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ABSTRACT 

 

Many mathematicians of recent have contributed on the complete asymptotic expansion for 

several operators. In this work, some positive linear operators are presented and their 

complete asymptotic expansions is also obtained, where all the coefficients in the 

expansions turn out to be in terms of the Stirling numbers of the first and second kind. 

Keywords:Meyer-König and Zeller operators (MKZ), Chlodovsky operators, Stirling 

numbers, complete asymptotic expansion 
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ÖZET 

 
Sonzamanlarda bir çok matematikci, bazı operatörler için tam asimtotik açılımlar üzerinde 

çalışmalarda bulundular. Bu çalışmada, bazı linear operatörler verilmiş ve bu operatörlerin 

tam asimtotik genişlemeleri verilmiştir. Genişlemelerdeki tüm bu katsayılar, birinci ve ikinci 

tipteki Stirling sayılarına dönüştürülür. 
 
Anahtar Kelimeler: Meyer- König and Zeller  operatörleri, Chlodovsky operatörleri, Stirling 
sayıları, tam asimtotik genişlemesi 
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CHAPTER 1 
 

INTRODUCTION 
 
 

In mathematical analysis, operators are basically extension of functions where the domain 

and range are vector spaces. 

1.1 Linear Operators 
 

Definition 1.1 

For an operator 𝑇: 𝑿 → 𝒀 to be called a linear operator it must satisfy the following 

conditions. 

i) The domain of T, 𝐷(𝑇) is a vector space and the range 𝑅(𝑇)lies in a vector space 

over the same field 𝑘 

ii) For all 𝒙, 𝒚 𝜖 𝐷(𝑇)and scalars 𝛼, 𝛽𝜖 𝑘 

 

               𝑇(𝒙 + 𝒚) = 𝑇𝒙 + 𝑇𝒚 

  𝑇(𝛼𝒙) = 𝛼𝑇𝒙 

 

That is 𝑇(𝛼𝒙 + 𝛽𝒚) = 𝛼𝑇𝒙 + 𝛽𝑇𝒚 

Examples of linear operators. 

i) Identity operators:  Let 𝑿 be a vector space over a field 𝐾. 

 

𝐼𝑿: 𝑿 → 𝑿,        such that 

 

𝐼𝑿(𝒙) = 𝒙,          ∀𝒙 ∈ 𝑿   

 

 Verification: 𝐼𝑿(𝛼𝒙 + 𝛽𝒚) = 𝛼𝒙 + 𝛽𝒚 = 𝛼𝐼𝑋(𝒙) + 𝛽𝐼𝑋(𝒚) 

 Where    𝒙, 𝒚 ∈ 𝑿 and 𝛼, 𝛽 ∈ 𝐾. 
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ii) Zero operators: Let 𝑿, 𝒀 be vector spaces over the same field 𝐾. 

 

𝑂: 𝑿 → 𝒀such that 

 

𝑂(𝒙) = 𝟎            ∀𝒙 ∈ 𝑿 

 

 Verification:           𝑂(𝛼𝒙 + 𝛽𝒚) = 𝟎 = 𝟎 + 𝟎 = 𝛼𝑂(𝒙) + 𝛽𝑂(𝒚) 

 Where    𝒙, 𝒚 ∈ 𝑿 and 𝛼, 𝛽 ∈ 𝐾 

 

1.2 Positive Linear Operators 
  

Definition 1.2 

A function 𝜃:𝑀𝑛 → 𝑀𝑚  is said to be a positive linear function if 𝜃(𝐴) ≥ 𝜃(𝐵) 

whenever 𝐴 ≥ 𝐵. 

 

 

1.3 Asymptotic Expansion 

  
Erdelyi(1956) gave a detail description of asymptotic expansions (also known as 

asymptotic series or Poincare’ expansion (after Henri Poincare’))of a function 𝑓(𝑥) as   an 

expansion of that function in terms of a series, the partial sum of which do not necessarily 

converge, but such that taking an initial partial sum provide an asymptotic formula for 𝑓. 

Asymptotic formula means a statement of equality between two functions which is not a 

true equality but which mean the ratio of the two functions approaches 1 as the variable 

approaches some value usually infinity. 
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1.3.1 Asymptotic formula 

 

Definition 1.3 

Let 𝑓(𝑛) be a quantity of functions depending on a natural number 𝑛. A function 𝑝(𝑛) of 𝑛  

is an asymptotic formula for 𝑓(𝑛) if 

 

lim
𝑛→∞

𝑓(𝑛)

𝑝(𝑛)
= 1 

Denoted by             𝑓(𝑛)~ 𝑝(𝑛)as    𝑛 → ∞  

Definition 1.4  

Let 𝑓(𝑛) be a function defined for all sufficiently large 𝑛 and let 𝜙𝑘(𝑛)    (𝑘 = 0,1,2 … ) be 

a sequence of functions satisfying  

 

                𝜙𝑘+1(𝑛) = 𝑜(𝜙𝑘(𝑛))(𝑛 → ∞)         for each k     

 

 (𝜙𝑘  is called the gauge function). A (formal) series of the form  

 

∑ 𝑎𝑘𝜙𝑘(𝑛)

∞

𝑘=0

 

 

is called an asymptotic series for a function 𝑓(𝑛) as 𝑛 → ∞ if for each 𝑘,  

 

𝑓(𝑛) = ∑ 𝑎𝑘𝜙𝑘(𝑛) +  𝑜(𝜙𝑚(𝑛))(𝑛 → ∞)𝑚
𝑘=0 (1.0) 

An equivalent property to 1.0 is 
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                𝑓(𝑛) = ∑ 𝑎𝑘𝜙𝑘(𝑛) +  𝑂(𝜙𝑚(𝑛))

𝑚−1

𝑘=0

 

If this holds, we write 

 

𝑓(𝑛)~ ∑ 𝑎𝑘𝜙𝑘(𝑛)∞
𝑘=0 (𝑛 → ∞)(1.1) 

 

Equation 1.1 is called the asymptotic expansion of 𝑓 with respect to {𝜙𝑘} as 𝑛 → ∞. 

The symbols   𝑂 and 𝑜 called ‘big O’ and ‘little o’ respectively are known as Landau 

symbols. If 𝑓 and 𝑔 are two functions defined on some subset of the real numbers, one 

writes 

𝑓(𝑛) = 𝑂(g(𝑛))as(𝑛 → ∞) 

 

If and only if  ∃ 𝑀 ∈ ℝ  and𝑛0 ∈ ℝ such that |𝑓(𝑛)| ≤ 𝑀|𝑔(𝑛)|,    ∀ 𝑛 ≥ 𝑛0 

And 𝑓(𝑛) = 𝑜(g(𝑛)) if for every  휀 > 0, ∃ 𝑛0such that
𝑓(𝑛)

𝑔(𝑛)
< 휀  ∀ 𝑛 ≥ 𝑛0 

Thus,                                               

ℎ(𝑛) ∈ 𝑜(𝑝(𝑛)) ⟹ ℎ(𝑛) ∈ 𝑂(𝑝(𝑛)) 

 

1.4 Stirling Numbers 
 

Stirling numbers plays an important role in analytic and combinatorics problems. They 

were introduced in the eighteenth century by James Stirling to whom they are named after. 

These numbers are classified into two kinds namely: Stirling numbers of the first kind and 

Stirling numbers of the second kinds (Toufik and Matthias, 2015). 
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1.4.1 Stirlingnumbers of the first kind 

 

The Stirling numbers of the first kind are represented by   

𝑆𝑛
𝑘 = 𝑠(𝑛, 𝑘) = (−1)𝑛−𝑘[𝑛

𝑘
] . They are the coefficients in the expansion 

 

                (𝑥)𝑛 = ∑ 𝑠(𝑛, 𝑘)𝑥𝑘

𝑛

𝑘=0

 

 

(𝑥)𝑛is the falling factorial given by 

 

(𝑥)𝑛 = 𝑥(𝑥 − 1)(𝑥 − 2) … (𝑥 − 𝑛 + 1),      (𝑥)0 = 1 

Thus, 

(𝑥)5 = 𝑥(𝑥 − 1)(𝑥 − 2)(𝑥 − 3)(𝑥 − 4)(𝑥 − 5) 

 

= 𝑥5 − 10𝑥4 + 35𝑥3 − 50𝑥2 + 24𝑥 

Therefore,  

 

  𝑠(5,0) = 0,   𝑠(5,1) = 24,   𝑠(5,2) = −50,   𝑠(5,3) = 35,   𝑠(5,4) = −10,   

𝑠(5,5) = 1 

  

1.4.2 Stirling numbers of the second kind 

 

The Stirling numbers for the second kind are given by  

 

𝜎𝑛
𝑘 = 𝑠(𝑛, 𝑘) =

1

𝑘!
∑(−1)𝑘−𝑗 (

𝑘

𝑗
) 𝑗𝑛

𝑘

𝑗=0
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with (
𝑘

𝑗
) a binomial coefficient 

They determine the number of ways to partition a set of 𝑛 labeled objects into 𝑘  non-

empty unlabeled subsets. 

Thus, 𝑠(3,1) = 1, 𝑠(3,2) = 3,    𝑠(3,3) = 1 

the value  𝑆𝑛
𝑘  = 𝜎𝑛

𝑘 = 0  for 𝑘 > 𝑛 

 

 

1.5 Scope and Limitations 
 

This work focuses on the complete asymptotic expansions of the Meyer-König and Zeller 

operators (Mayer-Konig and Zeller, 1960) and that of Chlodovsky operators (Chlodovsky, 

1937).  
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CHAPTER 2 
 

LITERATURE REVIEW 
 

2.1 Results on Meyer-König and Zeller Operators and that of ChlodovskyOperators 
 

In this a brief history of some results on Meyer-König and Zeller operators and that of 

Chlodovsky operators is presented. 

Meyer-König and Zeller operators (Meyer-König and Zeller, 1960) in the slight 

modification of Cheney and Sharma (Cheney and Sharma, 1964) which associates to each 

function 𝑓 defined on [0,1], the power series 

   𝑀𝑛(𝑓; 𝑥) = {
∑ 𝑓 (

𝑘

𝑘 + 𝑛
)

∞

𝑘=0

(
𝑘 + 𝑛

𝑘
) 𝑥𝑘(1 − 𝑥)𝑛+1  𝑥 ∈ [0,1)

 𝑓(1)                                                          𝑥 = 1  

(2.0) 

 

While the Chlodovsky operators𝐶𝑛 were introduced by Chlodovsky (1937) as a 

generalization of the Bernstein operators 𝐵𝑛on an infinite interval. 

 

                (𝐶𝑛𝑓)(𝑥): = {
∑ 𝑓 (

𝑏𝑛

𝑛
𝑘)

𝑛

𝑘=0

𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
) ,  0 ≤ 𝑥 ≤ 𝑏𝑛

𝑓(𝑥)                                            𝑥 > 𝑏𝑛

                           (2.1) 

 

 Where 𝑓 is a function defined on [0, ∞) and bounded on every finite   interval[0, 𝑏] ⊂

[0, ∞), with 𝑃𝑛,𝑘 defined by 

𝑃𝑛,𝑘(𝑦) = (
𝑛

𝑘
) 𝑦𝑘(1 − 𝑦)𝑛−𝑘   ,  0 ≤ 𝑦 ≤ 1. 

 

and(𝑏𝑛)𝑛=1
∞ is a positive increasing sequence of real with the condition that 
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lim
𝑛→∞

𝑏𝑛 = ∞      and   lim
𝑛→∞

𝑏𝑛

𝑛
 = 0.                        

In approximation theory these operators are the focus of several investigations. 

Alkemade (1984) succeeded in obtaining the second moment of Meyer-König and Zeller 

operators in terms of hypergeometric series. 

