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ABSTRACT 

In order to assess red blood cells for certain diseases, automated red blood cell segmentation 

is a widely applied task. The counting of malaria parasites involves individual red blood cell 

segmentation that allows to determine the severity of the infection. The correct segmentation 

of red blood cells is needed for such an evaluation. However, due to the presence of 

overlapping red blood cells, it is a hard task. Pre-processing steps are used in existing 

methodologies to segment red blood cells. To provide fully automated segmentation of red 

blood cells without any initial preprocessing, we propose a deep learning approach that has 

a U-Net architecture. Irrelevant objects, such as white blood cells, platelets and artifacts, 

were removed while red blood cells were segmented. Data augmentation techinques were 

employed to increase sample size. Total of 5600 images were used to train the network 

whereas 600 images were used for testing. The network achieved segmentation of red blood 

cells with 93.8% Jaccard similarity index. 

 

Keywords: Overlapping red blood cells; segmentation; deep learning; U-net; malaria 
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ÖZET 

Otomatize kırmızı kan hücreleri segmentasyonu, kırmızı kan hücrelerinin belirli hastalıklar 

için birebir değerlendirilmesi için önemli bir adımdır. Parazitlerin sayımı için kırmızı kan 

hücrelerinin birebir segmentasyonu gereklidir ve böylece enfeksiyonun şiddeti belirlenebilir. 

Kırmızı kan hücrelerinin doğru segmentasyonu böyle bir değerlendirme için önemlidir. 

Fakat, üst üste binen kırmızı kan hücrelerin varlığı bu segmentasyonu zorlu kılar. Mevcut 

metodolojiler ön işleme adımlarını kullanarak kırmızı kan hücrelerinim segmentasyonunu 

sağlar. Bu tezde, kırmızı kan hücrelerinin herhangi bir ön işleme olmadan tam otomatik 

segmentasyonunu sağlamak için, U-Net mimarisine sahip bir derin öğrenme yaklaşımı 

öneriyoruz. Sonuç olarak kırmızı kan hücreleri segmente edilirken, beyaz kan hücreleri, 

trombositler ve gürültü gibi ilgisiz nesnelerin çıkarılması sağlandı. Örnek boyutunu artırmak 

için veri artırma teknikleri kullanıldı ve ağı eğitmek için 5600, test etmek için ise 600 

görüntüden faydalanıldı. Ağ, 93,8% Jaccard benzerlik indeksi ile kırmızı kan hücrelerinin 

segmentasyonunu sağladı. 

 

Anahtar Kelimeler: Üst üste binen kırmızı kan hücreleri; segmentasyon; derin öğrenme; 

U-net; sıtma 
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CHAPTER 1 

INTRODUCTION 

Malaria is transmitted by the bite of female Anopheles mosquitoes that infects red blood 

cells (RBCs) with protozoan parasites of the genus Plasmodium. Humans can be infected by 

5 plasmodium species that can cause malaria: Plasmodium falciparum, Plasmodium vivax, 

Plasmodium malariae, Plasmodium ovale, and Plasmodium knowlesi (Poostchi et al., 

2018b). In the World Malaria Report 2019, Plasmodium falciparum accounted for 99,7% of 

all the cases in WHO African region. World Malaria Report 2019 noted an estimated number 

of 228 million cases of malaria across the world. The highest concentration of cases with 

93% is in WHO African region followed by 3.4% and 2.1% for the WHO South-East Asia 

Region and the WHO Eastern Mediterranean Region respectively (World Health 

Organization, 2020). Diagnosis of malaria relies on trained microscopists who manually 

examine blood films. The microscopist analyses red blood cells for the presence of malaria 

parasites by a conventional microscope with respect to WHO guideline (World Health 

Organization, 2010). In case of infection, manual counting of malaria parasites is followed 

through. In addition to detection, counting the number of malaria parasites is necessary to 

classify disease progression and test drug-resistance, effectiveness (Poostchi et al., 2018b; 

Pillay et al., 2019). On the other hand, this procedure relies on the skill and experience of 

the specialist. In addition to this, external conditions such as lack of resources to work in 

isolation can lower the performance of the specialist. This can result in false diagnosis that 

will lead to false treatment. In case of false-positives, the patient can be affected by possible 

side effects of anti-malarial drugs and in case of false-negatives, the disease can progress 

into a severe state accompanied by unnecessary use of antibiotics (Poostchi et al., 2018b; 

Pillay et al., 2019; Loddo et al., 2018). As the manual approach is prone to human errors, 

automated approaches that can provide a standardized diagnosis while reducing the 

workload of field workers becomes important. 

The task of automated quantification of malaria parasites consists of several steps. The first 

step is preprocessing of images to correct uneven illumination and colour differences 

between samples due to staining conditions. The second step includes the segmentation of 

red blood cells followed by the separation of overlapped red blood cells in order to accurately 

count red blood cells. At the end of this step, usually, post-processing methods are acquired 
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to remove remaining wastes. The third step is the extraction of features from each red blood 

cell in order to classify each red blood cell as parasitized or healthy. The efficiency of the 

third step relies on the second step, where the separation of overlapped red blood cells in 

cell clumps takes place. The final step is classification, where extracted features are used by 

an algorithm to automatically assess red blood cells as healthy or parasitized. 

The pre-processing step usually handles uneven illumination and noise. The grayscale 

conversion is commonly employed for illumination correction whereas, morphological 

operators remove noises that include objects smaller than red blood cells (Loddo et al., 

2018). Many algorithms are utilized to segment red blood cells from the background in an 

attempt to remove irrelevant information on thick and thin blood smears.  Global and 

adaptive thresholding, k-means clustering, morphological operators were utilized in red 

blood cell segmentation task in many studies. Savkare and Narrote (2011) used Otsu’s 

threshold (Global thresholding) on the enhanced green channel for segmentation of red blood 

cells. In another study, an adaptive thresholding technique combined with mathematical 

morphological operators were employed in order to deal with noise variations (Dave and 

Upla, 2017). Mushabe et al. (2013) used Zach’s thresholding to extract red blood cells on 

limited variety of images. Top-hat filtering was employed by Tek et al. (2010) which utilizes 

morphological area for segmentation. 

Segmented cell clumps are to be separated to evaluate each red blood cell and to count 

infected red blood cells accurately.  

Zafari et al. (2015) proposed a novel ellipse fitting approach for the separation of partially 

overlapping objects. However, this method didn’t produce comparable results for varying 

shapes of RBCs. Morphological operators were utilized in the separation of overlapped red 

blood cells by Di Ruberto et al. (2002). Integrity and circularity of red blood cells were 

enhanced by hemispherical disk-shaped structuring element and red blood cells were 

separated by disc-shaped flat structuring element to improve the efficiency of watershed 

segmentation.  Savkare and Narote (2015) employed the k-means algorithm (k = 2) to 

segment red blood cells from the background. Later, edge detection followed by watershed 

segmentation was applied to separate overlapping red blood cells. Marker-controlled 

watershed transformation is a commonly used algorithm in biomedical images and 

introduced to limit over-segmentation with conventional watershed segmentation. Marker-

controlled watershed segmentation is also utilized in the separation of overlapped red blood 
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cells. The word “marker” here refers to the foreground and background markers. The 

connected blob of pixels inside each segmented object is foreground markers whereas 

background pixels are background markers. Foreground markers are linked to the specific 

watershed region. The location and number of foreground markers contribute to the accurate 

separation of overlapping objects. González-Betancourt et al. (2016) employed Radon 

transform in an attempt to improve the selection of markers. However, the only improvement 

achieved was in running time.  

At the classification step, many algorithms were utilized to evaluate the presence of malaria 

parasites. In a study, the level set method was utilized to extract stained red blood cells and 

stained objects were used to train the neural network. However, healthy red blood cells were 

excluded as they were not stained (Bibin et al., 2017). In another study, the level set method 

was used to segment red blood cells and segmented red blood cells were used to train several 

pre-trained models. However, in this study white blood cells were filtered by manual ground 

truth annotation (Rajaraman et al., 2018). Moreover, Vijayalakshmi and Rajesh Kanna 

(2020) employed a pre-trained Visual Geometry Group (VGG) model to extract the mid-

level representation of malaria images. Extracted features were used in the Support Vector 

Machine (SVM) classifier to evaluate the presence of malaria parasites rather than the 

evaluation of each red blood cell. In another study, a large number of pre-segmented images 

were used to train convolutional neural networks (Reddy and Juliet, 2019). However, 

extraction, separation of red blood cells, and removal of artifacts were not included. A recent 

work utilized a popular global thresholding algorithm, Otsu’s thresholding, and watershed 

segmentation to segment and separate red blood cells. Texture and color features were used 

to train SVM and Linear Discriminant Analysis (LDA) algorithms. However, the removal 

of white blood cells was not mentioned in the study which suggests they were ignored 

(Molina et al., 2020). 

