of the system. All the statistical and test analysis results are 

presented for both linear and nonlinear channels and the accuracy and performance of the 

NNFE system in time-varying nonlinear channel conditions is presented.  

5.2 Development of Normalizer-based Nonlinear Neuro-Fuzzy Equalizer (NNFE) System 

During the equalizer design, the equalizer current output signals (in normalized form) are 

compared with the input signals transmitted through the channel. When error is encountered, 

the learning of the neuro-fuzzy equalizer starts. The adjustment of the parameter values of the 

equalizer by utilizing formulas (3.22), (3.23), (3.24) and (3.25) is included in learning. 

Learning is continued until, for all input-output pairs, the value of the error will be an 

acceptable minimum value. During simulation, the transmitted signals ݏ(݇) are normalized 

input samples that are the reciprocal (corresponding) signals of the transmitted signals with an 

equal probability of -1 and 1 and are corrupted by additive white Gaussian noise (AWGN). 

These corrupted (noisy) signals are the inputs for the equalizer.  
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5.3 Flowchart Diagram of the Normalizer-based Neuro-Fuzzy Equalization System 

The flowchart diagram of the neuro-fuzzy equalization system with normalizer is given in 

Fig.5.1. The block scheme of realization of the normalizer-based neuro-fuzzy equalization 

system includes the following steps: 

- Enter the number of epochs, learning rate 

- Generate random digital input signal for channel with an independent sequence taking 

values from {-1,1} with equal probability 

- Convert the sequence {-1,1} to decimal values according to each constellation level 

- Map the decimal input values to the rectangular signal space by using Gray coding 

- Quadrature amplitude modulate the mapped input signal in decimal form according to 

M-level constellation 

- Generate the parameters of the neuro-fuzzy equalizer. Enter the number of neurons in 

input, hidden and output layers 

- Set epoch number to 1 

- Select input signal and send to the channel 

- Add additive white Gaussian noise (AWGN) to the channel and calculate the output of 

the channel 

- Define the input signals for the equalizer and send them to the equalizer 

- Calculate the equalizer output 

- Calculate the error of the equalizer output 

- Test the value of error. If error is less than an acceptable minimum value, then take the 

next value of binary input signals and send it to the channel 

- If error is more than an acceptable minimum value, then using the learning algorithm, 

train the parameters of the equalizer 

- Take the next value of binary input signals and send it to the channel input 

- Test the number of epochs. If it is more than the given number of epoch value, stop the 

training process 

- If epoch number is less than the given number of epoch value, increment the current 

epoch value and send the first binary input signal to the channel. 
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Figure 5.1 Flowchart diagram of normalizer-based neuro-fuzzy equalization system 

Yes 

Send signals to the channel: 
)3()2()1()( 21  ksaksaksakx o  

Add AWGN to the channel 
)()()( knkxkx   

Define input signals for the equalizer 

Calculate output of the normalizer-
based equalizer 

 

  A 

Calculate the error on the output of 
the equalizer )()()( kskuke d  

Test the value of 
error min)( ke  

Using learning algorithm, train the 
parameters of the equalizer 

 

epoch=epoch+1 
 

   Test the epochs 

Take the next input signal 
and send it to the channel 

 



81 
  

The NNFE structure and its training algorithm are used for designing the equalizer. The 

network input signals ݔ(݇) (see Fig. 3.7) are the channel output signals applied to the network 

at time ݇, ݇)௜ݔ − ݅), (݅ = 1 … 4), the number of neurons in the input layer is equal to 27, the 

number of hidden neurons (rules) is equal to 27 and ݑ is the output signal of the network.  

During simulation, the input signals of the equalizer ݔ(݇), ݇)ݔ − 1), ݇)ݔ − 2), ݇)ݔ − 3) are 

the output signals of the channel. The simulation on MATLAB of the channel equalization 

system has been executed during which 27 rules (hidden neurons) are used for the linear 

channel and 36 rules are used for the nonlinear channel. The learning of equalizers has been 

carried out for 2000 iterations and the parameter values of the NNFE have been determined.  

5.4 Analysis of Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR)  

An equalizer’s performance is evaluated by its probability of error ௘ܲ. This probability 

predicts the BER. In order to calculate the BER, the equalizer is tested with a statistically 

independent random set of 3000 symbols (samples) for both 4-QAM and for 16-QAM. The 

3000 symbols correspond to 6000 bits for 4-QAM and 12000 bits for 16-QAM. The training 

and computation time of BER is approximately 25 minutes for 4-QAM and 50 minutes for 16-

QAM on a CPU (central processing unit) with 1.5 GHz Intel Celeron processor. An error 

value ݁௜(݇) is generated for a range of noise variances. 

The BER is plotted against the channel noise to determine and compare the equalizer 

performances. The BER is calculated from: 

ܴܧܤ =  ෍
݁௜(݊)
݊

୬

୧ୀଵ

                                                                        (5.1) 

where ݁௜(݊) is the number of bits in error and ݊ is the number of total bits. 

The channel noise is measured as a signal-to-noise ratio (SNR) given by: 

ܴܵܰ = 10logଵ଴ ቆ
σୱଶ

σ୬ଶ
ቇdB                                                           (5.2) 

where ߪ௦ଶ and ߪ௡ଶ are the signal and noise variances, respectively. 
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5.5 Simulation of the Normalizer-based NNFE System for Linear Channel 

This thesis is based on processing and equalizing QAM signals for two constellation levels 

ܯ) = 4  and ܯ = 16) by using NNFN equalizer and its training algorithm. Extensive 

simulations have been executed for the equalization of signals transmitted through both linear 

and nonlinear channels. 

In the first simulation where linear channel is employed, the following non-minimum-phase 

channel model is used: 

                          )()2()()1()()()()( 321 knkskakskakskakx                               (5.3) 

where ,3482.0)(1 ka 8704.0)(2 ka and 3482.0)(3 ka  and )(kn is the additive white 

Gaussian noise (AWGN). This type of channel is widely used in real communications 

systems. Table 5.1 illustrates the BER comparison of the non-minimum-phase channel after 

training with noise. In Figures 5.5 and 5.12, the convergence curves of the NNFE of each 

constellation for 2000 learning iterations are illustrated. Figures 5.3 and 5.10 demonstrate the 

linear channel output states which are also the input (received) signal for the equalizer. 

At the output of the equalization system, the deviation of the normalized transmitted signal 

from the normalized current equalizer output is determined. This deviation or error ݁(݇) of 

Eq. (5.4) is used in adjusting the network parameters. Training continues until the value of the 

error for all training sequence of signals is below a predetermined acceptable minimum value. 

                                                       ݁(݇) = (݇)ݑ −  ௗ(݇)                                                     (5.4)ݏ

where ݁(݇) is the minimum error, ݑ(݇) is the equalizer output signal and ݏௗ(݇) is the desired 

(reference) signal. The predetermined minimum error ݁(݇) set for the simulation of all QAM 

constellations (for both linear and nonlinear channels) is 0.0001. 
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5.6 Simulation of the NNFE System for Nonlinear Time-Varying Channel 

In the second simulation, the processing and equalization of QAM signals by neuro-fuzzy 

equalization system for nonlinear, time-varying channel have been executed. The following 

nonlinear channel model is used for this simulation:  

               )())1()()()((9.0)1()()()()( 3
2121 knkskakskakskakskakx              (5.5) 

where )(kx  is the output of the channel, )1( ks  is the time delay introduced by the channel 

and )(1 ka and )(2 ka are time varying channel coefficients with initial values 1)0(1 a  and 

5.0)0(2 a . These channel coefficients are generated by using a second-order Markov model 

with 3rd order nonlinearity in the presence of AWGN filtered by a second-order Butterworth 

low-pass filter with normalized cut-off frequency 0.1 [31]. The colored Gaussian sequences 

that are used as time-varying coefficients ia  are generated with a standard deviation of 0.1. 

The time varying impulse response )(kh of the channel model (5.5) is given by: 

                             
32

1

2

1

))1(()(9.0))1(()()( 







 

 i
i

i
i ikkaikkakh                        (5.6) 

where )(k is the unit impulse. 

The simulations are performed using NNFE where 36 neurons are used in the hidden layer of 

the network. The transmitted signals are assumed to be normalized input samples that are the 

reciprocal (corresponding) signals of the independent sequence of transmitted signals with an 

equal probability of -1 and 1. On the output of the channel, the additive white Gaussian noise 

)(kn is added to the transmitted signal. Figures 5.4 and 5.11 demonstrate the time-varying, 

nonlinear channel output states which are also the input (received) signal for the equalizer. 

Noise variation ߪ௡ଶ that varies for each constellation and SNR are given respectively. In 

Figures 5.6 and 5.13, the convergence curves of the NNFE of each constellation for 2000 

learning iterations are illustrated. Table 5.2 demonstrates the BER performance of the NNFE 

of the time-varying channel after equalization and the results are obtained when the equalizer 

is trained with noise.  
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5.7 Analysis of Simulations 

The following presents the simulation analysis and results of M-QAM signals for ܯ = 4 and  

ܯ = 16 constellations transmitted through linear and nonlinear channel models of (5.3) and 

(5.5) respectively. Tables 5.1 and 5.2 show the BER performance of the linear and nonlinear 

channels after equalization for 4-QAM and 16-QAM respectively. The results are obtained 

when the equalizer has been trained with AWGN. Fig.5.3, 5.4, 5.10 and 5.11 clearly illustrate 

the channel output (receiver input) states for SNR=0dB,  SNR=8dB and SNR=10dB. It can be 

clearly observed that at low SNR where the noise ratio is high, the signals are more distorted 

and scattered around the constellation points than the signals when SNR is high, since there is 

less noise around SNR=8dB and SNR=10dB. Figures 5.2 and 5.9 illustrate the effect of SNR 

on BER performance for both linear and nonlinear channels of 4-QAM and 16-QAM, 

respectively. Figures 5.7, 5.8, 5.14 and 5.15 clearly illustrate the equalizer output signal states 

of 4-QAM and 16-QAM constellations where the difference between severely noisy and less 

noisy conditions for both linear and nonlinear channels can be observed and realized.  
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5.7.1 Simulation results of 4-QAM                                  

Table 5.1 BER performance of channel models (5.3) and (5.5) for 4-QAM    

4-
Q

A
M

 

LINEAR CHANNEL NONLINEAR CHANNEL 
SNR  
(dB) 

BER 
 

SNR  
(dB) 

BER  
 

8.049138 8.332915×10-4 8.010341 9.161845×10-4 

6.005757 7.711243×10-2 6.031466 7.775319×10-2 

4.007480 1.713182×10-1 4.012408 1.867750×10-1 

2.007692 4.217346×10-1 2.016702 4.190250×10-1 

0.058600 4. 805201×10-1 0.032696 4.825291×10-1 

 

 

Figure 5.2 4-QAM BER performance of normalizer-based NNFE for linear channel (dashed                                  

line with ‘*’) and nonlinear channel (dash-dotted line with triangles) 
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(a)                                                                                      (b)    

Figure 5.3 Linear channel outputs of 4-QAM for (a) SNR=0dB,  and  

(b)  SNR=8dB,   

                              

                                                                                                                                             

      Figure 5.4 Nonlinear channel outputs of 4-QAM for (a) SNR=0dB,  and  

(b) SNR=8dB,  

The next figures illustrate the convergence curve of 4-QAM constellation using the linear 

channel. 
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Figure 5.5 Linear channel convergence curve of 4-QAM at SNR=4dB and ߪ௡ଶ = 0.2  

 

Figure 5.6 Nonlinear channel convergence curve of 4-QAM at SNR=4dB and ߪ௡ଶ = 0.028 
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(a)                                                                     (b) 

Figures 5.7 and 5.8 illustrate the equalizer output states of 4-QAM constellation where the 

difference between severely noisy and less noisy conditions can be realized.   