 

  (𝑀𝑛𝑒2)(𝑥) = 𝑥2 +
𝑥(1 − 𝑥)2

𝑛 + 1
𝐹1(1,2; 𝑛 + 2: 𝑥)   (𝑥 ∈ [0,1)               (2.2) 

 

He also proved the asymptotic expansion 

 

 (𝑀𝑛𝑒2)(𝑥) − 𝑥2 =
𝑥(1 − 𝑥)2

𝑛
+

𝑥(1 − 𝑥)2(2𝑥 − 1)

𝑛2
+ 𝑂(𝑛−3)(𝑛 → ∞)(2.3) 

 

Where the function 𝑒2 is defined by 𝑒2: 𝑥 → 𝑥2. The result about the second moment for 

the Meyer-König and Zeller operators was extended by Ulrich (1995) to higher order 

moments, that is    𝑀𝑛𝑒𝑟   (𝑟 = 0,1,2, … ) Where the function 𝑒𝑟 is defined by 𝑒𝑟: 𝑥 → 𝑥𝑟. 

He also went forward to derive the complete asymptotic expansion in the 

form   𝑀𝑛(𝑡𝑟; 𝑥) − 𝑥𝑟 as 𝑛 → ∞ in the form 

 

   𝑀𝑛(𝑡𝑟; 𝑥)~𝑥𝑟 + ∑ 𝐶𝑘
[𝑟](𝑥)𝑛−𝑘(𝑛 → ∞)(2.4)

∞

𝑘=1

 

 

The coefficients 𝐶𝑘
[𝑟]

    (𝑘 = 1,2,3, … , 𝑟 ∈ ℕ) are given in terms of Stirling numbers of the 

first and second kind   
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Ibikli and Karsli (2005) introduced a Chlodovsky type Durrmeyer operator as follows: 

   𝐷𝑛: 𝐵𝑉[0, ∞) → 𝒫 

 

     (𝐷𝑛𝑓)(𝑥) =
(𝑛 + 1)

   𝑏𝑛
∑ 𝑃𝑘,𝑛 (

𝑥

𝑏𝑛
) ∫ 𝑓(𝑡)𝑃𝑘,𝑛 (

𝑡

𝑏𝑛
)

𝑏𝑛

0

𝑛

𝑘=0

𝑑𝑡,         0 ≤ 𝑥 ≤ 𝑏𝑛(2.5) 

 

Where   𝒫: {𝑃: [0, ∞) → ℝ}is a polynomial functions set, and 𝑃𝑘,𝑛(𝑥) = (𝑛
𝑘

)𝑥𝑘(1 − 𝑥)𝑛−𝑘 

is the Bernstein basis. The authors estimated the rate of convergence of the operator 𝐷𝑛 , 

for functions of bounded variation on the interval [0, ∞), by means of the technique of 

probability theory. 

The rate of convergence of the Chlodovsky-Bernstein operators    (𝐶𝑛𝑓)(𝑥)  was estimated 

by Karsli and Ibikli (2007) for functions defined on the interval[0, 𝑏𝑛], for 𝑏𝑛 → ∞, which 

are of bounded variation on  [0, ∞) 

Karsli (2008)  define a new kind of operator Meyer-König and Zeller Durrmeyer operators 

(MKZD) for functions defined on [0, 𝑏𝑛], named Chlodovsky-type MKZD operators as  

 

   (𝑀𝑛
∗ 𝑓)(𝑥) = ∑

𝑛 + 𝑘

   𝑏𝑛
𝑀𝑛,𝑘 (

𝑥

𝑏𝑛
) ∫ 𝑓(𝑡)𝑏𝑛,𝑘 (

𝑡

𝑏𝑛
)

𝑏𝑛

0

∞

𝑘=0

𝑑𝑡,         0 ≤ 𝑥 ≤ 𝑏𝑛(2.6) 

 

Where  

               𝑀𝑛,𝑘(𝑥) = (𝑛+𝑘−1
𝑘

)𝑥𝑘(1 − 𝑥)𝑛and𝑏𝑛,𝑘(𝑡) = 𝑛(𝑛+𝑘
𝑘

)𝑡𝑘(1 − 𝑡)𝑛−1 

The authors studied the behavior of the 𝑀𝑛
∗  operators for functions of bounded variation 

and estimate by means of techniques of probability theory the rate of convergence of the 

operators on the on the interval [0, 𝑏𝑛],     (𝑛 → ∞). 
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Psych-Taberska (2009) estimated the rate of convergence Chlodovsky- Kantorovich 

polynomials in classes of locally integrable functions. Namely, 

If 

𝑓 ∈ 𝐿𝑙𝑜𝑐[0, ∞)    and if   lim
𝑛→∞

∫ |𝑓(𝑢)|𝑑𝑢 exp (−𝜎
𝑛

𝑏𝑛
) = 0      foreach 𝜎 > 0

𝑏𝑛

0

 

Then 

lim
𝑛→∞

(𝐾𝑛𝑓)(𝑥) = 𝑓(𝑥) almost every where on [0, ∞) 
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CHAPTER 3 
 

MEYER-KÖNIG AND ZELLER OPERATORS 
 

3.1 Complete Asymptotic Expansion for theMeyer-König and Zeller Operators 
 

Meyer-König and Zeller operators (Meyer-König and Zeller, 1960) in the slight 

modification of Cheney and Sharma (Cheney and Sharma, 1964) which associates to each 

function 𝑓 defined on [0,1], the power series 

 

   𝑀𝑛(𝑓; 𝑥) = {
∑ 𝑓 (

𝑘

𝑘 + 𝑛
)

∞

𝑘=0

(
𝑘 + 𝑛

𝑘
) 𝑥𝑘(1 − 𝑥)𝑛+1  𝑥 ∈ [0,1)

 𝑓(1)                                                          𝑥 = 1  

(3.0) 

 

Letting  𝐵∗[0,1]to be the set of all functions 𝑓(𝑡)  which are bounded on  [0,1] and 

continuous to the left at 𝑡 = 1, the operators (𝑀𝑛(𝑛 ∈ ℕ)) are obviously seen to be linear 

operators define on 𝐵∗[0,1]  since it follows from definition 1.1 that 

 

𝑀𝑛(𝛼𝑓 + 𝛽𝑔; 𝑥) = {
∑(𝛼𝑓 + 𝛽𝑔) (

𝑘

𝑘 + 𝑛
)

∞

𝑘=0

(
𝑘 + 𝑛

𝑘
) 𝑥𝑘(1 − 𝑥)𝑛+1,         𝑥 ∈ [0,1)

(𝛼𝑓 + 𝛽𝑔)(1)                                                                       𝑥 = 1

 

 

=  {
∑(𝛼𝑓) (

𝑘

𝑘 + 𝑛
)

∞

𝑘=0

(
𝑘 + 𝑛

𝑘
) 𝑥𝑘(1 − 𝑥)𝑛+1

(𝛼𝑓)(1)
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                                  + {
∑(𝛽𝑔) (

𝑘

𝑘 + 𝑛
)

∞

𝑘=0

(
𝑘 + 𝑛

𝑘
) 𝑥𝑘(1 − 𝑥)𝑛+1,                   𝑥 ∈ [0,1)

(𝛽𝑔)(1)                                                                             𝑥 = 1

 

= 𝛼 {
∑ 𝑓 (

𝑘

𝑘 + 𝑛
)

∞

𝑘=0

(
𝑘 + 𝑛

𝑘
) 𝑥𝑘(1 − 𝑥)𝑛+1

(𝑓)(1)

 

 

                                  +𝛽 {
∑ 𝑔 (

𝑘

𝑘 + 𝑛
)

∞

𝑘=0

(
𝑘 + 𝑛

𝑘
) 𝑥𝑘(1 − 𝑥)𝑛+1,                𝑥 ∈ [0,1)

(𝑔)(1)                                                                             𝑥 = 1

 

 

= 𝛼𝑀𝑛(𝑓; 𝑥)  + 𝛽𝑀𝑛(𝑔; 𝑥). 

 

for all 𝑓 and 𝑔 define on  [0,1],   𝛼, 𝛽𝜖ℝ. 

To show that the operators 𝑀𝑛(𝑛 ∈ ℕ) are positive operators, definition 1.2 is applied on  

𝑀𝑛(𝑛 ∈ ℕ) as follows: 

Let 𝑓 and 𝑔 be functions define on [0,1] such that 

𝑓(𝑥) ≥ 𝑔(𝑥),   𝑥𝜖[0,1]    , then this implies 

 

{
𝑓 (

𝑘

𝑘 + 𝑛
) (

𝑘 + 𝑛

𝑘
) 𝑥𝑘(1 − 𝑥)𝑛−𝑘  , 𝑥 ∈ [0,1)

(𝑓)(1)                                             ,           𝑥 = 1         
, 𝑘 = 0,1,2, … 

 

≥ {
𝑔 (

𝑘

𝑘 + 𝑛
) (

𝑘 + 𝑛

𝑘
) 𝑥𝑘(1 − 𝑥)𝑛−𝑘  , 𝑥 ∈ [0,1)

(𝑔)(1)                                             ,           𝑥 = 1         
, 𝑘 = 0,1,2, … 
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⇒ {
∑ 𝑓 (

𝑘

𝑘 + 𝑛
) (

𝑘 + 𝑛

𝑘
) 𝑥𝑘(1 − 𝑥)𝑛−𝑘

∞

𝑘

 ,                          𝑥 ∈ [0,1)               

(𝑓)(1)                          ,                                                 𝑥 = 1              

 

 

≥ {
∑ 𝑔 (

𝑘

𝑘 + 𝑛
) (

𝑘 + 𝑛

𝑘
) 𝑥𝑘(1 − 𝑥)𝑛−𝑘

∞

𝑘

 ,                       𝑥 ∈ [0,1)                

(𝑔)(1)                          ,                                                      𝑥 = 1                      

 

 

⇒      𝑀𝑛(𝑓; 𝑥) ≥ 𝑀𝑛(𝑔; 𝑥). 

Thus,  𝑀𝑛 are positive operators. 

The work of Ulrich (1997) on the complete asymptotic expansion for the operators    𝑀𝑛 in 

the form 

 

   𝑀𝑛(𝑓(𝑡); 𝑥)~𝑓(𝑥) + ∑ 𝑎𝑘(𝑓; 𝑥)𝑛−𝑘,                (𝑛 → ∞)

∞

𝑘=1

.                   (3.1) 

 

Provided 𝑓 possesses derivatives of sufficiently high order at  𝑥 ∈ [0,1]is studied in detail 

in this chapter. The latter formula means that 

 

     𝑀𝑛(𝑓(𝑡); 𝑥)~𝑓(𝑥) + ∑ 𝑎𝑘(𝑓; 𝑥)𝑛−𝑘 + 𝑜(𝑛−𝑞),      (𝑛 → ∞)

𝑞

𝑘=1

.          (3.2) 

for every positive integer 𝑞.  Where 𝑎𝑘(𝑓; 𝑥) (𝑘 ∈ ℕ) are coefficients. 
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Let 𝐾𝑞(𝑥)  be the class of all functions 𝑓(𝑡) ∈ 𝐵∗[0,1]   which are 𝑞  times differentiable 

at 𝑥 ∈ [0,1]. The following general approximation theorem proved by Sikkema (1970) will 

be useful in establishingEquation3.1 

Theorem 3.0 

For even  𝑞 ≥ 2  and fixed 𝑥 ∈ [0,1] let 𝐿𝑛: 𝐾𝑞(𝑥) → 𝐶[0,1 ]be a sequence of positive 

linear operators. If 

 

𝐿𝑛((𝑡 − 𝑥)𝑝; 𝑥)  =    𝑂 (𝑛−[
𝑝+1

2
]) (𝑛 → ∞)(𝑝 = 0,1, … , 𝑞 + 2))(3.3) 

 

then for each  𝑓 ∈  𝐾𝑞(𝑥) 

 