 
In this thesis, we propose U-net architecture for segmentation and separation of red blood 

cells while removing irrelevant objects such as white blood cells and platelets. The data is 

labeled in Matlab 2019a by using image labeller app. The Labelling based on using polygons 

to label white blood cells while excluding the background and touching points between 

overlapping red blood cells. The idea of marking touching points between overlapping red 

blood cells, allow network to learn separating overlapping red blood cells.  
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On the other hand, we also implemented marker-controlled watershed segmentation with 

local minimum histogram segmentation with novel selective hole filling approach along with 

pre-processing and post-processing steps. For this study, larger images that encompass 

higher of number red blood cells were used. 
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CHAPTER 2 

CLINICAL BACKGROUND 

In certain parts of the world, malaria is a significant public health problem. Disease attacks 

can be serious and, if untreated, can lead easily to death. There are also chronically sick 

residents of populations with high levels of malaria, which leads to absences from work and 

education. Repeated incidents not only contribute to high treatment spending, they can affect 

income, the amount of food that can be grown by the household, and the income that a family 

receives. For pregnant women and children, malaria holds a significant risk and is a frequent 

cause of miscarriage. Chronic diseases, poverty, lack of knowledge on malaria, united 

creates a vicious cycle (World Health Organization, 2010). 

A microscopic living organism, called a parasite, causes malaria, which infects the red blood 

cells of a human. The transmission occurs via bite of female Anopheles mosquitoes. Before 

infection may take place, the parasite must go through a complicated cycle in both the 

mosquito and in human beings. Depending on a variety of factors, such as the malaria 

parasite species, the air temperature, and the relative humidity, the cycle continues for 1-3 

weeks in the female Anopheles mosquito. Attempts have been made to control the disease 

with prompt diagnosis, application of treated nets and appropriate treatment. This 

contributed in some countries to substantial decreases in mortality and morbidity and in 

some places the disease is still the primary cause of deaths and illness. The symptoms 

(common) include headache, high fever, profuse sweating, rigor or severe chills and general 

body pains. However, these symptoms are seen in other diseases as well, more information 

required before diagnosis is made. In patients who have had a number of malaria attacks, the 

clinical presentation of malaria is much less evident, as they usually show no clear signs or 

symptoms (World Health Organization, 2010).  

 

2.1 How to Diagnose Malaria 

The malaria parasite is microscopically small and can be only visualized under microscope 

with appropriate magnification. However, there is a procedure to prepare the sample for the 

microscope. The blood film is dried and stained for further examination. In this process, 

parasites are stained and detected by the microscopist for diagnosis. The stages and species 

of malaria parasite and the density of the infection can be established by microscopists who 
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use the skills learnt through this training. Following this diagnosis, proper treatment with 

anti-malarial agents can be applied by healthcare workers (World Health Organization, 

2010).  

 

 
Figure 2.1: The incident rate for countries (World Health Organization, 2020). 

 

2.2 Malaria Incidence Rate 

The number of cases per 1000 population or the global incident rate for malaria reduced 

from 71 to 57 between 2010 and 2018. On the other hand, the rate of change decreased 

between 2014 to 2018 only reducing from 60 to 57. The incident rate declined in WHO 

African Region while slightly increasing in WHO Western Pacific and WHO Eastern 

Mediterranean. The WHO region of Americas had moderate increase as a result of increasing 

case numbers in Venezuela. The WHO South-East Asia saw highest reduction due to 

decreasing number of cases in the Indonesia, India and Greater Mekong subregion countries 

(World Health Organization, 2020). 

The incidence rate for geographical distribution is illustrated Figure 2.1. 

 

2.3 Burden of the Malaria 

Globally, it has been estimated that 272,000 (67%) malaria deaths occur in children under 5 

years of age. In 2018, nearly 85% of all deaths occurred in 20 countries in the WHO African 
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and India region where nearly half of the total malaria deaths occurred in Nigeria (World 

Health Organization, 2020).  

 

2.4 Malaria Health Consequences for Pregnant, Infant and Child 

Malaria infected pregnant women are under high risk due to several complications that might 

occur. More specifically, the women, her fetus and her newborn child can be affected due to 

infection. The acquired immunity of individual and transmission intensity for corresponding 

geographical area plays role in symptoms and complications of the pregnant. P. falciparum 

infection which is common in Africa mostly causes anemia and maternal illness, low weight 

birth and preterm birth. Additionally, it is important factor in maternal deaths before and 

after childbirth. Moreover, preterm births and low weight children at birth as a result of 

malaria causes cognitive development and child growth problems along with being risk 

factor for infant, neonatal, perinatal mortality. In high acquired immunity levels, the disease 

can be asymptomatic during pregnancy while parasite might be present in placenta and can 

cause anemia regardless of absence of peripheric parasitemia. P. vivax infection contributes 

to chronic anemia, which reduces birth weight and raises the likelihood of neonatal 

mortality. The decline in birthweight attributed to P. vivax infection is nearly two-thirds of 

the decrease associated with P. falciparum (World Health Organization, 2020).  

 

2.5 The Life Cycle of Malaria Parasite 

There are 5 species of malaria plasmodium that cause malaria in human follows as 

Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale, and 

Plasmodium knowlesi. P. falciparum is most lethal form amongst them and P. vivax has 

parasites in dormant liver stage. Plasmodium has life cycle that is shared in both human and 

mosquito. The plasmodium sporozoites present in salivary glands are transmitted from 

infected Anopheles mosquito to human with biting that leads release of sporozoites into 

blood stream to eventually end up with the liver. The liver becomes infected by sporozoites 

and sporozoites are multiplied in here. Parasite forms called merozoites are subsequently 

released into the blood where they invade red blood cells (RBCs) in less than a minute and 

mature inside them. As they feed on hemoglobin, ring stages develop into trophozoites, and 

then divide their nuclei to form schizonts, in order to invade new RBCs from the next 

generation of merozoites, the so-called intraerythrocytic cycle is perpetuated. In each cycle, 
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a small number of parasitized RBCs (pRBCs) differentiate towards the formation of 

gametocytes, sexual forms of the parasite that sequester until they mature and return to 

circulation in the bone marrow. Gametocytes egress from the pRBC when removed with a 

mosquito blood meal and become gametes. Fertilization creates a zygote that becomes a 

motile ookinete, leaving the blood bolus to enter and cross the endothelium of the mosquito 

midgut, differentiating it into an oocyst, that grows to spawn sporozoites. They close the 

cycle by moving through the haemolymph to the salivary glands of the mosquito, where they 

are prepared for new inoculation into a human host (Borgheti-Cardoso et al., 2020). This 

cycle is illustrated in Figure 2.2. 

 

 
Figure 2.2: Malaria parasite life cycle (National Institute of Allergy and Infectious 

Diseases., 2016) 

 

2.6 Blood Films 

There are two type film that are prepared for microscopic investigation, thick and thin blood 

films. Thick films are used for parasite detection as it consists of many layers that includes 

white blood cell and red blood cells that are more concentrated than thin films. On the other 
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hand, thin films are investigated for malaria species detection (World Health Organization, 

2010).  

 

2.7 Stages of Malaria Parasites 

There are 3 stages of malaria parasites. First stage is trophozoite, second schizont and third 

gametocyte. The trophozoite stage is the most common one, where chromatin dot and ring 

like structure is observed. At the second stage, chromatin divides into two, parasites begin 

to asexually reproduce and chromatin division continues for several times. At the final stage, 

the parasite progress into a female or a male gametocyte where it prepares for the sexual 

phase in the female mosquito vector of Anopheles (World Health Organization, 2010). All 

three stages on thick and thin blood films are illustrated in Figure 2.3. 
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Figure 2.3: Trophozoites on top, schizonts at the middle and gametocytes at the bottom 

(World Health Organization, 2010). 
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CHAPTER 3 

TECHNICAL BACKGROUND 

3.1 Convolutional Neural Networks Introduction 

Convolutional neural networks (CNNs) are a specific type of neural network for the 

processing of data with a known grid-like topology. Time series and images can be used as 

examples with 1-D grid samples with defined intervals and image with 2-D grid of pixels 

respectively. Practical applications of CNNs have showed impressive results. Convolutional 

neural network takes its name from the mathematical operation of convolution. So that, 

CNNs employ convolution which is specific type of liner operation to obtain general matrix 

multiplication (Goodfellow et al., 2016).  

 

3.1.1 Convolutional layer 

The convolutional layer is the most crucial part of the CNNs. The neurons in the first 

convolutional layer are connected to the pixels of the input image that are in their receptive 

field. Similarly, neurons in the second convolutional layers are connected to pixels in their 

receptive field (small rectangle) in the first layer. The architecture allows small low level 

features to be concentrated in first hidden layer and brings together small low level features 

for larger higher level features in second hidden layer (Géron, 2019). This can go on for 

many layers. This hierarchical structure is illustrated in Figure 3.1. 

 

 
Figure 3.1: Layers of CNNs and local rectangular receptive fields (Géron, 2019) 
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For the given image in Figure 3.2, it is shown that a neuron at i, j (row, column) is connected 

to the output of neurons in rectangular area of the previous layer at i to i	+	fh	–	1	and		j	to	j	
+	 fw	 –	 1 (row, column) as fh	and fw denote for height and width of the receptive field 

respectively (Géron, 2019).  