                                

Figure 5.7 Equalizer outputs of 4-QAM for linear channel (a) SNR=0dB,   and  

(b) SNR=8dB,  

  

 

Figure 5.8 Equalizer outputs of 4-QAM for nonlinear channel (a) SNR=0dB, and 

(b) SNR=8dB,  

(a)                                                                        (b) 
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5.7.2 Simulation results of 16-QAM                                  

Table 5.2 BER performance of channel models (5.3) and (5.5) for 16-QAM    

16
-Q

A
M

 

LINEAR CHANNEL NONLINEAR CHANNEL 
SNR  
(dB) 

BER  
 

SNR  
(dB) 

BER  
 

10.040336 2.254417×10-3 10.031276 2.541667×10-3 

8.010011 3.496667×10-2 8.007868 3.801639×10-2 

6.029870 8.228397×10-2 6.012374 8.675261×10-2 

4.009074 1.977416×10-1 4.030092 1.983167×10-1 

2.013060 4.223184×10-1 2.004051 4.450448×10-1 

0.068211 4.874667×10-1 0.076989 4.907752×10-1 

 

Figure 5.9 16-QAM BER performance of normalizer-based NNFE for linear channel (dashed 

line with ‘*’) and nonlinear channel (dash-dotted line with triangles)  
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Figure 5.10 Linear channel outputs of 16-QAM for (a) SNR=0dB,  and  

(b) SNR=10dB,   

 

 

Figure 5.11 Nonlinear channel outputs of 16-QAM for (a) SNR=0dB,  and  

(b) SNR=10dB,    

 

Figures 5.12 and 5.13 illustrate the convergence curve of 16-QAM constellation. Figures 5.14 

and 5.15 illustrate the equalizer output values of 16-QAM constellation where the difference 

between severely noisy and less noisy conditions can be realized.   
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Figure 5.12 Linear channel convergence curve of 16-QAM at SNR=4dB and 

 

Figure 5.13 Nonlinear channel convergence curve of 16-QAM at SNR=4dB and  
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Figure 5.14 Equalizer outputs of 16-QAM for linear channel (a) SNR=0dB,  and 

(b) SNR=10dB,  

 

Figure 5.15 Equalizer outputs of 16-QAM for nonlinear channel (a) SNR=0dB, and 

(b) SNR=10dB,  
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5.8 Comparison Analysis 

After the simulations of the QAM constellations, the results of the M-QAM equalization have 

been compared for linear and nonlinear channel models of the two constellations. Table 5.3 

shows the comparison results of QAM constellation levels between linear and nonlinear 

channels and Fig. 5.16 illustrates the BER comparison of 4-QAM with 16-QAM. 

Table 5.3 BER performance comparison of M-QAM between linear and nonlinear channels 

 
SNR 
(dB) 

4-QAM 16-QAM 
Linear vs. Nonlinear  

(%) 
Linear vs. Nonlinear 

(%) 
~10.00 N/A 12.74 
~8.00 9.942 8.72 
~6.00 0.831 5.431 
~4.00 9.022 0.215 
~2.00 -0.643 5.381 
~0.00 0.418 0.679 

Overall Average +3.914% +5.528% 

 

Fig. 5.16 BER comparison of 4-QAM with 16-QAM for both linear and nonlinear channels 
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Figure 5.17 illustrates the simulated BER performance of 4-QAM and 16-QAM together with 

the theoretical BER performance of 4-QAM and 16-QAM. 

 

Fig. 5.17 Simulated and Theoretical Bit Error Rate of 4-QAM and 16-QAM [41,42] 
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CHAPTER 6 

CONCLUSION 

The MATLAB code which is based on gradient-descent learning algorithm has been designed 

and developed for NNFE equalization.  

The technique of normalization has been introduced in this thesis as an efficient method 

which is applied directly at the transmitter of the communications system in order to further 

minimize the estimation error and thus the mean square error (MSE). The normalizer achieves 

this by reducing the transmitter input data in decimal form to numbers between 0 and 1 that 

vary according to the modulation scheme of multilevel quadrature amplitude modulation 

(QAM). The normalizer-based nonlinear neuro-fuzzy equalizer (NNFE) has effectively 

equalized the two different levels of QAM signals that are distorted in severely noisy channel 

conditions and has provided faster convergence rate and better BER performance. 

Comparison between linear and nonlinear channel models has revealed that NNFE performs 

slightly better equalization for linear channel than for the nonlinear channel model, since the 

average BER of linear channel is approximately 3.9% better than that of the nonlinear channel 

for 4-QAM. The same comparison between linear and nonlinear channel models of 16-QAM 

constellation has revealed that the average BER of linear channel is about 5.5% better than 

that of the nonlinear channel since it is more difficult to equalize the nonlinear channel 

because of the time-varying coefficients and the nonlinearities present in the nonlinear 

channel. The BER performances of multilevel QAM can also be observed from the graphical 

results of the simulations. The simulated bit error rates are quite high for small SNRs 

especially around SNR≤4 dB due to high amount of noise, as can be observed from the 

graphs, but as the SNR increases, the BER values start decreasing more rapidly, as expected.  

Overall, it can be concluded that the equalizer performs better for the linear channel in the 

case of both of the 4-QAM and 16-QAM constellations because the BER values of the linear 

channel have been tested to be less than that of the nonlinear channel as can be observed from 

the graphical BER performance of each channel for each constellation. Additionally, the 

equalizer has shown better BER performance in 4-QAM constellation when compared with 
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16-QAM constellation, which is an expected result. The simulation results obtained in this 

work demonstrate similarity with the theoretical BER performance for both 4-QAM 

constellation and 16-QAM constellation.     

In this thesis, it has been proven that multilevel Quadrature Amplitude Modulation (QAM) 

signals can be successfully processed and accurately equalized in both linear channel 

conditions and nonlinear time-varying channel conditions by utilizing nonlinear neuro-fuzzy 

equalizer (NNFE).  
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FUTURE WORK 

The suggestion for future work is the testing of QAM signal equalization on Adaptive Neuro-

Fuzzy Inference System (ANFIS) and compare the performance of NNFE with that of 

ANFIS. Genetic algorithm instead of gradient-descent learning algorithm is suggested for the 

testing. Additionally, developing a system that is capable of the equalization of QAM 

involving phase modulation may be considered.  
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APPENDIX 

MATLAB Files 

function [y,yc,signal_var]=chanel_model(x,r1,fk);  
disp('1-M=4') 
disp('2-M=16') 
M_QAM=input('Select the QAM constellation:'); 
switch M_QAM 
    case 1, operation=1;  %M=4 Constellation       
d=0;   chan_mod=1;  
n=6000;  
fk=3000;  
 
aa1=1; aa2=0.5; aa3=0; fpt = fopen('fchan1_2_coef500.dat','r')  
      [a1,a2,a3]=chanel_coef(aa1,aa2,aa3,n);        
[a1]=fscanf(fpt,'%f\n',[n]);   
[a2]=fscanf(fpt,'%f\n',[n]); 
[a3]=fscanf(fpt,'%f\n',[n]);  a3=0;       
       fclose(fpt);  
 
xin_1=2*round(rand(n,1))-1;  
M=4; L=sqrt(M); nsamp=1; % Oversampling rate 
kk = log2(M); % Number of bits per symbol 
mapping = [0 1 3 2].'; %mapping by using Gray coding  
for r=1:n 
if xin_1(r)==-1 
    xin_1(r)=xin_1(r)+1; 
end 
if r==n 
xsym_1 = bi2de(reshape(xin_1,kk,length(xin_1)/kk).','left-msb'); 
xsym_1 = mapping(xsym_1+1);  
y_qam_1 = qammod(xsym_1,M); 
y_re_2=real(y_qam_1); y_im_2=imag(y_qam_1); 
end 
end 
y_qam_1_out1 = real(y_qam_1)-min(real(y_qam_1)); %Shift real part of  
              %y_qam_1 values such that minimum value is zero 
y_qam_1_out1 = y_qam_1_out1/max(abs(y_qam_1_out1));%Scale such that  
              %maximum real y_qam_1 value is one 
y_qam_1_out2 = imag(y_qam_1)-min(imag(y_qam_1)); %Shift imaginary part of  
              %y_qam_1 values such that minimum value is zero 
y_qam_1_out2 = y_qam_1_out2/max(abs(y_qam_1_out2)); %Scale such that  
              %maximum imaginary y_qam_1 value is one 
y_re=y_qam_1_out1; y_im=y_qam_1_out2; 
for k=1:length(xin_1)/kk; 
if y_re(k)==0 
   y_re(k)=-0.75;      
end 
if y_im(k)==0 
   y_im(k)=-0.75;    
end 
if y_re(k)==1 
   y_re(k)=0.75;     
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end 
if y_im(k)==1 
   y_im(k)=0.75;   
end 
end 
y_re=y_re; 
y_qam = y_re_2+(y_im_2)*i; 
%--------------------------------------------------------------------------     
    case 2, operation=2;  %M=16 Constellation       
d=0;   chan_mod=3;  
n=12000;  
fk=3000;  
 
aa1=1; aa2=0.5; aa3=0; fpt = fopen('fchan3_2_coef1000.dat','r')  
      [a1,a2,a3]=chanel_coef(aa1,aa2,aa3,n);  
        
