

MONOPHONIC MUSIC GENERATION USING

ARTIFICIAL INTELLIGENCE THROUGH DEEP

LEARNING TECHNIQUES

A THESIS SUBMITTED TO

THE INSTITUTE OF GRADUATE STUDIES

OF

NEAR EAST UNIVERSITY

By

ARA AHMED SHARIF

In Partial Fulfilment of the Requirements for

the Degree of Master of Science

in

Computer Engineering

NICOSIA, 2021

A

R
A

 A
H

M
E

D

 S
H

A
R

IF

M
O

N
O

P
H

O
N

IC
 M

U
S

IC
 G

E
N

E
R

A
T

IO
N

 U
S

IN
G

 A
R

T
IF

IC
IA

L

IN
T

E
L

L
IG

N
E

C
E

 T
H

R
O

U
G

H
 D

E
E

P
 L

E
A

R
N

IN
G

 T
E

C
H

N
IQ

U
E

S

N
E

U

2
0
2
1

MONOPHONIC MUSIC GENERATION USING

ARTIFICIAL INTELLIGENCE THROUGH DEEP

LEARNING TECHNIQUES

A THESIS SUBMITTED TO

THE INSTITUTE OF GRADUATE STUDIES

OF

NEAR EAST UNIVERSITY

By

ARA AHMED SHARIF

In Partial Fulfilment of the Requirements for

the Degree of Master of Science

in

Computer Engineering

NICOSIA, 2021

Ara Ahmed Sharif: MONOPHONIC MUSIC GENERATION USING ARTIFICIAL

INTELLIGENCE THROUGH DEEP LEARNING TECHNIQUES

Approval of Director of Institute of Graduate Studies

Prof. Dr. K. Hüsnü Can Başer

We certify this thesis is satisfactory for the award of the degree of Master of Science

in Computer Engineering

Examining Committee in Charge:

Assoc. Prof. Dr. Kamil

DİMİLİLER

Committee Chairman, Department of Automative

Engineering, NEU

Assoc. Prof. Dr. Boran

ŞEKEROĞLU

Committee member, Department of Information

Systems Engineering, NEU

Prof. Dr. Rahib Abiyev

Committee member, Supervisor, Department of

Computer Engineering, NEU

I hereby declare that all information in this document has been obtained and presented in

accordance with academic rules and ethical conduct. I also declare that, as required by

these rules and conduct, I have fully cited and referenced all material and results that are

not original to this work.

Name, Last Name: Ara Sharif

Signature:

Date:

i

ACKNOWLEDGEMENTS

Music and computer engineering science are two of my passions that I wanted to merge in

this master thesis topic which my supervisor Prof. Dr. Rahib Abiyev encouraged me to

deal with it, many thanks to him for all his valuable time and great advice. I want to

sincerely thank all Examining Committee for agreeing to offer their time for evaluating

and commenting on my thesis.

My deep thanks to all my professors and teachers during my academic career, especially

those who contributed to enlightening my way to reach this academic stage of studying for

a master's degree: Prof. Dr. Fadi Al-Turjman, Assist. Prof. Dr. Melike Sah Direkoglu,

Assist. Prof. Dr. Kaan Uyar, Assist. Prof. Dr. Elbrus İmanov, Assoc. Prof. Dr. Parham

Moradi, Assoc. Prof. Dr. Fardin Akhlaghian Taba and Assoc. Prof. Dr. Sadoon Azizi.

Special thanks are due to music master: Ako Aziz Eynayat for his valuable effort when he

accepted and analyzed generated melodic samples with his deep musical experience. I

would like to thank all the participants in the human evaluation of the melodies generated

from the models; their contribution gave value to this project.

Last but not least I am especially thankful to all my family members for their strong

support and consistent trust.

ii

To who said: “I see my life in terms of music”…

iii

ABSTRACT

This thesis shows how to use deep learning, which is a branch of Artificial Intelligence

(AI), in the field of music generation, especially monophonic melodies. Two of the most

common and improved architectures of the Recurrent Neural Network have been used;

Long Short Term Memory (LSTM) and Gated Recurrent Units (GRUs) with the option of

using Bidirectionality and Attention mechanism to train on two types of MIDI format

dataset, one is stylistically single-genre (Folk) and the other multi-genre (folk, pop, rock,

etc.), each encoded with two formats; pianoroll and magenta melody. The main purpose of

this work is to reveal the effect of architecture designs, dataset specifications, and encoding

formats on the generated melody samples. We discussed the side-by-side comparison

between LSTM and GRUs, as well as the influence of modifying hidden layers has been

investigated. Objectively, with the assistance of professional composers and expert

musicians in my reachable area, we carried out the analysis of the generated melody

samples by the different datasets and models, although the impact of dataset types,

architecture designs, Bidirectionality, and Attention mechanisms on the generated

melodies have discussed. The most noticeable results after experiments: For better learning

with a multi-genre dataset we need more extra training sequences. While applying the Bi-

directional LSTM with Attention mechanism on a single-genre folk dataset we obtained

more pleasant emotional melodies. Bidirectionality and Attention mechanisms both

improve learning. Generated samples with the magenta melody format encoding have

melodic characteristics but pianoroll formatting generated more rhythmically samples.

Subjectively, human evaluation has been made on the samples of the best model.

Keywords: Artificial Intelligence; deep learning; monophonic music generation; RNN;

LSTM; GRUs; bi-directional RNNs; attention mechanism.

iv

ÖZET

Bu tez, Yapay Zekanın (AI) bir dalı olan derin öğrenmenin müzik üretimi alanında,

özellikle de monofonik melodiler alanında nasıl kullanılacağını göstermektedir. Yinelenen

Sinir Ağının en yaygın ve geliştirilmiş mimarilerinden ikisi kullanılmıştır; Uzun Kısa

Süreli Bellek (LSTM) ve Geçitli Tekrarlayan Birimler (GRU'lar) iki tür MIDI formatı veri

kümesi üzerinde eğitmek için Çift Yönlü ve Dikkat mekanizmasını kullanma seçeneği ile,

biri biçimsel olarak tek tür (Halk) ve diğeri çok tür (folk) , pop, rock, vb.), her biri iki

formatla kodlanmıştır; piyanorol ve eflatun melodi. Bu çalışmanın temel amacı, mimari

tasarımların, veri seti spesifikasyonlarının ve kodlama formatlarının üretilen melodi

örnekleri üzerindeki etkisini ortaya çıkarmaktır. LSTM ve GRU'lar arasındaki yan yana

karşılaştırmanın yanı sıra, gizli katmanları değiştirmenin etkisi de araştırıldı. Öznel olarak,

ulaşılabilir alanımdaki profesyonel besteciler ve uzman müzisyenlerin yardımıyla, üretilen

melodi örneklerinin analizini farklı veri seti ve mimari modellerle gerçekleştirdik, buna

rağmen veri seti türlerinin, mimari tasarımların, çift yönlülüğün ve dikkatin etkisi. üretilen

melodiler üzerine mekanizmalar tartıştık. Deneylerden sonra en dikkat çekici sonuçlar:

Çok türden bir veri kümesiyle daha iyi öğrenme için daha fazla ekstra eğitim dizisine

ihtiyacımız var. Dikkat mekanizmalı çift yönlü LSTM tek bir tür folk veri setine

uygularken daha hoş duygusal melodiler elde ettik. Çift yönlülük ve dikkat mekanizmaları

öğrenmeyi geliştirir. Macenta melodi formatı kodlamasıyla oluşturulan örnekler melodik

özelliklere sahiptir, ancak piyano rulosu formatlaması daha ritmik örnekler oluşturmuştur.

Sübjektif olarak, en iyi modelin örnekleri üzerinde insan değerlendirmesi yapılmıştır.

Anahtar Kelimeler: Yapay zeka; derin öğrenme; monofonik müzik üretimi; RNN; LSTM;

GRU'lar; çift yönlü RNN'ler; dikkat mekanizması.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENT.. i

ABSTRACT.. iii

ÖZET.. iv

TABLE OF CONTENTS.. v

LIST OF TABLES... viii

LIST OF FIGURES... ix

LIST OF ABBREVIATIONS AND SYMBOLS... xi

CHAPTER 1: INTRODUCTION

1.1 Music Composition.. 2

1.2 Problem Statement... 2

1.3 Motivation.. 4

1.4 Structure... 4

CHAPTER 2: BACKGROUND AND STATE OF THE ART

2.1 Music Theory... 5

 2.1.1 The basic building elements of music... 5

 2.1.2 Monophonic and polyphonic music.. 8

2.2 Artificial Intelligence... 10

2.3 Machine Learning.. 11

2.4 Deep Learning.. 12

 2.4.1 Feedforward neural networks.. 12

 2.4.2 Recurrent neural networks.. 13

CHAPTER 3: METHODOLOGY & ARCHITECTURE

3.1 LSTM and GRUs... 29

3.2 LSTM vs GRUs.. 30

3.3 Gradient Descent Optimization Techniques.. 30

3.4 Bi-directional Mechanism.. 32

3.5 Attention Mechanism... 32

vi

3.6 Architecture Type... 33

3.7 Temperature... 34

3.8 Human Evaluations: Professionally and Conventionally..................................... 35

3.9 Trained Models: Architecture Description... 35

 3.9.1 Model No.1: model_folk_melody_bi2lstm64_attention............................. 48

 3.9.2 Model No.2: model_folk_pianoroll_bi2lstm64_attention........................... 40

 3.9.3 Model No.3: model_hook_melody_bi2lstm64_attention........................... 41

 3.9.4 Model No.4: model_hook_pianoroll_bi2lstm64_attention......................... 42

 3.9.5 Model No.5: model_folk_melody_2lstm64_attention................................ 43

 3.9.6 Model No.6: model_folk_melody_2lstm64_noattention............................ 45

 3.9.7 Model No.7: model_folk_melody_bi2GRU64_attention........................... 56

CHAPTER 4: COLLECTING AND PROCESSING DATA

4.1 Data set... 48

4.2 Multi-Genre Dataset... 49

4.3 Single-Genre Dataset.. 49

4.4 Music Representation Formats... 49

 4.4.1 ABC format representation... 50

 4.4.2 Simplified Plaine & Easie format representation.. 50

 4.4.3 Kern format representation.. 51

 4.4.4 MusicXML format representation... 52

 4.4.5 MIDI format representation.. 52

4.5 Format Encoding.. 55

 4.5.1 Pianoroll format encoding... 55

 4.5.2 Magenta melody format encoding... 56

4.6 Preprocessing... 57

CHAPTER 5: RESULTS AND DISCUSSIONS

5.1 Results.. 60

 5.1.1 Format encoding impacts.. 60

 5.1.2 Dataset nature impacts (Single-genre vs Multi-genre)................................ 64

vii

 5.1.3 RNN type impacts (LSTM vs GRUs)... 67

 5.1.4 Bi-directional mechanism impacts.. 69

 5.1.5 Attention mechanism impacts... 72

 5.1.6 Bi-directional & Attention impacts... 74

5.2 Human Evaluation.. 76

 5.2.1 Survey analysis and results... 77

CHAPTER 6: CONCLUSION... 83

REFERENCES.. 85

APPENDICES

Appendix 1: Ethical Approval Document... 96

Appendix 2: Similarity Report... 97

Appendix 3: Workflow and Implemented Codes Samples.. 98

Appendix 4: Screenshot Samples for Implementations... 121

Appendix 5: Survey Resources.. 123

viii

LIST OF TABLES

Table 2.1: Architectural types of Recurrent Neural Networks................................ 16

Table 3.1: Models architecture per changes in the independent variables.............. 37

Table 5.1: Experts objectively comparison for revealing the encoding influences. 62

Table 5.2: Experts objectively comparison for revealing the dataset nature

influences.. 65

Table 5.3: Experts objectively comparison for revealing the Bidirectionality

influences.. 70

Table 5.4: Evaluation results of the participants per group experience level.......... 78

Table 5.5: Evaluation results of all participants.. 80

Table 5.6: Evaluation results of all participants per each experience level............. 81

ix

LIST OF FIGURES

Figure 1.1: Input independent variables vs output dependent variable............... 3

Figure 2.1: Note length symbols represent duration in sheet music................... 6

Figure 2.2: Key numbers and their pitch-register designation............................ 7

Figure 2.3: A key signature of G Major/E Minor... 8

Figure 2.4: An example of a sequence.. 8

Figure 2.5: Visual diagram and music notation sample of monophonic texture 9

Figure 2.6: Visual diagram and music notation sample of monophonic texture 9

Figure 2.7: The relationship between different AI disciplines............................ 11

Figure 2.8: An example of Multilayer Perceptron.. 13

Figure 2.9: An example of a Recurrent Neural Network.................................... 14

Figure 2.10: Unfolded Recurrent Neural Network... 15

Figure 2.11: Gradient descent algorithm uses derivatives of a function to

follow the function downhill.. 18

Figure 2.12: Local and global minimum reaching challenge of gradient descent 18

Figure 2.13: Comparison of Adam to Other Optimization Algorithms................ 19

Figure 2.14: Dropout Strategy. (a) A standard neural network. (b) Applying

dropout to the neural network on the left by dropping the crossed

units.. 20

Figure 2.15: Long Short-term Memory Cell... 21

Figure 2.16: Gated Recurrent Unit.. 23

Figure 2.17: The general structure of the Bi-directional recurrent neural

network (BI-RNN) unfolded in time for three-time steps................ 24

Figure 2.18: Bi-directional Recurrent Neural Network.. 25

Figure 2.19: The encoder-decoder model with additive attention mechanism..... 26

Figure 2.20: Alignment matrix of “L’accord sur l’Espace économique

européen a été Signé en août 1992” translation................................ 27

Figure 2.21: Matrix of alignment illustrates the association between the source

and target words... 27

Figure 3.1: Music generation many-to-one RNN architecture type.................... 34

Figure 3.2: Generated melody sample converted from MIDI file................... 34

Figure 3.3: Architecture design of model No.1.. 39

Figure 3.4: Architecture design of model No.2.. 40

x

Figure 3.5: Architecture design of model No.3.. 41

Figure 3.6: Architecture design of model No.4.. 42

Figure 3.7: Architecture design of model No.5.. 44

Figure 3.8: Architecture design of model No.6.. 45

Figure 3.9: Architecture design of model No.7.. 47

Figure 4.1: ABC format representation... 50

Figure 4.2: Simplified Plaine & Easie Code representation............................... 51

Figure 4.3: Kern representation format... 51

Figure 4.4: MusicXML format representation.. 52

Figure 4.5: A combination of notation and its pianoroll representation............. 53

Figure 4.6: MIDI Note Numbers for Different Octaves..................................... 54

Figure 4.7: Each MIDI number is equivalent to an octave in the left-hand

column and a note in the top row... 56

Figure 4.8: Preprocessing workflow... 59

Figure 5.1: Loss graphs for models No.1 and No.2.. 61

Figure 5.2: Seed and generated samples for showing format encoding impacts 63

Figure 5.3: Loss graphs for models No.1 and No.3.. 64

Figure 5.4: Seed and generated samples to show dataset nature impacts........... 66

Figure 5.5: Loss graphs for models No.1 and No.7.. 67

Figure 5.6: Seed and generated samples to demonstrate the RNN type impacts 68

Figure 5.7: Loss graphs for models No.1 and No.5.. 69

Figure 5.8: Seed and generated samples to demonstrate Bidirectionality

impacts.. 71

Figure 5.9: Loss graphs for models No.5 and No.6.. 72

Figure 5.10: Seed and generated samples to demonstrate Attention mechanism

impacts.. 73

Figure 5.11: Loss graphs for models No.1 and No.6.. 74

Figure 5.12: Seed and generated samples to show Bi-directional & Attention

impacts.. 75

Figure 5.13: Distribution of participants according to experience levels............. 77

Figure 5.14: Participants’ evaluation results per low and high experience level

(group1 and group2)... 79

Figure 5.15: The overall participant evaluation results... 80

Figure 5.16: Participants’ evaluation results for each experience level................ 82

xi

LIST OF ABBREVIATIONS AND SYMBOLS

AdaGrad: Adaptive Gradient Algorithm

Adam: Adaptive Moment Estimation

AI: Artificial Intelligence

AIVA: Artificial Intelligence Virtual Artist

Bi-GRUs: Bi-directional Gated Recurrent Units

Bi-LSTM: Bi-directional Long Short Term Memory

Bi-RNN: Bi-directional Recurrent Neural Network

cuDNN: GPU-accelerated library for Deep Neural Network

DL: Deep Learning

GRUs: Gated Recurrent Units

LSTM: Long Short Term Memory

MIDI: Musical Instrument Digital Interface

ML: Machine learning

RMSProp: Root Mean Square Propagation

RNNs: Recurrent Neural Networks

1

CHAPTER 1

INTRODUCTION

Music is humanity's greatest creation and an important part of our lives. It surrounds us

and reaches our ears through multiple sources, we listen to it when we study or when we

are working. It is a way to express both our feelings and emotions, and it has obvious

psychological effects on us (Sloboda, 2010). So this puts it in an interesting place to

research.

Artificial Intelligence (AI) is the ability of machines to learn, make decisions, and perform

tasks similar to humans; it is a core of the fourth industrial revolution, the way our daily

lives look is affected by many daily impacts of AI, there's no doubt that it is an integral

part of our daily lives. The first AI invention goes back to the 1950s and has exploded in

recent years; owing to the huge amount of data we produce every day and the

computational resources available (Marr, 2019). AI with its great deep learning techniques

is an effective and important field to study, especially in the area of generating music; the

greatest creation of mankind.

The programs that produce music have long been in history, the first attempts to produce

melodies with computers date back to 1956 when Pinkerton designed Markov's first-order

model (Pinkerton, 1956). Recently many researches indicated that deep learning techniques

have significant efficiency when use to enforce long-term structure. In 1994 Mozer was

used Recurrent Neural Networks (RNNs) to generate music in his work (Mozer, 1994).

In this project, we benefited from previous valuable works and researches in the field of

music generation. Practically, we aided from (Mitroi, 2019; Velardo, 2020; Marinescu,

2019; Sigurgeirsson, 2020), and theoretically, we mentioned all sources in the context of

explaining topics in their appropriate places.

2

1.1 Music Composition

When we talk about composing music, regardless of whether it was composed by a human

or if the computer that generated it through its learning and training on previous mankind

melodies and compositions as a database, in the end, it is for human listening or uses, this

confirms that Generally, composing music is seen as a human-specific talent or skill. So a

key aspect of music is structure. It explains how the various parts are positioned together in

a piece of music to shape the composition. In music composing, contrast, repetition, and

continuity are three main principles. A piece of music has a combination of musical

thoughts. To develop continuity and a coherent whole, a composer needs to think carefully

about how to repeat and contrast these ideas in parts (Ben, 2019). Obviously, good music

has a cohesive structure, and it pleases the ear as well (De Coster, 2017).

The core of our research topic revolves around composing music using deep learning as

one of AI techniques through using the computer and more specifically, generating a

monophonic melody by using recurrent neural networks Long-Short Term Memory

(LSTM) and Gated Recurrent Units (GRUs), So it is useful first to present summaries of

some fundamentals related to music in general and closer to our topic in particular, and

secondly, we need a brief presentation of topics related to AI and its techniques in general,

and a detailed explanation as much as possible of the aspects related to generating

monophonic music which is presented in the form of symbols more precisely. The details

of this knowledge are explained in the second chapter of this work.

1.2 Problem Statement

The study and evaluation of the influence of the independent variables used in our work as

inputs on the dependent variable outputs is the main problem addressed in this thesis and it

is relevant to the core of our subject: Monophonic music generation via RNNs. We seek

through this work to investigate the effects of the input on the output results and to define

the dialectical relationship between them. Independent variables can be divided into:

1. Data types in terms of style (genre), as we used two data groups to train our

systems to learn; data consisting of multi-genre melodies (jazz, rock, pop, classic,

3

folk, etc.), and single-genre melodies (folk); "Musicmap" project claims that today

there are nearly 234 genres of music (Musicmap, 2020). We explained this issue

in detail in Chapter 4, in terms of dataset characteristics, and we presented

information in Chapter 5, in terms of its impact on the performance of our system.

2. The type of data format and methods of encoding it into a language that is generally

understood by a computer and that fits the architecture of the recurring neural

networks specifically used in our work. We used Musical Instrument Digital

Interface (MIDI) type data and two encoding formats: melody format encoding and

pianoroll format encoding. There is also a summary of the methods of encoding and

their influence on the results in Chapters four and six respectively.

3. The types of recurrent neural network architectures and designs employed (LSTM

and GRUs) with the use of Attention and Bi-directional techniques to analyze

their impacts. In chapters two and five, explanations are available.

Another problem addressed in this study is the generation of a particular form of musical

texture called monophonic music; it seems to be simpler to model since the generation of

monophonic music is a two-dimensional issue: the dimension of time and pitch (De Coster,

2017). See Figure 1.1

Figure 1.1: Input independent variables vs output dependent variable.

4

The overall goals can be summarized in finding the answers to these questions:

1- What is the influence of the dataset on the melody samples and their models?

2- How preprocessing dataset impact the training and the generating process?

3- How the most two popular RNN models LSTM and GRUs improve learning?

4- Do Bidirectionality and attention mechanisms have a positive impact on models?