  

 
Figure 3.2:  Layer connections and zero padding (Géron, 2019) 

 

Zero padding is necessary in order to keep the size (height, width) of the next as the previous 

one. Common approach is adding zeros at the outer border of the image that is illustrated in 

Figure 3.2. On the other hand, receptive fields can be spaced out to connect large input to 

smaller next layer which can be seen in Figure 3.3. As receptive field travels through the 

image, it shifts by steps. The number of steps is defined as stride.  In the Figure 3.3 larger 

input layer with 5x7 size is connected to layer with 3x4 size through 3x3 receptive field and 

stride = 2. Note that, 5x7 input image is zero padded and stride value is applied to both 

directions. In Figure 3.3 it is shown that, a neuron at i,	 j (row, column) in next layer is 

connected to the output of the previous layer in the receptive field that includes  

i × sh to i × sh + fh – 1, j × sw to j × sw + fw – 1 (row, column), as sw is horizontal and sh is 

vertical strides (Géron, 2019). 
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Figure 3.3: Stride of receptive fields with value of 2 (Géron, 2019) 

 

3.1.2 Filters 

David Hubel and Torsten Wiesel discovered that some neurons in the visual cortex 

responded to horizontal, others to vertical lines and still others to lines with a particular angle 

in 1959. This was measured by placing electrodes into the brain of a cat while the cat was 

exposed to black and white patterns. Moreover, it was assessed that each layer depends on 

the previous layer, the features detected from the previous layer is used to build the next 

layer. So that, entire object depends on shapes, shapes to contours, contours to lines. 

Additionally, features detectors were replicated over the whole area in a layer of the visual 

cortex to capture features in entire region of an image which gave inspiration to design of 

CNNs (Buduma and Locascio, 2017). 

 

The idea of a filter was introduced initially in which Viola and Jones had a close estimate. 

A filter can be considered as a feature detector which is illustrated in Figure 3.4.  
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Figure 3.4: Horizontal and vertical line filters applied to the image (Buduma and Locascio, 

2017). 

 

The application of a feature detector and the resulted output can be understood by the 

example given in Figure 3.4. Here, the image consists of vertical and horizontal lines, and 2 

feature detectors are acquired. The feature detector on top is slid over the entire image and 

each time it matches the image box it is on, a vertical line is detected. This process works 

similarly with the feature detector at the bottom (Buduma and Locascio, 2017). The 

corresponding output from these feature detectors is defined as a feature map on the right in 

Figure 3.4. The operation of filter sliding over the image is defined as convolution. This 

operation can be applied with different size of filters such in Figure 3.5 where 3x3 filter is 

utilized. 
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Figure 3.5: Example 3x3 CNN filter (Trask, 2019) 

 

Combination of connections replicated for whole region of the image, connections with same 

color are limited to same weights that is illustrated in Figure 3.6. All connections in a group 

are initialized with same weights and average of updated weights in group is taken to be 

applied after each iteration of backpropagation. The resulted output is feature map.  If a filter 

detects a feature at its position that is connected to a neuron in the feature map, that neuron 

is activated (Buduma and Locascio, 2017). 
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Figure 3.6: In the CNN layer, representing filters and feature maps as neurons (Buduma and 

Locascio, 2017) 

 

Feature map can be mathematically expressed as: 

 

𝑚!"
# = 𝑓((𝑤 ∗ 𝑥)!" + 𝑏#)      (3.1) 

 

where 𝑚# is kth feature map in the layer m with its corresponding filter values 𝑤 and 𝑏#is 

bias for neurons in feature map. However, this is not complete description for filters as filters 

operate on volume of features maps instead of only one (Buduma and Locascio, 2017).   

 

3.1.3 Volume of feature maps 

In practical applications, there isn’t a single but multiple feature maps that is illustrated in 

Figure 3.7. Each future map corresponds to a filter. In each feature map of the convolutional 

layer has one neuron per pixel, and all neurons within a given feature map share the same 

weights and bias. These multiple trainable filters applied to input enables detection of 

multiple features. On top of that, input images can also be composed of multiple channels 

such red, green, blue color format abbreviated as RGB. The number of layers can depend on 

the nature of the image, it could be one layer as grayscale or could be much more such 

satellite images (Géron, 2019). 
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 Figure 3.7: CNN with multiple feature maps and input with RGB color format (Géron, 

2019) 

 

For given convolutional layer l, a neuron in the feature map k located at i, j (row, column) 

that is connected to output of neurons in the previous layer l-1, at i × sh to i × sh + fh – 1, j × 

sw to j × sw + fw – 1 (row, column). 

Output of a neuron for a specific convolutional layer is mathematically expressed as: 

𝑧!,",# = 𝑏# +

∑ ∑ ∑ 𝑥!!,"!,#%. 𝑤&,',	#!,#
)"!#$
#!*+

)%#$
'*+

)&#$
&*+ 𝑤𝑖𝑡ℎ	 ;𝑖

% = 𝑖	𝑥	𝑠, + 𝑢
𝑗% = 𝑗	𝑥	𝑠- + 𝑣

	(3.2) 
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where 𝑧!,",# refers to output of the neuron in the feature map k with i, j (row, column) 

coordinates for convolutional layer l and sw, sh are horizontal, vertical strides. The width and 

height of the receptive field are denoted by fw and fh. The number of feature maps is fn’ in the 

layer before (l-1). The bias term for feature map in layer l is bk and 𝑥!,",# refers to output of 

the neuron in the layer before (l-1) for corresponding row column and feature map as 𝑖, 𝑗, 𝑘. 

Finally, 𝑤&,',	#!,# is weight for a neuron in feature map k in the layer l for its corresponding 

input at u,v (row, column) with respect to receptive field of neuron and feature map 

	𝑘%(Géron, 2019). 

 

3.1.4 The rectified linear unit  

The series of convolutional operations includes the pooling and Rectified Linear Unit 

(ReLU) operation between each subsequent convolution. The ReLU is an activation function 

that doesn’t alter dimension of the layer as it maps activation values one to one. This layer 

is usually not illustrated in network architectures. 

The introduction of ReLU activation function to neural networks is recent evolution.  

Saturating activation functions, such as sigmoid and tanh, were used in the earlier years. The 

replacement of these functions with ReLU has shown that, ReLU is advantageous with 

regard to accuracy and speed. Moreover, increased speed also has effect on accuracy as it 

enables deeper model to be trained for longer times (Aggarwal, 2018). The mathematical 

notation for ReLU is as follows: 

 

𝑅𝑒𝐿𝑈(𝑧) 	= 	𝑚𝑎𝑥(0, 𝑧)	      (3.3) 

 

where z refers input to the activation function and output of ReLU function is illustrated in Figure 

3.8.    
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Figure 3.8: ReLU output (Chollet, 2018) 

 

3.1.5 Pooling 

In each layer, the pooling process operates on small grid regions, and creates another layer 

with the same depth. The maximum of these values is returned for each square region in 

each of the activation map depths. This technique is known as max-pooling. If a stride of 1 

is used a new layer of size will be created. However, the use of stride S > 1 in pooling is 

more common. So that, pooling significantly decreases each activation map's spatial 

dimensions. An example of 2x2 pooling size with 2 strides applied to 3 images as they are 

translated little compared to each other with their corresponding pooling result is illustrated 

in Figure 3.9. In Figure 3.10, examples of pooling with strides 1 and 2 are shown.  Here, 

pooling over 3x3 region is used. However, typical pooling size is 2x2.  It is common to use 

stride of 2 where there would be no overlap of regions being pooled (Aggarwal, 2018).  
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Figure 3.9:  Result of 2x2 pooling with stride = 2 applied to similar images (Géron, 2019) 

 

3.1.6 Gradient descent 

The ultimate purpose of machine learning algorithms is creating a model that represents 

certain beliefs that require a design of a cost function that can minimize the difference 

between reality and belief with the use of a training algorithm (Goodfellow et al., 2016). 
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Figure 3.10: Dimension reduction as result of max-pooling with stride 1 and 2 (Aggarwal, 

2018) 

 

The value, the cost function outputs is the error. In stochastic gradient descent (SGD), not 

all data is used to compute gradient like traditional gradient descent, mini batches of samples 

are used. 

In order to visualize minimization of the squared error over all of the training samples, a 

simplified illustration with a linear neuron with 2 inputs and two corresponding weights can 

be considered. This can be illustrated in a three-dimensional space as vertical dimension 

represents error and horizontal dimension represents the weights (Buduma and Locascio, 

2017). The weights are corrected considering the error, surface of three-dimensional space 

is reached for given quadratic bowl illustrated in Figure 3.11. 
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Figure 3.11: Minimization of error with respect to weights (Buduma and Locascio, 2017) 

 

Another visual presentation can be made with elliptical contours as illustrated in Figure 3.12. 