[a1]=fscanf(fpt,'%f\n',[n]);   
[a2]=fscanf(fpt,'%f\n',[n]); 
[a3]=fscanf(fpt,'%f\n',[n]); a3=0;         
       fclose(fpt);  
 
xin_1=2*round(rand(n,1))-1;  
M=16; L=sqrt(M); nsamp=1; % Oversampling rate 
kk = log2(M); % Number of bits per symbol 
mapping = [0 1 3 2 4 5 7 6 12 13 15 14 8 9 11 10].'; %mapping by using  
            %Gray coding  
for r=1:n 
if xin_1(r)==-1 
    xin_1(r)=xin_1(r)+1; 
end 
if r==n 
xsym_1 = bi2de(reshape(xin_1,kk,length(xin_1)/kk).','left-msb'); 
xsym_1 = mapping(xsym_1+1);  
y_qam_1 = qammod(xsym_1,M); 
y_re_2=real(y_qam_1); y_im_2=imag(y_qam_1); 
end 
end 
y_qam_1_out1 = real(y_qam_1)-min(real(y_qam_1)); %Shift real part  
              %of y_qam_1 values such that minimum value is zero 
y_qam_1_out1 = y_qam_1_out1/max(abs(y_qam_1_out1)); %Scale such that 
              %maximum real %  y_qam_1 value is one 
y_qam_1_out2 = imag(y_qam_1)-min(imag(y_qam_1)); %Shift imaginary part of  
              %y_qam_1 %  values such that minimum value is zero 
y_qam_1_out2 = y_qam_1_out2/max(abs(y_qam_1_out2)); %Scale such that    
              %maximum imaginary y_qam_1 value is one 
y_re=y_qam_1_out1; y_im=y_qam_1_out2; 
for k=1:length(xin_1)/kk; 
if y_re(k)==0 
   y_re(k)=-1;       
end 
if y_re(k)==1/3 
   y_re(k)=-1/3;     
end 
if y_re(k)==2/3 
  y_re(k)=1/3;     
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end 
if y_re(k)==1  
  y_re(k)=1;    
end 
if y_im(k)==0 
   y_im(k)=-1;   
end 
if y_im(k)==1/3 
   y_im(k)=-1/3;      
end 
if y_im(k)==2/3 
   y_im(k)=1/3;     
end 
if y_im(k)==1 
   y_im(k)=1;    
end 
end 
y_qam = y_re_2+(y_im_2)*i; 
%--------------------------------------------------------------------------    
    otherwise disp('unknown') 
end 
%=================================CHANNEL======================== 
for k=1:(fk) 
       if chan_mod==1 
           if k==1 
            yc_1(k)=0.3482*y_re(k-d); 
            yc_2(k)=0.3482*y_im(k-d); 
           elseif k==2 
            yc_1(k)=0.3482*y_re(k-d)+0.8704*y_re(k-1-d); 
            yc_2(k)=0.3482*y_im(k-d)+0.8704*y_im(k-1-d); 
           end 
           if k>2 
            yc_1(k)=0.3482*y_re(k-d)+0.8704*y_re(k-1-d)+0.3482*y_re(k-2-d);  
            yc_2(k)=0.3482*y_im(k-d)+0.8704*y_im(k-1-d)+0.3482*y_im(k-2-d);               
           end;             
       end 
        
       if chan_mod==3                
             if k==1;  
              yc_1(k)=a1(k)*y_re(k-d)-0.9*(a1(k)*y_re(k-d))^3; 
              yc_2(k)=a1(k)*y_im(k-d)-0.9*(a1(k)*y_im(k-d))^3;  
             elseif k>1    
              yc_1(k)=a1(k)*y_re(k-d)+a2(k)*y_re(k-1-d)-0.9*(a1(k)*… 
                      y_re(k-d)+a2(k)*y_re(k-1-d))^3;  
              yc_2(k)=a1(k)*y_im(k-d)+a2(k)*y_im(k-1-d)-0.9*(a1(k)*… 
                      y_im(k-d)+a2(k)*y_im(k-1-d))^3; 
             end        
        end           
end 
%================================END OF CHANNEL================= 
min_error=0.0001; 
noise_var=0.3 
mean_yc_1=sum(yc_1)/fk;  
mean_yc_2=sum(yc_2)/fk;  
signal_var_yc_1=sum((yc_1-mean_yc_1).^2)/fk  
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signal_var_yc_2=sum((yc_2-mean_yc_2).^2)/fk 
SNR_yc_1 = 10*log10(signal_var_yc_1/noise_var)  
SNR_yc_2 = 10*log10(signal_var_yc_2/noise_var)  
 
for k=1:(fk)     
y_1(k)=awgn(yc_1(k),SNR_yc_1);  
y_2(k)=awgn(yc_2(k),SNR_yc_2); 
y(k)=y_1(k)+y_2(k)*i;  
end 
%==============Calculating the Equivalent(Reciprocal) Channel Output======= 
for k=1:(fk) 
   if operation==1 
        if y_re(k)==-0.75  
        percent_dev_real(k) = ((y_1(k)-y_re(k))/y_re(k)); 
        y_1_ob(k) = -1+percent_dev_real(k)*(-1); 
        end         
        if y_re(k)==0.75    
        percent_dev_real(k) = ((y_1(k)-y_re(k))/y_re(k)); 
        y_1_ob(k) = 1+percent_dev_real(k)*(1); 
        end 
      
        if y_im(k)==-0.75   
        percent_dev_imag(k) = ((y_2(k)-y_im(k))/y_im(k)); 
        y_2_ob(k) = -1+percent_dev_imag(k)*(-1); 
        end         
        if y_im(k)==0.75   
        percent_dev_imag(k) = ((y_2(k)-y_im(k))/y_im(k));    
        y_2_ob(k) = 1+percent_dev_imag(k)*(1); 
        end 
   end 
%--------------------------------------------------------    
   if operation==2 
        if y_re(k)==-1   
        percent_dev_real(k) = ((y_1(k)-y_re(k))/y_re(k)); 
        y_1_ob(k) = -3+percent_dev_real(k)*(-3); 
        end 
        if y_re(k)==(-1/3)    
        percent_dev_real(k) = ((y_1(k)-y_re(k))/y_re(k)); 
        y_1_ob(k) = -1+percent_dev_real(k)*(-1); 
        end 
        if y_re(k)==(1/3)     
        percent_dev_real(k) = ((y_1(k)-y_re(k))/y_re(k)); 
        y_1_ob(k) = 1+percent_dev_real(k)*(1); 
        end 
        if y_re(k)==1  
        percent_dev_real(k) = ((y_1(k)-y_re(k))/y_re(k)); 
        y_1_ob(k) = 3+percent_dev_real(k)*(3); 
        end 
      
        if y_im(k)==-1   
        percent_dev_imag(k) = ((y_2(k)-y_im(k))/y_im(k)); 
        y_2_ob(k) = -3+percent_dev_imag(k)*(-3); 
        end 
        if y_im(k)==(-1/3)    
        percent_dev_imag(k) = ((y_2(k)-y_im(k))/y_im(k));     
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        y_2_ob(k) = -1+percent_dev_imag(k)*(-1); 
        end 
        if y_im(k)==(1/3)  
        percent_dev_imag(k) = ((y_2(k)-y_im(k))/y_im(k));     
        y_2_ob(k) = 1+percent_dev_imag(k)*(1); 
        end 
        if y_im(k)==1    
        percent_dev_imag(k) = ((y_2(k)-y_im(k))/y_im(k));    
        y_2_ob(k) = 3+percent_dev_imag(k)*(3); 
        end 
   end  
%--------------------------------------------------------     
end 
for k=1:fk 
yy(k)=y_1_ob(k)+y_2_ob(k)*i; 
end 
%================================================================= 
h = scatterplot(y_qam(1:nsamp*(fk)),nsamp,0,'go'); 
hold on; 
scatterplot(y_qam_1(1:(fk/kk)),1,0,'k*',h); 
title('Channel Input'); 
legend('Channel Input','Signal Constellation'); 
axis([-15 15 -15 15]); % Set axis ranges.  
hold off; 
 
h = scatterplot(yy(1:nsamp*(fk/kk)),nsamp,0,'g*'); 
hold on; 
scatterplot(y_qam_1(1:(fk/kk)),1,0,'k*',h); 
title('Received Signal'); 
legend('Received Signal','Signal Constellation'); 
axis([-15 15 -15 15]);   
hold off; 
 
N1=4; MM=1; 
if chan_mod==1 
    N2=27; 
elseif chan_mod==3 
    N2=36;  
end 
 
for t=(N1+1):(fk);  
        Data2(t,:)=[y_re(t) y_re(t-1) y_re(t-2) y_re(t-3) y_re(t-4)];  
        Data3(t,:)=[y_im(t) y_im(t-1) y_im(t-2) y_im(t-3) y_im(t-4)];  
        Data4(t,:)=[y_1(t) y_1(t-1) y_1(t-2) y_1(t-3) y_1(t-4)];  
        Data5(t,:)=[y_2(t) y_2(t-1) y_2(t-2) y_2(t-3) y_2(t-4)];  
end  
global xin r1 fk  
if operation==1 %for M=4 constellation 
n=3000;      %test all signals 
fk=3000;     %training signals     
elseif operation==2 %for M=16 constellation 
n=3000;     %test all signals 
fk=3000;     %training signals 
end 
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disp('0- Parameters Unit  ') 
disp('1- Learning         ') 
disp('2- Reading          ') 
disp('3- Saving           ') 
disp('4- Without Learning ') 
disp('5- Noise            ') 
disp('6- Exit             ') 
num=input('Enter number:'); 
 
switch num 
 
    case 0, regim=0;         
        xin_1=2*round(rand(n,1))-1;         
        replay=input('Generate new random noise y/n :','s');         
        if replay=='y' 
            [r1,sigma]=noise(n,noise_var);              
        else 
            r1(1:n)=0; 
        end 
aa1=1; aa2=0.5; aa3=0; fpt = fopen('fchan3_2_coef1000.dat','r')  
      [a1,a2,a3]=chanel_coef(aa1,aa2,aa3,n);         
[a1]=fscanf(fpt,'%f\n',[n]);   
[a2]=fscanf(fpt,'%f\n',[n]); 
[a3]=fscanf(fpt,'%f\n',[n]); a3=0;       
       fclose(fpt); 
         
