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ABSTRACT 

 

Stone formation in the kidneys is a common disease, the high rate of recurrence and 

morbidity of the disease worries all patient groups with kidney stones. There are many 

imaging options for the diagnosis and management of kidney stone disease, computed 

tomography (CT) imaging is the preferred method. Radiologists need to analyse large 

numbers of CT slices manually in order to diagnose kidney stones. This process is laborious 

and time-consuming. Radiologists analyse CT images by eye ball estimation, because of the 

manual analysis human errors can be occurred.  

In this study, deep learning algorithms were used for the analysis of kidney stones. 

Convolutional neural network architectures based on deep learning are a preferred method 

especially for analyzing medical images. High performances can be achieved with deep 

learning, especially for the analysis of data obtained from advanced scanners such as CT, 

which provide high-dimensional medical images. The main purpose of this study is to 

classify kidney stones with high accuracy from CT scans using deep learning algorithms. In 

this study, selected and pre-trained Convolutional neural network (CNN) architectures were 

applied to a dataset of abdominal CT scans of patients with kidney stones labeled by a 

radiologist. As a result of the tests performed with the selected 5 different CNN models, it 

was observed that these models achieved acceptable performance for kidney stone 

classification task. 

 

Keywords: Kidney Stone; Computed Tomography; Artificial Intelligence; Deep Learning; 

Convolutional Neural Network 
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ÖZET 

 

Böbreklerde taş oluşumu yaygın bir hastalıktır, hastalığın nüks oranının yüksek olması ve 

morbidite oranı böbrek taşına sahip tüm hasta gruplarını endişelendirir. Böbrek taşı 

hastalığının tanı ve yönetimi için birçok görüntüleme seçeneği vardır, bilgisayarlı 

görüntüleme (BT) tercih edilen bir yöntemdir. Radyologların böbrek taşlarını teşhis etmek 

için çok sayıda BT kesitini manuel olarak analiz etmesi gerekir. Bu süreç zahmetli ve zaman 

alıcıdır. Radyologlar BT görüntülerini göz kararı tahmini ile analiz eder, manuel analiz 

nedeniyle insan hataları meydana gelebilir. 

Bu çalışmada böbrek taşlarının analizi için derin öğrenme algoritmalarına başvurulmuştur. 

Derin öğrenme tabanlı olan evrişimli sinir ağı mimarileri, özellikle tıbbi görüntüleri analiz 

etmek için tercih edilen bir yöntemdir. Özellikle yüksek boyutlu tıbbi görüntüler sağlayan 

BT gibi gelişmiş tarayıcılardan elde edilen verilerin analizi için derin öğrenme ile yüksek 

performanslar elde edilebilir. Bu çalışmanın temel amacı, derin öğrenme algoritmalarını 

kullanarak böbrek taşlarını BT taramalarından, yüksek doğruluk oranı ile sınıflandırmaktır. 

Bu çalışmada seçilen ve önceden eğitilmiş evrişimli sinir ağı (ESA) mimarileri, radyolog 

tarafından etiketlenen böbrek taşına sahip hastaların abdominal BT taramalarından oluşan 

bir veri setine uygulanmıştır. Seçilen 5 farklı ESA modeli ile yapılan testler sonucunda 

böbrek taşı sınıflandırılması için bu modellerin kabul edilebilir performans elde ettikleri 

gözlemlenmiştir.  

 

Anahtar kelimeler: Böbrek Taşı; Bilgisayarlı Tomografi; Yapay Zeka; Derin Öğrenme; 

Evrişimli Sinir Ağı 
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CHAPTER 1  

INTRODUCTION  

 

Kidney stone disease is the appearance of stone-like acid salts and mineral deposits in the 

kidneys. When these substances are above the saturation point in the urine, concretization 

may occur in the kidneys (Waldman, 2019). It is an increasing urinary system disease of 

human health and it is known to affect approximately 12% of the world population (Alelign 

and Petros, 2018). Kidney stone disease, which is thought to have increased in the last few 

decades, is a common problem affecting 1 in 10 people (McCarthy et al., 2016). The increase 

in the incidence of kidney stones is associated with factors such as changes in diet, obesity 

levels, genetic predisposition, drugs used, and geography (Milenkovic and Albersen, 2019). 

Nephrolithiasis means stone formation in the collecting ducts of the kidneys or renal tubules. 

Most of the kidney stone compositions are calcium-based. It is seen in asymptomatic small 

stones compared to obstructive stones that impair kidney functions and cause the disease to 

become chronic. The severity of kidney stone disease, together with the pathogenesis, 

depends on the location of the stone, the composition of the stone, and the size of the stone 

(Monk and Bushinsky, 2010).  

Imaging the kidneys is an important element in the management of kidney stone disease 

(Rao, 2004). Imaging of nephrolithiasis is of vital importance in the diagnosis, treatment, 

and follow-up of the disease. The selected imaging method can provide the necessary 

information about the anatomical, physiological and functional structures of the kidneys 

(Dhar and Denstedt, 2009). The choice of imaging modality to evaluate abnormalities of the 

kidneys depends on the amount of radiation, cost, complications that may occur, and ability 

to diagnose (Kaur and Juneja, 2018). Many diagnostic and therapeutic data can be obtained 

by imaging the kidneys. These data are important for stone detection, determination of stone 

burden and distribution in the kidney, understanding the function of the kidney, creating a 

treatment plan, and understanding the results of treatment (Rao, 2004).  

Imaging methods available to view nephrolithiasis include computed tomography (CT), 

ultrasonography (USG), kidney, ureter, bladder (KUB) radiography, and magnetic 

resonance imaging (MRI) (Brisbane et al., 2016). Imaging methods used to detect kidney 
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stones have changed over time. Instead of the intravenous pyelogram (IVP) and KUB films, 

which were used frequently before, non-contrast CT and USG are used more frequently 

today (Pfau and Knauf, 2016). In patients with kidney stones, non-contrast CT is often used 

to scan the kidneys. Kidney stones have different compositions and therefore absorb much 

radiation and can be easily imaged without requiring contrast (Brisbane et al., 2016).  

Deep learning (DL) is a sub-branch of machine learning (ML) and is used in many areas 

such as medical image processing and computer vision. Convolutional neural networks 

(CNNs), one of the deep learning algorithms, are seen as the center of deep learning for 

processing medical images (Pacal et al., 2020). A CNN has a deep architecture and thus is 

successful at extracting distinctive features (Tajbakhsh et al., 2016). CNNs are used in image 

recognition tasks. These are used for many tasks including image classification, 

segmentation, detection (Ker et al., 2017).  

Since DL algorithms are successful in image analysis, they have a high potential in the field 

of radiology. DL algorithms are capable of reaching a repeatable result in less time than it 

takes for a person to make an assessment. It also has the potential to evaluate a large number 

of features, including those that have been overlooked by radiologists (Mazurowski et al., 

2019).  

In this study, deep learning algorithms will be used to classify kidney stones using a CT 

database. Five different CNN models will be used, which is the main method of deep 

learning. 

 

1.1 Thesis Problem 

Kidney stone disease is increasing in global prevalence and recurrence rate due to limited 

drug options. It is a disease that affects all ages and genders. (Alelign and Petros, 2018). 

The first step in determining kidney stone disease is imaging. There are different imaging 

options. Radiologists need to manually scan multiple image slices to analyze kidney stones 

from CT images. At this stage, overlooked situations may occur. Also,the repeatability of 

manual methods is time-consuming. 
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1.2 Aims of the Study 

Radiologists manually classify kidney stones. There is a need for automatic classification 

and detection of kidney stones. Therefore, this study aims to use powerful deep networks for 

the classification of kidney stones. 

• To use deep learning methods to classify kidney stones on CT images. 

• Achieving high success rates with deep learning-based CNN models.  

 

1.3 Significance of the Study 

The findings obtained as a result of this study will provide information about whether there 

are stones in the kidneys. 

This study will provide useful information during the processes such as diagnosis, treatment, 

and surgical operation of patients with kidney stones. 

It contributes to the reduction of errors such as human errors in manual scanning of CT 

images. 

 

1.4 Overview of the Thesis 

Chapter 1 is an introductory chapter of the whole thesis work, outlining the thesis problem, 

aim of the study, significance of the research. Chapter 2 is a detailed clinical background of 

the kidney, including the kidney stone, kidney stone imaging methods. Chapter 3 is a 

literature review of previous studies carried out and related to the present research. Chapter 

4 outlines the deep learning-based CNN methods used for the analysis of kidney stones and 

the application of these methods to CT images. Chapter 5 is the results of the analysis; the 

conclusion is contained in chapter 6. 
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CHAPTER 2 

LITERATURE REVIEW 

 

Researchers can analyze and understand complex phenomena from engineering, medicine, 

biology, and various other fields with machine learning. New paradigms are needed to 

analyze these increasingly complex areas and transform them into useful information for 

medical services. There has been a tendency towards complex modeling and deep learning 

to obtain complex data and transform this data into useful information (Akay and Hess, 

2019). 

According to the results obtained from the studies on deep learning, it has been suggested 

that the performance of deep learning in tasks such as visual recognition and auditory 

recognition is better than people. With this method, medical imaging applications in 

medicine and health services have attracted attention. Deep learning methods have achieved 

promising results in medical image analysis (Lee et al., 2017). 

The field of radiology is data-oriented. It is convenient to use data processing techniques in 

this area. Deep learning method has created useful information for image processing in the 

field of radiology. In addition, it provides accurate diagnosis in the field of radiology, 

automates tasks and increases efficiency (McBee et al., 2018).  

CNNs are used in image processing, they have also shown high success in image 

segmentation, classification and object detection. CNNs have shown good success in 

separating complex nonlinear features from images. Thanks to these properties, it is widely 

used in jobs such as kidney segmentation (Cui et al., 2020). 

Vasanthselvakumar et al. (2020) proposed the classification and detection of kidney diseases 

with deep networks. They used deep CNN to recognize these diseases. In addition, the 

TensorFlow batch estimation method is calculated to recognize the categories of diseases. 

They achieved 89.79% performance accuracy for detecting kidney disease. Chronic Kidney 

diseases 86.67% accuracy rate was achieved by classifying with CNN  

According to Onthoni et al. (2020), total kidney volume is required to analyze kidney 

function losses. The radiologists should use various methods such as measuring the total 



5 

 

kidney volume with medical imaging and dividing the kidney into sections. These processes 

are time-consuming and demanding. Researchers aimed to design the automatic positioning 

model of kidney diseases in which the total loss of kidney function should be analyzed using 

artificial intelligence methods. They designed the image preprocessing and single-shot 

detector Inception V2 deep learning model using contrast CT images. Researchers have 

shown that this model achieves better success than other deep learning models in terms of 

average sensitivity. They explained that this study can help radiologists in the classification 

and localization of diseased kidneys to improve the calculation of kidney volume. 

According to the study presented by Ma et al. (2020), machine learning techniques have an 

important position due to their high accuracy capabilities for the medical diagnosis of 

chronic kidney disease whose prevalence is increasing every year. In this study, the 

researchers proposed a Heterogeneous Modified Artificial Neural Network based on deep 

learning for early detection and segmentation for chronic kidney failure. This algorithm has 

the ability to segment the kidney area imaged by ultrasound. In addition, in this study, it was 

shown that noise was reduced with this proposed method and contributed to the segmentation 

of the kidney image with high accuracy for determining the location of kidney stones. 

Graham-Knight et al. (2019) developed a model for the segmentation of kidneys in CT scans. 

This model was trained with the KiTS19 data set. The U-Net algorithm has been used and 

this algorithm can be used to segment images of scans such as CT and MRI. The model has 

been trained with nnU-Net. It has been defended that this model helps diagnose and treat 

kidney stones with deep learning. Researchers then applied this model to CT images of 

patients undergoing kidney stone treatment and achieved overall success. The researchers 

think that this model needs to be further developed and more research into deep learning 

tools that help urologists manage the disease process. 