The center of the ellipses visualizes the minimum error. In this two-dimensional plane, 

dimensions correspond to weights (w1, w2). Contours refer to w1, w2 that measure the same 

error value. The steepness of slope increase depending on closeness of the contours and the 

direction of the steepest descent is always perpendicular to the contours. This vector 

expression is known as the gradient (Buduma and Locascio, 2017). 
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Figure 3.12: Error surface presented with a set of contours (Buduma and Locascio, 2017) 

 

Let’s say weights are randomly initialized and error-weight relation is considered on the 

horizontal plane. Evaluation of gradient for current position of weights in horizontal plane 

allows finding position of the steepest descent and a step is taken in that direction. As a 

result, new position will be closer to be minimum error than before. Now, direction of the 

steepest descent can be reevaluated for new position and the step can be taken in that 

direction. This strategy will eventually minimize the error as it is illustrated in Figure 3.12. 

This method is defined as gradient descent (Buduma and Locascio, 2017). However, 

computation of gradient can be very slow in case of large number of training samples 

(inputs). Therefore, stochastic gradient descent method which picks randomly chosen small 

number of samples (mini-batch) for training is introduced. The gradient is computed for 

those small number of samples each time, which provides a good estimate and quickens the 

learning (Nielsen, 2015). 

 

3.1.7 Learning Rate 

Once direction of steepest descent is calculated by the gradient, the step size in that direction 

needs be determined before recalculating the new direction. In that case, the step size needs 

to depend on the steepness of the surface. That could be explained by that as new location is 
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closer to the minimum, the surface is flatter and step size should be shorter. Therefore, the 

steepness can used to determine the closeness to the minimum. Nevertheless, in case of 

mellow error surface, time training will take can be potentially large. So, the gradient is 

multiplied by the learning rate. The learning rate needs to be picked carefully. If learning 

rate is picked as a too small number, there is chance that it will take very long time to train. 

And if it is too big, there will be possible divergence from minimum as it is illustrated in 

Figure 3.13 (Buduma and Locascio, 2017). 

 

 
Figure 3.13: Difficulty of convergence with large learning rate (Buduma and Locascio, 

2017) 

 

3.1.8 Back-propagation 

When the input x is accepted to the feed-forward network that generates output ŷ, 

information is propagated through the network. The output ŷ, is produced as input x deliver 

the initial information that flows through hidden units in each layer up to the output. This 

process is defined as forward propagation. Forward propagation will continue during 

training until a scalar cost is generated.  In order to compute gradient, the back-propagation 

algorithm enables the cost information to propagate backwards over the network 

(Goodfellow et al., 2016).  
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3.1.9 Optimizers  

Optimizers controls reevaluation of parameters depending on loss function. As a result, 

specific variant of SGD is applied (Chollet, 2018). The learning rate is recognized as one of 

most difficult hyperparameters to determine. This results from the fact that, it has important 

role in model efficiency. In parameter space, the cost is always extremely sensitive to certain 

directions and indifferent to others. This sensitivity can be reduced with the use of 

momentum algorithms, but with the expense of another hyperparameter introduced. In this 

case, a question is asked if it is possible to use a separate learning rate for each parameter 

and these learning rates are adapted throughout the process of learning (Goodfellow et al., 

2016). There are several learning rates introduced such as AdaGrad, RMSProp and Adam. 

 

3.1.10 Data Augmentation 

In case of limited data, data augmentation can be useful. The data at hand can be used to 

increase the sample size with help of data augmentation techniques. Multiple versions of 

each sample can be created with use of translation, cropping, rotation, scaling, noise addition 

or with change of color balance and brightness. The image label shouldn’t change if these 

changes are small. And the training of the network with such augmented data will make the 

model robust (Russell and Norvig, 2020). The data augmentation is also known has having 

regularization effect on the model (Burkov, 2019). Possible augmentations of images created 

from a single image are illustrated in Figure 3.14. 
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Figure 3.14:  Data augmentation for generation of images from a single image (Koul et al, 

2020) 

 
3.1.11 Autoencoders 

A neural network that is equipped to attempt to copy its input to its output is an autoencoder. 

It has a hidden layer internally that represents a code used to represent the input. The network 

can be interpreted as consisting of two components: an encoder function and a reconstruction 

generating decoder. The intention behind the design of autoencoders is to restrict them in a 

way that they can’t completely copy. The restriction only allows them to copy with 

approximation where it depends on input similar to training data. So, the model is required 
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to prioritize useful elements of the input to be learned (Goodfellow et al., 2016). A 

significant detail here is that the network of an autoencoder looks like a hourglass with a 

bottleneck layer in the middle that holds embedding of the D-dimensional input vector. 

Typically, the embedding layer has far fewer units than D. Here, the decoder's goal is to 

reconstruct the input feature vector using this embedding (Burkov, 2019). The general 

structure of auto encoder is illustrated in Figure 3.15. It is safe to say that, we can 

mathematically express encoder as h = f(x) and decoder as r = g(h which is illustrated in 

Figure 3.16. The U-net architecture that is employed in this thesis is a convolutional 

autoencoder with skip connections between decoder and encoder (Karimov et al., 2019). The 

U-net architecture employed in this thesis is further explained in chapter 4. 

 
 

 
Figure 3.15: Structure of the autoencoders (Burkov, 2019) 
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Figure 3.16: Input-output relationship of autoencoders as x input, h hidden layer, r output 

(Goodfellow et al., 2016). 

 

3.2. Image Processing Background 

Classic image processing algorithms utilize handcrafted filters and models to segment 

images unlike CNN architectures. In other words, the models that are created don’t learn by 

themselves. The fundamental approaches such as filters, and segmentation models are 

discussed in the following parts. 

 

3.2.1 Spatial filtering 

Spatial filtering requires a filter kernel which has a predefined size and coefficients. The size 

determines the operation of the neighborhood and coefficients defines the characteristics of 

the filter. A sum of products of an image with a filter kernel is performed by a linear spatial 

linear filter.  An example of a kernel and its produced output is illustrated in Figure 3.17. If 

we are to choose a point (x,y) in the image, the output will be g(x,y) which will depend on 

sum of products between image pixels and their corresponding filter coefficients. That is 

mathematically denoted as: 

 

𝑔(𝑥, 𝑦) = 𝑤(−1,−1)𝑓(𝑥 − 1, 𝑦 − 1) + 𝑤(−1,0)𝑓(𝑥 − 1, 𝑦) + ⋯ (3.4) 

+𝑤(0, 0)𝑓(𝑥, 𝑦) + ⋯+ 𝑤(1,1)𝑓(𝑥 + 1, 𝑦 + 1) 

 

w refers to mask coefficients and f refers to corresponding image pixels (Gonzalez and 

Woods, 2018). 
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3.2.2 Averaging filters  

To minimize sharp transitions in intensity, averaging (smoothing) spatial filters are used. 

Since random noise usually consists of sharp transitions in intensity, noise reduction is an 

apparent application of smoothing. The smoothing kernel is convolved over the image to 

blur the image where size of the kernel and coefficients determines the level of blurring. 

Gaussian and box filter kernels are two kernels that are used for smoothing. The box filter 

has same filter coefficient everywhere which is usually equals to “1” and Gaussian filter 

kernels are circularly symmetric (Gonzalez and Woods, 2018). These two filter kernels are 

illustrated in Figure 3.18. 

 

3.2.3 Filtering in frequency domain 

The use of Fourier transform allows transition from spatial to frequency domain and inverse 

Fourier transform allows returning back to spatial domain. An image can be represented by 

sum sinusoids of different frequencies and amplitudes. In that way, the frequencies of 

image’s sinusoidal components determine the image’s appearance. Any change on these 

frequencies will result in change in the image (Gonzalez and Woods, 2018). 
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Figure 3.17: A filter kernel with its coefficients applied to the corresponding pixels in the 

image (Gonzalez and Woods, 2018). 

 

The sharp changes are considered as high frequencies whereas slow changes are low 

frequencies. Therefore, reducing an image's high-frequency components would appear to 

blur it. The low pass filter design is illustrated in Figure 3.19 where uo determines which 

frequencies below certain level will be included in the image (Gonzalez and Woods, 2018). 
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3.2.4 Median filter 

Order-statistic filters are nonlinear spatial filters whose response is based on ordering 

(ranking) the pixels contained in the region encompassed by the filter. Smoothing is achieved 

by replacing the value of the center pixel with the value determined by the ranking result. 

The best-known filter in this category is the median filter, which, as its name implies, 

replaces the value of the center pixel by the median of the intensity values in the 

neighborhood of that pixel (Gonzalez and Woods, 2018). 

 

3.2.5 Sharpening filters 

Spatial differentiation is used to perform sharpening. The power of a derivative operator's 

response is proportional to the magnitude of the discontinuity of the intensity at the point at 

which it is applied. Image differentiation thus improves edges and other discontinuities (such 

as noise) and de-emphasizes areas with intensities that vary slowly (Gonzalez and Woods, 

2018). 

 

 
Figure 3.18: Filter coefficients of box filter kernel on left and Gaussian filter kernel on right 

(Gonzalez and Woods, 2018) 
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Figure 3.19: Low pass filter (Gonzalez and Woods, 2018) 

 

3.2.6 Laplacian filter 

Second-order derivatives can be used for image sharpening.  The discrete formulation of the 

second-order derivate is defined and a filter kernel is construed by using that that formulation 

(Gonzalez and Woods, 2018). An example of Laplacian filter is illustrated in Figure 3.20.  