     𝐿𝑛(𝑓(𝑡); 𝑥) =  ∑
1

𝑝!
𝐿𝑛((𝑡 − 𝑥)𝑝; 𝑥)𝑓(𝑝)(𝑥)  +

𝑞

𝑝=0

𝑜 (𝑛−
𝑞

2),      (𝑛 → ∞)(3.4) 

 

Furthermore, 

if        𝑓 ∈  𝐾(𝑞+2)(𝑥), 

the term 𝑜(𝑛−𝑞/2),  in (3.14) can be replaced by 𝑂(𝑛−(𝑞/2+1)),       

Also the complete asymptotic expansion for the moment 𝑀𝑛(𝑡𝑟; 𝑥)(𝑟 ∈ ℕ) by Ulrich 

(1995) given below plays an important role in establishing 3.1 

 

Theorem 3.1  

For the function 𝑓(𝑡) = 𝑡𝑟(𝑟 ∈ ℕ) we have for every 𝑥 ∈ [0,1] the asymptotic expansion  
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    𝑀𝑛(𝑡𝑟; 𝑥)~𝑥𝑟 + ∑ 𝐶𝑘
[𝑟](𝑥)𝑛−𝑘(𝑛 → ∞)                                          (3.5)

∞

𝑘=1

 

 

The coefficients are given by 

    𝐶𝑘
[𝑟](𝑥) = ∑ (

𝑟

𝑗
) (−1)𝑗𝐻(𝑗 − 1, 𝑘 + 𝑗 − 1, 𝑥)

𝑟

𝑗=1

,                                     (3.6) 

 

Where 𝐻(𝑗, 𝑚, 𝑥)is define as 

 

𝐻(𝑗, 𝑚, 𝑥) =         ∑ 𝑆𝑖
𝑗
𝜎𝑚

𝑖 (1 − 𝑥)𝑖+1

𝑚

𝑖=𝑗

(0 ≤ 𝑗 ≤ 𝑚).              (3.17) 

 

The quantities 𝑆𝑗
𝑖 and 𝜎𝑗

𝑖denote the Stirling numbers of the first and second kind 

respectively presented in chapter 1. 

 

                𝑥(𝑗) = ∑ 𝑆𝑗
𝑖𝑥𝑖   𝑗

𝑖=0 and𝑥𝑗 = ∑ 𝜎𝑗
𝑖𝑥𝑖𝑗

𝑖=0
(𝑗 ∈ ℕ). 

 

                𝑥(𝑗) = 𝑥(𝑥 − 1) … (𝑥 − 𝑗 + 1) 

is the falling factorial. 

The following steps are followed to arrive at the result in Equation3.1 

Step 1:Theorem 3.0 is applied on the operator  𝑀𝑛. 

Step 2: simplification of the result established in step 1 to arrive at Equation3.1 
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To apply Theorem 3.0 on   𝑀𝑛 the condition    

        𝑀𝑛((𝑡 − 𝑥)𝑝; 𝑥) = 𝑂 (𝑛−[
𝑝+1

2
]) (𝑛 → ∞)(𝑝 = 0,1, … , 𝑞 + 2) 

  

must be satisfied, and to establish it, the procedure is as follows: 

 

 𝑀𝑛((𝑡 − 𝑥)𝑝; 𝑥)  = 𝑀𝑛 (∑ (
𝑝

𝑟
) 𝑡𝑟(−𝑥)𝑝−𝑟; 𝑥

𝑝

𝑟=0

)   (by application of binomial theorem) 

 

      = ∑ (
𝑝

𝑟
) (−𝑥)𝑝−𝑟

𝑝

𝑟=0

𝑀𝑛(𝑡𝑟; 𝑥) 

 

   ~ ∑ (
𝑝

𝑟
) (−𝑥)𝑝−𝑟(𝑥𝑟 + ∑ 𝐶𝑘

[𝑟](𝑥)𝑛−𝑘)                                     (𝑛 → ∞)

∞

𝑘=1

𝑝

𝑟=0

 

= ∑ (
𝑝

𝑟
) (−𝑥)𝑝−𝑟𝑥𝑟 + ∑ (

𝑝

𝑟
) (−𝑥)𝑝−𝑟

𝑝

𝑟=0

∑ 𝐶𝑘
[𝑟](𝑥)𝑛−𝑘          (𝑛 → ∞)

∞

𝑘=1

𝑝

𝑟=0

 

 

= (𝑥 − 𝑥)𝑝 + ∑ (
𝑝

𝑟
) (−𝑥)𝑝−𝑟

𝑝

𝑟=0

∑ 𝐶𝑘
[𝑟](𝑥)𝑛−𝑘                            (𝑛 → ∞)

∞

𝑘=1

 

 

            = ∑ 𝑛−𝑘

∞

𝑘=1

∑ (
𝑝

𝑟
) (−𝑥)𝑝−𝑟𝐶𝑘

[𝑟]

𝑝

𝑟=1

(𝑥)              (𝑛 → ∞) 
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                      = ∑ 𝑛−𝑘

∞

𝑘=1

∑ (
𝑝

𝑟
) (−𝑥)𝑝−𝑟 ∑ (

𝑟

𝑗
) (−1)𝑗𝐻(𝑗 − 1, 𝑘 + 𝑗 − 1, 𝑥)

𝑟

𝑗=1

𝑝

𝑟=1

    (𝑛 → ∞) 

 

= ∑ 𝑛−𝑘

∞

𝑘=1

∑ (
𝑝

𝑟
) (−𝑥)𝑝−𝑟 ∑ (

𝑟

𝑗
) (−1)𝑗 ∑ 𝑆𝑖

𝑗−1
𝜎𝑘+𝑗−1

𝑖 (1 − 𝑥)𝑖+1

𝑘+𝑗−1

𝑖=𝑗−1

𝑟

𝑗=1

𝑝

𝑟=1

 

 (𝑛 → ∞) 

= ∑ 𝑛−𝑘

∞

𝑘=1

∑ (
𝑝

𝑗
) (−1)𝑗 ∑ (

𝑝 − 𝑗

𝑟 − 𝑗
) (−𝑥)𝑝−𝑟 ∑ 𝑆𝑖+𝑗−1

𝑗−1
𝜎𝑘+𝑗−1

𝑖+𝑗−1 (1 − 𝑥)𝑖+𝑗

𝑘

𝑖=0

𝑝

𝑟=𝑗

𝑝

𝑗=1

 

(𝑛 → ∞) 

Where(𝑝
𝑟
) (𝑟

𝑗
) = (𝑝

𝑗
) (𝑝−𝑗

𝑟−𝑗
) 

                          = ∑ 𝑛−𝑘

∞

𝑘=1

∑ (
𝑝

𝑗
) (−1)𝑗 ∑ (

𝑝 − 𝑗

𝑟
) (−𝑥)𝑝−𝑗−𝑟 ∑ 𝑆𝑖+𝑗−1

𝑗−1
𝜎𝑘+𝑗−1

𝑖+𝑗−1
(1 − 𝑥)𝑖+𝑗

𝑘

𝑖=0

𝑝−𝑗

𝑟=0

𝑝

𝑗=1

 

(𝑛 → ∞) 

                    = ∑ 𝑛−𝑘

∞

𝑘=1

∑ (
𝑝

𝑗
) (−1)𝑗

𝑝

𝑗=1

(1 − 𝑥)𝑝−𝑗+𝑗 ∑ 𝑆𝑖+𝑗−1
𝑗−1

𝜎𝑘+𝑗−1
𝑖+𝑗−1

(1 − 𝑥)𝑖

𝑘

𝑖=0

    (𝑛 → ∞) 

 

       = ∑ 𝑛−𝑘

∞

𝑘=1

(1 − 𝑥)𝑝 ∑(1 − 𝑥)𝑖

𝑘

𝑖=0

∑ (
𝑝

𝑗
) (−1)𝑗𝑆𝑖+𝑗−1

𝑗−1
𝜎𝑘+𝑗−1

𝑖+𝑗−1
      (𝑛 → ∞)

𝑝

𝑗=1

 

Letting  

𝑆(𝑝, 𝑘, 𝑖) = ∑ (
𝑝

𝑗
) (−1)𝑗𝑆𝑖+𝑗−1

𝑗−1
𝜎𝑘+𝑗−1

𝑖+𝑗−1

𝑝

𝑗=1

 

leads to the following Lemma 
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LEMMA  3.0 

For every positive integer  𝑝 and fixed  𝑥 ∈ [0,1] the asymptotic expansion holds 

 

     𝑀𝑛((𝑡 − 𝑥)𝑝; 𝑥)~(1 − 𝑥)𝑝 ∑ 𝑛−𝑘

∞

𝑘=1

∑(1 − 𝑥)𝑖

𝑘

𝑖=0

𝑆(𝑝, 𝑘, 𝑖)(3.8) 

 

Observations: 

At   𝑝 = 1,  𝑆(1, 𝑘, 𝑖) = (−1)1𝑆𝑖
0𝜎𝑘

𝑖 = (−1)1(0)𝜎𝑘
𝑖 = 0.            

 

for 𝑖 = 0,1, … , 𝑘 and 𝑘 ∈ ℕ  

Some properties of Stirling numbers  

 

𝑆𝑛
𝑛−𝑘 = 𝐶𝑘,0 (

𝑛

2𝑘
) + ⋯ + 𝐶𝑘,𝑘−1 (

𝑛

𝑘 + 1
) (3.9) 

 

𝜎𝑛
𝑛−𝑘 = 𝐶�̅�,0 (

𝑛

2𝑘
) + ⋯ + 𝐶�̅�,𝑘−1 (

𝑛

𝑘 + 1
) (3.10) 

Where       

{
𝐶𝑘,0 = (−1)𝑘𝐶�̅�,0

𝐶�̅�,0 = 1 ∙ 3 ∙ 5 ∙∙∙ (2𝑘 − 1)
                                                                    (3.11) 
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For Equation3.9and Equation 3.10 the coefficients 𝐶𝑘,𝑙 and 𝐶�̅�,𝑙 are independent of 𝑛 and 

they satisfy certain differential equations whose general solutions are unknown (Jordan, 

1950). Equation 3.12 and Equation 3.13 were obtained by Reif (Ulrich, 1997) 

 

𝐶𝑘,1 =
𝑘 − 1

3
𝐶𝑘,0𝐶𝑘,2 =

(𝑘 − 1)(𝑘 − 2)(4𝑘 − 3)

9(2𝑘 − 1)
𝐶𝑘,0(3.12) 

 

 �̅�𝑘,1 =
𝑘 − 1

3
𝐶�̅�,0𝐶�̅�,2 =

(𝑘 − 1)(𝑘 − 2)(2𝑘 − 3)

18(2𝑘 − 1)
𝐶�̅�,0(3.13) 

 

the above properties Equation3.9  and Equation3.10   leads to   

 

𝑆𝑖+𝑗−1
𝑗−1

= 𝐶𝑖,0 (
𝑗 + 𝑖 − 1

2𝑖
) + ⋯ + 𝐶𝑖,𝑖−1 (

𝑗 + 𝑖 − 1

𝑖 + 1
)          (𝑖, 𝑗 = 1,2, …  )            (3.14) 

 

𝜎𝑘+𝑗−1
𝑖+𝑗−1

= 𝐶�̅�−𝑖,0 (
𝑗 + 𝑘 − 1

2(𝑘 − 𝑖)
) + ⋯ + 𝐶�̅�−𝑖,𝑘−𝑖−1 (

𝑗 + 𝑘 − 1

𝑘 − 𝑖 + 1
)                                   (3.15) 

 

(𝑖 = 0,1, …  𝑘 − 1;  𝑗, 𝑘 = 1,2, … ) 

 

The well-known expression below (which appear in chapter 1)   

 

𝜎𝑛
𝑝

=
(−1)𝑝

𝑝!
∑ (

𝑝

𝑗
) (−1)𝑗𝑗𝑛 .

𝑝

𝑗=𝑜

 

Leads to, for all 𝑝 ≥ 2 
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∑ (
𝑝

𝑗
) (−1)𝑗𝑗𝑛 .