1.3 Motivation

The main motivation for this project is my passion for music as a performer and sound

engineer. Practically, I always touched on the power of the positive effect of technology on

music; qualitatively and quantitatively. Technology in this creative field has always been a

helpful tool for increasing beauty, quality, and accelerating production. Without

technological development, we would not have kept this huge amount of audio and the

visual archive of music. There is no doubt that the recent and continuous revolution in the

field of AI and the rapid development of its techniques have brought us into the important

field, which is the creation and generation of music by the computer as the human

composer does. On the other hand, music as the fine arts, and its composition process also

the prerogative of the human being, so I think that composing by the machine cannot be an

alternative to the creative artistic composing process by humans, at least at this period that

we are observing at in this area, but it can act as a powerful assistant for composers to find

new and abundant motives, phrases and musical ideas.

1.4 Structure

This thesis is composed of six chapters, and the remainder of it organized as follows:

Chapter 2 reviews the relevant researches to this project and focuses on the state of the art

in the field of generating music using AI techniques. Different options of algorithms,

processes, architectures and learning models are analyzed and are explored as a

methodology in Chapter 3. Chapter 4 complemented all necessary information and

required preprocessing on the datasets. The results of trained models analyzed objectively

as well as subjectively are presented in Chapter 5. Finally, Chapter 6 is a conclusion. Here

achieved results, points for improvement, and future directions have been summarized.

5

CHAPTER 2

BACKGROUND AND STATE OF THE ART

A detailed analysis of relevant researches applicable to this project will be provided in this

current chapter, and discoveries and relevant concerns that are crucial to this work will be

addressed. Using machine learning techniques as the main branch of AI, we presented

powerful theories and backgrounds from deep learning and monophonic music generation.

While this project is about music and generating melodies it is useful to explain some

knowledge in music theory for more clarity.

2.1 Music Theory

To better understand this study dealing with the generation of monophonic melody; a very

simple and important type of piece of music through Artificial Intelligence techniques,

actually we need to know about some basic details in music theory, particularly those most

relevant to music composition. Here we shall try to summarize most related topics from

some of the best references, such as (Hosken, 2010; Levitin, 2006; Ben, 2019).

2.1.1 The basic building elements of music

As described by Levitin, (2006), actually while listening to the music we experience

several attributes like tone (note), pitch, duration (rhythm), tempo, timbre, loudness,

contour, spatial location, and reverberation, those are fundamental construction blocks of

music.

Here's a short description of some of those most relevant to this work:

 Tone and Note: tone is the sound we can hear it but a note is a written symbol on a

music notation sheet, the latter as shown in Figure 2.1, can be described as the

basic symbol for sound and can be altered to signify length (duration) in several

ways. The largest single value in common usage today is the note as a whole (O);

6

other notes have fractional relationships with the note as a whole and obtain one-

half its value, one-quarter its value, etc.

Figure 2.1: Note length symbols represent duration in sheet music.

 Pitch: mental construct, respectively relevant to the real frequency of a specific

tone; the frequency at which a given note vibrates (measures by Hertz which is

equal to the number of vibrations per seconds of the sound-producing device such

as string vibration of such string instrument or wind instrument air column

vibration), and its relative musical scale place; the note that plays on the musical

instrument (e.g. playing A4 on the piano keyboard which has 440 Hz frequency)

(Levitin, 2006; Ammer, 2004).

 Pitch class: functionally the category of all pitches connected to the octave

equivalence. In other words, it is the set of pitches related to each other by

octaves. A4, A3, A2, etc. are all members of pitch class A. Twelve pitch classes

A, A# or Bb, B, C, C# or Db, D, D# or Eb, E, F, F# or Gb, G, G# or Ab,

constitute the color (chromatic) music scale: (Itoh et al., 2019), Figure 2.2.

7

Figure 2.2: Key numbers and their pitch-register designation (middle C is C3) (Hosken,

2010).

 Rhythm: the steady or unsteady knocks arrangement produces strong and weak

beats in music.

 Duration: shows the length of the sequence of notes, and how they organize into

groups.

 Tempo: The beat speed which states the piece’s total velocity or speed; it typically

remains constant in western music for a given passage, though it may vary from

one section to the next (Henry et al., 2018).

 Key signature: Music in Major scale gives joyful sense while Minor gives listener

unhappy feeling. In music notation or lead sheets Key signature represents the

mood of the music piece through some sharp or flat symbols as shown in Figure 2.3

we have a sharp sign on the fifth line and it means that the music is on G major

scale and has somehow a happy mood.

 Sequence: “more or less exact repetition of a passage at a higher or lower level of

the pitch” (Kennedy, 2013). A sample is shown in Figure 2.4.

 Tonality: the key signature determines the tonality of the music piece.

 Texture: Monophonic; music with a single melody, Homophonic; music with one

melody and cords, Polyphonic music with more than one melody, and

Heterophonic are types of texture.

8

Figure 2.3: key signature of G Major/E Minor.

Figure 2.4: An example of a sequence; the first bar phrase transposed and repeated.

2.1.2 Monophonic and polyphonic music

The Greek meaning of monophonic music means “one sound”. Without any harmony or

any other form of accompaniment, a monophonic texture has a single line of melody (Ben,

2019), Figure 2.5.

The Greek (poly-phonic) meaning of polyphonic texture means "many sounds”. This

distinguishes music in which many pieces or voices are blended in counterpoint (Ben,

2019), Figure 2.6.

9

Figure 2.5: Visual diagram and music notation sample of monophonic texture.

Figure 2.6: Visual diagram and music notation sample of monophonic texture.

10

2.2 Artificial Intelligence

AI can be distinct as "The science and engineering of making intelligent machines",

according to the inventor of the expression "Artificial Intelligence" John McCarthy in

1956.

Frank Chen, (2016), also had a very clear and logical definition; to attempt to imitate

human intelligence, Artificial Intelligence is a collection of algorithms and intelligence.

Most of them are machine learning, and one of the machine learning techniques is deep

learning. Simply put, AI is a machine’s ability through many techniques or algorithms to

mimic intelligent human behavior (McClelland, 2017). Figure 2.7 explains the relationship

between these different AI disciplines.

 Researches on AI as a Music Composer started decades ago, and since then, many

companies have been aggressively implementing AI technologies that can compose music

without human intervention. A machine learning algorithm on Beatles songs was trained

by Sony's AI system to compose the song 'Daddy's Car', enabling the technology to

compose a song based on what it had learned (Globant, 2017). Artificial Intelligence

Virtual Artist (AIVA) is one of the most popular AI music compositions. They're focusing

on creating classical music at the moment. AIVA, along with TensorFlow deep learning

algorithms, uses a GPU-accelerated library of Deep Neural Network (cuDNN) which is

programmed with reinforcement learning techniques (AIVA, 2020).

11

Figure 2.7: The relationship between different AI disciplines (Goodfellow et al., 2016).

2.3 Machine Learning

ML is a subset of AI techniques that allows computers without being directly programmed

to execute tasks. It is based on models and techniques taken from statistics and the theory

of probability (White, 2019). Murphy, (2012) defined Machine Learning as is a collection

of techniques that can discover patterns in data automatically and then use the discovered

patterns to forecast future data or conduct other forms of decision-making under

uncertainty.

12

2.4 Deep Learning

DL is a subset of ML which focuses on identifying data patterns rather than solving any

particular problem, it became popular in 2012. Goodfellow et al., (2016) defined DL

principally as ML branch and computer systems booster. In dynamic, real-world

conditions, DL is the mere developer technique for AI systems.

Content generation (generation of text, images, and music) is a growing field of deep

learning applications coming up after the two machine learning conventional tasks;

classification and prediction, such as translation and recognition of images and voices.

For automatically learning musical styles from arbitrary musical corporations without

human user interaction and then producing samples from the predicted distribution, the

skill of deep learning architectures and training techniques has been used. (Briot and

Pachet, 2017)

2.4.1 Feedforward neural networks

Multilayer Perceptrons and Feedforward Neural Networks are the same and it is a perfect

deep learning model example. They are pointed to as feedforward since data flows from

input through the neurons, and finally to the estimated output. Figure 2.8 is an example of

the MLP structure. Feedforward networks for machine learning experts are extremely

important. They form the base of many significant commercial applications; object

recognition from images with convolutions networks special types of feedforward neural

networks. It is also the cornerstone of the recurrent neural network.

13

Figure 2.8: An example of MLP (AI Wiki, 2020).

2.4.2 Recurrent neural networks RNNs

It is conceptually easy to switch from a feedforward to a recurrent neural network. The first

assumes data samples distributed identically and independently and typically maps from

fixed-size inputs to fixed-size outputs, whereas RNN with its two special types (LSTM and

GRUs) is a continuation of a conventional neural network that can be used by retaining

state in the so-called recurring layers to model data with temporal dependencies (Jordan,

1997), it naturally works on input sequences of variable length and maps output sequences

of variable length. It is apparent that data such as audio signals, text, and music also have

temporal dependencies in the real world, so RNN has a strong capacity to model those data

types, and it is suitable for dealing with data that have time-series and sequential properties

(DiPietro and Hager, 2019; Chung et al., 2014).

Briot et al., (2017) was published a very comprehensive survey book about the deep

learning techniques used for music generation; almost all RNN techniques were clarified.

Figure 2.9 is an example of the RNN structure, the solid lines indicate feed-forward

connections while loop lines indicate connections over time: from time phase (t) to (t + 1).

14

Figure 2.9: An example of RNN (AI Wiki, 2020).

The RNN input is a sequence of input vectors X (X0, X1, . . . , X t -1). The arbitrary length

of the sequence is (t). For the input (Xi) of each time step, there is a corresponding network

output (yi) as shown in Figure 2.10. The state vector (h) of a layer is updated based on

current inputs and the previous state as shown in Equation 2.1 (Goodfellow et al., 2016).

ht = f (Wx Xt + Wh h t-1) (2.1)

Where Wx and Wh are weight matrices applied to the inputs and the state respectively and

f=σ(z) typically is a sigmoid function or a tanh function as shown in Equations 2.2 & 2.3

respectively (Chung et al., 2014).

σ(𝑧) =
1

1+ exp (−𝑧)
 (2.2)

σ(𝑧) =
exp (𝑧)− exp (−𝑧)

exp (𝑧)+ exp (−𝑧)
 (2.3)

15

Figure 2.10: Unfolded RNN (Anwla, 2020).

In this work, we are interested in evaluating the performance of those recently proposed

recurrent units (LSTM and GRU) on sequence modeling. Before the empirical evaluation,

we first describe each of those recurrent units with some important mechanisms such as

Bidirectionality and Attention in this section.

1. RNNs applications

We may spot the current applications for RNN by reading and studying previous works of

other researchers. (Cho et al., 2014; Sutskever et al., 2014) have a contribution in the field

of machine translation, in text-generation, there are (Sutskever et al., 2011; Karpathy,

2015) papers, for video game generation application we can explore (Summerville and

Mateas, 2016), and in music generation field which is associate to this project topic, we

can reference (Mozer, 1994; Oord et al., 2016; Eck and Schmidhuber, 2002; Liu et al.,

2014; Boulanger-Lewandowski et al., 2012; Choi et al., 2016; Walder, 2016).

2. RNNs architectural types

A major disadvantage of Pure Neural Networks (MLPs) is that they accept as input a fixed-

sized vector and produce as output a fixed-sized vector for example input as an image and

probabilities of different classes as the output. This mapping is carried out by these types

of models using a defined number of model layers it means fixed computation steps

16

number. The recurrent networks are more excitement and this is because of their working

style over vector sequences: input sequences, output sequences, or both, in the most

general case. This property leads to a differentiation between many RNN types of

architecture; many-to-one, one-to-many and many-to-many networks as Karpathy labels

them and provides some examples of each type (Karpathy, 2015). Table 2.1 represents

graphically these architectural types and also the MLPs one-to-one type.

Table 2.1: Architectural types of RNNs, derived from (Karpathy, 2015).

Type of RNN Illustration Example

One-to-one

Traditional neural network

One-to-many

Music generation

Many-to-one

Sentiment classification/

Music generation

Many-to-many

Name entity recognition

Many-to-many

Machine translation

17

3. Network optimization

To minimize losses, we use techniques (methods or algorithms) which are adjusting the

weights and learning rate of neural networks, these techniques are called optimizers. There

are many types of an optimizer; here we try to mention some of them used for training

such as Gradient Descent, Stochastic Gradient Descent (SGD), Momentum, Nesterov

Momentum, AdaGrad, RMSProp, and Adam which is used in our work. We explain it in

some detail in the following section (Karpathy, et al., 2016; Kingma & Ba, 2015).

a. Gradient Descent

The gradient descent algorithm is the base of a vast majority of artificial neural networks

(Brownlee, 2017). Before learning neural networks, it is important to comprehend the

principles of this algorithm which is used for determining the lowest point by reaching zero

derivatives of the function. Let’s suggest minimizing the (fx) function that differentiates

As shown in Figure 2.11, the gradient descent algorithm starts at an arbitrary location and

recursively breaks down to the minimum point in some final value of (x).

Goodfellow et al., (2016) were explained thoroughly all issues about the gradient descent

algorithm work, they denoted the challenges of determining the optimal global minima

especially when the function has many local minimums. in gradient descent approaches we

have to take into account the fact that the algorithm will lead to a local minimum instead of

reaching global minimum which is the entire f (x) minimum value, Figure 2.12

demonstrate this problematic issue. This predominant obstacle will occur for the reason

that the gradient does not have any more route at these locations to move forward, in

mathematical word at the points which are known as critical points When 𝑓′ (𝑥) = 0, it

means that the slope has no direction information for moving.

18

Figure 2.11: Gradient descent reaches the global minimum when 𝑓′ (𝑥) = 0

Figure 2.12: Local and global minimum reaching challenge of gradient descent

19

b. Adam optimizer

Adam is a continuation of stochastic gradient descent and can be used to update the

weights of the network. Jimmy Ba and Diederik Kingma have presented Adam optimizer

in 2015 in the "Adam: A Method for Stochastic Optimization" paper. Adam is defined as

combining the benefits of the Adaptive Gradient Algorithm (AdaGrad) and the Root Mean

Square Propagation (RMSProp) (Kingma & Ba, 2015). Concerning Adam Configuration

Parameters, the learning rate (alpha = 0.001), the first moment decay rate (beta1 = 0.9), the

second moment decay rate (beta2 = 0.999) and a tiny number for avoiding any division by

zero (epsilon= 10−8) are the default tested settings in machine learning implementations

(Kingma & Ba, 2015). Adam adapted in papers that deal with DL for benchmarks. It has

been used by (Gregor et al., 2015; Xu, 2015). Figure 2.13 ensures that Adam optimizer has

the best result to reach minimum training cost.

Figure 2.13: Adam optimizer has the best result to reach to minimum training cost

(Kingma & Ba, 2015).

20

c. Dropout

Dropout is an important strategy and a very useful technique that has effects similar to

regularization for avoiding overfitting of the neural network. Through adopting this

powerful strategy, partially excludes neurons from the network. The key concept, as seen

in Figure 2.14, is to eliminate the hidden neurons randomly selected together with their

connections throughout the training process (Srivastava et al., 2014). By dropout rate as a

probability which is between 0 and 1, any weight between units is set to zero in each epoch

according to this probability. For example with the rate of 0.5 means eliminate half of the

existing units over each epoch.

Figure 2.14: (a) A typical neural network. (b) A typical neural network after applying

dropout technique (Srivastava et al., 2014).

21

4. Long short term memory LSTM

Originally (LSTM) proposed via (Hochreiter and Schmidhuber, 1997). Several slight

changes have been made to the original LSTM unit since then. (Graves and Schmidhuber,

2005) was clarified that a series of memory blocks make up an LSTM layer that is

connected recurrently. Somehow, they are similar to the memory chips used in digital

computers, and each one comprises one or more repetitive memory cells as demonstrated

via Equation 2.7 with the input, output, and forget gates, calculating their values by

Equations 2.4, 2.5 & 2.6 respectively. In this project, we assume the LSTM

implementation same as used in (Graves, 2013). Figure 2.15 demonstrates a particular

memory cell of LSTM.

Figure 2.15: Memory cell of LSTM (Graves, 2013).

Via integrated gates LSTM unit may determine whether to retain the existing memory if a

significant feature of an input sequence is identified by the LSTM device at an early time;

22

it easily carries this information over a long distance. This is unlike the conventional

recurring unit that discards its content at each time step. In the version of LSTM used in

this thesis, the following merged functions are executed for determining the function of

hidden layer H, see Equation 2.8.

it = σ (W.xi xt + W.hi ht—1 + W ci ct-1 + bi) (2.4)

ot = σ (W xo xt + W of ht—1 + W co ct + bo) (2.5)

ft = σ (W xf xt + W.hf ht—1 + W.cf ct-1 + bf) (2.6)

ct = ft ct-1+ it tanh (W xc xt + W.hc ht—1 + bc) (2.7)

ht = ot tanh (ct) (2.8)

 Sigmoid function denoted as σ.

 Input, output, forget gates, and the cell for storing information denoted

respectively as i, o, f, and c.

The above equations are founded in the work of (Graves, 2013).

5. Gated recurrent units GRUs

Cho et al., (2014) was suggested Gated Recurrent Units GRUs allow each recurrent unit to

grasp different time scale dependencies iteratively. It has gating units, similar to the LSTM

unit, which modulates the information flow within the unit, but without having separate

memory cells. Through the use of the reset and update gates, their vectors determine what

data should be transferred to the output; GRUs aim to resolve the vanishing gradient issue

of a conventional RNN. Figure 2.16 illustrates the workflow and design of GRUs

(Kostadinov, 2017). For determining the function of the final hidden layer H, the following

merged functions in Equations 2.9, 2.10, 2.11, and 2.12 are performed.

23

Figure 2.16: Gated Recurrent Unit

𝑧𝑡 = 𝜎 (𝑊(𝑧)𝑥𝑡 + 𝑈(𝑧)ℎ𝑡−1) (2.9)

𝑟𝑡 = 𝜎 (𝑊(𝑟)𝑥𝑡 + 𝑈(𝑟)ℎ𝑡−1 (2.10)

ℎ𝑡
′ = tanh (𝑊 𝑥𝑡 + 𝑟𝑡 ⊚ 𝑈ℎ𝑡−1) (2.11)

ℎ𝑡 = 𝑧𝑡 ⊚ ℎ𝑡−1 + (1 − 𝑧𝑡) ⊚ ℎ𝑡
′ (2.12)

 Sigmoid function denoted as σ.

 Update gate, Reset gate, the content of current memory and current time step final

memory are denoted respectively as 𝑧𝑡, 𝑟𝑡, ℎ𝑡
′ and ℎ𝑡.

24

6. Bidirectionality

Schuster and Paliwal, (1997), pointed out some of the drawbacks of RNNs in their paper,

such as RNNs cannot recognize the upcoming context during training and suggested an

RNN changed version and they named it Bi-directional recurrent neural network (BI-

RNN), which overcomes this limitation, for example. Their work can be recognized as a

starting point for using and inventing this mechanism. Its name indicates that the

fundamental principle of the Bi-directional network is the forward and backward recurrent

execution associated with the identical output layer, in another word (BI-RNN) joins only

one output to two hidden layers, first running from left to right and the other in opposite

direction, that is for collecting past and future states information (Andrew, 2019). This

power designates that the BI-RNN has absolute, temporal knowledge about all points

before and after, for any point in a time series and it’s a useful function especially for

symbolic music generating; the context of the input is important (Graves and Schmidhuber,

2005). Figure 2.17 illustrates the general structure of BI-RNN.

Figure 2.17: General structure of the unfolded BI-RNN (Schuster and Paliwal, 1997).

25

The formal definition of BI-RNN

Considering Forward RNN and Backward RNN manners data frontward from left to right,

right to left respectively and Output 𝑦𝑡 as shown in Equation 2.15 links and calculates the

forward ℎ𝑡
⃗⃗ ⃗ and backward ℎ𝑡

⃖⃗ ⃗⃗ outputs as shown in Equations 2.13 and 2.14 respectively.

From Figure 2.18, and by merging equations, BI-RNN can be defined formally as follow.

All equations below are taken from (Picheny et al., 2016).

Figure 2.18: Bi-directional RNN (Picheny et al., 2016)

ℎ𝑡
⃗⃗ ⃗ = 𝜎 (�⃗⃗⃗� . 𝑥𝑡 + �⃗� . ℎ𝑡−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + �⃗�) (2.13)

ℎ𝑡
⃖⃗ ⃗⃗ = 𝜎 (�⃗⃗⃗⃖� . 𝑥𝑡 + �⃗⃖� . ℎ𝑡+1

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + �⃗⃖�) (2.14)

𝑦𝑡 = 𝑔 (𝑊𝑦 [ℎ𝑡
⃗⃗ ⃗ , ℎ𝑡

⃖⃗ ⃗⃗ + 𝑏𝑦]) (2.15)

 σ: sigmoid function.

 𝑋𝑡 ∈ ℝ𝐷 : Input vector sequence.

 �⃗⃗⃗� , �⃗⃗⃗⃖� ∈ ℝ𝑛𝑖−1∗ 𝑛𝑖: weight between Input and hidden.

 �⃗� , �⃖⃗� ∈ ℝ𝑛𝑖∗ 𝑛𝑖 : weight between hidden layers t, and �⃗� , �⃖⃗� ∈ ℝ𝑛𝑖 : Bias.