              SNR_yc_1 = 10*log10(signal_var_yc_1/noise_var); 
              SNR_yc_2 = 10*log10(signal_var_yc_2/noise_var); 
sprintf('signal_var_yc_1=%f noise_var=%f SNR=%f',signal_var_yc_1,… 
                          noise_var,SNR_yc_1) 
              plot(xin_1) 
              title('Transmitted Signals'); 
              pause 
              plot(y) 
              title('Received Signals'); 
              pause               
              l=1:1:n;               
              plot(l,a1,'b',l,a2,'r')  
              title('a1 % a2 coefficients');  
              pause  
              norm_1=minmax(yc_1) 
              norm_2=minmax(yc_2) 
              delta_1=(abs(norm_1(1))+abs(norm_1(2)))/(N2-1)  
              delta_2=(abs(norm_2(1))+abs(norm_2(2)))/(N2-1) 
              c_1(1:N1,1:N2)=0;  
              c_2(1:N1,1:N2)=0;   
              N22=ceil(N2/2); 
                 ii=0; kc_1(1:N22)=0; kc_2(1:N22)=0; 
                 for j=1:N22 
                     kc_1(j)=delta_1*(j-1)/j;  
                     kc_2(j)=delta_2*(j-1)/j; 
                     c_1(1:N1,j)=0-ii*kc_1(j); 
                     c_2(1:N1,j)=0-ii*kc_2(j); 
                     o_1(1:N1,j)=0.1+0.01*j;  
                     o_2(1:N1,j)=0.1+0.01*j;  
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                     if(j>1) 
                     c_1(1:N1,N22+j-1)=ii*kc_1(j); 
                     c_2(1:N1,N22+j-1)=ii*kc_2(j); 
                     o_1(1:N1,N22+j-1)=0.1+0.01*j; 
                     o_2(1:N1,N22+j-1)=0.1+0.01*j;     
                     end 
                     ii=ii+1; 
                 end 
                 if (mod(N2,2)==0)  
                     c_1(1:N1,N2)=c_1(1:N1,N2-1)+delta_1; 
                     c_2(1:N1,N2)=c_2(1:N1,N2-1)+delta_2; 
                     o_1(1:N1,N2)=0.2;  
                     o_2(1:N1,N2)=0.2; 
                 end 
                 o_1(1:N1,N2)=0.2; o_1(1:N1,N22)=0.2;                    
                 o_2(1:N1,N2)=0.2; o_2(1:N1,N22)=0.2; 
                 w1_1=0.02*rand(N2,N1);  
                 w2_1=0.02*rand(N2,N1);  
                 b_1=0.02*rand(N2,1);  
                 w1_2=0.02*rand(N2,N1);  
                 w2_2=0.02*rand(N2,N1);  
                 b_2=0.02*rand(N2,1);                  
                 [c,o,w1,w2,b,xin,y,yc,r1]=chanel_n1(N1,N2,M,c,o,w1,w2,b);      
    
    case 1, regim=1;              
        norm_1=minmax(yc_1) 
        norm_2=minmax(yc_2)      
              delta_1=(abs(norm_1(1))+abs(norm_1(2)))/(N2-1)  
              delta_2=(abs(norm_2(1))+abs(norm_2(2)))/(N2-1)  
              c_1(1:N1,1:N2)=0;  
              c_2(1:N1,1:N2)=0; 
              N22=ceil(N2/2); 
                 ii=0; kc_1(1:N22)=0; kc_2(1:N22)=0; 
                 for j=1:N22 
                     kc_1(j)=delta_1*(j-1)/j;  
                     kc_2(j)=delta_2*(j-1)/j; 
                     c_1(1:N1,j)=0-ii*kc_1(j); 
                     c_2(1:N1,j)=0-ii*kc_2(j); 
                     o_1(1:N1,j)=0.1+0.01*j; 
                     o_2(1:N1,j)=0.1+0.01*j;  
                     if(j>1) 
                         c_1(1:N1,N22+j-1)=ii*kc_1(j); 
                         c_2(1:N1,N22+j-1)=ii*kc_2(j); 
                         o_1(1:N1,N22+j-1)=0.1+0.01*j; 
                         o_2(1:N1,N22+j-1)=0.1+0.01*j; 
                     end 
                     ii=ii+1; 
                 end 
                 if (mod(N2,2)==0) % N2-n.*2 where n=floor(N2./2) if 2~=0 
                     c_1(1:N1,N2)=c_1(1:N1,N2-1)+delta_1; 
                     c_2(1:N1,N2)=c_2(1:N1,N2-1)+delta_2; 
                     o_1(1:N1,N2)=0.2;   
                     o_2(1:N1,N2)=0.2; 
                 end 
                 o_1(1:N1,N2)=0.2; o_1(1:N1,N22)=0.2;                    
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                 o_2(1:N1,N2)=0.2; o_2(1:N1,N22)=0.2; 
                 w1_1=0.02*rand(N2,N1);  
                 w2_1=0.02*rand(N2,N1);  
                 b_1=0.02*rand(N2,1);  
                 w1_2=0.02*rand(N2,N1);  
                 w2_2=0.02*rand(N2,N1);  
                 b_2=0.02*rand(N2,1);  
  
    case 2, fpt=fopen(fname,'r'); 
        [c]=fscanf(fpt,'%f \n',[N1,N2]); 
        [o]=fscanf(fpt,'%f \n',[N1,N2]); 
        [w1]=fscanf(fpt,'%f \n',[N2,N1]); 
        [w2]=fscanf(fpt,'%f \n',[N2,N1]); 
        [b]=fscanf(fpt,'%f \n',[N2]); 
        pause         
    case 3, fpt = fopen(fname,'w'); 
        fprintf(fpt,'%f %f %f \n',c,o,w1,w2,b) 
        fclose(fpt); 
        pause 
        [c,o,w1,w2,b,xin,y,yc,r1]=chanel_n1(N1,N2,MM,c,o,w1,w2,b); 
    case 4, regim=4; 
        chaneld_n1(N1,N2,MM,c,o,w1,w2,b,n,fk,xin,y,r1,regim) 
        [c,o,w1,w2,b,xin,y,yc,r1]=chanel_n1(N1,N2,MM,c,o,w1,w2,b) 
    case 5, 
    case 6, 
    otherwise disp('unknown') 
end 
 
global xin r1 fk   
if regim==1 
    a_1=input('Enter new learning rate:'); %for in-phase (real part) 
    a_2=input('Enter new learning rate:'); %for quadrature (imaginary part) 
end 
 
for t=(N1):fk;  
    Data(t,:)=[xin_1(t) xin_1(t-1) xin_1(t-2) xin_1(t-3)];     
    Data1(t,:)=[yc_1(t-3) yc_1(t-3) yc_1(t-1) yc_1(t)];  
    if(t>N1) 
        tN1=10*t+N1;          
        z1(tN1)=yc_1(t);  z2(tN1)=yc_1(t-1);  
    end 
end; 
Data;  
ind1 = find(xin_1(:,1) > 0);  
ind2 = find(xin_1(:,1) < 0);  
for t=2:fk 
    zz1(t)=yc_1(t);   zz2(t)=yc_1(t-1); 
end 
plot(z2,z1,'*'); 
xlabel('x(k) no noise'); ylabel('x(k-1)');  
pause 
%========================================================= 
for t=(N1):fk;  
    Data(t,:)=[xin_1(t) xin_1(t-1) xin_1(t-2) xin_1(t-3)];    
    if(t>N1) 



109 
  

        tN1=10*t+N1;         
        z1(tN1)=y_1(t);  z2(tN1)=y_1(t-1);  
    end 
end; 
Data;  
ind1 = find(xin_1(:,1) > 0);  
ind2 = find(xin_1(:,1) < 0);  
for t=2:fk 
    zz1(t)=y_1(t);   zz2(t)=y_1(t-1); 
end 
plot(z2,z1,'*'); 
xlabel('x(k) with noise'); ylabel('x(k-1)'); %channel state with noise  
pause 
 
if regim==1 
[c,o,w1,w2,b,a]=nefuz_train2_n1(regim,N1,N2,MM,Data,fk,epoch,a_1,a_2,c_1,… 
                o_1,w1_1,w2_1,b_1);  
end 
[row,col]=size(Data2) 
[cfind,ofind,wfind1,wfind2,bfind,a_1,a_2]=nefuz_train2_dfen1(regim,M,N1,… 
      N2,MM,Data,Data2,Data3,Data4,Data5,fk,n,epoch,a_1,a_2,c_1,o_1,c_2,… 
      o_2,w1_1,w2_1,w1_2,w2_2,b_1,b_2,SNR_yc_1,SNR_yc_2,noise_var,xin_1,… 
      y_qam_1,y_qam_1_out1,y_qam_1_out2,nsamp,y_re,y_im,y_re_2,y_im_2,… 
      y_1,y_2,min_error,operation,chan_mod,mapping);   
for t=(N1+1):n;           
    Data4(t,:)=[y_1(t) y_1(t-1) y_1(t-2) y_1(t-3) y_1(t-4)].';  
    Data5(t,:)=[y_2(t) y_2(t-1) y_2(t-2) y_2(t-3) y_2(t-4)].';  
    for p=1:col-1  
        x_1(p)=Data4(t,p); 
        x_2(p)=Data5(t,p); 
        out_1(t)=Data2(t,p); 
        out_2(t)=Data3(t,p); 
    end     
end; 
 
function [a1,a2,a3]=chanel_coef(aa1,aa2,aa3,n);  
function [r1,sigma]=noise(n,noise_var);  
 
function 
[ys_1,ys_2,summin_1,summin_2,minm_1,minm_2,m_1,m_2,ym_1,ym_2,net_1,net_2]=… 
        nefuz_n1(N1,N2,MM,x_1,x_2,c_1,o_1,c_2,o_2,w1_1,w2_1,w1_2,w2_2,b_1,… 
        b_2,min_error); 
m_1(1:N1,1:N2)=0; minm_1(1:N2)=0;  
for p=1:N1 
    for j=1:N2         
        m_1(p,j)=exp(-(((x_1(p)-c_1(p,j))/o_1(p,j))^2));           
    if 1<=j  
    minm_1(j)=m_1(p,j)*m_1(p,j);  
    end      
    end  
end 
summin_1=0; 
for j=1:N2     
    for p=1:N1        
        if m_1(p,j)<=0.1 
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           m_1(p,j)=0; 
        end 
        if m_1(p,j)~=0 
            if minm_1(j)>m_1(p,j) 
                minm_1(j)=m_1(p,j); 
            end 
        end 
    end 
    if minm_1(j)>=10 
        minm_1(j)=0; 
    end 
end 
summin_1=sum(minm_1);  
for j=1:N2 
    net_1(j)=0; 
    for p=1:N1 
        net_1(j)=net_1(j)+x_1(p)*x_1(p)*w1_1(j,p)+x_1(p)*w2_1(j,p);        
    end 
    net_1(j)=net_1(j)+b_1(j);  
end 
for p=1:MM  
    ym_1(p)=0;     
    for j=1:N2         
        ym_1(p)=ym_1(p)+net_1(j)*minm_1(j);         
    end 
    if summin_1==0 
        ys_1(p)=0;         
    else 
        ys_1(p)=ym_1(p)/summin_1;       
    end     
end  
%-------------------------------------------------------------------------- 
for p=1:N1 
    for j=1:N2         
        m_2(p,j)=exp(-(((x_2(p)-c_2(p,j))/o_2(p,j))^2));   
           
    if 1<=j  
    minm_2(j)=m_2(p,j)*m_2(p,j);  
    end     
    end  
end 
summin_2=0; 
for j=1:N2     
    for p=1:N1         
        if m_2(p,j)<=0.1 
           m_2(p,j)=0; 
        end 
        if m_2(p,j)~=0 
            if minm_2(j)>m_2(p,j) 
                minm_2(j)=m_2(p,j); 
            end 
        end 
    end 
    if minm_2(j)>=10 
        minm_2(j)=0; 
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    end 
end 
summin_2=sum(minm_2);  
for j=1:N2 
    net_2(j)=0; 
    for p=1:N1 
        net_2(j)=net_2(j)+x_2(p)*x_2(p)*w1_2(j,p)+x_2(p)*w2_2(j,p);         
    end 
    net_2(j)=net_2(j)+b_2(j);   
end 
for p=1:MM  
    ym_2(p)=0;     
    for j=1:N2         
        ym_2(p)=ym_2(p)+net_2(j)*minm_2(j);          
    end 
    if summin_2==0 
        ys_2(p)=0;         
    else 
        ys_2(p)=ym_2(p)/summin_2;          
    end     
end  
 