𝑝

𝑗=𝑜

= (−1)𝑗𝑝! 𝜎𝑛
𝑝

= 0,            (𝑛 = 1, … , 𝑝 − 1)(3.16) 

Now for 𝑖 = 0 

𝑆(𝑝, 𝑘, 0) = ∑ (
𝑝

𝑗
) (−1)𝑗𝑆𝑗−1

𝑗−1
𝜎𝑘+𝑗−1

𝑗−1
= ∑ (

𝑝

𝑗
) (−1)𝑗𝜎𝑘+𝑗−1

𝑗−1

𝑝

𝑗=1

𝑝

𝑗=1

,                 (3.17) 

(𝑘 = 1,2, … ) 

Where for fixed 𝑘 the Stirling number 𝜎𝑘+𝑗−1
𝑗−1  is a polynomial in 𝑗 of degree 2𝑘 without 

constant summand. For the case 1 ≤ 𝑖 ≤ 𝑘.The𝑆𝑖+𝑗−1
𝑗−1  is a polynomial in 𝑗 of degree 2𝑖 

without constant summand and 𝜎𝑘+𝑗−1
𝑖+𝑗−1  is a polynomial in 𝑗 of degree 2(𝑘 − 𝑖) 

Thus 3.16 leads to 

 

𝑆(𝑝, 𝑘, 𝑖) = 0            (𝑖 = 0, … , 𝑘)for2𝑘 < 𝑝.  (3.18) 

 

For       𝑝 = 2𝑘 and 𝑝 = 2𝑘 − 1 

Reif (Ulrich, 1997) established that 

                𝑆(2𝑘, 𝑘, 𝑖) = (−1)𝑖𝐶�̅�,0 (
𝑘

𝑖
) (𝑖 = 0, … , 𝑘) 

 

                𝑆(2𝑘 − 1, 𝑘, 𝑖) = (−1)𝑖+1𝐶�̅�,1(𝑘
𝑖
) {4 ((𝑘−1

𝑖
)) + 5(𝑘−1

𝑖−1
)}  , 

                                 (𝑖 = 0, … , 𝑘; 𝑘 = 1,2, … ) 
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Where (𝑘−1
𝑖−1

) is to be read as 0for 𝑖 = 0. 

Thus    𝑀𝑛((𝑡 − 𝑥)2𝑘; 𝑥)~(1 − 𝑥)2𝑘𝑛−𝑘 ∑ (1 − 𝑥)𝑖𝑘
𝑖=0 𝑆(2𝑘, 𝑘, 𝑖) 

 

=(1 − 𝑥)2𝑘𝑛−𝑘 ∑ (1 − 𝑥)𝑖𝑘
𝑖=0 (−1)𝑖𝐶�̅�,0(𝑘

𝑖
) 

=𝐶�̅�,0(1 − 𝑥)2𝑘𝑛−𝑘 ∑ (𝑘
𝑖
)(𝑥 − 1)𝑖𝑘

𝑖=0  

 

= 𝐶�̅�,0(1 − 𝑥)2𝑘𝑥𝑘𝑛−𝑘 

Hence, 

𝑀𝑛((𝑡 − 𝑥)2𝑘; 𝑥) = 𝐶�̅�,0(1 − 𝑥)2𝑘𝑥𝑘𝑛−𝑘 + 𝑂(𝑛−(𝑘+1)),                  (3.19) 

 

Also, 

 𝑀𝑛((𝑡 − 𝑥)2𝑘−1; 𝑥)~(1 − 𝑥)2𝑘−1𝑛−𝑘 ∑(1 − 𝑥)𝑖

𝑘

𝑖=0

𝑆(2𝑘 − 1, 𝑘, 𝑖) 

 

= (1 − 𝑥)2𝑘−1𝑛−𝑘 ∑(1 − 𝑥)𝑖

𝑘

𝑖=0

(−1)𝑖+1𝐶�̅�,1 {4 ((
𝑘 − 1

𝑖
)) + 5 (

𝑘 − 1

𝑖 − 1
)} 

 

= 𝐶�̅�,1(1 − 𝑥)2𝑘−1𝑛−𝑘 [−4 ∑ (
𝑘 − 1

𝑖
) (𝑥 − 1)𝑖

𝑘

𝑖=0

− 5 ∑ (
𝑘 − 1

𝑖 − 1
) (𝑥 − 1)𝑖

𝑘

𝑖=0

] 

 

     = 𝐶�̅�,1(1 − 𝑥)2𝑘−1𝑛−𝑘 [−4 ∑ (
𝑘 − 1

𝑖
) (𝑥 − 1)𝑖

𝑘−1

𝑖=0

− 5 ∑ (
𝑘 − 1

𝑖
) (𝑥 − 1)𝑖+1

𝑘−1

𝑖=0

] 
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  = 𝐶�̅�,1(1 − 𝑥)2𝑘−1𝑛−𝑘 [−4 ∑ (
𝑘 − 1

𝑖
) (𝑥 − 1)𝑖

𝑘−1

𝑖=0

− 5(𝑥 − 1) ∑ (
𝑘 − 1

𝑖
) (𝑥 − 1)𝑖

𝑘−1

𝑖=0

] 

= 𝐶�̅�,1(1 − 𝑥)2𝑘−1𝑛−𝑘[−4(𝑥)𝑘−1 − 5(𝑥 − 1)(𝑥)𝑘−1] 

 

= 𝐶�̅�,1(1 − 𝑥)2𝑘−1𝑥𝑘−1(1 − 5𝑥)𝑛−𝑘  

Thus, 

𝑀𝑛((𝑡 − 𝑥)2𝑘−1; 𝑥) = 𝐶�̅�,1(1 − 𝑥)2𝑘−1𝑥𝑘−1(1 − 5𝑥)𝑛−𝑘 + 𝑂(𝑛−(𝑘+1))(3.20) 

 

Hence the corollary follows   

Corollary 3.0  For all integer  𝑝 and each 𝑥 ∈ [0,1] it holds 

 

     𝑀𝑛((𝑡 − 𝑥)𝑝; 𝑥) = 𝑂 (𝑛−[
𝑝+1

2
]) (𝑛 → ∞). 

 

Now the condition of Theorem 3.0 is satisfied thus, the Theorem below follows 

Theorem 3.2 

For 𝑞 ≥ 2  even,  𝑥 ∈ [0,1] and 𝑓 ∈  𝐾(𝑞)(𝑥) the asymptotic relation follows 

 

           𝑀𝑛(𝑓(𝑡); 𝑥) =  ∑
1

𝑝!
𝑀𝑛((𝑡 − 𝑥)𝑝; 𝑥)𝑓𝑝(𝑥) +

𝑞

𝑝=0

𝑜(𝑛−𝑞/2),        (𝑛 → ∞) 
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= 𝑓(𝑥) + ∑
1

𝑝!
𝑓𝑝(𝑥)(1 − 𝑥)𝑝 ∑ 𝑛−𝑘

𝑞

2

𝑘=[
𝑝+1

2
]

∑(1 − 𝑥)𝑖

𝑘

𝑖=0

𝑆(𝑝, 𝑘, 𝑖)  +

𝑞

𝑝=2

𝑜 (𝑛−
𝑞

2) 

                                                                                                                                (𝑛 → ∞) 

        = 𝑓(𝑥) + ∑
1

𝑝!
𝑓𝑝(𝑥)(1 − 𝑥)𝑝𝑏(𝑛, 𝑝, 𝑞; 𝑥) +

𝑞

𝑝=2

𝑜 (𝑛−
𝑞

2),     (𝑛 → ∞)(3.21) 

 

 

 

Where 

𝑏(𝑛, 𝑝, 𝑞; 𝑥) = ∑ 𝑛−𝑘
𝑞

2

𝑘=[
𝑝+1

2
]

∑ (1 − 𝑥)𝑖𝑘
𝑖=0 𝑆(𝑝, 𝑘, 𝑖). 

Furthermore,  

if 𝑓 ∈  𝐾(𝑞+2)(𝑥),       the term         𝑜 (𝑛−
𝑞

2) in 3.21 can be replaced by   𝑂(𝑛−𝑞/(2+1)),      

Letting 𝐾(∞)(𝑥) =∩𝑞∈ℕ 𝐾(𝑞)(𝑥) be the class of all functions 𝑓(𝑡) ∈ 𝐵∗[0,1] which are 

infinitely often differentiable at ∈ [0,1] . By reformulating Theorem 3 leads to the 

complete asymptotic expansion for the operators  𝑀𝑛 

 

Theorem 3.3: let     𝑥 ∈ [0,1]and     𝑓 ∈ 𝐾(∞)(𝑥).  Then  

 

     𝑀𝑛(𝑓(𝑡); 𝑥) ~ 𝑓(𝑥) +  ∑ 𝑛−𝑘 ∑
𝑓𝑝(𝑥)

𝑝!
(1 − 𝑥)𝑝

2𝑘

𝑝=2

∞

𝑘=1

∑(1 − 𝑥)𝑖

𝑘

𝑖=0

𝑆(𝑝, 𝑘, 𝑖) 
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= 𝑓(𝑥) +  ∑ 𝑎𝑘(𝑓; 𝑥)𝑛−𝑘

∞

𝑘=1

     ,               (𝑘 ∈ ℕ) 

 

Where 

                 𝑎𝑘(𝑓; 𝑥) = ∑
𝑓𝑝(𝑥)

𝑝!
(1 − 𝑥)𝑝

2𝑘

𝑝=2

∑(1 − 𝑥)𝑖

𝑘

𝑖=0

𝑆(𝑝, 𝑘, 𝑖) 

 

Establishing Equation 3.1 which gives the complete asymptotic expansion for the operators  

𝑀𝑛.   

 
 

CHAPTER 4 
 

CHLODOVSKY OPERATORS 
 

4.1 Complete Asymptotic Expansion for the Chlodovsky Operators 

 

Chlodovsky operators 𝐶𝑛 were introduced by Chlodovsky (1937) as a generalization of the 

Bernstein operators 𝐵𝑛(Vijay and Ravi, 2014) on an infinite interval. 

 

(𝐶𝑛𝑓)(𝑥): = {
∑ 𝑓 (

𝑏𝑛

𝑛
𝑘)

𝑛

𝑘=0

𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
) ,  0 ≤ 𝑥 ≤ 𝑏𝑛

𝑓(𝑥)                                            𝑥 > 𝑏𝑛

                           (4.0) 

 Where 𝑓 is a function defined on [0, ∞) and bounded on every finite   interval[0, 𝑏] ⊂

[0, ∞), with 𝑃𝑛,𝑘 defined by 

                𝑃𝑛,𝑘(𝑦) = (
𝑛

𝑘
) 𝑦𝑘(1 − 𝑦)𝑛−𝑘   ,  0 ≤ 𝑦 ≤ 1. 
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and  (𝑏𝑛)𝑛=1
∞ is a positive increasing sequence of real with the condition that 

 

lim
𝑛→∞

𝑏𝑛 = ∞      and   lim
𝑛→∞

𝑏𝑛

𝑛
 = 0.                        

 

In addition if 𝑀(𝑏; 𝑓) ≔ 𝑠𝑢𝑝0≤𝑥≤𝑏|𝑓(𝑥)|,then  Chlodovsky established that if 

 

lim
𝑛→∞

exp (−𝛼
𝑛

𝑏𝑛
) 𝑀(𝑏; 𝑓) = 0                                                                    (4.1) 

 

For every 𝛼 > 0,   then (𝐶𝑛𝑓)(𝑥) converges to 𝑓(𝑥) at each point of continuity of 𝑓. 