26

7. Attention mechanism

With the evidence of (Bahdanau et al., 2015) paper, attention was born for translation and

remembering lengthy sentences in translation with a neural machine. Unlike a conventional

sequence-to-sequence model, Attention allows the input to be interpreted by the RNN to

relay information for each word it detects, and then to concentrate on words as they

become important for the RNN producing the output, whereas the former Sequence to

Sequence S2S model has to refine the entire input down to a particular vector and then

extend it back out. In a fact, deep learning attention can be generally taken as a vector of

weights of relevance: to guess or deduce one element, like an image pixel or a sentence

word, we measure how strongly it is associated with other elements using the attention

context vector and taking the sum of its weighted values by the context vector as the target

estimate (Weng, 2018). Principally as shown in Figure 2.19 the context vector contains

information collected and arranged between input (source) and output (target).

Figure 2.19: Attention mechanism between BI-RNN encoder and RNN decoder

(Weng, 2018).

Figure 2.20 and its derivative one Figure 2.21 which are derived from (Bahdanau et al.,

2015) paper, describe systematically the attention mechanism implemented in neural

27

machine translation. Having a sequence of source 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛] and try to produce a

sequence of 𝑦 = [𝑦1, 𝑦2, … , 𝑦𝑚] with attention to the relationship among words, for

example, the word Economic has full attention with its French meaning which is

economique as well as has relations with words such as, europeenne, zone, and la.

Figure 2.20: Alignment matrix of French and its English translation. (Image from

Bahdanau et al., 2015).

Figure 2.21: Matrix of alignment illustrates the association between the source and

target words (Olah and Carter, 2016).

28

CHAPTER 3

METHODOLOGY & ARCHITECTURE

In this chapter, the logical compatibility of the various choices of algorithms, strategies,

architectures, and learning models that have been used in this work, and their aspects to

generate monophonic music was addressed, as well as the methodology of evaluating the

generated samples was explained.

It is known that the use of deep learning techniques in any task in any of the different fields

needs several procedures prerequisites and necessities. Here we present those much related

to our work:

 Computational resources: Macintosh computer (Mac Pro Mid 2010) with these

specifications has been used to accomplish this task in all its stages: Processor

2.8 GHz Quad-Core IntelXeon; memory 16 GB 1066 MHz DDR3; Startup

Disk SSD; and Graphics ATI Radeon HD5770 1024 MB. Although the Mac was

the best operating system that deals with music and sound engineering software but

with respect to DL, there are many other OSs such as Linux and cloud platforms

better for faster implementation such as AWS and Google Colab.

 Model Building: It was necessary to develop and train the machine learning

model with the built data collection. As the techniques and algorithms the most

popular RNNs such as LSTM, GRUs, have been used with the Bi-directional and

Attention mechanism. Here in this chapter, we will explain the exact ways,

techniques, and algorithms we were used and there are details about them in

chapter 2.

 Programming languages and associated modules and libraries: Python 3.8,

TensorFlow keras_self_attention, Keras, music21, sklearn, keras_tqdm,

Pypianoroll, tqdm, librosa, pretty_midi, matplotlib, numpy, and magenta have

been used. In the following sections, we will explain the coding language,

libraries, and approaches that were used. All necessary screenshots of codes for

implementation in this project have been addressed in Appendices.

29

 Datasets and preprocessing steps: multi-genre (pop, jazz, rock, etc.) and single-

genre (folk) have been used with some useful preprocessing such as choosing only

monophonic and 4/4 time signature music, and transposing them to C major and A

minor Key signatures and converting all to 120 b/m tempo for simplicity and good

analyzing understanding. Details have been explained in chapter 4.

 Evaluation: It was important to identify two mechanisms of evaluation for testing

the model's performance. Firstly, objectively all results of implementations have

been analyzed with the aid of experts in the music field, and secondly, subjective

assessment has been done via analyzing a proposed survey to determine how

generated samples from the models are rhythmically stable and melodically

interested.

3.1 LSTM and GRUs

Recurrent Neural Networks (RNNs) allow long-term dependence to be integrated into the

model. Theoretically, extremely long sequences can be recalled, but in reality, it is

constrained by the vanishing gradient problem as well as the probability of an exploded

gradient is also present, in which the gradient increases exponentially. As stated in

(Hochreiter and Schmidhuber, 1997) Dependencies with large time steps can be managed

by an LSTM or GRU network without being less successful in modeling short-term

dependencies. So we decided to use the Long Short-Term Memory (LSTM) and Gated

Recurrent Units (GRUs) version of the RNN to mitigate these limitations. In the form of

gates that regulate the flow of the learning, LSTMs and GRUs give a solution to the

vanishing gradient problem and immune the error noise in the sequence data to learn the

basic patterns of music structures by preserving an internal state guarded with the "forget"

gate. More details about neural networks for generating music have been discussed in

chapter 2.

30

3.2 LSTM vs GRUs

These two popular versions of RNNs compare to simple RNN, they are needed longer

training times and more computing resources, as there are more training parameters for

monitoring the respective gates (Sturm et al., 2016). Obviously, the GRUs has fewer

parameters than LSTMs due to the cell number and their processes. So at some functions,

it has been seen that they do as well or even better than LSTMs, the former needs shorter

training times and fewer computation resources.

Chung et al, (2014), compared polyphonic music datasets with RNNs, LSTM, and GRU.

They found that both LSTM and RNNs were outperformed by GRU. As well as GRU

outperformed LSTM networks only marginally, so they concluded that the type of task and

dataset are likely to depend on the best choice between the two. Associated with our work

their effects on the results and the comparison between them have been discussed in

chapter 5.

3.3 Gradient Descent Optimization Techniques

In chapter 2 there are sufficient details about general network optimization and its

techniques, here we demonstrate those we used in models and designed architectures. For

achieving neural network optimization and to obtain minimum training cost, two effective

approaches or techniques have been used. The first one was for avoiding the overfitting via

dropping out some of the hidden layers of the network randomly by a chosen ratio (Gal and

Ghahramani, 2016), and as used by (Felbo et al., 2017; Johnson, 2017; and Dong, 2018),

and then the second technique was to obtain weight optimization through the use of Adam

optimizer which is used by (Kingma & Ba, 2015; Ruder, 2016).

In this work and for all experiments, each layer in the designed architecture either LSTM

or GRU followed by a dropout layer with a 40% rate for reducing overfitting issue, the

piece of code from Keras library which applied in this project for the purpose of

controlling overfitting issue has been shown below.

31

This_layer = keras.layers.LSTM(

cells,

dropout=0..4,

name=’LSTM_%s’ % I, return_sequence=ret_seq

)

Deadlock is another issue widely faced in this area when the machine prevents learning.

This implies that the technique of gradient descent is actually running from one slope to

another, not being able to come down. Through the use of Adam and Plateau codes from

Keras library this issue can be solved by reducing the learning rate.

Concerning Adam parameter values, for almost all implemented experiments the same

strategies have been proposed. The initial learning rate of 0.005 was used, and Validation

loss plateaus values for Factor, Patience, and Epsilon were 0.5, 3, and 0.0005 respectively,

the piece of code from Keras library which was implemented for this purpose has been

shown below.

 Factor: states that by which amount the learning rate will change if validation loss

does not optimized and not reduced.

 Patience: describes how many epochs the process should wait before changing the

learning rate by the Factor value.

 Epsilon: it decides over each epoch, by which value of the difference between

current and previous validation loss, the optimizer will start to change the learning

rate value depending on the plateau rule.

32

optimizer = keras.optimizers.Adam(lr=0.005)

callbacks.append(ReduceLROnPlateau(monitor=’val_loss’,

factor=0.5,

patience=3,

verbose=1

mode=’auto’,

epsilon=0.0005,

cooldown=0,

min_lr=0))

3.4 Bi-directional Mechanism

In the field of music generation, Bi-directional LSTMs were proposed successfully by

many researchers, for example, (Dong, (2018); Mogren, (2016)) used Bidirectionality but

with the GAN system. A thorough explanation of this mechanism was discussed in the

previous chapter 2. Here in this project, a Bi-directional mechanism has been used with

both LSTM and GRU networks with and without the use of attention mechanisms to

identify its positive effect on the results which have been discussed in chapter 5.

3.5 Attention Mechanism

The attention mechanism was originally proposed for machine translation and has

widespread use in this area (Bahdanau et al., 2015). Here we want to investigate that in the

generation of symbolic music, does it have an impact on increasing learning, if it used with

RRNs architecture? Subsequently, our emphasis is on the generation of music, We make

the argument that whether attention enables the system to learn which parts of the musical

piece are extremely vital to the next time sequence item prediction? So let's discuss some

important principles of this mechanism to know the range of its effect on our samples

made as described and done by (Felbo et al., 2017; Yang et al., 2016) in other research

33

fields. As humankind, if we are asked to describe the space in which we are seated, we pay

close attention and we will look around at the things that we are describing. In real life the

composers when attend to generate a simple melody they pay extensive attention to

structuring motives, phrases, and music sentences by seeing what they repeat or what is the

next note. There are many relations between current, next, and previous notes, bars,

phrases, and many elements, that music structure consist of. Through using attention,

neural networks may accomplish this same action; focusing on part of a subset of the data

they are given (Olah and Carter, 2016).

Google Magenta team has hopeful results with using attention mechanisms in their open-

source magenta project, especially in music generation (Waite, 2016). Inspired by their

results we also attempted to use this mechanism in one of our experiments to investigate its

effect on generated samples.

3.6 Architecture Type

The models' architecture type in both training and generating phases is supervised many-

to-one architecture as shown in Figure 3.1. The input Tx = 63 time steps. In the training

phase, we will feed the networks with them to predict the next step (𝑦^). In fact, we have 4

bars of 4/4 time signature monophonic melody, each bar consists of (16) time steps (16 of

sixteenth note), this means the overall is equal to (64) time steps, then by eliminating (one)

time step we will obtain (63) time steps as described in the equation 3.1, and then we

neglect the first time step to predict another one every time by moving the window one

step each time forward. In the sample generating phase, we will feed the trained models

with a sample of melody as a seed to obtain (64) new notes, the full (4) bars monophonic

melodies such as the one that is shown in Figure 3.2.

Tx = 4[bars] . 4 [quarter notes] . 4[sixteenth note] – 1 = 63 (3.1)

34

Figure 3.1: Music generation many-to-one RNN architecture type.

 Figure 3.2: Melody sample converted from MIDI file decoded from RNN output layer.

3.7 Temperature

The temperature value effect on the randomness of the produced sequence result can be

considered as an open-source for research in the content-generating field. Due to the

randomness of the event distribution, rising temperatures will make performances sound

non-repetitive (Simon and Oore, 2017). The lower the temperature, the less random the

generated melody will be more like the input (colab, 2020). For training models and

producing melodies in this project, a temperature of 1.0 has been used in all the executed

trials.

𝑥1

𝑥2
𝑥2

𝑥3
𝑥62

𝑥63
𝑥63

𝑦1

𝑎0 Unit 1 Unit 2 Unit 62 Unit 63

𝑦1

𝑦2
𝑦64

35

3.8 Human Evaluations: Professionally and Conventionally

Two different paths are proposed as a methodology of this thesis study part. The main

process is to analyze two different perspectives; the first is from the point of view of

masters and professionals in the music field, and the second, from the perspective of

conventional participants or the audiences with multi-level musical talent as a survey

analysis.

Concerning the first group, they were provided with several samples of generated music in

sheet format to analyze mostly objectively through the basics and principles of music

composition and theories of music. The samples obtained from each model have been

implemented in the practical part of the work discussed in detail in its relative chapter.

Concerning the second group, ten randomly selected melody samples were given to

participants to listen to them and rate each one rhythmically and for melodically pleasing

using the Likert scale method from 1 to 5, as well as participants rate their experience level

musically also from 1 to 5 (Tyler, 2014). This survey process is to analyze results and

investigate model quality in generating monophonic melodies as well as to define the

impact of any changes in all independent variables on the dependent one which is the

generated sample from train models. This process can be classified as subjective decisions

on the results. The statistical analysis has been explained in chapter 5 which is devoted to

results and discussions.

3.9 Trained Models: Architecture Description

All Models trained and implemented in this project have independent variables, and can be

classified into five categories:

 Dataset Types: Multi-genre and single-genre datasets have been used.

 Format encoding approaches: pianoroll format and magenta melody format have

been proposed.

36

 Deep learning techniques: LSTM and GRUs have been tested.

 Learning mechanisms: Bi-directional and Attention mechanisms have been

experienced.

 Hidden layers cell number: 64 cells have been used.

For training models in this work, the data set is randomly divided into a training set of 80%

and a validation set of 20%. The training set contains data used to train the model, and the

validation set consists of data to determine the model's generalization capability during the

training phase. A batch size of 128 is used. All networks are trained for 50 epochs. In the

Keras library, all the models are applied (Chollet et al., 2020). Below are the codes that

are used for this purpose.

EPOCHS = 50

BATCH_SIZE = 128

def get_data(dataset) :

dpath = dataset[‘path’]

dataset = np.memap (dpath, mode=”r”,

dtype= “unit8”, shape=dataset[‘shape’])

x = dataset[:, : -1]

y = dataset[:, :-1]

x_train, y_val, y_train, y_val = train_test_split(

x, y, test_size = 0.2, random_state = 42, shuffle = True)

print (‘we have %s training files and %s validation files’ %

(len (y_train), len(y_val)))

return x_train, y_val, y_train, y_val

Two types of datasets are used in this project; the first was a multi-genre dataset and

consists of (19,877) songs from various styles. The second was a single-genre dataset

contains (45,849) Irish folk songs, all necessary details about datasets and preprocessing

are explained in chapter 4.

37

Here we try to focus on the Models that have been trained to make a comparison between

them via evaluating their results (the melody samples are generated with them). So the

overall trained model is consist of eight models fixed in Table 3.1, each has specific

architecture depending on the changes in independent variables (encoding format, dataset

nature, RNN types, Bi-directional mechanism, Attention mechanism, and hidden layers

cell numbers) the particular architecture has given details in the following subsections.

Table 3.1: Models architecture per changes in the independent variables

M
o
d

e
ls N

o
.

M
o
d

e
ls N

a
m

e

M
u

lti G
e
n

re
 d

a
ta

se
t

h
o
o
k

S
in

g
le

 g
e
n

r
e
 d

a
ta

se
t

fo
lk

M
e
lo

d
y
 e

n
c
o
d

in
g

P
ia

n
o
r
o
ll e

n
c
o
d

in
g

B
i-d

ir
e
c
tio

n
a
l

2
 L

S
T

M
 la

y
e
r
s

2
 G

R
U

s la
y
e
r
s

6
4
 c

e
lls

A
tte

n
tio

n

1
folk_melody_

bi2lstm64_attention * * * * * *

2
folk_pianoroll_

bi2lstm64_attention * * * * * *

3
hook_melody_

bi2lstm64_attention * * * * * *

4
hook_pianoroll_

bi2lstm64_attention * * * * * *

5
folk_melody_

2lstm64_attention * * * * *

6
folk_melody_

2lstm64_noattention * * * *

7
folk_melody_

bi2GRU64_attention * * * * * *

38

3.9.1 Model No.1: model_folk_melody_bi2lstm64_attention

The architecture as shown in Figure 3.3 is as follows:

 Input layer: the network is fed from this layer depending on the number of

vocabulary symbols and the input seed melody sample time steps and the

architecture type of RNN which is many-to-one for generating purpose. Here the

network has been fed for each iteration with 63 input time steps to predict the next

note with the vocabulary symbols number of 58; the exact number of used

vocabulary (note ranges) by the dataset songs (this model trained on Single-genre

dataset).

 Hidden layers: consist of 2 layers of Bi-LSTM, each with 64 cells as described in

the associated section of the mechanism of Bidirectionality in chapter 4; by

adding a negative time path to LSTM, Bidirectionality doubles the number of

cells. We, therefore, have 128 cells on each layer. A dropout layer, with a 40%

rate, follows every layer.

 Attention layer: this model is designed with the Attention layer on top of the last

Bi-LSTM hidden layer, in other words, it is applied after the last dropout layer.

 Output layer: this is for the prediction time step with the same vocabulary number

58 as the input layer, in this case, the aim was to produce only one next prediction

note or time step, also depending on network architecture type many-to-one.

39

.

Figure 3.3: Architecture design of model No.1.

40

3.9.2 Model No.2: model_folk_pianoroll_bi2lstm64_attention

The architecture as shown in Figure 3.4 is as same as model No. 1 except for the input

layer property. Depending on the encoding format used, the input layer varies according to

the number of units. A vocabulary of 56 is produced by the pianoroll, while the melody has

a vocabulary of 58. So the input layer nodes consist of 58 units.

Figure 3.4: Architecture design of model No.2.

41

3.9.3 Model No.3: model_hook_melody_bi2lstm64_attention

The architecture as shown in Figure 3.5 is as same as model No. 1 except it is trained on

the different dataset types; a multi-genre dataset that has a larger range vocabulary of 90

vocabularies. This model has been trained on 74933 files as a training set and 18734 files

as a validation set.

Figure 3.5: Architecture design of Model No.3.

42

3.9.4 Model No.4: model_hook_pianoroll_bi2lstm64_attention

The architecture as shown in Figure 3.6 is as same as model No. 1 except for the input

layer property. Depending on the encoding format used, the input layer varies according to

the number of units. A vocabulary of 88 is produced by the pianoroll, while the melody has

a vocabulary of 90. So the input layer nodes consist of 88 units as well as the output nodes.

Figure 3.6: Architecture design of model No.4.

43

3.9.5 Model No.5: model_folk_melody_2lstm64_attention

The architecture as shown in Figure 3.7 is as follows:

 Input layer: the network is fed from this layer depending on the number of

vocabulary symbols and the input seed melody sample time steps and the

architecture type of RNN which is many-to-one for generating purpose. Here the

network has been fed for each iteration with 63 input time steps to predict the next

note with the vocabulary symbols number of 58; the exact number of used

vocabulary (note ranges) by the dataset songs (this model trained on Single-genre

dataset).

 Hidden layers: consist of 2 layers of LSTM, each with 64 cells. A dropout layer,

with a 40% rate, follows every layer.

 Attention layer: this model is designed with the Attention layer on top of the last

LSTM hidden layer, in other words, it is applied after the last dropout layer.

 Output layer: this is for the prediction time step with the same vocabulary number

58 as the input layer, in this case, the aim was to produce only one next prediction

note or time step, also depending on network architecture type many-to-one.

44

Figure 3.7: Neural Network architecture design of model No.5.

45

3.9.6 Model No.6: model_folk_melody_2lstm64_noattention

The architecture as shown in Figure 3.8 is as follows:

 Input layer: the network is fed from this layer depending on the number of

vocabulary symbols and the input seed melody sample time steps and the

architecture type of RNN which is many-to-one for generating purpose. Here the

network has been fed with 63 input time steps in each iteration to predict the next

note within the vocabulary range of 58 notes, model is trained on Single-genre.

 Hidden layers: consist of 2 layers of LSTM, each with 64 cells. A dropout layer,

with a 40% rate, follows every layer.

 Output layer: this is for the prediction one time step depending on network

architecture type many-to-one with the vocabulary number 58 as the input layer.

Figure 3.8: Neural Network architecture design of Model No.6.

46

3.9.7 Model No.7: model_folk_melody_bi2GRU64_attention

The architecture as shown in Figure 3.9 is as follows:

 Input layer: the network is fed from this layer depending on the number of

vocabulary symbols and the input seed melody sample time steps and the

architecture type of RNN which is many-to-one for generating purpose. Here the

network has been fed for each iteration with 63 input time steps to predict the next

note with the vocabulary symbols number of 58; the exact number of used

vocabulary (note ranges) by the dataset songs (this model trained on Single-genre

dataset).

 Hidden layers: consist of 2 layers of Bi-GRUs, each with 64 cells as described in

the associated section of the mechanism of Bidirectionality in chapter 4; by

adding a negative time path to Bi-GRUs, Bidirectionality doubles the number of

cells. We, therefore, have 128 cells on each layer. A dropout layer, with a 40%

rate, follows every layer.

 Attention layer: this model is designed with the Attention layer on top of the last

Bi-GRUs hidden layer, in other words, it is applied after the last dropout layer.

 Output layer: this is for the prediction time step with the same vocabulary number

58 as the input layer, in this case, the aim was to produce only one next prediction

note or time step, also depending on network architecture type many-to-one.

47

Figure 3.9: Neural Network architecture design of Model No.7.

48

CHAPTER 4

COLLECTING AND PROCESSING DATA

4.1 Dataset

For all machine learning problems, especially deep learning problems, it is clear that the

quality of the dataset and its specifications are necessary to get a well-trained model.

Gudivada et al. (2017) concluded in their paper that the central point for developing

machine learning models is the Excellency of dataset quality.

We will address the datasets we have used to train the models in this chapter. We're going

to include a description of their style and roots. In this thesis the data which have been used

consists of two sets of data: the first contains Irish folklore songs assuming that it is a

single-genre dataset and the second consists of a wide range of different styles as a multi-

genre dataset, all of which contain MIDI file types. Obviously, for many causes, MIDI files

are not ideal for being used strictly as an input to a machine learning algorithm. There is a

lot of data in the files that are meaningless for producing music (De Coster, 2017). Besides,

a MIDI file is a binary file that requires processes of transformation, there are many

approaches for encoding MIID files and transform them to such a suitable file can be used

by the RNNs; the pianoroll representation which is used by (Ycart et al., 2017; Mauthes,

2018; Dong et al., 2018). The Melody encoding format used by the Magenta google brain

team (Waite, 2016) and Transformer encoding also used by (Huang et al., 2018) are some

of these common approaches. As defined in Chapter 5 for each representation with varying

results, a generative model is applied.

