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ABSTRACT 

 

This thesis shows how to use deep learning, which is a branch of Artificial Intelligence 

(AI), in the field of music generation, especially monophonic melodies. Two of the most 

common and improved architectures of the Recurrent Neural Network have been used; 

Long Short Term Memory (LSTM) and Gated Recurrent Units (GRUs) with the option of 

using Bidirectionality and Attention mechanism to train on two types of MIDI format 

dataset, one is stylistically single-genre (Folk) and the other multi-genre (folk, pop, rock, 

etc.), each encoded with two formats; pianoroll and magenta melody. The main purpose of 

this work is to reveal the effect of architecture designs, dataset specifications, and encoding 

formats on the generated melody samples. We discussed the side-by-side comparison 

between LSTM and GRUs, as well as the influence of modifying hidden layers has been 

investigated. Objectively, with the assistance of professional composers and expert 

musicians in my reachable area, we carried out the analysis of the generated melody 

samples by the different datasets and models, although the impact of dataset types, 

architecture designs, Bidirectionality, and Attention mechanisms on the generated 

melodies have discussed. The most noticeable results after experiments: For better learning 

with a multi-genre dataset we need more extra training sequences. While applying the Bi-

directional LSTM with Attention mechanism on a single-genre folk dataset we obtained 

more pleasant emotional melodies. Bidirectionality and Attention mechanisms both 

improve learning. Generated samples with the magenta melody format encoding have 

melodic characteristics but pianoroll formatting generated more rhythmically samples. 

Subjectively, human evaluation has been made on the samples of the best model. 

 

Keywords: Artificial Intelligence; deep learning; monophonic music generation; RNN; 

LSTM; GRUs; bi-directional RNNs; attention mechanism.  
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ÖZET 

 

Bu tez, Yapay Zekanın (AI) bir dalı olan derin öğrenmenin müzik üretimi alanında, 

özellikle de monofonik melodiler alanında nasıl kullanılacağını göstermektedir. Yinelenen 

Sinir Ağının en yaygın ve geliştirilmiş mimarilerinden ikisi kullanılmıştır; Uzun Kısa 

Süreli Bellek (LSTM) ve Geçitli Tekrarlayan Birimler (GRU'lar) iki tür MIDI formatı veri 

kümesi üzerinde eğitmek için Çift Yönlü ve Dikkat mekanizmasını kullanma seçeneği ile, 

biri biçimsel olarak tek tür (Halk) ve diğeri çok tür (folk) , pop, rock, vb.), her biri iki 

formatla kodlanmıştır; piyanorol ve eflatun melodi. Bu çalışmanın temel amacı, mimari 

tasarımların, veri seti spesifikasyonlarının ve kodlama formatlarının üretilen melodi 

örnekleri üzerindeki etkisini ortaya çıkarmaktır. LSTM ve GRU'lar arasındaki yan yana 

karşılaştırmanın yanı sıra, gizli katmanları değiştirmenin etkisi de araştırıldı. Öznel olarak, 

ulaşılabilir alanımdaki profesyonel besteciler ve uzman müzisyenlerin yardımıyla, üretilen 

melodi örneklerinin analizini farklı veri seti ve mimari modellerle gerçekleştirdik, buna 

rağmen veri seti türlerinin, mimari tasarımların, çift yönlülüğün ve dikkatin etkisi. üretilen 

melodiler üzerine mekanizmalar tartıştık. Deneylerden sonra en dikkat çekici sonuçlar: 

Çok türden bir veri kümesiyle daha iyi öğrenme için daha fazla ekstra eğitim dizisine 

ihtiyacımız var. Dikkat mekanizmalı çift yönlü LSTM tek bir tür folk veri setine 

uygularken daha hoş duygusal melodiler elde ettik. Çift yönlülük ve dikkat mekanizmaları 

öğrenmeyi geliştirir. Macenta melodi formatı kodlamasıyla oluşturulan örnekler melodik 

özelliklere sahiptir, ancak piyano rulosu formatlaması daha ritmik örnekler oluşturmuştur. 

Sübjektif olarak, en iyi modelin örnekleri üzerinde insan değerlendirmesi yapılmıştır. 

 

Anahtar Kelimeler: Yapay zeka; derin öğrenme; monofonik müzik üretimi; RNN; LSTM; 

GRU'lar; çift yönlü RNN'ler; dikkat mekanizması. 
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CHAPTER 1 

INTRODUCTION 

 

 

Music is humanity's greatest creation and an important part of our lives. It surrounds us 

and reaches our ears through multiple sources, we listen to it when we study or when we 

are working. It is a way to express both our feelings and emotions, and it has obvious 

psychological effects on us (Sloboda, 2010). So this puts it in an interesting place to 

research. 

 

Artificial Intelligence (AI) is the ability of machines to learn, make decisions, and perform 

tasks similar to humans; it is a core of the fourth industrial revolution, the way our daily 

lives look is affected by many daily impacts of AI, there's no doubt that it is an integral 

part of our daily lives. The first AI invention goes back to the 1950s and has exploded in 

recent years; owing to the huge amount of data we produce every day and the 

computational resources available (Marr, 2019). AI with its great deep learning techniques 

is an effective and important field to study, especially in the area of generating music; the 

greatest creation of mankind. 

 

The programs that produce music have long been in history, the first attempts to produce 

melodies with computers date back to 1956 when Pinkerton designed Markov's first-order 

model (Pinkerton, 1956). Recently many researches indicated that deep learning techniques 

have significant efficiency when use to enforce long-term structure. In 1994 Mozer was 

used Recurrent Neural Networks (RNNs) to generate music in his work (Mozer, 1994). 

 

In this project, we benefited from previous valuable works and researches in the field of 

music generation. Practically, we aided from (Mitroi, 2019; Velardo, 2020; Marinescu, 

2019; Sigurgeirsson, 2020), and theoretically, we mentioned all sources in the context of 

explaining topics in their appropriate places. 
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1.1 Music Composition 

 

When we talk about composing music, regardless of whether it was composed by a human 

or if the computer that generated it through its learning and training on previous mankind 

melodies and compositions as a database, in the end, it is for human listening or uses, this 

confirms that Generally, composing music is seen as a human-specific talent or skill. So a 

key aspect of music is structure. It explains how the various parts are positioned together in 

a piece of music to shape the composition. In music composing, contrast, repetition, and 

continuity are three main principles. A piece of music has a combination of musical 

thoughts. To develop continuity and a coherent whole, a composer needs to think carefully 

about how to repeat and contrast these ideas in parts (Ben, 2019). Obviously, good music 

has a cohesive structure, and it pleases the ear as well (De Coster, 2017). 

 

The core of our research topic revolves around composing music using deep learning as 

one of AI techniques through using the computer and more specifically, generating a 

monophonic melody by using recurrent neural networks Long-Short Term Memory 

(LSTM) and Gated Recurrent Units (GRUs), So it is useful first to present summaries of 

some fundamentals related to music in general and closer to our topic in particular, and 

secondly, we need a brief presentation of topics related to AI and its techniques in general, 

and a detailed explanation as much as possible of the aspects related to generating 

monophonic music which is presented in the form of symbols more precisely. The details 

of this knowledge are explained in the second chapter of this work. 

 

1.2 Problem Statement 

 

The study and evaluation of the influence of the independent variables used in our work as 

inputs on the dependent variable outputs is the main problem addressed in this thesis and it 

is relevant to the core of our subject: Monophonic music generation via RNNs. We seek 

through this work to investigate the effects of the input on the output results and to define 

the dialectical relationship between them. Independent variables can be divided into: 

1. Data types in terms of style (genre), as we used two data groups to train our 

systems to learn; data consisting of multi-genre melodies (jazz, rock, pop, classic, 
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folk, etc.), and single-genre melodies (folk); "Musicmap" project claims that today 

there are nearly 234 genres of music (Musicmap, 2020). We explained this issue 

in detail in Chapter 4, in terms of dataset characteristics, and we presented 

information in Chapter 5, in terms of its impact on the performance of our system. 

2. The type of data format and methods of encoding it into a language that is generally 

understood by a computer and that fits the architecture of the recurring neural 

networks specifically used in our work. We used Musical Instrument Digital 

Interface (MIDI) type data and two encoding formats: melody format encoding and 

pianoroll format encoding. There is also a summary of the methods of encoding and 

their influence on the results in Chapters four and six respectively. 

3. The types of recurrent neural network architectures and designs employed (LSTM 

and GRUs) with the use of Attention and Bi-directional techniques to analyze 

their impacts. In chapters two and five, explanations are available. 

 

Another problem addressed in this study is the generation of a particular form of musical 

texture called monophonic music; it seems to be simpler to model since the generation of 

monophonic music is a two-dimensional issue: the dimension of time and pitch (De Coster, 

2017). See Figure 1.1 

 

 

 

Figure 1.1: Input independent variables vs output dependent variable. 
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The overall goals can be summarized in finding the answers to these questions:  

1- What is the influence of the dataset on the melody samples and their models? 

2- How preprocessing dataset impact the training and the generating process? 

3- How the most two popular RNN models LSTM and GRUs improve learning? 

4- Do Bidirectionality and attention mechanisms have a positive impact on models? 

 

1.3 Motivation 

 

The main motivation for this project is my passion for music as a performer and sound 

engineer. Practically, I always touched on the power of the positive effect of technology on 

music; qualitatively and quantitatively. Technology in this creative field has always been a 

helpful tool for increasing beauty, quality, and accelerating production. Without 

technological development, we would not have kept this huge amount of audio and the 

visual archive of music. There is no doubt that the recent and continuous revolution in the 

field of AI and the rapid development of its techniques have brought us into the important 

field, which is the creation and generation of music by the computer as the human 

composer does. On the other hand, music as the fine arts, and its composition process also 

the prerogative of the human being, so I think that composing by the machine cannot be an 

alternative to the creative artistic composing process by humans, at least at this period that 

we are observing at in this area, but it can act as a powerful assistant for composers to find 

new and abundant motives, phrases and musical ideas. 

 

1.4 Structure 

 

This thesis is composed of six chapters, and the remainder of it organized as follows: 

Chapter 2 reviews the relevant researches to this project and focuses on the state of the art 

in the field of generating music using AI techniques. Different options of algorithms, 

processes, architectures and learning models are analyzed and are explored as a 

methodology in Chapter 3.  Chapter 4 complemented all necessary information and 

required preprocessing on the datasets. The results of trained models analyzed objectively 

as well as subjectively are presented in Chapter 5. Finally, Chapter 6 is a conclusion. Here 

achieved results, points for improvement, and future directions have been summarized. 
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CHAPTER 2 

BACKGROUND AND STATE OF THE ART 

 

 

A detailed analysis of relevant researches applicable to this project will be provided in this 

current chapter, and discoveries and relevant concerns that are crucial to this work will be 

addressed. Using machine learning techniques as the main branch of AI, we presented 

powerful theories and backgrounds from deep learning and monophonic music generation. 

While this project is about music and generating melodies it is useful to explain some 

knowledge in music theory for more clarity.  

 

2.1 Music Theory 

 

To better understand this study dealing with the generation of monophonic melody; a very 

simple and important type of piece of music through Artificial Intelligence techniques, 

actually we need to know about some basic details in music theory,  particularly those most 

relevant to music composition. Here we shall try to summarize most related topics from 

some of the best references, such as (Hosken, 2010; Levitin, 2006; Ben, 2019). 

 

2.1.1 The basic building elements of music 

 

As described by Levitin, (2006), actually while listening to the music we experience 

several attributes like tone (note), pitch, duration (rhythm), tempo, timbre, loudness, 

contour, spatial location, and reverberation, those are fundamental construction blocks of 

music. 

 

Here's a short description of some of those most relevant to this work: 

 Tone and Note: tone is the sound we can hear it but a note is a written symbol on a 

music notation sheet, the latter as shown in Figure 2.1, can be described as the 

basic symbol for sound and can be altered to signify length (duration) in several 

ways. The largest single value in common usage today is the note as a whole (O); 
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other notes have fractional relationships with the note as a whole and obtain one-

half its value, one-quarter its value, etc. 

 

 

 

 

 

Figure 2.1: Note length symbols represent duration in sheet music. 

 

 

 

 Pitch: mental construct, respectively relevant to the real frequency of a specific 

tone; the frequency at which a given note vibrates (measures by Hertz which is 

equal to the number of vibrations per seconds of the sound-producing device such 

as string vibration of such string instrument or wind instrument air column 

vibration), and its relative musical scale place; the note that plays on the musical 

instrument (e.g. playing A4 on the piano keyboard which has 440 Hz frequency) 

(Levitin, 2006; Ammer, 2004). 

 Pitch class: functionally the category of all pitches connected to the octave 

equivalence. In other words, it is the set of pitches related to each other by 

octaves. A4, A3, A2, etc. are all members of pitch class A. Twelve pitch classes 

A, A# or Bb, B, C, C# or Db, D, D# or Eb, E, F, F# or Gb, G, G# or Ab,  

constitute the color (chromatic) music scale: (Itoh et al., 2019), Figure 2.2. 
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Figure 2.2: Key numbers and their pitch-register designation (middle C is C3) (Hosken, 

2010). 

 

 

 

 Rhythm: the steady or unsteady knocks arrangement produces strong and weak 

beats in music. 

 Duration: shows the length of the sequence of notes, and how they organize into 

groups. 

 Tempo: The beat speed which states the piece’s total velocity or speed; it typically 

remains constant in western music for a given passage, though it may vary from 

one section to the next (Henry et al., 2018). 

 Key signature: Music in Major scale gives joyful sense while Minor gives listener 

unhappy feeling. In music notation or lead sheets Key signature represents the 

mood of the music piece through some sharp or flat symbols as shown in Figure 2.3 

we have a sharp sign on the fifth line and it means that the music is on G major 

scale and has somehow a happy mood. 

 Sequence: “more or less exact repetition of a passage at a higher or lower level of 

the pitch” (Kennedy, 2013). A sample is shown in Figure 2.4. 

 Tonality: the key signature determines the tonality of the music piece.   

 Texture: Monophonic; music with a single melody, Homophonic; music with one 

melody and cords, Polyphonic music with more than one melody, and 

Heterophonic are types of texture. 
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Figure 2.3: key signature of G Major/E Minor. 

 

 

 

 

 

Figure 2.4: An example of a sequence; the first bar phrase transposed and repeated. 

 

 

 

2.1.2 Monophonic and polyphonic music 

 

The Greek meaning of monophonic music means “one sound”. Without any harmony or 

any other form of accompaniment, a monophonic texture has a single line of melody (Ben, 

2019), Figure 2.5. 

 

The Greek (poly-phonic) meaning of polyphonic texture means "many sounds”. This 

distinguishes music in which many pieces or voices are blended in counterpoint (Ben, 

2019), Figure 2.6. 
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Figure 2.5: Visual diagram and music notation sample of monophonic texture. 

 

 

 

 

 

 

 

Figure 2.6: Visual diagram and music notation sample of monophonic texture. 
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2.2 Artificial Intelligence 

 

AI can be distinct as "The science and engineering of making intelligent machines", 

according to the inventor of the expression "Artificial Intelligence" John McCarthy in 

1956.  

Frank Chen, (2016), also had a very clear and logical definition; to attempt to imitate 

human intelligence, Artificial Intelligence is a collection of algorithms and intelligence. 

Most of them are machine learning, and one of the machine learning techniques is deep 

learning. Simply put, AI is a machine’s ability through many techniques or algorithms to 

mimic intelligent human behavior (McClelland, 2017). Figure 2.7 explains the relationship 

between these different AI disciplines. 

 

 Researches on AI as a Music Composer started decades ago, and since then, many 

companies have been aggressively implementing AI technologies that can compose music 

without human intervention. A machine learning algorithm on Beatles songs was trained 

by Sony's AI system to compose the song 'Daddy's Car', enabling the technology to 

compose a song based on what it had learned (Globant, 2017). Artificial Intelligence 

Virtual Artist (AIVA) is one of the most popular AI music compositions. They're focusing 

on creating classical music at the moment. AIVA, along with TensorFlow deep learning 

algorithms, uses a GPU-accelerated library of Deep Neural Network (cuDNN) which is 

programmed with reinforcement learning techniques (AIVA, 2020). 
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Figure 2.7: The relationship between different AI disciplines (Goodfellow et al., 2016). 

 

 

 

2.3 Machine Learning 

  

ML is a subset of AI techniques that allows computers without being directly programmed 

to execute tasks. It is based on models and techniques taken from statistics and the theory 

of probability (White, 2019). Murphy, (2012) defined Machine Learning as is a collection 

of techniques that can discover patterns in data automatically and then use the discovered 

patterns to forecast future data or conduct other forms of decision-making under 

uncertainty. 
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2.4 Deep Learning 

 

DL is a subset of ML which focuses on identifying data patterns rather than solving any 

particular problem, it became popular in 2012. Goodfellow et al., (2016) defined DL 

principally as ML branch and computer systems booster. In dynamic, real-world 

conditions, DL is the mere developer technique for AI systems. 

 

Content generation (generation of text, images, and music) is a growing field of deep 

learning applications coming up after the two machine learning conventional tasks; 

classification and prediction, such as translation and recognition of images and voices. 

 

For automatically learning musical styles from arbitrary musical corporations without 

human user interaction and then producing samples from the predicted distribution, the 

skill of deep learning architectures and training techniques has been used. (Briot and 

Pachet, 2017) 

 

2.4.1 Feedforward neural networks 

 

Multilayer Perceptrons and Feedforward Neural Networks are the same and it is a perfect 

deep learning model example. They are pointed to as feedforward since data flows from 

input through the neurons, and finally to the estimated output. Figure 2.8 is an example of 

the MLP structure. Feedforward networks for machine learning experts are extremely 

important. They form the base of many significant commercial applications; object 

recognition from images with convolutions networks special types of feedforward neural 

networks. It is also the cornerstone of the recurrent neural network. 
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Figure 2.8: An example of MLP (AI Wiki, 2020). 