function[c,o,w1,w2,b,a_1,a_2]=nefuz_train2_n1(regim,N1,N2,MM,Data,fk,… 
         epoch,a_1,a_2,c,o,w1,w2,b);   
function 
[c,o,w1,w2,b]=chaneld_dfen1(N1,N2,MM,c,o,w1,w2,b,n,fk,xin,y,r1,regim);  
function [cfind_1,cfind_2,ofind_1,ofind_2,wfind1_1,wfind1_2,wfind2_1,… 
         wfind2_2,bfind_1,bfind_2,a_1,a_2] = nefuz_train2_dfen1(regim,M,… 
         N1,N2,MM,Data,Data2,Data3,Data4,Data5,fk,n,epoch,a_1,a_2,c_1,… 
         o_1,c_2,o_2,w1_1,w2_1,w1_2,w2_2,b_1,b_2,SNR_yc_1,SNR_yc_2,… 
         noise_var,xin_1,y_qam_1,y_qam_1_out1,y_qam_1_out2,nsamp,y_re,… 
         y_im,y_re_2,y_im_2,y_1,y_2,min_error,operation,chan_mod,mapping);                                                               
w1o_1=w1_1; w2o_1=w2_1; bo_1=b_1;co_1=c_1;oo_1=o_1; 
w1o_2=w1_2; w2o_2=w2_2; bo_2=b_2;co_2=c_2;oo_2=o_2; 
[row,col]=size(Data2); 
time_begin = cputime; 
%------------TESTING THE SIGNALS=> CALCULATING BER AND MSE, PLOTTING 
%  THE CONVERGENCE CURVES--- 
epoc1=1; 
epoch=2000; 
while epoc1<=epoch; 
     
    t_er_1(epoc1)=0; 
    t_er_1_d(epoc1)=0; 
    num_err(epoc1)=0; 
    t_er_4(epoc1)=0;  
    t_er_2(epoc1)=0;  
    t_er_3(epoc1)=0;  
    for t=(N1):n;  
        for p=1:col-1 
            x_1(p)=Data4(t,p); 
            x_2(p)=Data5(t,p); 
            out_1(t)=Data2(t,p);  
            out_2(t)=Data3(t,p);  
        end         
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[ys_1,ys_2,summin_1,summin_2,minm_1,minm_2,m_1,m_2,ym_1,ym_2,net_1,net_2]=… 
            nefuz_n1(N1,N2,MM,x_1,x_2,c_1,o_1,c_2,o_2,w1_1,w2_1,w1_2,w2_2,… 
            b_1,b_2,min_error);        
        er_1(t)=out_1(t)-ys_1;         
        er_1_d(t)=0;  
        er_2(t)=out_2(t)-ys_2; 
        erh_1=er_1(t);  
        erh_2=er_2(t);   
         
        if t<=fk        
        if((summin_1~=0)&&(abs(er_1(t))>min_error))            
        [c_1,o_1,w1_1,w2_1,b_1,w1o_1,w2o_1,bo_1] = trainf_n1_1(N1,N2,MM,… 
             x_1,erh_1,minm_1,summin_1,m_1,ys_1,a_1,c_1,o_1,w1_1,w2_1,… 
             b_1,ym_1,net_1,w1o_1,w2o_1,bo_1);  
        er_3(t)=er_1(t);  
        t_er_2(epoc1)=t_er_2(epoc1)+(er_3(t)*er_3(t))/2;          
        end    
        if((summin_2~=0)&&(abs(er_2(t))>min_error))            
        [c_2,o_2,w1_2,w2_2,b_2,w1o_2,w2o_2,bo_2] = trainf_n1_2(N1,N2,MM,… 
                 x_2,erh_2,minm_2,summin_2,m_2,ys_2,a_2,c_2,… 
                 o_2,w1_2,w2_2,b_2,ym_2,net_2,w1o_2,w2o_2,bo_2);  
        er_4(t)=er_2(t);  
        t_er_3(epoc1)=t_er_3(epoc1)+(er_4(t)*er_4(t))/2;         
        end    
        end  
        t_er_2_3_average(epoc1)=(t_er_2(epoc1)+t_er_3(epoc1))/2; 
        t_er_1_4_average(epoc1)=(t_er_1(epoc1)+t_er_4(epoc1))/2; 
        t_er_1(epoc1)=t_er_1(epoc1)+er_1(t);    
        t_er_1_d(epoc1)=t_er_1_d(epoc1)+er_1_d(t);  
        t_er_4(epoc1)=t_er_4(epoc1)+er_2(t);                 
             
    end;       
     
    ser_1=t_er_1(epoc1);  
    if epoc1==1   
        ser0_1=ser_1; 
    end 
    decay_1=(ser0_1-ser_1)/ser0_1; 
    if(decay_1<=0) 
        decay0_1=-1;  decay1_1=-1; 
    end 
    if((mod(epoc1,5)==0)) 
        if(decay0_1>0) 
            a_1=a_1*1.01;             
        end 
        if(decay0_1<0) 
            a_1=a_1/1.011;             
        end 
        decay1_1=decay0_1; 
        decay0_1=1; 
    end 
    ser0_1=ser_1; 
sprintf('%i ser_1=%f decay_1=%f a_1=%f summin_1=%f',epoc1,ser_1,… 
                  decay_1,a_1,summin_1) 
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    if epoc1==1 
        serfind_1=ser_1; 
    end 
    if ser_1<serfind_1 
        serfind_1=ser_1; cfind_1=c_1; ofind_1=o_1; wfind1_1=w1_1;… 
                  wfind2_1=w2_1;  bfind_1=b_1; 
    end 
 %-------------------------------------------------------------------------    
    ser_2=t_er_4(epoc1);  
    if epoc1==1 
        ser0_2=ser_2; 
    end 
    decay_2=(ser0_2-ser_2)/ser0_2; 
    if(decay_2<=0) 
        decay0_2=-1;  decay1_2=-1; 
    end 
    if((mod(epoc1,5)==0)) 
        if(decay0_2>0) 
            a_2=a_2*1.01; 
        end 
        if(decay0_2<0) 
            a_2=a_2/1.011; 
        end 
        decay1_2=decay0_2; 
        decay0_2=1; 
    end 
    ser0_2=ser_2; 
sprintf('%i ser_2=%f decay_2=%f a_2=%f summin_2=%f',epoc1,ser_2,… 
                  decay_2,a_2,summin_2) 
    if epoc1==1 
        serfind_2=ser_2; 
    end 
    if ser_2<serfind_2 
        serfind_2=ser_2; cfind_2=c_2; ofind_2=o_2;   wfind1_2=w1_2;… 
                  wfind2_2=w2_2; bfind_2=b_2; 
    end       
    
    t_er_2_total(epoc1)=log10(t_er_2(epoc1)/fk);  
    t_er_3_total(epoc1)=log10(t_er_3(epoc1)/fk);  
    t_er_2_3_average_total(epoc1)=log10(t_er_2_3_average(epoc1)/fk); 
    epoc1=epoc1+1; 
end; 
 
plot(t_er_2_total); 
xlabel('k'); ylabel('error (dB)'); 
 
plot(t_er_3_total); 
xlabel('k'); ylabel('error (dB)'); 
pause 
 
plot(t_er_2_3_average_total); 
xlabel('k'); ylabel('error (dB)'); 
pause 
time_end=cputime-time_begin 
%================================================================= 
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epoch=300 
for t=(1):n; 
epoc1=1;  
     
    while epoc1<=epoch; 
    t_er_1(epoc1)=0; 
    t_er_4(epoc1)=0; 
    t_er_1_2(t,epoc1)=0;                     
    t_er_4_2(t,epoc1)=0;     
        for p=1:col-1 
            x_1(p)=Data4(t,p); 
            x_2(p)=Data5(t,p); 
            out_1(t)=Data2(t,p);  
            out_2(t)=Data3(t,p);  
        end 
        
[ys_1,ys_2,summin_1,summin_2,minm_1,minm_2,m_1,m_2,ym_1,ym_2,net_1,net_2]=… 
    nefuz_n1(N1,N2,MM,x_1,x_2,c_1,o_1,c_2,o_2,w1_1,w2_1,w1_2,w2_2,b_1,b_2); 
        er_1(t,epoc1)=y_re(t)-ys_1;        
        er_2(t,epoc1)=y_im(t)-ys_2; 
        er_1_2(t)=y_re(t)-ys_1;        
        er_2_2(t)=y_im(t)-ys_2; 
        erh_1=er_1(t,epoc1);   
        erh_2=er_2(t,epoc1);   
                          
       if t<=fk        
        if((summin_1~=0)&&(abs(er_1(t,epoc1))>min_error))          
        
[c_1,o_1,w1_1,w2_1,b_1,w1o_1,w2o_1,bo_1]=trainf_n1_1(N1,N2,MM,x_1,erh_1,… 
                 minm_1,summin_1,m_1,ys_1,a_1,c_1,o_1,w1_1,w2_1,b_1,ym_1,… 
                 net_1,w1o_1,w2o_1,bo_1);         
        end            
         
        if((summin_2~=0)&&(abs(er_2(t,epoc1))>min_error))           
        [c_2,o_2,w1_2,w2_2,b_2,w1o_2,w2o_2,bo_2]=trainf_n1_2(N1,N2,MM,x_2,… 
                     erh_2,minm_2,summin_2,m_2,ys_2,a_2,c_2,o_2,w1_2,w2_2,… 
                     b_2,ym_2,net_2,w1o_2,w2o_2,bo_2);        
        end        
       end           
        eq_1(t)=ys_1;         
        eq_2(t)=ys_2;         
        t_er_1(epoc1)=t_er_1(epoc1)+er_1_2(t);   
        t_er_4(epoc1)=t_er_4(epoc1)+er_2_2(t);  
      
    ser_1=t_er_1(epoc1);  
    if epoc1==1  
        ser0_1=ser_1; 
    end 
    decay_1=(ser0_1-ser_1)/ser0_1; 
    if(decay_1<=0) 
        decay0_1=-1;  decay1_1=-1; 
    end 
    if((mod(epoc1,5)==0)) 
        if(decay0_1>0) 
            a_1=a_1*1.01; 
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        end 
        if(decay0_1<0) 
            a_1=a_1/1.011; 
        end 
        decay1_1=decay0_1; 
        decay0_1=1; 
    end 
    ser0_1=ser_1; 
sprintf('signal=%f %i ser_1=%f decay_1=%f a_1=%f summin_1=%f',… 
                t,epoc1,ser_1,decay_1,a_1,summin_1) 
    if epoc1==1 
        serfind_1=ser_1; 
    end 
    if ser_1<serfind_1 
        serfind_1=ser_1;  cfind_1=c_1;  ofind_1=o_1;  wfind1_1=… 
                  w1_1;  wfind2_1=w2_1;  bfind_1=b_1; 
    end     
 %-------------------------------------------------------------------------     
    ser_2=t_er_4(epoc1);  
    if epoc1==1 
        ser0_2=ser_2; 
    end 
    decay_2=(ser0_2-ser_2)/ser0_2; 
    if(decay_2<=0) 
        decay0_2=-1;  decay1_2=-1; 
    end 
    if((mod(epoc1,5)==0)) 
        if(decay0_2>0) 
            a_2=a_2*1.01; 
        end 
        if(decay0_2<0) 
            a_2=a_2/1.011; 
        end 
        decay1_2=decay0_2; 
        decay0_2=1; 
    end 
    ser0_2=ser_2; 
sprintf('signal=%f %i ser_2=%f decay_2=%f a_2=%f summin_2=%f',… 
                t,epoc1,ser_2,decay_2,a_2,summin_2) 
    if epoc1==1 
        serfind_2=ser_2; 
    end 
    if ser_2<serfind_2 
        serfind_2=ser_2;  cfind_2=c_2;  ofind_2=o_2;  wfind1_2=… 
                  w1_2;  wfind2_2=w2_2;  bfind_2=b_2; 
    end     
%--------------------------------------------------------------------------   
    epoc1=epoc1+1;     
    end     
end;  
 