49

4.2 Multi-Genre Dataset

This set of data contains (19,877) divided songs into their parts (intro, verse, chorus, etc.),

which is made up of songs of different styles such as Pop, Rock, jazz, metal, etc., was

taken and downloaded from this address as a zip file with all meta-data information

(https://drive.google.com/file/d/13iB5Brk1hypKsw9TSf8_d4Ka3xU0XmFZ/view

Retrieved 03 March 2020), and it was mainly presented and collected from

(https://www.hooktheory.com/ Retrieved 01 March 2020) that contains 13,222 songs in the

form of tabs lead sheets files at a time when we entered to it, the processing and conversion

to MIDI files have been done through GitHub work by (Hsiao, 2019). It is worth noting

that we consider this set of data as a multi-genre dataset. This type has been chosen to

know the extent of its impact on learning our models and to compare it with the models

learned from data of one specific genre like folk. This is explained in detail in Chapter 5.

4.3 Single-Genre Dataset

A single-style dataset consisting of (45,849) Irish folk songs in the form of a MIDI file was

taken from GitHub prepared by (IraKurshunovava, 2019). CSV and JSON data files were

originally taken from (Keith, 2015), by Kurshunova and were eventually cleaned and

transformed from the ABC representation format to the MIDI file format. This website is

the primary source of these folk tunes (https://thesessiond.org/ Retrieved 02 March 2020).

The aim of working on this type of dataset is to investigate the impact of RNNs

architecture changes on the accuracy and the learning quality of generated models and

melodies as result. This is also explained in detail in chapter 5.

4.4 Music Representation Formats

Traditional notation is too time-consuming to write down, too difficult to reproduce, and

not suitable for electronic data processing. The need for international adoption of a basic

code system for the notation of musical works is one of (Brook, 1965). Now a day there

are different digital music formats such as ABC notation (Walshaw, 2020), Simplified

https://drive.google.com/file/d/13iB5Brk1hypKsw9TSf8_d4Ka3xU0XmFZ/view
https://www.hooktheory.com/
https://thesessiond.org/

50

Plaine & Easie Code (Brook, 1965), Kern (Sapp, 2005), MusicXML (Good, 2001), and

MIDI (Oliveira & Oliveira, 2017).

4.4.1 ABC format representation

Hundreds of thousands of tunes are now available on ABC, Figure 4.1, is an example of

this representation. It was developed primarily for Western European folk and traditional

tunes. It has become more popular, though, and has been used for many other kinds of

music. One of the most important goals of ABC notation is that it is very clear, and this

property distinguishes it from the most computer-based musical (Walshaw, 2020).

Recently this format was Used by many researchers work such as (Agarwala, 2017; Sturm

et al., 2016).

Figure 4.1: ABC format representation.

4.4.2 Simplified Plaine & Easie format representation

The original version of this format representation “Plaine and Easie Code System for

Musike” was proposed in Brook and Murray in 1964. It was soon modified to make the

51

code more usable on an international basis for ordinary purposes, for detail (Brook, 1965).

Figure 4.2, shows a simple example of this format.

Figure 4.2: Simplified Plaine & Easie Code representation.

4.4.3 Kern format representation

For modern Western music, the kern representation as shown in Figure 4.3, proposed to

use for representing basic or the core details and also can be used for encoding music

principle elements such as pitch and duration, as well as many other specific score-related

data (Donald and Eric, 2003). Humdrum was created in the 1980s, and one of the main of

its focuses is the notational style; predominantly the kern representation (Sapp, 2005).

Figure 4.3: Kern representation format.

52

4.4.4 MusicXML format representation

MusicXML (Markup languages) is an interchange and distribution format of digital sheet

music. The purpose is to establish a standardized format for common Western music

notation. It is designed to facilitate the exchange between applications for executing many

processes such as musical notation, music information retrieval, instrument performing,

and musical data analysis. It is designed for these applications to be adequate, not optimal.

(Good, 2001). Figure 4.4, exhibits this Markup language format.

Figure 4.4: MusicXML format representation.

4.4.5 MIDI format representation

MIDI (Musical Instrument Digital Interface) is a standard music technology protocol that

connects digital musical electronic instruments, and digital devices such as PC, tablets, and

smartphones of many different organizations. The first version of MIDI was produced in

1983 and is used worldwide every day to create, perform, learn, and share music and

creative works by musicians, DJs, developers, educators, and artists (Huber, 2007).

Music representation in this format includes any music data structure that focuses on music

playback and editing as defined by one or more sequences of notes, with using many

53

operating systems MIDI programming interface, we can record a musician’s performance

on a MIDI keyboard directly in MIDI and store it in data structures. MIDI describes

musical note codes, as well as button key, dial, and pedal variations of digital instruments,

and a sequence of synthesizers can be orchestrated by MIDI control messages (MMA,

2020). MIDI can also create a graphical interface such as the default pianoroll editor that

represents the notes as horizontal bars as shown in Figure 4.5, that can be added, resized,

transferred, removed, copied/pasted, transposed by the user. MIDI does not record sound

waves that are analog or digital. It encodes keyboard features, including the beginning of a

note, its pitch, duration, volume, and musical characteristics, such as vibrato (pcmag,

2020). All of these characteristics are in the 0-127 range (128 possible values), Figure 4.6,

explains the relation between note names and their range number for example C4 has 21 of

the range in a standard 88 keys MIDI keyboard.

 r _ G3_ _ _ A3 _ B3 _ C4 _ B3G3F4D3 C3 _ _ _ _ _ _ _

Figure 4.5: A combination of notation and its pianoroll representation

(Vandenneucker, 2020).

Datasets with this format are used by so many researchers’ works related to music

generation such as (Hilscher and Shahroudi, 2018).

54

Figure 4.6: MIDI Note Numbers for Different Octaves.

55

4.5 Format Encoding

The method of the format encoding of musical inputs into the one that comprehensible by

neural networks is one of the most important issues affecting the efficiency of the models

that are produced and, accordingly, melody samples that generate from them (Laden and

Keefe, 1989). Music that we listen to it directly from the sound sources in life or players

when recorded is always in the form of sound waves. But in the case of digital electronic

devices, the music in its waveform is inappropriate and undefined and must be converted

into a suitable digital form. MIDI format representation which has been chosen in this

work is a common digital format used by so many digital audio workstations; electronic

devices or application software. Our dataset MIDI files need to be transformed and

encoded using two format encoding; pianoroll and melody for our neural network inputs

for comparing the effect of these encoding on the overall processes and the quality of

generated models, detail is in chapter 5

4.5.1 Pianoroll format encoding

Pianoroll is a format for music representation that describes a piece of music via a score-

like matrix. The vertically and horizontally axis, respectively, reflect note pitch and time.

In this thesis, we set symbolic timing and the temporal resolution to 16 per beat to cover

common temporal patterns till 16th notes such as setting do not include triplets and 32nd

notes and over. The note pitch has 128 possibilities, covering from C-0 to G10 see Figure

4.7. A 4/4 time signature bar monophonic melody with one instrument the same as used in

our experiments has a matrix with (64 * 128) dimensions. For dealing with pianoroll

encoding, we used Pypianoroll which is an open-source Python library. It offers an

important multitrack pianoroll handling tool, including powerful I / O as well as a tool for

simulation, analysis, and assessment (Dong et al., 2018).

56

Figure 4.7: Each MIDI number is equivalent to an octave in the left-hand column and a

note in the top row (Nicholsonr & Kim, 2016).

4.5.2 Magenta melody format encoding

This format is suggested in MelodyRNN models by Google Magenta which was started by

some researchers and engineers from the Google Brain team with their motto “Make

machines intelligent. Improve people’s lives”. Magenta is a research study that investigates

the function of machine learning as a system in innovative processes. Driven by

TensorFlow, Magenta as an open-source is distributed Python libraries to manipulate and

train machine learning models with music pieces or image data, for using them to create

new content (Waite, 2016). The python library that is used by Magenta is

(melodies_lib.py), and it converts the file into melody format, considering all 128

equivalent numbers in pianoroll representation as shown in Figure 4.6, 0 to 127 = note-on

even, -2 = no event, and -1 = note-off event. The feature that distinguishes Melody

encoding from its pianoroll format counterpart is holding the (note-on) for the entire

duration of the note; melody does not hold while pianoroll does (Roberts, 2019).

57

4.6 Preprocessing

All processes and techniques that are applied to the dataset and precede the training and

generating processes can be measured as a vital part of any ML problem, especially its DL

main branch techniques problems. It is clear that preparing the data and identifying its

diagnostics will have an effective effect on the models that we gain from the training

process and in turn on generated melodies. So it is important to have sufficient and

abundant information about the characteristics of the data we have used. Any changes in

these specifications, even if they are minor, will greatly affect the overall results (De

Coster, 2017).

For preprocessing the datasets we have preceded the following operation steps:

1. Files with (.mid) extensions have been extracted from the dataset. The single genre

(Folk) dataset contains (45,849) midi file songs and the multi-genre (Hook) dataset

has (19,877) multi-structure midi song tracks

2. MIDI files with three and more staves (instruments) have been eliminated, only

those with two instruments remained and we have assumed that the first staff

contains a melody part and we deleted the second staff which usually contains

chords, that’s for selecting only the monophonic melodies (music that is written for

only one voice or part) to train and obtain our models, this represented as an

essential part of our project problem statement. Choosing only the melody part is to

ensure to train our systems only on melodies to generate later monophonic music

samples in the sampling processing stage. Concerning the hook multi-genre dataset,

we obtained (17,954) songs after applying these criteria, but the Folk single dataset

had (45,849) songs.

3. The remained dataset has been filtered and only those melodies have been selected

which have a four-by-four (4/4) key signature, to simplify the learning. In this case,

our systems will focus on learning only one type of rhythm, which is the most

common time signature in popular and traditional music genres, especially in

western music. In this stage, the remaining 4/4 key signature songs from the Hook

dataset were (16,386) songs, and (24,234) four by four songs remained from the

Folk dataset.

58

4. With the quantization process, we have converted all notes with triple duration to

the nearest eighth or sixteenth note length.

5. We have transposed the keys of all chosen monophonic melodies to only “C” major

and its related minor, “A” minor Key (Do Major and La Minor) as done in, this step

is also proposed to let our systems focus on only one scale major type and its

relative minor key instead of learning twelve existent keys in western music (Ycar

et al., 20017; Hadjeres and Nielsen, 2017; Simon et al., 2018). Transposed dataset

melodies to all keys and the results were lower learning with the same amount of

time as described by (De Coster, 2017). It was because the network now wants to

learn musicality patterns at the same time across multiple keys.

6. By detecting the number of used notes in songs and determining the vocabulary

ranges (minimum and maximum notes) we have fined that the Folk dataset has a

vocabulary of (58) used notes while the Hook dataset has (90) used pitches. We

know that the standard MIDI pitches number is (127) pitches. Through this

preprocessing step we let the systems focus on the only used notes which are less

than the standard midi notes in both datasets. This means maximizing the total use

of data memory, speeding up the learning process, as the model does not need to

learn about the pitches that are not used.

7. Musical works with 4 bars are generally felt by listeners as either an ending or a

turning point in the music (Kitagawa, 1999). Then by moving a 4-bar window at a

time across each file, with a 1-bar step length, we have created multiple 4-bar

sequences. This implies, for example, that a 5 to 8 bar MIDI file will have two 4-

bar sequences, and a 9 to 12 bar file will have 3 bars, and so on. In this stage with

the use of the two common encoding formats; pianoroll and Melody which have

been explained earlier in this chapter, (93,667) 4-bar sequences from the multi-

genre Hook dataset and (100,000) sequences from single genre Folk dataset have

been obtained.

8. Five songs randomly as original songs from the single-genre dataset have been

selected for comparison with five generated samples in the Human Evaluation

section in chapter 5.

All codes related to the dataset preprocessing are settled in Appendix 1, and the workflow

of the preprocessing can be summarized in Figure 4.8.

59

Figure 4.8: Preprocessing workflow.

MIDI files: single-genre (Irish Folk) and multi-genre (Classic, Jazz, Rock,

Pop, Folk, etc.) songs.

Eliminate songs with three and more tracks (instruments or staves).

Deleting the second track to obtain monophonic melody.

Filtering only 4/4 time signature songs.

Quantizing all remaining songs to minimum 16
th

 notes length.

Transposing all songs to C major and Aminor scale.

Splitting songs to 4 bars sequences: 100,000 sequences obtained from single-

genre, and 93,667 sequences from multi-genre datasets.

Encoding MIDI files: converting to machine language.

Pianoroll encoding format, using

Pypianoroll Python library.

Magenta melody format, using

Magenta library.

 Recurrent Neural Networks training processes

60

CHAPTER 5

RESULTS AND DISCUSSION

A methodology and the architecture of models for monophonic music generation and

methods of evaluation have been presented in chapter 3 with the thorough detail of all

seven trained models architecture, each with its own meta-parameters and preprocessed

approaches as well its dataset type which trained on it. In this chapter, the results of these

methods and their related tables and plots have been presented and discussed. A series of

trials to train the models are performed, a workflow of processes and some important codes

related to these issues are settled in Appendix 1, and screenshot samples of implementation

have been fixed in Appendix 2. The results are given and evaluated, and the quality of the

generated samples is measured and defined, as well as the accuracy of the models is

discussed.

5.1 Results

Through the models analysis and objectively comparing them to each other via their

generated melodies with the assist of experts in the field of music and composing

melodies, as well as through analysis of the results of the charts and the values of the losses

functions and the models' accuracies which obtained from the implementation of the codes

for each model, the good investigation can be obtained, and the impacts of changing each

independent variables in the models on the generated melodies can be felt and have been

verified as follow.

5.1.1 Format encoding impacts

The comparison has been applied between two models, No.1 with No.2 and No.3 with

No.4 for revealing the influence of format encoding on the overall processes and the

quality of the melody samples that are generated. The only difference between these two

models architecture is the encoding format, all things are the same except the ways have

been used for encoding the MIDI songs from the dataset, two approaches have been used

61

for this purpose, the first is the same as proposed by Google magenta which is melody

format encoding applied to model No.1 (Waite, 2016), and the second approach is

pianoroll format encoding which is applied to model No.2. By comparing loss graphs of

these two models as shown in Figure 5.1, the important result has been noticed; the

stagnation of validation loss at (0.45508) after five epochs and did not reduce due to the

overfitting early when the model with pianoroll encoding trained, while the model with

melody format achieves a lower validation loss of (0.27749), this means that this model

has learned more than the other one.

(a) Loss graph for melody encoding (b) Loss graph for pianoroll encoding

Figure 5.1: Loss graphs for models No.1 and No.2.

Thus, by making a comparison between the tunes that have been gotten from these two

models themselves as well as with the seed sample, as shown in Figure 5.2, and through

the analysis of music experts, the following inferences as shown in Table 5.1 have been

grasped, and the conclusion is that the magenta melody format encoding has better learning

ability at the sequencing of melodic steps. It is better than the pianoroll format encoding. In

other words, model No.1 is better.

62

Table 5.1: Experts objectively comparison for revealing the encoding influences.

Samples generated with trained

model No.1, melody encoding

Samples generated with trained

model No.2, pianoroll encoding

Tempo Same as the seed sample and

training set 120 Beats/minute

Same as the seed sample and

training set 120 Beats/minute

Time

signature

Same as the seed sample and

training set, 4/4

Same as the seed sample and

training set, 4/4

Vocabulary

range

A smaller range of notes has been

used, hence can be said it is

closer to the seed sample.

A larger range of notes is used,

hence can be said it is further

from the seed sample.

Note time

range

The smaller range has been used;

dotted quarter, quarter, and eighth

notes.

The larger range between a whole

note and sixteenth notes has been

used.

Key

signature /

Scale

Same as the seed sample or

training set songs (C major or A

minor)

Differ from the seed sample or

training set songs there are some

notes out of the scale range of (C

major or A minor)

Melodically Melodically samples are nearer to

the seed sample and training set

songs (Irish folk).

Less melodic characteristic

samples.

Rhythmically Less rhythmic characteristic

samples.

More rhythmical samples. They

are closer to classical music than

simple folk songs.

63

(a) The seed sample used in sampling processes

(b) Melody samples generated by the use of trained Model No.1 (melody encoding).

(c) Melody samples generated by the use of trained Model No.2 (pianoroll encoding).

Figure 5.2: Seed and generated samples for showing format encoding impacts.

64

5.1.2 Dataset nature impacts (Single-genre vs Multi-genre)

The distinction between two trained models, No.1 and No.3, has been extended to expose

the effect of the style of the dataset on the overall processes and the nature of the produced

melody samples. They have exactly the same architecture design but trained on two

different datasets stylistically. The significant and predicted outcome was found by

comparing loss graphs of these two models No.1 and No.3 as seen in Figure 5.3 due to the

mixture of songs in the multi-genre dataset; stagnation of validity loss at (0.38790) and did

not decrease due to early overfitting. But the model trained on the homogenous property

single-genre dataset achieves a lower validity loss of (0.27749), which suggests that more

has been learned from this model.

(a) Loss graph for Single-genre (b) Loss graph for Multi-genre

Figure 5.3: Loss graphs for models No.1 and No.3.

Therefore, in Table 5.2, and through the music experts study, the following inferences have

been contrasted among the tunes generated by the models themselves and the seed sample

which is shown in Figure 5.4. Hence we can conclude that model No.1 learned more, and

has better results due to training on the single-genre dataset, it is better at mimicking the

characteristics associated with the pitch if compared with model No.3 which is trained on a

65

multi-genre dataset. Clearly, we can see that the model has a weak ability to mimic both

the dataset's pitch and rhythmic aspects. This is the same as humans learning to compose a

melody. The one who studies and attempts to learn a type of music will learn better than

the one who tries to learn several styles in the same period.

Table 5.2: Experts objectively comparison for revealing the dataset nature influences.

Samples generated with trained

model No.1 on the Single-genre

dataset

Samples generated with trained

model No.3 on the Multi-genre

dataset

Tempo Same as the seed sample and

training set 120 Beats/minute

Same as the seed sample and

training dataset 120 Beats/minute

Time

signature

Same as the seed sample and

training set, 4/4

Same as the seed sample and

training dataset, 4/4

Vocabulary

range

A small range of notes have been

used, hence can be said it is

closer to the seed sample and the

training set.

A larger range of notes is used

same as the training set which has

a larger vocabulary range, but far

from the seed sample nature.

Note time

range

The smaller range has been used;

dotted quarter, quarter, and eighth

notes.

The larger range has been used;

the sixteenth notes can be seen as

well.

Key

signature /

Scale

Same as the seed sample or

training set songs (C major or A

minor).

There are a few false notes out of

the scale of the seed sample.

Melodically Melodically the samples are

closer to the seed sample and

training set songs (Irish folk;

single-genre).

Melodically the samples have

both characteristics of the seed

sample and training set songs

(multi-genre).

Rhythmically Less rhythmic. More rhythmic.

66

(a) The seed sample used in sampling processes

(b) Melody samples generated by the use of trained Model No.1 (Single-genre).

(c) Melody samples generated by the use of trained Model No.3 (Multi-genre).

Figure 5.4: Seed and generated samples to show dataset nature impacts.

67

5.1.3 RNN type impacts (LSTM vs GRUs)

The aim of the comparison between trained models, No.1 and No.7, is to determine the

influences of the accuracy of the two main modified and improved types of Recurrent

Neural Network; LSTM and GRUs, both of them trained on the same dataset and with the

same computation resources. Via the investigation and comparing their loss graphs as

shown in Figure 5.5, this fact can be noticed; There is no significant difference between the

results for the two models both models validation loss reached nearly 0.2, but the model

with GRUs architecture needs less time to lean same as the model with LSTM design.

(a) Loss graph for LSTM (b) Loss graph for GRUs

Figure 5.5: Loss graphs for models No.1 and No.7.

Thus by comparing the tunes derived from these two models themselves as well as the seed

melody, as seen in Figure 5.6, and by evaluating the music experts, the music samples

generated by both models are so closer to each other and has the same structure as the seed

sample as well as the training set songs, except the existing the one false tone out of the

chosen scales (C major and A minor) in the second sample of the model No.7 (GRUs). So

we can conclude that Model No.1 (LSTM) has results of generated melody slightly better.

68

(a) The seed sample used in sampling processes

(b) Melody samples generated by the use of trained Model No. 1.

(c) Melody samples generated by the use of trained Model No.7.

Figure 5.6: Seed and generated samples to demonstrate the RNN type impacts.

69

5.1.4 Bi-directional mechanism impacts

The only existing difference in these two trials between both models No.1 and No.5 is that

the former has a Bi-directional mechanism but the latter’s design is without a Bi-

directional mechanism. By looking closely at their loss graphs in Figure 5.7, we settle that

they both approximately reached the same value of validation loss, knowing that the first

model has 128 cells for each layer of its hidden layers, and that is because the cells are

counted in both directions from the beginning of the hidden layer to the end and back in

the opposite direction, while the second has just 64 cells.

(a) Loss graph for Bi-directional (b) Loss graph for Non-Bi-directional

Figure 5.7: Loss graphs for models No.1 and No.5.