 

 

 

2.4.2 Recurrent neural networks RNNs 

 

It is conceptually easy to switch from a feedforward to a recurrent neural network. The first 

assumes data samples distributed identically and independently and typically maps from 

fixed-size inputs to fixed-size outputs, whereas RNN with its two special types (LSTM and 

GRUs) is a continuation of a conventional neural network that can be used by retaining 

state in the so-called recurring layers to model data with temporal dependencies (Jordan, 

1997), it naturally works on input sequences of variable length and maps output sequences 

of variable length. It is apparent that data such as audio signals, text, and music also have 

temporal dependencies in the real world, so RNN has a strong capacity to model those data 

types, and it is suitable for dealing with data that have time-series and sequential properties 

(DiPietro and Hager, 2019; Chung et al., 2014). 

 

Briot et al., (2017) was published a very comprehensive survey book about the deep 

learning techniques used for music generation; almost all RNN techniques were clarified. 

Figure 2.9 is an example of the RNN structure, the solid lines indicate feed-forward 

connections while loop lines indicate connections over time: from time phase (t) to (t + 1). 
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Figure 2.9: An example of RNN (AI Wiki, 2020). 

 

 

 

The RNN input is a sequence of input vectors X (X0, X1, . . . , X t -1). The arbitrary length 

of the sequence is (t). For the input (Xi) of each time step, there is a corresponding network 

output (yi) as shown in Figure 2.10. The state vector (h) of a layer is updated based on 

current inputs and the previous state as shown in Equation 2.1 (Goodfellow et al., 2016). 

 

ht = f (Wx Xt  + Wh h t-1)                                                            (2.1) 

 

Where Wx and Wh are weight matrices applied to the inputs and the state respectively and 

f=σ(z) typically is a sigmoid function or a tanh function as shown in Equations 2.2 & 2.3 

respectively (Chung et al., 2014). 

  

σ(𝑧) =  
1

1+ exp (−𝑧)
                                                                 (2.2) 

 

σ(𝑧) =  
exp (𝑧)− exp (−𝑧)

exp (𝑧)+ exp (−𝑧)
                                                          (2.3) 
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Figure 2.10: Unfolded RNN (Anwla, 2020). 

 

 

 

In this work, we are interested in evaluating the performance of those recently proposed 

recurrent units (LSTM and GRU) on sequence modeling. Before the empirical evaluation, 

we first describe each of those recurrent units with some important mechanisms such as 

Bidirectionality and Attention in this section. 

 

1. RNNs applications 

 

We may spot the current applications for RNN by reading and studying previous works of 

other researchers. (Cho et al., 2014; Sutskever et al., 2014) have a contribution in the field 

of machine translation, in text-generation, there are (Sutskever et al., 2011; Karpathy, 

2015) papers, for video game generation application we can explore (Summerville and 

Mateas, 2016), and in music generation field which is associate to this project topic, we 

can reference (Mozer, 1994; Oord et al., 2016; Eck and Schmidhuber, 2002; Liu et al., 

2014; Boulanger-Lewandowski et al., 2012; Choi et al., 2016; Walder, 2016). 

 

2. RNNs architectural types 

 

A major disadvantage of Pure Neural Networks (MLPs) is that they accept as input a fixed-

sized vector and produce as output a fixed-sized vector for example input as an image and 

probabilities of different classes as the output. This mapping is carried out by these types 

of models using a defined number of model layers it means fixed computation steps 
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number. The recurrent networks are more excitement and this is because of their working 

style over vector sequences: input sequences, output sequences, or both, in the most 

general case. This property leads to a differentiation between many RNN types of 

architecture; many-to-one, one-to-many and many-to-many networks as Karpathy labels 

them and provides some examples of each type (Karpathy, 2015). Table 2.1 represents 

graphically these architectural types and also the MLPs one-to-one type. 

 

 

 

Table 2.1: Architectural types of RNNs, derived from (Karpathy, 2015). 

 

Type of RNN Illustration Example 

One-to-one 

 
 

Traditional neural network 

One-to-many 

 
            

Music generation 

Many-to-one 

 
 

Sentiment classification/  

Music generation 

Many-to-many 

 

            

Name entity recognition 

Many-to-many 

 
 

Machine translation 
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3. Network optimization 

 

To minimize losses, we use techniques (methods or algorithms) which are adjusting the 

weights and learning rate of neural networks, these techniques are called optimizers. There 

are many types of an optimizer; here we try to mention some of them used for training 

such as Gradient Descent, Stochastic Gradient Descent (SGD), Momentum, Nesterov 

Momentum, AdaGrad, RMSProp, and Adam which is used in our work. We explain it in 

some detail in the following section (Karpathy, et al., 2016; Kingma & Ba, 2015).   

 

a. Gradient Descent 

 

The gradient descent algorithm is the base of a vast majority of artificial neural networks 

(Brownlee, 2017). Before learning neural networks, it is important to comprehend the 

principles of this algorithm which is used for determining the lowest point by reaching zero 

derivatives of the function. Let’s suggest minimizing the ( fx) function that differentiates 

As shown in Figure 2.11, the gradient descent algorithm starts at an arbitrary location and 

recursively breaks down to the minimum point in some final value of  (x). 

 

Goodfellow et al., (2016) were explained thoroughly all issues about the gradient descent 

algorithm work, they denoted the challenges of determining the optimal global minima 

especially when the function has many local minimums. in gradient descent approaches we 

have to take into account the fact that the algorithm will lead to a local minimum instead of 

reaching global minimum which is the entire f (x) minimum value,  Figure 2.12 

demonstrate this problematic issue. This predominant obstacle will occur for the reason 

that the gradient does not have any more route at these locations to move forward, in 

mathematical word at the points which are known as critical points When 𝑓′ (𝑥) = 0, it 

means that the slope has no direction information for moving. 
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Figure 2.11: Gradient descent reaches the global minimum when  𝑓′ (𝑥) = 0 

 

 

 

 

 

Figure 2.12: Local and global minimum reaching challenge of gradient descent 

 

 

  



 

19 
 

b. Adam optimizer 

 

Adam is a continuation of stochastic gradient descent and can be used to update the 

weights of the network. Jimmy Ba and Diederik Kingma have presented Adam optimizer 

in 2015 in the "Adam: A Method for Stochastic Optimization" paper. Adam is defined as 

combining the benefits of the Adaptive Gradient Algorithm (AdaGrad) and the Root Mean 

Square Propagation (RMSProp) (Kingma & Ba, 2015). Concerning Adam Configuration 

Parameters, the learning rate (alpha = 0.001), the first moment decay rate (beta1 = 0.9), the 

second moment decay rate (beta2 = 0.999) and a tiny number for avoiding any division by 

zero (epsilon= 10−8) are the default tested settings in machine learning implementations 

(Kingma & Ba, 2015). Adam adapted in papers that deal with DL for benchmarks. It has 

been used by (Gregor et al., 2015; Xu, 2015). Figure 2.13 ensures that Adam optimizer has 

the best result to reach minimum training cost. 

 

 

 

 

Figure 2.13: Adam optimizer has the best result to reach to minimum training cost  

(Kingma & Ba, 2015). 
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c. Dropout 

 

Dropout is an important strategy and a very useful technique that has effects similar to 

regularization for avoiding overfitting of the neural network.  Through adopting this 

powerful strategy, partially excludes neurons from the network. The key concept, as seen 

in Figure 2.14, is to eliminate the hidden neurons randomly selected together with their 

connections throughout the training process (Srivastava et al., 2014). By dropout rate as a 

probability which is between 0 and 1, any weight between units is set to zero in each epoch 

according to this probability. For example with the rate of 0.5 means eliminate half of the 

existing units over each epoch. 

 

 

 

 

Figure 2.14: (a) A typical neural network. (b) A typical neural network after applying  

dropout technique (Srivastava et al., 2014). 
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4. Long short term memory LSTM 

 

Originally (LSTM) proposed via (Hochreiter and Schmidhuber, 1997). Several slight 

changes have been made to the original LSTM unit since then. (Graves and Schmidhuber, 

2005) was clarified that a series of memory blocks make up an LSTM layer that is 

connected recurrently. Somehow, they are similar to the memory chips used in digital 

computers, and each one comprises one or more repetitive memory cells as demonstrated 

via Equation 2.7 with the input, output, and forget gates, calculating their values by 

Equations 2.4, 2.5 & 2.6 respectively. In this project, we assume the LSTM 

implementation same as used in (Graves, 2013).  Figure 2.15 demonstrates a particular 

memory cell of LSTM. 

 

 

 

 

Figure 2.15: Memory cell of LSTM (Graves, 2013). 

 

 

 

Via integrated gates LSTM unit may determine whether to retain the existing memory if a 

significant feature of an input sequence is identified by the LSTM device at an early time; 
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it easily carries this information over a long distance. This is unlike the conventional 

recurring unit that discards its content at each time step. In the version of LSTM used in 

this thesis, the following merged functions are executed for determining the function of 

hidden layer H, see Equation 2.8. 

 

it  = σ ( W.xi  xt + W.hi ht—1 + W ci ct-1 + bi )                  (2.4) 

ot  = σ ( W xo  xt + W of ht—1 + W co ct + bo )                  (2.5) 

ft  = σ ( W xf  xt + W.hf ht—1 + W.cf ct-1 + bf )                  (2.6) 

ct  = ft ct-1+ it  tanh ( W xc xt + W.hc ht—1 + bc )             (2.7) 

ht  = ot  tanh  (ct)                                                                  (2.8) 

 

 Sigmoid function denoted as σ. 

 Input, output, forget gates, and the cell for storing information denoted 

respectively as i, o, f, and c. 

 

The above equations are founded in the work of (Graves, 2013). 

 

5. Gated recurrent units GRUs 

 

Cho et al., (2014) was suggested Gated Recurrent Units GRUs allow each recurrent unit to 

grasp different time scale dependencies iteratively. It has gating units, similar to the LSTM 

unit, which modulates the information flow within the unit, but without having separate 

memory cells. Through the use of the reset and update gates, their vectors determine what 

data should be transferred to the output; GRUs aim to resolve the vanishing gradient issue 

of a conventional RNN. Figure 2.16 illustrates the workflow and design of GRUs 

(Kostadinov, 2017). For determining the function of the final hidden layer H, the following 

merged functions in Equations 2.9, 2.10, 2.11, and 2.12 are performed. 
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Figure 2.16: Gated Recurrent Unit 

 

 

  

𝑧𝑡  = 𝜎  ( 𝑊(𝑧)𝑥𝑡  +  𝑈(𝑧)ℎ𝑡−1 )                                   (2.9) 

𝑟𝑡  = 𝜎  ( 𝑊(𝑟)𝑥𝑡  +  𝑈(𝑟)ℎ𝑡−1                                            (2.10) 

ℎ𝑡
′  = tanh (𝑊 𝑥𝑡 + 𝑟𝑡 ⊚ 𝑈ℎ𝑡−1 )                                 (2.11) 

ℎ𝑡  = 𝑧𝑡 ⊚ ℎ𝑡−1 + (1 − 𝑧𝑡) ⊚ ℎ𝑡
′                                  (2.12) 

 

 Sigmoid function denoted as σ. 

 Update gate, Reset gate, the content of current memory and current time step final 

memory are denoted respectively as 𝑧𝑡, 𝑟𝑡, ℎ𝑡
′  and ℎ𝑡. 
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6. Bidirectionality 

 

Schuster and Paliwal, (1997), pointed out some of the drawbacks of RNNs in their paper, 

such as RNNs cannot recognize the upcoming context during training and suggested an 

RNN changed version and they named it Bi-directional recurrent neural network (BI-

RNN), which overcomes this limitation, for example. Their work can be recognized as a 

starting point for using and inventing this mechanism. Its name indicates that the 

fundamental principle of the Bi-directional network is the forward and backward recurrent 

execution associated with the identical output layer, in another word (BI-RNN) joins only 

one output to two hidden layers, first running from left to right and the other in opposite 

direction, that is for collecting past and future states information (Andrew, 2019). This 

power designates that the BI-RNN has absolute, temporal knowledge about all points 

before and after, for any point in a time series and it’s a useful function especially for 

symbolic music generating; the context of the input is important (Graves and Schmidhuber, 

2005). Figure 2.17 illustrates the general structure of BI-RNN. 

 

 

 

 
Figure 2.17: General structure of the unfolded BI-RNN (Schuster and Paliwal, 1997). 
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The formal definition of BI-RNN 

 

Considering Forward RNN and Backward RNN manners data frontward from left to right, 

right to left respectively and Output 𝑦𝑡 as shown in Equation 2.15 links and calculates the 

forward ℎ𝑡
⃗⃗  ⃗ and backward ℎ𝑡

⃖⃗ ⃗⃗  outputs as shown in Equations 2.13 and 2.14 respectively. 

From Figure 2.18, and by merging equations, BI-RNN can be defined formally as follow. 

All equations below are taken from (Picheny et al., 2016). 

 

 

 

 

Figure 2.18: Bi-directional RNN (Picheny et al., 2016) 

 

 

 

ℎ𝑡
⃗⃗  ⃗  =   𝜎 ( �⃗⃗⃗�  .  𝑥𝑡 + �⃗�  .  ℎ𝑡−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   +  �⃗�  )                                           (2.13) 

ℎ𝑡
⃖⃗ ⃗⃗ =   𝜎 ( �⃗⃗⃗⃖� .  𝑥𝑡 + �⃗⃖� .  ℎ𝑡+1

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗  +  �⃗⃖� )                                            (2.14) 

𝑦𝑡  =  𝑔 ( 𝑊𝑦 [ ℎ𝑡
⃗⃗  ⃗  , ℎ𝑡

⃖⃗ ⃗⃗  +  𝑏𝑦 ] )                                                    (2.15) 

 

 σ: sigmoid function. 

  𝑋𝑡 ∈ ℝ𝐷 : Input vector sequence. 

  �⃗⃗⃗�  , �⃗⃗⃗⃖�  ∈  ℝ𝑛𝑖−1∗ 𝑛𝑖: weight between Input and hidden. 

  �⃗�  , �⃖⃗�  ∈  ℝ𝑛𝑖∗ 𝑛𝑖 : weight between hidden layers t, and  �⃗�  , �⃖⃗�  ∈  ℝ𝑛𝑖 : Bias. 
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7. Attention mechanism 

 

With the evidence of (Bahdanau et al., 2015) paper, attention was born for translation and 

remembering lengthy sentences in translation with a neural machine. Unlike a conventional 

sequence-to-sequence model, Attention allows the input to be interpreted by the RNN to 

relay information for each word it detects, and then to concentrate on words as they 

become important for the RNN producing the output, whereas the former Sequence to 

Sequence S2S model has to refine the entire input down to a particular vector and then 

extend it back out. In a fact, deep learning attention can be generally taken as a vector of 

weights of relevance: to guess or deduce one element, like an image pixel or a sentence 

word, we measure how strongly it is associated with other elements using the attention 

context vector and taking the sum of its weighted values by the context vector as the target 

estimate (Weng, 2018). Principally as shown in Figure 2.19 the context vector contains 

information collected and arranged between input (source) and output (target). 

 

 

 

 

Figure 2.19: Attention mechanism between BI-RNN encoder and RNN decoder  

(Weng, 2018). 

 

 

 

Figure 2.20 and its derivative one Figure 2.21 which are derived from (Bahdanau et al., 

2015) paper, describe systematically the attention mechanism implemented in neural 
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machine translation. Having a sequence of source 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛] and try to produce a 

sequence of 𝑦 = [𝑦1, 𝑦2, … , 𝑦𝑚] with attention to the relationship among words, for 

example, the word Economic has full attention with its French meaning which is 

economique as well as has relations with words such as, europeenne, zone, and la. 

 

 

 

 

Figure 2.20: Alignment matrix of French and its English translation. (Image from  

Bahdanau et al., 2015). 

 

 

 

 

Figure 2.21: Matrix of alignment illustrates the association between the source and 

target words (Olah and Carter, 2016).  
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CHAPTER 3 

METHODOLOGY & ARCHITECTURE 

 

 

In this chapter, the logical compatibility of the various choices of algorithms, strategies, 

architectures, and learning models that have been used in this work, and their aspects to 

generate monophonic music was addressed, as well as the methodology of evaluating the 

generated samples was explained.  

 

It is known that the use of deep learning techniques in any task in any of the different fields 

needs several procedures prerequisites and necessities. Here we present those much related 

to our work: 

 Computational resources: Macintosh computer (Mac Pro Mid 2010) with these 

specifications has been used to accomplish this task in all its stages:         Processor 

2.8 GHz Quad-Core IntelXeon;  memory 16 GB 1066 MHz DDR3; Startup 

Disk SSD; and Graphics ATI Radeon HD5770 1024 MB. Although the Mac was 

the best operating system that deals with music and sound engineering software but 

with respect to DL, there are many other OSs such as Linux and cloud platforms 

better for faster implementation such as AWS and Google Colab. 

  Model Building:  It was necessary to develop and train the machine learning 

model with the built data collection. As the techniques and algorithms the most 

popular RNNs such as LSTM, GRUs, have been used with the Bi-directional and 

Attention mechanism. Here in this chapter, we will explain the exact ways, 

techniques, and algorithms we were used and there are details about them in 

chapter 2. 

 Programming languages and associated modules and libraries: Python 3.8, 

TensorFlow keras_self_attention, Keras, music21, sklearn, keras_tqdm, 

Pypianoroll, tqdm, librosa, pretty_midi, matplotlib, numpy, and magenta have 

been used. In the following sections, we will explain the coding language, 

libraries, and approaches that were used. All necessary screenshots of codes for 

implementation in this project have been addressed in Appendices. 
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 Datasets and preprocessing steps: multi-genre (pop, jazz, rock, etc.) and single-

genre (folk) have been used with some useful preprocessing such as choosing only 

monophonic and 4/4 time signature music, and transposing them to C major and A 

minor Key signatures and converting all to 120 b/m tempo for simplicity and good 

analyzing understanding. Details have been explained in chapter 4. 

 Evaluation: It was important to identify two mechanisms of evaluation for testing 

the model's performance. Firstly, objectively all results of implementations have 

been analyzed with the aid of experts in the music field, and secondly, subjective 

assessment has been done via analyzing a proposed survey to determine how 

generated samples from the models are rhythmically stable and melodically 

interested. 