Längkvist et al. (2018) developed a computer-aided diagnostic (CAD) algorithm to detect 

ureteral stones in CT scans. It is aimed to determine non-stone structures and CT volumes 

with stone density by a CAD algorithm. In this study, CT volume is classified using 

convolutional neural networks that are successful in computer vision tasks. With this 

proposed approach, researchers have approached the automatic detection of ureteral stones 

in CT scans using CNNs. 
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Ebrahimi and Mariano (2015) worked to provide technical support in the detection of kidney 

stones. In this study, a semiautomatic program was developed and the effects of the program 

on image processing, segmentation of the kidney area, and improvement of kidney stone 

detection were also studied. Researchers have focused on increasing the detection of kidney 

stones with analysis such as image segmentation and localization, object detection, along 

image processing techniques. According to the results of the study, they found that the 

program was capable of imaging small-sized kidney stones that doctors might overlook.  

Kolachalama et al. (2018) used DL architecture for chronic kidney disease to better associate 

biopsy-obtained histological images with clinical phenotypes. The Inception-V3 model, a 

pre-trained CNN model, was used to correlate these images. This model has been retrained 

using training classes adjusted for the relevant problem. This deep neural network has been 

trained using back-propagation and transfer learning is used. In this study, the effectiveness 

of using deep learning architectures was examined and the performance of a CNN trained 

on images was compared with a nephropathologist. Researchers have stated in the results of 

the study that this method has different beneficial potential for nephrologists, although it is 

effective in the clinical decision-making process. They also stated that it is an adaptable 

method to pathological and histological data sets specific to different organs.  

Black et al. (2020) evaluated the use of DL to detect the composition of kidney stones. In a 

stone laboratory with different types of kidney stones, stones were imaged using a digital 

camera. ResNet-101 model, which is a deep CNN, is applied to each image. This study is 

based on the extraction of beneficial properties by classifying the stone compositions and 

images of CNNs. In addition, with this study, the researchers concluded that stone 

compositions can be made using DL algorithms.  

Parakh et al. (2019) developed a CNN model to detect stones in the urinary system with high 

performance in non-contrast CT scans with a cascading DL architecture. The researchers 

chose the Inception-V3 model, a CNN pre-trained with ImageNet, for urinary stone detection 

because it exhibits high classification performance. This model is then trained with GrayNet 

and can be used for urinary tract identification and stone detection. They developed a 

cascading model consisting of two CNNs for the detection of urinary stones. CT sections 

were defined with these CNNs, and then classifications were made for stone detection. In 
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the results of the study, it was mentioned that the stepped CNN model can detect urinary 

tract stones with high accuracy in CT images.  

Akshaya et al. (2020) used Back Propagation Network, the algorithm used in the training of 

neural networks, to detect kidney stones in MR images in this study. Decision-making was 

carried out by feature extraction and image classification. In this study, feature extraction 

has been done with principal component analysis and image classification has been done 

with back propagation network. It has been stated that the back propagation network gives a 

precise classification compared to other neural networks. With the method used in this study, 

the location of even small stones in the kidney was determined and the areas with stones 

could be accurately separated from the image.  

Kuo et al. (2019) used DL approaches to automatically determine chronic kidney disease 

and the estimated glomerular filtration rate after USG of the kidneys. In the neural network 

architectures of their work, they used the ResNet model integrated with transfer learning. In 

this study, data magnification schemes were used to extract more features from ultrasound 

images, and boot clustering was used to prevent over compatibility. This model developed 

by the researchers is the first step towards improving some of the potentials of ultrasound 

imaging of the kidneys. 

Sharma et al. (2017) used deep learning to examine autosomal dominant polycystic kidney 

disease, which is a common hereditary disease of kidney disease. It has been suggested to 

use an automatic segmentation method based on the CNN architecture, VGG-16, to calculate 

the total kidney volume from computed tomography scans of patients suffering from this 

disease. It was mentioned that this method by the investigators can facilitate rapid and 

repetitive measurements of kidney volumes compatible with manual segmentations by 

clinicians and can be used at a total kidney volume of >500 and <10,000 mL. 

Manual drawing of the volume of interest (VOI) for the renal parenchyma in CT scans is a 

long and laborious task. Park et al. (2019) aimed to develop a fully automated glomerular 

filtration rate quantification method based on a deep learning algorithm for segmentation of 

the renal parenchyma in CT scans. The deep learning method used is the 3D U-Net network, 

which is a CNN model. They used CT images and manual VOIs to train this network. 

According to the results of this study, the researchers showed that the deep learning method 
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is accurate for renal parenchyma segmentation in CT scans and is successful for automatic 

measurement of GFR. 
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CHAPTER 3 

CLINICAL BACKGROUND 

 

3.1 Kidney 

Kidneys in the human body resemble two bean shapes. These are organs weighing an 

average of 300g. They are located in the cavity behind the peritoneum. Kidneys constitute 

almost 0.4% of the human body weight. The kidneys have unique cells and have a different 

and complex anatomical structure (Briggs et al., 2009; Preuss, 1993). Figure 2.1 represents 

the human kidney, sectioned vertically (Tanner, 2009). 

 

 

Figure 3.1: The Human Kidney 

 

The position of the kidneys in the body is slightly different from each other, usually, the left 

kidney is above the right kidney. These are embedded in fat and tissue and kidneys are 

partially protected by the lower part of the ribs (Preuss, 1993).  

The kidneys take on some of the functions in the body. Among them are the functions of 

maintaining acid-base balance and filtering waste materials in the blood. After such 

functions, urine formation occurs (Kaur and Juneja, 2018). The unit that performs the 

functions of the kidney is the nephron. Each adult human kidney contains about 1 million 

nephrons. Nephrons structurally contain glomerulus and a long tubule, they are composed 
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of a single epithelial cell. Glomerulus forms the basis of nephrons. The nephrons are 

subdivided into distinctive parts, they are proximal and distal tubules, the Henle loop, and 

the collecting channel (Nickolas and Moe, 2019; Briggs et al., 2009). Glomerulars perform 

the blood filtering function. According to the performance of this function, kidney function 

is evaluated. For these evaluations, calculations are uses that show the amount of filtered 

blood, named the glomerular filtration rate (GFR) (Nickolas and Moe, 2019; Tanner, 2009). 

With the functions of the kidney, such as excretion from peritubular capillary blood to 

tubular liquid, filtration blood through the glomerulus to form plasma ultrafiltrate passing 

into the bowmans space and re-absorption from the tubular fluid to the blood along the cells-

covering the nephritic tubule, unwanted substances are removed and a stable environment is 

created (Shirley and Unwin, 2010). 

The volume and composition of extracellular fluid (ECF) must routinely be regulated. This 

function is performed by the kidneys. With daily eating and drinking activities, waste and 

foreign compounds, including beneficial substances taken into the body in large quantities, 

are removed from the body as urine and the internal environment is stabilized. Osmatic 

pressure is regulated by removing the urine created from the body. Acid-base balance is 

achieved and ammonia is synthesized for this. ECF volume and arterial blood pressure are 

regulated by synthesizing substances that provide Na+ excretion. The ion density of the 

blood plasma is adjusted. They make the polypeptide hormones break down. Among the 

waste products of metabolism are urea, creatinine, and uric acid. The kidneys remove these 

waste materials. Substances that provide renal blood flow and hormones such as vitamin D3 

and erythropoietin are produced in the kidneys (Tanner, 2009). 

In arrange for the blood plasma to be highly filtered, there must be high blood flow in the 

kidneys. There are many factors that affect the blood flow rate. These may be local hormones 

and instric factors such as autoregulation. In addition, there may be external factors such as 

blood-borne hormones and nerves (Tanner, 2009). The kidney's functions include regulation 

of blood pressure, red cell count, and bone density (Little and Combes, 2019).  

As a result of the various daily activities of people, changes occur in the volume and 

composition of the fluids in their bodies. The kidneys function to bring these changes to 

normal values. In healthy kidneys, these functions are performed in a short time and then ion 
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concentrations do not deteriorate for a long time. On the other hand, deviations in these 

functions occur in unhealthy kidneys or in some disease states thus normal values in the 

composition and volume of body fluids deteriorate (Briggs et al., 2009). Based on data from 

the World Health Organization (WHO), problems in kidney function are a global illness. In 

case of early diagnosis and treatment, the increase in kidney function disorders can be 

controlled (Kaur and Juneja, 2018). 

 

3.2 Kidney Stone 

Kidney stone, known as a urological disease, is crystal solidification that occurs in some 

parts of the kidney. It is known that kidney disease affecting human health in the world 

population affects 12% of the population. Urinary system stones date back to many years 

BC. People have suffered from kidney stones, a common urinary tract disease, for a long 

time (Alelign and Petros, 2018). For many years, the urinary tract stone disease was known 

as the human problem. However, in recent years, the form of the disease and the oftenness 

of stone formation have changed beyond negligence. In the past, stone formations were 

frequently seen in the bladder. But, nowadays, upper urinary tract stones are often seen (Fig. 

2.2) (Espinosa and Esposito, 2020).  

 

 

Figure 3.2: (A) Healthy Kidney, (B) Kidney with Kidney Stones 
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The researchers put forward a study to compare glomerular filtration rates. In this proposed 

study, data from the National Health and Nutrition Examination Questionnaire III were used, 

and people with kidney stones and those with a BMI of 27 or above were selected. According 

to the results, these individuals were found to have a lower glomerular filtration rate (GFR) 

than those without stones. In terms of blood pressure, it is known that people with stones 

have a higher blood pressure than people without stones. It is known that the kidneys of 

patients suffering from kidney stone disease are damaged during the stone formation process, 

their kidney functions decrease, and their blood pressure increases (Coe et al. 2005). Stone 

formation in the renal tubules or collecting system can be called nephrolithiasis and 

nephrolithiasis has significant morbidity (Monk and Bushinsky, 2010). 

Kidney stones can remain asymptomatic for many years. Until the stones require medical 

attention, it is generally not known when the stone begins to form. It can be understood 

whether there are stone-forming factors by looking at the life routine of the patient. The 

recurrence rate of the disease can be predicted, but definitive results are obtained with 

imaging studies (Curhan, 2014). 

 

3.2.1 Epidemiology 

When nephrolithiasis is examined globally, it is seen that the prevalence and recurrence rates 

of this disease have increased (Alelign and Petros, 2018). When kidney stone formation was 

compared by gender, it was observed that there was a 3: 1 ratio in stone formation in men. 

However, when looking at the incidence of nephrolithiasis, it is seen that it increases in 

women and decreases in men, and the incidence of kidney stones tends to gender equality 

(Espinosa and Esposito, 2020). 

According to epidemiological studies, in the last decade, when diagnosing nephrolithiasis, 

an increase in the incidence of kidney stones has been observed for all age groups 

(Edvarddon et al., 2013). According to some criteria, there are differences regarding the 

occurrence of kidney stone disease. These can be listed as gender, age, genetics, geography, 

climate, diet, fluid intake, occupation (Sorokin et al., 2017). For example, while calcium-

based stone types are seen in the United States of America; uric acid originated stones are 
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seen in the Mediterranean and the Middle East. In other words, differences can be seen in 

stone types according to geography and genetic predisposition (Monk and Bushinsky, 2010).  

 

3.2.2 Kidney stone creation 

Biomineralization or stone pathogenesis occurring in the kidney is a very complex formation 

process. Solvents precipitated in the urine cause nucleation due to the excessive saturation 

of the urine and as a result of this, crystallizations are formed. Crystallization is induced by 

supersaturation, and this is called the upper metastability limit, and this is a process required 

for kidney stone formation. In short, the over-saturation of urine and physicochemical 

changes in the kidney represents a biological process in stone formation. It is necessary to 

investigate the causes of nephrolithiasis to regulate the treatment of kidney stones and reduce 

the frequency of future cases (Alelign and Petros, 2018; Pfau and Knauf, 2016). 

