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Abstract 

Distance matrix computation applied Hepatitis C Virus dataset 

Jiongo Ngnimpiaba Cedric 

Ass. Prof. Dr. Özgür Tosun 

 Master, Department of Biostatistics 

14/01/2022 66 pages 

With the advent of new technology, the profusion of data has created a new 

area for research. The data originating from various domains such as Biology, 

computer science, etc… has proven to be a serious problem when it comes to 

exploiting them since they come into Categorical, Continuous, and mixed types. 

However, exploiting those data requires a selection of good metrics depending on the 

type of work when want to process.   

In this work, we explored various distances measures or metrics such as 

Euclidean distance, Manhattan distance, Canberra Distance, and many more. Besides, 

we collected the Hepatitis C virus (HCV) dataset on which we computed distance 

matrices using five well-known distances. In addition, we built a heatmap for those 

distances both in the variables and Individuals spaces; 

After building the matrices, we compared them using the Mantel Correlation 

score and found that the Euclidean distance matrix (EDM) and Minkowski Distance 

matrix (MINDM) are 100% correlated and account for the highest correlation between 

two different distances measures used to compute distance matrices. Besides, the 

Canberra distance matrix (CANDM) shares the least similarity score of 59.59% with 

the maximum distance matrix (MAXDM). In addition, the couple (EDM and 

MAXDM) & (MAXDM and MINKDM) have the same mantel correlation score of 

99.10%. 

  

Key Words: distance measures, distance matrix, multivariate distance matrix 

regression 
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1 CHAPTER I 

Introduction 

 In this chapter, the study context, the problem, the aims, the objectives, the 

concepts definition, and the significance of the study are evaluated. 

 

1.1 Context of the Study 

Contemporary research in many domains generates a massive amount of data. In 

biology, the data being produced from technologies such as genotyping platforms, 

imaging, gene expressions microarrays are intensive and complex. Thus, fueled 

researchers and scientists with data that requires improved and advanced techniques 

to be analyzed. Improvement of digital health technologies has resulted in a huge 

amount of both qualitative and quantitative data, which contain important information 

about user interactions and transactions that could benefit caregivers as well as patients 

[1]. Data have been considerably generated over the years and stored in large databases 

for commercial and research purposes. Now, analyzing this huge amount of data 

remains an important challenge. However, data mining provides software and methods 

which help automate, analyze and explore huge and intricate data sets. Research fields 

such as biostatistics, computer science, database management, medicine, and machine 

learning, just to name a few, are furthering works to extract scientific knowledge from 

the data that could benefit society. Data reductions technics, such as clustering, factors 

analysis have yielded important good information from datasets. However, 

hierarchical clustering and phylogenetic analysis require the computation of a distance 

matrix. But constructing a distance matrix implies the selection of an appropriate 

distance measure [2]. The distance used in a matrix could or could not be a function 

that defines a distance between each pair of points elements in a set. Albeit, building 

the given matrix has never been an easy-to-do task since the nature of the data in a 

dataset differs from being qualitative, quantitative, or mixed. Therefore, come the 

issues of which statistical distance should be used depending on the data type.  

 

1.2 Statement of the problem 

The flow in a profusion of data generated from every research field especially in 

biological research requires methods to find similarities between participants. Here 

come the notions of distance matrices and building such a matrix implies calculating 
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pairwise distances using statistical distances. However, which distances metric should 

be used for qualitative, quantitative, and mixed data types? 

 

1.3 Research Questions 

 Which distance measures might be better for building a matrix for quantitative 

data? 

 Which distance measures might be better for building a matrix for qualitative 

data? 

 Which distance measures might be better for building a matrix for a mixed data 

type? 

 

1.4 Aims and Objectives 

1.4.1 Aims 

The purpose of this work is to investigate distance measures and build a distance 

matrix accordingly based on the type of data. Therefore, evaluate how statistical 

distances affect the properties of a distance’s matrix given that the type of data used to 

build the matrix could be qualitative, quantitative, or Mixed (both Categorical and 

Continuous). 

1.4.2 Objectives 

At the end of the work, we should be able to:  

a) Recommend which distances measures may be suitable for building a matrix 

of quantitative data. 

b) Propose which statistical distances are appropriate for building a matrix of 

qualitative data. 

c) Suggest which distances measure works well for building a matrix for the 

mixed data type.  

 

1.5 Significance of the Study 

The research is suitable to show how to build a distance matrix. Data are ubiquitous 

and available in different forms. This thus brings the concern of having an appropriate 

distance matrix for each type of data. which helps to find a relation of (dis)similarity 

between the individuals in the given data set.  
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1.6 Definition of Concepts 

Statistical distance: it is a numerical measure that presents how distant two points or 

objects are apart.  

Distance matrix: it is a two-dimensional matrix containing pairwise distance 

computed using a given distance measure.  

Multivariate Distance Matrix Regression: it is a data analysis technic that takes 

advantage of data reduction methods and is engraved in traditional linear models.   

Similarity: it shows how closed or distant two objects are.  

 

1.7 Structure of the Work  

To further this work, its second part will focus on former related work, the third 

part of it will be based on materials and methods used to proceed with the task. Besides, 

the fourth part will emphasize the results while the last part will conclude and 

recommend.  
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2 CHAPTER II 

Literature Review 

2.1 Concept of Distances Matrices 

A distance Matrix (DM) is a two-dimensional array containing distances in 

pairs of a set of samples[3]. The usage of DM can be found in many domains such as 

Bioinformatics[3], Information Retrieval[4], Images Analysis[5], Data Clustering[6], 

and Pattern recognition[7]. Xing Hua et al. [8] tested several microbiome distance 

matrices that helped them develop a statistical method to identify host genetic variants 

linked to microbiome composition.  The computation of a DM requires the selection 

of distance measures which is calculated either between variables in the columns or 

between individuals in rows, let us consider the sample data table below for a proper 

explanation.  

 

Table 1 

Example of Individuals by Variables Tables  

 Variables 

V1 V2 

Individuals I1 3 5 

I2 4 1 

 

The distance between the variables V1(3,4) and V2(5,1) in the space of 

individuals is pictured in figure 1; while the distance between individuals I1(3,5) and 

I2(4,1) in the space of variables is given by figure 2. 
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Figure 1 

 Variables by Individuals' Space 

 

 

Figure 2 

 Individuals by Variables Space 

 

  

The two figures above draw a better picture of the space to consider while 

calculating the distance measures. 