 

3.1 LSTM and GRUs 

 

Recurrent Neural Networks (RNNs) allow long-term dependence to be integrated into the 

model. Theoretically, extremely long sequences can be recalled, but in reality, it is 

constrained by the vanishing gradient problem as well as the probability of an exploded 

gradient is also present, in which the gradient increases exponentially. As stated in 

(Hochreiter and Schmidhuber, 1997) Dependencies with large time steps can be managed 

by an LSTM or GRU network without being less successful in modeling short-term 

dependencies. So we decided to use the Long Short-Term Memory (LSTM) and Gated 

Recurrent Units (GRUs) version of the RNN to mitigate these limitations. In the form of 

gates that regulate the flow of the learning, LSTMs and GRUs give a solution to the 

vanishing gradient problem and immune the error noise in the sequence data to learn the 

basic patterns of music structures by preserving an internal state guarded with the "forget" 

gate. More details about neural networks for generating music have been discussed in 

chapter 2. 
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3.2 LSTM vs GRUs 

 

These two popular versions of RNNs compare to simple RNN, they are needed longer 

training times and more computing resources, as there are more training parameters for 

monitoring the respective gates (Sturm et al., 2016). Obviously, the GRUs has fewer 

parameters than LSTMs due to the cell number and their processes. So at some functions, 

it has been seen that they do as well or even better than LSTMs, the former needs shorter 

training times and fewer computation resources. 

 

Chung et al, (2014), compared polyphonic music datasets with RNNs, LSTM, and GRU. 

They found that both LSTM and RNNs were outperformed by GRU. As well as GRU 

outperformed LSTM networks only marginally, so they concluded that the type of task and 

dataset are likely to depend on the best choice between the two. Associated with our work 

their effects on the results and the comparison between them have been discussed in 

chapter 5.  

 

3.3 Gradient Descent Optimization Techniques 

 

In chapter 2 there are sufficient details about general network optimization and its 

techniques, here we demonstrate those we used in models and designed architectures. For 

achieving neural network optimization and to obtain minimum training cost, two effective 

approaches or techniques have been used. The first one was for avoiding the overfitting via 

dropping out some of the hidden layers of the network randomly by a chosen ratio (Gal and 

Ghahramani, 2016), and as used by (Felbo et al., 2017; Johnson, 2017; and Dong, 2018), 

and then the second technique was to obtain weight optimization through the use of Adam 

optimizer which is used by (Kingma & Ba, 2015; Ruder, 2016). 

 

In this work and for all experiments, each layer in the designed architecture either LSTM 

or GRU followed by a dropout layer with a 40% rate for reducing overfitting issue, the 

piece of code from Keras library which applied in this project for the purpose of 

controlling overfitting issue has been shown below.  
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This_layer = keras.layers.LSTM( 

cells, 

dropout=0..4, 

name=’LSTM_%s’ % I, return_sequence=ret_seq 

) 

 

 

 

 

Deadlock is another issue widely faced in this area when the machine prevents learning. 

This implies that the technique of gradient descent is actually running from one slope to 

another, not being able to come down. Through the use of Adam and Plateau codes from 

Keras library this issue can be solved by reducing the learning rate. 

 

Concerning Adam parameter values, for almost all implemented experiments the same 

strategies have been proposed. The initial learning rate of 0.005 was used, and Validation 

loss plateaus values for Factor, Patience, and Epsilon were 0.5, 3, and 0.0005 respectively, 

the piece of code from Keras library which was implemented for this purpose has been 

shown below. 

 Factor: states that by which amount the learning rate will change if validation loss 

does not optimized and not reduced. 

 Patience: describes how many epochs the process should wait before changing the 

learning rate by the Factor value. 

 Epsilon: it decides over each epoch, by which value of the difference between 

current and previous validation loss, the optimizer will start to change the learning 

rate value depending on the plateau rule. 

      

 

 

 

 



 

32 
 

optimizer = keras.optimizers.Adam(lr=0.005) 

callbacks.append(ReduceLROnPlateau(monitor=’val_loss’,  

factor=0.5, 

patience=3, 

verbose=1 

mode=’auto’, 

epsilon=0.0005, 

cooldown=0, 

min_lr=0)) 

 

  

 

 

 

3.4 Bi-directional Mechanism 

 

In the field of music generation, Bi-directional LSTMs were proposed successfully by 

many researchers, for example, (Dong, (2018); Mogren, (2016)) used Bidirectionality but 

with the GAN system. A thorough explanation of this mechanism was discussed in the 

previous chapter 2.  Here in this project, a Bi-directional mechanism has been used with 

both LSTM and GRU networks with and without the use of attention mechanisms to 

identify its positive effect on the results which have been discussed in chapter 5.   

 

3.5 Attention Mechanism 

 

The attention mechanism was originally proposed for machine translation and has 

widespread use in this area (Bahdanau et al., 2015). Here we want to investigate that in the 

generation of symbolic music, does it have an impact on increasing learning, if it used with 

RRNs architecture? Subsequently, our emphasis is on the generation of music, We make 

the argument that whether attention enables the system to learn which parts of the musical 

piece are extremely vital to the next time sequence item prediction? So let's discuss some 

important principles of this mechanism to know the range of its effect on our samples 

made as described and done by (Felbo et al., 2017; Yang et al., 2016) in other research 
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fields. As humankind, if we are asked to describe the space in which we are seated, we pay 

close attention and we will look around at the things that we are describing. In real life the 

composers when attend to generate a simple melody they pay extensive attention to 

structuring motives, phrases, and music sentences by seeing what they repeat or what is the 

next note. There are many relations between current, next, and previous notes, bars, 

phrases, and many elements, that music structure consist of. Through using attention, 

neural networks may accomplish this same action; focusing on part of a subset of the data 

they are given (Olah and Carter, 2016).  

 

Google Magenta team has hopeful results with using attention mechanisms in their open-

source magenta project, especially in music generation (Waite, 2016). Inspired by their 

results we also attempted to use this mechanism in one of our experiments to investigate its 

effect on generated samples.  

 

3.6 Architecture Type 

 

The models' architecture type in both training and generating phases is supervised many-

to-one architecture as shown in Figure 3.1. The input Tx = 63 time steps. In the training 

phase, we will feed the networks with them to predict the next step (𝑦^). In fact, we have 4 

bars of 4/4 time signature monophonic melody, each bar consists of (16) time steps (16 of 

sixteenth note), this means the overall is equal to (64) time steps, then by eliminating (one) 

time step we will obtain (63) time steps as described in the equation 3.1, and then we 

neglect the first time step to predict another one every time by moving the window one 

step each time forward. In the sample generating phase, we will feed the trained models 

with a sample of melody as a seed to obtain (64) new notes, the full (4) bars monophonic 

melodies such as the one that is shown in Figure 3.2. 

 

 

Tx = 4[bars] . 4 [quarter notes] . 4[sixteenth note] – 1 = 63                 (3.1) 
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Figure 3.1: Music generation many-to-one RNN architecture type. 

 

 

 

 Figure 3.2: Melody sample converted from MIDI file decoded from RNN output layer. 

 

 

 

3.7 Temperature 

 

The temperature value effect on the randomness of the produced sequence result can be 

considered as an open-source for research in the content-generating field. Due to the 

randomness of the event distribution, rising temperatures will make performances sound 

non-repetitive (Simon and Oore, 2017). The lower the temperature, the less random the 

generated melody will be more like the input (colab, 2020). For training models and 

producing melodies in this project, a temperature of 1.0 has been used in all the executed 

trials. 

 

𝑥1

𝑥2 
𝑥2

𝑥3 
𝑥62

𝑥63 
𝑥63

𝑦1 

𝑎0 Unit 1 Unit 2 Unit 62 Unit 63 

𝑦1

𝑦2 
𝑦64 
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3.8 Human Evaluations: Professionally and Conventionally 

  

Two different paths are proposed as a methodology of this thesis study part. The main 

process is to analyze two different perspectives; the first is from the point of view of 

masters and professionals in the music field, and the second, from the perspective of 

conventional participants or the audiences with multi-level musical talent as a survey 

analysis. 

 

Concerning the first group, they were provided with several samples of generated music in 

sheet format to analyze mostly objectively through the basics and principles of music 

composition and theories of music. The samples obtained from each model have been 

implemented in the practical part of the work discussed in detail in its relative chapter. 

 

Concerning the second group, ten randomly selected melody samples were given to 

participants to listen to them and rate each one rhythmically and for melodically pleasing 

using the Likert scale method from 1 to 5, as well as participants rate their experience level 

musically also from 1 to 5 (Tyler, 2014). This survey process is to analyze results and 

investigate model quality in generating monophonic melodies as well as to define the 

impact of any changes in all independent variables on the dependent one which is the 

generated sample from train models. This process can be classified as subjective decisions 

on the results. The statistical analysis has been explained in chapter 5 which is devoted to 

results and discussions. 

 

3.9 Trained Models: Architecture Description 

 

All Models trained and implemented in this project have independent variables, and can be 

classified into five categories: 

 

 Dataset Types: Multi-genre and single-genre datasets have been used. 

 Format encoding approaches: pianoroll format and magenta melody format have 

been proposed. 
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 Deep learning techniques: LSTM and GRUs have been tested. 

 Learning mechanisms: Bi-directional and Attention mechanisms have been 

experienced. 

 Hidden layers cell number: 64 cells have been used. 

 

For training models in this work, the data set is randomly divided into a training set of 80% 

and a validation set of 20%. The training set contains data used to train the model, and the 

validation set consists of data to determine the model's generalization capability during the 

training phase. A batch size of 128 is used. All networks are trained for 50 epochs. In the 

Keras library, all the models are applied (Chollet et al., 2020).  Below are the codes that 

are used for this purpose. 

 

EPOCHS = 50 

BATCH_SIZE = 128 

def get_data(dataset) : 

dpath = dataset[‘path’] 

dataset = np.memap (dpath, mode=”r”,  

dtype= “unit8”, shape=dataset[‘shape’]) 

x = dataset[:, : -1] 

y = dataset[:, :-1] 

x_train, y_val, y_train, y_val = train_test_split( 

x, y, test_size = 0.2, random_state = 42, shuffle = True) 

print (‘we have %s  training files and %s validation files’ % 

(len (y_train), len(y_val))) 

 

return  x_train, y_val, y_train, y_val 

 

Two types of datasets are used in this project; the first was a multi-genre dataset and 

consists of (19,877) songs from various styles. The second was a single-genre dataset 

contains (45,849) Irish folk songs, all necessary details about datasets and preprocessing 

are explained in chapter 4. 
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Here we try to focus on the Models that have been trained to make a comparison between 

them via evaluating their results (the melody samples are generated with them). So the 

overall trained model is consist of eight models fixed in Table 3.1, each has specific 

architecture depending on the changes in independent variables (encoding format, dataset 

nature, RNN types, Bi-directional mechanism, Attention mechanism, and hidden layers 

cell numbers) the particular architecture has given details in the following subsections. 

 

Table 3.1: Models architecture per changes in the independent variables 
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1 
folk_melody_ 

bi2lstm64_attention  * *  * *  * * 

2 
folk_pianoroll_ 

bi2lstm64_attention  *  * * *  * * 

3 
hook_melody_ 

bi2lstm64_attention *  *  * *  * * 

4 
hook_pianoroll_ 

bi2lstm64_attention *   * * *  * * 

5 
folk_melody_ 

2lstm64_attention  * *   *  * * 

6 
folk_melody_ 

2lstm64_noattention  * *   *  *  

7 
folk_melody_ 

bi2GRU64_attention  * *  *  * * * 
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3.9.1 Model No.1: model_folk_melody_bi2lstm64_attention 

 

The architecture as shown in Figure 3.3 is as follows: 

 Input layer: the network is fed from this layer depending on the number of 

vocabulary symbols and the input seed melody sample time steps and the 

architecture type of RNN which is many-to-one for generating purpose. Here the 

network has been fed for each iteration with 63 input time steps to predict the next 

note with the vocabulary symbols number of 58; the exact number of used 

vocabulary (note ranges) by the dataset songs (this model trained on Single-genre 

dataset).       

 Hidden layers: consist of 2 layers of Bi-LSTM, each with 64 cells as described in 

the associated section of the mechanism of Bidirectionality in chapter 4; by 

adding a negative time path to LSTM, Bidirectionality doubles the number of 

cells. We, therefore, have 128 cells on each layer. A dropout layer, with a 40% 

rate, follows every layer. 

 Attention layer: this model is designed with the Attention layer on top of the last 

Bi-LSTM hidden layer, in other words, it is applied after the last dropout layer. 

 Output layer: this is for the prediction time step with the same vocabulary number 

58 as the input layer, in this case, the aim was to produce only one next prediction 

note or time step, also depending on network architecture type many-to-one. 
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Figure 3.3: Architecture design of model No.1.  
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3.9.2 Model No.2: model_folk_pianoroll_bi2lstm64_attention 

 

The architecture as shown in Figure 3.4 is as same as model No. 1 except for the input 

layer property. Depending on the encoding format used, the input layer varies according to 

the number of units. A vocabulary of 56 is produced by the pianoroll, while the melody has 

a vocabulary of 58. So the input layer nodes consist of 58 units. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Architecture design of model No.2.  
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3.9.3 Model No.3: model_hook_melody_bi2lstm64_attention 

 

The architecture as shown in Figure 3.5 is as same as model No. 1 except it is trained on 

the different dataset types; a multi-genre dataset that has a larger range vocabulary of 90 

vocabularies. This model has been trained on 74933 files as a training set and 18734 files 

as a validation set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Architecture design of Model No.3. 
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3.9.4 Model No.4: model_hook_pianoroll_bi2lstm64_attention 

 

The architecture as shown in Figure 3.6 is as same as model No. 1 except for the input 

layer property. Depending on the encoding format used, the input layer varies according to 

the number of units. A vocabulary of 88 is produced by the pianoroll, while the melody has 

a vocabulary of 90. So the input layer nodes consist of 88 units as well as the output nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Architecture design of model No.4. 
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3.9.5 Model No.5: model_folk_melody_2lstm64_attention 

 

The architecture as shown in Figure 3.7 is as follows: 

 Input layer: the network is fed from this layer depending on the number of 

vocabulary symbols and the input seed melody sample time steps and the 

architecture type of RNN which is many-to-one for generating purpose. Here the 

network has been fed for each iteration with 63 input time steps to predict the next 

note with the vocabulary symbols number of 58; the exact number of used 

vocabulary (note ranges) by the dataset songs (this model trained on Single-genre 

dataset).       

 Hidden layers: consist of 2 layers of LSTM, each with 64 cells. A dropout layer, 

with a 40% rate, follows every layer. 

 Attention layer: this model is designed with the Attention layer on top of the last 

LSTM hidden layer, in other words, it is applied after the last dropout layer. 

 Output layer: this is for the prediction time step with the same vocabulary number 

58 as the input layer, in this case, the aim was to produce only one next prediction 

note or time step, also depending on network architecture type many-to-one. 
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Figure 3.7: Neural Network architecture design of model No.5.  
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3.9.6 Model No.6: model_folk_melody_2lstm64_noattention 

 

The architecture as shown in Figure 3.8 is as follows: 

 Input layer: the network is fed from this layer depending on the number of 

vocabulary symbols and the input seed melody sample time steps and the 

architecture type of RNN which is many-to-one for generating purpose. Here the 

network has been fed with 63 input time steps in each iteration to predict the next 

note within the vocabulary range of 58 notes, model is trained on Single-genre. 

 Hidden layers: consist of 2 layers of LSTM, each with 64 cells. A dropout layer, 

with a 40% rate, follows every layer. 

 Output layer: this is for the prediction one time step depending on network 

architecture type many-to-one with the vocabulary number 58 as the input layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Neural Network architecture design of Model No.6.   
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3.9.7 Model No.7: model_folk_melody_bi2GRU64_attention 

 

The architecture as shown in Figure 3.9 is as follows: 

 Input layer: the network is fed from this layer depending on the number of 

vocabulary symbols and the input seed melody sample time steps and the 

architecture type of RNN which is many-to-one for generating purpose. Here the 

network has been fed for each iteration with 63 input time steps to predict the next 

note with the vocabulary symbols number of 58; the exact number of used 

vocabulary (note ranges) by the dataset songs (this model trained on Single-genre 

dataset). 

 Hidden layers: consist of 2 layers of Bi-GRUs, each with 64 cells as described in 

the associated section of the mechanism of Bidirectionality in chapter 4; by 

adding a negative time path to Bi-GRUs, Bidirectionality doubles the number of 

cells. We, therefore, have 128 cells on each layer. A dropout layer, with a 40% 

rate, follows every layer. 

 Attention layer: this model is designed with the Attention layer on top of the last 

Bi-GRUs hidden layer, in other words, it is applied after the last dropout layer. 

 Output layer: this is for the prediction time step with the same vocabulary number 

58 as the input layer, in this case, the aim was to produce only one next prediction 

note or time step, also depending on network architecture type many-to-one. 
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Figure 3.9: Neural Network architecture design of Model No.7.  
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CHAPTER 4 

COLLECTING AND PROCESSING DATA 

 

 

4.1 Dataset 

 

For all machine learning problems, especially deep learning problems, it is clear that the 

quality of the dataset and its specifications are necessary to get a well-trained model. 

Gudivada et al. (2017) concluded in their paper that the central point for developing 

machine learning models is the Excellency of dataset quality.  