 

3.2.3 Sites of stone growth 

According to researches, calcium phosphate compounds form deposits on the tip of the 

kidney papillae. These are known as the main reason why calcium oxalate stones are formed. 

This area has been developed with some researches; Plaque forms at the base of the thin 

folds of the Henle and moves along the tissue, in the renal tubules, and around the vasa recta. 

Finally, it protrudes into the uroepithelium in the kidney papillae. It is important to choose 

the appropriate treatment for people with kidney stone disease. Plaque formation 

mechanisms must be well understood in order to determine the appropriate treatment 

correctly (Pfau and Knauf, 2016). 

Kidney stones are classified according to the location of the stones. Stones that fill the pelvis 

and extend into the calyces are called non-staghorn or either staghorn. Those located in the 

distal and proximal positions are called ureteral stones (Evan, 2010). Different stone 

compositions can be seen in different and complex structures according to their formation. 

Asymptomatic stones are usually growing in the kidney calyces (Brisbane et al., 2016), 
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3.2.4 Stone types 

The structure and chemical content of kidney stones change according to the deterioration 

in the composition of different chemicals found in urine. In other words, the shapes and sizes 

of kidney stones depend on different chemical compositions found in urine. Kidney stones 

variation widely according to their formations and compositions. These stone types; 

1. Calcium phosphate and calcium oxate based, calcium stones 

2. Struvite (triple phosphate) 

3. Uric Acid or Urate Stone 

4. Cystine Stones 

5. Drug-Induced Stones  

(Alelign and Petros, 2018).  

Kidney stones can also be categorized as non-calcerius stones, radio-opaque stones, and 

calcium-based stones. There are cystine stones among the stones that are radio-opaque 

because cystine stones contain sulfur in them. Radio-lucent stones are indinavir stones and 

uric acid stones (Parmar, 2004). The composition of many of the crystals occurring in the 

kidneys is of calcium origin, complicated with phosphate and oxalate. Combinations of non-

calcium stones usually consist of struvite stones, cystine stones or uric acid stones that are 

formed in combination or (Briggs et al., 2009) 

The size of the stones in the kidneys differs. If the stone size is 7 mm or more, urological 

intervention is usually required for this stone. If the stone is 5-7 mm in size, the chance of 

passing through the urinary tract is 50%. Stones smaller than 5 mm can usually pass through 

the urinary tract. 90% of the stones in the kidneys can pass through the urinary tract, but 

surgical intervention is required for other stones. These interventions include stone 

fragmentation by the non-invasive shock wave lithotripsy, ureteroscopy, or removal of 

stones by percutaneous nephrolithotomy (Evan, 2010). 

Stone analysis is of great importance when evaluating the mechanisms of stone formation. 

In the diagnosis and treatment process of patients with kidney stones, useful information can 

be obtained through stone composition analysis (Briggs et al., 2009). 

 



15 

 

3.2.5 Risk factors for kidney stone creation  

Urine compositions can vary depending on a person's diet and medications. Nephrolithiasis 

occurs due to abnormalities in their chemical composition in the urine. For this reason, urine 

may cause an increase in the incidence of kidney stones. 

1. A person's daily fluid intake affects their urine composition. Low fluid intake leads 

to increased urine concentration and increases the likelihood of nephrolithiasis. 

People which are living in hot climates have an increased risk of composing kidney 

stones.  

2. Some drugs change the pH of the urine and may cause crystallization, therefore stone 

formation may occur. 

3. Plenty of consumption animal’s foods creates oxalate excretion and lowers urine pH. 

For this reason, uric acid stones may occur. 

4. High amount of urinary oxalate excretion is a risk factor for the formation of kidney 

stones. 

5. Consuming foods containing high amounts of potassium can reduce the risk of 

developing kidney stones. 

6. Consuming foods rich in calcium are associated with nephrolithiasis. 

(Pfau and Knauf, 2016).  

Several other non-dietary risk factors exist:    

1. Nephrolithiasis has a genetic predisposition. In other words, if a person has kidney 

stones in his family, his risk increases 2.5 times. 

2. Some diseases can increase the risk of kidney stone formation. These diseases 

include Crohn's disease, renal tubular acidosis, and hyperparathyroidism. 

3. Gout increases the risk of nephrolithiasis. 

(Mayans, 2019). 

There are many treatments for kidney stones. These treatments are; drug therapy, 

extracorporeal shock wave lithotripsy, conservative therapy, ureteroscopy, and invasive 

surgical stone removal. The most appropriate treatment for a patient with kidney stones is 

determined according to the size and location of the stone, and different treatments are used 

for each patient (Reimer et al., 2020). Before the treatment is decided for a kidney stone 



16 

 

patient, the complex anatomy of the kidney, areas without stones in the kidney, the duration 

of the surgery, and the amount of blood loss should be evaluated. The information obtained 

from these evaluations is useful for the urologist regarding optimal treatment. The most 

important information for a patient's kidney stone is obtained by imaging the kidney 

(Motamedinia et al., 2015). 

 

3.3 Kidney Stone Imaging 

Kidney stone imaging is preferred for the diagnosis and treatment planning of nephrolithiasis 

using different imaging methods. Kidney imaging is also very important for disease follow-

up after optimal treatment or surgical interventions (McCarthy et al., 2016). It is aimed to 

determine the position of the stone by imaging the anatomy of the kidney such as renal pelvic 

and calyceal with imaging methods. Imaging is used to determine whether the kidney 

functions are fulfilled, at the same time to choose the correct treatment method for patients 

with kidney stones and to understand whether the treatment is successful (Rao, 2004).  

Imaging has been the most effective method for the urologist to diagnose patients admitted 

to the hospital with some complaints about the kidneys. It also helps in determining the 

location and size of kidney stones after diagnosis, which is the first step. There are many 

different imaging methods to image the nephrolithiasis. The most appropriate method should 

be selected by considering factors such as cost, ionizing radiation and the body structure of 

the person to be imaged (Brisbane et al., 2016). Imaging modalities allow choosing the 

optimal method for kidney stones from treatment modalities such as shock wave lithotripsy 

(SWL), ureteroscopy, or percutaneous nephrolithotomy (PCNL) (Dhar and Denstedt, 2009). 

Imaging methods used to imaging the kidneys and diagnose kidney stones include computed 

tomography (CT), ultrasonography (USG), kidney, ureter, bladder plain film (KUB), 

magnetic resonance imaging (MRI), and intravenous urography (IVU). When looks at the 

use of imaging methods in the past, we see that intravenous urography has been used 

frequently, but then this method has been replaced by CT. There are advantages and 

disadvantages to each of the imaging methods. Different methods can be chosen according 

to variable and special situations (Mayans, 2019). 
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3.3.1 Noncontrast computed tomography 

CT is a method that can perform image scans with and without contrast, with different image 

timing according to different clinical situations (Brisbane et al., 2016). Computed 

tomography has imaging capability with good spatial resolution and high contrast. Through 

these features, they can enable urologists to detect abnormalities in the kidneys by imaging 

the kidneys on CT. They create non-invasive cross-sectional images of the target organ for 

the diagnosis of many diseases, including nephrolithiasis. (Kaur and Juneja, 2018). 

The first step to make a diagnosis is high-resolution imaging of the abdomen and pelvis area. 

Unenhanced computed tomography is used for this. Through to these images, nephrolithiasis 

can be evaluated. It has been reported that the success rate of CT imaging technique in the 

diagnosis of kidney stones is 95% (McCarthy et al., 2016).  

Contrast material is not used when imaging kidney stones because the structures of different 

composition of kidney stones absorb radiation at a high rate. In this way, images are 

evaluated easily. In Figure 2.3, an occlusive stone appeared in the left image, a non-occlusive 

stone appeared in the right image. (Brisbane et al., 2016). 

 

 

Figure 3.3: Imaging of kidney stone with non-contrast CT 

 

Axial sections obtained without the use of contrast with CT are imaged from the upper part 

of the kidneys to the pelvis position. These images are evaluated together with sagittal and 
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coronal reformats. Calcium-based kidney stones can be well visualized with non-contrast 

CT. However, uric acid stones, which are radiolucent on plain radiography, are successfully 

imaging on CT (McCarthy et al., 2016). 

CT imaging method detects the stone in the kidneys and at the same time allows it to be 

detected in other abnormalities in the urinary system by imaging from the upper part of the 

kidney to the lower part of the bladder in the area of view (Eisner et al., 2011). Reliable 

imaging of factors such as stone location and stone size is very significant for the correct 

management of kidney stone diseases. Figure 2.4 shows stone detected in the collecting 

system of the patient left kidney (McCarthy et al., 2016).  

 

 

Figure 3.4: (A) Axial and (B) Coronal non-contrast CT images 

 

Photons are exiting the X-ray tube reach the detector after the object it encounters. The 

attenuation values of the photons coming to the detector show the density of the object. 

These attenuation values are the Hounsfield unit (HU) measure. According to the HU 

measurements, the value of water is 0, the value of bone is 1000 and the value of air is -

1000. Kidney stones absorb different amounts of radiation according to stone composition. 

Stone compositions can be determined by looking at their radiation absorption values. With 

Ct imaging, the HU value of uric acid stones is between 200- 400, and calcium oxalate stones 

have a HU value in the range of approximately 600-1,200 (Brisbane et al., 2016).  

It is important to distinguish between kidney stone types structurally. For example, through 

to Ct imaging, uric acid-based stones and non-uric acid-based stones can be distinguished 
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and disease management can be made more accurate. The researchers showed that with their 

HU values, they could easily distinguish uric acid stones from other stones. It is very 

important to know the stone density for the treatment of shock wave lithotripsy (SWL). The 

HU density of the stones enabled SWL to be successful (Eisner et al., 2011). 

CT can image two-dimensional stone area and three-dimensional stone volume. If these 

images are evaluated correctly, the success rate of extracorporeal SWL used in the treatment 

of kidney stones increases. Determining the volume of the stone is important for complex 

stone compositions. For example, the either staghorn stone has a complex structure and the 

volume of the stone must be known in order to determine the stone load correctly (McCarthy 

et al., 2016). CT attenuation values are used to evaluate whether SWL therapy is effective 

or not. If the attenuation increases, the number of shocks required increases and the success 

rate decreases. Also, voxel on a stone can decrease the HU values. This may cause a stone 

to be less dense and cause a misinterpretation of SWL. This problem can be solved by using 

dual energy CT. The dual-energy CT method displays at two voltages and allows comparison 

of data from two detectors. In this method, different energies can be used according to the 

target area. It is useful for tissue assessment and also enables a more accurate assessment of 

stone compositions (Brisbane et al., 2016). 

CT is an ideal method for imaging kidney stones and its use is increasing for this. However, 

the use of ionizing radiation is a concern for young patients, pregnant women, recurrent 

kidney stones and patients vulnerable to radiation (Ibrahim et al., 2016). In such special 

cases, radiation exposure poses a serious problem. Researchers have been working on 

reducing the radiation dose used in CT. Low-dose CT has also been found to exhibit 

comparable sensitivity and specificity (Mayans, 2019). 

By reducing the tube current to the radiation source, radiation exposure can be reduced for 

low-dose CT. 100 Ma tube current is used in often used CT without contrast. In low-dose 

CT for radiation reduction efforts, this value may decrease up to about 30 Ma and below. 