The linearity of these operators is established as follows: 

 

                𝐶𝑛(𝛼𝑓 + 𝛽𝑔)(𝑥) :  = {
∑(𝛼𝑓 + 𝛽𝑔) (

𝑏𝑛

𝑛
𝑘)

𝑛

𝑘=0

𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
) ,  0 ≤ 𝑥 ≤ 𝑏𝑛

(𝛼𝑓 + 𝛽𝑔)(𝑥)                                            𝑥 > 𝑏𝑛

 

 

   = {
∑(𝛼𝑓) (

𝑏𝑛

𝑛
𝑘) 𝑃𝑛,𝑘 (

𝑥

𝑏𝑛
)

𝑛

𝑘=0

(𝛼𝑓)(𝑥)  

+  {
∑(𝛽𝑔) (

𝑏𝑛

𝑛
𝑘) 𝑃𝑛,𝑘 (

𝑥

𝑏𝑛
)   ,      0 ≤ 𝑥 ≤ 𝑏𝑛

𝑛

𝑘=0

(𝛽𝑔)(𝑥)                                    , 𝑥 > 𝑏𝑛
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                      = 𝛼 {
∑(𝑓) (

𝑏𝑛

𝑛
𝑘) 𝑃𝑛,𝑘 (

𝑥

𝑏𝑛
)

𝑛

𝑘=0

(𝑓)(𝑥)

+ 𝛽 {
∑(𝑔) (

𝑏𝑛

𝑛
𝑘) 𝑃𝑛,𝑘 (

𝑥

𝑏𝑛
)   ,      0 ≤ 𝑥 ≤ 𝑏𝑛

𝑛

𝑘=0

(𝑔)(𝑥)                                    , 𝑥 > 𝑏𝑛

 

 

     = 𝛼𝐶𝑛(𝑓)(𝑥) +  𝛽𝐶𝑛(𝑔)(𝑥). 

 

For all 𝑓 and 𝑔 defined on [0, ∞)   and   𝛼, 𝛽𝜖ℝ. 

To show that the operators 𝐶𝑛(𝑛 ∈ ℕ)are positive operators, definition 1.2 is applied on 

𝐶𝑛(𝑛 ∈ ℕ)as follows: 

Let 𝑓 and 𝑔 be functions define on [0, ∞) such that 

𝑓(𝑥) ≥ 𝑔(𝑥),    𝑥𝜖[0, ∞), then this implies 

 

{
𝑓 (

𝑏𝑛

𝑛
𝑘) 𝑃𝑛,𝑘 (

𝑥

𝑏𝑛
)  

(𝑓)(𝑥)                     ,       

 ≥ {
𝑔 (

𝑏𝑛

𝑛
𝑘) 𝑃𝑛,𝑘 (

𝑥

𝑏𝑛
) , 0 ≤ 𝑥 ≤ 𝑏𝑛      

(𝑔)(𝑥)                           𝑥 > 𝑏𝑛     

𝑘 = 0,1,2, … . 𝑛 

⇒ {
∑(𝑓) (

𝑏𝑛

𝑛
𝑘) 𝑃𝑛,𝑘 (

𝑥

𝑏𝑛
)  

𝑛

𝑘=0

(𝑔)(𝑥)            

≥ {
∑(𝑔) (

𝑏𝑛

𝑛
𝑘) 𝑃𝑛,𝑘 (

𝑥

𝑏𝑛
)  ,           

𝑛

𝑘=0

0 ≤ 𝑥 ≤ 𝑏𝑛

(𝑔)(𝑥)                                 ,                   𝑥 ≥ 𝑏𝑛

 

 

        ⇒      𝐶𝑛(𝑓)(𝑥) ≥ 𝐶𝑛(𝑔)(𝑥). 

 

Thus,  𝐶𝑛 are positive operators. 

The work of Karsli (2013) on the complete asymptotic expansion for the operators    𝐶𝑛 in 

the form 
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 (𝐶𝑛𝑓)(𝑥)~𝑓(𝑥) + ∑ 𝐶𝑘(𝑓; 𝑛, 𝑥)𝑛−𝑘,       (𝑛 → ∞)

∞

𝑘=1

. (4.2) 

 

Where 𝑓defined on [0, ∞), satisfying condition (4.11) ( for every 𝛼 > 0 ) and 𝑓   has 

derivatives of sufficiently high order at 𝑥 (𝑥 ∈ (0, ∞)  exists is studied. 

𝐶𝑘(𝑓; 𝑛, 𝑥)are in terms of the Stirling numbers of the first and second kind. 

The establishment of (4.12) follows as a corollary of the Theorem below which appeared 

in the work of Karsli (2013) 

Theorem 4.0 

If 𝑓 defined on [0, ∞) the closed interval satisfies condition (4.11) for every 𝛼 > 0 and if 

𝑓2𝑠(𝑥) exists at a given 𝑥 ≥ 0, then the Chlodovsky operators satisfy the asymptotic 

relation 

 

(𝐶𝑛𝑓)(𝑥) = 𝑓(𝑥) + ∑ 𝐶𝑘(𝑓; 𝑛, 𝑥)𝑛−𝑘 + 𝑜 (
𝑛

𝑏𝑛
)

−𝑠

,       (𝑛 → ∞)    

𝑠

𝑘=1

(4.3) 

 

The coefficients 𝐶𝑘(𝑓; 𝑛, 𝑥)are given in terms of Stirling numbers of the first and second 

kind. 

There are given by  

                𝐶𝑘(𝑓; 𝑛, 𝑥) = ∑ 𝑏𝑛
𝑚

𝑓(𝑚)(𝑥)

𝑚!
∑ (

𝑥

𝑏𝑛
)

𝑚−𝑖
𝑘

𝑖=0

2𝑘

𝑚=𝑘+1

 

∗  ∑ (
𝑚

𝑝
) (−1)𝑚−𝑝𝜎(𝑝, 𝑝 − 𝑖)𝑆(𝑝 − 𝑖, 𝑝 − 𝑘) 

𝑚

𝑝=𝑘
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Furthermore, 

 

lim
𝑛→∞

(
𝑛

𝑏𝑛
)

𝑠

[  (𝐶𝑛𝑓)(𝑥) − 𝑓(𝑥) − ∑
𝑓(𝑘)(𝑥)

𝑘!
 (𝐶𝑛(𝑡 − 𝑥)𝑘)(𝑥)]

2𝑠−1

𝑘=1

 

 

                =  lim
                          𝑛 →∞  

(
𝑛

𝑏𝑛
)

𝑠

[  (𝐶𝑛𝑓)(𝑥) − 𝑓(𝑥) − ∑
𝑓(𝑘)(𝑥)

𝑘!

2𝑠−1

𝑘=1

𝑇𝑛,𝑘(𝑥)𝑛−𝑘] 

 

≡ lim
                             𝑛 →∞  

(
𝑛

𝑏𝑛
)

𝑠

[ 𝑅𝑛,2𝑠(𝑥) +
𝑓(2𝑠)(𝑥)

(2𝑠)!
𝑇𝑛,2𝑠(𝑥)𝑛−2𝑠]                          

 

=
𝑥2

22𝑠!
𝑓(2𝑠)(𝑥)                                                                                              (4.4) 

𝑤ℎ𝑒𝑟𝑒 𝑇𝑛,𝑘(𝑥) =  (𝐶𝑛(𝑡 − 𝑥)𝑘)(𝑥)𝑛𝑘 

 

To be able to establish Theorem 4.0, Stirling numbers of the first and second kind defined 

which appears in chapter 1,  

 

                [𝑥]𝑗 = ∑ 𝑆(𝑗, 𝑖)𝑥𝑖𝑗
𝑖=1  and𝑥𝑗 = ∑ 𝜎(𝑗, 𝑖)[𝑥]𝑖

𝑗
𝑖=1 ,  𝑗 ∈ ℕ0 

 

plays an important role 

Where [𝑥]𝑝 = 𝑥(𝑥 − 1)(𝑥 − 2) … (𝑥 − 𝑝 + 1), [𝑥]0 = 1,             𝑥 ∈ ℝ 
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is the falling difference polynomial.  

Observations: 

𝑆(0,0) = 𝜎(0,0) = 1                                 

 

𝑆(𝑗, 0) = 𝜎(𝑗, 0) = 0,         ∀ 𝑗 ∈ ℕ0 

[𝑛]𝑗

𝑛𝑗
= ∑ 𝑆(𝑗, 𝑖)𝑛𝑘−𝑗

𝑗

𝑘=0

 

 

Also the following results are required: 

Lemma 4.0 

 For  (𝐶𝑛𝑡𝑠)(𝑥),      𝑠 = 0,1,2  one has for 0 ≤ 𝑥 ≤ 𝑏𝑛. 

   

(𝐶𝑛1)(𝑥) = 1,           (𝐶𝑛𝑡)(𝑥) = 𝑥,            (𝐶𝑛𝑡2)(𝑥) = 𝑥2 +
𝑥(𝑏𝑛 − 𝑥)

𝑛
 

Thus, 

(𝐶𝑛(𝑡 − 𝑥))(𝑥) = 0 ,                 (𝐶𝑛(𝑡 − 𝑥)2)(𝑥) =
𝑥(𝑏𝑛 − 𝑥)

𝑛
 

 

Butzer-Karsli (2009) gave the proof of Lemma 4.1. 

Lemma 4.1: The central moment of order      𝑚 ∈ ℕ0 any fixed  𝑥 ∈ [0, ∞). 

 

𝑇𝑛,𝑚
∗ (𝑥): = ∑ (

𝑏𝑛

𝑛
𝑘 − 𝑥)

𝑚𝑛

𝑘=0

𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
), 
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Satisfy the inequality 

|𝑇𝑛,𝑚
∗ (𝑥)| ≤ 𝐴𝑚(𝑥)

𝑥(𝑏𝑛 − 𝑥)

𝑏𝑛
(

𝑏𝑛

𝑛
)

[
𝑚+1

2
]

, (𝑛 ∈ ℕ,  𝑛 > 𝑏𝑛), 

 

Where 𝐴𝑚(𝑥) denotes a polynomial in 𝑥, of degree [𝑚

2
] − 1, with non negative coefficient 

independent of 𝑛 or 

 

|𝑇𝑛,𝑚
∗ (𝑥)| ≤ 𝑃𝑚(𝑥) (

𝑏𝑛

𝑛
)

[
𝑚+1

2
]

, (𝑛 ∈ ℕ,  𝑛 > 𝑏𝑛), 

 

Where 𝑃𝑚(𝑥) denotes a polynomial in 𝑥, of degree [
𝑚

2
], with non-negative coefficient 

independent of 𝑛 , and [𝑎]denotes the integral part of 𝑎 

The first part of the Lemma below is due to Chlodovsky (1937) 

 

 

Lemma 4.2: For 𝑡 ∈ [0,1] the inequality 

 

0 ≤ 𝑧 ≤
3

2
√𝑛𝑡(1 − 𝑡)   ,     

implies 

∑ 𝑃𝑛,𝑘(𝑡) ≤ 2 exp(−𝑧2)
|𝑘−𝑛𝑡|≥2𝑧√𝑛𝑡(1−𝑡)

, 

 

In particular, for 0 ≤ 𝛿 ≤ 𝑥 < 𝑏𝑛 and sufficiently large 𝑛 
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∑ ≔ ∑ 𝑃𝑛,𝑘(
𝑥

𝑏𝑛
) ≤ 2 exp (−

𝛿2

4𝑥

𝑛

𝑏𝑛
)

|
𝑏𝑛
𝑛

−𝑥|≥𝛿

∗

1

(4.5) 

 

The proof of 4.5 was given by Albrycht and Radecki (1960). 