 

We will address the datasets we have used to train the models in this chapter. We're going 

to include a description of their style and roots. In this thesis the data which have been used 

consists of two sets of data: the first contains Irish folklore songs assuming that it is a 

single-genre dataset and the second consists of a wide range of different styles as a multi-

genre dataset, all of which contain MIDI file types. Obviously, for many causes, MIDI files 

are not ideal for being used strictly as an input to a machine learning algorithm. There is a 

lot of data in the files that are meaningless for producing music (De Coster, 2017). Besides, 

a MIDI file is a binary file that requires processes of transformation, there are many 

approaches for encoding MIID files and transform them to such a suitable file can be used 

by the RNNs; the pianoroll representation which is used by (Ycart et al., 2017; Mauthes, 

2018; Dong et al., 2018). The Melody encoding format used by the Magenta google brain 

team (Waite, 2016) and Transformer encoding also used by (Huang et al., 2018) are some 

of these common approaches. As defined in Chapter 5 for each representation with varying 

results, a generative model is applied. 
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4.2 Multi-Genre Dataset 

 

This set of data contains (19,877) divided songs into their parts (intro, verse, chorus, etc.), 

which is made up of songs of different styles such as Pop, Rock, jazz, metal, etc., was 

taken and downloaded from this address as a zip file with all meta-data information 

(https://drive.google.com/file/d/13iB5Brk1hypKsw9TSf8_d4Ka3xU0XmFZ/view 

Retrieved 03 March 2020), and it was mainly presented and collected from 

(https://www.hooktheory.com/ Retrieved 01 March 2020) that contains 13,222 songs in the 

form of tabs lead sheets files at a time when we entered to it, the processing and conversion 

to MIDI files have been done through GitHub work by (Hsiao, 2019). It is worth noting 

that we consider this set of data as a multi-genre dataset. This type has been chosen to 

know the extent of its impact on learning our models and to compare it with the models 

learned from data of one specific genre like folk. This is explained in detail in Chapter 5. 

 

4.3 Single-Genre Dataset 

 

A single-style dataset consisting of (45,849) Irish folk songs in the form of a MIDI file was 

taken from GitHub prepared by (IraKurshunovava, 2019). CSV and JSON data files were 

originally taken from (Keith, 2015), by Kurshunova and were eventually cleaned and 

transformed from the ABC representation format to the MIDI file format. This website is 

the primary source of these folk tunes (https://thesessiond.org/ Retrieved 02 March 2020). 

The aim of working on this type of dataset is to investigate the impact of RNNs 

architecture changes on the accuracy and the learning quality of generated models and 

melodies as result. This is also explained in detail in chapter 5. 

 

4.4 Music Representation Formats 

 

Traditional notation is too time-consuming to write down, too difficult to reproduce, and 

not suitable for electronic data processing. The need for international adoption of a basic 

code system for the notation of musical works is one of (Brook, 1965). Now a day there 

are different digital music formats such as ABC notation (Walshaw, 2020), Simplified 

https://drive.google.com/file/d/13iB5Brk1hypKsw9TSf8_d4Ka3xU0XmFZ/view
https://www.hooktheory.com/
https://thesessiond.org/


 

50 
 

Plaine & Easie Code (Brook, 1965), Kern (Sapp, 2005), MusicXML (Good, 2001), and 

MIDI (Oliveira & Oliveira, 2017). 

 

4.4.1 ABC format representation 

 

Hundreds of thousands of tunes are now available on ABC, Figure 4.1, is an example of 

this representation. It was developed primarily for Western European folk and traditional 

tunes. It has become more popular, though, and has been used for many other kinds of 

music. One of the most important goals of ABC notation is that it is very clear, and this 

property distinguishes it from the most computer-based musical (Walshaw, 2020). 

Recently this format was Used by many researchers work such as (Agarwala, 2017; Sturm 

et al., 2016). 

 

 

 

 

Figure 4.1: ABC format representation. 

 

 

 

4.4.2 Simplified Plaine & Easie format representation 

 

The original version of this format representation “Plaine and Easie Code System for 

Musike” was proposed in Brook and Murray in 1964.  It was soon modified to make the 
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code more usable on an international basis for ordinary purposes, for detail (Brook, 1965). 

Figure 4.2, shows a simple example of this format. 

 

 

 

 

Figure 4.2: Simplified Plaine & Easie Code representation. 

 

 

 

4.4.3 Kern format representation 

 

For modern Western music, the kern representation as shown in Figure 4.3, proposed to 

use for representing basic or the core details and also can be used for encoding music 

principle elements such as pitch and duration, as well as many other specific score-related 

data (Donald and Eric, 2003). Humdrum was created in the 1980s, and one of the main of 

its focuses is the notational style; predominantly the kern representation (Sapp, 2005). 

 

 

 

 

Figure 4.3: Kern representation format. 
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4.4.4 MusicXML format representation 

 

MusicXML (Markup languages) is an interchange and distribution format of digital sheet 

music. The purpose is to establish a standardized format for common Western music 

notation. It is designed to facilitate the exchange between applications for executing many 

processes such as musical notation, music information retrieval, instrument performing, 

and musical data analysis. It is designed for these applications to be adequate, not optimal. 

(Good, 2001). Figure 4.4, exhibits this Markup language format. 

 

 

 

 

Figure 4.4: MusicXML format representation. 

 

 

 

4.4.5 MIDI format representation 

 

MIDI (Musical Instrument Digital Interface) is a standard music technology protocol that 

connects digital musical electronic instruments, and digital devices such as PC, tablets, and 

smartphones of many different organizations. The first version of MIDI was produced in 

1983 and is used worldwide every day to create, perform, learn, and share music and 

creative works by musicians, DJs, developers, educators, and artists (Huber, 2007). 

Music representation in this format includes any music data structure that focuses on music 

playback and editing as defined by one or more sequences of notes, with using many 
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operating systems MIDI programming interface, we can record a musician’s performance 

on a MIDI keyboard directly in MIDI and store it in data structures. MIDI describes 

musical note codes, as well as button key, dial, and pedal variations of digital instruments, 

and a sequence of synthesizers can be orchestrated by MIDI control messages (MMA, 

2020). MIDI can also create a graphical interface such as the default pianoroll editor that 

represents the notes as horizontal bars as shown in Figure 4.5, that can be added, resized, 

transferred, removed, copied/pasted, transposed by the user. MIDI does not record sound 

waves that are analog or digital. It encodes keyboard features, including the beginning of a 

note, its pitch, duration, volume, and musical characteristics, such as vibrato (pcmag, 

2020). All of these characteristics are in the 0-127 range (128 possible values), Figure 4.6, 

explains the relation between note names and their range number for example C4 has 21 of 

the range in a standard 88 keys MIDI keyboard. 

 

 

 

 

 
                                                r _  G3_ _ _      A3 _  B3 _ C4 _ B3G3F4D3 C3 _  _ _  _  _  _  _ 

                                             

 

Figure 4.5: A combination of notation and its pianoroll representation  

(Vandenneucker, 2020). 

 

Datasets with this format are used by so many researchers’ works related to music 

generation such as (Hilscher and Shahroudi, 2018).  
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Figure 4.6: MIDI Note Numbers for Different Octaves. 
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4.5 Format Encoding 

 

The method of the format encoding of musical inputs into the one that comprehensible by 

neural networks is one of the most important issues affecting the efficiency of the models 

that are produced and, accordingly,  melody samples that generate from them (Laden and 

Keefe, 1989). Music that we listen to it directly from the sound sources in life or players 

when recorded is always in the form of sound waves. But in the case of digital electronic 

devices, the music in its waveform is inappropriate and undefined and must be converted 

into a suitable digital form. MIDI format representation which has been chosen in this 

work is a common digital format used by so many digital audio workstations; electronic 

devices or application software. Our dataset MIDI files need to be transformed and 

encoded using two format encoding; pianoroll and melody for our neural network inputs 

for comparing the effect of these encoding on the overall processes and the quality of 

generated models, detail is in chapter 5 

 

4.5.1 Pianoroll format encoding 

 

Pianoroll is a format for music representation that describes a piece of music via a score-

like matrix. The vertically and horizontally axis, respectively, reflect note pitch and time. 

In this thesis, we set symbolic timing and the temporal resolution to 16 per beat to cover 

common temporal patterns till 16th notes such as setting do not include triplets and 32nd 

notes and over. The note pitch has 128 possibilities, covering from C-0 to G10 see Figure 

4.7. A 4/4 time signature bar monophonic melody with one instrument the same as used in 

our experiments has a matrix with (64 * 128) dimensions. For dealing with pianoroll 

encoding, we used Pypianoroll which is an open-source Python library. It offers an 

important multitrack pianoroll handling tool, including powerful I / O as well as a tool for 

simulation, analysis, and assessment (Dong et al., 2018). 
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Figure 4.7: Each MIDI number is equivalent to an octave in the left-hand column and a  

note in the top row (Nicholsonr & Kim, 2016). 

 

 

 

4.5.2 Magenta melody format encoding 

 

This format is suggested in MelodyRNN models by Google Magenta which was started by 

some researchers and engineers from the Google Brain team with their motto “Make 

machines intelligent. Improve people’s lives”. Magenta is a research study that investigates 

the function of machine learning as a system in innovative processes. Driven by 

TensorFlow, Magenta as an open-source is distributed Python libraries to manipulate and 

train machine learning models with music pieces or image data, for using them to create 

new content (Waite, 2016).  The python library that is used by Magenta is 

(melodies_lib.py), and it converts the file into melody format, considering all 128 

equivalent numbers in pianoroll representation as shown in Figure 4.6,  0 to 127 = note-on 

even, -2 = no event, and -1 = note-off event. The feature that distinguishes Melody 

encoding from its pianoroll format counterpart is holding the (note-on) for the entire 

duration of the note; melody does not hold while pianoroll does (Roberts, 2019).  
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4.6 Preprocessing 

 

All processes and techniques that are applied to the dataset and precede the training and 

generating processes can be measured as a vital part of any ML problem, especially its DL 

main branch techniques problems.  It is clear that preparing the data and identifying its 

diagnostics will have an effective effect on the models that we gain from the training 

process and in turn on generated melodies. So it is important to have sufficient and 

abundant information about the characteristics of the data we have used. Any changes in 

these specifications, even if they are minor, will greatly affect the overall results (De 

Coster, 2017). 

 

For preprocessing the datasets we have preceded the following operation steps: 

1. Files with (.mid) extensions have been extracted from the dataset. The single genre 

(Folk) dataset contains (45,849) midi file songs and the multi-genre (Hook) dataset 

has (19,877) multi-structure midi song tracks 

2. MIDI files with three and more staves (instruments) have been eliminated, only 

those with two instruments remained and we have assumed that the first staff 

contains a melody part and we deleted the second staff which usually contains 

chords, that’s for selecting only the monophonic melodies (music that is written for 

only one voice or part) to train and obtain our models, this represented as an 

essential part of our project problem statement. Choosing only the melody part is to 

ensure to train our systems only on melodies to generate later monophonic music 

samples in the sampling processing stage. Concerning the hook multi-genre dataset, 

we obtained (17,954) songs after applying these criteria, but the Folk single dataset 

had (45,849) songs. 

3. The remained dataset has been filtered and only those melodies have been selected 

which have a four-by-four (4/4) key signature, to simplify the learning. In this case, 

our systems will focus on learning only one type of rhythm, which is the most 

common time signature in popular and traditional music genres, especially in 

western music. In this stage, the remaining 4/4 key signature songs from the Hook 

dataset were (16,386) songs, and (24,234) four by four songs remained from the 

Folk dataset. 



 

58 
 

4. With the quantization process, we have converted all notes with triple duration to 

the nearest eighth or sixteenth note length. 

5. We have transposed the keys of all chosen monophonic melodies to only “C” major 

and its related minor, “A” minor Key (Do Major and La Minor) as done in, this step 

is also proposed to let our systems focus on only one scale major type and its 

relative minor key instead of learning twelve existent keys in western music (Ycar 

et al., 20017; Hadjeres and Nielsen, 2017; Simon et al., 2018). Transposed dataset 

melodies to all keys and the results were lower learning with the same amount of 

time as described by (De Coster, 2017). It was because the network now wants to 

learn musicality patterns at the same time across multiple keys. 

6. By detecting the number of used notes in songs and determining the vocabulary 

ranges (minimum and maximum notes) we have fined that the Folk dataset has a 

vocabulary of (58) used notes while the Hook dataset has (90) used pitches. We 

know that the standard MIDI pitches number is (127) pitches. Through this 

preprocessing step we let the systems focus on the only used notes which are less 

than the standard midi notes in both datasets. This means maximizing the total use 

of data memory, speeding up the learning process, as the model does not need to 

learn about the pitches that are not used. 

7. Musical works with 4 bars are generally felt by listeners as either an ending or a 

turning point in the music (Kitagawa, 1999). Then by moving a 4-bar window at a 

time across each file, with a 1-bar step length, we have created multiple 4-bar 

sequences. This implies, for example, that a 5 to 8 bar MIDI file will have two 4-

bar sequences, and a 9 to 12 bar file will have 3 bars, and so on. In this stage with 

the use of the two common encoding formats; pianoroll and Melody which have 

been explained earlier in this chapter, (93,667) 4-bar sequences from the multi-

genre Hook dataset and (100,000) sequences from single genre Folk dataset have 

been obtained. 

8.  Five songs randomly as original songs from the single-genre dataset have been 

selected for comparison with five generated samples in the Human Evaluation 

section in chapter 5. 

All codes related to the dataset preprocessing are settled in Appendix 1, and the workflow 

of the preprocessing can be summarized in Figure 4.8.  



 

59 
 

 

Figure 4.8: Preprocessing workflow.  

MIDI files: single-genre (Irish Folk) and multi-genre (Classic, Jazz, Rock, 

Pop, Folk, etc.) songs. 

Eliminate songs with three and more tracks (instruments or staves). 

Deleting the second track to obtain monophonic melody. 

Filtering only 4/4 time signature songs. 

Quantizing all remaining songs to minimum 16
th

 notes length. 

Transposing all songs to C major and Aminor scale. 

Splitting songs to 4 bars sequences: 100,000 sequences obtained from single-

genre, and 93,667 sequences from multi-genre datasets. 

Encoding MIDI files: converting to machine language. 

Pianoroll encoding format, using 

Pypianoroll Python library. 

Magenta melody format, using 

Magenta library. 

  Recurrent Neural Networks training processes 
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CHAPTER 5 

RESULTS AND DISCUSSION 

 

 

A methodology and the architecture of models for monophonic music generation and 

methods of evaluation have been presented in chapter 3 with the thorough detail of all 

seven trained models architecture, each with its own meta-parameters and preprocessed 

approaches as well its dataset type which trained on it. In this chapter, the results of these 

methods and their related tables and plots have been presented and discussed. A series of 

trials to train the models are performed, a workflow of processes and some important codes 

related to these issues are settled in Appendix 1, and screenshot samples of implementation 

have been fixed in Appendix 2. The results are given and evaluated, and the quality of the 

generated samples is measured and defined, as well as the accuracy of the models is 

discussed. 

 

5.1 Results 

 

Through the models analysis and objectively comparing them to each other via their 

generated melodies with the assist of experts in the field of music and composing 

melodies, as well as through analysis of the results of the charts and the values of the losses 

functions and the models' accuracies which obtained from the implementation of the codes 

for each model, the good investigation can be obtained, and the impacts of changing each 

independent variables in the models on the generated melodies can be felt and have been 

verified as follow. 

 

5.1.1 Format encoding impacts 

 

The comparison has been applied between two models, No.1 with No.2 and No.3 with 

No.4 for revealing the influence of format encoding on the overall processes and the 

quality of the melody samples that are generated. The only difference between these two 

models architecture is the encoding format, all things are the same except the ways have 

been used for encoding the MIDI songs from the dataset, two approaches have been used 
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for this purpose, the first is the same as proposed by Google magenta which is melody 

format encoding applied to model No.1 (Waite, 2016), and the second approach is 

pianoroll format encoding which is applied to model No.2. By comparing loss graphs of 

these two models as shown in Figure 5.1, the important result has been noticed; the 

stagnation of validation loss at (0.45508) after five epochs and did not reduce due to the 

overfitting early when the model with pianoroll encoding trained, while the model with 

melody format achieves a lower validation loss of (0.27749), this means that this model 

has learned more than the other one.  

 

 

 

  

(a) Loss graph for melody encoding (b) Loss graph for pianoroll encoding

Figure 5.1: Loss graphs for models No.1 and No.2. 

 

 

 

Thus, by making a comparison between the tunes that have been gotten from these two 

models themselves as well as with the seed sample, as shown in Figure 5.2, and through 

the analysis of music experts, the following inferences as shown in Table 5.1 have been 

grasped, and the conclusion is that the magenta melody format encoding has better learning 

ability at the sequencing of melodic steps. It is better than the pianoroll format encoding. In 

other words, model No.1 is better. 
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Table 5.1: Experts objectively comparison for revealing the encoding influences. 

 

 

 

Samples generated with trained 

model No.1, melody encoding 

Samples generated with trained 

model No.2, pianoroll encoding  

Tempo Same as the seed sample and 

training set 120 Beats/minute 

Same as the seed sample and 

training set 120 Beats/minute 

Time 

signature 

Same as the seed sample and 

training set, 4/4 

Same as the seed sample and 

training set, 4/4 

Vocabulary 

range 

A smaller range of notes has been 

used, hence can be said it is 

closer to the seed sample. 

A larger range of notes is used, 

hence can be said it is further 

from the seed sample. 

Note time 

range 

The smaller range has been used; 

dotted quarter, quarter, and eighth 

notes. 

The larger range between a whole 

note and sixteenth notes has been 

used. 

Key 

signature / 

Scale 

Same as the seed sample or 

training set songs (C major or A 

minor) 

Differ from the seed sample or 

training set songs there are some 

notes out of the scale range of (C 

major or A minor) 

Melodically Melodically samples are nearer to 

the seed sample and training set 

songs (Irish folk). 

Less melodic characteristic 

samples. 

Rhythmically Less rhythmic characteristic 

samples. 

More rhythmical samples. They 

are closer to classical music than 

simple folk songs. 
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(a) The seed sample used in sampling processes 

 

 

 

 

 

(b) Melody samples generated by the use of trained Model No.1 (melody encoding). 

 

 

 

 

 

(c) Melody samples generated by the use of trained Model No.2 (pianoroll encoding). 

 

 

Figure 5.2: Seed and generated samples for showing format encoding impacts. 
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5.1.2 Dataset nature impacts (Single-genre vs Multi-genre) 

 

The distinction between two trained models, No.1 and No.3, has been extended to expose 

the effect of the style of the dataset on the overall processes and the nature of the produced 

melody samples. They have exactly the same architecture design but trained on two 

different datasets stylistically. The significant and predicted outcome was found by 

comparing loss graphs of these two models No.1 and No.3 as seen in Figure 5.3 due to the 

mixture of songs in the multi-genre dataset; stagnation of validity loss at (0.38790) and did 

not decrease due to early overfitting. But the model trained on the homogenous property 

single-genre dataset achieves a lower validity loss of (0.27749), which suggests that more 

has been learned from this model. 