time_end=cputime-time_begin 
%=================================================================   
        if operation==1  
          if chan_mod==1 %if channel is linear 
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           save Q4_linear1.txt BER_3 -append -ascii    
           save Q4_linear2.txt SNR_yc_1 -append -ascii  
           load Q4_linear1.txt; load Q4_linear2.txt; 
           [r_Q4_lin_1,c_Q4_lin_1]=size(Q4_linear1);  
           [r_Q4_lin_2,c_Q4_lin_2]=size(Q4_linear2);            
          elseif chan_mod==3 %if channel is non-linear 
           save Q4_nonlinear1.txt BER_3 -append -ascii    
           save Q4_nonlinear2.txt SNR_yc_1 -append -ascii  
           load Q4_nonlinear1.txt; load Q4_nonlinear2.txt; 
           [r_Q4_nonlin_1,c_Q4_nonlin_1]=size(Q4_nonlinear1); 
           [r_Q4_nonlin_2,c_Q4_nonlin_2]=size(Q4_nonlinear2);            
          end 
        end 
        %------------------------------------------------------ 
        if operation==2 %When M=16 Constellation 
          if chan_mod==1 %if channel is linear 
           save Q16_linear1.txt BER_3 -append -ascii    
           save Q16_linear2.txt SNR_yc_1 -append -ascii  
           load Q16_linear1.txt; load Q16_linear2.txt; 
           [r_Q16_lin_1,c_Q16_lin_1]=size(Q16_linear1);  
           [r_Q16_lin_2,c_Q16_lin_2]=size(Q16_linear2);           
          elseif chan_mod==3 %if channel is non-linear 
           save Q16_nonlinear1.txt BER_3 -append -ascii    
           save Q16_nonlinear2.txt SNR_yc_1 -append -ascii  
           load Q16_nonlinear1.txt; load Q16_nonlinear2.txt; 
           [r_Q16_nonlin_1,c_Q16_nonlin_1]=size(Q16_nonlinear1);  
           [r_Q16_nonlin_2,c_Q16_nonlin_2]=size(Q16_nonlinear2);            
          end 
        end        
%--------------------------------------------------------------------------       
for int=1:1:120  
    if r_1==10*int 
            for p=1:1:10 
            data1_1(p)=data1(10*(int-1)+p); 
            data2_2(p)=data2(10*(int-1)+p); 
            end 
        BERavg=sum(data1_1)/10;%average BER of 10 times(independent trials)  
        SNRavg=sum(data2_2)/10;%average SNR of 10 times(independent trials) 
        save data3.txt BERavg -append -ascii 
        save data4.txt SNRavg -append -ascii   
          
    elseif  r_1>10*int            
            for p=1:1:10 
            data1_1(p)=data1(10*(int-1)+p); 
            data2_2(p)=data2(10*(int-1)+p); 
            end             
        BERavg=sum(data1_1)/10;%average BER of 10 times(independent trials)  
        SNRavg=sum(data2_2)/10;%average SNR of 10 times(independent trials)        
        load data3.txt; load data4.txt; 
        [r_3,c_3]=size(data3); [r_4,c_4]=size(data4); 
        equality_1=0; equality_2=0; 
         for nn=1:1:r_3;         
           if floor((10^6)*data3(nn))==floor((10^6)*BERavg)                                                                             
               equality_1=1;  
           end 
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           if floor((10^6)*data4(nn))==floor((10^6)*SNRavg) 
               equality_2=1; 
           end 
         end 
         
        if r_3<floor((r_1)/10) && equality_1~=1               
           save data3.txt BERavg -append -ascii            
        end 
        if r_4<floor((r_2)/10) && equality_2~=1               
           save data4.txt SNRavg -append -ascii 
        end 
        load data3.txt; load data4.txt; 
        [r_3,c_3]=size(data3); [r_4,c_4]=size(data4);         
    end 
    %---------------------------------------------------------------------- 
  if operation==1 %When M=4 Constellation 
   if chan_mod==1 %if channel is linear    
    if r_Q4_lin_1==10*int 
            for p=1:1:10 
            Q4_linear1_1(p)=Q4_linear1(10*(int-1)+p); 
            Q4_linear2_2(p)=Q4_linear2(10*(int-1)+p); 
            end 
        BERavg=sum(Q4_linear1_1)/10; 
        SNRavg=sum(Q4_linear2_2)/10;  
        save Q4_linear3.txt BERavg -append -ascii 
        save Q4_linear4.txt SNRavg -append -ascii   
          
    elseif  r_Q4_lin_1>10*int             
            for p=1:1:10 
            Q4_linear1_1(p)=Q4_linear1(10*(int-1)+p); 
            Q4_linear2_2(p)=Q4_linear2(10*(int-1)+p); 
            end             
        BERavg=sum(Q4_linear1_1)/10; 
        SNRavg=sum(Q4_linear2_2)/10;      
        load Q4_linear3.txt; load Q4_linear4.txt; 
        [r_Q4_lin_3,c_Q4_lin_3]=size(Q4_linear3);  
        [r_Q4_lin_4,c_Q4_lin_4]=size(Q4_linear4); 
        equality_1=0; equality_2=0; 
         for nn=1:1:r_Q4_lin_3;         
           if floor((10^6)*Q4_linear3(nn))==floor((10^6)*BERavg)                                                                  
               equality_1=1;   
           end 
           if floor((10^6)*Q4_linear4(nn))==floor((10^6)*SNRavg) 
               equality_2=1; 
           end 
         end 
         
        if r_Q4_lin_3<floor((r_Q4_lin_1)/10) && equality_1~=1               
           save Q4_linear3.txt BERavg -append -ascii            
        end 
        if r_Q4_lin_4<floor((r_Q4_lin_2)/10) && equality_2~=1               
           save Q4_linear4.txt SNRavg -append -ascii 
        end 
        load Q4_linear3.txt; load Q4_linear4.txt; 
        [r_Q4_lin_3,c_Q4_lin_3]=size(Q4_linear3);  
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        [r_Q4_lin_4,c_Q4_lin_4]=size(Q4_linear4);         
    end 
   end 
   %------------------------------------------------------------------ 
   if chan_mod==3 %if channel is non-linear    
    if r_Q4_nonlin_1==10*int 
            for p=1:1:10 
            Q4_nonlinear1_1(p)=Q4_nonlinear1(10*(int-1)+p); 
            Q4_nonlinear2_2(p)=Q4_nonlinear2(10*(int-1)+p); 
            end 
        BERavg=sum(Q4_nonlinear1_1)/10;  
        SNRavg=sum(Q4_nonlinear2_2)/10;  
        save Q4_nonlinear3.txt BERavg -append -ascii 
        save Q4_nonlinear4.txt SNRavg -append -ascii   
          
    elseif  r_Q4_nonlin_1>10*int             
            for p=1:1:10 
            Q4_nonlinear1_1(p)=Q4_nonlinear1(10*(int-1)+p); 
            Q4_nonlinear2_2(p)=Q4_nonlinear2(10*(int-1)+p); 
            end             
        BERavg=sum(Q4_nonlinear1_1)/10;  
        SNRavg=sum(Q4_nonlinear2_2)/10;         
        load Q4_nonlinear3.txt; load Q4_nonlinear4.txt; 
        [r_Q4_nonlin_3,c_Q4_nonlin_3]=size(Q4_nonlinear3);  
        [r_Q4_nonlin_4,c_Q4_nonlin_4]=size(Q4_nonlinear4); 
        equality_1=0; equality_2=0; 
         for nn=1:1:r_Q4_nonlin_3;         
           if floor((10^6)*Q4_nonlinear3(nn))==floor((10^6)*BERavg)                                                                     
               equality_1=1;   
           end 
           if floor((10^6)*Q4_nonlinear4(nn))==floor((10^6)*SNRavg) 
               equality_2=1; 
           end 
         end 
         
        if r_Q4_nonlin_3<floor((r_Q4_nonlin_1)/10) && equality_1~=1               
           save Q4_nonlinear3.txt BERavg -append -ascii            
        end 
        if r_Q4_nonlin_4<floor((r_Q4_nonlin_2)/10) && equality_2~=1               
           save Q4_nonlinear4.txt SNRavg -append -ascii 
        end 
        load Q4_nonlinear3.txt; load Q4_nonlinear4.txt; 
        [r_Q4_nonlin_3,c_Q4_nonlin_3]=size(Q4_nonlinear3);  
        [r_Q4_nonlin_4,c_Q4_nonlin_4]=size(Q4_nonlinear4);         
    end 
   end       
  end %ends operation==1 
%-------------------------------------------------------------------------- 
  if operation==2 %When M=16 Constellation 
   if chan_mod==1 %if channel is linear    
    if r_Q16_lin_1==10*int 
            for p=1:1:10 
            Q16_linear1_1(p)=Q16_linear1(10*(int-1)+p); 
            Q16_linear2_2(p)=Q16_linear2(10*(int-1)+p); 
            end 
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        BERavg=sum(Q16_linear1_1)/10;  
        SNRavg=sum(Q16_linear2_2)/10;  
        save Q16_linear3.txt BERavg -append -ascii 
        save Q16_linear4.txt SNRavg -append -ascii   
          
    elseif  r_Q16_lin_1>10*int             
            for p=1:1:10 
            Q16_linear1_1(p)=Q16_linear1(10*(int-1)+p); 
            Q16_linear2_2(p)=Q16_linear2(10*(int-1)+p); 
            end             
        BERavg=sum(Q16_linear1_1)/10;  
        SNRavg=sum(Q16_linear2_2)/10;         
        load Q16_linear3.txt; load Q16_linear4.txt; 
        [r_Q16_lin_3,c_Q16_lin_3]=size(Q16_linear3);  
        [r_Q16_lin_4,c_Q16_lin_4]=size(Q16_linear4); 
        equality_1=0; equality_2=0; 
         for nn=1:1:r_Q16_lin_3;         
           if floor((10^6)*Q16_linear3(nn))==floor((10^6)*BERavg)                                                                                                               
               equality_1=1;  
           end 
           if floor((10^6)*Q16_linear4(nn))==floor((10^6)*SNRavg) 
               equality_2=1; 
           end 
         end 
         