  The Properties of a Distance Matrix could be affected by the choice of a 

statistical distance and therefore its analysis. After choosing a distance and building a 

matrix, the Multivariate Distance Matrix Regression (MDMR) analysis can be used to 

evaluate the properties of the given matrix. MDMR is a statistical technique that allows 

researchers to relate P variables to M factors collected on N individuals, where P >> 

N[2]. The MDMR evaluates the distances pairwise between individuals based on the 

selected features.  
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 Shehzap et al.(2014)[9] developed a method entitled Connectome-Wide 

Association Studies (CWAS), that uses the MDMR analysis to evaluate the correlation 

between functional connectivity and phenotypes. They found that, compared to 

univariate methods that require serious improvement for multiple comparisons, the 

MDMR analysis method considerably reduced the number of comparisons between 

phenotypes and connectivity.  

 Baker & Porollo (2018)[10] stated that interpreting huge matrix especially 

those with thousands of features is a tricky task.  They used the CoeViz tool to visualize 

matrices of protein, human estrogen receptor-alpha (ESR1) containing about six 

hundred amino acid residues.  The heat map they obtained shows the covariance data 

based on the covariance metrics Chi-Square statistic, Pearson Correlation, and joint 

Shannon entropy (a conservative measure)[11]. The visual describing the covariance 

data is given in figure 3 below where the gradient from the color that states no 

covariance to red meaning high covariance. The main diagonal contains frequencies 

of the given amino acids observed at the individual positions in a given multiple 

sequence alignment.  

 

Figure 2: 

Implementation of the Interactive Heatmap Visualization of Covariance 

Metrics in CoeViz 

 

F. N. Baker and A. Porollo, “CoeViz: A web-based integrative platform for interactive 

visualization of large similarity and distance matrices,” Data, vol. 3, no. 1, Mar. 2018, 

DOI: 10.3390/data3010004. 
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2.2  Concept of Distance measures  

  A distance measure between two instances calculates how far or close they are. 

The shorter the distance the closer they are and the longer the distance the farther they 

are. This best defines the concept of similarity and dissimilarity. They are known to 

play key roles in the fields of Machine Learning, Statistics, and other scientific-related 

domains[12]. In statistics, they are distances between two statistical objects. 

Markatou et al.(2019) [13] explored statistical distances also known as 

divergences or metrics in the constructions of Model Adequacy – some of the distances 

investigated were the popular Euclidean Distance, Manhattan, or City-Block distance, 

Mahalanobis distance, and simple Matching Distance.    

Mulak and Talhar (2013) [14] performed a kNN classification using Euclidean, 

Chebyshev, and Manhattan distance measures on the KDD data set which contains 

numeric data in 2 classes for 41 features. They estimated the sensitivity, accuracy, and 

specificity to evaluate the performance of the kNN algorithm for each distance 

measure. They concluded that the Manhattan distance performed well than the 

Chebyshev and Euclidian distance with 96.76% sensitivity, 98.35% specificity, and 

97.80% accuracy.  

Haneen Arafat et al. (2018) [15] investigated in a comprehensive review study 

the impact of 54 distinct distances measures on 28 different data sets collected from 

the UCI machine-learning repository. Their work showed that Hassanat distance 

received the best performance compared to other distances on the majority of data sets.  

Todescheni et al. [16] examined the kNN classifier with 18 distinct distances 

measures, on 8 benchmark data sets. The distances used in their project include 

Manhattan, Soergel, Lance-Williams, Euclidean, Bhattacharyya, Lagrange, 

Mahalanobis, Cosine, Correlation, contracted Jaccard-Tanimoto, Clark, and 4 centered 

Mahalanobis distances. To estimate the efficiency of the measure, they used the 

average rank of each distance measure and the rate of non-errors. The results showed 

that contracted Jaccard-Tanimoto, Manhattan, Soergel, Euclidean, and Lance-

William’s distance measures proved higher accuracy. 

Rezvan and Finn (2020) [17] evaluated the performance of the kNN algorithm 

on 4 different cancer data sets (Brain, Breast, Lung, and Prostate) using 12 distance 

measures (Fisher, Sobolov, Clark, Bhattacharyya, Soergel, Hassanat, Euclidean, 

Chebyshev, Hamming, Canberra, and Bray-Curtis). It resulted that, on the Brain 

cancer data set, for all the k-values tested, the Canberra distance has the best 
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PRECISION and F1 scores, the Manhattan and the hamming distances have the best 

RECALL score, and the Hassanat distance has the best ACCURACY score. On the 

Breast Cancer data set, Bray-Curtis and Clark both have the best ACCURACY score, 

Clark itself has the best RECALL and F1 scores, whereas Bray-Curtis has the best 

PRECISION score.  In addition, only Canberra distance has the best score regarding 

the PRECISION, the RECALL, the F1, and the ACCURACY score on the kNN 

performance applied on the Prostate cancer data set. Besides, on the Lung cancer data 

set, Fisher and Sobolev have the best F1 score, Fisher has the best RECALL score, and 

Sobolev has the best PRECISION and ACCURACY score. In summary, the Hassanat 

ranked first; followed by Manhattan distance on the general evaluation of the kNN 

classifier on all 4 data sets. That last one was the hamming distance.  

Dixon et al. (2009)[18] analyzed metabolomics data without stating an 

appropriate way to choose a better distances measure, but proved that compare to the 

Euclidian distance measures, Canberra Distance and a New Precision-Weighted 

Manhattan Distance are most repeatable.  

 Hu et al. (2016)[19] on a kNN classification project using medical data sets 

evaluated 4 different distance measures; Euclidean, cosine, chi-square, and 

Minkowski. They emphasized 3 different types of data, consisting of numerical, 

categorical, and mixed data types. The data sets originated from the UCI machine 

learning repository of data sets, they used cross-validation (30% testing and 70% 

training) to measure the performances, with k-values between 1 and 15.  The 

experiments portrayed the chi-square distance measure to be best for the 3 different 

data types, whereas the Euclidean, cosine, and Minkowski distances lead to the lowest 

accuracy score on the mixed-type data set. 

Sung Hyuk Cha (2021)[20] partitioned distances measures according to how 

well is the correlation between each other and clustered them hierarchically.  His work 

is a great source of understanding distances without reviewing how they are used. 

Besides, he provided a semantic and syntactic grouping of similarity and distance 

measures based on the application to probability distribution functions. 