 

 

 

  

(a) Loss graph for Single-genre (b) Loss graph for Multi-genre

Figure 5.3: Loss graphs for models No.1 and No.3. 

 

 

 

Therefore, in Table 5.2, and through the music experts study, the following inferences have 

been contrasted among the tunes generated by the models themselves and the seed sample 

which is shown in Figure 5.4. Hence we can conclude that model No.1 learned more, and 

has better results due to training on the single-genre dataset, it is better at mimicking the 

characteristics associated with the pitch if compared with model No.3 which is trained on a 
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multi-genre dataset. Clearly, we can see that the model has a weak ability to mimic both 

the dataset's pitch and rhythmic aspects. This is the same as humans learning to compose a 

melody. The one who studies and attempts to learn a type of music will learn better than 

the one who tries to learn several styles in the same period. 

 

 

 

Table 5.2: Experts objectively comparison for revealing the dataset nature influences. 

 

 

 

Samples generated with trained 

model No.1 on the Single-genre 

dataset 

Samples generated with trained 

model No.3 on the Multi-genre 

dataset 

Tempo Same as the seed sample and 

training set 120 Beats/minute 

Same as the seed sample and 

training dataset 120 Beats/minute 

Time 

signature 

Same as the seed sample and 

training set, 4/4 

Same as the seed sample and 

training dataset, 4/4 

Vocabulary 

range 

A small range of notes have been 

used, hence can be said it is 

closer to the seed sample and the 

training set. 

A larger range of notes is used 

same as the training set which has 

a larger vocabulary range, but far 

from the seed sample nature. 

Note time 

range 

The smaller range has been used; 

dotted quarter, quarter, and eighth 

notes. 

The larger range has been used; 

the sixteenth notes can be seen as 

well. 

Key 

signature / 

Scale 

Same as the seed sample or 

training set songs (C major or A 

minor). 

There are a few false notes out of 

the scale of the seed sample. 

Melodically Melodically the samples are 

closer to the seed sample and 

training set songs (Irish folk; 

single-genre). 

Melodically the samples have 

both characteristics of the seed 

sample and training set songs 

(multi-genre). 

Rhythmically Less rhythmic. More rhythmic.  
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(a) The seed sample used in sampling processes 

 

 

 

 

 

(b) Melody samples generated by the use of trained Model No.1 (Single-genre). 

 

 

 

 

 

(c) Melody samples generated by the use of trained Model No.3 (Multi-genre). 

 

 

Figure 5.4: Seed and generated samples to show dataset nature impacts.  
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5.1.3 RNN type impacts (LSTM vs GRUs) 

 

The aim of the comparison between trained models, No.1 and No.7, is to determine the 

influences of the accuracy of the two main modified and improved types of Recurrent 

Neural Network; LSTM and GRUs, both of them trained on the same dataset and with the 

same computation resources. Via the investigation and comparing their loss graphs as 

shown in Figure 5.5, this fact can be noticed; There is no significant difference between the 

results for the two models both models validation loss reached nearly 0.2, but the model 

with GRUs architecture needs less time to lean same as the model with LSTM design.  

 

 

 

  

(a) Loss graph for LSTM (b) Loss graph for GRUs

Figure 5.5: Loss graphs for models No.1 and No.7. 

 

 

 

Thus by comparing the tunes derived from these two models themselves as well as the seed 

melody, as seen in Figure 5.6, and by evaluating the music experts, the music samples 

generated by both models are so closer to each other and has the same structure as the seed 

sample as well as the training set songs, except the existing the one false tone out of the 

chosen scales (C major and A minor) in the second sample of the model No.7 (GRUs). So 

we can conclude that Model No.1 (LSTM) has results of generated melody slightly better.  
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(a) The seed sample used in sampling processes 

 

 

 

 

 

(b) Melody samples generated by the use of trained Model No. 1. 

 

 

 

 

 

 

(c) Melody samples generated by the use of trained Model No.7. 

 

 

Figure 5.6: Seed and generated samples to demonstrate the RNN type impacts. 
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5.1.4 Bi-directional mechanism impacts 

 

The only existing difference in these two trials between both models No.1 and No.5 is that 

the former has a Bi-directional mechanism but the latter’s design is without a Bi-

directional mechanism. By looking closely at their loss graphs in Figure 5.7, we settle that 

they both approximately reached the same value of validation loss, knowing that the first 

model has 128 cells for each layer of its hidden layers, and that is because the cells are 

counted in both directions from the beginning of the hidden layer to the end and back in 

the opposite direction, while the second has just 64 cells. 

 

 

 

  

(a) Loss graph for Bi-directional (b) Loss graph for Non-Bi-directional

Figure 5.7: Loss graphs for models No.1 and No.5. 

 

 

 

Here the goal is to compare the effect of the Bidirectionality on the generated melody 

results that shown in Figure 5.8, via the experts' assessment and from their summaries 

fixed in Table 5.3, we can infer that the melodies produced by model No.1 with Bi-

directional mechanism are better than those generated by model No.5, which has no Bi-

directional mechanism. The Bi-directional model generates pieces that tend to match the 

melodic structure of the seed sample structure more effectively. More detail on this 
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mechanism in chapter 3, section 3.4. The key inference is that, with the use of Bi-

directionality, doubling the number of cells increases the consistency of the samples. 

 

 

 

Table 5.3: Experts objectively comparison for revealing the Bidirectionality influences. 

 

 

 

Samples generated with trained 

model No.1 using the Bi-

directional mechanism 

Samples generated with trained 

model No.5 without using the 

Bi-directional mechanism 

Tempo Same as the seed sample and 

training dataset 120 Beats/minute 

Same as the seed sample and 

training dataset 120 Beats/minute 

Time 

signature 

Same as the seed sample and 

training dataset, 4/4 

Same as the seed sample and 

training dataset, 4/4 

Vocabulary 

range 

Approximately one octave (12-13 

notes) has been used 

One and have octaves(20-21 

notes has been used 

Note time 

range 

So close to the seed sample as 

well as the training set. 

So close to the seed sample as 

well as the training set. 

Key 

signature / 

Scale 

Same as the seed sample or 

training set songs (C major or A 

minor). 

There are some notes out of the 

scale range of (C major or A 

minor). 

Melodically They have an emotional effect, 

musically more close to 

monophonic folk songs. 

They have an emotional effect 

musically but not much as model 

No.1 results. More repeating 

tones can be seen. 

Rhythmically Less rhythmic character melodies 

like the properties of the seed 

melody and training set folk 

songs. 

Same as results in model No.1 
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(a) The seed sample used in sampling processes 

 

 

 

 

 

(b) Melody samples generated by the use of trained Model No.1 (Bi-directional). 

 

 

 

 

 

(c) Melody samples generated by the use of trained Model No.5 (Non-Bi-directional). 

 

 

Figure 5.8: Seed and generated samples to demonstrate Bidirectionality impacts. 
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5.1.5 Attention mechanism impacts 

 

Models No.5 differs from model No.6 in the architecture design, the former has an 

Attention mechanism, but the latter is without it. By observing their loss graphs in Figure 

5.9, we determine that both models achieved the same amount of validation loss roughly. 

But their generated samples as shown in Figure 5.10 did not have the same musical quality 

as analyzed and compared by the experts. We can notice that model No.6 did not learn to 

mimic the key signature of the trained set and the seed sample (C major or A minor), due 

to lack of Attention, each sample has a different scale and dissimilar key signature, They 

are similar to atonal music, not melodically the same as the seed sample and training set 

songs (Irish folk). “Atonality is simply the absence of tonality, tonality being the musical 

system based on major and minor keys” (Miles Hoffman, 2018). The samples were 

generated through model No.5 melodically they are more similar to the seed sample and 

training set songs (Irish folk), they are more emotional and closer to tonal music with a few 

dissonance tones. In conclusion, we can decide that the model with the Attention 

mechanism has better-generated samples and the model has been learned more than the 

other one that has no Attention mechanism. It keeps the seed sequence composition much 

better. For more detail about this mechanism see chapter 3, section 3.5, and chapter 2 

section 2.1.2.9 

 

  

 

  

(a) Loss graph for Attention (b) Loss graph for Non-Attention

 

Figure 5.9: Loss graphs for models No.5 and No.6 
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 (a) The seed sample used in sampling processes 

 

 

 

 

 

(b) Melody samples generated by the use of trained Model No.5 (Attention). 

 

 

 

 

 

 (c) Melody samples generated by the use of trained Model No.6 (Non-Attention). 

 

 

Figure 5.10: Seed and generated samples to demonstrate Attention mechanism impacts. 
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5.1.6 Bi-directional & Attention impacts 

 

The comparison has been applied between two models, No.1 and No.6 for revealing the 

influence of two important mechanisms together on the overall processes and the quality of 

the melody samples that are generated. From comparing their loss graphs as shown in 

Figure 5.11, we cannot observe a big distinction except the relation between the learning 

rate and the change of losses. Hence the fixed learning rate can be noticed in the case of 

model No.6 while losses decrease. Both trained models tend to reduce validation loss from 

infinity nearly to 0.2. Therefore with the aid of expert analysis, many differences can be 

observed: the samples related to the model without using both mechanisms have Atonal 

properties, the scale is not the same as the seed or the training set. The trained model could 

not mimic the melodic structure of the training set; the results have different key 

signatures, as well as rhythmically the samples are not related to the original dataset or the 

seed sample, see Figure 5.12. In conclusion, we can adopt that the model with the 

Attention mechanism and Bidirectionality keeps the seed sequence composition much 

better and has better generated samples. The model has been learned more than the other 

one that has no these two mechanisms. 

 

 

 

  

(a) Loss graph for Bi-directional & 

Attention 

(b) Loss graph for Non-Bi-directional & 

Non-Attention

 

Figure 5.11: Loss graphs for models No.1 and No.6. 
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(a) The seed sample used in sampling processes 

 

 

 

 

 

(b) Melody samples generated by the use of trained Model No. 1 (Bi-directional &  

Attention). 

 

 

 

 

 

(c) Melody samples generated by the use of trained Model No. 6 (Non-Bi-directional & 

 Non-Attention). 

 

 

Figure 5.12: Seed and generated samples to show Bi-directional & Attention impacts. 
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5.2 Human Evaluation 

 

For the purpose of audience qualitatively assessment of melody samples generated via the 

proposed model, as well as to determine the participant's background musically knowledge 

and expertise. We prepared a specific survey form for assessing melodies subjectively and 

defining the assessor listener’s grade in the music industry. The form which is shown in 

Appendix 3, attached with the mixture of (10) four bars length melodies made up of (5) 

melodies from the original training set selected randomly and (5) melodies generated from 

model No. 1 which is trained on the folk dataset that encoded with magenta melody format 

as advanced by the Magenta team (Waite, 2016), assuming that this model is the best 

model which assessed its generated melodies by proficiencies, and it has the following 

architecture: 

 Input Layer has (63) time steps and 58 vocabulary sizes from the melody encoding 

format of the folk data set. 

 2 layers of Bi-directional LSTM, each with (64) cells and (0.4) dropout rate. 

 On top of the second layer, the attention layer has been applied. 

 (One) time step and (58) vocabulary size of the output layer. 

 

It’s important to note that the model was optimized with an Adam optimizer with a (0.005) 

learning rate, and was trained for 50 epochs. For generating samples with the temperature 

equals to 1(the effect of temperature values have been explained in Section 3.7), we have 

selected 4 bars of the melody from the same genre that the model trained with as a seed 

sequence. This helps the model to generate samples of greater quality. The seed was in D 

major with the name “The Banks of the Ilen” (https://thesession.org/ Retrieved 11 June 

2020). 

 

Participants were asked to listen to the mixture of the samples and to answer the questions. 

Of course, the first one is about the rhythmic stability of melodies as they inquire if they 

should tap along with the melodies. Aniruddh et al., (2009) identified that humans have a 

high degree of flexibility in synchronizing Beat Perception; they can easily synchronize 
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with music rhythm through a variety of body parts movements such as head bobbing, foot, 

hand and finger tapping, side-to-side lilting, etc.  

Also, the audience was asked to answer the latter question about how they affect 

emotionally just after listening to the melodies. This is for the aim of targeting the melody 

content itself. The overall grades, as done by (Huang et al., 2020) were on a Likert scale of 

5 points. In chapter 3 there is a detailed explanation of this survey methodology.   

 

5.2.1 Survey analysis and results:  

 

We will try to discuss and give appropriate graphs and plots of the results in this section 

after collecting (50) answered forms (see Appendix 3) and implementing the respective 

codes (see Appendix 1). From Figure 5.13, due to their skill rate, we can see the 

distribution of participants, for each level we have 10 persons. 1 is representing the lowest 

level and 5 is the highest musical experience level. 

 

 

 

 

Figure 5.13: Distribution of participants according to experience levels. 
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The difference in the assessment of the generated samples can be perceived in terms of 

participant’s musical expertise when the overall collected forms have been classified into 

two main groups; group1 consists of the participants with level 1 and level 2 which 

demonstrate in general the low expertise level. Thus the remaining levels from 3 to 5 are 

categorized as group2 and it represents the high-level expertise level participants. 

Statistically, table 5.4 has been shown the results, as well as Figure 5.14, represents the 

results in a bar plot of mean and standard deviation.  Both groups felt the difference 

between the original and produced models, albeit with a slight difference. They do not give 

high rates to all samples. This is due to the influence of eastern culture on the participants' 

taste for music; we know that both groups of the samples have a western musical character. 

In high-level group 2, the standard deviation for the assessment is lower than in the low-

level group, explaining that the score is accurate.  

 

 

 

Table 5.4: Evaluation results of the participants per group experience level. 

 

participants per low & high groups Mean SD 

 
Group 1 per original rhythm stability 3.950 1.052 

Group 1 per generated rhythm stability 3.770 1.112 

Group 1 per original melody pleasing 3.840 1.037 

Group 1 per generated melody pleasing 3.650 1.081 

 
Group 2 per original rhythm stability 3.960 0.965 

Group 2 per generated rhythm stability 3.693 1.064 

Group 2 per original melody pleasing 3.840 1.020 

Group 2 per generated melody pleasing 3..667 1.056 
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Figure 5.14: Participants’ evaluation results per low and high experience level. 

 

 

 

The overall assessment by the participants, rhythmically and melodically, also represents 

the convergence of the results of mean and standard deviation values as shown in both 

Table 5.5 and Figure 2.15; there is a slight distinction between the results, this means that 

the generated samples from the model are so close to the original songs. 
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Table 5.5: Evaluation results of all participants. 

 

All participants Mean SD 

 
Rhythm stability per original samples 3.956 1.001 

Rhythm stability per generated samples 3.724 1.084 

 
Melody pleasing per original samples 3.840 1.027 

Melody pleasing per generated samples 3.660 1.066 

 

 

 

 

Figure 5.15: The overall participant evaluation results  
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By looking at Table 5.6, we infer that by comparing the mean values of the generated 

sample with original training set samples for both evaluation, rhythmically (3,820 to 3,420) 

and melodically (3,780 to 3,420), the highest level participants assessed the greater 

discrepancy between generated and original samples see Figure 5.16. 

 

 

 

Table 5.6: Evaluation results of all participants per each experience level. 

 

Participants per experience level Mean SD 

 
Level 1 per original rhythm stability 3.780 1.082 

Level 1 per generated rhythm stability 3.560 1.169 

Level 1 per original melody pleasing 3.700 0.964 

Level 1 per generated melody pleasing  3.300 1.100 

   
Level 2 per original rhythm stability 4.120 0.993 

Level 2 per generated rhythm stability 3.980 1.010 

Level 2 per original melody pleasing 4.00 1.086 

Level 2 per generated melody pleasing 4.100 0.938 

 
Level 3 per original rhythm stability 3.600 0.922 

Level 3 per generated rhythm stability 3.940 1.114 

Level 3 per original melody pleasing 3.760 1.047 

Level 3 per generated melody pleasing 3.960 1.011 

 
Level 4 per original rhythm stability 3.960 1.019 

Level 4 per generated rhythm stability 4.060 0.925 

Level 4 per original melody pleasing 3.800 1.058 

Level 4 per generated melody pleasing 3.820 1.033 

 
Level 5 per original rhythm stability 3.820 0.931 

Level 5 per generated rhythm stability 3.420 1.041 

Level 5 per original melody pleasing 3.780 0.944 

Level 5 per generated melody pleasing 3.420 1.079 
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Figure 5.16: Participants’ evaluation results for each experience level. 

 

 

 

As a whole conclusion giving the small rates to all generated as well as original melodies, 

in melodically and rhythmically assessment is due to the influence of eastern culture on the 

participants' taste for music; we know that both groups of the samples have a western 

musical character. The final judgment would be that the samples generated are slightly less 

musically enjoyable and also slightly less rhythmically balanced for audiences. This leads 

to infer that model No.1 of two layers of Bi-directional LSTM, 64 cells for each with 

applying Attention mechanism on single-genre dataset has satisfactory results in generating 

monophonic music. This was concluded also in both expert's evaluation and through the 

analysis of the training and validation losses previously in this section.   
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CHAPTER 6 

CONCLUSION  

 

 

The main goal of this project is to delve into the study of how to use Artificial Intelligence 

deep learning techniques, for the purpose of generating and composing monophonic music, 

by designing models using the Python programming language and its own libraries in this 

field and trying to teach the models on different datasets in terms of the style (single-genre 

and multi-genre) to determine More efficient and effective techniques, and also to 

demonstrate effects of some independent variables such as (magenta melody and pianoroll 

format encoding, Bidirectionality and Attention mechanism, RNN types, and datasets 

nature) on the dependent variable (the generated melody). For these purposes, seven 

models, each with a different architecture design have been used and trained on a specific 

type of dataset to learn and to generate new melody samples, the results have been 

analyzed and comparison has been done between samples of the models with the assist of 

academic musicians and experts composers, as well as a survey has been conducted to 

evaluate subjectively the generated music samples by the best model selected via the 

musician experts assessment. 