With lowering the radiation dose, image accuracy and quality may decrease. Low-dose CT 

can be used to scanners stones in the kidneys but, the ability to imaging kidney stones smaller 

than 3 mm becomes difficult. Generally, in different patients, CT settings can be changed 

according to the patient's body structure and the area to be imaged. In order to make the most 
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appropriate imaging settings in CT, attention is paid to the patient's age, BMI, and the grade 

of the suspicious stone. Image data that can be accessed by standard CT can also be accessed 

using low-dose CT. In scanning for kidney stones, it was seen that both could provide the 

accurate stone location, size, attenuation data, and stone composition (Brisbane et al., 2016). 

The cost factor is a significant disadvantage to CT. The same is true for low-dose CT. CT 

cost may be reduced or increased compared to other radiology imaging techniques. Cost is 

a disadvantage that distinguishes CT from ultrasonography. However, it is a very important 

factor in radiation exposure (Brisbane et al., 2016). 

There have been useful studies on CT used in urological diseases. Multiple Detector CT 

(MDCT) and Dual Energy CT (DECT) technologies have been developed by expanding the 

scope of CT (Andrabi et al., 2015). 

 

 Dual energy computed tomography (DECT) 

With the technological development of CT, which has an important role in the imaging of 

kidney stone disease, DECT is also widely used (McCarthy et al., 2016). Data for imaging 

the kidneys using DECT is obtained by scanning at two different energies. The structural 

composition of the scanned object is evaluated by the attenuation data. Can create object-

specific images (Ibrahim et al., 2016). 

DECT can create a virtual image of the kidney without using contrast. Through the virtual 

image created, the types of kidney stones can be distinguished. Each kidney stone type has 

different compositions and attenuation coefficients (Mayans, 2019). The attenuation data 

from the two energy sets are calculated with a mathematical formula. The software is then 

used to generate the color-coded map. Figure 2.5 shows kidney stones imaged using DECT 

(McCarthy et al., 2016). 
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Figure 3.5: (A) Axial Kidney Image, (B) Color-Coded Map Used Image 

 

 Multi-detector computed tomography (MDCT) 

MDCT was introduced in 1998. MDCT can be used to scanners urological stones. Makes 

three-dimensional reconstructions of urinary stones and makes multi-planar reformations. In 

this way, it provides the opportunity to evaluate the position and size of the stones. MDCT 

makes the volumetric analysis of stones and contributes to the treatment phase by evaluating 

the attenuation of the stone composition of HU. MDCT has also been shown to improve pre-

treatment characterization for the composition of stones. MDCT is being used more than 

DECT (Andrabi et al., 2015). 

 

3.3.2 Ultrasonography (USG) 

Ultrasonography can perform imaging quickly and at a low cost. Provides 2D images of 

organs and tissues. It performs imaging by non-invasive method and using high-frequency 

sound waves (Kaur and Juneja, 2018).  

An ultrasound is usually used to imaging kidney stones (Rao, 2004). High-frequency waves 

used in USG cannot pass through kidney stones. Therefore, USG waves reflect strongly and 
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glare appears in the image. The imaged stones cast shadows. Soft tissues cannot transmit 

high-mind waves like stones and cannot reflect strongly (Brisbane et al., 2016). 

It is possible to imaging the anatomical structures and abnormal conditions in the kidneys 

with USG. Pathogenic conditions can be evaluated with USG images. It is easy to detect 

large kidney stones that cause acoustic shadowing on USG. However, it becomes difficult 

to detect stones smaller than 5 mm in US imaging. Figure 2.6 shows an ultrasound image of 

a patient kidney with a history of nephrolithiasis (McCarthy et al., 2016). 

 

 

Figure 3.6: A stone was identified with the sagital view of the left kidney 

 

There is no harm in repeating the patient imaging with ultrasound because it does not contain 

radiation and there are no other side effects. Stones in the kidney are imaged quickly and at 

a low cost. Radiolucent stones can be detected by USG. Since it is good at finding stones in 

ESWL treatment, imaging can be performed during treatment (Rao, 2004). 

There are more USG devices than CT scanners in the world (Mayans, 2019). Although USG 

provides imaging for the diagnosis of kidney stones, it is also the optimal imaging option for 

patients with special conditions. For example, it is very beneficial for the urologist to use 

USG in pregnant women, young patients, and people with sensitivity to ionizing radiation 

(McCarthy et al., 2016). 

USG has such advantages but has some limitations as well. USG is used to track the 

treatment of existing stones in a patient's kidney. Among the limitations of USG, there is the 

difficulty of detecting small stones. It is also difficult to imaging obese patients. Compared 
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to radiography, ultrasound has less sensitivity in imaging kidney stones (Pahira and Pevzner, 

2007). Ultrasound resolution may not be sufficient when imaging small stones. The 

dimensions of the reflected beam can look like small stones and cause misunderstanding of 

the stone dimensions. Therefore, the urologist should be careful while evaluating the images 

obtained with ultrasound (Brisbane et al., 2016).   

 

3.3.3 Kidney ureter bladder radiography (KUB) 

KUB is a radiographic method of imaging in a single plane. In this method, a single source 

of light is required to produce photons. The produced photon passes through the tissue 

oriented anterior to posterior and encounters the contralateral receiver (Brisbane et al., 2016). 

KUB plain film radiography has easy use. The rate of exposure to radiation is low. Its utility 

in detecting radiolucent stones is limited, but imaging of medium-sized radio-opaque stones 

is successful. However, as the stone decreases in size and stone-like structures such as 

shadows of calcified mesenpheric nodes, it is difficult to distinguish (Rao, 2004). 

The KUB method can image the target organ or tissue from a single angle. Since it is imaging 

the kidneys from a single angle, the values of specificity, sensitivity and accuracy decrease 

and therefore its benefit of this method is also reduced. Kidney stones can be imaged using 

this radiography method, but not all. For example, it does not have the ability to visualize 

martix and uric acid stones but, struvite and cystine stones can be imaging at a low degree. 

The KUB method is considered to have a specificity of 76% and a sensitivity of 57% 

(Brisbane et al., 2016). The KUB method is not as sensitive as other imaging methods, but 

it can provide valuable information for ureteroscopy, shock wave lithotripsy and 

percutaneous nephrolithotomy, which are kidney stone treatment methods (Eisner et al., 

2011).  

KUB method, like other imaging methods, has benefits and limitations. KUB limitations 

include the inability to view stones smaller than 2 mm and non-opaque stones. In addition, 

it is difficult to distinguish a supine scanned kidney from extrarenal calcification. The 

advantages of this method include its speed, low cost, and easily imaging (Pahira and 

Pevzner, 2007). Another advantage is that it contains a low dose of radiation. But, the 
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physical body structure and intestinal gas of the person who will be screened with this 

method are factors that can limit the success of imaging (Dhar and Denstedt, 2009). 

 

3.3.4 Magnetic resonance imaging (MRI) 

MRI is performed according to the principle of aligning the protons of the patient to be 

imaged to the magnetic field axis using a magnetic field (Brisbane et al., 2016). Radiation is 

not used in MRI. Imaging of kidney stones can be performed with this method. But, kidney 

stones may be indistinguishable from other tissues and may be confused with artifacts. 

Because the echo times (TEs) used for imaging are not short and the magnetic resonance 

signals from the stones decrease very quickly (Ibrahim et al., 2016). 

The MRI method cannot create a direct visual of kidney stones, it relies on cavities and 

calcifications. It is not preferred for most cases because the imaging time is long and the cost 

is high. However, since it does not contain radiation, it is used as an alternative option in 

pregnant patients who cannot obtain successful imaging with ultrasound (Mayans, 2019). 

When CT and MRI method are compared, it is seen that MRI is three times more costly than 

CT. It also has less accuracy and longer imaging time. The magnetic resonance imaging 

method appears to have a low success rate compared to computed tomography, for imaging 

kidney stones. With develops in technology, there is a need for ultra-short echo time 

sequences of MRI. Because to measure stone size more accurately, must increase sensitivity 

and specificity values (Brisbane et al., 2016; Rao, 2004). 

 

3.3.5 Intravenous urography (IVU) 

Serial radiographs are obtained with an intravenous urogram. It is based on the method of 

imaging the renal tract by injecting iodine-containing contrast material into the body of the 

patient to be imaged with IVU (Kaur and Juneja, 2018). In order to perform imaging, the 

KUB is first made and then iodinated contrast material is injected intravenously. Then, 

sequential images of the kidneys are created within 30 to 60 seconds. The shape and size of 

the kidneys are evaluated with the nephrogram. In order to view the anatomical structure of 

the calyces, the pelvis can be imaged within 5 to 10 minutes (Clarkson et al., 2010).  
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Historically, intravenous urogram was the visualization method chosen as the optimal 

standard for treatment planning for urinary system stones. In this method, radio-opaque 

contrast material is used and this contrast material is sent to the collecting system of the 

kidney and thrown into glomerular filtration. In this way, the anatomical structures of the 

renal pelvis, ureters, and calyces are successfully imaging (Dhar and Denstedt, 2009). 

Nowadays, it is said that the IVU method is no longer used to view kidney stones. Because 

non-ionic contrast agent injection is done and this can cause an allergic reaction in patients. 

In addition, serious problems may occur if metformin is given while using this method for 

patients with metabolic disorders. It contains high radiation. It has a long imaging time and 

gives poor anatomical data about the imaging area (Rao, 2004). 

The IVU method allows the visualization of obstructions in the kidney ducts. However, since 

contrast material is used, the use of this method in allergic patients is inconvenient. At the 

same time, it is inconvenient to use in pregnant women and young patients. Because it 

contains more radiation dose than plain radiographs (Kaur and Juneja, 2018). As long as a 

sufficient degree of imaging is obtained, ultrasound or plain radiography methods of the 

abdomen can be used for imaging. Because during the treatment of diseases, harmful 

radiation is avoided (McCarthy et al., 2016).  

If CT, MRI, USG, and KUB methods, which are the methods used to image kidney stones, 

are improved with technological developments, the possibility of correct imaging of kidney 

stones may increase (Brisbane et al., 2016). In conjunction with these imaging methods, 

improvements can be made for imaging if DL is used. Convolutional neural networks are 

used for image processing, image classification, and image segmentation because CNN’s 

perform well for them. CNN's also perform image segmentation in complex structures such 

as kidneys. Thus, it can extract nonlinear features from complex images (Cui et al., 2020).  
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CHAPTER 4 

CNN’S APPLICATION IN KIDNEY STONE ANALYSIS 

 

This section provides detailed technical background on deep learning algorithms. CNN, 

which is the main deep learning method, and 5 different CNN architectures chosen to apply 

to CT data in which kidney stones are imaged were introduced in technical details. Finally, 

this section presents the application of selected 5 CNN architectures to CT images of the 

acquired kidney stones. 

 

4.1 Deep Learning 

Deep learning (DL) is a new development with some improvements. Deep learning is a 

method for improving the performance of Machine Learning (ML) tasks (Erickson et al., 

2018). Deep learning is an improved type of artificial neural network (ANN) that is part of 

ML. ANN was introduced in 1950, however, it has some limitations. These are problems 

that hinder the training of gradient and deep architecture and cause deficiencies such as 

computing power. Also, there are serious limitations such as overfitting issues to solve real 

dilemmas. Many new developments have been made to resolve these limitations. These are 

new algorithms for training graphics processing units (GPUs) and deep neural networks 

(DNN) to use big data (Lee et al., 2017).  

The task of the first layer of DNN networks, which consists of many layers, is to make 

predictions for observed values. The first layers where these predictions are made are named 

the input layers. The layer where a value is produced or a class is estimated is called the 

output layer. There are also hidden layers in the architecture.  These are located between the 

first layer, the input layer, and the last layer, the output layer. Thanks to the layered structure, 

it enables neural networks to make decisions for more complex structures with combinations. 

Figure 4.1 shows a representation of deep learning neural networks and artificial neural 

networks (Lee et al., 2017). 