Here the goal is to compare the effect of the Bidirectionality on the generated melody

results that shown in Figure 5.8, via the experts' assessment and from their summaries

fixed in Table 5.3, we can infer that the melodies produced by model No.1 with Bi-

directional mechanism are better than those generated by model No.5, which has no Bi-

directional mechanism. The Bi-directional model generates pieces that tend to match the

melodic structure of the seed sample structure more effectively. More detail on this

70

mechanism in chapter 3, section 3.4. The key inference is that, with the use of Bi-

directionality, doubling the number of cells increases the consistency of the samples.

Table 5.3: Experts objectively comparison for revealing the Bidirectionality influences.

Samples generated with trained

model No.1 using the Bi-

directional mechanism

Samples generated with trained

model No.5 without using the

Bi-directional mechanism

Tempo Same as the seed sample and

training dataset 120 Beats/minute

Same as the seed sample and

training dataset 120 Beats/minute

Time

signature

Same as the seed sample and

training dataset, 4/4

Same as the seed sample and

training dataset, 4/4

Vocabulary

range

Approximately one octave (12-13

notes) has been used

One and have octaves(20-21

notes has been used

Note time

range

So close to the seed sample as

well as the training set.

So close to the seed sample as

well as the training set.

Key

signature /

Scale

Same as the seed sample or

training set songs (C major or A

minor).

There are some notes out of the

scale range of (C major or A

minor).

Melodically They have an emotional effect,

musically more close to

monophonic folk songs.

They have an emotional effect

musically but not much as model

No.1 results. More repeating

tones can be seen.

Rhythmically Less rhythmic character melodies

like the properties of the seed

melody and training set folk

songs.

Same as results in model No.1

71

(a) The seed sample used in sampling processes

(b) Melody samples generated by the use of trained Model No.1 (Bi-directional).

(c) Melody samples generated by the use of trained Model No.5 (Non-Bi-directional).

Figure 5.8: Seed and generated samples to demonstrate Bidirectionality impacts.

72

5.1.5 Attention mechanism impacts

Models No.5 differs from model No.6 in the architecture design, the former has an

Attention mechanism, but the latter is without it. By observing their loss graphs in Figure

5.9, we determine that both models achieved the same amount of validation loss roughly.

But their generated samples as shown in Figure 5.10 did not have the same musical quality

as analyzed and compared by the experts. We can notice that model No.6 did not learn to

mimic the key signature of the trained set and the seed sample (C major or A minor), due

to lack of Attention, each sample has a different scale and dissimilar key signature, They

are similar to atonal music, not melodically the same as the seed sample and training set

songs (Irish folk). “Atonality is simply the absence of tonality, tonality being the musical

system based on major and minor keys” (Miles Hoffman, 2018). The samples were

generated through model No.5 melodically they are more similar to the seed sample and

training set songs (Irish folk), they are more emotional and closer to tonal music with a few

dissonance tones. In conclusion, we can decide that the model with the Attention

mechanism has better-generated samples and the model has been learned more than the

other one that has no Attention mechanism. It keeps the seed sequence composition much

better. For more detail about this mechanism see chapter 3, section 3.5, and chapter 2

section 2.1.2.9

(a) Loss graph for Attention (b) Loss graph for Non-Attention

Figure 5.9: Loss graphs for models No.5 and No.6

73

 (a) The seed sample used in sampling processes

(b) Melody samples generated by the use of trained Model No.5 (Attention).

 (c) Melody samples generated by the use of trained Model No.6 (Non-Attention).

Figure 5.10: Seed and generated samples to demonstrate Attention mechanism impacts.

74

5.1.6 Bi-directional & Attention impacts

The comparison has been applied between two models, No.1 and No.6 for revealing the

influence of two important mechanisms together on the overall processes and the quality of

the melody samples that are generated. From comparing their loss graphs as shown in

Figure 5.11, we cannot observe a big distinction except the relation between the learning

rate and the change of losses. Hence the fixed learning rate can be noticed in the case of

model No.6 while losses decrease. Both trained models tend to reduce validation loss from

infinity nearly to 0.2. Therefore with the aid of expert analysis, many differences can be

observed: the samples related to the model without using both mechanisms have Atonal

properties, the scale is not the same as the seed or the training set. The trained model could

not mimic the melodic structure of the training set; the results have different key

signatures, as well as rhythmically the samples are not related to the original dataset or the

seed sample, see Figure 5.12. In conclusion, we can adopt that the model with the

Attention mechanism and Bidirectionality keeps the seed sequence composition much

better and has better generated samples. The model has been learned more than the other

one that has no these two mechanisms.

(a) Loss graph for Bi-directional &

Attention

(b) Loss graph for Non-Bi-directional &

Non-Attention

Figure 5.11: Loss graphs for models No.1 and No.6.

75

(a) The seed sample used in sampling processes

(b) Melody samples generated by the use of trained Model No. 1 (Bi-directional &

Attention).

(c) Melody samples generated by the use of trained Model No. 6 (Non-Bi-directional &

 Non-Attention).

Figure 5.12: Seed and generated samples to show Bi-directional & Attention impacts.

76

5.2 Human Evaluation

For the purpose of audience qualitatively assessment of melody samples generated via the

proposed model, as well as to determine the participant's background musically knowledge

and expertise. We prepared a specific survey form for assessing melodies subjectively and

defining the assessor listener’s grade in the music industry. The form which is shown in

Appendix 3, attached with the mixture of (10) four bars length melodies made up of (5)

melodies from the original training set selected randomly and (5) melodies generated from

model No. 1 which is trained on the folk dataset that encoded with magenta melody format

as advanced by the Magenta team (Waite, 2016), assuming that this model is the best

model which assessed its generated melodies by proficiencies, and it has the following

architecture:

 Input Layer has (63) time steps and 58 vocabulary sizes from the melody encoding

format of the folk data set.

 2 layers of Bi-directional LSTM, each with (64) cells and (0.4) dropout rate.

 On top of the second layer, the attention layer has been applied.

 (One) time step and (58) vocabulary size of the output layer.

It’s important to note that the model was optimized with an Adam optimizer with a (0.005)

learning rate, and was trained for 50 epochs. For generating samples with the temperature

equals to 1(the effect of temperature values have been explained in Section 3.7), we have

selected 4 bars of the melody from the same genre that the model trained with as a seed

sequence. This helps the model to generate samples of greater quality. The seed was in D

major with the name “The Banks of the Ilen” (https://thesession.org/ Retrieved 11 June

2020).

Participants were asked to listen to the mixture of the samples and to answer the questions.

Of course, the first one is about the rhythmic stability of melodies as they inquire if they

should tap along with the melodies. Aniruddh et al., (2009) identified that humans have a

high degree of flexibility in synchronizing Beat Perception; they can easily synchronize

77

with music rhythm through a variety of body parts movements such as head bobbing, foot,

hand and finger tapping, side-to-side lilting, etc.

Also, the audience was asked to answer the latter question about how they affect

emotionally just after listening to the melodies. This is for the aim of targeting the melody

content itself. The overall grades, as done by (Huang et al., 2020) were on a Likert scale of

5 points. In chapter 3 there is a detailed explanation of this survey methodology.

5.2.1 Survey analysis and results:

We will try to discuss and give appropriate graphs and plots of the results in this section

after collecting (50) answered forms (see Appendix 3) and implementing the respective

codes (see Appendix 1). From Figure 5.13, due to their skill rate, we can see the

distribution of participants, for each level we have 10 persons. 1 is representing the lowest

level and 5 is the highest musical experience level.

Figure 5.13: Distribution of participants according to experience levels.

78

The difference in the assessment of the generated samples can be perceived in terms of

participant’s musical expertise when the overall collected forms have been classified into

two main groups; group1 consists of the participants with level 1 and level 2 which

demonstrate in general the low expertise level. Thus the remaining levels from 3 to 5 are

categorized as group2 and it represents the high-level expertise level participants.

Statistically, table 5.4 has been shown the results, as well as Figure 5.14, represents the

results in a bar plot of mean and standard deviation. Both groups felt the difference

between the original and produced models, albeit with a slight difference. They do not give

high rates to all samples. This is due to the influence of eastern culture on the participants'

taste for music; we know that both groups of the samples have a western musical character.

In high-level group 2, the standard deviation for the assessment is lower than in the low-

level group, explaining that the score is accurate.

Table 5.4: Evaluation results of the participants per group experience level.

participants per low & high groups Mean SD

Group 1 per original rhythm stability 3.950 1.052

Group 1 per generated rhythm stability 3.770 1.112

Group 1 per original melody pleasing 3.840 1.037

Group 1 per generated melody pleasing 3.650 1.081

Group 2 per original rhythm stability 3.960 0.965

Group 2 per generated rhythm stability 3.693 1.064

Group 2 per original melody pleasing 3.840 1.020

Group 2 per generated melody pleasing 3..667 1.056

79

Figure 5.14: Participants’ evaluation results per low and high experience level.

The overall assessment by the participants, rhythmically and melodically, also represents

the convergence of the results of mean and standard deviation values as shown in both

Table 5.5 and Figure 2.15; there is a slight distinction between the results, this means that

the generated samples from the model are so close to the original songs.

80

Table 5.5: Evaluation results of all participants.

All participants Mean SD

Rhythm stability per original samples 3.956 1.001

Rhythm stability per generated samples 3.724 1.084

Melody pleasing per original samples 3.840 1.027

Melody pleasing per generated samples 3.660 1.066

Figure 5.15: The overall participant evaluation results

81

By looking at Table 5.6, we infer that by comparing the mean values of the generated

sample with original training set samples for both evaluation, rhythmically (3,820 to 3,420)

and melodically (3,780 to 3,420), the highest level participants assessed the greater

discrepancy between generated and original samples see Figure 5.16.

Table 5.6: Evaluation results of all participants per each experience level.

Participants per experience level Mean SD

Level 1 per original rhythm stability 3.780 1.082

Level 1 per generated rhythm stability 3.560 1.169

Level 1 per original melody pleasing 3.700 0.964

Level 1 per generated melody pleasing 3.300 1.100

Level 2 per original rhythm stability 4.120 0.993

Level 2 per generated rhythm stability 3.980 1.010

Level 2 per original melody pleasing 4.00 1.086

Level 2 per generated melody pleasing 4.100 0.938

Level 3 per original rhythm stability 3.600 0.922

Level 3 per generated rhythm stability 3.940 1.114

Level 3 per original melody pleasing 3.760 1.047

Level 3 per generated melody pleasing 3.960 1.011

Level 4 per original rhythm stability 3.960 1.019

Level 4 per generated rhythm stability 4.060 0.925

Level 4 per original melody pleasing 3.800 1.058

Level 4 per generated melody pleasing 3.820 1.033

Level 5 per original rhythm stability 3.820 0.931

Level 5 per generated rhythm stability 3.420 1.041

Level 5 per original melody pleasing 3.780 0.944

Level 5 per generated melody pleasing 3.420 1.079

82

Figure 5.16: Participants’ evaluation results for each experience level.

As a whole conclusion giving the small rates to all generated as well as original melodies,

in melodically and rhythmically assessment is due to the influence of eastern culture on the

participants' taste for music; we know that both groups of the samples have a western

musical character. The final judgment would be that the samples generated are slightly less

musically enjoyable and also slightly less rhythmically balanced for audiences. This leads

to infer that model No.1 of two layers of Bi-directional LSTM, 64 cells for each with

applying Attention mechanism on single-genre dataset has satisfactory results in generating

monophonic music. This was concluded also in both expert's evaluation and through the

analysis of the training and validation losses previously in this section.

83

CHAPTER 6

CONCLUSION

The main goal of this project is to delve into the study of how to use Artificial Intelligence

deep learning techniques, for the purpose of generating and composing monophonic music,

by designing models using the Python programming language and its own libraries in this

field and trying to teach the models on different datasets in terms of the style (single-genre

and multi-genre) to determine More efficient and effective techniques, and also to

demonstrate effects of some independent variables such as (magenta melody and pianoroll

format encoding, Bidirectionality and Attention mechanism, RNN types, and datasets

nature) on the dependent variable (the generated melody). For these purposes, seven

models, each with a different architecture design have been used and trained on a specific

type of dataset to learn and to generate new melody samples, the results have been

analyzed and comparison has been done between samples of the models with the assist of

academic musicians and experts composers, as well as a survey has been conducted to

evaluate subjectively the generated music samples by the best model selected via the

musician experts assessment.

In conclusions, In case of using the same independent variables except for encoding format

of dataset MIDI songs which trained the model on it, the generated melodies outcome with

pianoroll encoding format has more rhythmically enhancement melodies comparing with

magenta melody encoding format result samples, but melodically, the latter has better

emotional melodies and so closer to trained dataset and the seed sample.

For studying the influence of the dataset specifications on the generated melody samples

quality, dealing with two sets of data that varied in stylistic homogeneity (single-genre and

multi-genre) for training has been tackled. So we can conclude that the produced melodies

have a more melodic and sensitive personality when the model trained on single-genre

folk.

As a result, the fact which has been formulated is that the use of 2 layers Bi-directional

LSTM with attention mechanism is a very promising candidate for generating emotional

84

melodies similar to the original dataset and the used seed sample and relatively close to

GRUs results. In the case of using GRUs, the training process has been stopped at 35

epochs judging by the validation loss behavior compared with the same design with

LSTM; this means GRUs needs less implementation time for achieving relatively same

results. Conclude point here is that the LSTM outperforms the GRUs with similar global

architecture meta-parameters but more training time and epoch’s number.

Bidirectionality and attention mechanisms have a positive impact on models learning

capability, significantly the better melodic structure samples have been produced by

models with the use of these two great mechanisms. Exactly as deduced and proven by

Magenta, the results with the model which is used attention makes it possible for the model

to learn longer-term dependencies and can produce melodies with longer themes

effortlessly. This is because, without storing information in the RNN cells; Attention helps

the model to handle past information more efficiently and effectively.

Future Project Expansions

Here is the list of possible future works of this thesis project:

 Designing models using a combination of RNN hidden layers, for example

combining BLSTM with BGRUs.

 Training models with different augmentation of different key signature melodies

to improve generated sample results harmonically.

 Training models on multiple tracks/instruments and generating the same melodies

(Homophonic, Polyphonic, and Heterophonic)

 Designing models for dealing with Eastern musical scales.

 Training using Eastern melody datasets.

 Using encoder-decoder architecture with sequence to sequence methodology.

 Using a dataset with other music notations and representations than MIDI.

 Incorporating dynamics and emotional expression of notes to expand this project to

deal with human feelings.

 Testing models with different Temperature values in the generating phase.

85

REFERENCES

Agarwala N., Inoue, Y., & Sly. A. (2017). Music Composition using Recurrent Neural

Networks. Retrieved 10 April 2020 from

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/reports/2762076.pd

f

AI Wiki, Recurrent Neural Network (RNN). Retrieved 02 May 2020 from

https://docs.paperspace.com/machine-learning/wiki/recurrent-neural-network-rnn

AIVA, (2020), Artificial Intelligence Virtual Artist. Retrieved 12 March 2020 from

https://www.aiva.ai/

Amidi, (2019) Recurrent Neural Networks. Retrieved 20 Feb. 2020.

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-

networks.

Ammer, (2004). The facts on file dictionary of music. Infobase Publishing. P.16

Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural Machine Translation by Jointly

Learning to Align and Translate. CoRR, abs/1409.0473. arxiv.org/abs/1409.0473

Ben Dunnett (2019), Musical Structures. Retrieved: 10 May 2020 from

https://www.musictheoryacademy.com/understanding-music/musical-structures/

Boulanger-Lewandowski, N., Bengio, Y., & Vincent, P. (2012). Modeling temporal

dependencies in high-dimensional sequences: Application to polyphonic music

generation and transcription. Computer Science, Machine Learning

https://arxiv.org/abs/1206.6392

Briot, J., & Pachet, F. (2017). Music Generation by Deep Learning - Challenges and

Directions. Computer Science, Engineering. https://arxiv.org/abs/1712.04371

Briot, J., Hadjeres, G., & Pachet, F. (2017). Deep Learning Techniques for Music

Generation - A Survey. ArXiv, abs/1709.01620. https://arxiv.org/abs/1709.01620

Brook, B. (1965). The Simplified Plaine and Easie Code System for Notating Music. In A

Proposal for International Adoption. Fontes Artis Musicae, 12(2/3), (PP 156-

160). Retrieved October 11, 2020, from http://www.jstor.org/stable/23504707

86

Brownlee Jason, (2017). Master Machine Learning Algorithms. (Chapter 9, P 30)

Byrd, Donald & Isaacson, Eric. (2003). A Music Representation Requirement

Specification for Academia. Computer Music Journal - COMPUT MUSIC J. 27.

(PP 43-57). 10.1162/014892603322730497.

Chen Frank, (2016), AI, Deep Learning, and Machine Learning: A Primer. Retrieved 10

Feb.2020 from https://a16z.com/2016/06/10/ai-deep-learning-machines/

Cho, K., Merrienboer, B.V., Bahdanau, D., & Bengio, Y. (2014). On the Properties of

Neural Machine Translation: Encoder-Decoder Approaches. SSST@EMNLP.

Cho, K., Merrienboer, B.V., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk, H., &

Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder-Decoder

for Statistical Machine Translation. Computer Science, Mathematics.

https://arxiv.org/pdf/1406.1078.pdf

Choi, K., Fazekas, G., & Sandler, M. (2016). Text-based LSTM networks for Automatic

Music Composition. Computer Science, Artificial Intelligence.

https://arxiv.org/abs/1604.05358

Chollet et al., (2020). Keras: Deep Learning for Python. Retrieved April 2020 from

https://github.com/keras-team/keras

Walshaw Chris. About ABC Notation, Retrieved 10 Jan. 2020, http://abcnotation.com.

Chung, J., Gülçehre, Ç. Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated

Recurrent Neural Networks on Sequence Modeling. Computer Science.

https://arxiv.org/abs/1412.3555

Colab, Making Music with Magenta, Creating New Sequences. retrieved March 2020

https://colab.research.google.com/notebooks/magenta/hello_magenta/hello_mage

nta.ipynb#scrollTo=SlYDyTA0-UJT

Sapp. Craig Stuart, (2005). Online Database of Scores in the Humdrum File Format. Royal

Holloway, University of London, http://ismir2005.ismir.net/proceedings/3123.pdf.

https://arxiv.org/pdf/1406.1078.pdf
https://arxiv.org/abs/1604.05358
https://arxiv.org/abs/1412.3555

87

De Coster, M. (2017). Polyphonic music generation with style transitions using recurrent

neural networks. Retrieved 20 March 2020 from

https://lib.ugent.be/en/catalog/rug01:002367003

DiPietro, R., & Hager, G. D. (2019). Deep learning: RNNs and LSTM. In Handbook of

Medical Image Computing and Computer Assisted. The Elsevier and MICCAI

Society Book Series 2020, (PP 503-519). https://doi.org/10.1016/B978-0-12-

816176-0.00026-0

Dong, (2018). SAM-bach: A deep generative model for bach chorale generation. Retrieved

08 May 2020, from https://escholarship.mcgill.ca/concern/theses/8910jw92v

Dong, H., Hsiao, W., Yang, L., & Yang, Y. (2018). MuseGAN: Multi-track Sequential

Generative Adversarial Networks for Symbolic Music Generation and

Accompaniment. AAAI. https://arxiv.org/abs/1709.06298

Eck D. and Schmidhuber J, (2002). A first look at music composition using lstm recurrent

neural networks, Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale, vol.

103. http://www.iro.umontreal.ca/~eckdoug/blues/IDSIA-07-02.pdf

Felbo, B., Mislove, A., Søgaard, A., Rahwan, I., & Lehmann, S. (2017). Using millions of

emoji occurrences to learn any-domain representations for detecting sentiment,

emotion and sarcasm. EMNLP. https://arxiv.org/abs/1708.00524

Gal, Y., & Ghahramani, Z. (2016). A Theoretically Grounded Application of Dropout in

Recurrent Neural Networks. NIPS.29,(PP 1019-1027). arxiv.org/abs/1512.05287

Globant, (2017), Artificial Intelligence As a Music Composer. Retrieved 10 March 2020

from https://stayrelevant.globant.com/en/artificial-intelligence-composing-

original-music/

 Good M., 2001 MusicXML for Notation and Analysis. The Virtual Score: Representation,

Retrieval, Restoration, Volume 12 of computing in musicology, MIT Press (P.

113-124) https://doi.org/10.7551/mitpress/2058.003.0010

Goodfellow, Bengio, and Courville, (2016). Deep learning. MIT Press.

Graves, A. (2013). Generating Sequences with Recurrent Neural Networks. Computer

Science, Neural and Evolutionary Computing, https://arxiv.org/abs/1308.0850

https://lib.ugent.be/en/catalog/rug01:002367003
https://arxiv.org/abs/1708.00524

88

Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with

bidirectional LSTM and other neural network architectures. Neural networks: the

official journal of the International Neural Network Society, 18(5-6), (P. 602–

610). https://doi.org/10.1016/j.neunet.2005.06.042

Gregor, K., Danihelka, I., Graves, A., Rezende, D., & Wierstra, D. (2015). DRAW: A

Recurrent Neural Network For Image Generation. ICML.

https://arxiv.org/abs/1502.04623

Gudivada, V., Apon, A., & Ding, J. (2017). Data quality considerations for big data and

machine learning: Going beyond data cleaning and transformations. International

Journal on Advances in Software 10.1, (pp. 1 – 20).