 

In conclusions, In case of using the same independent variables except for encoding format 

of dataset MIDI songs which trained the model on it, the generated melodies outcome with 

pianoroll encoding format has more rhythmically enhancement melodies comparing with 

magenta melody encoding format result samples, but melodically, the latter has better 

emotional melodies and so closer to trained dataset and the seed sample.  

 

For studying the influence of the dataset specifications on the generated melody samples 

quality, dealing with two sets of data that varied in stylistic homogeneity (single-genre and 

multi-genre) for training has been tackled. So we can conclude that the produced melodies 

have a more melodic and sensitive personality when the model trained on single-genre 

folk. 

As a result, the fact which has been formulated is that the use of 2 layers Bi-directional 

LSTM with attention mechanism is a very promising candidate for generating emotional 
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melodies similar to the original dataset and the used seed sample and relatively close to 

GRUs results. In the case of using GRUs, the training process has been stopped at 35 

epochs judging by the validation loss behavior compared with the same design with 

LSTM; this means GRUs needs less implementation time for achieving relatively same 

results. Conclude point here is that the LSTM outperforms the GRUs with similar global 

architecture meta-parameters but more training time and epoch’s number. 

 

Bidirectionality and attention mechanisms have a positive impact on models learning 

capability, significantly the better melodic structure samples have been produced by 

models with the use of these two great mechanisms. Exactly as deduced and proven by 

Magenta, the results with the model which is used attention makes it possible for the model 

to learn longer-term dependencies and can produce melodies with longer themes 

effortlessly. This is because, without storing information in the RNN cells; Attention helps 

the model to handle past information more efficiently and effectively.  

 

Future Project Expansions 

 

Here is the list of possible future works of this thesis project: 

 Designing models using a combination of RNN hidden layers, for example 

combining BLSTM with BGRUs. 

 Training models with different augmentation of different key signature melodies 

to improve generated sample results harmonically. 

 Training models on multiple tracks/instruments and generating the same melodies 

(Homophonic, Polyphonic, and Heterophonic) 

 Designing models for dealing with Eastern musical scales. 

 Training using Eastern melody datasets. 

 Using encoder-decoder architecture with sequence to sequence methodology. 

 Using a dataset with other music notations and representations than MIDI. 

 Incorporating dynamics and emotional expression of notes to expand this project to 

deal with human feelings. 

 Testing models with different Temperature values in the generating phase. 
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For the thesis project entitled “Monophonic Music Generation using Artificial Intelligence 

through Deep Learning Techniques”, the researchers declare that they did not collect any 

data from human/animal or any other subjects. Therefore, this project does not need to go 

through the ethics committee evaluation. 

 

 

Title: Prof. Dr. 

 

Name Surname: Rahib Abiyev   
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Role in the Research Project: Supervisor 
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APPENDIX 2 

Similarity Report 
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APPENDIX 3 

Workflow & Implemented Codes Samples 

 

 

 

 

 

 

 

 

Preprocessing codes: 

 

# filter_4/4.py  

import os 

import tqdm 

import pretty_midi 

import glob 

 

def filter_midis(files, dst): 

    """for each file, check if timing is only 4/4 and there is only one 

track 

    Then save the ones in dst folder""" 

    print('filtering to 4/4...') 

    for fpath in tqdm.tqdm(files): 
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        pm = pretty_midi.PrettyMIDI(fpath) 

        if len(pm.time_signature_changes) == 1: 

            ts = pm.time_signature_changes[0] 

            if ts.numerator == 4 and ts.denominator == 4: 

                # single track 

                if len(pm.instruments) == 1: 

                    fname = fpath.split(os.path.sep)[-1] 

                    pm.write(os.path.join(dst, fname)) 

 

def main(files, dst): 

    filter_midis(files, dst) 

 

 

# transpose.py to C-major and A-minor 

import os 

import sys 

from glob import glob 

 

import music21 

import numpy as np 

from tqdm import tqdm 

 

 

majors = dict([("A-", 4),("G#", 4),("A", 3),("A#", 2),("B-", 2),("B", 

1),("C", 0),("C#", -1),("D-", -1),("D", -2),("D#", -3),("E-", -3),("E", -

4),("F", -5),("F#", 6),("G-", 6),("G", 5)]) 

minors = dict([("G#", 1), ("A-", 1),("A", 0),("A#", -1),("B-", -1),("B", 

-2),("C", -3),("C#", -4),("D-", -4),("D", -5),("D#", 6),("E-", 6),("E", 

5),("F", 4),("F#", 3),("G-", 3),("G", 2)]) 

 

 

def main(files, dst_dir): 

    print('transposing...') 

    for file in tqdm(files): 

        # transpose 

        score = music21.converter.parse(file) 

        key = score.analyze('key') 

        if key.mode == "major": 

            halfSteps = majors[key.tonic.name] 

 

        elif key.mode == "minor": 

            halfSteps = minors[key.tonic.name] 

 

        newscore = score.transpose(halfSteps) 

 

        file = os.path.abspath(file) 

        unique_name = ''.join(file.split(os.path.sep)[-

1].split(".mid")[:-1]) 

        new_file_path = os.path.join(dst_dir, unique_name + 

"_transposed.mid") 

        newscore.write("midi", new_file_path) 
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# procedure.py  

import subprocess 

from glob import glob 

import os 

import filter_four_four 

import numpy as np 

import encode 

import transpose 

import monophonize 

import sys 

import encode_pianoroll 

import comparisons 

 

sys.path.append("/Users/arasharif/opt/anaconda3/envs/magenta/lib/python3.

7/site-packages/note_seq") 

 

from melody_encoder_decoder import MelodyOneHotEncoding 

 

 

def main(top_dir, max_sequences, nr_bars, bar_len, max_seq_len): 

        # original midi files 

    orig_dir = os.path.join(top_dir, '1_Origin') 

    orig_dir_glob = os.path.join(orig_dir, "*.mid") 

     

    # contains 4/4 only midis 

    four_four_dir = os.path.join(top_dir, "2_fourfour") 

    if not os.path.exists(four_four_dir): 

        os.mkdir(four_four_dir) 

     

    # contains the transposed midi files 

    transposed_dir = os.path.join( 

        top_dir, "3_transposed") 

    if not os.path.exists(transposed_dir): 

        os.mkdir(transposed_dir) 

 

    # contains the transposed, monophonic melodies files 

    monophonic_dir = os.path.join( 

        top_dir, "4_mono" 

    ) 

    if not os.path.exists(monophonic_dir): 

        os.mkdir(monophonic_dir) 

 

    # 100 random files to be used in evaluation 

    comparison_dir = os.path.join(top_dir, "7_comparison") 

    if not os.path.exists(comparison_dir): 

        os.mkdir(comparison_dir) 

 

    # contains the transposed, split, magenta one hot encoded dataset 

    # as a big mmap file 

    magenta_dir = os.path.join(top_dir, "5_encoded") 

    if not os.path.exists(magenta_dir): 

        os.mkdir(magenta_dir) 

 

    pianoroll_dir = os.path.join(top_dir, "6_pianoroll") 

    if not os.path.exists(pianoroll_dir): 

        os.mkdir(pianoroll_dir) 
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    magenta_dataset_file = os.path.join(top_dir, "dataset.dat") 

 

    pianoroll_dataset_file = os.path.join(top_dir, "pianoroll.dat") 

 

    # FILTER TO 4/4 ONLY 

    four_four_dir_files = glob(os.path.join(four_four_dir, "*.mid")) 

    if len(four_four_dir_files) == 0: 

        orig_files = glob(orig_dir_glob) 

        filter_four_four.main(orig_files, four_four_dir) 

    else: 

        print('skipping filtering to 4/4 as directory %s is not empty' % 

              four_four_dir) 

 

    # TRANSPOSE THE 4/4 MIDI FILES 

    transposed_files = glob(os.path.join(transposed_dir, "*.mid")) 

    if len(transposed_files) == 0: 

        transpose.main( 

            glob(os.path.join(four_four_dir, "*.mid")), 

            transposed_dir 

                ) 

    else: 

        print("skipping transposing as %s is not empty" % transposed_dir) 

     

    # monophonize 

    mono_files = glob(os.path.join(monophonic_dir, "*.mid")) 

    if len(mono_files) == 0: 

        monophonize.main( 

            glob(os.path.join(transposed_dir, "*.mid")), 

            monophonic_dir 

                ) 

    else: 

        print("skipping monophonize as %s is not empty" % monophonic_dir) 

 

    # choose 100 random samples, take first 4 bars 

    mono_files = glob(os.path.join(monophonic_dir, "*.mid")) 

    comparisons.main( 

        mono_files, 

        comparison_dir 

    ) 

 

    encoder = None 

    min_note = None 

    max_note = None 

    # ENCODING AND SPLITTING THE TRANSPOSED MIDIs INTO MAGENTA FORMAT AND 

THEN 

    # CREATING ONE BIG MMAP FILE OF ONE-HOT ENCODED SEQUENCES 

    if len(glob(os.path.join(magenta_dir, '*.npy'))) == 0: 

        encoder = encode.main( 

            glob(os.path.join(monophonic_dir, "*.mid")), 

            magenta_dir, 

            nr_bars, 

            max_seq_len, 

            bar_len 

        ) 

    else: 

        print('skipping encoding into melody as directory %s was not 

empty' %magenta_dir) 
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    min_note, max_note = np.load(os.path.join(top_dir, 'min_max.npy')) 

    encoder = MelodyOneHotEncoding(min_note, max_note+1) 

 

    if not os.path.exists(magenta_dataset_file): # dat file doesnt exist 

        encode.dat_file( 

            glob(os.path.join(magenta_dir, "*.npy")), 

            max_sequences, 

            magenta_dataset_file, 

            max_seq_len, 

            encoder 

        ) 

        print('dataset at ', magenta_dataset_file) 

    else: 

        print('skipping creating dataset file as %s exists' 

%(magenta_dataset_file)) 

 

    ## encode into pianoroll 

    if len(glob(os.path.join(pianoroll_dir, "*.npy"))) == 0: 

        encode_pianoroll.main( 

            glob(os.path.join(monophonic_dir, "*.mid")), 

            pianoroll_dir, 

            nr_bars, 

            max_seq_len, 

            bar_len, 

            min_note, 

            max_note 

        ) 

    else: 

        print('skipping encoding into pianoroll as directory %s was not 

empty' %pianoroll_dir) 

 

    if not os.path.exists(pianoroll_dataset_file): # dat file doesnt 

exist 

        encode_pianoroll.dat_file( 

            glob(os.path.join(pianoroll_dir, "*.npy")), 

            max_sequences, 

            pianoroll_dataset_file, 

            max_seq_len, 

            min_note, 

            max_note 

        ) 

        print('dataset at ', pianoroll_dataset_file) 

    else: 

        print('skipping creating dataset file as %s exists' 

%(pianoroll_dataset_file)) 
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Training Model Codes: 

 

# config.py for  configuration 

import os 

 

EPOCHS = 50 

BATCH_SIZE = 128 

 

datasets = { 

    "folk_melody": { 

        "path": 

"/Users/arasharif/Desktop/Ara_Master_Thesis/Folk_Dataset/dataset.dat", 

        "shape":(100000, 64, 58) 

    }, 

    "folk_pianoroll": { 

        "path": 

"/Users/arasharif/Desktop/Ara_Master_Thesis/Folk_Dataset/pianoroll.dat", 

        "shape":(100000, 64, 56) 

    }, 

    "hook_melody": { 

        "path": 

"/Users/arasharif/Desktop/Ara_Master_Thesis/hooktheory_dataset/dataset.da

t", 

        "shape": (93667, 64, 90) 

    }, 

 

    "hook_pianoroll": { 

        "path": 

"/Users/arasharif/Desktop/Ara_Master_Thesis/hooktheory_dataset/pianoroll.

dat", 

        "shape": (95661, 64, 88) 

    }, 

 

# main.py for single-genre dataset  

 

import subprocess 

from glob import glob 

import os 

import filter_four_four 

import encode 

import transpose 

 

import procedure 

 

if __name__ == "__main__": 

    max_sequences = 100000 

    nr_bars = 4 

    bar_len = 16  # based on steps_per_quarter=4 in midi_file_to_melody 

in / Users/arasharif/opt/anaconda3/envs/magenta/gm/melodies_lib.py 

    max_seq_len = nr_bars * bar_len 

 

    # top dir 

    top_dir = "/Users/arasharif/Desktop/Ara_Master_Thesis/Folk_Dataset" 

    procedure.main(top_dir, max_sequences, nr_bars, bar_len, max_seq_len) 
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# main.py for designing &  training  LSTM model. 

 

import sys 

import pickle 

import argparse 

from utils import * 

from callbacks import get_callbacks, delete_epoch_counters 

from glob import glob 

import shutil 

from generator import BatchGenerator 

from keras_self_attention import SeqWeightedAttention 

from sklearn.model_selection import train_test_split 

from build_dataset import min_max_from_folder 

import keras 

import os 

import config 

from architecture import new_architecture 

 

 

def get_data(dataset): 

    dpath = dataset['path'] 

    dataset = np.memmap(dpath, mode="r", 

                        dtype="uint8", shape=dataset['shape']) 

    x = dataset[:, :-1] 

    y = dataset[:, -1] 

    X_train, X_val, y_train, y_val = train_test_split( 

        x, y, test_size=0.2, random_state=42, shuffle=True) 

    print('we have %s training files and %s validation files' % 

          (len(y_train), len(y_val))) 

 

    return X_train, X_val, y_train, y_val 

 

 

def get_model_id(args): 

    # model_multi-genre_melody_bi2lstm64_attention 

    model_id = None 

    if args.new: 

        model_id = "model_" 

        model_id += args.dataset 

        if args.bi: 

            model_id += "_bi" 

        else: 

            model_id += "_" 

         

        model_id += "%slstm%s_" %(args.layers, args.cells) 

        if args.att: 

            model_id += "attention" 

        else: 

            model_id += "noattention" 

        print("generated model id from args: %s" %model_id) 

    else: 

        model_id = args.id 

        print("using existing model id %s" %model_id) 

    return model_id 

 

 

def get_model_dir(args): 

    model_id = get_model_id(args) 

    model_dir = 

os.path.abspath(os.path.join('/Users/arasharif/Desktop/Ara_Master_Thesis', 

model_id)) 

    if os.path.exists(""): 

        model_dir = os.path.join("", model_id) 
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        if not os.path.exists(model_dir): 

            os.mkdir(model_dir) 

    else: 

        if not os.path.exists(model_dir): 

            os.mkdir(model_dir) 

    print('model id: ', model_id) 

    print('model dir: ', model_dir) 

    return model_dir 

 

 

def get_model(args, dshape): 

    model_dir = get_model_dir(args) 

 

    model = None 

    loss = 'categorical_crossentropy' 

    optimizer = keras.optimizers.Adam(lr=0.005) 

 

    if args.new: 

        print('generating NEW model...') 

        model = new_architecture( 

            dshape[1]-1,  

            dshape[2], 

            args.layers, 

            args.bi, 

            args.att, 

            args.cells 

        ) 

        # copy arch to folder 

        shutil.copy('architecture.py', model_dir) 

        model_json = model.to_json() 

        model_json_path = os.path.join(model_dir, "model.json") 

        print('storing model json in %s' % model_json_path) 

        with open(model_json_path, "w") as json_file: 

            json_file.write(model_json) 

        # delete epoch counters 

        delete_epoch_counters(model_dir) 

        model.compile( 

            loss=loss, 

            optimizer=optimizer 

        ) 

 

    else: 

        print('using existing model...') 

        model_json_path = os.path.join(model_dir, "model.json") 

        model = keras.models.model_from_json(open(model_json_path, "r").read( 

        ), custom_objects=SeqWeightedAttention.get_custom_objects()) 

 

        model_weights_path = os.path.join(model_dir, "model.h5") 

        print('loading existing weights from %s...' % model_weights_path) 

        model.load_weights(model_weights_path) 

        model.compile( 

            loss=loss, 

            optimizer=optimizer 

        ) 

 

    print(model.summary()) 

 

    return model, model_dir 

 

 

def get_dataset_name(args): 

    if args.dataset: 

        return config.datasets[args.dataset]  

    elif args.id: 
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        for name in config.datasets.keys(): 

            if name in args.id: 

                print("found name of dataset in model id : %s" %name) 

                return config.datasets[name] 

    else: 

        print("Dataset could not be deduced...") 

        sys.exit(1) 

 

 

def main(args): 

    dataset = get_dataset_name(args) 

    X_train, X_val, y_train, y_val = get_data(dataset) 

    model, model_dir = get_model(args, dataset['shape']) 

 

    verbosity, callbacks = get_callbacks(model_dir, args, model) 

 

    model.fit( 

        X_train, y_train, 

        epochs=config.EPOCHS, 

        batch_size=config.BATCH_SIZE, 

        callbacks=callbacks, 

        validation_data=(X_val, y_val), 

        verbose=verbosity 

    ) 

 

 

if __name__ == "__main__": 

    parser = argparse.ArgumentParser( 

        description="train LSTM model for music generation") 

    parser.add_argument('--id', metavar='id', type=str, 

                        help='model id to load weights if continuing training') 

    parser.add_argument('--new', action='store_true', default=True, 

                        help='whether to load existing weights for model or \ 

                             create new one') 

    parser.add_argument('--tqdm', action='store_true', default=False, 

                        help='whether this is running in a Jupyter environment') 

 

 

    parser.add_argument('--dataset', type=str, 

                        default="folk100k_melody", 

                        help='what dataset to use. Check "config.py" for 

options') 

    parser.add_argument('--layers', type=int, help="nr of layers") 

    parser.add_argument('--bi', action="store_true", help="include 

Bidirectionality wrapper for each layer") 

    parser.add_argument('--att', action="store_true", help="add attention 

mechanism on top of last layer") 

    parser.add_argument('--cells', type=int, help="nr of cells in each layer") 

 

 

    args = parser.parse_args() 

 

    if not args.new and not args.id: 

        print('either continue training a model by using "--id" or train a new 

one by using "--new"') 

        sys.exit(1) 

 

    if args.id and args.new: 

        print('either continue training a model by using "--id" or train a new 

one by using "--new"') 

        sys.exit(1) 

 

    if args.id and not args.new: 

        print('continue training of model %s' %args.id) 
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    if args.new and not args.id: 

        if not args.layers or not args.cells: 

            print('need to specify nr of layers and nr of cells per layer') 

            sys.exit(1) 

        else: 

            print('training a new model...') 