 

https://www-sciencedirect-com.ezproxy.neu.edu.tr/science/article/pii/S1546144017316721
https://www-sciencedirect-com.ezproxy.neu.edu.tr/science/article/pii/S1546144017316721
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447633/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447633/
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Figure 4.1: (A) Deep Learning Neural Network, (B) Artificial Neural Network 

 

DNN consists of deeper layers than ANN. Therefore, it has a more complex layer structure. 

Through to the complex layers, DNN's ability to predict and recognize is further improved 

(Lee et al., 2017). 

The work of Krizhevsky and colleagues make a crucial contribution to the transformation of 

machine learning into deep learning. With the deep learning model called AlexNet in 

Imagenet 2012, the researchers found a classification error of 15.2% by classifying 1.2 

million high-resolution images in 1000 different classes. The first deep learning model in 

ImageNet is AlexNet, a five-layer convolutional neural network. The error value, which was 

15.2% when it was first introduced, was then reduced to 2.25 (Saba et al., 2019).  

Multi-layer computing models are used in DL compared to machine learning. For example, 

in the segmentation of organs or disease classification, high-level representation of complex 

data is learned by means of the multi-layered structure. In DL, features are automatically 

learned over the noisy and raw data of the algorithms compared to ANN. However, 

radiological feature extraction and pre-processing are required in ANN. Therefore, DL has 

superior education and learning ability compared to ANN. DL gains this capability by using 

its nonlinearity and dimensionality reduction features (Saba et al., 2019).   

By means of the developments in deep learning methodologies, the speed of information 

processing has also improved significantly. The advancement of computing speed has come 

with the availability of GPUs in DL calculations. DL algorithms using the GPU run much 

faster compared to central processing units (CPUs). Because GPUs have the ability to do 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447633/
https://www-sciencedirect-com.ezproxy.neu.edu.tr/science/article/pii/S0720048X19300919
https://www-sciencedirect-com.ezproxy.neu.edu.tr/science/article/pii/S0720048X19300919
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many calculations and thousands of processing units at the same time. DL algorithms using 

GPUs work much faster than CPUs. Also, an important factor for DL is the rapid increase 

of GPU card memory (Erickson et al., 2018). Computing time for complex transactions is 

shortened with DNN training. This was made possible by the development of the GPUs 

information processing unit. In this way, large amounts of unclassified data are analyzed by 

DL and then the model is trained to predict accurately, then produces meaningful and 

powerful results (Lee et al., 2017). 

 

4.2 Convolutional Neural Network 

Among deep learning methodologies, convolutional neural networks (CNNs) have a very 

important place for image analysis (Altaf et al., 2019). There are many deep neural network 

models. However, CNNs are the most used. There are mathematical linear operations 

between matrices called convolution, and this is where the CNN is named (Albawi et al., 

2017). The connection structure of neurons in the visual cortex of animals has been a source 

of inspiration for CNN, when successfully trained, can generate hierarchical information. It 

can generate hierarchical information during classification, for example, when preprocessing 

such as edge, shape determination and object structure determination (Lee et al., 2017). 

Computer vision area is an upper domain of CNNs. CNNs have been used in this area for 

many years. However, after the ImageNet Large-Scale Visual Recognition Challenge 

(ILSVRC), CNNs great success became increasingly understood. Its success is due to the 

efficient use of GPUs in this model, its effective data enhancement feature, its ability to 

provide corrected linear units, and the new dropout arrangement. CNN has become a 

successful model thanks to its deep architecture. Because, with its deep architecture, it has 

the ability to extract distinctive features at multiple levels of abstraction (Taibakhsh et al., 

2016).  

CNN has different layers in its architecture. These layers contain weights, and the image can 

be classified using these weights and features learned by bias (Roy and Islam 2020). CNN 

uses minimal processing capability to recognize visual patterns from pixels through its 

multilayer neural network. CNN can amalgamate the low-level layers with the properties of 

https://www-sciencedirect-com.ezproxy.neu.edu.tr/science/article/pii/S1546144017316721
https://ieeexplore.ieee.org/abstract/document/8764525
https://ieeexplore-ieee-org.ezproxy.neu.edu.tr/document/8308186
https://ieeexplore-ieee-org.ezproxy.neu.edu.tr/document/8308186
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447633/
https://ieeexplore.ieee.org/abstract/document/7426826?casa_token=1rCQXYD4xVYAAAAA:YSFWTKFa_qdV-q8IKGe6YGHc8hzbrv0jVRGL6NvvGELsTdGfGvD7QwQ5Jk6R69tQU327MiIoikIZ
https://ieeexplore.ieee.org/abstract/document/7426826?casa_token=1rCQXYD4xVYAAAAA:YSFWTKFa_qdV-q8IKGe6YGHc8hzbrv0jVRGL6NvvGELsTdGfGvD7QwQ5Jk6R69tQU327MiIoikIZ
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the high-level layers that come after it. For example, they can amalgamate low features like 

lines and edges with higher properties like shapes (Monshi et al., 2020). 

A typical CNN; it is a mathematical structure consisting of three layers: convolution, pooling 

and fully connected layer. The feature extraction task belongs to the convolution and pooling 

layers. The process of classifying the extracted features takes place in a fully connected layer 

(Yamashita et al., 2018). CNNs must have the input layer format suitable for the input data. 

It should also have the identical output layer form as the teaching data. When doing multiple 

classifications, units in the output layer of the network used must be equal to the number of 

categories of teaching data. The layers between the input layer and the output layer are called 

hidden layers (Yasaka et al., 2018).  

There are stages for the training process to take place in CNN. First, layer-by-layer 

operations are carry out after input data is received by the network. After these operations, 

it gives a final output to compare the correct result. There is a difference between the 

produced result and the desired result, and the error is equal to this difference value. This 

error has to be transferred to all weights in the layers. A back propagation algorithm is used 

for this transfer process. Weights are updated through iterations to reduce error (Özkan and 

Ülker 2017).  

A typical CNN architecture has several convolution and repetitive pooling and one or more 

fully connected layers. Figure 4.2 shows the representative CNN architecture  (Yamashita et 

al., 2018).    

 

 

Figure 4.2: Architecture of CNN 

 

https://link.springer.com/article/10.1007/s13244-018-0639-9
https://link.springer.com/article/10.1007/s11604-018-0726-3
https://link.springer.com/article/10.1007/s11604-018-0726-3
https://dergipark.org.tr/en/download/article-file/380999
https://dergipark.org.tr/en/download/article-file/380999
https://link.springer.com/article/10.1007/s13244-018-0639-9
https://link.springer.com/article/10.1007/s13244-018-0639-9
https://link.springer.com/article/10.1007/s13244-018-0639-9
https://link.springer.com/article/10.1007/s13244-018-0639-9
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There are very few connections between CNN layers. In this way, it can preserve the spatial 

relationship of the data. The first layers are created with an architecture such as a grid shape. 

The input layers are then fed from the layers that control these relationships. Layers process 

in CNN runs on part of the previous layer. Figure 4.3 shows the structure of a typical CNN 

(Lundervold and Lundervold 2019).    

 

 

Figure 4.3: Structure of a typical CNN 

 

 Convolutional Layer 

Convolutional layers have some functions. Among these are detecting certain properties of 

the input data at all locations. In order to detect this data, the nodes of the convolutional 

layers must be connecting to a subset of their spatial neurons in the input layers. The task of 

the convolutional layers is to identify certain properties. For this, the connection weights are 

shared between the nodes of the input layers. This set of weights is named a core or 

convolutional core (Taibakhsh et al., 2016).  

Convolutional layers aim to detect lines, distinctive edges, and other visual elements. To 

learn the values of the input layers, which are special filter tools, some processing is required.  

The purpose of this mathematical operation is to explain to multiply a pixel's local neighbor’s 

kernels. This process learns the meaningful kernels and mimics features such as edges and 

colours to those introduced for the visual cortex. It may be preferable to use filter banks for 

these operations. Each of the filters is a square object, and they are moved on image. The 

image values obtained in this way are collected with filters. Multiple filters are applied on 

https://www.sciencedirect.com/science/article/pii/S0939388918301181
https://www.sciencedirect.com/science/article/pii/S0939388918301181
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convolutional layers, resulting in multiple feature maps (Lee et al., 2017). Convolutional 

filters or kernels perform the convolution process on the image. One of the purposes of 

convolution layers is to learn the weights of these convolutional filters or kernels. In the past, 

such filters were used in traditional image analysis methods to highlight and feature different 

images. For example, the Sobel filter used to detect edges in images. Before CNN methods, 

the weight of the beans had to be adjusted manually with filters. With the developments in 

CNN, these settings have been learned automatically (Altaf et al., 2019). 

For convolution processes, weight sharing creates some properties. First, the kernels move 

to all positions of the image and detect learned features, and then feature extraction is 

allowed to change feature patterns. The second feature of weight sharing is; by learning the 

hierarchies of feature models together with a pooling process, a wider field of vision is 

created. Finally, the number of parameters is reduced to increase model efficiency through 

Weight sharing (Yamashita et al., 2018). The operations performed in convolution layers are 

important for CNNs. Convolution processes are successful in classification, segmentation, 

and image processing tasks. Figure 4.4 represents a convolution process (Lee et al., 2017). 

 

 

Figure 4.4: Convolution Process 

 

 Rectified Linear Units Layer (ReLu) 

By virtue of the nonlinear activation functions, feature maps created in the Convolution layer 

are fed. With this feed, the nearly entire neural network is approximated to the nonlinear 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447633/
https://ieeexplore.ieee.org/abstract/document/8764525
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447633/
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function. Usually rectified linear units are used for activation functions. ReLu is defined as 

follows; ReLu (z) = max (0, z) (Lundervold and Lundervold 2019).  

Rectified linear units with simpler activation functionality work better for deep learning than 

sigmoidal functions (Erickson et al., 2018). Sigmoid and tanh nonlinear states were 

popularly used for many years. However, recently ReLu has been used more frequently. 

Because, ReLu's both gradient definition and function definition are simpler. 

 𝑅𝑒𝐿𝑢(𝑥) = 𝑚𝑎𝑥(0, 𝑥)                                (4.1) 

 𝑑

𝑑𝑥
(𝑥) = {1 𝑖𝑓𝑥 > 0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}                                (4.2) 

 

The gradient signal starts to disappear as the network deepens, and this is called the nonbolan 

gradient. The reason for the disappearing gradient is because the gradient of these functions 

is close to zero in most places. ReLu has a steady trend. Finally, sigmoid and tanh mostly 

have non-zero gradient values. This situation may not be suitable for education. A less 

frequent representation of ReLu is created. Because the zero in the gradient ensures an exact 

zero (Albawi et al., 2017). 

 

 Pooling Layer 

Data is fed by many convolution layers. A feature map is created with the feed. It is then 

pooled in the pool layer between the convolution layers. Pooling uses grid regions as input 

and produces single numbers for those regions. This is then calculated with the average or 

maximum pooling function. Due to the shift in the data in the convolution layer, differences 

in the activation maps may occur and translation invariance occurs in the pooling layer. 

(Lundervold and Lundervold 2019). 

The function known as maximum pooling is a pooling function. This maximum pooling 

function takes the known maximum input value of the convolutional layer. In this way, the 

maximum pool layer reduces the memory and resolution requirements for the image by 

making the best estimate for the sampled region (Erickson et al., 2018). Figure 4.5 represents 

a maximum pooling process (Doğan and Türkoğlu, 2019). 

https://www-sciencedirect-com.ezproxy.neu.edu.tr/science/article/pii/S1546144017316721
https://ieeexplore-ieee-org.ezproxy.neu.edu.tr/document/8308186
https://www-sciencedirect-com.ezproxy.neu.edu.tr/science/article/pii/S1546144017316721
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Figure 4.5: Maximum Pooling Process 

 

 Fully-Connected Layer 

In the CNN structure, after the successive convolution, ReLu and pooling layer comes the 

fully connected layer. The fully connected layer is bound to all areas of the layers that 

precede it. Different network structures can have a different number of layers. (Özkan and 

Ülker 2017).  