   

2.2.1 Metric Distances 

A distance is said to be a metric if and only if it meets the four following criteria: 

1- Positivity: d(p, q)>=0, for two observations p and q that are distinct. 
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2- Symmetry: d(p, q)=d(q, p),for any two distinct observations q and p. 

3- Triangle inequality: d(p, q)=<d(p, r) + d(r, q), for all p,r,q 

4- d(p, q)=0 in case of p=q 

Using the previously mentioned characteristics, the following distances are considered 

metrics. 

 Canberra Distance 

 It was first introduced as a software metric by Lance & William in the years 

60[21], and it is a weighted version of the Manhattan distance or L1 classical distance. 

This distance is equally useful in functional genomics when the comparison of the 

ranked lists is needed. In addition, it is used in Clustering, Classification, harm/spam 

detection, and computer security. It is computed as the total of absolute values of the 

differences between ranks divided by their sum and is given by the following formula: 

 

𝒋 𝒋

𝒋 𝒋

𝒏

𝒋ୀ𝟏

 

Where x and y are two vectors of reals. 

 

 Manhattan Distance 

 This distance is used to evaluate the absolute difference between the 

coordinates of pairs of objects[22]. Let 𝑛 be the number of data, 𝑥௜௝the data located at 

the center of the cluster to 𝑘, 𝑘 the symbol of each data and 𝑑 the distance between 𝑖 

Centre of the cluster) and 𝑗 (the attribute data). The Manhattan distance is given by the 

formula below: 

𝑑(𝑖, 𝑗) = ෍ |𝑥௜௝ − 𝑦௝௞|

௡

௞ୀଵ

 

 Mahalanobis Distance 

This distance is suitable for comparing groups of objects depicted by the same 

variables. Besides, it removes the differences in scale and the effect of correlation 

between variables. Its computation happens by using a covariance matrix from the 
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input matrix. This metric between two d-dimensional numerical vectors x and x’ is 

given by d2(x, x′) = (x − x′)TM(x − x′), where M is a d × d dimension matrix. 

 

 χ2 distance 

This distance is approximative to the χ2 metric, except that, the weighted Euclidean 

distances are timed by the sum of all values in the raw data matrix. This turns the 

weights in the Euclidean distances to probabilities rather than to column totals. The 

metric is mainly used in the principal correspondence analysis and other related 

analyses. 

 χ2 metric 

This metric is asymmetric and its computation turns a matrix of quantitative values 

into a conditional probability matrix in which, based on the row values of the obtained 

matric, a weighted Euclidean distance is computed. Weights, considered as the 

reciprocal variables totals from the raw data help to reduce the influence of the highest 

measured values.  

 

 Chord Distance 

This given distance is also an asymmetric measure which is the Euclidean distance 

computed for a row standardized matrix. Instead of comparing absolute values, the 

metric compares objects based on the proportion of suggested values to the total of all 

variables values along the row belonging to that given object. The sites will be 

considered similar as long as the raw values are different in more variable and 

proportionately equal when standardized.  

 

 Hellinger distance 

The asymmetric distance is most like the χ2 metric. Although there are no weights 

applied, the square roots of conditional probabilities are used as variance and 

therefore stabilizing data transformations.  The variable with small non-zero counts is 

provided with lower weights and the distance measure performs well in linear 

ordination.  

 

 Coefficient of racial Likeness 

 The coefficient is suitable to compare groups of objects that are described by the same 

variable. In addition, it does not remove the correlation effects between variables. It 
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could be appropriate when the samples are really small to considerably eliminate the 

effect of the correlation.  

 

 Euclidian Distance 

 In a two-dimensional space, it represents the length between two points. It 

helps to determine how similar or dissimilar the two points are. The formula below is 

used to evaluate that degree of similarity. 

𝑑(𝑖, 𝑗) = ඩ෍(𝑥௜௞ − 𝑦௝௞

௡

௞ୀଵ

)ଶ 

Where n is the number of data, 𝑥௜௞ the data located at the center of the cluster to  𝑘, 𝑘 

the symbol of each data and 𝑑 the distance 𝑖 (center of the cluster) and 𝑗 (the attribute 

data).  

2.2.2 Semi-metric Distances 

This type of metric does not always comply with the triangle inequality and 

cannot be always used to represent a dissimilarity measure in the Euclidean space 

unless proper transformation is done. They are mainly used in principal component 

analysis and non-metric dimensional scaling. 

 Bray-Curtis Distance 

It is an asymmetric measure that is often used for raw data count. In addition, 

it treats the differences between low and high variables values the same and is also 

mainly used in ecology.  

 

 Hamming Distance 

𝒅(𝑖, 𝑗) = ෍ 𝟏𝒙𝒊  ஷ𝒚𝒊

𝒏

𝒊ୀ𝟏

 

In comparing strings of the same length, the hamming distance counts the 

number of characters from which they differ. It is mainly used with categorical 

variables and helps to find the similarity or dissimilarity between non-continuous 

variables. For instance, let us consider two strings coded respectively with 11011001 

and 10011101.  The hamming distance between them is 2 since they are different in 

only two digits.  
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 Minkowski Distance 

This Distance is a generalization of distance metric and is given by the formula 

below.  

𝑑(𝑖, 𝑗) =  ඩ෍(𝑥௜௞ − 𝑦௝௞

௡

௞ୀଵ

)௣
೛

 

Where, for p=1, it yields the Manhattan distance and for p=2, the distance represents 

the classical Euclidian distance. For p= +∞ the distance become the maximum 

distance. 

 Cosine Distance 

The cosine distance is a metric that is widely used in natural language 

processing (NLP), text mining, and information retrieval systems. 

2.3 Clustering 

Clustering is an unsupervised learning method used to classify data in such a 

way that similar data belong to the same group whereas dissimilar data are part of 

different groups. 

Sami Nouali et al. (2019) [23]investigated over 30 categorical clustering 

algorithms and classified them into partition and hierarchical clustering algorithms. 

The most prominent ones were selected based on their accuracy, recall, and precision 

score. Among those developed algorithms, rough, fuzzy, and hard-set based methods 

were developed and the rough set-based clustering methods yielded efficient results 

compared to the other two methods. 