 

    main(args) 

 

 

 

Melodies Generating Codes: 

 

import tensorflow as tf 

import argparse 

import os 

import sys 

from glob import glob 

 

import keras 

import matplotlib.pyplot as plt 

import numpy as np 

import pypianoroll 

from keras_self_attention import * 

from keras_self_attention import SeqWeightedAttention 

from tqdm import tqdm 

 

import config 

import keras.backend as K 

 

from config import datasets 

from generator import * 

from utils import * 

 

sys.path.append("/Users/arasharif/Desktop/Ara_Master_Thesis/") 

sys.path.append("/Users/arasharif/opt/anaconda3/envs/magenta/gm/") 

sys.path.append("Users/arasharif/opt/anaconda3/envs/magenta/lib/python3.7/site-

packages/note_seq") 

 

import melodies_lib 

import midi_io 

import transpose 

 

from melody_encoder_decoder import MelodyOneHotEncoding 

 

def attention_loss(factor=1e-6): 

    def attention_regularizer(y, y_pred): 

        input_len = K.shape(y_pred)[-1] 

        return factor * K.square(K.batch_dot(y_pred, K.permute_dimensions(y_pred, 

(1, 0))) 

                                 - tf.eye(input_len)) 

    return attention_regularizer 

 

def att_model(cells, bi, layers, att): 

     

   

    # cells = 64 

    vocab_size=58 

    # bi = True 
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    # att=True 

    inputs = keras.layers.Input( 

        shape=(63, 58,), name='Input') 

 

    prev = inputs 

    for i in range(layers): 

        ret_seq = True 

        if i == layers-1 and att == False: 

            ret_seq = False 

 

        this_layer = keras.layers.LSTM( 

            cells, 

            dropout=0.4, 

            name='LSTM_%s' %i, 

            return_sequences=ret_seq 

        ) 

        if bi: 

            this_layer = keras.layers.Bi-directional( 

                this_layer, 

                name='bi_%s' %i 

            ) 

        prev = this_layer(prev) 

 

    attention = SeqWeightedAttention( 

        return_attention=True, 

        name='Attention' 

    ) 

    attention_layer = attention(prev) 

    attention_layer, attention = attention_layer 

 

    dense = keras.layers.Dense( 

        vocab_size, activation='softmax', name="dense_outputs")(attention_layer) 

 

    outputs = [dense, attention] 

    model = keras.Model(inputs=inputs, outputs=outputs)    

    model.compile( 

        optimizer='adam', 

        loss={ 

            'dense_outputs':'categorical_crossentropy', 

            'Attention': attention_loss(1e-4) 

        } 

    ) 

    return model 

 

 

 

def get_model(args): 

    model = None 

    modelname = args.model_id 

     

    if modelname == "model_folk_melody_2lstm32_attention": 

        # (100000, 64, 58) 

        model = att_model(32, False, 2, True) 

    elif modelname == "model_folk_melody_bi3lstm64_attention": 

        model = att_model(64, True, 3, True) 

    else: 

        json_model = open(os.path.join(modelname, "model.json"), "r").read() 

        model = keras.models.model_from_json( 

            json_model, custom_objects=SeqWeightedAttention.get_custom_objects()) 

    model.load_weights(os.path.join(modelname, "model.h5")) 

    print(model.summary(line_length=100)) 

    return model 
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def get_dataset(args): 

    dataset = None 

    

    for dset in config.datasets.keys(): 

        if dset in args.model_id: 

            dataset = config.datasets[dset] 

            break 

    dshape = dataset['shape'] 

    print('dataset : %s' % dataset) 

    print(dshape) 

    input_seq_len = dshape[1] - 1 

    print(input_seq_len) 

    ## for folk dataset (Ara) 

    #min_note, max_note = np.load( 

        #os.path.abspath(os.path.join(dataset['path'], 

'/Users/arasharif/Desktop/Ara_Master_Thesis/Folk_Dataset', 'min_max.npy'))) 

    ##for hook dataset (Ara) 

    min_note, max_note = np.load( 

        os.path.abspath(os.path.join(dataset['path'], 

'/Users/arasharif/Desktop/Ara_Master_Thesis/hooktheory_dataset', 'min_max.npy'))) 

 

    return input_seq_len, dshape, min_note, max_note 

 

 

def transpose_seed(args): 

    file = args.seed 

    unique_name = ''.join(file.split(os.path.sep)[-1].split(".mid")[:-1]) 

 

    if not os.path.exists('midi_seeds_transposed'): 

        os.mkdir('midi_seeds_transposed') 

 

    transpose.main([file], os.path.abspath("midi_seeds_transposed/")) 

 

    transposed_seed = os.path.abspath( 

        glob(os.path.join("midi_seeds_transposed", unique_name) + "*")[0]) 

    print(transposed_seed) 

    return transposed_seed 

 

 

def from_trim_pianoroll_to_full(seq, min_note, max_note): 

    zero_sequence = np.zeros((seq.shape[0], 128)) 

    zero_sequence[:, min_note:max_note + 1] = seq 

    zero_sequence[zero_sequence == 1] = 127 

    return zero_sequence 

 

 

def save_trim_pianoroll_seq(seq, min_note, max_note, thepath): 

    pypianoroll.Multitrack( 

        tracks=[ 

            pypianoroll.Track( 

                from_trim_pianoroll_to_full( 

                    seq, 

                    min_note, 

                    max_note, 

                )) 

        ], 

        beat_resolution=4).write(thepath) 

 

 

def read_encode_pad_sequence_melody(filepath, min_note, max_note, input_seq_len): 

    print("loading encoder...") 

    encoder = MelodyOneHotEncoding(min_note, max_note+1) 

    seed_melody = melodies_lib.midi_file_to_melody(filepath) 

    seed_melody.squash(min_note, max_note) 
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    seed_sequence = [encoder.encode_event(ev) for ev in list(seed_melody)] 

 

    print("padding...") 

    if len(seed_sequence) > input_seq_len: 

        seed_sequence = np.array(seed_sequence[:input_seq_len]) 

    else: 

        zero_padded_seq = np.repeat(0, input_seq_len) 

        zero_padded_seq[input_seq_len - len(seed_sequence):] = seed_sequence 

        seed_sequence = zero_padded_seq 

    print("size after padding: ", seed_sequence.shape) 

 

    seed_sequence = keras.utils.to_categorical(seed_sequence, 

num_classes=encoder.num_classes, dtype='uint8') 

    print('shape of seed sequence after 1h encoding: ', seed_sequence.shape) 

    return seed_sequence, encoder 

 

 

def read_encode_pad_sequence_pianoroll(filepath, min_note, max_note, 

input_seq_len): 

    multitrack = pypianoroll.Multitrack(filepath, beat_resolution=4) 

    sequence_full = multitrack.tracks[0] 

    sequence_full.binarize() 

    sequence_full = sequence_full.pianoroll 

    seed_sequence = sequence_full[:, min_note:max_note + 1] 

    print(seed_sequence.shape) 

 

    print("padding...") 

    if len(seed_sequence) > input_seq_len: 

        seed_sequence = np.array(seed_sequence[:input_seq_len]) 

    else: 

        zero_padded_seq = np.repeat(0, input_seq_len) 

        zero_padded_seq[input_seq_len - len(seed_sequence):] = seed_sequence 

        seed_sequence = zero_padded_seq 

    print("size after padding: ", seed_sequence.shape) 

    return seed_sequence 

 

 

def build_template_for_generated_pianoroll(dshape, seed_sequence, model, 

min_note, max_note, input_seq_len, seedfilename, model_dir): 

    generated = np.zeros((2*dshape[1], seed_sequence.shape[1])) 

    print('shape of generated ', generated.shape) 

    generated[:input_seq_len] = seed_sequence 

    seed_filename = seedfilename.split(os.path.sep)[-1].split(".mid")[0] 

 

    if not os.path.exists(os.path.join(model_dir, "samples")): 

        os.mkdir(os.path.join(model_dir, "samples")) 

 

    samples_dir = os.path.abspath(os.path.join(model_dir, "samples", 

seed_filename)) 

    if not os.path.exists(samples_dir): 

        os.mkdir(samples_dir) 

 

    seed_dir = os.path.join(samples_dir, "seed") 

    if not os.path.exists(seed_dir): 

        os.mkdir(seed_dir) 

 

    seedpath = os.path.join(seed_dir, "1seed.mid") 

 

    print("saving seed...") 

    save_trim_pianoroll_seq(seed_sequence,min_note,max_note,seedpath) 

    print('seed saved at ', seedpath) 

    return generated, samples_dir 
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def save_trim_melody_seq(seed_sequence,encoder,seedpath): 

    midi_io.note_sequence_to_midi_file(melodies_lib.Melody( 

    [ 

        encoder.decode_event(ev) for ev in 

np.trim_zeros(np.argmax(seed_sequence,axis=1), 'f') 

    ] 

    ).to_sequence(), seedpath) 

 

 

def build_template_for_generated_melody(dshape, seed_sequence, model, min_note, 

max_note, input_seq_len, seedfilename, model_dir, encoder): 

    generated = np.zeros((2*dshape[1], seed_sequence.shape[1])) 

    print('shape of generated ', generated.shape) 

    generated[:input_seq_len] = seed_sequence 

    seed_filename = seedfilename.split(os.path.sep)[-1].split(".mid")[0] 

 

    if not os.path.exists(os.path.join(model_dir, "samples")): 

        os.mkdir(os.path.join(model_dir, "samples")) 

 

    samples_dir = os.path.abspath(os.path.join(model_dir, "samples", 

seed_filename)) 

    if not os.path.exists(samples_dir): 

        os.mkdir(samples_dir) 

 

    seedpath = os.path.join(samples_dir, "1seed.mid") 

 

    print("saving seed...") 

    save_trim_melody_seq(seed_sequence,encoder,seedpath) 

    print('seed saved at ', seedpath) 

    return generated, samples_dir 

 

 

def plot_midifile(filepath, samples_dir, name): 

    roll = None 

    try: 

        roll = 

pypianoroll.Multitrack(filepath,beat_resolution=4).tracks[0].pianoroll 

    except Exception as _: 

        return None 

    plt.figure(figsize=(14,8)) 

    ax = plt.gca() 

    pypianoroll.plot_pianoroll(ax, roll) 

    plt.title(name) 

    pathtopng = os.path.join(samples_dir, name) 

    print('plotting pianoroll to %s' %pathtopng) 

    plt.savefig(pathtopng, bbox_inches='tight') 

    return True 

 

 

def generate_pianoroll(args, input_seq_ln, model, generated, samples_dir, 

min_note, max_note,): 

    temperature = float(args.temp) 

 

    nr_samples = int(args.nr) 

 

    for i in tqdm.tqdm(list(range(nr_samples))): 

         

        for timestep in range(input_seq_ln, len(generated)): 

            start_index = timestep - (input_seq_ln) 

            sequence_for_prediction = generated[start_index:timestep] 

    #         next_step, att = sample(model, sequence_for_prediction, 

temperature, withatt=True) 

            next_step, _ = sample(model, sequence_for_prediction, temperature, 
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withatt=args.att) 

    #         print(att.argsort()[-10:][::-1]) 

            generated[timestep] = next_step 

 

        generated_noseed = generated[input_seq_ln:] 

         

        new_path = os.path.join(samples_dir, "temp_%s_%s.mid" %(temperature, i)) 

        save_trim_pianoroll_seq(generated_noseed,min_note,max_note,new_path) 

        plot_midifile(new_path,samples_dir,"temp_%s_%s.png" %(temperature, i)) 

 

 

 

def pianoroll_sampling(filepath, min_note, max_note, model, 

                       input_seq_len, dshape, model_dir): 

    print('shape of sequence from pypianoroll...') 

    seed_sequence = read_encode_pad_sequence_pianoroll(filepath, min_note, 

max_note, input_seq_len) 

    generated, samples_dir = build_template_for_generated_pianoroll(dshape, 

seed_sequence, model, min_note, max_note, input_seq_len, filepath, model_dir) 

 

    # plot seed and save in folder 

    plot_midifile(filepath, samples_dir, '1seed.png') 

    generate_pianoroll(args, input_seq_len, model, generated, samples_dir, 

min_note, max_note) 

 

 

def generate_melody(args, input_seq_len, model, generated, samples_dir, min_note, 

max_note, encoder): 

    temperature = float(args.temp) 

    to_generate = int(args.nr) 

    nr_empty = 0 

    nr_generated = 0 

 

    progress = tqdm.tqdm(total=to_generate) 

    atts = [] 

    softmax_es = [] 

    tokens_low = [] 

    tokens_high = [] 

    while nr_generated != to_generate: 

        for timestep in range(input_seq_len, len(generated)): 

            start_index = timestep - (input_seq_len) 

            sequence_for_prediction = generated[start_index:timestep] 

    #         next_step, att = sample(model, sequence_for_prediction, 

temperature, withatt=True) 

            next_step = None 

            if args.att: 

                next_step, att, softmax_preds = sample(model, 

sequence_for_prediction, temperature, withatt=args.att) 

                if args.no_zero: 

                    input_tokens = np.argmax(sequence_for_prediction,axis=1) 

                    mask = np.where(input_tokens==0) 

                    att[mask] = 0 

                if np.argmax(att) < 6: 

                    # print('focusing on token', 

np.argmax(sequence_for_prediction[np.argmax(att)]), 'at time step index', 

np.argmax(att)) 

                    tokens_low.append( 

                        np.argmax(sequence_for_prediction[np.argmax(att)]) 

                    ) 

                    if args.debug_print: 

                        print( 

                            'window around focused token ',  

                            np.argmax( 

                                sequence_for_prediction[0:np.argmax(att)+3],  
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                            axis=1) 

                        ) 

                        print('softmax pointing at ', np.argmax(softmax_preds), ' 

actual prediction is ', np.argmax(next_step)) 

                elif np.argmax(att) > 30: 

                    tokens_high.append( 

                        np.argmax(sequence_for_prediction[np.argmax(att)]) 

                    ) 

                atts.append(att) 

            else: 

                next_step, softmax_preds = sample(model, sequence_for_prediction, 

temperature, withatt=args.att) 

            softmax_es.append(softmax_preds) 

    #         print(att.argsort()[-10:][::-1]) 

            generated[timestep] = next_step 

 

 

        generated_noseed = generated[input_seq_len:] 

        unique_pitches = np.unique(np.argmax(generated_noseed,axis=1)) 

        if len(unique_pitches) == 1 and unique_pitches[0] == 0: 

            nr_empty += 1 

        else: 

            new_path = os.path.join(samples_dir, "temp_%s_%s.mid" %(temperature, 

nr_generated)) 

 

            save_trim_melody_seq(generated_noseed, encoder, new_path) 

            if not plot_midifile(new_path,samples_dir,"temp_%s_%s.png" 

%(temperature, nr_generated)): 

                nr_empty += 1 

            else: 

                nr_generated += 1 

                progress.update(1) 

 

    print('generated %s empty rolls' %nr_empty) 

    if args.att: 

        atts = np.array(atts) 

        atts = atts.reshape(to_generate, -1, atts.shape[-1]) 

        np.save(os.path.join(samples_dir, 'atts.npy'), atts) 

 

    softmax_es = np.array(softmax_es) 

    softmax_es = softmax_es.reshape(to_generate, -1, softmax_es.shape[-1]) 

    np.save(os.path.join(samples_dir, 'softmax.npy'), softmax_es) 

    with open(os.path.join(samples_dir, '%s empty.txt' %nr_empty), 'w') as f: 

        f.writelines('\n') 

                 

 

 

def melody_sampling(filepath, min_note, max_note, model, 

                           input_seq_len, dshape, model_dir): 

    print('shape of sequence from pypianoroll...') 

    seed_sequence, encoder = read_encode_pad_sequence_melody(filepath, min_note, 

max_note, input_seq_len) 

    generated, samples_dir = build_template_for_generated_melody(dshape, 

seed_sequence, model, min_note, max_note, input_seq_len, filepath, model_dir, 

encoder) 

 

    # plot seed and save in folder 

    plot_midifile(filepath, samples_dir, '1seed.png') 

    generate_melody(args, input_seq_len, model, generated, samples_dir, min_note, 

max_note, encoder) 

 

 

def main(args): 

    input_seq_len, dshape, min_note, max_note = get_dataset(args) 
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    model = get_model(args) 

    transposed_seed = transpose_seed(args) 

    print("min, max:") 

    print(min_note, max_note) 

    model_dir = os.path.abspath(args.model_id) 

 

    if "pianoroll" in args.model_id: 

        # pianoroll encoding 

        pianoroll_sampling(transposed_seed, min_note, max_note, model, 

                           input_seq_len, dshape, model_dir) 

 

    elif "melody" in args.model_id or args.melody: 

        # melody encoding 

        # melody_sampling(transposed_seed, min_note, max_note, model, 

        #                 input_seq_len, dshape) 

        melody_sampling(transposed_seed, min_note, max_note, model, 

                           input_seq_len, dshape, model_dir) 

    else: 

        print("unknown encoding in model name : %s" % args.model_id) 

    return 

 

 

if __name__ == "__main__": 

    parser = argparse.ArgumentParser( 

        description="sample from model using a specific seed") 

    parser.add_argument('model_id', metavar='id', type=str, help='model id') 

    parser.add_argument( 

        'seed', metavar='seed', type=str, help='path to seed midi file') 

    parser.add_argument( 

        '--nr', 

        type=str, 

        default="10", 

        help='how many samples to generate. default = 10') 

    parser.add_argument( 

        '--temp', 

        type=float, 

        default="1.0", 

        help='temperature for sampling. default = 1.0') 

    parser.add_argument( 

        '--att', 

        action='store_true' 

    ) 

    parser.add_argument( 

        '--melody', 

        action='store_true', 

    ) 

    parser.add_argument( 

        '--debug_print', 

        action='store_true', 

        help='whether to print info about attention tokens' 

    ) 

    parser.add_argument( 

        '--no_zero', 

        action='store_true', 

        help='in plotting attention remove all zeros' 