Hadjeres, G., & Nielsen, F. (2017). Interactive Music Generation with Positional

Constraints using Anticipation-RNNs. ArXiv, abs/1709.06404.

https://arxiv.org/abs/1709.06404

Hao-Wen Dong, Wen-Yi Hsiao, and Yi-Hsuan Yang, (2018.) .Pypianoroll: Open Source

Python Package for Handling Multitrack Pianorolls. In Late-Breaking Demos of

the 19th International Society for Music Information Retrieval Conference

(ISMIR), https://salu133445.github.io/pypianoroll/

Henry Earl; Snodgrass Jennifer; and Piagentini Susan, (2018), Fundamentals of Music:

Rudiments, Musicianship, and Composition. Published by Pearson

ISBN: 0134491386,9780134491387.

Hilscher, M., & Shahroudi, N. (2018). Music Generation from MIDI datasets. Retrieved 08

Feb. 2020.

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation

9(8) (PP. 1735–1780). https://doi.org/10.1162/neco.1997.9.8.1735

Hosken, 2010, An Introduction to Music Technology, First ed. Taylor & Francis e-Library.

Routledge. https://doi.org/10.4324/9780203849514

Hsiao, (2019). Lead Sheet Dataset. Retrieved 05 January 2020.

https://github.com/wayne391/Lead-Sheet-Dataset

89

Huang, C.A., Vaswani, A., Uszkoreit, J., Shazeer, N., Simon, I., Hawthorne, C., Dai, A.M.,

Hoffman, M., Dinculescu, M., & Eck, D. (2018). Music Transformer. arXiv:

Learning. Retrieved 11 May 2020. https://arxiv.org/abs/1809.04281

Huber, D. (2007). The MIDI Manual, Third Edition: A Practical Guide to MIDI in the

Project Studio. What Is MIDI? (PP. 1-12). Focal Press. ISBN 9780240807980.

https://www.sciencedirect.com/science/article/pii/B9780240807980500032

IraKurshunovava (2019). Folk music style modeling using LSTMs. Retrieved February

2020. https://github.com/IraKorshunova/folk-rnn.

Itoh, K., Sakata, H., Igarashi, H., & Nakada, T. (2019). Automaticity of pitch class-color

synesthesia as revealed by a Stroop-like effect. Consciousness and Cognition, 71,

(PP 86-91). https://doi.org/10.1016/j.concog.2019.04.001.

Johnson, D. D. (2017). Generating polyphonic music using tied parallel networks. In

International conference on evolutionary and biologically inspired music and art

(pp. 128-143). Springer, Cham.

Jordan, (1997) Serial order: A parallel distributed processing approach. Advances in

psychology, vol. 121, pp. 471–495.

Karpathy, (2015). The Unreasonable Effectiveness of Recurrent Neural Networks.

Retrieved 20 March 2020 from http://karpathy.github.io/2015/05/21/rnn-

effectiveness/

Karpathy, et al., (2016). CS231n: Convolutional Neural Networks for Visual Recognition.

Retrieved 15 March 2020 from https://cs231n.github.io/neural-networks-3/

Keith, (2015). The Session data. Retrieved February 2020

https://github.com/adactio/TheSession-data.

Kennedy, M., & Kennedy, J. (2013). The Oxford dictionary of music. Oxford University

Press. eISBN: 9780191744518, DOI: 10.1093/acref/9780199578108.001.0001.

Kingma, D.P., & Ba, J. (2015). Adam: A Method for Stochastic Optimization. CoRR.

https://arxiv.org/abs/1412.6980

Kitagawa, Y. (1999), Handbook of Music Theory. RittorMusic, Tokyo, Japan

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

90

Kostadinov Simeon, (2017) Understanding GRU Networks. Retrieved 19 June 2020 from

https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be

Laden, B., & Keefe, D. (1989). The Representation of Pitch in a Neural Net Model of

Chord Classification. Computer Music Journal, 13(4), (PP 12-260.

doi:10.2307/3679550

Levitin, Daniel J., (2006) This Is Your Brain on Music: The Science of a Human

Obsession. New York, N.Y.: Dutton.

Liu, I., & Ramakrishnan, B. (2014). Bach in 2014: Music Composition with Recurrent

Neural Network. Computer Science, Artificial Intelligence.

https://arxiv.org/abs/1412.3191

Marinescu (2019). Bach 2.0. Retrieved 10 March 2020 from https://amarinescu.ro/bach-

prev/

Marr Bernard, (2019) Artificial Intelligence in Practice: How 50 Successful Companies

Used AI and Machine Learning to Solve Problems, JohnWiley & Sons Ltd, The

Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

ISBN: 978-1-119-54896-6 (ePDF).

Mauthes, N. (2018). VGM-RNN: Recurrent Neural Networks for Video Game Music

Generation. San Jose State University. https://doi.org/10.31979/etd.87bh-zeeh

McClelland Calum, (2017). The Difference Between Artificial Intelligence, Machine

Learning, and Deep Learning. Retrieved 10 March 2020 from

https://medium.com/iotforall/the-difference-between-artificial-intelligence-

machine-learning-and-deep-learning-3aa67bff5991

Miles Hoffman (2018), A Minute with Miles. In a production of South Carolina Public

Radio, made possible by the J.M. Smith Corporation.

https://www.southcarolinapublicradio.org/post/atonality-vs-dissonance

Mitroi, (2019), Symbolic Music Generation with RNNs, retrieved 02 Feb. 2020 from

https://github.com/cristianmtr/master_thesis_symbolic_music_generation

 MMA, The MIDI Manufacturers Association, (2020). Retrieved 12 Jan 2020

https://www.midi.org/.

https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be
https://arxiv.org/abs/1412.3191

91

Mogren, O. (2016). C-RNN-GAN: Continuous recurrent neural networks with adversarial

training. ArXiv, abs/1611.09904. https://arxiv.org/abs/1611.09904

Mozer, M. C., (1994.) Neural network music composition by prediction: Exploring the

benefits of psychoacoustic constraints and multi-scale processing, Connection

Science, vol. 6, no. 2, (p. 247–280). https://doi.org/10.1080/09540099408915726

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.

Musicmap (2020), The Genealogy and History of Popular Music Genres from Origin till

Present (1870-2016). Retrieved Apr. 2020 from https://musicmap.info

 Ng Andrew, (2019), Bi-directional RNN. Retrieved 03 May 2020 from

https://www.coursera.org/lecture/nlp-sequence-models/Bi-directional-rnn-fyXnn.

Nicholson, Schuyler & Kim, Eun-Jin. (2016). Structures in Sound: Analysis of Classical

Music Using the Information Length. Entropy. 18. 258. 10.3390/e18070258.

Olah & Carter, (2016). Attention and Augmented Recurrent Neural Networks. Retrieved

10 Feb. 2020 from https://distill.pub/2016/augmented-rnns

Oliveira, H.M., & Oliveira, R.D. (2017). Understanding MIDI: A Painless Tutorial on Midi

Format. ArXiv, abs/1705.05322. https://arxiv.org/abs/1705.05322

Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N.,

Senior, A., & Kavukcuoglu, K. (2016). WaveNet: A Generative Model for Raw

Audio. Computer Science, Sound. https://arxiv.org/abs/1609.03499

Patel, A., Iversen, J., Bregman, M., & Schulz, I. (2009). Studying synchronization to a

musical beat in nonhuman animals. Annals of the New York Academy of Sciences,

1169(1), (PP 459-469). DOI: 10.1111/j.1749-6632.2009.04581.x.

Picheny Michael, Ramabhadran Bhuvana, Stanley F. Chen, Markus Nussbaum-Thom,

(2016). Advanced Neural Networks, Lecture 14. Watson Group IBM T.J. Watson

Research Center Yorktown Heights, New York, USA. Retrieved 06 April 2020

from http://www.ee.columbia.edu/~stanchen/spring16/e6870/slides/lecture14.pdf

https://distill.pub/2016/augmented-rnns

92

Anwla P. K. (2020). Recurrent Neural Network (RNN) architecture explained in detail.

Retrieved 20 Dec. 2019. https://towardsmachinelearning.org/recurrent-neural-

network-architecture-explained-in-detail/

Abiyev R, Arslan M., Idoko J.B.,Sekeroglu B., Ilhan A., (2020) Identification of Epileptic

EEG Signals Using Convolutional Neural Networks. Appl. Sci. 10(12).

https://doi.org/10.3390/app10124089

Abiyev R.H., Arslan M., (2020) Head mouse control system for people with disabilities.

Expert Systems, 37. https://doi.org/10.1111/exsy.12398

Abiyev R.H., Arslan M., Idoko J.B., (2020) Sign Language Translation Using Deep

Convolutional Neural Networks. KSII Transactions on Internet and Information

Systems, 14(2). https://doi.org/10.3837/tiis.2020.02.009.

 Idoko J.B., Abiyev R.H., Arslan M., (2019) Impact of Machine Learning Techniques on

Hand Gesture Recognition. Journal of Intelligent & Fuzzy Systems, 37(3), 4241-

4252. https://doi.org/10.3233/JIFS-190353

Pinkerton, R. C. (1956). Information theory and melody. Scientific American, 194(2),

(P.77–86). https://doi.org/10.1038/scientificamerican0256-77.

Roberts A., (2019) Music and Art Generation with Machine Intelligence. Retrieved 21 Jan. 2020.

https://github.com/magenta/magenta/blob/master/magenta/models/melody_rnn

Ruder, S. (2016). An overview of gradient descent optimization algorithms. ArXiv,

abs/1609.04747. https://arxiv.org/abs/1609.04747

Schuster, M. and Paliwal, K. (1997). Bi-directional recurrent neural networks. In IEEE

Transactions on Signal Processing, vol. 45, no. 11, (pp. 2673-2681). doi:

10.1109/78.650093.

Sigurgeirsson (2019), Classical Piano Composer, retrieved 03 April 2020 from

https://github.com/Skuldur/Classical-Piano-Composer

Simon and Oore, (2017). Performance RNN: Generating music with expressive timing and

dynamics. Retrieved May 2020 from https://magenta.tensorflow.org/performance-

rnn

https://towardsmachinelearning.org/recurrent-neural-network-architecture-explained-in-detail/
https://towardsmachinelearning.org/recurrent-neural-network-architecture-explained-in-detail/
https://sciprofiles.com/profile/855860
https://sciprofiles.com/profile/1127507
https://sciprofiles.com/profile/1080510
https://sciprofiles.com/profile/author/VWxPSkN5cVVSeC9jU0xoS1EzN1BOWnJFT0VsdW1jVHpWeURIdXBoRXc1MD0=
https://sciprofiles.com/profile/author/dzMyU3ZvRFpKYW4yeHNTZGNYTDBPcTk4ZjFOYlQ0ZVFxeTBiK2ltVmJqdz0=
https://www.mdpi.com/2076-3417/10/12/4089
https://www.mdpi.com/2076-3417/10/12/4089
https://doi.org/10.3390/app10124089
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Abiyev%2C+Rahib+H
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Arslan%2C+Murat
https://doi.org/10.1111/exsy.12398
https://sciprofiles.com/profile/855860
https://sciprofiles.com/profile/1127507
https://sciprofiles.com/profile/1080510
javascript:;
javascript:;
https://sciprofiles.com/profile/1080510
https://sciprofiles.com/profile/855860
https://sciprofiles.com/profile/1127507
javascript:;
https://doi.org/10.3233/JIFS-190353
https://doi.org/10.1038/scientificamerican0256-77
https://github.com/Skuldur/Classical-Piano-Composer

93

Simon, I., Roberts, A., Raffel, C., Engel, J., Hawthorne, C., & Eck, D. (2018). Learning a

Latent Space of Multitrack Measures. ArXiv, abs/1806.00195.

https://arxiv.org/abs/1806.00195

Sloboda, J. A. (2010). Music in everyday life: The role of emotions. In P. N. Juslin & J. A.

Sloboda (Eds.), Series in affective science. Handbook of music and emotion:

Theory, research, applications (p. 493–514). Oxford University Press.

Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, (2014). Dropout: A Simple

Way to Prevent Neural Networks from Overfitting. JMLR. org 15, (P. 1929-

1958). https://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf

Sturm, B.L., Santos, J.F., Ben-Tal, O., & Korshunova, I. (2016). Music transcription

modelling and composition using deep learning. ArXiv, abs/1604.08723.

https://arxiv.org/abs/1604.08723

Summerville, A., & Mateas, M. (2016). Super Mario as a String: Platformer Level

Generation Via LSTMs. Computer Science, Neural and Evolutionary Computing.

https://arxiv.org/abs/1603.00930

Sutskever, Martens, and Hinton, (2011). Generating text with recurrent neural networks. In

Proceedings of the 28th International Conference on Machine Learning (ICML-

11). (pp. 1017–1024). Bellevue, WA, USA.

Sutskever, Vinyals, and Le, (2014), Sequence to sequence learning with neural networks.

In NIPS, Computer Science. (pp. 3104– 3112). https://arxiv.org/abs/1409.3215

Tyler, Rinker. (2014). On the Treatment of Likert Data. Research Gate

https://www.researchgate.net/publication/262011454_Likert

Vandenneucker Dominique, All You Need for Music Software Development. 2020,

Retrieved 05 Feb. 2020. http://www.music-software-development.com/music-

data-structures.html

Velardo (2020), Generating Melodies with RNN LSTM, retrieved 11 May 2020 from

https://github.com/cristianmtr/master_thesis_symbolic_music_generation.

Waite E., (2016). Generating long-term structure in songs and stories. Retrieved 02 June

2020 from https://magenta.tensorflow.org/2016/07/15/lookback-rnn-attention-rnn

https://arxiv.org/abs/1603.00930

94

Walder, C. (2016). Modeling Symbolic Music: Beyond the Piano Roll. ACML.

https://arxiv.org/abs/1606.01368

Weng Lilian, (2018). Attention? Attention! Retrieved 21 March 2020 from

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html.

White John, (2019), Differences between AI, Machine learning and Deep learning.

Retrieved 05 April 2020 from https://www.msystraining.com/articles/ai-machine-

learning/differences-between-ai-machine-learning-and-deep-learning/

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R., & Bengio,

Y. (2015). Show, Attend and Tell: Neural Image Caption Generation with Visual

Attention. Computer Science, Machine Learning. https://arxiv.org/abs/1502.03044

Yang Z., Yang D., Dyer C., He X., Smola A., and Hovy E., (2016). Hierarchical attention

networks for document classification. In Proceedings of the 2016 conference of

the North American chapter of the association for computational linguistics:

Human language technologies, (pp. 1480–1489).

Ycart, A., & Benetos, E. (2017). A study on LSTM networks for polyphonic music

sequence modelling. In 18th International Society for Music Information Retrieval

Conference. https://qmro.qmul.ac.uk/xmlui/handle/123456789/24946

95

APPENDICES

96

APPENDIX 1

Ethical Approval Document

ETHICAL APPROVAL

DOCUMENT

Date:03/05/2021

To the Graduate School of Applied Sciences

For the thesis project entitled “Monophonic Music Generation using Artificial Intelligence

through Deep Learning Techniques”, the researchers declare that they did not collect any

data from human/animal or any other subjects. Therefore, this project does not need to go

through the ethics committee evaluation.

Title: Prof. Dr.

Name Surname: Rahib Abiyev

Signature:

Role in the Research Project: Supervisor

97

APPENDIX 2

Similarity Report

98

APPENDIX 3

Workflow & Implemented Codes Samples

Preprocessing codes:

filter_4/4.py

import os

import tqdm

import pretty_midi

import glob

def filter_midis(files, dst):

 """for each file, check if timing is only 4/4 and there is only one

track

 Then save the ones in dst folder"""

 print('filtering to 4/4...')

 for fpath in tqdm.tqdm(files):

99

 pm = pretty_midi.PrettyMIDI(fpath)

 if len(pm.time_signature_changes) == 1:

 ts = pm.time_signature_changes[0]

 if ts.numerator == 4 and ts.denominator == 4:

 # single track

 if len(pm.instruments) == 1:

 fname = fpath.split(os.path.sep)[-1]

 pm.write(os.path.join(dst, fname))

def main(files, dst):

 filter_midis(files, dst)

transpose.py to C-major and A-minor

import os

import sys

from glob import glob

import music21

import numpy as np

from tqdm import tqdm

majors = dict([("A-", 4),("G#", 4),("A", 3),("A#", 2),("B-", 2),("B",

1),("C", 0),("C#", -1),("D-", -1),("D", -2),("D#", -3),("E-", -3),("E", -

4),("F", -5),("F#", 6),("G-", 6),("G", 5)])

minors = dict([("G#", 1), ("A-", 1),("A", 0),("A#", -1),("B-", -1),("B",

-2),("C", -3),("C#", -4),("D-", -4),("D", -5),("D#", 6),("E-", 6),("E",

5),("F", 4),("F#", 3),("G-", 3),("G", 2)])

def main(files, dst_dir):

 print('transposing...')

 for file in tqdm(files):

 # transpose

 score = music21.converter.parse(file)

 key = score.analyze('key')

 if key.mode == "major":

 halfSteps = majors[key.tonic.name]

 elif key.mode == "minor":

 halfSteps = minors[key.tonic.name]

 newscore = score.transpose(halfSteps)

 file = os.path.abspath(file)

 unique_name = ''.join(file.split(os.path.sep)[-

1].split(".mid")[:-1])

 new_file_path = os.path.join(dst_dir, unique_name +

"_transposed.mid")

 newscore.write("midi", new_file_path)

100

procedure.py

import subprocess

from glob import glob

import os

import filter_four_four

import numpy as np

import encode

import transpose

import monophonize

import sys

import encode_pianoroll

import comparisons

sys.path.append("/Users/arasharif/opt/anaconda3/envs/magenta/lib/python3.

7/site-packages/note_seq")

from melody_encoder_decoder import MelodyOneHotEncoding

def main(top_dir, max_sequences, nr_bars, bar_len, max_seq_len):

 # original midi files

 orig_dir = os.path.join(top_dir, '1_Origin')

 orig_dir_glob = os.path.join(orig_dir, "*.mid")

 # contains 4/4 only midis

 four_four_dir = os.path.join(top_dir, "2_fourfour")

 if not os.path.exists(four_four_dir):

 os.mkdir(four_four_dir)

 # contains the transposed midi files

 transposed_dir = os.path.join(

 top_dir, "3_transposed")

 if not os.path.exists(transposed_dir):

 os.mkdir(transposed_dir)

 # contains the transposed, monophonic melodies files

 monophonic_dir = os.path.join(

 top_dir, "4_mono"

)

 if not os.path.exists(monophonic_dir):

 os.mkdir(monophonic_dir)

 # 100 random files to be used in evaluation

 comparison_dir = os.path.join(top_dir, "7_comparison")

 if not os.path.exists(comparison_dir):

 os.mkdir(comparison_dir)

 # contains the transposed, split, magenta one hot encoded dataset

 # as a big mmap file

 magenta_dir = os.path.join(top_dir, "5_encoded")

 if not os.path.exists(magenta_dir):

 os.mkdir(magenta_dir)

 pianoroll_dir = os.path.join(top_dir, "6_pianoroll")

 if not os.path.exists(pianoroll_dir):

 os.mkdir(pianoroll_dir)

101

 magenta_dataset_file = os.path.join(top_dir, "dataset.dat")

 pianoroll_dataset_file = os.path.join(top_dir, "pianoroll.dat")

 # FILTER TO 4/4 ONLY

 four_four_dir_files = glob(os.path.join(four_four_dir, "*.mid"))

 if len(four_four_dir_files) == 0:

 orig_files = glob(orig_dir_glob)

 filter_four_four.main(orig_files, four_four_dir)

 else:

 print('skipping filtering to 4/4 as directory %s is not empty' %

 four_four_dir)

 # TRANSPOSE THE 4/4 MIDI FILES

 transposed_files = glob(os.path.join(transposed_dir, "*.mid"))

 if len(transposed_files) == 0:

 transpose.main(

 glob(os.path.join(four_four_dir, "*.mid")),

 transposed_dir

)

 else:

 print("skipping transposing as %s is not empty" % transposed_dir)

 # monophonize

 mono_files = glob(os.path.join(monophonic_dir, "*.mid"))

 if len(mono_files) == 0:

 monophonize.main(

 glob(os.path.join(transposed_dir, "*.mid")),

 monophonic_dir

)

 else:

 print("skipping monophonize as %s is not empty" % monophonic_dir)

 # choose 100 random samples, take first 4 bars

 mono_files = glob(os.path.join(monophonic_dir, "*.mid"))

 comparisons.main(

 mono_files,

 comparison_dir

)

 encoder = None

 min_note = None

 max_note = None

 # ENCODING AND SPLITTING THE TRANSPOSED MIDIs INTO MAGENTA FORMAT AND

THEN

 # CREATING ONE BIG MMAP FILE OF ONE-HOT ENCODED SEQUENCES

 if len(glob(os.path.join(magenta_dir, '*.npy'))) == 0:

 encoder = encode.main(

 glob(os.path.join(monophonic_dir, "*.mid")),

 magenta_dir,

 nr_bars,

 max_seq_len,

 bar_len

)

 else:

 print('skipping encoding into melody as directory %s was not

empty' %magenta_dir)

102

 min_note, max_note = np.load(os.path.join(top_dir, 'min_max.npy'))

 encoder = MelodyOneHotEncoding(min_note, max_note+1)

 if not os.path.exists(magenta_dataset_file): # dat file doesnt exist

 encode.dat_file(

 glob(os.path.join(magenta_dir, "*.npy")),

 max_sequences,

 magenta_dataset_file,

 max_seq_len,

 encoder

)

 print('dataset at ', magenta_dataset_file)

 else:

 print('skipping creating dataset file as %s exists'