Melodie Angeletti et al. [24] clustered the MRIF (Multi-Resolution Interest 

Fusion) data and the distance matrix used to cluster took 80% of the total computation 

time. They proposed three algorithms for computing the Euclidian Distance Matrix 

(EDM).  The given parallel algorithms improved the computation time of the EDM on 

parallel computers. 
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3 Chapter III 

Material and Methods 

 

3.1 Data source description 

The dataset used in this research originated from the online open-access UCI 

Machine Learning Repository. It is a web-based application containing datasets from 

various domains such as biology, sales, engineering, and more. The datasets are used 

to serve the machine learning community. The authors, David Aha and his fellow 

graduate students from the University of California Irvine, School of Information and 

Computer Science created the database in 1987. Since its inception, the dataset has 

been mainly used by researchers, students, educators, as the primary source for 

machine learning projects. It currently hosts 588 datasets ready by people in need. 

The credentials through which a dataset can be selected from the UCI website, are 

listed below as: 

 Name 

This is the name of the dataset 

 Data type 

It varies in between Multivariate, Univariate, Sequential, Time-series, Text, Domain-

theory and other data types. 

 Attribute Type 

It is amongst Categorical, Numerical, and Mixed attribute type 

 Area 

The domain area includes Life-Sciences, Physical Sciences, Computer Science & 

Engineering, Social Sciences, Business, Game, Other. 

 #Attibutes 

It categorizes the dataset into three groups. The first one with less than 10 attributes, 

the second with at least 10 and at most 100 attributes, and the last one with more than 

100 attributes. 
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 #Instances 

Based on the attributes of the number of instances, the categorization is also 

done in three groups. The first one with less than 100 instances, the second with more 

than 100 and less than 1000 instances, and the last one contains more than 1000 

instances.  

 Format Type 

It has two types either matrix or non-matrix format. 

 

3.2 Data acquisition 

The HCV data is an open-access database and is free of collection and usage. 

Therefore, we selected the data published in 2020, with less than 1000 instances, the 

number of attributes between 10 and 100, and the data type multivariate. 

3.3 Dataset description 

The HVC_DATA dataset has 14 columns where each of the following listed 

represents a variable. They are X, Category, Age, Sex, ALB, ALP, ALT, AST, BIL, 

CHE, CHOL, CREA, GGT, and PROT. 

 X: is a numeric variable that represents a patient ID. 

 Category: a categorical variable that divides groups into which a patient fit. 

 Age: it is a numeric variable that holds the patient age 

 Sex: is the patient gender 

 ALB stands for the albumin level 

 ALP stands for Alkaline phosphatase. Which is an enzyme found in the liver, 

bile ducts, and bone. 

 ALT stands for Alanine Transaminase and represents an enzyme level found 

in the Liver that help0 the body metabolize protein. Its normal value is 7 to 55 

units per liter. 

 AST stands for Aspartate transaminase. This enzyme helps metabolize alanine-

it is an amino acid. 
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 BIL stands for Bilirubin and is a yellow bile pigment that appears red blood 

cells break down. 

 CHE stands for Cholinesterase and improves the health functionality of the 

nervous system.  

 CHOL stands for Cholesterol that regulates the biological process of substrate 

presentation and the enzymes that use substrate presentation as a mechanism 

of their activation. 

 CREAT stands for Creatinine and is used to serum creatine. 

 GGT stands for Gamma-glutamyltransferase. Which is an enzyme found in the 

blood. 

 PROT stands for a proteolytic enzyme that breaks long chainlike molecules of 

proteins into peptides and eventually into amino acids. 

The figure below recalls all the variables and their types. 

Figure 3 

  List of dataset variables 

 

3.4 Data Analysis 

The analysis of the data was done with the R language through R studio 

software on a 16go of ram computer. The steps followed after acquiring the data 

consisted of Data cleaning, Data description, and distance matrices computation. It 

resulted that the dataset has 31 missing values and we imputed them in the dataset 

using the mice library.  
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After clearing the missing values, we computed distance matrices for five 

distances measures that are: Euclidean, Manhattan, Canberra, maximum, and 

Minkowski on the first 20 patients of the dataset. This was done just to have a clear 

heatmap for each distance matrix. Because computing all the individuals yields an 

unreadable heatmap. 

We used the whole dataset to compare the computed distance matrices using 

the Mantel correlation test and found that Euclidean and Minkowski distance matrices 

are 100% similar while Canberra and Maximum distance matrices are just 59.59% 

similar. 

Besides, a binary distance matrix has not been computed for the reason that the 

dataset has no binary values. Since the data also contains a categorical value, the 

Gower distance was used to compute a distance matrix for mixed data (both categorical 

and continuous values). 

Furthermore, for each of the distance matrices computed, a multivariate 

distance matrix regression (MDMR) was computed and the results showed that 

Minkowski and Euclidean distance matrices seem to be similar. 
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4 CHAPTER IV 

Findings 

In this chapter, we mainly discuss the results of our analysis.  

 

4.1 Data exploration 

4.1.1 Data Observation 

Figure 4 

Dataset Observation using the Glimpse Function 

 

A rapid observation shows that the dataset has 615 rows (patients) and 14 columns 

(Variables). Besides, the function shows some values of each variable and we can see 

that two of them are categorical while the rest is continuous. 
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4.1.2 Data Status 

Table 2 

 Dataset Status Before imputation  

 q_zeros p_zeros q_na p_na q_inif p_nif type unique 

X 0 0 0 0 0 0 integer 615 

Category 0 0 0 0 0 0 character 5 

Age 0 0 0 0 0 0 integer 49 

Sex 0 0 0 0 0 0 character 2 

ALB 0 0 1 0.001 0 0 numeric 189 

ALP 0 0 18 0.029 0 0 numeric 414 

ALT 0 0 1 0.001 0 0 numeric 341 

AST 0 0 0 0 0 0 numeric 297 

BIL 0 0 0 0 0 0 numeric 188 

CHE 0 0 0 0 0 0 numeric 407 

CHOL 0 0 10 0.016 0 0 numeric 313 

CREA 0 0 0 0 0 0 numeric 117 

GGT 0 0 0 0 0 0 numeric 358 

PROT 0 0 1 0.001 0 0 numeric 198 

 

The q_na states the number of missing values from each variable. The variable 

ALP has the greatest number of missing values that equals 18 followed by the CHOL 

variable with 10 missing values and PROT, ALT, ALB have respectively one missing 

value. 
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4.1.3 Missing data Histogram by Percentage 

Figure 5 

Histogram of Missing Value by Percentages 

 

. The histogram shows that ALP has 2.92%, the highest percentage, and accounts for 

the highest number of missing values. The least percentage is for three variables and 

accounts for 0.16% of the missing information. 
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4.1.4 Analysis of the Categorical Variable “Category”  