Also for 𝑟, 𝑛 ∈ ℕ,     𝑟 ≤ 𝑛,  one has  

 

 (𝐶𝑛𝑡𝑟)(𝑥) = ∑ 𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
) (

𝑘𝑏𝑛

𝑛
)

𝑟𝑛

𝑘=0

 

 

                                    = (
𝑏𝑛

𝑛
)

𝑟

∑ 𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
) 𝑘𝑟

𝑛

𝑘=0

 

 

                                    = (
𝑏𝑛

𝑛
)

𝑟

∑ 𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
) ∑ 𝜎(𝑟, 𝑣)[𝑘]𝑣

𝑟

𝑣=0

𝑛

𝑘=0

 

  = (
𝑏𝑛

𝑛
)

𝑟

∑ (
𝑛

𝑘
) (

𝑥

𝑏𝑛
)

𝑣

(1 −
𝑥

𝑏𝑛
)

𝑛−𝑘

∑ 𝑏𝑛
𝑣𝜎(𝑟, 𝑣)

𝑑𝑣

𝑑𝑥𝑣
(

𝑥

𝑏𝑛
)

𝑘
𝑟

𝑣=0

𝑛

𝑘=0

 

     = (
𝑏𝑛

𝑛
)

𝑟

∑ 𝑏𝑛
𝑣𝜎(𝑟, 𝑣) (

𝑥

𝑏𝑛
)

𝑣 [𝑛]𝑣

𝑏𝑛
𝑣

𝑟

𝑣=0

 

 

    = (
𝑏𝑛

𝑛
)

𝑟

∑ 𝜎(𝑟, 𝑣) (
𝑥

𝑏𝑛
)

𝑣

[𝑛]𝑣

𝑟

𝑣=0
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= (
𝑏𝑛

𝑛
)

𝑟

∑ 𝜎(𝑟, 𝑣) (
𝑥

𝑏𝑛
)

𝑣

∑ 𝑆(𝑣, 𝑘)𝑛𝑘

𝑣

𝑘=0

𝑟

𝑣=0

 

 

= (
𝑏𝑛

𝑛
)

𝑟

∑ ∑ 𝜎(𝑟, 𝑣)𝑆(𝑣, 𝑘) (
𝑥

𝑏𝑛
)

𝑣

𝑛𝑘

𝑣

𝑘=0

𝑟

𝑣=0

 

 

= ∑ 𝑛𝑘 (
𝑏𝑛

𝑛
)

𝑟

∑ 𝜎(𝑟, 𝑣)𝑆(𝑣, 𝑘) (
𝑥

𝑏𝑛
)

𝑣

                                                              

𝑟

𝑣=𝑘

𝑟

𝑘=0

 

 

= 𝑏𝑛
𝑟 ∑ 𝑛𝑘−𝑟 ∑ 𝜎(𝑟, 𝑣)𝑆(𝑣, 𝑘) (

𝑥

𝑏𝑛
)

𝑣

                                                                 

𝑟

𝑣=𝑘

𝑟

𝑘=0

 

 

= 𝑏𝑛
𝑟 ∑ 𝑛−𝑘 ∑ 𝜎(𝑟, 𝑣)𝑆(𝑣, 𝑟 − 𝑘) (

𝑥

𝑏𝑛
)

𝑣

                                                       

𝑟

𝑣=𝑟−𝑘

𝑟

𝑘=0

 

 

Thus, the Lemma below follows 

Lemma 4.3: For 𝑟, 𝑛 ∈ ℕ,     𝑟 ≤ 𝑛,  one has  

 

 (𝐶𝑛𝑡𝑟)(𝑥) = 𝑏𝑛
𝑟 ∑ 𝑛−𝑘 ∑ 𝜎(𝑟, 𝑣)𝑆(𝑣, 𝑟 − 𝑘) (

𝑥

𝑏𝑛
)

𝑣

 

𝑟

𝑣=𝑟−𝑘

𝑟

𝑘=0

 

 

From the above lemma follows; for 𝑚, 𝑛 ∈ ℕ, 

 



33 
 

          (𝐶𝑛(𝑡 − 𝑥)𝑚)(𝑥) =  (𝐶𝑛(∑ (
𝑚

𝑝
)

𝑚

𝑝=0

𝑡𝑝(−𝑥)𝑚−𝑝))(𝑥) 

(by applying Binomial Theorem) 

       = ∑ (
𝑚

𝑝
)

𝑚

𝑝=0

(−𝑥)𝑚−𝑝(𝐶𝑛𝑡𝑝)(𝑥) 

 

      = ∑ (
𝑚

𝑝
)

𝑚

𝑝=0

(−𝑥)𝑚−𝑝 [𝑏𝑛
𝑝

∑ 𝑛−𝑘 ∑ 𝜎(𝑝, 𝑖)𝑆(𝑖, 𝑝 − 𝑘) (
𝑥

𝑏𝑛
)

𝑖

 

𝑝

𝑖=𝑝−𝑘

𝑝

𝑘=0

] 

      = ∑ 𝑛−𝑘

𝑚

𝑘=0

∑ (
𝑚

𝑝
)

𝑚

𝑝=𝑘

𝑏𝑛
𝑝

(−1)𝑚−𝑝𝑥𝑚−𝑝 ∑ 𝜎(𝑝, 𝑝 − 𝑖)𝑆(𝑝 − 𝑖, 𝑝 − 𝑘) (
𝑥

𝑏𝑛
)

𝑝−𝑖

 

𝑘

𝑖=0

 

 

               = ∑ 𝑛−𝑘

𝑚

𝑘=0

∑ (
𝑚

𝑝
)

𝑚

𝑝=𝑘

𝑏𝑛
𝑚(−1)𝑚−𝑝 ∑ 𝜎(𝑝, 𝑝 − 𝑖)𝑆(𝑝 − 𝑖, 𝑝 − 𝑘) (

𝑥

𝑏𝑛
)

𝑚−𝑖

 

𝑘

𝑖=0

 

 

Thus, Lemma below follows. 

Lemma 4.4: For 𝑚, 𝑛 ∈ ℕ, 

                (𝐶𝑛(𝑡 − 𝑥)𝑚)(𝑥) 

          = ∑ 𝑛−𝑘

𝑚

𝑘=0

∑ (
𝑚

𝑝
)

𝑚

𝑝=𝑘

𝑏𝑛
𝑚(−1)𝑚−𝑝 ∑ 𝜎(𝑝, 𝑝 − 𝑖)𝑆(𝑝 − 𝑖, 𝑝 − 𝑘) (

𝑥

𝑏𝑛
)

𝑚−𝑖

 

𝑘

𝑖=0

 

 

All tools for proving Theorem 4.0 are now in place; hence, the proof goes as follows. 

Proof of Theorem 4.0 
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Case 1: 

For 𝑥 = 0, (4.13) is valid since by its hypothesis 𝑓(2𝑠)exists since (𝐶𝑛)(0) = 𝑓(0) 

Case 2: 

     𝑥 > 0, 

(𝐶𝑛𝑓)(𝑥) = ∑ 𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
) 𝑓 (

𝑘𝑏𝑛

𝑛
)

𝑛

𝑘=0

(4.6) 

 

Taylor’s theorem gives 

 

𝑓 (
𝑘𝑏𝑛

𝑛
) = ∑

𝑓(𝑖)(𝑥)

𝑖!
(

𝑘𝑏𝑛

𝑛
− 𝑥)

𝑖

+

2𝑚

𝑖=0

(
𝑘𝑏𝑛

𝑛
− 𝑥)

2𝑚

ℎ (
𝑘𝑏𝑛

𝑛
− 𝑥) 

 

Where ℎ(𝑦) converges to zero with 𝑦, into the representation 4.6, 

Thus, 

 

(𝐶𝑛𝑓)(𝑥) = ∑ [ ∑
𝑓(𝑚)(𝑥)

𝑚!
(

𝑘𝑏𝑛

𝑛
− 𝑥)

𝑚

+

2𝑠

𝑚=0

(
𝑘𝑏𝑛

𝑛
− 𝑥)

2𝑠

ℎ (
𝑘𝑏𝑛

𝑛

𝑛

𝑘=0

− 𝑥)] 𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
) 

 

= ∑ [𝑓(𝑥) + ∑
𝑓(𝑚)(𝑥)

𝑚!
(

𝑘𝑏𝑛

𝑛
− 𝑥)

𝑚

+

2𝑠

𝑚=1

(
𝑘𝑏𝑛

𝑛
− 𝑥)

2𝑠

ℎ (
𝑘𝑏𝑛

𝑛
− 𝑥)] 𝑃𝑛,𝑘 (

𝑥

𝑏𝑛
)

𝑛

𝑘=0
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        = 𝑓(𝑥) + ∑ ∑
𝑓(𝑚)(𝑥)

𝑚!
(

𝑘𝑏𝑛

𝑛
− 𝑥)

𝑚

𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
) +

2𝑠

𝑚=1

𝑅𝑛,2𝑠(𝑥)

𝑛

𝑘=0

 

 

Where 𝑅𝑛,2𝑠(𝑥) ≔ ∑ (
𝑘𝑏𝑛

𝑛
− 𝑥)

2𝑠

ℎ (
𝑘𝑏𝑛

𝑛
− 𝑥) 𝑃𝑛,𝑘 (

𝑥

𝑏𝑛
)𝑛

𝑘=0  

 

At this point, the following is put into consideration. 

For any  휀 > 0 there exists a 𝛿 > 0 such that |ℎ(𝑦)| < 휀 for |𝑦| ≤ 𝛿. 

Choosing 𝛿 so small that 𝛿 ≤ 𝑥. This allows the sum 𝑅𝑛,2𝑠(𝑥) to be split into two parts as 

follows: 

 

𝑅𝑛,2𝑠(𝑥) ≔ ∑ (
𝑘𝑏𝑛

𝑛
− 𝑥)

2𝑠

ℎ (
𝑘𝑏𝑛

𝑛
− 𝑥) 𝑃𝑛,𝑘 (

𝑥

𝑏𝑛
)

|
𝑘𝑏𝑛

𝑛
−𝑥|<𝛿

 

 

                          + ∑ (
𝑘𝑏𝑛

𝑛
− 𝑥)

2𝑠

ℎ (
𝑘𝑏𝑛

𝑛
− 𝑥) 𝑃𝑛,𝑘 (

𝑥

𝑏𝑛
)

|
𝑘𝑏𝑛

𝑛
−𝑥|≥𝛿

 

 

                    ∶= 𝑅𝑛,2𝑠,1(𝑥) + 𝑅𝑛,2𝑠,2(𝑥) 

 

Observations: 

 

𝑅𝑛,2𝑠,1(𝑥) = ∑ (
𝑘𝑏𝑛

𝑛
− 𝑥)

2𝑠

ℎ (
𝑘𝑏𝑛

𝑛
− 𝑥) 𝑃𝑛,𝑘 (

𝑥

𝑏𝑛
)

|
𝑘𝑏𝑛

𝑛
−𝑥|<𝛿
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               ≤ 휀 ∑ (
𝑘𝑏𝑛

𝑛
− 𝑥)

2𝑠

𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
)

|
𝑘𝑏𝑛

𝑛
−𝑥|≥𝛿

 

 

                                 < 휀𝑇𝑛,2𝑠
∗                                                        

 

                                   ≤ 휀𝑃2𝑠(𝑥) (
𝑏𝑛

𝑛
)

𝑠

                         

 

                ⇒ 𝑅𝑛,2𝑠,1(𝑥) = 𝑜 (
𝑛

𝑏𝑛
)

−𝑠

 

 

|𝑅𝑛,2𝑠,2(𝑥)| = | ∑ (
𝑘𝑏𝑛

𝑛
− 𝑥)

2𝑠

ℎ (
𝑘𝑏𝑛

𝑛
− 𝑥) 𝑃𝑛,𝑘 (

𝑥

𝑏𝑛
)

|
𝑘𝑏𝑛

𝑛
−𝑥|≥𝛿

| 

 

       = | ∑ [𝑓 (
𝑘𝑏𝑛

𝑛
) − ∑

𝑓(𝑚)(𝑥)

𝑚!
(

𝑘𝑏𝑛

𝑛
− 𝑥)

𝑚2𝑠

𝑚=0

] 𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
)

|
𝑘𝑏𝑛

𝑛
−𝑥|≥𝛿

| 

               ≤ ∑ |𝑓 (
𝑘𝑏𝑛

𝑛
)| 𝑃𝑛,𝑘 (

𝑥

𝑏𝑛
)

|
𝑘𝑏𝑛

𝑛
−𝑥|≥𝛿

  + |𝑓(𝑥)| ∑ 𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
)

|
𝑘𝑏𝑛

𝑛
−𝑥|≥𝛿
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 +|𝑓′(𝑥)| ∑ |
𝑘𝑏𝑛

𝑛
− 𝑥| 𝑃𝑛,𝑘 (

𝑥

𝑏𝑛
)

|
𝑘𝑏𝑛

𝑛
−𝑥|≥𝛿

 

+
|𝑓′′(𝑥)|

2
∑ |

𝑘𝑏𝑛

𝑛
− 𝑥|

2

𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
)

|
𝑘𝑏𝑛

𝑛
−𝑥|≥𝛿

 

 

+
|𝑓′′′(𝑥)|

6
∑ |

𝑘𝑏𝑛

𝑛
− 𝑥|

3

𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
)

|
𝑘𝑏𝑛

𝑛
−𝑥|≥𝛿

 

. 