In CNNs, the dimensions of the activation maps is gradually reduced. This reduction 

function is performed using convolutional and pooling layers. Next, the activation maps 

from the deeper layer are rearranged in fully connected layers (Altaf et al., 2019). In the 

CNN structure, the properties are learned in the layers located before the fully connected 

layer. Then these features combined in this final layer, the fully connected layer, to decide 

(Erickson et al., 2018). Figure 4.6 shows a representation of the fully connected layer (Doğan 

and Türkoğlu, 2019).  

 

Figure 4.6: Fully Connected Layer 

 

https://dergipark.org.tr/en/download/article-file/380999
https://dergipark.org.tr/en/download/article-file/380999
https://ieeexplore.ieee.org/abstract/document/8764525
https://www-sciencedirect-com.ezproxy.neu.edu.tr/science/article/pii/S1546144017316721
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 Dropout Layer 

Since the training process on CNN is done with big data, the network can sometimes 

memorize. The dropout layer can be used to prevent this memorization. The basic logic of 

this layer is to eliminate some knots (Özkan and Ülker 2017). Eliminating knots prevent 

units from adapting too much. This layer is known to be successful in preventing the over-

sitting problem. Figure 4.7 shows a dropout function scheme  (Yasaka et al., 2018).                

 

 

Figure 4.7: Dropout Function 

 

 AlexNet 

Deep learning has made a great impact with its success in the world of science in 2012. CNN 

won the contest with great success in ImageNet, an ILSVRC in 2012. As the core 

architecture of deep learning. CNN has led to the rise of deep learning, by virtue of its 

winning the competition. In the competition, the error rate of 26.1% has shown its success 

by reducing it to 15.3% error rate with CNN. The AlexNet model, designed with a deep 

learning architecture, won the ImageNet competition in 2012 (Özkan and Ülker 2017).  

Compared to machine learning and computer vision methods, AlexNet is an architecture that 

achieves high accuracy in terms of visual recognition. Deep learning has achieved a rapid 

rise in history through its classification and visual recognition ability with AlexNet (Alom 

et al., 2018). AlexNet has a complex and large dataset with 1000 classes and more than 1.2 

million images. This dataset is called the ImageNet dataset. These are important criteria for 

computer vision techniques. The network architecture of this model includes the convolution 

https://dergipark.org.tr/en/download/article-file/380999
https://link.springer.com/article/10.1007/s11604-018-0726-3
https://link.springer.com/article/10.1007/s11604-018-0726-3
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layer, pooling layer, and fully connected layers. It also includes DropOut and ReLu layers, 

which are network components of CNNs (Dourado et al., 2019). 

AlexNet, designed by Krizhevsky, et al., is an eight-layer CNN model. (Krizhevsky et al., 

2012). The purpose of an Alexnet structure is to classify 1000 class tags. In the first AlexNet 

architecture, the filter of the first layer, the convolutional layer, is fed with the input image 

(224x224x3) with 96 kernels of size (11x11x3) and a stride of 4 pixels. In the AlexNet 

architecture, which consists of many layers, the data from the first layer is normalized and 

fed into the second convolutional layer after pooling. The convolutional layer after the 

pooling layer uses 256 kernels (5x5x48) in size. Other convolutional layers in the 

architecture are interconnected. The third layer connects to the processed outputs of the 

second layer. This is 384 kernel sizes (3x3x256). The dimensions of the fourth and fifth 

convolutional layers, respectively; it has 384 core sizes (3x3x192) and 256 core sizes 

(3x3x192). The last layer, the fully connected layer, has 4096 neurons. AlexNet architecture 

has 650,000 neurons and 60,000,000 parameters. This network has 5 convolutional layers 

and a thousand-way softmax. After these layers, it has 3 fully connected layers. Maximum 

pooling layers can be found after some convolutional layers. AlexNet CNN architecture for 

image classification is successful compared to other methods (Krizhevsky et al., 2012). The 

AlexNet architecture has 8 layers with multiple and different functions. Of these 8 layers, 5 

are convolutional layers. It is called conv1 to con5. 3 layers are fully-connected layers. These 

are called fc6, fc7, and fc8 (Mesrabadi and Faez 2018). The figure 4.9 represents the layer 

structures of the AlexNet architecture, which uses filters of size 11x11 and the number of 

step shifts is 4 (Özkan and Ülker 2017).   

 

 

Figure 4.8: Structures of the AlexNet 

https://dergipark.org.tr/en/download/article-file/380999


36 

 

 

Convolution layers in the AlexNet architecture can also be called feature extraction layers 

because of their function. There may be a pooling layer between two convolutional layers. 

This pooling layer reduces dimensionality, minimizing computational complexity. 

Maximum pooling and average pooling can be used in common pooling schemes. The 

maximum pooling layer calculates the largest value of the filtered image and can discard the 

noise data in the filtering window. AlexNet's first and second convolutional layers use 11x11 

and 5x5 size filters. Filters in these layers are used for feature extraction. The other remaining 

convolutional layers use a 3x3 filter. Different filter sizes are used for different inputs. Fully 

connected layers perform of learning classification functions by taking the attribute vectors 

(Yuan et al., 2020). AlexNet, which has the ability to be trained with approximately one 

million images, has a high success in image classification (Toğaçar and Ergen 2018). Block 

diagram of the AlexNet model architecture is as depicted in Figure 4.9 (Beeharry and Bassoo 

2020). 

 

 

Figure 4.9: AlexNet Architecture 

 

AlexNet uses some strategies to develop learning skill. It can do this by increasing network 

depth and using multi-parameter optimization methods. It was necessary to solve the 

problem of deep networks, their being trapped in gradient loss. AlexNet designers used 

activation functions to solve this problem. They used the ReLu function as the activation 

function (Lu et al., 2021). AlexNet's success has increased because it used the ReLu 

nonlinear layer and also used the dropout regularization technique. ReLu can speed up the 

https://www.sciencedirect.com/science/article/abs/pii/S0957417420310836
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training phase of the network and prevent over-fitting (Han et al., 2017).  The definition of 

ReLu is shown in equation 4.1. 

Also, with the dropout layer that comes after full connections, overfitting can be prevented 

and adaptation between neurons can be reduced and robustness can be improved. (Lu et al., 

2021). It is necessary to reduce the adaptation of neurons among themselves. For this, 

dropout layer is used after fully connected layers in AlexNet architecture. Dropout tries to 

set the input neurons or latent neurons to zero to reduce adaptations (Han et al., 2017). In the 

convolution layer, the complexity of the network can be reduced by the method of sharing 

parameters. Also, it can automatically learn, features from educational images. Equation 4.3 

shows the definition of the convolution.  

 𝐶(𝑚, 𝑛) = (𝑀 ∗ 𝑤)(𝑚, 𝑛) = ∑ ∑ 𝑀(𝑚 − 𝑘, 𝑛 − 𝑙)𝑤(𝑘, 𝑙)
𝑙

𝑤(𝑘, 𝑙)
𝑘

        (4.3) 

Where (m, n) is the size of image 𝑀 and (k, l) is the size of the convolution kernel w. 

 

The pooling layer generally performs the feature reduction function. For the representation 

of pixels in the feature map created in the convolution layer, the pooling layer generates a 

value. Thus, feature maps are normalized before being fed to the next layer of the network. 

The direct connection of neurons with each other takes place in a fully connected layer. 

Neurons in the (0,1) range are activated using the softmax activation function. 

Representation of softmax activation function is given in equation 4.4. 

 
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑋)𝑖 =

𝑒𝑥𝑝(𝑥𝑖)

∑ 𝑒𝑥𝑝(𝑥𝑗)𝑛
𝑗=1

        (4.4) 

 

Where 𝑒𝑥𝑝(𝑥𝑖) Defines the normal exponential function applied to each component 𝑥𝑖 of 

the input vector 𝑋, ∑ 𝑒𝑥𝑝(𝑥𝑗)𝑛
𝑗=1  is the standardization term, and n is the number of 

categories (Lu et al., 2021).  

There are impressive features of the AlexNet architecture that make CNN so effective. For 

example, AlexNet uses ReLu. The activation function, ReLu, is useful in calculation as it 

only makes one comparison. AlexNet also prefers maximum overlapping pooling in the 

network architecture. At maximum pooling, the step size of the filtering medium is smaller 
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compared to the size of the filter. Another feature is the use of dropout technique, which 

assigns zero to the output value in order to reduce the problem of overfitting (Yuan et al., 

2020). 

Each layer of the AlexNet architecture has filters that can reduce noise and improve features. 

The pooling layer that follows the convolution layer allows the number of features to be 

reduced and can only extract essential features. Also, as an activation function; ReLu, which 

increases the probability of gradient disappearance compared to functions such as sigmoid, 

tanh, arctan, is used in AlexNet. It has been found that AlexNet has faster processing 

capability compared to other deep architectures. Compared to other deep architectures that 

require special hardware, AlexNet works well, with GPU and hardware limitations (Hosny 

et al., 2020).  

 

 ResNet-101 

The success and superiority of deep network architectures has been reported, in many studies 

in recent years. The researchers were inspired by ImageNet's deepest architecture and design 

the Residual Network (ResNet-101) (Iqbal et al., 2021). Residual Network is named ResNet-

101 for short. Deep convolution networks are known to be successful for image classification 

processes. Generally, convolutional neural networks are tried to be deepened to increase the 

accuracy of classification processes. However, as deepening increases, training of the neural 

network can become difficult as the gradient will disappear with back propagation. Residual 

learning focuses on solving such problems. It consists of stacked layers of a deep CNN. 

Trainings using the ResNet architecture are more effective than deep CNNs training. ResNet 

uses jump links so that gradients are not lost (Gupta et al., 2021) 

ResNet-101 architecture layers, a CNN model, are used for classification and feature 

extraction, reduction. These layers consist of the convolution layer, pooling layer and fully 

connected layers (Ali et al., 2021). ResNet, which means residual networks, has an important 

use in computer vision problems. By applying the chain rule, the gradients being zero 

problem can be solved with the ResNet network. This network uses orphaned connections 

to which gradients will be passed directly (Demir et al., 2019). ResNet is a different model 

due to the greater depth of the network compared to other models. In the ResNet network, 

https://www-sciencedirect-com.ezproxy.neu.edu.tr/science/article/abs/pii/S1568494620307973
https://www-sciencedirect-com.ezproxy.neu.edu.tr/science/article/abs/pii/S1568494620307973
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blocks feed the layers that come after them. The residual values of these blocks are added to 

the model. By means of this feature, ResNet is different from other models. The added value 

in the two layers between the Linear and ReLu layers changes the calculations in the network 

(Yıldırım and Dandıl 2020). 

The development of 50-layer ResNet is a residual network called 101-layer ResNet-101 

(Ghosal et al., 2019). The convolutional neural network, called ResNet-101, consists of 101 

deep layers and allows the data to be classified. The figure 4.10 shows a ResNet-101 

architecture (Tahir et al., 2021).  

 

 

Figure 4.10: ResNet-101 Architecture 

 

The ResNet model is utilized by setting the input images size to 224 × 224, a well-trained 

ResNet-101 network classifies new data collected from the input images (Ali et al., 2021; 

Zhao et al., 2021). In CNN architectures, some layers are often interconnected and trained 

to perform various operations. At the end of the operations performed on the layers, different 

features are learned by the network. In the ResNet architecture, the layers have a number of 

filters to be the same as the size of the feature map in the output. However, to maintain the 

complexity of time, the number of filters is doubled in each layer when the size of the feature 

map is halved. It folds these layers in two steps to directly execute subsampling. It ends with 

the last layer of the ResNet architecture, the average pool layer and the fully connected layer 

enabled by softmax. Residual learning can easily interpret the extraction of input properties 

from the fully connected layer. ResNet makes this interpretation using the shortcut 
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connections for every 33 pairs of filters. In order to prevent the gradients from disappearing, 

the activation functions in the preceding layer are reused to learn the weights in the current 

layer. Therefore, layers are bypassing. Weights are adjusted to strengthen the layer next to 

the current layer and mute the previous layer to train the network. This ResNet network is 

easier to train than to train other CNN networks. ResNet also solves the problem of accuracy 

drops (Ghosal et al., 2019). 