Figure 6 

Frequency Distribution Histogram for the variable ‘Category’ 

 

 

 

Interpretation:  

 The histogram shows that the variables have 5 groups known in ascending 

order as: “0s=suspect Blood Donor” (with 7 instances and accounts for 1.14%), 

“2=Fibrosis” (21 instances and accounts for 3.41%), “1=Hepatitis” (24 instances of 

3.9%), “3=Cirrhosis”(30 instances of 4.88%), and “0=Blood Donnor”(533 instances 

for 86.67%). The latter accounts for the greatest amount of patients in the group. 
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Figure 7 

 Frequency Distribution Histogram for the variables ‘SEX’ 

 

 

Interpretation: 

 The variable SEX has two attributes: “f for female” and “m   for male”. The 

former has 238 individuals and accounts for 38.7% while the latter has 377 individuals 

for 61.3%. Therefore, there are more male patients than female patients in this dataset. 
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4.1.5 Managing Missing Values 

Table 3 

Status of the Dataset After Imputing Missing Values 

 q_zeros p_zeros q_na p_na q_inif p_nif type unique 

X 0 0 0 0 0 0 integer 615 

Category 0 0 0 0 0 0 character 5 

Age 0 0 0 0 0 0 integer 49 

Sex 0 0 0 0 0 0 character 2 

ALB 0 0 0 0 0 0 numeric 189 

ALP 0 0 0 0 0 0 numeric 414 

ALT 0 0 0 0 0 0 numeric 341 

AST 0 0 0 0 0 0 numeric 297 

BIL 0 0 0 0 0 0 numeric 188 

CHE 0 0 0 0 0 0 numeric 407 

CHOL 0 0 0 0 0 0 numeric 313 

CREA 0 0 0 0 0 0 numeric 117 

GGT 0 0 0 0 0 0 numeric 358 

PROT 0 0 0 0 0 0 numeric 198 

 

This data status table shows that there are no more missing values after their 

imputation. 
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4.1.6 Analysis of Continuous Variables 

Figure 8 

Distribution of Continuous Data 

 

The figure above presents the normal distribution of all the continuous variables. 

The dataset has 12 variables among which, 5 variables (AST, ALT, BIL, CREAT, 

and GGT) exhibit outliers’ values. In the meantime, variables, PROT, CHOL, and 

CHE tend to be normally distributed. 
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4.1.7 Correlation Matrix of Variables Before Imputing Missing Values 

 

Figure 9 

Correlation Matrix Before Imputation of Missing Values 
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4.1.8 Correlation Matrix of Variables after Imputing Missing Values 

Figure 10 

Correlation Matrix of Variables after Missing Values Imputation 

 
 

Figure 11 and figure 12 above show the correlation matrices of variables before 

and after imputing missing values in the dataset. The Pearson correlation coefficient 

has been applied to the dataset variable. It results that the level of PROT and ALB are 

positive and moderately correlated with a correlation coefficient of 57% before 

imputation and a slight decrease to 56 % after the imputation of missing values. The 

graphs also depict the moderate and positive correlation between 

“category3=Cirrhosis” and BIL with a correlation coefficient of 59% before managing 

missing values and drops to 55% after the imputation.  
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In addition, the correlation between “category0=Blood Donor” and variable 

ALT remained negatively correlated at a constant of -64% both before and after the 

imputation of missing values. 

4.2 Distance matrices computation 

In this part of the work, we select five distances and compute their distance 

matrices on the dataset with imputed missing values. The distance matrices 

computed for individuals or patients account for only 20 rows for the sake of 

visibility. 

 

Distances matrices were computed on both individuals and variables spaces using 

six-well known distances that are: Euclidean, Manhattan, Minkowski, Canberra, 

maximum, and Gower. 

First of all, in the space of variables, distance matrices for individuals were 

computed.  The heatmaps (see from Figure 14 to Figure 25) in this work show the 

similarities of the first 20 patients. This sample finds more understanding in the frame 

of clarity. Using all the patients yielded an unreadable heatmap. So for each of the 

distances measures or metric, the output heatmaps are colored from pure white to show 

the smallest distances—their similarities and pure red to exhibit the longest distance 

and therefore their dissimilarities. Amongst the first 20 patients selected in the dataset, 

the 6th seems to be more distant with the rest from Euclidean, Manhattan, Minkowski, 

and Maximum distance matrices heatmaps (See picture ).  

Just to see how patients are closed to each other based on the variables, distance 

matrices were computed in the individuals' space and their heatmaps show us that 

using the Euclidean distance, the CREA, is dissimilar to ALT, AST, and BIL. In 

addition, BIL is very dissimilar to almost all the variables except for ALT and CREA. 

With Manhattan distance, CHE is distant to ALP, GGT, and CHOL, while ALB is very 

dissimilar to all, except GGT, PROT, and BIL respectively.  For maximum distance, 

CHE is distant to all the variables but very distant to BIL at the same time the variables 

in the couples (AST, ALT) and (GGT, CHOL ) seem to be similar. Moreover, GGT is 

very dissimilar to ALP, BIL, AGE, ALT, AST, and ALB. Coming up to Canberra 

distance, AST is closer to BIL, AGE, CREA, and ALT than ALP, CHOL, CHE, and 

GGT. Considering the Minkowski distance, the variables are almost similar or 

dissimilar as there are with the Euclidean distance. 
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Furthermore, the correlation heatmap was computed using all the variables with 

scores between -1 and 1 stating a strong negative or strong positive relationship and 0 

indicating no relationship at all. It turns out that PROT and ALB have a strong positive 

relationship with a correlation score of 0.56 followed by the couple GGT-ALP and 

GGT-AST with correlation scores of 0.46 and 0.49 respectively. In addition, patients 

with Cirrhosis also exhibit a strong relationship with AST and BIL with correlation 

scores of 0.5 and 0.55 respectively. In the meantime, Category_0 Blood Donor shows 

a strong negative correlation score of  -0.64, -0.58, -0.51, -0.49, -0.48, and -0.37 with 

AST, Category_3Cirrhosis, Category_1Hepattities, GGT, Category_2 Fibrosis, and 

BIL. 