%(magenta_dataset_file))

 ## encode into pianoroll

 if len(glob(os.path.join(pianoroll_dir, "*.npy"))) == 0:

 encode_pianoroll.main(

 glob(os.path.join(monophonic_dir, "*.mid")),

 pianoroll_dir,

 nr_bars,

 max_seq_len,

 bar_len,

 min_note,

 max_note

)

 else:

 print('skipping encoding into pianoroll as directory %s was not

empty' %pianoroll_dir)

 if not os.path.exists(pianoroll_dataset_file): # dat file doesnt

exist

 encode_pianoroll.dat_file(

 glob(os.path.join(pianoroll_dir, "*.npy")),

 max_sequences,

 pianoroll_dataset_file,

 max_seq_len,

 min_note,

 max_note

)

 print('dataset at ', pianoroll_dataset_file)

 else:

 print('skipping creating dataset file as %s exists'

%(pianoroll_dataset_file))

103

Training Model Codes:

config.py for configuration

import os

EPOCHS = 50

BATCH_SIZE = 128

datasets = {

 "folk_melody": {

 "path":

"/Users/arasharif/Desktop/Ara_Master_Thesis/Folk_Dataset/dataset.dat",

 "shape":(100000, 64, 58)

 },

 "folk_pianoroll": {

 "path":

"/Users/arasharif/Desktop/Ara_Master_Thesis/Folk_Dataset/pianoroll.dat",

 "shape":(100000, 64, 56)

 },

 "hook_melody": {

 "path":

"/Users/arasharif/Desktop/Ara_Master_Thesis/hooktheory_dataset/dataset.da

t",

 "shape": (93667, 64, 90)

 },

 "hook_pianoroll": {

 "path":

"/Users/arasharif/Desktop/Ara_Master_Thesis/hooktheory_dataset/pianoroll.

dat",

 "shape": (95661, 64, 88)

 },

main.py for single-genre dataset

import subprocess

from glob import glob

import os

import filter_four_four

import encode

import transpose

import procedure

if __name__ == "__main__":

 max_sequences = 100000

 nr_bars = 4

 bar_len = 16 # based on steps_per_quarter=4 in midi_file_to_melody

in / Users/arasharif/opt/anaconda3/envs/magenta/gm/melodies_lib.py

 max_seq_len = nr_bars * bar_len

 # top dir

 top_dir = "/Users/arasharif/Desktop/Ara_Master_Thesis/Folk_Dataset"

 procedure.main(top_dir, max_sequences, nr_bars, bar_len, max_seq_len)

104

main.py for designing & training LSTM model.

import sys

import pickle

import argparse

from utils import *

from callbacks import get_callbacks, delete_epoch_counters

from glob import glob

import shutil

from generator import BatchGenerator

from keras_self_attention import SeqWeightedAttention

from sklearn.model_selection import train_test_split

from build_dataset import min_max_from_folder

import keras

import os

import config

from architecture import new_architecture

def get_data(dataset):

 dpath = dataset['path']

 dataset = np.memmap(dpath, mode="r",

 dtype="uint8", shape=dataset['shape'])

 x = dataset[:, :-1]

 y = dataset[:, -1]

 X_train, X_val, y_train, y_val = train_test_split(

 x, y, test_size=0.2, random_state=42, shuffle=True)

 print('we have %s training files and %s validation files' %

 (len(y_train), len(y_val)))

 return X_train, X_val, y_train, y_val

def get_model_id(args):

 # model_multi-genre_melody_bi2lstm64_attention

 model_id = None

 if args.new:

 model_id = "model_"

 model_id += args.dataset

 if args.bi:

 model_id += "_bi"

 else:

 model_id += "_"

 model_id += "%slstm%s_" %(args.layers, args.cells)

 if args.att:

 model_id += "attention"

 else:

 model_id += "noattention"

 print("generated model id from args: %s" %model_id)

 else:

 model_id = args.id

 print("using existing model id %s" %model_id)

 return model_id

def get_model_dir(args):

 model_id = get_model_id(args)

 model_dir =

os.path.abspath(os.path.join('/Users/arasharif/Desktop/Ara_Master_Thesis',

model_id))

 if os.path.exists(""):

 model_dir = os.path.join("", model_id)

105

 if not os.path.exists(model_dir):

 os.mkdir(model_dir)

 else:

 if not os.path.exists(model_dir):

 os.mkdir(model_dir)

 print('model id: ', model_id)

 print('model dir: ', model_dir)

 return model_dir

def get_model(args, dshape):

 model_dir = get_model_dir(args)

 model = None

 loss = 'categorical_crossentropy'

 optimizer = keras.optimizers.Adam(lr=0.005)

 if args.new:

 print('generating NEW model...')

 model = new_architecture(

 dshape[1]-1,

 dshape[2],

 args.layers,

 args.bi,

 args.att,

 args.cells

)

 # copy arch to folder

 shutil.copy('architecture.py', model_dir)

 model_json = model.to_json()

 model_json_path = os.path.join(model_dir, "model.json")

 print('storing model json in %s' % model_json_path)

 with open(model_json_path, "w") as json_file:

 json_file.write(model_json)

 # delete epoch counters

 delete_epoch_counters(model_dir)

 model.compile(

 loss=loss,

 optimizer=optimizer

)

 else:

 print('using existing model...')

 model_json_path = os.path.join(model_dir, "model.json")

 model = keras.models.model_from_json(open(model_json_path, "r").read(

), custom_objects=SeqWeightedAttention.get_custom_objects())

 model_weights_path = os.path.join(model_dir, "model.h5")

 print('loading existing weights from %s...' % model_weights_path)

 model.load_weights(model_weights_path)

 model.compile(

 loss=loss,

 optimizer=optimizer

)

 print(model.summary())

 return model, model_dir

def get_dataset_name(args):

 if args.dataset:

 return config.datasets[args.dataset]

 elif args.id:

106

 for name in config.datasets.keys():

 if name in args.id:

 print("found name of dataset in model id : %s" %name)

 return config.datasets[name]

 else:

 print("Dataset could not be deduced...")

 sys.exit(1)

def main(args):

 dataset = get_dataset_name(args)

 X_train, X_val, y_train, y_val = get_data(dataset)

 model, model_dir = get_model(args, dataset['shape'])

 verbosity, callbacks = get_callbacks(model_dir, args, model)

 model.fit(

 X_train, y_train,

 epochs=config.EPOCHS,

 batch_size=config.BATCH_SIZE,

 callbacks=callbacks,

 validation_data=(X_val, y_val),

 verbose=verbosity

)

if __name__ == "__main__":

 parser = argparse.ArgumentParser(

 description="train LSTM model for music generation")

 parser.add_argument('--id', metavar='id', type=str,

 help='model id to load weights if continuing training')

 parser.add_argument('--new', action='store_true', default=True,

 help='whether to load existing weights for model or \

 create new one')

 parser.add_argument('--tqdm', action='store_true', default=False,

 help='whether this is running in a Jupyter environment')

 parser.add_argument('--dataset', type=str,

 default="folk100k_melody",

 help='what dataset to use. Check "config.py" for

options')

 parser.add_argument('--layers', type=int, help="nr of layers")

 parser.add_argument('--bi', action="store_true", help="include

Bidirectionality wrapper for each layer")

 parser.add_argument('--att', action="store_true", help="add attention

mechanism on top of last layer")

 parser.add_argument('--cells', type=int, help="nr of cells in each layer")

 args = parser.parse_args()

 if not args.new and not args.id:

 print('either continue training a model by using "--id" or train a new

one by using "--new"')

 sys.exit(1)

 if args.id and args.new:

 print('either continue training a model by using "--id" or train a new

one by using "--new"')

 sys.exit(1)

 if args.id and not args.new:

 print('continue training of model %s' %args.id)

107

 if args.new and not args.id:

 if not args.layers or not args.cells:

 print('need to specify nr of layers and nr of cells per layer')

 sys.exit(1)

 else:

 print('training a new model...')

 main(args)

Melodies Generating Codes:

import tensorflow as tf

import argparse

import os

import sys

from glob import glob

import keras

import matplotlib.pyplot as plt

import numpy as np

import pypianoroll

from keras_self_attention import *

from keras_self_attention import SeqWeightedAttention

from tqdm import tqdm

import config

import keras.backend as K

from config import datasets

from generator import *

from utils import *

sys.path.append("/Users/arasharif/Desktop/Ara_Master_Thesis/")

sys.path.append("/Users/arasharif/opt/anaconda3/envs/magenta/gm/")

sys.path.append("Users/arasharif/opt/anaconda3/envs/magenta/lib/python3.7/site-

packages/note_seq")

import melodies_lib

import midi_io

import transpose

from melody_encoder_decoder import MelodyOneHotEncoding

def attention_loss(factor=1e-6):

 def attention_regularizer(y, y_pred):

 input_len = K.shape(y_pred)[-1]

 return factor * K.square(K.batch_dot(y_pred, K.permute_dimensions(y_pred,

(1, 0)))

 - tf.eye(input_len))

 return attention_regularizer

def att_model(cells, bi, layers, att):

 # cells = 64

 vocab_size=58

 # bi = True

108

 # att=True

 inputs = keras.layers.Input(

 shape=(63, 58,), name='Input')

 prev = inputs

 for i in range(layers):

 ret_seq = True

 if i == layers-1 and att == False:

 ret_seq = False

 this_layer = keras.layers.LSTM(

 cells,

 dropout=0.4,

 name='LSTM_%s' %i,

 return_sequences=ret_seq

)

 if bi:

 this_layer = keras.layers.Bi-directional(

 this_layer,

 name='bi_%s' %i

)

 prev = this_layer(prev)

 attention = SeqWeightedAttention(

 return_attention=True,

 name='Attention'

)

 attention_layer = attention(prev)

 attention_layer, attention = attention_layer

 dense = keras.layers.Dense(

 vocab_size, activation='softmax', name="dense_outputs")(attention_layer)

 outputs = [dense, attention]

 model = keras.Model(inputs=inputs, outputs=outputs)

 model.compile(

 optimizer='adam',

 loss={

 'dense_outputs':'categorical_crossentropy',

 'Attention': attention_loss(1e-4)

 }

)

 return model

def get_model(args):

 model = None

 modelname = args.model_id

 if modelname == "model_folk_melody_2lstm32_attention":

 # (100000, 64, 58)

 model = att_model(32, False, 2, True)

 elif modelname == "model_folk_melody_bi3lstm64_attention":

 model = att_model(64, True, 3, True)

 else:

 json_model = open(os.path.join(modelname, "model.json"), "r").read()

 model = keras.models.model_from_json(

 json_model, custom_objects=SeqWeightedAttention.get_custom_objects())

 model.load_weights(os.path.join(modelname, "model.h5"))

 print(model.summary(line_length=100))

 return model

109

def get_dataset(args):

 dataset = None

 for dset in config.datasets.keys():

 if dset in args.model_id:

 dataset = config.datasets[dset]

 break

 dshape = dataset['shape']

 print('dataset : %s' % dataset)

 print(dshape)

 input_seq_len = dshape[1] - 1

 print(input_seq_len)

 ## for folk dataset (Ara)

 #min_note, max_note = np.load(

 #os.path.abspath(os.path.join(dataset['path'],

'/Users/arasharif/Desktop/Ara_Master_Thesis/Folk_Dataset', 'min_max.npy')))

 ##for hook dataset (Ara)

 min_note, max_note = np.load(

 os.path.abspath(os.path.join(dataset['path'],

'/Users/arasharif/Desktop/Ara_Master_Thesis/hooktheory_dataset', 'min_max.npy')))

 return input_seq_len, dshape, min_note, max_note

def transpose_seed(args):

 file = args.seed

 unique_name = ''.join(file.split(os.path.sep)[-1].split(".mid")[:-1])

 if not os.path.exists('midi_seeds_transposed'):

 os.mkdir('midi_seeds_transposed')

 transpose.main([file], os.path.abspath("midi_seeds_transposed/"))

 transposed_seed = os.path.abspath(

 glob(os.path.join("midi_seeds_transposed", unique_name) + "*")[0])

 print(transposed_seed)

 return transposed_seed

def from_trim_pianoroll_to_full(seq, min_note, max_note):

 zero_sequence = np.zeros((seq.shape[0], 128))

 zero_sequence[:, min_note:max_note + 1] = seq

 zero_sequence[zero_sequence == 1] = 127

 return zero_sequence

def save_trim_pianoroll_seq(seq, min_note, max_note, thepath):

 pypianoroll.Multitrack(

 tracks=[

 pypianoroll.Track(

 from_trim_pianoroll_to_full(

 seq,

 min_note,

 max_note,

))

],

 beat_resolution=4).write(thepath)

def read_encode_pad_sequence_melody(filepath, min_note, max_note, input_seq_len):

 print("loading encoder...")

 encoder = MelodyOneHotEncoding(min_note, max_note+1)

 seed_melody = melodies_lib.midi_file_to_melody(filepath)

 seed_melody.squash(min_note, max_note)

110

 seed_sequence = [encoder.encode_event(ev) for ev in list(seed_melody)]

 print("padding...")

 if len(seed_sequence) > input_seq_len:

 seed_sequence = np.array(seed_sequence[:input_seq_len])

 else:

 zero_padded_seq = np.repeat(0, input_seq_len)

 zero_padded_seq[input_seq_len - len(seed_sequence):] = seed_sequence

 seed_sequence = zero_padded_seq

 print("size after padding: ", seed_sequence.shape)

 seed_sequence = keras.utils.to_categorical(seed_sequence,

num_classes=encoder.num_classes, dtype='uint8')

 print('shape of seed sequence after 1h encoding: ', seed_sequence.shape)

 return seed_sequence, encoder

def read_encode_pad_sequence_pianoroll(filepath, min_note, max_note,

input_seq_len):

 multitrack = pypianoroll.Multitrack(filepath, beat_resolution=4)

 sequence_full = multitrack.tracks[0]

 sequence_full.binarize()

 sequence_full = sequence_full.pianoroll

 seed_sequence = sequence_full[:, min_note:max_note + 1]

 print(seed_sequence.shape)

 print("padding...")

 if len(seed_sequence) > input_seq_len:

 seed_sequence = np.array(seed_sequence[:input_seq_len])

 else:

 zero_padded_seq = np.repeat(0, input_seq_len)

 zero_padded_seq[input_seq_len - len(seed_sequence):] = seed_sequence

 seed_sequence = zero_padded_seq

 print("size after padding: ", seed_sequence.shape)

 return seed_sequence

def build_template_for_generated_pianoroll(dshape, seed_sequence, model,

min_note, max_note, input_seq_len, seedfilename, model_dir):

 generated = np.zeros((2*dshape[1], seed_sequence.shape[1]))

 print('shape of generated ', generated.shape)

 generated[:input_seq_len] = seed_sequence

 seed_filename = seedfilename.split(os.path.sep)[-1].split(".mid")[0]

 if not os.path.exists(os.path.join(model_dir, "samples")):

 os.mkdir(os.path.join(model_dir, "samples"))

 samples_dir = os.path.abspath(os.path.join(model_dir, "samples",

seed_filename))

 if not os.path.exists(samples_dir):

 os.mkdir(samples_dir)

 seed_dir = os.path.join(samples_dir, "seed")

 if not os.path.exists(seed_dir):

 os.mkdir(seed_dir)

 seedpath = os.path.join(seed_dir, "1seed.mid")

 print("saving seed...")

 save_trim_pianoroll_seq(seed_sequence,min_note,max_note,seedpath)

 print('seed saved at ', seedpath)

 return generated, samples_dir

111

def save_trim_melody_seq(seed_sequence,encoder,seedpath):

 midi_io.note_sequence_to_midi_file(melodies_lib.Melody(

 [

 encoder.decode_event(ev) for ev in

np.trim_zeros(np.argmax(seed_sequence,axis=1), 'f')

]

).to_sequence(), seedpath)

def build_template_for_generated_melody(dshape, seed_sequence, model, min_note,

max_note, input_seq_len, seedfilename, model_dir, encoder):

 generated = np.zeros((2*dshape[1], seed_sequence.shape[1]))

 print('shape of generated ', generated.shape)

 generated[:input_seq_len] = seed_sequence

 seed_filename = seedfilename.split(os.path.sep)[-1].split(".mid")[0]

 if not os.path.exists(os.path.join(model_dir, "samples")):

 os.mkdir(os.path.join(model_dir, "samples"))

 samples_dir = os.path.abspath(os.path.join(model_dir, "samples",

seed_filename))

 if not os.path.exists(samples_dir):

 os.mkdir(samples_dir)

 seedpath = os.path.join(samples_dir, "1seed.mid")

 print("saving seed...")

 save_trim_melody_seq(seed_sequence,encoder,seedpath)

 print('seed saved at ', seedpath)

 return generated, samples_dir

def plot_midifile(filepath, samples_dir, name):

 roll = None

 try:

 roll =

pypianoroll.Multitrack(filepath,beat_resolution=4).tracks[0].pianoroll

 except Exception as _:

 return None

 plt.figure(figsize=(14,8))

 ax = plt.gca()

 pypianoroll.plot_pianoroll(ax, roll)

 plt.title(name)

 pathtopng = os.path.join(samples_dir, name)

 print('plotting pianoroll to %s' %pathtopng)

 plt.savefig(pathtopng, bbox_inches='tight')

 return True

def generate_pianoroll(args, input_seq_ln, model, generated, samples_dir,

min_note, max_note,):

 temperature = float(args.temp)

 nr_samples = int(args.nr)

 for i in tqdm.tqdm(list(range(nr_samples))):

 for timestep in range(input_seq_ln, len(generated)):

 start_index = timestep - (input_seq_ln)

 sequence_for_prediction = generated[start_index:timestep]

 # next_step, att = sample(model, sequence_for_prediction,

temperature, withatt=True)

 next_step, _ = sample(model, sequence_for_prediction, temperature,

112

withatt=args.att)

 # print(att.argsort()[-10:][::-1])

 generated[timestep] = next_step

 generated_noseed = generated[input_seq_ln:]

 new_path = os.path.join(samples_dir, "temp_%s_%s.mid" %(temperature, i))

 save_trim_pianoroll_seq(generated_noseed,min_note,max_note,new_path)

 plot_midifile(new_path,samples_dir,"temp_%s_%s.png" %(temperature, i))

def pianoroll_sampling(filepath, min_note, max_note, model,

 input_seq_len, dshape, model_dir):

 print('shape of sequence from pypianoroll...')

 seed_sequence = read_encode_pad_sequence_pianoroll(filepath, min_note,

max_note, input_seq_len)

 generated, samples_dir = build_template_for_generated_pianoroll(dshape,

seed_sequence, model, min_note, max_note, input_seq_len, filepath, model_dir)

 # plot seed and save in folder

 plot_midifile(filepath, samples_dir, '1seed.png')

 generate_pianoroll(args, input_seq_len, model, generated, samples_dir,

min_note, max_note)

def generate_melody(args, input_seq_len, model, generated, samples_dir, min_note,

max_note, encoder):

 temperature = float(args.temp)

 to_generate = int(args.nr)

 nr_empty = 0

 nr_generated = 0

 progress = tqdm.tqdm(total=to_generate)

 atts = []

 softmax_es = []

 tokens_low = []

 tokens_high = []

 while nr_generated != to_generate:

 for timestep in range(input_seq_len, len(generated)):

 start_index = timestep - (input_seq_len)

 sequence_for_prediction = generated[start_index:timestep]

 # next_step, att = sample(model, sequence_for_prediction,

temperature, withatt=True)

 next_step = None

 if args.att:

 next_step, att, softmax_preds = sample(model,

sequence_for_prediction, temperature, withatt=args.att)

 if args.no_zero:

 input_tokens = np.argmax(sequence_for_prediction,axis=1)

 mask = np.where(input_tokens==0)

 att[mask] = 0

 if np.argmax(att) < 6:

 # print('focusing on token',

np.argmax(sequence_for_prediction[np.argmax(att)]), 'at time step index',

np.argmax(att))

 tokens_low.append(

 np.argmax(sequence_for_prediction[np.argmax(att)])

)

 if args.debug_print:

 print(

 'window around focused token ',

 np.argmax(

 sequence_for_prediction[0:np.argmax(att)+3],

113

 axis=1)

)

 print('softmax pointing at ', np.argmax(softmax_preds), '

actual prediction is ', np.argmax(next_step))

 elif np.argmax(att) > 30:

 tokens_high.append(

 np.argmax(sequence_for_prediction[np.argmax(att)])

)

 atts.append(att)

 else:

 next_step, softmax_preds = sample(model, sequence_for_prediction,

temperature, withatt=args.att)

 softmax_es.append(softmax_preds)

 # print(att.argsort()[-10:][::-1])

 generated[timestep] = next_step

 generated_noseed = generated[input_seq_len:]

 unique_pitches = np.unique(np.argmax(generated_noseed,axis=1))

 if len(unique_pitches) == 1 and unique_pitches[0] == 0:

 nr_empty += 1

 else:

 new_path = os.path.join(samples_dir, "temp_%s_%s.mid" %(temperature,

nr_generated))

 save_trim_melody_seq(generated_noseed, encoder, new_path)

 if not plot_midifile(new_path,samples_dir,"temp_%s_%s.png"