 

 
Figure 3.20: An example of Laplacian filter (Gonzalez and Woods, 2018) 

 

3.2.7 Morphological operators 

The morphological operators are primarily employed for processing binary images. The 

fundamental operators are dilation and erosion. The complicated morphological techniques 

can be explained with series of dilations and erosions (Solomon and Breckon, 2011). 
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3.2.8 Dilation and erosion 

The dilation and erosion mechanics work in a very similar manner to the convolution kernels 

used in spatial filtering. The structuring element moves over the image where its center pixel 

is placed successively on top of each front or background pixel. Let’s refer to an image as A 

and structuring element as B. For erosion, center of structuring elements is placed on 

foreground pixel, and presence of any background pixel in the neighborhood would change 

the foreground pixel to background pixel. In case of dilation, structuring element is placed 

on background pixel, and presence of any foreground pixel in the neighborhood would 

change the background pixel to foreground pixel. Erosion and dilation are denoted by 𝐴⊝

𝐵 and 𝐴⊕ 𝐵 respectively. The new value of each pixel of the image then relies on the 

neighbourhood pixel values identified by the structuring element (Solomon and Breckon, 

2011). An example of dilation and erosion on binary image is illustrated in Figure 3.21.  

 

 
Figure 3.21: Output of structuring element interaction with binary image where erosion on 

top and dilation at bottom (Solomon and Breckon, 2011) 
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Morphological opening and closing can be expressed with erosions and dilations. The 

morphological opening is erosion followed by dilation whereas morphological closing is 

dilation followed by erosion by using same structuring element during the operation 

(Solomon and Breckon, 2011). An example of opening and closing is illustrated in Figure 

3.22 and Figure 3.23 respectively.  

 

 
Figure 3.22: The structuring element is visualized as a ball rolling in the image and places 

it touches are resulting output for morphological opening (Solomon and 

Breckon, 2011) 
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Figure 3.23: The structuring element is visualized as a ball rolling at outer boundary of 

image and the contours it draws are resulting output for morphological closing 

(Solomon and Breckon, 2011) 

 

3.2.9 Connectivity 

The binary image consists of values of 1 and 0. The pixels with value of 1 are defined as 

foreground pixels and whereas 0 as background. An object in a binary image can be 

expressed with number of connected pixels. In case of foreground pixel having at least one 

neighbouring pixel in horizontal or vertical directions, it is said to be 4 connected. And if, 

there is a neighbouring pixel (foreground) in a diagonal direction, then it is sufficient to 

define it as 8-connected (Solomon and Breckon, 2011). The directions of connections for 4-

connected and 8 connected is illustrated in Figure 3.24. 

 



 36 

 
Figure 3.24: Direction of 4 and 8-connected pixels (Solomon and Breckon, 2011) 

 

3.2.10 Threshold segmentation 

A commonly used segmentation technique is image threshold segmentation. First, it 

compares the variations in the gray level between the target regions and the background 

regions and then chooses a more appropriate threshold for the object pixels and background 

pixels to be calculated. Finally, it produces a binary image corresponding to it (Gong et al., 

2018). 

Let’s say the image is f(x,y) and eigenvalue t is found with a certain criteria that classifies 

pixels into two group and black (b0=0) and white (b1=1). The mathematical formulation is 

defined as: 

𝑔(𝑥, 𝑦) = ;𝑏+	𝑓(𝑥, 𝑦) < 𝑡
𝑏.	𝑓(𝑥, 𝑦) ≥ 𝑡      (3.5) 

 

Where g(x,y) refers to output as result of particular threshold t (Gong et al., 2018). 
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3.2.11 Global thresholding 

Global thresholding can produce satisfactory results in case of bimodal histogram 

distribution and relatively simple background. Histogram thresholding, maximum entropy 

thresholding, interclass difference thresholding are some of methods that are employed for 

global thresholding (Gong et al., 2018).  An example of global thresholding is illustrated in 

Figure 3.25. 

 

  
(a) Original image (b) Thresholded image 

 

Figure 3.25: Application of thresholding 

 

3.2.12 Local dynamic thresholding 

When image brightness is non-uniform, local dynamic thresholding is used for normalization 

of the brightness. To perform this image is divided into sub-image and threshold is selected 

for that particular sub-image (Gong et al., 2018). 

 

3.2.13 Region growing 

Combining the pixels with similar properties to form a region is the fundamental idea of 

region growing. Initially, find a seed pixel for each growth area as the starting point. And 

later combine the pixels with the same or similar properties of the seed in the neighborhood. 

As the new pixels continue to seed to grow around them while the pixels meet the conditions, 

a region grows (Gong et al., 2018). An example of region growing is illustrated in Figure 

3.26. 
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(a) Original image (b) Seed point selected (c) Output 

 

Figure 3.26: Region growing steps 

 

3.2.14 Clustering 

Clustering is the process in which things are distinguished and classified according to certain 

requirements and rules. Often, the number of clusters and the initial clustering centers need 

to be given. The clustering method of image segmentation is to represent the pixels in the 

image space with the corresponding feature space points. The segmented outcomes are 

obtained based on their clustering in the feature space to segment the feature space and then 

map them back to the original image space. K-means clustering is one of widely used 

clustering techniques. First, the K-means algorithm selects the initial mean class of K, and 

then each pixel selects the average of its nearest class and calculates the new mean class. 

Iterate the previous steps until there is less than a threshold between the average of the old 

and new classes (Gong et al., 2018). 

 

3.2.15 Watershed transformation 

The method of the watershed derives from morphological operations, and by growing 

regions from a set of initial seeds, it divides the picture into many parts. The main concept 

is to use labels in an iterative process to aggregate pixels. There is a different label on the 

pixels in each area. Pixels not aggregated into any area are classified according to the labels 

of their neighbors during each iteration. As a result, connected components grow and it is 

possible to delineate edges that restrict the regions (Nixon and Aguado, 2019). 

Using flood analogy, the watershed method can be divided into three main steps. The first 

step is computation of a distance or property for each pixel where the property expresses the 
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organization of pixels and defines the corresponding topographic surface. The second step 

follows as, finding local minima for representation of initial region. Finally, at the third step 

the topographic surface is flooded by labelling pixels and delineating edges (Nixon and 

Aguado, 2019). These steps are illustrated in Figure 3.27. 

 

   

(a) Distance surface (b) Flooding (c) Watershed 

 

Figure 3.27: Watershed transformation steps (Nixon and Aguado, 2019) 
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CHAPTER 4 

MATERIAL AND METHOD 

Dataset of malaria images was acquired from Mamic image database (Mamic image 

database, n.d). Randomly picked 100 images with 100x zoomed were divided into 4 pieces. 

Images will be used to train deep learning network architecture therefore, divided was 

preferred instead of resizing as the number of images will increase consequently. As a result, 

400 images were gathered. The ground truth data for corresponding images were created 

using Matlab 2019a image labeller app and pixel by pixel labelling was applied for each 

image in the dataset. The U-net architecture was constructed in google colab environment 

and images were stored in google drive. The images were divided by 70%, 15%, 15% for 

training, validation, testing respectively. However, a large number of samples are required 

to train deep neural networks, and pixel by pixel labelling is required in the case. Therefore, 

labelling of a large number of images is not easily available which leads us to data 

augmentation techniques. Random elastic deformation was used to increase sample size 

mainly, as it was applied 10 times to the training validation and testing set. Vertical and 

horizontal flips were used for training and validation only. To summarize, 5600, 1200, 600 

images were created for training, validation, and testing respectively. The purpose of the 

proposed network is to learn to segment red blood cells while separating overlapping red 

blood cells and removing irrelevant objects such as white blood cells and platelets. For that 

purpose, intersection points of overlapping red blood cells along with irrelevant objects were 

marked as background in order to train the network to learn segment and separate red blood 

cells. 

 

4.1 Network’s Architecture 

The U-net architecture has 2 parts. The first part consists of consecutive convolutional layers 

with multi-channel feature maps followed by pooling operator and each convolutional layer 

is followed by a rectified linear unit (ReLU). After each max-pooling operation 

(downsampling) number of feature maps are doubled. The first part is defined as contracting 

path. At the second part, upsampling operators replaces pooling operators and after each 

upsampling number of feature maps are halved. The second part is defined as expanding 

path. As expanding path increases resolution gradually it takes high resolution features from 
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contracting path by concatenation (Ronneberger et al., 2015). The target (output) is a binary 

mask for corresponding input where foreground pixels have value of 1 and background 

pixels 0. The visual representation of the U-net architecture is shown in Figure 4.1. The 

images used in this study was in RGB format in an attempt to help network to discriminate 

red blood cells from white blood cells. 

 

 
Figure 4.1: The U-net architecture 

 

4.1.2 Data augmentation 

Data augmentation is an essential step to increase sample size and provide variation for data. 