4.2.1 Euclidean Distance Matrix 

o For individual 

Figure 11 

Euclidean Distance Matrix Heatmap for Individuals 
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o For variables 

Figure 12 

Euclidean Distance Matrix Heatmap for Variables 
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4.2.2 Manhattan Distance Matrix 

o Individuals 

Figure 13 

Manhattan Distance Matrix Heatmap for Individuals 

 
 

Computing the Manhattan distance matrix on 20 patients shows that patient 6 seems 

to be most dissimilar to the rest of the patients. 
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o Variables 

Figure 14 

 Manhattan distance matrix for variables 
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4.2.3 Maximum Distance Matrix 

o Individuals 

Figure 15 

Maximum Distance matrix  HeatMap for Individuals 
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o Variables 

Figure 16 

HeatMap of Maximum Distance Matrix for Variables 
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4.2.4 Canberra Distance Matrix 

o Individuals 

Figure 17 

 Canberra Distance Matrix Heatmap for Individuals 
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o Variables 

Figure 18 

 Heatmap for Canberra Distance Matrix for Variables 
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4.2.5 Minkowski Distance Matrix 

o Individuals 

Figure 19 

HeatMap using Minkowski distance matrix for individuals 
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o Variables 

Figure 20 

 Minkowski Distance Matrix for Variables 
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4.2.6 Gower Distance Matrix  

The following heatmap is obtained by applying the Gower distance on the 20 

first individuals of the dataset. 

Figure 21 

  Heat map of the Gower Distance Matrix 

 

The figure above only shows 20 patients and their similarities or dissimilarity. 

The evaluation of them all showed that patients 210 and 184 are most similar to any 

other group of two while patients 546 and 611 are the most dissimilar. 
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4.3 Mantel Correlation Score 

The Mantel test is used to test the similarity of two matrices. In the following 

table is the observations score of the comparison of distance matrices. That is for 

example to explain whether or not the distance between two patients evaluated using 

the Euclidean distance is the same as evaluated with the Minkowski distance for our 

dataset. 

Table 4 

Correlation Scores of Distances Matrices Similarities 

 EDM MANDM MAXDM CANDM MINKDM 

EDM 1 0.9727947 0.9910533 0.6510335 1 

MANDM  1 0.9379017 0.7601727 0.9727947 

MAXDM   1 0.5958981 0.9910533 

CANDM    1 0.6510335 

MINKDM     1 

 

The tables show that the Euclidean distance matrix (EDM) and Minkowski 

Distance matrix (MINDM) are 100% correlated and account for the highest 

correlation between two different distances measures used to compute distance 

matrices. Besides, the Canberra distance matrix (CANDM) shares the least similarity 

score of 59.59% with the maximum distance matrix (MAXDM). In addition, the 

couple (EDM and MAXDM) & (MAXDM and MINKDM) have the same mantel 

correlation score of 99.10%. 
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4.4 Clustering 

The figure below illustrates the number of clusters. It can be seen that all the 

data can be grouped in three clusters – those with the highest silhouette width.  But 

we are going to select the 4th one. 

Figure 22: 

Silhouette Curve to find the Number of Clusters 

 

After selecting 4 clusters, the clustering algorithm used in the process gives 

the figure below. Besides, clusters 1 and 2 are the ones most data are gathered 

around.   
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Figure 23 

HCV Dataset Clustered in 4 Groups 
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4.5 Multivariate Distance Matrix Regression 

 

In the following part, the Multivariate Distance Matrix Regression is computed 

with the Euclidean, Manhattan, maximum Canberra, Minkowski, and Gower 

distances. The results are described in tables like in table 5 to table 10. The lines are 

the variables' names and the columns are the results of the MDMR test. They are:  

Statistic: which is the value of the corresponding MDMR test statistic 

Number.DF is the numerator degrees of freedom for the corresponding effect 

 Pseudo.R2 is the size of the corresponding effect on the distance matrix 

Analytic.p.Value is the p-value of each effect 

4.5.1 MDMR with Euclidean Distance 

Table 5 

Multivariate Distance Matrix Regression results were obtained when using the 

Euclidean Distance. 

 Statistic Numer.DF Pseudo.R2 Analytic.p.Value 

(Omnibus) -1.27e+14 11 1 1 

Age -1.36e+12 1 0.011 1 

ALB -2.94e+11 1 0.002 1 

ALP -7.27e+12 1 0.057 1 

ALT -8.11e+12 1 0.064 1 

AST -9.82e+12 1 0.077 1 

BIL -4.68e+12 1 0.037 1 

CHE -4.77e+10 1 0.000 1 

CHOL -1.43e+10 1 0.000 1 
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(Table 5 continued) 

CREA -3.54e+13 1 0.279 1 

GGT -2.55e+13 1 0.201 1 

PROT -2.79e+11 1 0.002 1 

 

4.5.2 MDMR with Manhattan Distance 

Table 6 

Multivariate Distance Matrix Regression results obtained when using the 

Manhattan Distance. 

 Statistic Numer.DF Pseudo.R2 Analytic.p.Value 

(Omnibus) 14.050 11 0.934 < 1e-20 

Age 0.486 1 0.032 < 1e-20 

ALB 0.182 1 0.012 < 1e-20 

ALP 0.128 1 0.075 < 1e-20 

ALT 0.523 1 0.101 < 1e-14 

AST 0.057 1 0.070 < 1e-20 

BIL 0.803 1 0.053 < 1e-20 

CHE 0.094 1 0.006 < 1e-20 

CHOL 0.051 1 0.003 < 1e-20 

CREA 0.321 1 0.154 < 1e-20 

GGT 0.177 1 0.144 < 1e-20 

PROT 0.211 1 0.014 < 1e-15 
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4.5.3 MDMR with Maximum Distance 

Table 7  

Multivariate Distance Matrix Regression results were obtained when using the 

Maximum Distance. 

 Statistic Numer.DF Pseudo.R2 Analytic.p.Value 

(Omnibus) -137.1857 11 1.007 1 

Age -0.2965 1 0.002 1 

ALB 0.1436 1 < 2e-16 < 1e-20 

ALP -3.0543 1 0.022 1 

ALT -5.6212 1 0.041 1 

AST -9.6672 1 0.070 1 

BIL -4.1086 1 0.003 1 

CHE -0.0738 1 0.000 1 

CHOL 0.0738 1 < 1e-16 < 1e-15 

CREA -46.4500 1 0.341 1 

GGT -31.5977 1 0.232 1 

PROT -0.1359 1 0.000 1 

 

4.5.4 MDMR with Canberra Distance 

Table 8 

Multivariate Distance Matrix Regression results were obtained when using the 

Canberra Distance. 