. 

. 

                +
|𝑓(2𝑠)(𝑥)|

(2𝑠)!
∑ |

𝑘𝑏𝑛

𝑛
− 𝑥|

2𝑠

𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
)

|
𝑘𝑏𝑛

𝑛
−𝑥|≥𝛿

 

 

 ≔ ∑(𝑛)

∗

1

+ ∑(𝑛)

∗

2

+ ⋯ + ∑(𝑛)

∗

2𝑠

 

 

 

 

By Cauchy- Schwartz inequality 

 

∑(𝑛)

∗

1

= ∑ |𝑓 (
𝑘𝑏𝑛

𝑛
)| 𝑃𝑛,𝑘 (

𝑥

𝑏𝑛
)

|
𝑘𝑏𝑛

𝑛
−𝑥|≥𝛿
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                              ≤ ∑
|

𝑘𝑏𝑛

𝑛
− 𝑥|

2𝑠

𝛿2𝑠
{|𝑓 (

𝑘𝑏𝑛

𝑛
)| √𝑃𝑛,𝑘 (

𝑥

𝑏𝑛
) √𝑃𝑛,𝑘 (

𝑥

𝑏𝑛
)}

|
𝑘𝑏𝑛

𝑛
−𝑥|≥𝛿

 

                         =
1

𝛿2𝑠
∑ |

𝑘𝑏𝑛

𝑛
− 𝑥|

2𝑠

{|𝑓 (
𝑘𝑏𝑛

𝑛
)| √𝑃𝑛,𝑘 (

𝑥

𝑏𝑛
) √𝑃𝑛,𝑘 (

𝑥

𝑏𝑛
)}

|
𝑘𝑏𝑛

𝑛
−𝑥|≥𝛿

 

 

         ≤
1

𝛿2𝑠
{ ∑ |𝑓 (

𝑘𝑏𝑛

𝑛
)|

2

|
𝑘𝑏𝑛

𝑛
− 𝑥|

4𝑠

𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
)

|
𝑘𝑏𝑛

𝑛
−𝑥|≥𝛿

 }

1

2

{ ∑ 𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
)

|
𝑘𝑏𝑛

𝑛
−𝑥|≥𝛿

}

1

2

 

 

but = √𝑠𝑢𝑝0≤𝑥≤𝑎|𝑓(𝑥)|2 = 𝑀(𝑎; 𝑓), 

 

≤
𝑀(𝑏𝑛; 𝑓)

𝛿2𝑠
{ ∑ |

𝑘𝑏𝑛

𝑛
− 𝑥|

4𝑠

𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
)

|
𝑘𝑏𝑛

𝑛
−𝑥|≥𝛿

 }

1

2

{ ∑ 𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
)

|
𝑘𝑏𝑛

𝑛
−𝑥|≥𝛿

}

1

2

 

 

≤
𝑀(𝑏𝑛; 𝑓)

𝛿2𝑠
{𝑇𝑛,4𝑠

∗ (𝑥)}
1

2 {2 exp (−
𝛿2

8𝑥

𝑛

𝑏𝑛
)}

1

2

 

 

⇒ ∑(𝑛)

∗

1

= 𝑜 (
𝑛

𝑏𝑛
)

−𝑠

 

 

By the same approach 
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∑(𝑛)

∗

2

= 𝑜 (
𝑛

𝑏𝑛
)

−𝑠

 

For 𝑖 = 3 

∑(𝑛)

∗

3

= |𝑓′(𝑥)| ∑ {√𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
) |

𝑘𝑏𝑛

𝑛
− 𝑥| √𝑃𝑛,𝑘 (

𝑥

𝑏𝑛
)}

|
𝑘𝑏𝑛

𝑛
−𝑥|≥𝛿

 

 

                 ≤ |𝑓′(𝑥)| ∑ (
|

𝑘𝑏𝑛

𝑛
− 𝑥|

𝛿
)

2𝑠−1

{√𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
) |

𝑘𝑏𝑛

𝑛
− 𝑥| √𝑃𝑛,𝑘 (

𝑥

𝑏𝑛
)}

|
𝑘𝑏𝑛

𝑛
−𝑥|≥𝛿

 

                  ≤ |𝑓′(𝑥)|
1

𝛿2𝑠−1
∑ {√𝑃𝑛,𝑘 (

𝑥

𝑏𝑛
) |

𝑘𝑏𝑛

𝑛
− 𝑥|

2𝑠

√𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
)}

|
𝑘𝑏𝑛

𝑛
−𝑥|≥𝛿

 

 

                  ≤ |𝑓′(𝑥)|
1

𝛿2𝑠−1
{ ∑ |

𝑘𝑏𝑛

𝑛
− 𝑥|

4𝑠

𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
)

|
𝑘𝑏𝑛

𝑛
−𝑥|≥𝛿

 }

1

2

{ ∑ 𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
)

|
𝑘𝑏𝑛

𝑛
−𝑥|≥𝛿

}

1

2

 

 

                 ≤ |𝑓′(𝑥)|
1

𝛿2𝑠−1
{𝑇𝑛,4𝑠

∗ (𝑥)}
1

2 {2 exp (−
𝛿2

8𝑥

𝑛

𝑏𝑛
)}

1

2

 

 

⇒ ∑(𝑛)

∗

3

= 𝑜 (
𝑛

𝑏𝑛
)

−𝑠

 

For 𝑖 = 4 
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∑(𝑛)

∗

4

=
|𝑓′′(𝑥)|

2
∑ {√𝑃𝑛,𝑘 (

𝑥

𝑏𝑛
) |

𝑘𝑏𝑛

𝑛
− 𝑥|

2

√𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
)}

|
𝑘𝑏𝑛

𝑛
−𝑥|≥𝛿

 

≤
|𝑓′′(𝑥)|

2
∑ (

|
𝑘𝑏𝑛

𝑛
− 𝑥|

𝛿
)

2𝑠−2

{√𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
) |

𝑘𝑏𝑛

𝑛
− 𝑥|

2

√𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
)}

|
𝑘𝑏𝑛

𝑛
−𝑥|≥𝛿

 

 

     ≤
|𝑓′′(𝑥)|

2

1

𝛿2𝑠−2
∑ {√𝑃𝑛,𝑘 (

𝑥

𝑏𝑛
) |

𝑘𝑏𝑛

𝑛
− 𝑥|

2𝑠

√𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
)}

|
𝑘𝑏𝑛

𝑛
−𝑥|≥𝛿

 

 

  ≤
|𝑓′′(𝑥)|

2

1

𝛿2𝑠−2
{ ∑ |

𝑘𝑏𝑛

𝑛
− 𝑥|

4𝑠

𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
)

|
𝑘𝑏𝑛

𝑛
−𝑥|≥𝛿

 }

1

2

{ ∑ 𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
)

|
𝑘𝑏𝑛

𝑛
−𝑥|≥𝛿

}

1

2

 

 

≤
|𝑓′′(𝑥)|

2

1

𝛿2𝑠−1
𝑀(𝑏𝑛; 𝑓){𝑇𝑛,4𝑠

∗ (𝑥)}
1

2 {2 exp (−
𝛿2

8𝑥

𝑛

𝑏𝑛
)}

1

2

 

 

 

⇒ ∑(𝑛)

∗

4

= 𝑜 (
𝑛

𝑏𝑛
)

−𝑠

 

𝑖 = 5,6 … 2𝑠 follows in a similar way 

Thus, 𝑅𝑛,2𝑠,2(𝑥) = 𝑜 (
𝑛

𝑏𝑛
)

−𝑠
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Therefore,  

(𝐶𝑛𝑓)(𝑥) = 𝑓(𝑥) + ∑ ∑
𝑓(𝑚)(𝑥)

𝑚!
(

𝑘𝑏𝑛

𝑛
− 𝑥)

𝑚

𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
) +

2𝑠

𝑚=1

𝑅𝑛,2𝑠(𝑥)

𝑛

𝑘=0

 

 

                  = 𝑓(𝑥) + ∑ ∑
𝑓(𝑚)(𝑥)

𝑚!
(

𝑘𝑏𝑛

𝑛
− 𝑥)

𝑚

𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
) + 𝑜 (

𝑥

𝑏𝑛
)

−𝑠
2𝑠

𝑚=1

𝑛

𝑘=0

 

 

 

All that is needed to establish 4.3 for 𝑥 > 0  is in place thus, letting 

 

𝑇𝑛,𝑚(𝑥)𝑛−𝑚 = ∑ (
𝑘𝑏𝑛

𝑛
− 𝑥)

𝑚

𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
)

𝑛

𝑘=0

(4.7) 

and proceeding to obtain 

(𝐶𝑛𝑓)(𝑥)   = 𝑓(𝑥) + ∑
𝑓(𝑚)(𝑥)

𝑚!
∑ (

𝑘𝑏𝑛

𝑛
− 𝑥)

𝑚

𝑃𝑛,𝑘 (
𝑥

𝑏𝑛
) + 𝑜 (

𝑥

𝑏𝑛
)

−𝑠
𝑛

𝑘=0

2𝑠

𝑚=1

 

= 𝑓(𝑥) + ∑
𝑓(𝑚)(𝑥)

𝑚!

2𝑠

𝑚=1

𝑇𝑛,𝑚(𝑥)𝑛−𝑚 + 𝑜 (
𝑥

𝑏𝑛
)

−𝑠

 

 

= 𝑓(𝑥) + ∑
𝑓(𝑚)(𝑥)

𝑚!

2𝑠

𝑚=2

𝑇𝑛,𝑚(𝑥)𝑛−𝑚 + 𝑜 (
𝑥

𝑏𝑛
)

−𝑠

 

Since 𝑇𝑛,1(𝑥) = 0 
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= 𝑓(𝑥) + ∑
𝑓(𝑚)(𝑥)

𝑚!

2𝑠

𝑚=2

𝑛−𝑚[𝑏𝑛
𝑚 ∑ 𝑛𝑚−𝑘

𝑚

𝑘=[
[𝑚+1)

2
]

∑ (
𝑥

𝑏𝑛
)

𝑚−𝑖
𝑘

𝑖=0

 

   

              ∗  ∑ (
𝑚

𝑝
) (−1)𝑚−𝑝𝜎(𝑝, 𝑝 − 𝑖)𝑆(𝑝 − 𝑖, 𝑝 − 𝑘) 

𝑚

𝑝=𝑘

] + 𝑜 (
𝑥

𝑏𝑛
)

−𝑠

 

 

= 𝑓(𝑥) + ∑
𝑓(𝑚)(𝑥)

𝑚!