In this study, random elastic deformation, horizontal and vertical flips were employed for 

data augmentation.  Deformability is a significant characteristic of RBCs that allows them 

to pass through even the human body's smallest capillaries (Huisjes et al., 2018). Therefore, 

application of elastic deformation for data augmentation is suitable data augmentation 

technique for red blood cells. 

Random displacement fields are used to create elastic deformation where these fields are 

convolved with Gaussian standard deviation σ. Value of σ determines deformities where 

large σ result in very small deformities and small σ result in too random deformities. The 
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small value of σ in case of deformation of red blood cells, produce pseudopods around cells 

that image no longer represents red blood cells. The intensity of deformation is controlled 

by a scaling factor α. The scaling factor is multiplied with displacement fields to achieve this 

operation. These two parameters, σ, and α were adjusted as 8 and 1200 respectively. Each 

time, displacement fields are generated, they are generated randomly. As a result, it is 

required to apply generated deformation to input and target images at once. A total of 400 

images were divided as 280, 60, 60 for training testing and validation respectively. Each 

generated elastic deformation applied to training testing and validation set produces 280, 60, 

and 60 images respectively. This process was repeated 10 times and as result, dissimilar 

2800 training, 600 validation, and 600 testing images were created. After that, random 

vertical and horizontal flips were used to double the sample size of the training and validation 

set. As a result, 5600, 1200, and 600 images for training, validation, and testing were created 

respectively. 

 

  
(a) Original Image (b) Elastically deformed 

 

Figure 4.2: Random elastic deformation applied to a image 

 

4.1.3 Optimizer 

Color images in RGB format with dimension of 240 x 240 pixels were used in this study. 

5600 and 1200 images were used for training and validation respectively for 3200 epochs 

with Adam learning rate of 0,001 as an optimizer.  
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4.1.4 Evaluation Metric 

Jaccard similarity index was employed as evaluation metric for pixel classification. The 

predicted image A and the ground truth image B was compared for similarity. The Jaccard 

similarity index is mathematically defined as intersection over union, which is noted as: 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑	(𝐴, 𝐵) = |0∩2|
|0∪2|

= |0∩2|
|0|4|2|5|0∩2|

, (4.1) 

 

where A indicates the predicted image and B indicates the ground truth. The discrete 

representations of pixels can be derived from this equation, 

𝐽 = .
6
S T 7'ŷ'

7'4ŷ'57'ŷ'
U

6

!*.
, (4.2) 

where yi	 	 	 refers to corresponding binary label for pixel i and ŷi	 	 	 refers	 to	 predicted	
probability	 for	 corresponding	pixel	 i. Segmentation of any object into foreground and 

background is a pixel classification task, so that common loss function for pixel 

classification was employed which is defined as: 

𝐻 = − .
6
d (𝑦!𝑙𝑜𝑔ŷ! + (1 − 𝑦!)𝑙𝑜𝑔(1 − ŷ!))

6
!*. , (4.3) 

		
These expressions can be generalized for the loss function as 

𝐿 = 𝐻 − log 𝐽, (4.4) 

 

where minimization of loss indicates maximization of the probability for right pixels to be 

predicted and maximization of intersection between binary labels (masks) and predicted 

pixels (Iglovikov and Shvets, 2018).  

 

4.2 Local Minimum Histogram Segmentation with Selective Hole Filling Approach 

The samples involved 66 images with 100x magnification, where images consist of normal 

and infected red blood cells, white blood cells, platelets, dust particles, and artifacts. The 

images were randomly chosen among the dataset. The algorithm was modelled on these 66 

images. However, a successful evaluation of the segmentation of overlapping red blood cells 

requires an abundance of overlapping samples. To this end, the algorithm was also tested on 

a different set of 15 images of overlapping red blood cell samples.  Matlab 2019a platform 
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was used to perform the following tasks. Our algorithm consisted of ten main steps. The first 

three steps are the pre-processing steps including Median filtering, RGB to gray conversion, 

and histogram smoothing. This is followed by local minimum histogram background 

segmentation for RBC segmentation and HSV and Lab colour space for WBC and dust 

removal as the segmentation steps.  The area filtering by connected components was used to 

limit hole filling which we named as selective hole filling. Morphological operators, 

selective refilling of holes was used in order to remove wastes. Convex hull was utilized for 

both single RBCs, and partially visible RBCs located at the corner of the image. Hough 

transform was used for circle detection to fill bright areas at the centre of some RBCs known 

as central pallor. As the final step, the extended minima transform was used to extract 

markers and marker-controlled watershed segmentation was carried out to count RBCs in an 

automated manner. However, all these steps could be simplified to fewer steps; including 

only RBCs segmentation, removal of WBCs, dust, and artifacts, separation of overlapping 

cells, and finally cell counting. The steps of the algorithm are illustrated in Figure 4.3.    

 

4.2.1 Preprocessing   

Median filtering was applied to red, green, and blue channels of input images to preserve the 

edges of red blood cells. There are lots of variations in colour due to different staining 

conditions. The grayscale transformation was employed to equalize this difference among 

the other images. Prior to local minimum histogram segmentation, histogram smoothing was 

required to avoid the selection of false peaks. Therefore, histogram smoothing was applied 

to the image. Pre-processing steps of white blood cells and dust particle segmentation only 

consisted of median filtering to RGB channels.  

The first step of segmentation is the separation of background from the foreground. 

Segmentation of background is a crucial step in order to extract RBCs in an intact way and 

remove irrelevant data. In the histogram, two groups of pixels were observed where one 

group represents RBCs and the other group, the background. The algorithm was utilized to 

search for the local minimum between the highest two peaks in the smoothed histogram that 

is illustrated in Figure 4.4. The steps of finding the local minimum are as follows:       
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Figure 4.3: Flowchart of selective hole filling approach 

 
 

• Find the highest two peaks in the histogram     

• Set the first peak value (height of the peak)- 0.001 as the threshold for finding peaks 

in the next step     

• Find all peaks with the threshold. This leads to the detection of only two peaks.  

• Find local minimum (intensity value) after the first peak. In the case of many local 

minima, the first local minimum is chosen for the histogram thresholding point.     
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Figure 4.4: Local minima on smoothed histogram are marked with red stars. Smoothed 

histogram is illustrated with an orange sloping line on the histogram. 

 
The mathematical formulation of local minima is defined as: 

f(x) > f(x.)	∀	x	 ∈ (x. − δ, x. + δ)      (4.5) 

 

where x. represents the local minimum on the x-axis whereas δ denotes its neighbourhood. 

It is possible to have many local minima outside the range of the highest two peaks. 

However, the algorithm was designed to work in an explicit way to avoid false local 

minimum detection. Choice of first local minimum after the first of the highest two peaks 

allows intact RBCs segmentation. Figure 4.4. illustrates the presence of many local minima.  

The local minimum thresholded image resulted in a binary mask. Area filtering by connected 

components was applied to remove small irrelevant objects. The purpose of area filtering 

operations is to remove irrelevant objects and residual pixels that are not related to the 

segmented object. This method requires the analysis of objects in binary masks. It was found 

that anything less than 750 pixels is not a red blood cell. Therefore, this number was used to 

remove small irrelevant objects. The areas of objects were analysed through all images by 

Matlab image region analyser app. 
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Hole filling was selectively applied to segmented objects with areas having 1 to 3 RBCs, 

where marker-controlled watershed transformation is suitable for separating these RBCs 

clumps. This step is crucial for marker-controlled watershed transformation. However, for 

larger clumps it is almost impossible for watershed transformation to separate clumps 

without any clue of RBCs corners. These corners look dark among RBC clumps after local 

minimum histogram segmentation as they represent the corners of overlapping RBCs. 

Therefore, only 1 to 3 area sized RBCs were extracted by connected components, and hole 

filling was applied for those RBCs. The average area for triple overlaps was calculated as 

9680 pixels. The up limit was determined by adding 10% to the average area and was 

approximated to 10750 pixels. The down limit was set by 55% of the smallest individual red 

blood cell area as 1000 pixels in order to include partially visible red blood cells as well. 

Matlab Image Region Analyzer application was used to analyse area of red blood cells. 

Overlapping cells that touch the corner of the image could be lost during the border cleaning 

operation. To this end, no border cleaning operation was applied. The selectively hole filled 

mask was combined with the post-processed local minimum histogram segmented  

mask via union set operation.    

 
4.2.2 Colour segmentation   

White blood cells and dust particles present differentiable colours compared to RBCs. 

Therefore, colour segmentation can be used to remove such irrelevant objects. White blood 

cells and dust particles present intense colour of purple and light brown to black respectively.   

 

4.2.3 White blood cell segmentation 

Literature shows the use of Hue Saturation Value (HSV) colour segmentation for the 

removal of WBCs (Li et al., 2016). The hue channel was manipulated in order segment 

WBCs. While the image consists of a white blood cell along with red blood cells, 

thresholding over HSV colour space can be useful. The image can be separated into white 

blood cells and background depending on the distribution of pixels.  