 Statistic Numer.DF Pseudo.R2 Analytic.p.Value 

(Omnibus) 1.6149 11 0.618 < 1e-20 

Age 0.1297 1 0.050 < 1e-20 

ALB 0.0511 1 0.020 < 1e-20 
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ALP 0.1296 1 0.050 < 1e-20 

ALT 0.1601 1 0.061 < 1e-20 

AST 0.0765 1 0.029 < 1e-20 

BIL 0.1117 1 0.043 < 1e-20 

CHE 0.1175 1 0.045 < 1e-20 

CHOL 0.0954 1 0.037 < 1e-20 

CREA 0.0507 1 0.019 < 1e-20 

GGT 0.106 1 0.040 < 1e-20 

PROT 0.039 1 0.015 < 1e-15 

 

4.5.5 MDMR with Minkowski Distance 

Table 9  

Multivariate Distance Matrix Regression results were obtained when using 

the Minkowski distance. 

 Statistic Numer.DF Pseudo.R2 Analytic.p.Value 

Omnibus -1.27e+14 11 1 1 

Age -1.36e+12 1 0.010 1 

ALB -2.94e+11 1 0.002 1 

ALP -7.27e+12 1 0.057 1 

ALT -8.11e+12 1 0.064 1 

AST -9.82e+12 1 0.077 1 

BIL -4.68 e+12 1 0.036 1 

CHE -4.77 e+10 1 0 1 

CHOL -1.43 e+10 1 0 1 

CREA -3.54 e+13 1 0.279 1 

GGT -2.55 e+13 1 0.201 1 

PROT -2.79 e+11 1 0.002 1 
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4.5.6 MDMR with Gower Distance Matrix 

Table 10 

 Multivariate Distance Matrix Regression results were obtained when 

using the Gower distance. 

 Statistic Numer.DF Pseudo.R2 Analytic.p.Value 

Omnibus -7.49 17 1.54 1 

Category -0.43 4 0.07 1 

Age -0.13 1 0.02 1 

Sex -0.54 1 0.08 1 

ALB -0.11 1 0.02 1 

ALP -0.09 1 0.01 1 

ALT -0.07 1 0.01 1 

AST -0.09 1 0.01 1 

BIL -0.05 1 0.01 1 

CHE -0.28 1 0.04 1 

CHOL -0.30 1 0.04 1 

CREA -0.02 1 0 1 

GGT -0.09 1 0.01 1 

PROT -0.24 1 0.03 1 
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5 CHAPTER V 

Discussion 

After computing the distance matrices, their similarities were tested using mantel 

but in this case on all the maintained patients and found that the Euclidean distance 

matrice and Minkowski distance matrice are 100% similar while Maximum distance 

matrice and Minkowski Distance matrix are 99% similar. In addition, the Canberra 

distance matrix and Maximum shared the least similarity score of 60%. Euclidean 

distance matrix and Manhattan distance matrix are similar at 97% while maximum and 

Manhattan Distance matrix are 94% similar. Canberra distance matrix shares a 65% In 

addition, the Multivariate Distance Matrix Regression (MDMR) is a hypothesis-

testing method or multivariate data with the goals of finding a relationship between 

predictors and observations during experimentation by the mean of test-statistics. It 

was implemented to understand the relationship between experimental factors as input 

and the association of outputs variables. In this assignment, computed distance 

matrices (Euclidean, Manhattan, Minkowski, Canberra, and Maximum) were used for 

continuous variables and a Gower distance matrix for mixed variables. In table 5 and 

table 9, the p-value obtained when computing the MDMR analysis with Euclidean and 

Minkowski distance matrice is 1 and all the statistics values are negative for all the 

variables and similarity with the Minkowski distance matrix. Therefore they are not 

statistically significant. That proves that Euclidean and Minkowski are not suitable for 

MDMR analysis. MUHANAD SHAB KALEIA (2017) [25] states in his thesis that 

Euclidean distance is not suitable for times series data in functional Magnetic 

Resonance Imaging (fMRI); this result corroborates with our HCV-data since the p-

values of Euclidean is 1 and the statistics are all negative. 

In the Multivariate Distance Matrix Regression computed with Gower distance 

matrix, the significance of the hypothesis is not suitable since all p-values are 1 and 

statistics are all negative. Therefore, for the current dataset comprised of mixed data 

the Gower distance is not suitable for similarity in between our matrices. In addition, 

Canberra and Manhattan distance matrices applied on the MDMR analysis showed 

that all variables have statistical significance and therefore prove the significance of 

their distance matrices in the application of the Multivariate Distance Matrix 

Regression. When using the maximum distance measures in the MDMR analysis, just 
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two variables namely ALB and CHOL with respective statistics of 0.14 and 0.07 plus 

p-values below 1e-15. 
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6 CHAPTER VI 

Conclusion 

The work aimed to study some distance measures and/or metrics and compute 

their matrices. For mixed variables (both categorical and continuous) their distance 

matrices were computed using the Gower distance. Besides, we used Maximum, 

Minkowski, Euclidean, Manhattan, and Canberra distance on the continuous variables 

of the dataset.  However, Euclidean and Minkowski proved not to be suitable using 

MDMR analysis while Manhattan and Canberra proved to be appropriate for the 

MDMR test.  

As to understand which methods are suitable for calculating distance matrices on 

categorical variables, there are not enough resources on the matter but trying to 

compute a distance metric on mixed data using one amongst the following distances 

Euclidean, Minkowski, Manhattan, Maximum and Canberra yields errors due to the 

type of data. However, only the Gower distance can perform the computation, and 

therefore, it seems to be the most appropriate one for mixed data. In the meantime, the 

data used in this work contained only two categorical values that are not enough to 

compute the matrix. Apart from Gower distance, the other explored distances were 

easily used to compute matrices on continuous variables.   

 For future work, it will be better to use and compare other measures to compute 

their matrices and therefore test them against each other in the given MDMR analysis. 