ResNet-101 network architecture has convolution layer, pooling layer, fully connected layer 

and softmax layer. A block diagram of the ResNet architecture is shown in the figure 4.11. 

As shown in this figure, the dimensions are increased by using shortcut connection, then the 

convolutional layer depth is increased to improve model performance. Increasing the 

network depth with a shortcut will result in a corruption problem. To solve the corruption 

problem, shortcut connections perform identity mapping. These shortcut connections do not 

cause calculation complexity or adding additional parameters. The ResNet-101 network can 

be trained end-to-end. This training can be trained using stochastic gradient descent (SGD) 

via back propagation (Zhao et al., 2021).   

 

 

Figure 4.11: Shortcut connections of ResNet-101 

 

ResNet-101, learns identity connections, incremental and residual representations. This 

learning creates a path for backpropagation. If the parameters of the f (x) part start at or near 

zero, the identity layers change from simple to complex. The training difficulty of deep 

networks caused by gradient loss is tried to be solved with residual blocks. The ResNet-101 
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architecture uses a 3x3 filters stride of two and a 3x3 maximum pooling layer with a stride 

of two (Zheng et al., 2021). 

In the ResNet-101 network, the same number of layers and the same number of filters are 

used, for the same output characteristics. Integration chain is used in ResNet-101 and 

residual connection is used after this application. Residual networks consist of selected units. 

Each unit can be represented as follows;  

 𝑦𝑖 = ℎ(𝑎𝑖) + 𝐹(𝑎𝑖, 𝑤𝑖)        (4.5) 

And 

 𝑎𝑖+1 = 𝐹(𝑦𝑖)        (4.6) 

 

Ai represents the input, 𝐹 (𝑎𝑖, 𝑊𝑖) residual function 𝑎(𝑖+1) depends on yi, so 𝑎(𝑖+1)  is the 

output. 

Residual network can be represented by the following formula; 𝐹 = 𝑊𝑖𝛿(𝑊𝑖𝑎)   

Linear projection (𝑊𝑚) is used to match the dimensions when the dimensions of ai and yi 

are not equal. Or 𝑊𝑚 is used to equalize the dimensions when the input and output channels 

are swapped. 

 𝑦𝑖 = 𝐹(𝑎𝑖, 𝑊𝑖) + 𝑊𝑚𝑎        (4.7) 

 

The residual function 𝐹(𝑎𝑖, 𝑊𝑖) represents multiconvolution layers. ResNet-101 can be 

written repeatedly. 

 

𝑥𝐼 = 𝑥𝑖 + ∑ −1 𝐹(𝑎𝑖, 𝑊𝑖)

𝑖

𝑛=𝑖

        (4.8) 

 

(Iqbal et al., 2021) 

ResNet-101 has some advantages thanks to its deeper structure compared to other models. 

ResNet-101 has better feature extraction ability from image data. ResNet offers to skip the 
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connection. Because it allows moving the entry from the previous layer to the next layer 

without changing the input (Taş and Yılmaz, 2021).  

 

 Inception-V3 

Since 2015, the Google research team and Szegedy et al. have studied complex networks 

and have introduced many versions of complex networks called the Inception module. The 

Inception module is focused on increasing the depth and width of the network. In doing so, 

while improving the classification performance of very deep convolutional networks, it’s 

maintaining the computational resources of networks at the same layer (Al-Masni et al., 

2020). 

In 2015, a 48-layers Inception-V3 model was proposed, which is an improved form of the 

GoogleNet design (Mednikov et al., 2018). Inception-V3 has been trained with multiple 

images from the ImageNet data source. It is an advanced CNN model, also called GoogleNet 

(Khamparia et al., 2020). Inception-V3 is a well-known image recognition model that is 48 

layers deep and has been generally used to achieve great exactness on the results of ImageNet 

dataset. The Inception-V3 model is utilized by setting the input images size to 299*299. The 

Inception-V3 network has been trained with over one million images on ImageNet. This 

trained network can categorize images into a thousand objects (Vidyarthi et al., 2020). A 22-

layer network was first introduced in 2015 with the name GoogleNet or Inception-V1. 

Inception-V3 is the deep network architecture that is the third upgrade of the Inception-V1 

model introduced. Inception-V1 was first upgraded to Inception-V2 by batch normalization. 

Later, it was promoted to Inception-V3 with additional factorization (Vidyarthi et al., 2021). 

Inception-V3 network architecture is represented in Figure 4.12 (Dong et al., 2020).  
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Figure 4.12: Inception-V3 Network Architecture 

 

The Inception-V3 model is a CNN model that extends the architecture by combining 

factorization ideas to reduce the number of parameters and connections without reducing the 

efficiency of the network (Boussaad and Boucetta, 2020). The model carries out convolution 

factorization what separates two-dimensional convolutional kernels to one-dimensional 

kernels. The model is based on symmetric and asymmetric blocks, including convolutions, 

average pooling, max pooling, concats, dropouts, and fully connected layers (Vidyarthi et 

al., 2020). Figure 4.13 represents a block diagram of the Inception-V3 module, which 

incorporates convolution layer, pooling layer, and on the last layer is Softmax classifier 

which can be adjustable dependent on the disposition of the classification problem (Nguyen 

et al., 2018).  

 

 

Figure 4.13: An architecture of the Inception-V3 module 
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Layers have been created to maximize the flow of information to the Inception-V3 network. 

This architecture creating layers by carefully constructing networks, balance depth and width 

of the network (Radhika et al., 2020). Inception-V3 is focused on reducing the parameter 

set. It can do this by separating large convolution layers into smaller convolution layers 

(Sundar et al., 2018). Inception-V3 architecture has one helper classifier and this auxiliary 

classifier acts as a regulator (Alzubaidi et al., 2021).  

Compared to the Inception V1 and V2 models, the Inception-V3 model uses the convolution 

kernel division method. This method breaks large volume integrals into small convolutions. 

With this division method, it is aimed to reduce the number of parameters. In this way, the 

spatial feature can be extracted more effectively and the training speed can be accelerated 

(Dong et al., 2020). Inception-V3 architecture is a deep CNN and has been intended to 

perform computational estimations effectively utilizing 12 times fewer parameters than 

different models. In this way, this architecture is allowed to be applied to less powerful 

systems (Quiñonez et al., 2019). Inception-V3 has a few upgrades like factorized 

convolutions, assistant classifiers, and effective grid size-decrease to reduce the complete 

number of parameters and computational complexity (Ayan et al., 2020).  

The benefit of Inception-V3 is to increase the compute capacity of the network, to increase 

the depth of the network and to increase the nonlinear of the network (Li et al., 2018). The 

Inception-V3 networks has the capacity to recognize wider scope of images instead of go 

deeper into networks. Its capacity to include various small convolutions with restricted 

parameters types and size as opposed to bigger filter size convolutions, lastly concatenate 

them make it unique in relation to others. Through usage of such a network, various filters 

of different sizes combined into a new single filter which reduces the convolutional filter 

size as well as reduces the general network computational complexity. The Inception-V3 

architecture is illustrated in Figure 4.14 (Khamparia et al., 2020).  

 

https://www-sciencedirect-com.ezproxy.neu.edu.tr/science/article/pii/S0920410520309888
https://www-sciencedirect-com.ezproxy.neu.edu.tr/science/article/pii/S0920410520309888
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Figure 4.14: Architecture of Inception-V3  

 

 EfficientNet-B0 

EfficientNet was proposed by Google in 2019 which has extraordinary ability of feature 

extraction. Compared to other CNNs, EfficientNet-B0 architecture has fewer parameters and 

higher accuracy values. The network of EfficientNet is planned utilizing a multiobjective 

neural architecture search, and afterward, the baseline network is scaled as far as depth, 

width, and resolution to accomplish a balance among them (Su and Wang 2020). 

EfficientNet networks are one of the most recently developed networks among visual object 

recognition methods. EfficientNet's have 8 different versions. These are architectures 

starting with EfficientNet-B0 up to EfficientNet-B7. EfficientNet designs are based on 

neural networks architecture. EfficientNet has fewer parameters and smaller scale compared 

to other networks. This network is successful in image classification tasks (Huynh et al., 

2020).  

The basis of the EfficientNet-B0 model is based on the deep learning algorithm CNN. 

EfficientNet-B0 generally takes into consideration parameters such as calculation cost, 

speed, usability and accessibility (Altan and Karasu, 2020). EfficientNet can be thought of 

as a group of CNN models. Looking at some details, EfficientNet-B0 is more efficient than 

other models. EfficientNets depend on AutoML and compound scaling to accomplish 

superior execution without compromising resource effectiveness. AutoML Mobile structure 

https://www.hindawi.com/journals/mpe/2020/7240129/
https://www.hindawi.com/journals/mpe/2020/7240129/
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is improved by the compound scaling method. This improvement is made for EfficientNet 

to rise from B1 to B7. In this way, it enables the development of EfficientNet-B0, which is 

a mobile-sized basic network. Other CNN models increase the depth, width, and resolution 

values. However, the EfficientNet model adjusts these values at a fixed rate and at the same 

time to ensure high success. The EfficientNet-B0 model has fewer parameters compared to 

other models (Xuan et al., 2021). 

EfficientNets increase the efficiency of the models and try to increase the accuracy. 

EfficientNet is 5-10 times more efficient than other models. It additionally shows an 

expansion in accuracy of up to 6% (Altan and Karasu, 2020). The architectural block 

diagram of the EfficientNet-B0 model shows in Figure 4.15 (Su and Wang 2020). 

 

 

Figure 4.15: The EfficientNet-B0 Network Architecture 

 

EfficientNet architecture utilizes transfer learning.  Because with transfer learning, time and 

computing power are saved and its accuracy is higher compared to other models (Marques 

et al., 2020). EfficientNet-B0 is smaller and faster than other CNNs. This model has achieved 

a high success rate in large transfer learning data sets. EfficientNet-B0 is a light transfer 

learning model and has been developed recently (Jubair et al., 2021). 
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EfficientNet architecture has a convolution layer. This layer has 3x3 mobile inverted 

bottleneck convolution (MBConv) blocks and different kernel sizes. In addition, this model 

provides high accuracy and can also be scaled successfully (Pham et al., 2020). The 

EfficientNetB0 model uses MBConv and also uses multiple convolutional layers. Feature 

extraction is done using these layers. EfficientNetB0 features balanced depth, width, and 

resolution. With these features, it has become a scalable, accurate, and easily deployable 

model. Compared to other CNN models, EfficientNet-B0 uses a fixed set of scaling 

coefficients. It can scale any dimension using these sets of coefficients. Thanks to this 

feature, it has been more successful than other models trained in the ImageNet dataset. In 

addition, it has achieved successful results on the ImageNet data set in transfer learning. 

Researchers and developers can access and provide computing that has been successful with 

EfficientNets deep learning capabilities (Montalbo and Alon 2021).  

The EfficientNet-B0 model is utilized by setting the input images size to 224 × 224 

(Müftüoğlu et al., 2020). The littlest and baseline model EfficientNet-B0 comprises 5.3 

millions number of parameters and 0.39 billions of FLOPS (Floating Point Operations Per 

Second) (Duong et al., 2020). Specifically, the baseline model EfficientNet-B0 comprises 

18 layers. The other EfficientNet models, i.e., B1 ÷ B7 are scaled up from the standard 

EfficientNet-B0 with various compound coefficients (Duong et al., 2020). 