However, in our case, where not all of the images exhibit white blood cells. Since the 

distribution of pixels can't be used to provide consistent segmentation over the dataset and 

Hue channel can't be used where the colour of white blood cells varies due to staining 

conditions over the dataset, colour dimensions were observed to present more 
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discrimination. Therefore, the image was converted into lab space to apply white blood cell 

segmentation, where a and b channels represent colour dimensions. Channel “a” refers to 

red/green and channel “b” refers to blue/yellow value.  Post-processing of this segmentation 

includes the complement of the output image, followed by area filtering to remove residual 

objects in the WBC boundaries initially (less than 200 pixels). The complement of resulted 

output was taken for morphological closing with a disc-shaped structuring element that has 

a radius of 15 to smooth the shape of WBCs. Then, morphological dilation was applied with 

a disc-shaped structuring element with a radius of 7, which ensures the total segmentation 

of WBCs. 

Area filtering was applied to leave only WBC sized elements and eliminate any objects other 

than white blood cells. White blood cells can be as small as 10 μm in diameter where red 

blood cells are about 7 μm. The largest red blood cells in our data are around 4000 pixels. 

Area filtering with a lower limit of 5000 pixels would be sufficient enough to filter other 

objects that share similar colour dimensions with white blood cells such as platelets and 

malaria parasites. Then, the resulted segmentation of WBCs was subtracted from the mask.  

  

4.2.4 Dust particles segmentation 

Blood smear images could be contaminated by dust particles. These dust particles might be 

present either in the blood film or on the camera or lens of the microscope. The colour of 

these dust particles varies from light brown to dark. The hue channel of HSV colour space 

can be used for their segmentation. The range of brown colour was set on the hue channel to 

allow the segmentation of dust particles. Morphological image closing with a disc-shaped 

structuring element with a radius of 15 was applied to smooth the edges of dust particles 

followed by area filtering for very small objects. Area filtering was applied to remove small-

sized unrelated pixels (less than 200 pixels) which were taken as dust particles. Finally, 

resulted segmentation of dust particles was subtracted from the mask and colour 

segmentation was completed.   

 

4.2.5 Refilling of holes 

The selective hole filling operation was applied considering the same area parameters with 

union set operation, that was previously applied after local minimum histogram 

segmentation. Prior to convex hull step, image opening with disk-shaped structuring element 
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with a radius of 5 was used in order to prevent the fusion of neighbouring RBCs and platelets 

in the convex hull operation. 

 

4.2.6 Convex hull 

Some RBCs were disturbed and partially separated due to physical damage. Convex hull 

method was utilized to encapsulate these separated RBCs. However, application of this 

method was limited to single sized RBCs in this study. In other studies, this feature of the 

method was exploited for the detection of single or two overlapped cells (Romero-Rondón 

et al, 2016; Abbas et al., 2018). In our study, area filtering was utilized to extract partially 

separated single sized RBCs. Convex hull was then applied to encapsulate RBCs for intact 

segmentation. Convex hull operation was also employed for partially visible RBCs at the 

corner of the image. As RBCs at the corner are in small size due to partial visibility, small 

area RBCs were extracted. Then convex hull operation was performed. The result of two 

convex hull and selective hole refilling operation outputs were combined with union set 

operation. Final area filtering was applied to remove irrelevant objects other than red blood 

cells (less than 750 pixels). The convex hull is mathematically defined as:   

 

∑ 𝛼!𝑥!|(∀&: 𝛼! ≥ 0)&∑ 𝛼!
|9|
!*. = 1|9|

!*.     (4.6) 

  

where x: is a point in a set of finite points |x|, and α:	is the weight of x: while the addition of 

all weights must equalize to 1 as mean normalized. 

 

4.2.7 Hough transform for circle detection 

In our study, the hole filling method was applied to segmented objects which has an area 

between 1 to 3 RBCs size. However, some high numbers of overlapping RBCs present 

central pallor which is segmented as background and causes over-segmentation of related 

red blood cells by the watershed transformation. In order to solve this problem, Hough 

transform was applied to detect circles with a radius range from 5 to 25, with 88% sensitivity 

on Matlab 2019a. These circles were dilated by a disk-shaped structuring element with a 

radius of 5 and combined with segmented red blood cells. The final mask was created at the 

end of this operation. 
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(a) Background segmentation (b)  Selective hole filling 

  
(c) White blood cell segmentation (d) Dust segmentation 

  
(e) Convex hull (f) Hough Circle Detection 

 

 

(g) Marker extraction and watershed segmentation  

 
Figure 4.5: Illustration of proposed local minimum histogram background segmentation 

steps 

 

4.2.8 Watershed segmentation 

Prior to the watershed algorithm, distance transformation followed by extended minima 

transform was applied to extract foreground-markers. Then, the watershed algorithm was 

used to segment overlapping and single RBCs. Each segmentation was surrounded by a 

bounding box. The boxes with areas less than 500 pixels were not counted as RBCs. All the 
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steps are illustrated in Figure 4.3. with different image inputs in order to emphasize the 

purpose of algorithm steps. It could be visually seen in Figure 4.5. (a) that background 

segmentation was successfully achieved as all red blood cells were segmented and in Figure 

4.5. (b) selective hole filling is applied. In Figure 4.5. (c), the white blood cell was removed 

from the image. Segmentation of red blood cells by the removal of dust particles is illustrated 

in Figure 4.5 (d), whereas Figure 4.5. (e) shows the encapsulation of disturbed RBCs. This 

allows the segmentation of disturbed RBCs as one piece instead of falsely over-segmented. 

Figure 4.5 (f) shows overlapping 5 red blood cells where hole filling operation was not 

applied to. Here, Hough transform was required in order to fill those 3 holes to prevent over-

segmentation in the next step. Finally, in Figure 4.5. (g), marker extraction, and successful 

separation of overlapping 8 red blood cells is shown.   

 

4.2.8 Evaluation 

Jaccard similarity index was employed as background segmentation metric and the 

relationship between manually counted and automatically counted red blood cells can be 

quantified by accuracy, precision, recall, and F1 score. The elements of confusion matrix 

were used to calculate these parameters as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = |;<4;=|
|;<4><4;=4>=|

          (4.7) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = |;<|
|;<4><|

           (4.8) 

𝑅𝑒𝑐𝑎𝑙𝑙 = |;<|
|;<4>=|

                      (4.9) 

𝐹1 = 2𝑥 <?@A!B!C6	9	D@AEFF
<?@A!B!C64D@AEFF

        (4.10) 

 

where TP is the number of correctly classified cells and TN is the background region, which 

is not considered in the context of cell detection. FN indicates the number of missed red 

blood cells and FP refers to false detections. In 4.7 - 4.10 performance parameters are 

illustrated where accuracy refers to the proportion of true results that is used to quantify the 

relation between automated and manually counted data. Precision refers to the proportion of 

truly counted cells among positive results. Recall is also named as sensitivity, which refers 
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to the proportion of positives for correctly counted cells. F-measure (F1) is harmonic mean 

of recall and precision.    

4.3 Data Summary 

4.3.1 U-net architecture 

Data augmentation was used on 400 images where 5600, 1200, and 600 for training, 

validation, and testing was acquired. The algorithm of Molina et al. (2020) and k-means 

clustering was evaluated on these 400 images without data augmentation applied whereas 

The U-net architecture was evaluated on the test data.  

 
4.3.1 Selective hole filling approach 

A different set of 66 images was used for red blood cell segmentation evaluation and another 

set of 15 images that consists of a high number of overlapped red blood cells was used for 

evaluation of segmentation and separation of red blood cells. 
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CHAPTER 5 

RESULTS 

5.1 U-Net Architecture 

The ground truth data for corresponding images was used as target in the network. The 

ground truth data includes red blood cells labelled as bright and background as dark. The 

intersection points among cluster of red blood cells are also labelled as background which is 

illustrated in Figure 5.1. So that, network learns to separate overlapping and touching red 

blood cells through this intersection points. 

 

  
(a) Original Image (b) Label 

 

Figure 5.1: Original image and its corresponding label 

 

The other objects in the film that are not in area of interest such as white blood cells, dust 

particles, platelets and artifacts are also labelled as background.  

The network was trained for 3200 epochs where best training was achieved at the 1769th 

epoch with 0,04795 validation loss. The corresponding loss versus epoch curve is illustrated 

in Figure 5.2. The test data was used to evaluate the segmentation efficient of the network 

where 93,8% Jaccard similarity coefficient was achieved. To best of our knowledge, this 

exceeded previous results. The data was also divided as 80%/10%/10% and 60%/20%/20% 

for training, validation and testing and the corresponding results are illustrated in Table 5.1. 
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Figure 5.2: Training and validation loss expressed as epoch on x axis and loss on y axis 

 

Recently, Poostchi et al. (2018a) had segmented red blood cells with 92.5% Jaccard 

similarity coefficient even after manual filtration of white blood cells. Our study was also 

compared with popular segmentation algorithms employed in this domain, Otsu’s 

thresholding & k-means clustering. Recently in a study, Otsu’s thresholding was employed 

with pre-processing and post-processing steps in order to segment red blood cells (Molina 

et al., 2020). The segmentation algorithm of the recent study was created with its 

preprocessing and postprocessing steps. However, border cleaning operation was excluded 

as images in our dataset exhibits important number of red blood cells at the borders. K-means 

clustering algorithm is another segmentation algorithm that is popular for blood cell WBC, 

RBC segmentations (Savkare and Narote, 2015; Zhang et al., 2014). K-means clustering was 

created for comparison to the proposed study by following steps. Median filtering and 

morphological reconstruction were used for edge preservation and removal of platelets 

respectively. A disc-shaped structuring element with radius of 3 was used for markers of 

morphological reconstruction. After that, segmentation of red blood cells was achieved by 

k-means clustering with k=2 followed by morphological hole filling for central pallor. These 

two created algorithms, Otsu’s thresholding and k-means clustering was applied to our data 

set that is consisted of 400 images without any data augmentation, and 88.26% and 87.89% 

Jaccard similarity index was acquired respectively. The results are illustrated in Table 5.2. 