In addition, it will also be useful to investigate how distance metrics act for 

multivariate time series data. The literature on the subject is not rich enough and more 

investigation could be carried out on various datasets in different domains.  
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7 Annex 

Computation code in R programming language 
 
library(funModeling)  
library(tidyverse)  
library(Hmisc) 
library(mice) 
library(DataExplorer) 
library('vegan') 
library(cluster) 
library(Rtsne) 
library(factoextra) 
 
#IMPORT CSV FILE INTO A DATAFRAME 
df = read.csv("C:\\Users\\hp\\Desktop\\Thesis\\hcvdat.csv") 
glimpse(df) 
status(df) 
 
#frequency histogram of missings categorical variables. 
freq(df) 
#Visual descriptive statistics of the numerical variables 
plot_num(df, path_out = "img.jpg") 
 
# Impute missing data 
imp <- mice(df, m = 1) 
# Store imputed data as new data frame 
df_imputed <- complete(imp) 
 
summary(df_imputed) 
status(df_imputed) 
 
  
DataExplorer::create_report(df_imputed) 
 
#Comuputing Distance Matrices 
#Let get a dataframe newdf without categorical values and the patient's ID 
newdf <- subset(df_imputed, select = -c(X,Category,Sex)) 
head(newdf) 
sum(is.na(newdf)) 
#computation 
Dist_E<- dist(newdf,method="euclidean") 
Dist_M<- dist(newdf,method="manhattan") 
Dist_Max<-dist(newdf,method="maximum") 
Dist_Can<- dist(newdf,method="canberra") 
Dist_Mink<- dist(newdf,method="minkowski") 
 
#Heatmap of distance matrices computed without missing values 
fviz_dist(Dist_E,gradient=list(low='ivory',mid='cornflowerblue',hight='red')) 
fviz_dist(Dist_M,gradient=list(low='ivory',mid='cornflowerblue',hight='red')) 
fviz_dist(Dist_Max,gradient=list(low='ivory',mid='cornflowerblue',hight='red')) 
fviz_dist(Dist_Can,gradient=list(low='ivory',mid='cornflowerblue',hight='red')) 
fviz_dist(Dist_Mink,gradient=list(low='ivory',mid='cornflowerblue',hight='red')) 
fviz_dist(Dist_Pear,gradient=list(low='ivory',mid='cornflowerblue',hight='red')) 
 
 
#computation 
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Dist_E1<-dist(newdf.scaled,method="euclidean") 
head(as.matrix(Dist_M)) 
Dist_M1<- dist(newdf.scaled,method="manhattan") 
Dist_Max1<- dist(newdf.scaled,method="maximum") 
Dist_Can1<- dist(newdf.scaled,method="canberra") 
Dist_Mink1<- dist(newdf.scaled,method="minkowski") 
 
#Heatmap of distance matrices computed without missing values 
fviz_dist(Dist_E1,gradient=list(low='ivory',mid='cornflowerblue',hight='red')) 
fviz_dist(Dist_M1,gradient=list(low='ivory',mid='cornflowerblue',hight='red')) 
fviz_dist(Dist_Max1,gradient=list(low='ivory',mid='cornflowerblue',hight='red')) 
fviz_dist(Dist_Can1,gradient=list(low='ivory',mid='cornflowerblue',hight='red')) 
fviz_dist(Dist_Mink1,gradient=list(low='ivory',mid='cornflowerblue',hight='red')) 
fviz_dist(Dist_Pear1,gradient=list(low='ivory',mid='cornflowerblue',hight='red')) 
 
 
#MDMR analysis computation 
#computation  
DistE<- as.matrix(dist(newdf,method="euclidean")) 
DistM<- as.matrix(dist(newdf,method="manhattan")) 
DistMax<-as.matrix( dist(newdf,method="maximum")) 
DistCan<- as.matrix(dist(newdf,method="canberra")) 
DistMink<- as.matrix(dist(newdf,method="minkowski")) 
 
res1 <- mdmr(X = newdf , D = DistE) 
res2 <- mdmr(X = newdf , D = DistM) 
res3 <- mdmr(X = newdf , D = DistMax) 
res4 <- mdmr(X = newdf , D = DistCan) 
res5 <- mdmr(X = newdf , D = DistMink) 
 
summary(res1) 
summary(res2) 
summary(res3) 
summary(res4) 
summary(res5) 
 
 #Comparing distance matrices 
mantel.rtest(Dist_E,Dist_M,nrepet = 99) 
mantel.rtest(Dist_E,Dist_Max,nrepet = 99) 
mantel.rtest(Dist_E,Dist_Can,nrepet = 99) 
mantel.rtest(Dist_E,Dist_Mink,nrepet = 99) 
mantel.rtest(Dist_M,Dist_Max,nrepet = 99) 
mantel.rtest(Dist_M,Dist_Can,nrepet = 99) 
mantel.rtest(Dist_M,Dist_Mink,nrepet = 99) 
mantel.rtest(Dist_Max,Dist_Can,nrepet = 99) 
mantel.rtest(Dist_Max,Dist_Mink,nrepet = 99) 
mantel.rtest(Dist_Can,Dist_Mink,nrepet = 99) 
 
 
#Converting character to factor 
df_factor <-  df_imputed 
class(as.factor(df_factor$Sex)) 
df_factor <- as.data.frame(unclass(df_factor),stringsAsFactors = TRUE) 
glimpse(df_factor) 
 
#computing the Gower distance 
gower_dist <- daisy(df_factor[,-1],metric = "gower",type = list(logratio = 3)) 
summary(gower_dist) 
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#Computing the Gower distance matrix 
gower_mat <- as.matrix(gower_dist) 
 
#Show the most similar pair 
df_factor[ 
  which(gower_mat == min(gower_mat[gower_mat != min(gower_mat)]), 
        arr.ind = TRUE)[1, ], ] 
#Let show the most dissimilar 
df_factor[ 
  which(gower_mat == max(gower_mat[gower_mat != max(gower_mat)]), 
        arr.ind = TRUE)[1, ], ] 
 
# Calculate silhouette width for many k using PAM 
 
sil_width <- c(NA) 
 
for(i in 2:10){ 
   
  pam_fit <- pam(gower_dist, 
                 diss = TRUE, 
                 k = i) 
   
  sil_width[i] <- pam_fit$silinfo$avg.width 
   
} 
 
# Plot silhouette width (higher is better) 
 
plot(1:10, sil_width, 
     xlab = "Number of clusters", 
     ylab = "Silhouette Width") 
lines(1:10, sil_width) 
 
#cluster Visualization 
tsne_obj <- Rtsne(gower_dist, is_distance = TRUE) 
 
tsne_data <- tsne_obj$Y %>% 
  data.frame() %>% 
  setNames(c("X", "Y")) %>% 
  mutate(cluster = factor(pam_fit$clustering), 
         name = df_factor$Category) 
 
ggplot(aes(x = X, y = Y), data = tsne_data) + 
  geom_point(aes(color = cluster)) 
 

 