        if r_Q16_lin_3<floor((r_Q16_lin_1)/10) && equality_1~=1               
           save Q16_linear3.txt BERavg -append -ascii            
        end 
        if r_Q16_lin_4<floor((r_Q16_lin_2)/10) && equality_2~=1               
           save Q16_linear4.txt SNRavg -append -ascii 
        end 
        load Q16_linear3.txt; load Q16_linear4.txt; 
        [r_Q16_lin_3,c_Q16_lin_3]=size(Q16_linear3);  
        [r_Q16_lin_4,c_Q16_lin_4]=size(Q16_linear4);         
    end  
   end 
   %--------------------------------------------------------------------- 
   if chan_mod==3 %if channel is non-linear    
    if r_Q16_nonlin_1==10*int 
            for p=1:1:10 
            Q16_nonlinear1_1(p)=Q16_nonlinear1(10*(int-1)+p); 
            Q16_nonlinear2_2(p)=Q16_nonlinear2(10*(int-1)+p); 
            end 
        BERavg=sum(Q16_nonlinear1_1)/10;%average BER of 10 times 
        SNRavg=sum(Q16_nonlinear2_2)/10;%average SNR of 10 times   
        save Q16_nonlinear3.txt BERavg -append -ascii 
        save Q16_nonlinear4.txt SNRavg -append -ascii   
          
    elseif  r_Q16_nonlin_1>10*int             
            for p=1:1:10 
            Q16_nonlinear1_1(p)=Q16_nonlinear1(10*(int-1)+p); 
            Q16_nonlinear2_2(p)=Q16_nonlinear2(10*(int-1)+p); 
            end             
        BERavg=sum(Q16_nonlinear1_1)/10; %average BER of 10 times  
        SNRavg=sum(Q16_nonlinear2_2)/10; %average SNR of 10 times        
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        load Q16_nonlinear3.txt; load Q16_nonlinear4.txt; 
        [r_Q16_nonlin_3,c_Q16_nonlin_3]=size(Q16_nonlinear3);  
        [r_Q16_nonlin_4,c_Q16_nonlin_4]=size(Q16_nonlinear4); 
        equality_1=0; equality_2=0; 
         for nn=1:1:r_Q16_nonlin_3;         
           if floor((10^6)*Q16_nonlinear3(nn))==floor((10^6)*BERavg)                                                                                                               
               equality_1=1;  
           end 
           if floor((10^6)*Q16_nonlinear4(nn))==floor((10^6)*SNRavg) 
               equality_2=1; 
           end 
         end 
         
        if r_Q16_nonlin_3<floor((r_Q16_nonlin_1)/10) && equality_1~=1               
           save Q16_nonlinear3.txt BERavg -append -ascii            
        end 
        if r_Q16_nonlin_4<floor((r_Q16_nonlin_2)/10) && equality_2~=1               
           save Q16_nonlinear4.txt SNRavg -append -ascii 
        end 
        load Q16_nonlinear3.txt; load Q16_nonlinear4.txt; 
        [r_Q16_nonlin_3,c_Q16_nonlin_3]=size(Q16_nonlinear3);  
        [r_Q16_nonlin_4,c_Q16_nonlin_4]=size(Q16_nonlinear4);         
    end 
   end 
  end %ends operation==2 
%--------------------------------------------------------------------------     
end %ends int=1:1:120 loop         
%--------------------------------------------------------------------------     
     if operation==1  
        load Q4_linear1.txt; load Q4_linear2.txt;  
        [r_Q4_lin_1,c_Q4_lin_1]=size(Q4_linear1);  
        [r_Q4_lin_2,c_Q4_lin_2]=size(Q4_linear2);         
       if r_Q4_lin_1>=10   
        load Q4_linear3.txt; load Q4_linear4.txt;          
        fpt_Q4_linear3 = fopen('Q4_linear3.txt','r'); 
        fpt_Q4_linear4 = fopen('Q4_linear4.txt','r');         
        [BER_Q4_linear3]=fscanf(fpt_Q4_linear3,'%f\n',[ran 3]);  
        [SNR_Q4_linear4]=fscanf(fpt_Q4_linear4,'%f\n',[ran 3]);                 
        fclose(fpt_Q4_linear3); fclose(fpt_Q4_linear4); 
        semilogy(SNR_Q4_linear4,BER_Q4_linear3,'*--')   
        axis ([0 8.05 0.0001 1]) %axis tight 
        grid on 
        xlabel('SNR_Q4_linear (dB)'); ylabel('BER_Q4_linear '); 
        title('SNR vs BER'); 
        legend('Linear Channel M=4',1); 
        pause 
        hold on; 
       end 
        load Q4_nonlinear1.txt; load Q4_nonlinear2.txt; 
        [r_Q4_nonlin_1,c_Q4_nonlin_1]=size(Q4_nonlinear1);  
        [r_Q4_nonlin_2,c_Q4_nonlin_2]=size(Q4_nonlinear2); 
       if r_Q4_nonlin_1>=10 
        load Q4_nonlinear3.txt; load Q4_nonlinear4.txt; 
        fpt_Q4_nonlinear3 = fopen('Q4_nonlinear3.txt','r'); 
        fpt_Q4_nonlinear4 = fopen('Q4_nonlinear4.txt','r'); 
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        [BER_Q4_nonlinear3]=fscanf(fpt_Q4_nonlinear3,'%f\n',[ran 3]); 
        [SNR_Q4_nonlinear4]=fscanf(fpt_Q4_nonlinear4,'%f\n',[ran 3]);   
        fclose(fpt_Q4_nonlinear3); fclose(fpt_Q4_nonlinear4);                
        semilogy(SNR_Q4_nonlinear4,BER_Q4_nonlinear3,'^-.r')   
        axis ([0 8.05 0.0001 1]) %axis tight   
        grid on 
        xlabel('SNR_Q4_nonlinear (dB)'); ylabel('BER_Q4_nonlinear '); 
        title('SNR vs BER'); 
        legend('Linear Channel M=4','Non-linear Channel M=4',1);         
        pause 
       end 
     end      
%--------------------------------------------------------------------------   
     if operation==2  
        load Q16_linear1.txt; load Q16_linear2.txt;  
        [r_Q16_lin_1,c_Q16_lin_1]=size(Q16_linear1);  
        [r_Q16_lin_2,c_Q16_lin_2]=size(Q16_linear2);         
       if r_Q16_lin_1>=10   
        load Q16_linear3.txt; load Q16_linear4.txt;          
        fpt_Q16_linear3 = fopen('Q16_linear3.txt','r'); 
        fpt_Q16_linear4 = fopen('Q16_linear4.txt','r');         
        [BER_Q16_linear3]=fscanf(fpt_Q16_linear3,'%f\n',[ran 3]); 
        [SNR_Q16_linear4]=fscanf(fpt_Q16_linear4,'%f\n',[ran 3]);                 
        fclose(fpt_Q16_linear3); fclose(fpt_Q16_linear4); 
        semilogy(SNR_Q16_linear4,BER_Q16_linear3,'*--')    
        axis ([0 10.05 0.001 1])                  
        grid on 
        xlabel('SNR_Q16_linear (dB)'); ylabel('BER_Q16_linear '); 
        title('SNR vs BER'); 
        legend('Linear Channel M=16',1); 
        pause 
        hold on; 
       end 
        load Q16_nonlinear1.txt; load Q16_nonlinear2.txt; 
        [r_Q16_nonlin_1,c_Q16_nonlin_1]=size(Q16_nonlinear1);  
        [r_Q16_nonlin_2,c_Q16_nonlin_2]=size(Q16_nonlinear2); 
       if r_Q16_nonlin_1>=10 
        load Q16_nonlinear3.txt; load Q16_nonlinear4.txt; 
        fpt_Q16_nonlinear3 = fopen('Q16_nonlinear3.txt','r'); 
        fpt_Q16_nonlinear4 = fopen('Q16_nonlinear4.txt','r'); 
        [BER_Q16_nonlinear3]=fscanf(fpt_Q16_nonlinear3,'%f\n',[ran 3]); 
        [SNR_Q16_nonlinear4]=fscanf(fpt_Q16_nonlinear4,'%f\n',[ran 3]);   
        fclose(fpt_Q16_nonlinear3); fclose(fpt_Q16_nonlinear4);                
        semilogy(SNR_Q16_nonlinear4,BER_Q16_nonlinear3,'^-.r')   
        axis ([0 10.05 0.001 1])                       
        grid on 
        xlabel('SNR_Q16_nonlinear (dB)'); ylabel('BER_Q16_nonlinear '); 
        title('SNR vs BER'); 
        legend('Linear Channel M=16','Non-linear Channel M=16',1);         
        pause 
       end 
     end 
%-------------------------------------------------------------------------- 
 %Comparison of 4-QAM and 16-QAM with each other and with theoretical BER 
        M_1=4; M_2=16; 
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        for th=0:1:10         
Theoretical_BER_16(th+1)=(2/log2(M_2))*((sqrt(M_2)-1)/sqrt(M_2))*… 
                         (1-erf(sqrt(3*log2(M_2)/(2*(M_2-1)))*sqrt(th)))         
        end 
        th=0:1:10 
        lengthx=length(th)            
         
        load Q16_linear3.txt; load Q16_linear4.txt;        
        fpt_Q16_linear3 = fopen('Q16_linear3.txt','r'); 
        fpt_Q16_linear4 = fopen('Q16_linear4.txt','r');         
        [BER_Q16_linear3]=fscanf(fpt_Q16_linear3,'%f\n',[ran 3]);  
        [SNR_Q16_linear4]=fscanf(fpt_Q16_linear4,'%f\n',[ran 3]);                 
        fclose(fpt_Q16_linear3); fclose(fpt_Q16_linear4); 
        semilogy(SNR_Q16_linear4,BER_Q16_linear3,'s--')   
        axis ([0 10.05 0.000001 1])                       
        grid on 
        xlabel('SNR_Q16_linear (dB)'); ylabel('BER_Q16_linear '); 
        title('SNR vs BER'); 
        legend('Linear Channel M=16',1); 
        pause 
        hold on; 
   
        load Q16_nonlinear3.txt; load Q16_nonlinear4.txt; 
        fpt_Q16_nonlinear3 = fopen('Q16_nonlinear3.txt','r'); 
        fpt_Q16_nonlinear4 = fopen('Q16_nonlinear4.txt','r'); 
        [BER_Q16_nonlinear3]=fscanf(fpt_Q16_nonlinear3,'%f\n',[ran 3]); 
        [SNR_Q16_nonlinear4]=fscanf(fpt_Q16_nonlinear4,'%f\n',[ran 3]);   
        fclose(fpt_Q16_nonlinear3); fclose(fpt_Q16_nonlinear4);                
        semilogy(SNR_Q16_nonlinear4,BER_Q16_nonlinear3,'o-.r')   
        axis ([0 10.05 0.000001 1])                     
        grid on 
        xlabel('SNR_Q16_nonlinear (dB)'); ylabel('BER_Q16_nonlinear '); 
        title('SNR vs BER'); 
        legend('Linear Channel M=4','Non-linear Channel M=4',… 
               'Linear Channel M=16','Non-linear Channel M=16',1);         
        pause 
         