    ) 

 

    args = parser.parse_args() 

 

    print('generating %s samples, at %s temperature, using %s, from seed %s' 

%(args.nr, args.temp, args.model_id, args.seed)) 

    main(args) 
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Participants Survey codes: 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.stats import ttest_ind 

 

plt.style.use('ggplot') 

 

# path = "/Users/arasharif/Desktop/Ara_Master_Thesis/survey 

results/Thesis_Monophonic_Music_Survey.csv" 

path = "/Users/arasharif/Desktop/Ara_Master_Thesis/survey 

results/Thesis_Monophonic_Music_Survey.csv" 

data = np.loadtxt(path, skiprows=1, delimiter=',', dtype=object) 

data = data[:, 1:]  # eleminate names column 

 

user_experiences, u_x_counts = np.unique(data[:-2, 0], return_counts=True) 

total = np.sum(u_x_counts) 

 

plt.figure(figsize=(5, 5)) 

plt.pie( 

    u_x_counts, 

    labels=user_experiences, 

    shadow=False, 

    autopct=lambda p: '{:.0f}'.format(p * total / 100) 

) 

plt.title('Participant distribution by musical experience level') 

plt.savefig('* Participant_distributions.png', bbox_inches='tight') 

# plt.show() 

users = { 

    l: { 

        'train': { 

            'r': [], 'm': [] 

        }, 

        'gen': { 

            'r': [], 'm': [] 

        } 

    } \ 

    for l in user_experiences if len(l.strip()) > 0 

} 

print(users) 

 

train = {'r': [], 'm': []} 

 

gen = {'r': [], 'm': []} 

 

for row in data[:-2]: 

    u_x = row[0] 

    scores = row[1:] 

    for i in range(len(scores)): 

        score = int(scores[i]) 

        if i % 2 == 0: 

            label = data[-2, i + 2] 

        else: 

            label = data[-2, i + 1] 

        if label == '1': 

            # generated sample 

            if i % 2 == 0: 

                # rhythm 

                gen['r'].append(score) 

                users[u_x]['gen']['r'].append(score) 

            else: 
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                # melody 

                gen['m'].append(score) 

                users[u_x]['gen']['m'].append(score) 

        elif label == '0': 

            # training sample 

            if i % 2 == 0: 

                # rhythm 

                train['r'].append(score) 

                users[u_x]['train']['r'].append(score) 

            else: 

                # melody 

                train['m'].append(score) 

                users[u_x]['train']['m'].append(score) 

 

 

def plot_overall(train, gen): 

    g_r_mean = np.mean(gen['r']) 

    g_r_std = np.std(gen['r']) 

 

    g_m_mean = np.mean(gen['m']) 

    g_m_std = np.std(gen['m']) 

 

    t_r_mean = np.mean(train['r']) 

    t_r_std = np.std(train['r']) 

 

    t_m_mean = np.mean(train['m']) 

    t_m_std = np.std(train['m']) 

 

    names = ['original rhythm', 'generated rhythm', 'original melody', 'generated 

melody'] 

    x_pos = np.arange(len(names)) 

    means = [ 

        t_r_mean, 

        g_r_mean, 

        t_m_mean, 

        g_m_mean 

    ] 

    stds = [ 

        t_r_std, 

        g_r_std, 

        t_m_std, 

        g_m_std 

    ] 

 

    plt.figure(figsize=(5, 5)) 

    plt.bar( 

        x_pos, 

        means, 

        yerr=stds, 

        align='center', 

        alpha=0.6, 

        ecolor='black', 

        color=np.concatenate([['green'] * 2, ['orange'] * 2]) 

    ) 

    # plt.xticks(x_pos, names) 

    plt.xticks(x_pos, names, fontsize=8, fontweight='bold', rotation=90) 

    plt.title('Participant evaluation results') 

    plt.savefig('* participant_evaluation_results.png', bbox_inches='tight') 

 

    table = np.vstack([ 

        ['%.3f' % m for m in means], 

        ['%.3f' % s for s in stds] 

    ]) 

    table = pd.DataFrame(table, columns=names).transpose() 
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    print(table.to_latex()) 

 

    # t tests 

    # rhythm 

    r_ttest = ttest_ind(gen['r'], train['r']) 

    print('rhythm t-test p: %.4f' % r_ttest[1], r_ttest[1]) 

 

    # melody 

    m_ttest = ttest_ind(gen['m'], train['m']) 

    print('melody t-test p: %.4f' % m_ttest[1], m_ttest[1]) 

 

 

def plot_separate(users): 

    group_1_train_r = np.concatenate([ 

        users['1']['train']['r'] 

    ]) 

    group_1_train_m = np.concatenate([ 

        users['1']['train']['m'] 

    ]) 

    group_1_gen_r = np.concatenate([ 

        users['1']['gen']['r'] 

    ]) 

    group_1_gen_m = np.concatenate([ 

        users['1']['gen']['m'] 

    ]) 

 

    group_2_train_r = np.concatenate([ 

        users['2']['train']['r'] 

    ]) 

 

    group_2_train_m = np.concatenate([ 

        users['2']['train']['m'] 

    ]) 

 

    group_2_gen_r = np.concatenate([ 

        users['2']['gen']['r'] 

    ]) 

    group_2_gen_m = np.concatenate([ 

        users['2']['gen']['m'] 

    ]) 

 

 

 

    group_3_train_r = np.concatenate([ 

        users['3']['train']['r'] 

    ]) 

    group_3_train_m = np.concatenate([ 

        users['3']['train']['m'] 

    ]) 

    group_3_gen_r = np.concatenate([ 

        users['3']['gen']['r'] 

    ]) 

    group_3_gen_m = np.concatenate([ 

        users['3']['gen']['m'] 

    ]) 

 

    group_4_train_r = np.concatenate([ 

        users['4']['train']['r'] 

    ]) 

 

    group_4_train_m = np.concatenate([ 

        users['4']['train']['m'] 

    ]) 
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    group_4_gen_r = np.concatenate([ 

        users['4']['gen']['r'] 

    ]) 

    group_4_gen_m = np.concatenate([ 

        users['4']['gen']['m'] 

    ]) 

 

    group_5_train_r = np.concatenate([ 

        users['5']['train']['r'] 

    ]) 

 

    group_5_train_m = np.concatenate([ 

        users['5']['train']['m'] 

    ]) 

 

    group_5_gen_r = np.concatenate([ 

        users['5']['gen']['r'] 

    ]) 

    group_5_gen_m = np.concatenate([ 

        users['5']['gen']['m'] 

    ]) 

    ### abcd 

    group_6_train_r = np.concatenate([ 

        users['1']['train']['r'], users['2']['train']['r'] 

    ]) 

    group_6_train_m = np.concatenate([ 

        users['1']['train']['m'], users['2']['train']['m'] 

    ]) 

 

    group_6_gen_r = np.concatenate([ 

        users['1']['gen']['r'], users['2']['gen']['r'] 

    ]) 

    group_6_gen_m = np.concatenate([ 

        users['1']['gen']['m'], users['2']['gen']['m'] 

    ]) 

 

    group_7_train_r = np.concatenate([ 

        users['3']['train']['r'], 

        users['4']['train']['r'], 

        users['5']['train']['r'] 

    ]) 

    group_7_train_m = np.concatenate([ 

        users['3']['train']['m'], 

        users['4']['train']['m'], 

        users['5']['train']['m'] 

    ]) 

 

    group_7_gen_r = np.concatenate([ 

        users['3']['gen']['r'], 

        users['4']['gen']['r'], 

        users['5']['gen']['r'] 

    ]) 

    group_7_gen_m = np.concatenate([ 

        users['3']['gen']['m'], 

        users['4']['gen']['m'], 

        users['5']['gen']['m'] 

    ]) 

 

 

    names = [ 

        'level1 original rhythm', 

        'level1 generated rhythm', 

        'level1 original melody', 

        'level1 generated melody', 
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        'level2 original rhythm', 

        'level2 generated rhythm', 

        'level2 original melody', 

        'level2 generated melody', 

        'level3 original rhythm', 

        'level3 generated rhythm', 

        'level3 original melody', 

        'level3 generated melody', 

        'level4 original rhythm', 

        'level4 generated rhythm', 

        'level4 original melody', 

        'level4 generated melody', 

        'level5 original rhythm', 

        'level5 generated rhythm', 

        'level5 original melody', 

        'level5 generated melody', 

    ] 

 

    x_pos = np.arange(len(names)) 

    groups = [ 

        group_1_train_r, 

        group_1_gen_r, 

        group_1_train_m, 

        group_1_gen_m, 

        group_2_train_r, 

        group_2_gen_r, 

        group_2_train_m, 

        group_2_gen_m, 

        group_3_train_r, 

        group_3_gen_r, 

        group_3_train_m, 

        group_3_gen_m, 

        group_4_train_r, 

        group_4_gen_r, 

        group_4_train_m, 

        group_4_gen_m, 

        group_5_train_r, 

        group_5_gen_r, 

        group_5_train_m, 

        group_5_gen_m, 

    ] 

 

    means = [ 

        np.mean(g) for g in groups 

    ] 

    stds = [ 

        np.std(g) for g in groups 

    ] 

 

    table = np.vstack([ 

        ['%.3f' % m for m in means], 

        ['%.3f' % s for s in stds] 

    ]) 

    table = pd.DataFrame(table, columns=names).transpose() 

    print(table.to_latex()) 

 

    plt.figure(figsize=(7, 5)) 

    plt.bar(x_pos, means, yerr=stds, align='center', alpha=0.5, ecolor='black', 

            color=np.concatenate([['red'] * 2, ['red'] * 2, ['orange'] * 2, 

['orange'] * 2, ['green'] * 2, ['green'] * 2, 

                                  ['blue'] * 2, ['blue'] * 2, ['black'] * 2, 

['black'] * 2])) 

    plt.xticks(x_pos, names, fontsize=8, fontweight='bold', rotation=90) 

    plt.title('Participant evaluation results per experience levels') 
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    plt.savefig('* Participant_evaluation_results2.png', bbox_inches='tight') 

 

    names = [ 

        'group1 original rhythm', 

        'group1 generated rhythm', 

        'group1 original melody', 

        'group1 generated melody', 

        'group2 original rhythm', 

        'group2 generated rhythm', 

        'group2 original melody', 

        'group2 generated melody', 

    ] 

 

    x_pos = np.arange(len(names)) 

    groups = [ 

        group_6_train_r, 

        group_6_gen_r, 

        group_6_train_m, 

        group_6_gen_m, 

        group_7_train_r, 

        group_7_gen_r, 

        group_7_train_m, 

        group_7_gen_m, 

    ] 

 

    means = [ 

        np.mean(g) for g in groups 

    ] 

    stds = [ 

        np.std(g) for g in groups 

    ] 

 

    plt.figure(figsize=(7, 5)) 

    plt.bar(x_pos, means, yerr=stds, align='center', alpha=0.5, ecolor='black', 

            color=np.concatenate([['red']*2, ['orange']*2, ['green']*2, 

['blue']*2])) 

    plt.xticks(x_pos, names, fontsize=8, fontweight='bold', rotation=90) 

    plt.title('Participant evaluation results per group level (low & high)') 

    plt.savefig('* Participant_evaluation_results3.png', bbox_inches='tight') 

 

    table = np.vstack([ 

        ['%.3f' % m for m in means], 

        ['%.3f' % s for s in stds] 

    ]) 

    table = pd.DataFrame(table, columns=names).transpose() 

    print(table.to_latex()) 

 

 

plot_overall(train, gen) 

 

plot_separate(users) 

plt.show() 
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APPENDIX 4 

Screenshot Samples for Implementations 

 

Preprocessing Screenshot Sample: 

 

 

 

Training Screenshot Sample: 
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Generating Screenshot Sample: 
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APPENDIX 5 

Survey Resources 

 

 

A Sample of human evaluation form: 

 

MONOPHONIC MUSIC GENERATION USING ARTIFICIAL INTELLIGENCE 

THROUGH DEEP LEARNING TECHNIQUES 
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Survey Result: 
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Zhila yahst 1 3 4 2 3 5 4 2 2 4 3 4 2 2 4 3 3 2 5 3 2
Shene Sirwan 1 4 2 1 1 4 4 3 2 5 5 1 1 2 2 1 1 4 4 2 1
Ani Kamaran 1 3 4 4 4 3 4 5 4 3 2 2 3 2 2 1 2 3 2 4 3
Frishta Ahmed 1 3 5 4 5 4 4 5 5 4 5 4 4 4 4 5 4 5 3 5 5
Rand Dilman 1 3 4 4 3 3 4 4 4 2 3 4 3 5 2 4 4 3 3 4 4
Kamal Aerin 1 4 3 2 2 2 3 2 4 3 2 4 4 3 2 3 5 3 4 4 3
Barin Jamal 1 4 4 4 4 5 5 3 4 5 5 3 3 3 3 4 5 5 4 3 3
Yad Hidayat 1 5 4 5 4 5 4 5 4 5 3 5 3 4 3 4 4 4 4 5 4
Lanya Maeiwan 1 4 4 5 4 5 5 3 3 5 4 5 4 5 5 5 3 4 3 4 4
Rasan Najib 1 4 4 3 4 5 5 4 3 5 4 2 2 5 5 5 5 4 4 3 3
Aya Aram 2 5 5 5 3 5 5 5 4 5 5 5 4 5 5 5 4 5 5 5 4
Roza Walid 2 3 3 5 5 5 5 3 3 5 5 2 2 5 5 3 4 3 2 5 4
Aland Muhamad 2 4 5 5 5 5 5 4 4 5 5 3 4 3 4 3 4 4 4 3 4
Miran Unis 2 5 5 5 2 5 5 5 4 5 4 4 4 5 5 5 5 5 5 4 3
Naz Mahmud 2 4 5 5 5 5 5 5 5 5 5 4 5 5 5 5 5 5 5 5 5
Mhemed Baqi 2 3 3 3 2 3 2 4 4 4 4 3 3 3 3 2 3 2 3 3 3
Lawin Jamal 2 3 3 3 4 5 2 5 1 5 3 3 4 5 5 4 4 5 5 5 3
Namo Jamal 2 3 5 5 4 5 5 4 4 3 4 4 3 4 5 4 3 4 5 3 4
Sonya Ahmad 2 3 3 4 3 2 5 3 5 4 3 5 5 4 4 5 5 5 4 3 2
Baraham Saman 2 3 3 2 4 2 3 4 3 3 5 4 3 5 4 2 2 3 5 3 4
Shabar Qadir 3 3 4 4 4 3 3 5 5 5 5 4 4 3 3 2 2 2 3 5 5
Monako Ibrahim 3 5 3 5 4 3 2 2 4 2 2 4 2 1 4 1 2 4 2 3 5
Safin Mahmud 3 5 5 5 5 5 5 5 5 5 5 5 5 5 4 5 5 5 5 5 5
Avan Sabri 3 4 5 3 3 3 4 5 5 5 5 3 5 2 3 4 4 3 3 5 5
Tara Ahmad 3 4 3 4 4 4 5 4 2 3 3 4 3 3 5 3 2 3 4 3 3
Helin Majid 3 4 5 4 5 4 3 3 2 5 3 4 4 4 3 3 3 3 3 4 2
Vanya Ara 3 4 5 5 5 3 4 2 2 4 4 3 5 2 4 1 2 3 4 4 5
Hasaw Amir 3 5 4 5 5 5 4 5 5 5 4 5 4 4 4 4 5 4 4 5 4
Harez Hersh 3 4 3 3 5 3 3 4 2 5 4 4 4 3 4 4 5 5 3 5 3
Danar Ayar 3 5 3 4 5 5 5 4 4 4 3 3 4 5 4 3 4 4 5 4 3
Zhulia Shwan 4 5 5 5 4 3 4 4 5 5 5 4 5 3 5 4 4 5 5 4 4
Bawan Akram 4 5 5 5 4 5 4 5 5 5 4 5 5 4 4 4 5 5 5 4 5
Sivan Jamal 4 4 3 2 3 4 5 3 5 2 4 3 3 4 3 5 4 3 5 4 3
Las Azad 4 4 4 3 3 5 4 3 2 3 4 5 4 3 3 3 4 4 3 4 3
Zhulia Hussen 4 4 3 5 4 5 4 5 5 5 4 5 3 5 5 5 5 5 5 5 4
Diya Diyar 4 4 4 3 2 4 2 5 3 5 5 2 2 4 3 5 5 5 5 3 3
Chapk Amin 4 4 3 5 4 2 1 3 2 1 1 2 2 3 3 5 5 2 1 5 5
Ara Kamaran 4 4 4 3 4 5 4 5 5 4 5 3 2 4 4 5 5 5 4 5 3
Vesan Ayar 4 3 4 4 5 3 4 4 3 5 4 4 3 5 4 4 4 3 4 3 3
Akar Ari 4 4 5 4 3 3 5 3 3 4 3 4 2 5 3 4 4 3 4 5 4
Bilind Zahid 5 4 4 4 3 4 4 3 3 3 2 2 3 5 4 3 4 4 4 4 3
Hemin Husen 5 2 2 2 3 2 2 1 1 2 3 1 1 3 2 1 1 1 1 2 1
Ako Aziz 5 5 4 5 5 5 4 5 5 5 5 4 5 4 5 5 5 4 4 4 4
Baxan Aso 5 4 5 5 3 3 4 4 3 4 4 4 3 5 4 3 2 2 4 3 3
Zulya Shwan 5 4 5 3 4 4 4 5 5 3 5 4 2 3 2 4 5 3 3 3 4
Helin Ara 5 5 4 4 3 4 5 4 4 5 3 3 2 2 3 4 4 3 3 3 4
Diler Husen 5 4 4 4 4 4 5 4 3 3 4 4 3 4 4 3 4 5 4 4 4
Twana Faraj 5 4 4 4 3 3 4 5 5 4 3 5 4 3 4 4 3 2 3 4 4
Diya Ayar 5 4 4 3 4 4 4 3 3 4 3 2 4 4 5 4 3 4 4 3 4
Diyari Muhamad 5 4 4 4 5 4 3 4 5 5 4 5 3 4 5 4 4 3 4 4 3
Origin_Generate 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
Sample No. 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10