%(temperature, nr_generated)):

 nr_empty += 1

 else:

 nr_generated += 1

 progress.update(1)

 print('generated %s empty rolls' %nr_empty)

 if args.att:

 atts = np.array(atts)

 atts = atts.reshape(to_generate, -1, atts.shape[-1])

 np.save(os.path.join(samples_dir, 'atts.npy'), atts)

 softmax_es = np.array(softmax_es)

 softmax_es = softmax_es.reshape(to_generate, -1, softmax_es.shape[-1])

 np.save(os.path.join(samples_dir, 'softmax.npy'), softmax_es)

 with open(os.path.join(samples_dir, '%s empty.txt' %nr_empty), 'w') as f:

 f.writelines('\n')

def melody_sampling(filepath, min_note, max_note, model,

 input_seq_len, dshape, model_dir):

 print('shape of sequence from pypianoroll...')

 seed_sequence, encoder = read_encode_pad_sequence_melody(filepath, min_note,

max_note, input_seq_len)

 generated, samples_dir = build_template_for_generated_melody(dshape,

seed_sequence, model, min_note, max_note, input_seq_len, filepath, model_dir,

encoder)

 # plot seed and save in folder

 plot_midifile(filepath, samples_dir, '1seed.png')

 generate_melody(args, input_seq_len, model, generated, samples_dir, min_note,

max_note, encoder)

def main(args):

 input_seq_len, dshape, min_note, max_note = get_dataset(args)

114

 model = get_model(args)

 transposed_seed = transpose_seed(args)

 print("min, max:")

 print(min_note, max_note)

 model_dir = os.path.abspath(args.model_id)

 if "pianoroll" in args.model_id:

 # pianoroll encoding

 pianoroll_sampling(transposed_seed, min_note, max_note, model,

 input_seq_len, dshape, model_dir)

 elif "melody" in args.model_id or args.melody:

 # melody encoding

 # melody_sampling(transposed_seed, min_note, max_note, model,

 # input_seq_len, dshape)

 melody_sampling(transposed_seed, min_note, max_note, model,

 input_seq_len, dshape, model_dir)

 else:

 print("unknown encoding in model name : %s" % args.model_id)

 return

if __name__ == "__main__":

 parser = argparse.ArgumentParser(

 description="sample from model using a specific seed")

 parser.add_argument('model_id', metavar='id', type=str, help='model id')

 parser.add_argument(

 'seed', metavar='seed', type=str, help='path to seed midi file')

 parser.add_argument(

 '--nr',

 type=str,

 default="10",

 help='how many samples to generate. default = 10')

 parser.add_argument(

 '--temp',

 type=float,

 default="1.0",

 help='temperature for sampling. default = 1.0')

 parser.add_argument(

 '--att',

 action='store_true'

)

 parser.add_argument(

 '--melody',

 action='store_true',

)

 parser.add_argument(

 '--debug_print',

 action='store_true',

 help='whether to print info about attention tokens'

)

 parser.add_argument(

 '--no_zero',

 action='store_true',

 help='in plotting attention remove all zeros'

)

 args = parser.parse_args()

 print('generating %s samples, at %s temperature, using %s, from seed %s'

%(args.nr, args.temp, args.model_id, args.seed))

 main(args)

115

Participants Survey codes:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from scipy.stats import ttest_ind

plt.style.use('ggplot')

path = "/Users/arasharif/Desktop/Ara_Master_Thesis/survey

results/Thesis_Monophonic_Music_Survey.csv"

path = "/Users/arasharif/Desktop/Ara_Master_Thesis/survey

results/Thesis_Monophonic_Music_Survey.csv"

data = np.loadtxt(path, skiprows=1, delimiter=',', dtype=object)

data = data[:, 1:] # eleminate names column

user_experiences, u_x_counts = np.unique(data[:-2, 0], return_counts=True)

total = np.sum(u_x_counts)

plt.figure(figsize=(5, 5))

plt.pie(

 u_x_counts,

 labels=user_experiences,

 shadow=False,

 autopct=lambda p: '{:.0f}'.format(p * total / 100)

)

plt.title('Participant distribution by musical experience level')

plt.savefig('* Participant_distributions.png', bbox_inches='tight')

plt.show()

users = {

 l: {

 'train': {

 'r': [], 'm': []

 },

 'gen': {

 'r': [], 'm': []

 }

 } \

 for l in user_experiences if len(l.strip()) > 0

}

print(users)

train = {'r': [], 'm': []}

gen = {'r': [], 'm': []}

for row in data[:-2]:

 u_x = row[0]

 scores = row[1:]

 for i in range(len(scores)):

 score = int(scores[i])

 if i % 2 == 0:

 label = data[-2, i + 2]

 else:

 label = data[-2, i + 1]

 if label == '1':

 # generated sample

 if i % 2 == 0:

 # rhythm

 gen['r'].append(score)

 users[u_x]['gen']['r'].append(score)

 else:

116

 # melody

 gen['m'].append(score)

 users[u_x]['gen']['m'].append(score)

 elif label == '0':

 # training sample

 if i % 2 == 0:

 # rhythm

 train['r'].append(score)

 users[u_x]['train']['r'].append(score)

 else:

 # melody

 train['m'].append(score)

 users[u_x]['train']['m'].append(score)

def plot_overall(train, gen):

 g_r_mean = np.mean(gen['r'])

 g_r_std = np.std(gen['r'])

 g_m_mean = np.mean(gen['m'])

 g_m_std = np.std(gen['m'])

 t_r_mean = np.mean(train['r'])

 t_r_std = np.std(train['r'])

 t_m_mean = np.mean(train['m'])

 t_m_std = np.std(train['m'])

 names = ['original rhythm', 'generated rhythm', 'original melody', 'generated

melody']

 x_pos = np.arange(len(names))

 means = [

 t_r_mean,

 g_r_mean,

 t_m_mean,

 g_m_mean

]

 stds = [

 t_r_std,

 g_r_std,

 t_m_std,

 g_m_std

]

 plt.figure(figsize=(5, 5))

 plt.bar(

 x_pos,

 means,

 yerr=stds,

 align='center',

 alpha=0.6,

 ecolor='black',

 color=np.concatenate([['green'] * 2, ['orange'] * 2])

)

 # plt.xticks(x_pos, names)

 plt.xticks(x_pos, names, fontsize=8, fontweight='bold', rotation=90)

 plt.title('Participant evaluation results')

 plt.savefig('* participant_evaluation_results.png', bbox_inches='tight')

 table = np.vstack([

 ['%.3f' % m for m in means],

 ['%.3f' % s for s in stds]

])

 table = pd.DataFrame(table, columns=names).transpose()

117

 print(table.to_latex())

 # t tests

 # rhythm

 r_ttest = ttest_ind(gen['r'], train['r'])

 print('rhythm t-test p: %.4f' % r_ttest[1], r_ttest[1])

 # melody

 m_ttest = ttest_ind(gen['m'], train['m'])

 print('melody t-test p: %.4f' % m_ttest[1], m_ttest[1])

def plot_separate(users):

 group_1_train_r = np.concatenate([

 users['1']['train']['r']

])

 group_1_train_m = np.concatenate([

 users['1']['train']['m']

])

 group_1_gen_r = np.concatenate([

 users['1']['gen']['r']

])

 group_1_gen_m = np.concatenate([

 users['1']['gen']['m']

])

 group_2_train_r = np.concatenate([

 users['2']['train']['r']

])

 group_2_train_m = np.concatenate([

 users['2']['train']['m']

])

 group_2_gen_r = np.concatenate([

 users['2']['gen']['r']

])

 group_2_gen_m = np.concatenate([

 users['2']['gen']['m']

])

 group_3_train_r = np.concatenate([

 users['3']['train']['r']

])

 group_3_train_m = np.concatenate([

 users['3']['train']['m']

])

 group_3_gen_r = np.concatenate([

 users['3']['gen']['r']

])

 group_3_gen_m = np.concatenate([

 users['3']['gen']['m']

])

 group_4_train_r = np.concatenate([

 users['4']['train']['r']

])

 group_4_train_m = np.concatenate([

 users['4']['train']['m']

])

118

 group_4_gen_r = np.concatenate([

 users['4']['gen']['r']

])

 group_4_gen_m = np.concatenate([

 users['4']['gen']['m']

])

 group_5_train_r = np.concatenate([

 users['5']['train']['r']

])

 group_5_train_m = np.concatenate([

 users['5']['train']['m']

])

 group_5_gen_r = np.concatenate([

 users['5']['gen']['r']

])

 group_5_gen_m = np.concatenate([

 users['5']['gen']['m']

])

 ### abcd

 group_6_train_r = np.concatenate([

 users['1']['train']['r'], users['2']['train']['r']

])

 group_6_train_m = np.concatenate([

 users['1']['train']['m'], users['2']['train']['m']

])

 group_6_gen_r = np.concatenate([

 users['1']['gen']['r'], users['2']['gen']['r']

])

 group_6_gen_m = np.concatenate([

 users['1']['gen']['m'], users['2']['gen']['m']

])

 group_7_train_r = np.concatenate([

 users['3']['train']['r'],

 users['4']['train']['r'],

 users['5']['train']['r']

])

 group_7_train_m = np.concatenate([

 users['3']['train']['m'],

 users['4']['train']['m'],

 users['5']['train']['m']

])

 group_7_gen_r = np.concatenate([

 users['3']['gen']['r'],

 users['4']['gen']['r'],

 users['5']['gen']['r']

])

 group_7_gen_m = np.concatenate([

 users['3']['gen']['m'],

 users['4']['gen']['m'],

 users['5']['gen']['m']

])

 names = [

 'level1 original rhythm',

 'level1 generated rhythm',

 'level1 original melody',

 'level1 generated melody',

119

 'level2 original rhythm',

 'level2 generated rhythm',

 'level2 original melody',

 'level2 generated melody',

 'level3 original rhythm',

 'level3 generated rhythm',

 'level3 original melody',

 'level3 generated melody',

 'level4 original rhythm',

 'level4 generated rhythm',

 'level4 original melody',

 'level4 generated melody',

 'level5 original rhythm',

 'level5 generated rhythm',

 'level5 original melody',

 'level5 generated melody',

]

 x_pos = np.arange(len(names))

 groups = [

 group_1_train_r,

 group_1_gen_r,

 group_1_train_m,

 group_1_gen_m,

 group_2_train_r,

 group_2_gen_r,

 group_2_train_m,

 group_2_gen_m,

 group_3_train_r,

 group_3_gen_r,

 group_3_train_m,

 group_3_gen_m,

 group_4_train_r,

 group_4_gen_r,

 group_4_train_m,

 group_4_gen_m,

 group_5_train_r,

 group_5_gen_r,

 group_5_train_m,

 group_5_gen_m,

]

 means = [

 np.mean(g) for g in groups

]

 stds = [

 np.std(g) for g in groups

]

 table = np.vstack([

 ['%.3f' % m for m in means],

 ['%.3f' % s for s in stds]

])

 table = pd.DataFrame(table, columns=names).transpose()

 print(table.to_latex())

 plt.figure(figsize=(7, 5))

 plt.bar(x_pos, means, yerr=stds, align='center', alpha=0.5, ecolor='black',

 color=np.concatenate([['red'] * 2, ['red'] * 2, ['orange'] * 2,

['orange'] * 2, ['green'] * 2, ['green'] * 2,

 ['blue'] * 2, ['blue'] * 2, ['black'] * 2,

['black'] * 2]))

 plt.xticks(x_pos, names, fontsize=8, fontweight='bold', rotation=90)

 plt.title('Participant evaluation results per experience levels')

120

 plt.savefig('* Participant_evaluation_results2.png', bbox_inches='tight')

 names = [

 'group1 original rhythm',

 'group1 generated rhythm',

 'group1 original melody',

 'group1 generated melody',

 'group2 original rhythm',

 'group2 generated rhythm',

 'group2 original melody',

 'group2 generated melody',

]

 x_pos = np.arange(len(names))

 groups = [

 group_6_train_r,

 group_6_gen_r,

 group_6_train_m,

 group_6_gen_m,

 group_7_train_r,

 group_7_gen_r,

 group_7_train_m,

 group_7_gen_m,

]

 means = [

 np.mean(g) for g in groups

]

 stds = [

 np.std(g) for g in groups

]

 plt.figure(figsize=(7, 5))

 plt.bar(x_pos, means, yerr=stds, align='center', alpha=0.5, ecolor='black',

 color=np.concatenate([['red']*2, ['orange']*2, ['green']*2,

['blue']*2]))

 plt.xticks(x_pos, names, fontsize=8, fontweight='bold', rotation=90)

 plt.title('Participant evaluation results per group level (low & high)')

 plt.savefig('* Participant_evaluation_results3.png', bbox_inches='tight')

 table = np.vstack([

 ['%.3f' % m for m in means],

 ['%.3f' % s for s in stds]

])

 table = pd.DataFrame(table, columns=names).transpose()

 print(table.to_latex())

plot_overall(train, gen)

plot_separate(users)

plt.show()

121

APPENDIX 4

Screenshot Samples for Implementations

Preprocessing Screenshot Sample:

Training Screenshot Sample:

122

Generating Screenshot Sample:

123

APPENDIX 5

Survey Resources

A Sample of human evaluation form:

MONOPHONIC MUSIC GENERATION USING ARTIFICIAL INTELLIGENCE

THROUGH DEEP LEARNING TECHNIQUES

124

Survey Result:

P
ar

ti
ci

p
an

t
N

am
e

R
at

e
fo

r
M

u
si

c
Ex

p
er

ie
n

ce
 1

-5

R
at

e
fo

r
rh

yt
h

m
 s

ta
b

ili
ty

 1
-5

R
at

e
fo

r
m

el
o

d
y

p
le

as
in

g
1

-5

R
at

e
fo

r
rh

yt
h

m
 s

ta
b

ili
ty

 1
-5

R
at

e
fo

r
m

el
o

d
y

p
le

as
in

g
1

-5

R
at

e
fo

r
rh

yt
h

m
 s

ta
b

ili
ty

 1
-5

R
at

e
fo

r
m

el
o

d
y

p
le

as
in

g
1

-5

R
at

e
fo

r
rh

yt
h

m
 s

ta
b

ili
ty

 1
-5

R
at

e
fo

r
m

el
o

d
y

p
le

as
in

g
1

-5

R
at

e
fo

r
rh

yt
h

m
 s

ta
b

ili
ty

 1
-5

R
at

e
fo

r
m

el
o

d
y

p
le

as
in

g
1

-5

R
at

e
fo

r
rh

yt
h

m
 s

ta
b

ili
ty

 1
-5

R
at

e
fo

r
m

el
o

d
y

p
le

as
in

g
1

-5

R
at

e
fo

r
rh

yt
h

m
 s

ta
b

ili
ty

 1
-5

R
at

e
fo

r
m

el
o

d
y

p
le

as
in

g
1

-5

R
at

e
fo

r
rh

yt
h

m
 s

ta
b

ili
ty

 1
-5

R
at

e
fo

r
m

el
o

d
y

p
le

as
in

g
1

-5

R
at

e
fo

r
rh

yt
h

m
 s

ta
b

ili
ty

 1
-5

R
at

e
fo

r
m

el
o

d
y

p
le

as
in

g
1

-5

R
at

e
fo

r
rh

yt
h

m
 s

ta
b

ili
ty

 1
-5

R
at

e
fo

r
m

el
o

d
y

p
le

as
in

g
1

-5

Zhila yahst 1 3 4 2 3 5 4 2 2 4 3 4 2 2 4 3 3 2 5 3 2
Shene Sirwan 1 4 2 1 1 4 4 3 2 5 5 1 1 2 2 1 1 4 4 2 1
Ani Kamaran 1 3 4 4 4 3 4 5 4 3 2 2 3 2 2 1 2 3 2 4 3
Frishta Ahmed 1 3 5 4 5 4 4 5 5 4 5 4 4 4 4 5 4 5 3 5 5
Rand Dilman 1 3 4 4 3 3 4 4 4 2 3 4 3 5 2 4 4 3 3 4 4
Kamal Aerin 1 4 3 2 2 2 3 2 4 3 2 4 4 3 2 3 5 3 4 4 3
Barin Jamal 1 4 4 4 4 5 5 3 4 5 5 3 3 3 3 4 5 5 4 3 3
Yad Hidayat 1 5 4 5 4 5 4 5 4 5 3 5 3 4 3 4 4 4 4 5 4
Lanya Maeiwan 1 4 4 5 4 5 5 3 3 5 4 5 4 5 5 5 3 4 3 4 4
Rasan Najib 1 4 4 3 4 5 5 4 3 5 4 2 2 5 5 5 5 4 4 3 3
Aya Aram 2 5 5 5 3 5 5 5 4 5 5 5 4 5 5 5 4 5 5 5 4
Roza Walid 2 3 3 5 5 5 5 3 3 5 5 2 2 5 5 3 4 3 2 5 4
Aland Muhamad 2 4 5 5 5 5 5 4 4 5 5 3 4 3 4 3 4 4 4 3 4
Miran Unis 2 5 5 5 2 5 5 5 4 5 4 4 4 5 5 5 5 5 5 4 3
Naz Mahmud 2 4 5 5 5 5 5 5 5 5 5 4 5 5 5 5 5 5 5 5 5
Mhemed Baqi 2 3 3 3 2 3 2 4 4 4 4 3 3 3 3 2 3 2 3 3 3
Lawin Jamal 2 3 3 3 4 5 2 5 1 5 3 3 4 5 5 4 4 5 5 5 3
Namo Jamal 2 3 5 5 4 5 5 4 4 3 4 4 3 4 5 4 3 4 5 3 4
Sonya Ahmad 2 3 3 4 3 2 5 3 5 4 3 5 5 4 4 5 5 5 4 3 2
Baraham Saman 2 3 3 2 4 2 3 4 3 3 5 4 3 5 4 2 2 3 5 3 4
Shabar Qadir 3 3 4 4 4 3 3 5 5 5 5 4 4 3 3 2 2 2 3 5 5
Monako Ibrahim 3 5 3 5 4 3 2 2 4 2 2 4 2 1 4 1 2 4 2 3 5
Safin Mahmud 3 5 5 5 5 5 5 5 5 5 5 5 5 5 4 5 5 5 5 5 5
Avan Sabri 3 4 5 3 3 3 4 5 5 5 5 3 5 2 3 4 4 3 3 5 5
Tara Ahmad 3 4 3 4 4 4 5 4 2 3 3 4 3 3 5 3 2 3 4 3 3
Helin Majid 3 4 5 4 5 4 3 3 2 5 3 4 4 4 3 3 3 3 3 4 2
Vanya Ara 3 4 5 5 5 3 4 2 2 4 4 3 5 2 4 1 2 3 4 4 5
Hasaw Amir 3 5 4 5 5 5 4 5 5 5 4 5 4 4 4 4 5 4 4 5 4
Harez Hersh 3 4 3 3 5 3 3 4 2 5 4 4 4 3 4 4 5 5 3 5 3
Danar Ayar 3 5 3 4 5 5 5 4 4 4 3 3 4 5 4 3 4 4 5 4 3
Zhulia Shwan 4 5 5 5 4 3 4 4 5 5 5 4 5 3 5 4 4 5 5 4 4
Bawan Akram 4 5 5 5 4 5 4 5 5 5 4 5 5 4 4 4 5 5 5 4 5
Sivan Jamal 4 4 3 2 3 4 5 3 5 2 4 3 3 4 3 5 4 3 5 4 3
Las Azad 4 4 4 3 3 5 4 3 2 3 4 5 4 3 3 3 4 4 3 4 3
Zhulia Hussen 4 4 3 5 4 5 4 5 5 5 4 5 3 5 5 5 5 5 5 5 4
Diya Diyar 4 4 4 3 2 4 2 5 3 5 5 2 2 4 3 5 5 5 5 3 3
Chapk Amin 4 4 3 5 4 2 1 3 2 1 1 2 2 3 3 5 5 2 1 5 5
Ara Kamaran 4 4 4 3 4 5 4 5 5 4 5 3 2 4 4 5 5 5 4 5 3
Vesan Ayar 4 3 4 4 5 3 4 4 3 5 4 4 3 5 4 4 4 3 4 3 3
Akar Ari 4 4 5 4 3 3 5 3 3 4 3 4 2 5 3 4 4 3 4 5 4
Bilind Zahid 5 4 4 4 3 4 4 3 3 3 2 2 3 5 4 3 4 4 4 4 3
Hemin Husen 5 2 2 2 3 2 2 1 1 2 3 1 1 3 2 1 1 1 1 2 1
Ako Aziz 5 5 4 5 5 5 4 5 5 5 5 4 5 4 5 5 5 4 4 4 4
Baxan Aso 5 4 5 5 3 3 4 4 3 4 4 4 3 5 4 3 2 2 4 3 3
Zulya Shwan 5 4 5 3 4 4 4 5 5 3 5 4 2 3 2 4 5 3 3 3 4
Helin Ara 5 5 4 4 3 4 5 4 4 5 3 3 2 2 3 4 4 3 3 3 4
Diler Husen 5 4 4 4 4 4 5 4 3 3 4 4 3 4 4 3 4 5 4 4 4
Twana Faraj 5 4 4 4 3 3 4 5 5 4 3 5 4 3 4 4 3 2 3 4 4
Diya Ayar 5 4 4 3 4 4 4 3 3 4 3 2 4 4 5 4 3 4 4 3 4
Diyari Muhamad 5 4 4 4 5 4 3 4 5 5 4 5 3 4 5 4 4 3 4 4 3
Origin_Generate 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
Sample No. 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10