2𝑠

𝑚=2

 [𝑏𝑛
𝑚 ∑ 𝑛−𝑘 ∑ (

𝑥

𝑏𝑛
)

𝑚−𝑖
𝑘

𝑖=0

𝑚

𝑘=[
[𝑚+1)

2
]

 

 

 ∗  ∑ (
𝑚

𝑝
) (−1)𝑚−𝑝𝜎(𝑝, 𝑝 − 𝑖)𝑆(𝑝 − 𝑖, 𝑝 − 𝑘) 

𝑚

𝑝=𝑘

] + 𝑜 (
𝑥

𝑏𝑛
)

−𝑠

 

 

= 𝑓(𝑥) + ∑ 𝑛−𝑘

𝑠

𝑘=1

[ ∑ 𝑏𝑛
𝑚

𝑓(𝑚)(𝑥)

𝑚!
∑ (

𝑥

𝑏𝑛
)

𝑚−𝑖
𝑘

𝑖=0

2𝑘

𝑚=𝑘+1

 

∗  ∑ (
𝑚

𝑝
) (−1)𝑚−𝑝𝜎(𝑝, 𝑝 − 𝑖)𝑆(𝑝 − 𝑖, 𝑝 − 𝑘) 

𝑚

𝑝=𝑘

] + 𝑜 (
𝑥

𝑏𝑛
)

−𝑠

 

since 

 𝑆(𝑗, 0) = 𝜎(𝑗, 0)           ∀ 𝑗 ∈  ℕ,  

this yields 

(𝐶𝑛𝑓)(𝑥)  = 𝑓(𝑥) + ∑ 𝑛−𝑘

𝑠

𝑘=1

[ ∑ 𝑏𝑛
𝑚

𝑓(𝑚)(𝑥)

𝑚!
∑ (

𝑥

𝑏𝑛
)

𝑚−𝑖
𝑘

𝑖=0

2𝑘

𝑚=𝑘+1
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∗ ∑ (
𝑚

𝑝
) (−1)𝑚−𝑝𝜎(𝑝, 𝑝 − 𝑖)𝑆(𝑝 − 𝑖, 𝑝 − 𝑘) 

𝑚

𝑝=𝑘

] + 𝑜 (
𝑥

𝑏𝑛
)

−𝑠

 

 

= 𝑓(𝑥) + ∑ 𝐶𝑘(𝑓; 𝑛, 𝑥)𝑛−𝑘 + 𝑜 (
𝑛

𝑏𝑛
)

−𝑠

,       (𝑛 → ∞)                     

𝑠

𝑘=1

 

Where 

𝐶𝑘(𝑓; 𝑛, 𝑥) = ∑ 𝑏𝑛
𝑚

𝑓(𝑚)(𝑥)

𝑚!
∑ (

𝑥

𝑏𝑛
)

𝑚−𝑖
𝑘

𝑖=0

2𝑘

𝑚=𝑘+1

 

 

                      ∗  ∑ (
𝑚

𝑝
) (−1)𝑚−𝑝𝜎(𝑝, 𝑝 − 𝑖)𝑆(𝑝 − 𝑖, 𝑝 − 𝑘) 

𝑚

𝑝=𝑘

 

Which is the required 4.3. 

 

To establish 4.4, the procedure goes as follows: 

Case 1: 

For 𝑥 = 0, 4.4  is valid since by its hypothesis 𝑓(2𝑠)exists since (𝐶𝑛)(0) = 𝑓(0) 

Case 2: 

𝑥 > 0, using prove by induction yields 

for  𝑠 = 1, 

lim
𝑛→∞

(
𝑛

𝑏𝑛
)

1

[  (𝐶𝑛𝑓)(𝑥) − 𝑓(𝑥) − ∑
𝑓(𝑘)(𝑥)

𝑘!
 (𝐶𝑛(𝑡 − 𝑥)𝑘)(𝑥)𝑛−𝑘]

2−1

𝑘=1

 

= lim
𝑛→∞

𝑛

𝑏𝑛
[  (𝐶𝑛𝑓)(𝑥) − 𝑓(𝑥) − 𝑓(′)(𝑥) (𝐶𝑛(𝑡 − 𝑥))]     
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 = lim
𝑛→∞

𝑛

𝑏𝑛
[  (𝐶𝑛𝑓)(𝑥) − 𝑓(𝑥) − 𝑓(′)(𝑥)𝑇𝑛,1(𝑥)𝑛−1] 

 

 = lim
𝑛→∞

𝑛

𝑏𝑛
[  (𝐶𝑛𝑓)(𝑥) − 𝑓(𝑥) − 𝑓(′)(𝑥)(0)𝑛−1]   

 

= lim
𝑛→∞

𝑛

𝑏𝑛
[  (𝐶𝑛𝑓)(𝑥) − 𝑓(𝑥)] 

 

≡ lim
 𝑛 →∞  

𝑛

𝑏𝑛
[ 𝑅𝑛,2(𝑥) +

𝑓(2)(𝑥)

(2)!
𝑇𝑛,2(𝑥)𝑛−2] 

 

 

=
𝑓(2)(𝑥)

(2)!
𝑥  

Suppose it is true for 𝑠 = 𝑙 > 1 

That is, 

lim
𝑛→∞

(
𝑛

𝑏𝑛
)

𝑙

[  (𝐶𝑛𝑓)(𝑥) − 𝑓(𝑥) − ∑
𝑓(𝑘)(𝑥)

𝑘!
 (𝐶𝑛(𝑡 − 𝑥)𝑘)(𝑥)]

2𝑙−1

𝑘=1

 

 

 =  lim
     𝑛 →∞  

(
𝑛

𝑏𝑛
)

𝑙

[  (𝐶𝑛𝑓)(𝑥) − 𝑓(𝑥) − ∑
𝑓(𝑘)(𝑥)

𝑘!

2𝑙−1

𝑘=1

𝑇𝑛,𝑘(𝑥)𝑛−𝑘  

 

≡ lim
    𝑛 →∞  

(
𝑛

𝑏𝑛
)

𝑙

[ 𝑅𝑛,2𝑙(𝑥) +
𝑓(2𝑙)(𝑥)

(2𝑙)!
𝑇𝑛,2𝑙(𝑥)𝑛−2𝑙] 
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=
𝑥𝑙

2𝑙𝑙!
𝑓(2𝑙)(𝑥) 

 

Next is to establish that it holds for 𝑠 = 𝑙 + 1 using the relation presented by Karsli (2013) 

that  

 

𝑇𝑛,2𝑝(𝑥) =
𝑛2𝑝𝑏𝑛

2𝑝(2𝑝)!

2𝑝𝑝𝑛𝑝
[

𝑥

𝑏𝑛
(1 −

𝑥

𝑏𝑛
)]

𝑝

+ 𝑂(𝑛−𝑝) 

Leads to 

 

lim
𝑛→∞

(
𝑛

𝑏𝑛
)

𝑙+1

[  (𝐶𝑛𝑓)(𝑥) − 𝑓(𝑥) − ∑
𝑓(𝑘)(𝑥)

𝑘!
 (𝐶𝑛(𝑡 − 𝑥)𝑘)(𝑥)]

2𝑙+1

𝑘=1

 

   

=  lim
     𝑛 →∞  

(
𝑛

𝑏𝑛
)

𝑙+1

[  (𝐶𝑛𝑓)(𝑥) − 𝑓(𝑥) − ∑
𝑓(𝑘)(𝑥)

𝑘!

2𝑙+1

𝑘=1

𝑇𝑛,𝑘(𝑥)𝑛−𝑘  

 

  =  lim
                  𝑛 →∞  

(
𝑛

𝑏𝑛
)

𝑙+1

[ ∑
𝑓(𝑘)(𝑥)

𝑘!

2𝑙+2

𝑘=1

𝑇𝑛,𝑘(𝑥)𝑛−𝑘 − ∑
𝑓(𝑘)(𝑥)

𝑘!

2𝑙+1

𝑘=1

𝑇𝑛,𝑘(𝑥)𝑛−𝑘

+ 𝑜 (
𝑥

𝑏𝑛
)

−(𝑙+1)

] 

 

  =  lim
                 𝑛 →∞  

(
𝑛

𝑏𝑛
)

𝑙+1

[
𝑓(2𝑠+2)(𝑥)

(2𝑠 + 2)!
𝑇𝑛,2𝑙+2(𝑥)𝑛−(2𝑙+2) + 𝑜 (

𝑥

𝑏𝑛
)

−(𝑙+1)

] 
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=  lim
      𝑛 →∞  

(
𝑛

𝑏𝑛
)

𝑙+1 𝑓(2𝑙+2)(𝑥)

(2𝑙 + 2)!
𝑇𝑛,2𝑙+2(𝑥)𝑛−(2𝑙+2)  + lim

  𝑛 →∞  
(

𝑛

𝑏𝑛
)

𝑙+1

𝑜 (
𝑥

𝑏𝑛
)

−(𝑙+1)

 

 

=  lim
      𝑛 →∞  

(
𝑛

𝑏𝑛
)

𝑙+1 𝑓(2𝑙+2)(𝑥)

(2𝑙 + 2)!
𝑇𝑛,2𝑙+2(𝑥)𝑛−(2𝑙+2) 

 

    =  lim
                  𝑛 →∞  

(
𝑛

𝑏𝑛
)

𝑙+1 𝑓(2𝑙+2)(𝑥)

(2𝑙 + 2)!
[
𝑛2𝑙+2𝑏𝑛

2𝑙+2(2𝑙 + 2)!

2𝑙+1(𝑙 + 1)𝑛𝑙+1
[

𝑥

𝑏𝑛
(1 −

𝑥

𝑏𝑛
)]

𝑙+1

+ 𝑂(𝑛−𝑘)] 𝑛−(2𝑙+2) 

 

=
𝑓(2𝑙+2)(𝑥)

2𝑙+1(𝑙 + 1)
lim

 𝑛 →∞  
[𝑥 (1 −

𝑥

𝑏𝑛
)]

𝑙+1

 

 

=
𝑓(2𝑙+2)(𝑥)

2𝑙+1(𝑙 + 1)
𝑥𝑚+1 

 

Thus, establishing 4.4 

Theorem 4.0 has been established hence, the corollary below on the complete asymptotic 

follows: 

Corollary 4.0  

If 𝑓 defined on [0, ∞) satisfies condition (4.11) for every 𝛼 > 0, and all derivatives of 𝑓 in 

𝑥 exists. Then the operators (𝐶𝑛𝑓) have the complete asymptotic expansion 

  (𝐶𝑛𝑓)(𝑥)~𝑓(𝑥) + ∑ 𝐶𝑘(𝑓; 𝑛, 𝑥)𝑛−𝑘,       (𝑛 → ∞)

∞

𝑘=1

. 
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 𝐶𝑛(𝑓; 𝑛, 𝑥)are coefficient as given in theorem 4.0.   
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CHAPTER 5 
 

CONCLUSION 
 
 

5.1 Conclusion 

The complete asymptotic expansions for the Mayer- Konigand Zeller operators and that of 

the Chlodovsky operator was investigated and established. Using a similar procedure The 

complete asymptotic expansions for the Modified Gamma operator (Karsli, 2011) can be 

obtain which is stated as follows: If 𝑓 ∈  𝑊𝛾[0, ∞)  (𝑊𝛾[0, ∞)(𝛾 ≥ 0) is the space of all 

locally bounded and integrable functions defined on [0, ∞) such that the growth condition 

|𝑓(𝑡)| ≤ 𝑀𝑡𝛾 fore very  𝑡 > 0 and for some constant 𝑀 > 0) and if 𝑓(2𝑠)(𝑥) exists at a 

given 𝑥 ≥ 0, then the Gamma operators (𝑀𝑛,𝑘𝑓)have the complete asymptotic expansion 

 

(𝑀𝑛,𝑘𝑓)(𝑥)~𝑓(𝑥) + ∑ 𝐶𝑛,𝑘,𝑚(𝑓; 𝑥)𝑛−𝑚  ,       (𝑛 → ∞)    

∞

𝑚=1

 

 

Where  𝐶𝑛,𝑘,𝑚(𝑓; 𝑥) are coefficients given in terms of Stirling numbers.   
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