The proposed network achieved segmentation and separation of overlapping red blood cells 

which is illustrated in Figure 5.3. On top of that, red blood cells with central pallor were 
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(white area at the center of the red blood cells) segmented as part of red blood cells that is 

shown in Figure 5.4. The color of the central pallor is very similar to the background. So, 

the network has learned to segment central pallor together with red blood cells providing 

intact RBC segmentation. Moreover, RBC segmentation with WBC presence is illustrated 

in Figure 5.5. It should be noted that, white blood cell was removed from the image. In other 

words, white blood cell was segmented as a part of the background. 

 

  
(a) Original image (b) Segmented output 

 

Figure 5.3: Segmentation and separation of overlapping red blood cells 
 
 
 

Table 5.1: Results of U-net architecture on different data divisions 
Training, Validation, Testing Jaccard 

similarity 
coefficient 

80%, 10%, 10% 93.3% 
70%, 15%, 15% 93.8% 
60%, 20%, 20%  92.9% 

 
 

Table 5.2: Jaccard similarity coefficient (U-net vs others) 
Study Jaccard 

similarity 
coefficient 

The proposed the U-net architecture 93.8% 
Molina et al.  88.26% 
K-means clustering 87.89% 
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(a) Original image (b) Segmented output 
 

Figure 5.4: Segmentation of red blood cells with central pallor. 
 
 

  

(a) Original image (b) Segmented output 
 

Figure 5.5: Segmentation of red blood cells with presence of white blood cell. 
 
 
 
5.2 Marker-controlled Watershed Segmentation 
 
The proposed study was compared to another histogram segmentation algorithm, Zack's 

thresholding. Zach's thresholding is a popular histogram segmentation algorithm used to 

segment red blood cells (Damahe et al., 2011). Another comparison was made with the k-

means clustering algorithm with k = 2. The results of corresponding algorithms are given in 

Table 5.3. 
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Table 5.3: Jaccard similarity coefficient results (Proposed watershed vs others) 
Study Jaccard similarity 

coefficient 
Proposed study 93.15% 
Zack's thresholding 85.53%  
K-means clustering 88.34% 

 
 
The success of our algorithm depends on combinations of several steps that complement 

each other. However, evaluation of the selective hole filling could be determined by 

replacing selective hole filling with classic hole filling, and keeping the rest of the algorithm 

steps untouched. Another comparison was done by replacing the local minimum histogram 

thresholding by k-means clustering with k=2. Another set of 15 images with an abundance 

of overlapping red blood cells were used to evaluate the segmentation of overlapping RBCs. 

The comparison of results was illustrated in Table 5.4. The visual comparison of extracted 

markers and overlapping red blood cell segmentation is shown in Figure 5.7 and Figure 5.8 

separately. 

 

The overlapping red blood cells ratio versus whole red blood cells was analysed as 17% for 

the first dataset whereas 34% for the second. The first dataset included randomly chosen 66 

images and the second data set included 15 images with an abundance of overlapping cells. 

The ratio of the different number of overlapping RBCs is given in Figure 5.6. The first 

dataset had an abundance of two overlapped cells whereas the second dataset showed an 

abundance of 5 or more RBCs. 

 

Table 5.4: Performance evaluation on high number of overlapping cells samples. 
Method TP FP FN Accuracy Precision Recall F1 
Proposed study 793 2 7 0,989 0,997 0,991 0,994 
Classic hole filling 
replacement 728 2 28 0,960 0,997 0,962 0,979 

K-means clustering 
replacement 733 15 64 0,902 0,979 0,919 0,948 
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Figure 5.6: Comparison of two dataset with different number overlapping red blood cell 

distribution 
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(a) Original Image (b) The proposed study 

  
(c) K-means clustering (d) Classic hole filling 

Figure 5.7: Illustration of markers 

 

   
(a) Proposed study (b) K-means clustering  (c) Classic hole filling 

Figure 5.8: The separation of overlapping red blood cells 
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The proposed segmentation algorithm was able to compensate sensitivities of watershed 

transformation. As a result, segmentation and separation of multiple RBCs were improved. 

Images used in this study varied in terms of colours and artifacts. The local minimum 

histogram thresholding was employed for the initial segmentation of the background. The 

selective hole filling algorithm was used to keep the inner edges of overlapping RBCs, which 

aids watershed transformation to segment a high number of overlapping red blood cells. One 

of the problems with the selective hole filling method is the exhibition of central pallor which 

causes over-segmentation issues in case of high numbers of RBCs overlapping. Hough 

transform for circle detection was employed for this problem. However, not all images 

exhibit circular central pallor that can be detected by the Hough transform, therefore, this 

problem remained for some RBCs. Convex hull algorithm was employed for the intact 

segmentation of disturbed RBCs, which improved segmentation and quantification of RBCs 

in return.    
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CHAPTER 6 

DISCUSSION 

Even the segmentation of red blood cells is a challenge, the proposed thesis aims to remove 

white blood cells and other irrelevant objects besides. In the previous works, Poostchi et al. 

(2018a) utilized SEPACELL R-500 II to filter white blood cells manually beforehand and 

Rajaraman et al. (2018) ground truth filtered the white blood cells. So, the removal of white 

blood cell task was not included. However, removal of white blood cells is required to be 

not dependent on other applications especially manual ones. Therefore, manual removal of 

objects was not included in this study as it is intended to automate the segmentation task 

from end to end. On the other hand, RBC segmentation for the evaluation of malaria parasites 

is either neglected or oversimplified in the literature for deep learning algorithms for the 

detection of malaria parasites. RBCs were either segmented by classic image processing 

algorithms (Bibin and Punitha, 2017; Rajaraman et al., 2018; Molina et al., 2020; Poostchi 

et al., 2018a) or presegmented RBCs (Reddy and Juliet, 2019) were used to evaluate 

individual RBCs as discussed previously. Individual evaluation of red blood cells for malaria 

parasites requires segmentation of individual red blood cells. Improvements in the efficiency 

and reliability of segmentation favor quantitative and qualitative blood sample evaluation.  

The purpose of this research was to implement a deep learning method that could segment 

red blood cells without the need for preprocessing and manual filtering steps to be applied. 

The proposed approach enables individual evaluation of red blood cells in a fully automated 

way. 

 

In this thesis, improvement of marker-controlled watershed segmentation was also studied 

besides U-net architecture. The extraction of markers plays important role in the success of 

watershed segmentation. The classic hole filling approach is not suitable for the extraction 

of markers for a high number of overlapping red blood cells. The selective hole filling 

approach was proposed to overcome this issue, where inner corner details contribute to the 

extraction of markers which, is illustrated in Figure 5.7. As morphological hole filling is not 

applied to the high number of overlapped red blood cells, the Hough circle detection was 

employed to compensate the central pallor problem. However, not all central pallors are 

circular. Therefore, central pallor problem remained for some red blood cells. Moreover, the 
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selective hole filling method requires an area estimation of triple overlapped red blood cells. 

Therefore, any other dataset should be evaluated for the area of triple overlapped red blood 

cells. 
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CHAPTER 7 

CONCLUSION 

In this thesis, data augmentation algorithms such as random elastic deformation, horizontal 

and vertical flips were employed to increase the sample size. The segmentation and 

separation of red blood cells were achieved by the U-net architecture successfully. This 

technique removed white blood cell manual filtering and allowed the segmentation 

algorithm to run automatically from end to end.  Irrelevant artifacts have also been 

eliminated which poses another problem for classic image processing algorithms. Besides, 

the highest value of the Jaccard similarity index was obtained to the best of our knowledge. 

This study, however, aims only to conduct segmentation.  This study can also be used prior 

to the classification of malaria blood smear images for the segmentation of red blood cells. 

In order to identify individual red blood cells as healthy and infected, classifier algorithms 

could be introduced. The degree of infection may in return, be assessed.  

 
On the other hand, marker-controlled watershed segmentation with selective hole filling 

approach has also been studied in this thesis. However, this algorithm has been tested on 

different sized images with more red blood cells. Here, it has been noted that the selective 

hole filling method increases the success of segmentation of high numbers of overlapping 

red blood cells. Additionally, application of the local minimum histogram segmentation has 

increased the success of segmentation. 
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