EfficientNet-B0 models depend more on baselines. There are more layers of abstraction and 

tighter end-to-end integration training. In this way, EfficientNet-B0 models can achieve 

success. However, EfficientNet-B0 has a lack of interpretability. The interpretability feature 

increases the transparency of the model and increases reliability. Conventional interpretable 

algorithms depend on rules or expert systems. They give each section an intuitive 

interpretation through manual designs however not accurate. The figure 4.16 shows the 

EfficientNet-B0 network model. (Hu et al., 2020). 
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Figure 4.16: EfficientNet-B0 Network Model 

 

The EfficientNet-B0 model is smaller compared to other ImageNet successful models. 

Compared to the ResNet-50, which has a total of 23.5 million parameters, the EfficientNet-

B0 model contains 5.3 million parameters. So with EfficientNet-B0, the parameter has been 

significantly reduced (Hussain et al., 2021). 

 

 NasNet-Mobile 

NAS represents Neural Architecture Search and is a programmed automatic design for 

designing artificial neural networks (Schneider et al., 2021). NAS is an algorithm that 

characterizes the building blocks that can be used to build its network and looks for the best 

neural network architecture. In this algorithm, a regulator, recurrent neural network (RNN), 

samples these structure blocks, assembling them to make some sort of end-to-end 

architecture. In the NASNet, the NAS algorithm finds how to put together structure blocks 

(Bahri et al., 2019).  Block diagram of the NasNet model architecture is as depicted in Figure 

4.17 (Radhika et al., 2020).  

 

 

Figure 4.17: NASNet Architecture 
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NASNet has two different models, specifically, large and mobile. The NasNet-Mobile model 

has significantly fewer parameters compared to the large model, just 4 million in 

examination with the 84 million for the Large (Bahri et al., 2019). NasNet-Mobile design 

was created to move this network to a larger data set after creating a network in a small data 

set. NAS was used to do this (Trong et al., 2020). The NasNet architecture used a 331x331 

size input image to train the NasNet Large model. NasNet-Mobile architecture is trained 

with 224x224 size entrance image. The NasNet-Large model has more parameters than 

NasNet-Mobile. With fewer parameters, NasNet-Mobile is more reliable (Radhika et al., 

2020).  

An architecture was designed that can create a neural network with machine learning 

techniques based on a specific dataset, an AutoML technique created by Google researchers. 

This design is called Neural Architecture Search Network (NasNet). This designed system 

transfers the best architecture learned in small datasets such as AutoML and CIFAR10 to the 

ImageNet dataset (Toraman et al., 2019). NasNet-Mobile architecture is proposed by Google 

Brain. This architecture can create a smaller size model thanks to smaller floating-point 

operations. This model is an architecture that performs better compared to previous models. 

The NAS network is based on reinforcement learning search. Searches cells in a smaller data 

set (Singh et al., 2021). NasNet-Mobile structure uses RNNs in training repetition and 

different architectures are created. These networks created later are trained. Accuracies are 

created in the trained networks verification data set. Then the update is performed depending 

on the controller RNN accuracies (Zhang et al., 2019).  

NasNet architecture, which uses reinforcement learning, was created with neural architecture 

research, consists of the building block cells it defined, and is a scalable CNN architecture. 

A cell consists of convolution and pooling layers. It can also be repeated many times, 

depending on the requirements of the network. The NasNet-Mobile model includes 5.3 

million parameters. This model also has 564 million multi-accumulates (MACs) 12 cells 

(Saxen et al., 2019). NasNet-Mobile contains two types of convolutional cells. These are 

successively reproducible normal and reduction cells. Both of these cells use the NasNet-

Mobile network for transfer learning. They can also create feature maps (Linkon et al., 2020).  
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NasNet-Mobile design consists of several layers. These layers are; convolution layer, 

pooling layer, and the bulk normalization layer. It also has this architecture, building blocks. 

Reinforcement learning is used to optimize these blocks. This process is repeated several 

times depending on the capacity of the network (Khan et al., 2021). NasNet-Mobile is a deep 

network. The task of the first layers of this architecture is to extract low-level features, 

independent of data such as edges. Thus, first layer weights can be used in all applications. 

However, the weights of the last layer are set dependent on the network data set and cannot 

be used in other applications. Therefore, the stochastic gradient descent (SGD) algorithm is 

used as an optimizer. In addition, because the network is deep, it is a high probability that 

the network overfits (Bahri et al., 2019).  

NasNet-Mobile is a model with the lowest computational complexity architecture (Toraman 

et al., 2019). Also, NasNet-Mobile is a lightweight model and requires a small amount of 

GPU memory (Pérez et al., 2021).   

 

4.3 Database 

Deep networks need a lot of data to provide high performance. Therefore, a good database 

with a large number of normal and abnormal images is needed to train and test the developed 

network. All of the images in this study were courtesy of CT images were obtained from the 

database with the approval of Dr. Burhan Nalbantoğlu Hospital ethics committee. This 

database includes abdominal CT images and is in cross-section. The number of slices of each 

patient scan used in this study ranged from 55 to 110. These images were labeled by the 

radiologist as images with and without kidney stones to train the network. Images are in 

JPEG format and abdominal CT images of 30 patients with stones and 30 patients without 

stones were used (Table 4.1).                             

 

Table 4.1: Dataset 

Image set Number Patient Number Images 

Including kidney stone 30 2760 

Not including kidney stone 30 2749 
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Both 60 5509 

 

Figure 4.17 shows a sample of the abdominal CT images found in the database used for 

training and testing the employed models. Note that the figure shows the two classes of the 

database images: the non-stone and the stone. 

 

   

   

Figure 4.18: Images of database, CT abdominal patient samples 

 

A database of abdominal CT scans of a total of 60 patients was used for training and testing. 

In this study, out of a total of 5,509 images; Random 25%, ie 1,162 images were reserved 

for testing and 4,347 images were used for training. Results could change if the number of 

images reserves for training and testing changed. However, training on a higher number of 

images is more important. Table 4.2 shows the number of images found in the database to 

be used for training and testing.  
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Table 4.2: Dataset and data division 

Image set 
Patients 

Number 

Number 

images 
Number images 

Number of 

images without 

kidney stone 

Training set 48 4347 2178 2169 

Testing set 12 1162 571 591 

Both set 60 5509 2749 2760 

 

4.4 Algorithm of the Applied Methods 

This study presents an original investigation for the classification of kidney stones from CT 

images using deep learning algorithms. 

5 different CNN models based on deep learning are selected for classification. These are; 

AlexNet, ResNet-101, Inception-V3, EfficientNet-B0, NasNet-Mobile. Matlab 

programming language was used for the training and testing of 5 CNN models. 

The step by step procedure can be listed as: 

1. Initially a strong database is formed using expert radiologist to label every image. 

Then database is divided into training and testing subsets.   

2. Images in the database resized for every deep learning framework. 

3. Transfer learning method is applied to every framework to be tailored for the task. 

The output layer value of each network has been changed. 

4. The selected deep learning framework trained separately by using the training data 

and as a result the performances are recorded.  

5. After the training stage for every framework completed, they are tested with the 

testing data.  

6. Finally Testing Accuracy, Sensitivity and Specificity measures are calculated for 

every network to evaluate the overall performance of the project. (Equations 4.9, 

4.10 and 4.11) 
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To calculate the sensitivity: we take the ratio of true positive images with kidney stones 

divided by the summation of the number of test images for true positive with kidney Stones 

and false negative images with kidney stones. Equation 4.9 shows the calculation on 

sensitivity. 

 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 

    

(4.9) 

 

To calculate the specificity: we take the ratio of true negative images without Kidney stone 

divided by the summation of the number of test ımages for true negative without Kidney 

stone and false positive images without Kidney stones. Equation 4.10 shows the calculation 

on specificity.  

 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

(𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
 

     

(4.10) 

 

To calculate the test accuracy: we take the ratio summation of true positive and true negative 

images divided by the summation of the all test images. Equation 4.11 shows the calculation 

on test accuracy.  

(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 

                           

(4.11) 
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CHAPTER 5 

RESULTS 

 

In this section, the results obtained for the applied deep learning methods in section 4.4 for 

the classification of kidney stones are presented in detail. 

In this study, CT abdominal images obtained from 60 patients were classified using several 

state of the art deep learning based CNN models.  

A total of 5509 images were used, 2760 of them containing kidney stone and 2749 of them 

are without kidney stone. 

Table 5.1 shows the performance measures obtained for training and testing of each different 

deep learning framework.  

 

Table 5.1: Performance Results 

Network 
Training 

accuracy % 

Test 

accuracy % 
Sensitivity % Specificity % 

AlexNet 67.00 64.11 65.14 63.05 

ResNet-101 78.30 77.54 77.16 77.93 

Inception-V3 74.00 75.48 73.60 75.48 

EfficientNet-

B0 
76.61 78.40 76.14 80.74 

NasNet-

Mobile 
74.62 73.84 73.10 74.61 

 

As observed from Table 5.1; when training accuracies are compared ResNet-101 obtained 

the highest performance for the given task, EfficientNet-B0 coming second. AlexNet 

obtained the worst training performance.  
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When testing accuracies are evaluated, this time EfficientNet-B0 obtained the highest 

performance while ResNet-101 coming second. Again AlexNet obtained the worst result 

suggesting it is not quite suitable for the given task. Improvement in the fine tuning 

procedures during transfer learning can improve the overall performances of these networks. 

Following their training and testing performances, EfficientNet-B0 and ResNet-101 also 

obtained the best sensitivity and specificity performances suggesting that they are the most 

suitable frameworks for our transfer learning based kidney stone classification task. 

5 deep learning methods are successfully applied in this project to evaluate their 

performances for the task of transfer learning based classification of kidney stones from 

patient CT scans. 
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CHAPTER 6  

CONCLUSION 

 

Kidney stone disease is known to be a common disease affecting about 1 in 10 people. The 

fact that it is accepted as both a chronic and systemic disease reveals the degree of effect of 

the disease. As with any disease, it is very important to detect kidney stone correctly. CT 

scanners used to view kidney stones are a common imaging method. In particular, the 

diagnosis of kidney stone disease, understanding the composition of kidney stones, their 

location in the kidney area, the density and size of the stones are the information that should 

be obtained for disease management and treatment. By scanning the kidneys with CT, this 

information can be accessed accurately due to the high sensitivity of CT. According to this 

information about stones in the kidney, the correct treatment method is determined by the 

doctors. In this way, information about the degree of the disease can be obtained during and 

after the treatment. 

Although CT scanners provide highly accurate information about kidney stones, multiple 

slices of images are manually reviewed by radiologists to assess the disease. This process is 

laborious and time-consuming. Radiologists analyse CT images by eye ball estimation, 

because of the manual analysis human errors can be occurred. 

Deep learning algorithms have gained popularity thanks to their high performance in medical 

image analysis as well as in many applications. This study focused on classifying kidney 

stone images obtained from CT scans with deep learning algorithms.  

Automatic classification of kidney stone disease with deep learning can provide technical 

support to radiologists as well as assist existing medical specialist in classification in regions 

where there is no expert access. In this study 5 deep learning based CNN models are used to 

classify kidney stones. Acceptable performances of each CNN model in classifying kidney 

stones were obtained. 

The raw data obtained from CT scans can be cited as the limitation of this study. CNN 

models had difficulties in the training phase because raw data was used. Small stones in our 

database reduce the classification accuracy. In future studies, some extractions can be made 

in the database to achieve higher performance and the data can be improved. In addition, the 
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proposed models can be tested using different abdominal datasets. The existing database can 

be trained with different CNN models. In future studies, the composition or size of kidney 

stones can be determined with CT images. 
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Appendix 2: Without Kidney Stone CT Images 
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