        Theoretical_2nd_BER_4(1)=7.75*10^-2; 
        Theoretical_2nd_BER_4(2)=5.85*10^-2; 
        Theoretical_2nd_BER_4(3)=3.85*10^-2; 
        Theoretical_2nd_BER_4(4)=2.35*10^-2; 
        Theoretical_2nd_BER_4(5)=1.3*10^-2; 
        Theoretical_2nd_BER_4(6)=6.5*10^-3; 
        Theoretical_2nd_BER_4(7)=2.5*10^-3; 
        Theoretical_2nd_BER_4(8)=8.5*10^-4; 
        Theoretical_2nd_BER_4(9)=1.95*10^-4; 
        Theoretical_2nd_BER_4(10)=3.45*10^-5; 
        Theoretical_2nd_BER_4(11)=3.8*10^-6; 
        semilogy(th,Theoretical_2nd_BER_4,'k-o')        
        pause 
        hold on;         
        Theoretical_2nd_BER_16(1)=1.485*10^-1; 
        Theoretical_2nd_BER_16(2)=1.308*10^-1; 
        Theoretical_2nd_BER_16(3)=1.108*10^-1; 
        Theoretical_2nd_BER_16(4)=8.738*10^-2; 
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        Theoretical_2nd_BER_16(5)=6.568*10^-2; 
        Theoretical_2nd_BER_16(6)=4.635*10^-2; 
        Theoretical_2nd_BER_16(7)=2.97*10^-2; 
        Theoretical_2nd_BER_16(8)=1.75*10^-2; 
        Theoretical_2nd_BER_16(9)=9.7*10^-3; 
        Theoretical_2nd_BER_16(10)=4.94*10^-3; 
        Theoretical_2nd_BER_16(11)=1.98*10^-3; 
        semilogy(th,Theoretical_2nd_BER_16,'k-s') 
        legend('Linear Channel M=4','Non-linear Channel M=4',… 
               'Linear Channel M=16','Non-linear Channel M=16',… 
               'Theoretical BER of 4-QAM','Theoretical BER of 16-QAM',3);  
        pause 
        hold on;      
%================================================================= 
if (epoc1==epoch || epoc1==epoch+1);             
 %-------------Calculating the Equivalent(Reciprocal) Equalizer… 
               Output (Denormalization)---------------------------  
   for k=1:n  
      if operation==1 
        if y_re(k)==-0.75   
        percent_dev_real(k) = ((eq_1(k)-y_re(k))/y_re(k)); 
        eq_1(k) = -1+percent_dev_real(k)*(-1); 
        end         
        if y_re(k)==0.75     
        percent_dev_real(k) = ((eq_1(k)-y_re(k))/y_re(k)); 
        eq_1(k) = 1+percent_dev_real(k)*(1); 
        end 
      
        if y_im(k)==-0.75   
        percent_dev_imag(k) = ((eq_2(k)-y_im(k))/y_im(k)); 
        eq_2(k) = -1+percent_dev_imag(k)*(-1); 
        end         
        if y_im(k)==0.75     
        percent_dev_imag(k) = ((eq_2(k)-y_im(k))/y_im(k));    
        eq_2(k) = 1+percent_dev_imag(k)*(1); 
        end 
     end  
     %-----------------------------------------------------    
     if operation==2 
        if y_re(k)==-1  
        percent_dev_real(k) = ((eq_1(k)-y_re(k))/y_re(k)); 
        eq_1(k) = -3+percent_dev_real(k)*(-3); 
        end 
        if y_re(k)==(-1/3)   
        percent_dev_real(k) = ((eq_1(k)-y_re(k))/y_re(k)); 
        eq_1(k) = -1+percent_dev_real(k)*(-1); 
        end 
        if y_re(k)==(1/3)    
        percent_dev_real(k) = ((eq_1(k)-y_re(k))/y_re(k)); 
        eq_1(k) = 1+percent_dev_real(k)*(1); 
        end 
        if y_re(k)==1  
        percent_dev_real(k) = ((eq_1(k)-y_re(k))/y_re(k)); 
        eq_1(k) = 3+percent_dev_real(k)*(3); 
        end     
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        if y_im(k)==-1   
        percent_dev_imag(k) = ((eq_2(k)-y_im(k))/y_im(k)); 
        eq_2(k) = -3+percent_dev_imag(k)*(-3); 
        end 
        if y_im(k)==(-1/3)  
        percent_dev_imag(k) = ((eq_2(k)-y_im(k))/y_im(k));     
        eq_2(k) = -1+percent_dev_imag(k)*(-1); 
        end 
        if y_im(k)==(1/3)   
        percent_dev_imag(k) = ((eq_2(k)-y_im(k))/y_im(k));     
        eq_2(k) = 1+percent_dev_imag(k)*(1); 
        end 
        if y_im(k)==1   
        percent_dev_imag(k) = ((eq_2(k)-y_im(k))/y_im(k));    
        eq_2(k) = 3+percent_dev_imag(k)*(3); 
        end 
     end 
     %-----------------------------------------------------  
   end  
     
    for t=(1):n;                
                if(t>N1) 
                tN1=10*t+N1;  
            v1_1(t)=eq_1(t);     
            v1_2(t)=eq_2(t);                          
                end                  
    end  
    
v=v1_1+(v1_2)*i 
h = scatterplot(v(1:nsamp*(fk)),nsamp,0,'g*'); 
hold on; 
scatterplot(y_qam_1(1:(fk)),1,0,'k*',h); 
title('Received Signal'); 
legend('Received Signal','Signal Constellation'); 
axis([-15 15 -15 15]); % Set axis ranges. 
hold off; 
pause 
 
%% Demodulation 
% Demodulate signal  
zsym = qamdemod(v,M); 
 
% A. Define a vector that inverts the mapping operation. 
[dummy demapping] = sort(mapping); 
% Initially, demapping has values between 1 and M. 
% Subtract 1 to obtain values between 0 and M-1. 
demapping = demapping - 1; 
 
% B. Map between Gray and binary coding. 
zsym = demapping(zsym+1); 
 
% C. Do ordinary decimal-to-binary mapping. 
z = de2bi(zsym,'left-msb'); 
% Convert z from a matrix to a vector. 
z = reshape(z.',prod(size(z)),1); 
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%% BER Computation 
% Compare x and z to obtain the number of errors and 
% the bit error rate. 
[number_of_errors,bit_error_rate] = biterr(xin_1,z) 
pause 
 
end 
%================================================================= 
function[c_1,o_1,w1_1,w2_1,b_1,w1o_1,w2o_1,bo_1] = trainf_n1_1… 
        (N1,N2,M,x_1,erh_1,minm_1,summin_1,m_1,ys_1,a_1,c_1,o_1,… 
         w1_1,w2_1,b_1,ym_1,net_1,w1o_1,w2o_1,bo_1); 
a2=0.2;   %a2 is the momentum  
w2o1_1=w2_1; 
w1o1_1=w1_1; 
bo1_1=b_1; 
co1_1=c_1; 
oo1_1=o_1; 
for j=1:N2 
    for p=1:N1         
        w1_1(j,p)=w1_1(j,p)+a_1*erh_1*x_1(p)*x_1(p)*… 
                  minm_1(j)/summin_1+a2*(w1_1(j,p)-w1o_1(j,p));  
        w2_1(j,p)=w2_1(j,p)+a_1*erh_1*x_1(p)*x_1(p)*… 
                  minm_1(j)/summin_1+a2*(w2_1(j,p)-w2o_1(j,p));  
    end 
end 
 
for j=1:N2   
    b_1(j)=b_1(j)+a_1*erh_1*minm_1(j)/summin_1+a2*(b_1(j)-bo_1(j));  
end 
sec_1=1; 
if sec_1==1 
    for j=1:N2 
        kw(j)=(net_1(j)-ys_1)/summin_1; %using defuzification  
    end 
     
    for p=1:N1 
        for j=1:N2             
            c_1(p,j)=c_1(p,j)+a_1*erh_1*kw(j)*minm_1(j)*2*… 
                     (x_1(p)-c_1(p,j))/(o_1(p,j)^2); 
            o_1(p,j)=o_1(p,j)+a_1*erh_1*kw(j)*minm_1(j)*2*… 
                     ((x_1(p)-c_1(p,j))^2)/(o_1(p,j)^3); 
        end 
    end 
    w2o_1=w2o1_1; 
    w1o_1=w1o1_1; 
    bo_1=bo1_1; 
    co_1=co1_1; 
    oo_1=oo1_1; 
end 
%------------------------------------------------------------------------- 
function[c_2,o_2,w1_2,w2_2,b_2,w1o_2,w2o_2,bo_2] = trainf_n1_2… 
      (N1,N2,M,x_2,erh_2,minm_2,summin_2,m_2,ys_2,a_2,c_2,o_2,w1_2,… 
       w2_2,b_2,ym_2,net_2,w1o_2,w2o_2,bo_2);     
a2=0.2;   
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w2o1_2=w2_2; 
w1o1_2=w1_2; 
bo1_2=b_2; 
co1_2=c_2; 
oo1_2=o_2; 
for j=1:N2 
    for p=1:N1         
        w1_2(j,p)=w1_2(j,p)+a_2*erh_2*x_2(p)*x_2(p)*… 
                  minm_2(j)/summin_2+a2*(w1_2(j,p)-w1o_2(j,p));  
        w2_2(j,p)=w2_2(j,p)+a_2*erh_2*x_2(p)*x_2(p)*… 
                  minm_2(j)/summin_2+a2*(w2_2(j,p)-w2o_2(j,p));   
    end 
end 
 
for j=1:N2   
    b_2(j)=b_2(j)+a_2*erh_2*minm_2(j)/summin_2+a2*(b_2(j)-bo_2(j));  
end 
sec_2=1; 
if sec_2==1 
    for j=1:N2 
        kw(j)=(net_2(j)-ys_2)/summin_2; %using defuzification  
    end 
     
    for p=1:N1 
        for j=1:N2             
            c_2(p,j)=c_2(p,j)+a_2*erh_2*kw(j)*minm_2(j)*… 
                     2*(x_2(p)-c_2(p,j))/(o_2(p,j)^2); 
            o_2(p,j)=o_2(p,j)+a_2*erh_2*kw(j)*minm_2(j)*… 
                     2*((x_2(p)-c_2(p,j))^2)/(o_2(p,j)^3); 
        end 
    end 
    w2o_2=w2o1_2; 
    w1o_2=w1o1_2; 
    bo_2=bo1_2; 
    co_2=co1_2; 
    oo_2=oo1_2; 
end 
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